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RESUME
Les environnements de contrdle des procédés industriels utilisent des systémes de gestion des
alarmes pour aider les opérateurs a identifier et a traiter les conditions anormales. Dans les systeémes
interconnectés, une seule faute peut déclencher plusieurs alarmes simultanément, entrainant une
inondation d'alarmes, ou le nombre d'alarmes dépasse la capacité de l'opérateur a traiter
efficacement l'information. Les inondations d'alarmes peuvent ralentir les temps de réponse,
augmenter la charge cognitive, réduire la conscience de la situation et compliquer 1'identification
des fautes, augmentant ainsi le risque d'erreurs opérationnelles et d'accidents. L'intelligence
artificielle et l'automatisation contribuent a relever ces défis grace a des outils de diagnostic
automatisés basés sur I'lA, qui aident les opérateurs a interpréter les alarmes et a identifier la cause
principale des fautes. Bien que ces outils puissent améliorer la performance des opérateurs et la
prise de décision, ils présentent également des risques lorsque I’[A fournit des recommandations
incorrectes. Cette thése examine l'influence des outils de diagnostic automatisés basés sur I'IA sur
la performance des opérateurs et la prise de décision en situation d'inondation d'alarmes, en mettant

l'accent sur la conscience de la situation, la charge de travail, la confiance et l'impact des

défaillances de I'TA.

Cette thése s'appuie sur trois études, chacune publiée sous forme d'article distinct. La premiere
¢tude a développé PER4Mance, un simulateur en acces libre et haute-fidélité basé sur le Tennessee
Eastman Process. Ce simulateur a été congu pour reproduire les conditions d'inondation d'alarmes
et fournir un environnement contr6lé¢ permettant d'étudier les interactions humain-machine. La
deuxiéme étude a utilis¢ PER4Mance pour évaluer l'effet d'un outil de diagnostic automatisé¢ sur la
performance des opérateurs. Vingt participants ont pris part a cette étude, permettant le recueil de
données sur la conscience de la situation, la charge de travail cognitive et l'oculométrie. Les
résultats ont montré que 1’outil a amélioré la conscience de la situation et réduit la charge cognitive,
en particulier dans les scénarios de fautes complexes, ou les alarmes seules ne fournissaient pas
d’informations de diagnostic claires. Les données d'oculométrie ont indiqué que les opérateurs
utilisant I’outil passaient moins de temps a parcourir la liste des alarmes et portaient davantage
d’attention aux indicateurs de performance clés et aux recommandations diagnostiques. La
troisieme étude a analysé les effets des défaillances de I'IA sur la confiance, la dépendance, la

charge de travail et la conscience de la situation. Vingt participants ont pris part a 1’étude. Les
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résultats ont montré qu’en cas de défaillances de I'IA, leur performance était réduite, caractérisée
par une diminution de la conscience de la situation, un taux de bonnes réponses plus faible et une
augmentation des temps de réponse. Bien qu'ils aient déclaré avoir moins confiance dans le systeme
d'TA, ils ont continué a suivre ses diagnostics incorrects, montrant une tendance a s'appuyer sur les

recommandations automatisées.

Cette theése contribue a l'avancement des connaissances sur (1) l'interaction humain-IA, en
explorant les défis liés a l'intégration des outils d’aide a la décision basés sur I’'IA tout en
maintenant une supervision humaine, et en abordant les questions de biais d'automatisation et de
masquage des fautes de I'IA ; (2) le role des outils d’aide a la décision basés sur I’TA dans la gestion
des situations anormales, en montrant que leur efficacité dépend de la complexité des fautes, de
I’expérience des opérateurs et du contexte opérationnel ; et (3) I’avenir des systémes d’alarme, en
questionnant le déclanchement d’alarmes comme principal moyen de transmission des
informations, en raison du risque accru d'inondations d’alarmes dans les systémes industriels, de
transport, énergétiques et médicaux émergents et de plus en plus interconnectés. Les recherches
futures devraient explorer l'automatisation adaptative, la formation dans des simulateurs haute-
fidélité avec des opérateurs expérimentés et I’évaluation des outils d’aide a la décision basés sur
I’TA afin d’améliorer la conception et I’intégration de ces technologies dans les industries de

procédés et autres environnements a haut risque.
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ABSTRACT

Industrial process control environments use alarm management systems to assist operators in
identifying and addressing abnormal conditions. In interconnected systems, a single fault can
activate multiple alarms at once, creating an alarm flood where the number of alarms exceeds an
operator’s ability to process information efficiently. Alarm floods can slow response times,
increase cognitive workload, reduce situational awareness, and complicate fault identification,
raising the likelihood of operational errors and accidents. Artificial intelligence and automation
help address these challenges through Al-based automated diagnostic tools that assist operators in
interpreting alarm patterns and isolating root causes. While these tools can enhance operator
performance and decision-making, they also pose risks when Al provides incorrect
recommendations. This thesis examines how Al-based automated diagnostic tools influence
operator performance and decision-making during alarm floods, focusing on situational awareness,

workload, trust, and the impact of Al failures.

The thesis was conducted in three studies, each published as a separate article. The first study
developed PER4Mance, an open-source, high-fidelity process control simulator based on the
Tennessee Eastman Process. The simulator was designed to replicate alarm flood conditions and
provide a controlled environment for studying human-machine interactions. The second study used
PER4Mance to assess the effects of an automated diagnostic tool on operator performance. Twenty
participants took part in the study. Results showed that the tool improved situational awareness and
reduced cognitive workload, particularly in complex fault scenarios where alarms alone did not
provide clear diagnostic information. Eye-tracking data indicated that operators using the tool spent
less time scanning alarm lists and directed more attention to key performance indicators and
diagnostic recommendations. The third study examined the effects of Al failures on trust, reliance,
workload, and situational awareness. Twenty participants contributed to the study. Results
indicated that during Al failures, participants exhibited lower performance, as shown by reduced
situational awareness, decreased accuracy, and slower response times. Although they reported
lower trust and reliance on the AI system, they continued to follow its incorrect diagnoses,

demonstrating a tendency to depend on automated recommendations.

This thesis advances knowledge on (1) human-Al interaction, examining the challenges of

balancing Al-based decision support tools with human oversight, while also addresses automation
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bias and automation failure masking; (2) the role of Al-based decision support tools in abnormal
situation management, demonstrating that their effectiveness depends on fault complexity, operator
experience, and operational context; and (3) the future role of alarms, questioning the use of
annunciated alarms due to the increasing risk of alarm floods in emerging and more advanced
industrial, transportation, energy or medical systems. Future research should investigate adaptive
automation, training in high-fidelity simulators with experienced operators, and further evaluation
of Al-based decision support tools to enhance the design and integration of these technologies in

process industries and other high-risk environments.
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CHAPTER 1 INTRODUCTION

1.1 Context

In process industry, alarm management systems notify operators of deviations from nominal
conditions. Abnormal situations—such as equipment overheating, pressure buildup, or chemical
imbalances—can vary in severity, impacting safety, efficiency, and the environment [1]. In
complex and interconnected process systems, deviations can trigger multiple alarms
simultaneously, leading to alarm floods [2]. These events, characterized by a high number of
alarms in a short period, have been identified as contributing factors in several industrial incidents,
as they can overwhelm operators' capacity to process information and take corrective action [3].
Notable examples include the Piper Alpha Oil platform, BP Texas City refinery and Buncefield oil
depot.

The Piper Alpha Oil Platform Disaster (1988) accident began with a condensate pump failure,
leading to a gas leak that triggered multiple alarms [4]. The overwhelming number of alarms made
it challenging for operators to identify the critical threat. Subsequently, an explosion destroyed the
control room, resulting in a loss of centralized command and hindering emergency response efforts.

This sequence of events contributed to the loss of 167 lives.

The BP Texas City Refinery Explosion (2005) occurred during the start-up of the isomerization
unit [5]. Operators inadvertently overfilled the raffinate splitter tower, leading to an overpressure
and the release of a hydrocarbon vapor cloud. This vapor cloud subsequently ignited, resulting in
a catastrophic explosion. Investigations revealed that operators were inundated with a high volume
of alarms, many of which lacked prioritization based on severity. This alarm overload impeded the
operators’ ability to promptly identify and address critical warnings, delaying corrective actions.
As process conditions deteriorated, the increasing number of alarms further overwhelmed
operators, hindering effective management of the escalating situation. The explosion resulted in 15

fatalities and over 170 injuries.

The Buncefield Oil Depot Explosion (2005) accident began when a tank was overfilled with petrol
due to a malfunctioning level gauge and an inoperative independent high-level switch, leading to
the release of approximately 250,000 liters of fuel [6]. This resulted in a vapor cloud that ignited,
causing a massive explosion and a fire that lasted five days. The malfunction of the tank control

and alarm management systems was a key factor in the release. Operators were subjected to an



overwhelming influx of alarms within a brief timeframe, which impeded their ability to discern
and prioritize critical warnings. This alarm overload led to delays in implementing corrective
measures, thereby compromising the effectiveness of the incident response. The explosion caused

significant damage to the facility and surrounding areas.

Alarm floods occur in multiple sectors beyond industrial environments. In public transportation,
automatic train control systems can generate thousands of alarms each week, making it more
difficult for dispatchers to distinguish and respond to critical events [7], [8], [9]. In healthcare, the
continuous activation of medical device alarms contributes to alarm fatigue, which can lead to
slower response times and, in some cases, preventable harm [10], [11], [12], [13]. In aviation,
frequent false or unreliable alarms reduce pilots' trust in automated systems, increasing the
likelihood of overlooking essential warnings. Studies show that inaccurate alarms continue to be a
challenge in flight operations [14], [15], [16]. Effective alarm management is necessary in various
industries where an excessive number of alarms can interfere with timely and appropriate

responses.

Advancements in connectivity and data integration have improved alarm flood management,
enhancing fault detection and diagnostics [17]. Artificial Intelligence (Al)-driven systems can
process extensive alarm data, identify patterns, and predict potential failures, thereby assisting
operators in filtering non-critical alarms, prioritizing essential ones, and recommend diagnostics
[18]. However, increased reliance on Al and automation introduces new challenges. Al systems
improve operational efficiency but are also prone to failures [19]. When these failures occur,
operators may experience errors in decision-making and declines in performance [20]. This thesis
examines the effects of integrating an automated decision support tool on human performance, with
a focus on automated system failures. The research aims to identify methods to improve human-

Al collaboration and minimize operational risks in high-stakes environments.

1.2 Objectives

The objective of this thesis is to examine the effects of an automated decision support tool on
human performance during an alarm flood episode, with a focus on automated system failures. To
achieve this, the research aims to develop a simulator environment that represents a high-fidelity
industrial process control system. This environment will allow for the simulation of faults and

alarm flood scenarios, providing a controlled setting to study human interaction with automated



decision support tools. The study also seeks to evaluate human performance when using an
automated diagnostic support tool, determining whether it improves an operator’s ability to manage
alarm floods or has no measurable effect. Additionally, the research will investigate human-Al
interaction during Al failures, analyzing how incorrect Al recommendations influence operator

decision-making and performance.

1.3 Thesis organization

This thesis is made of three articles that are either published or under review in peer-review journals

that constitutes the core of its scientific contributions. The thesis is structured as follows:

e Chapter 1 (this chapter) introduces the research context, objectives, and overall

organization of the thesis.

e Chapter 2 provides a comprehensive literature review of the topics of alarm floods in
industrial process control, alarm flood mitigation strategies, human-Al collaboration, and

Al failures.

o Chapter 3 outlines the general research approach, research objectives and summarizes the

objectives of the three articles.
o Chapters 4, 5, and 6 present the research findings in the form of three scientific articles.

o Chapter 7 synthesizes the findings across the articles, discusses the contributions of this

thesis, and acknowledges its limitations.

e Chapter 8 concludes the thesis by highlighting recommendations for future research

directions.



CHAPTER 2 LITERATURE REVIEW
This thesis examines the effects of automated diagnostic tools on human performance during
abnormal situation management (ASM) in industrial settings. The research lies at the intersection
of process alarm management and process control, Al and automated fault diagnosis, and human-
machine interaction (HMI) and performance. To fully grasp the research objectives of this thesis,
this literature review will explore key concepts within each of these domains, providing a
comprehensive foundation for investigating the challenges and opportunities of human-Al

collaboration in failure management scenarios.

2. Alarm Flood
Mitigation Strategies

1. Industrial Process
Control and Alarm
Floods

This thesis:
Effects of automated
diagnostic tools on
human performance
during failure
management

3. Human-AT
Interaction and
Performance

Figure 2.1 Break-down of the thesis’ literature review in three main sections.

This literature review is structured into four main sections (Figure 2.1): The first section explores
the foundational principles on alarm floods in industrial process control, such as faults, failures,
and abnormal situations. The second section discusses alarm management, alarm analysis, and fault
detection and diagnosis as alarm flood mitigation strategies. The third on Human-AlI collaboration
addresses key concepts between operator and automation interaction, including Al failures,

situational awareness, trust and reliance, out-of-the-loop challenges, and cognitive workload. The



fourth section reviews related past research on automated diagnostic tools during failure

management.

2.1 Industrial Process Control and Alarm Floods

This section examines industrial plants, process control, and alarm management systems. It begins
by describing the structure and function of an industrial plant, followed by an explanation of
process control and the role of the operator in maintaining system stability. Then, it examines the
factors that contribute to abnormal situations, including faults and failures. Finally, it discusses
alarm management systems and alarm floods, outlining their functions, causes, and impact on
operator performance. This foundational overview establishes the context for the challenges

associated with alarm floods in industrial environments.

2.1.1 Industrial Process Control

Key definitions are needed to explain the industrial process control and alarm management system
(Figure 2.2). An industrial plant is a facility where chemical, physical, or mechanical processes
convert raw materials into finished products [21]. Examples include oil refineries, chemical plants,
power stations, food processing facilities, pharmaceutical production sites, and automotive

assembly plants.

Process control is the automated and manual regulation of industrial operations to optimize
performance by monitoring and adjusting variables through real-time feedback and control
mechanisms [22]. Industrial plant relies on process control systems to ensure efficiency, safety,
and cost-effectiveness by monitoring and regulating variables such as temperature, pressure, flow,
and chemical composition [23]. Effective process control enhances productivity, reduces waste,
and ensures compliance with safety and environmental standards [21]. Automation and human
oversight work together to maintain stability, minimize disruptions, and optimize performance

[24].

Alarm systems identify deviations from normal operating conditions and notify operators to
enable timely intervention [25]. Industrial facilities use these systems to monitor process control
variables and signal when values exceed defined thresholds. While process control systems

regulate operations, alarm systems provide notifications that support operator decision-making [3].



An industrial plant operator monitors and controls equipment and processes in an industrial
facility to ensure safe and efficient operations [26]. Responsibilities include interpreting data from
control systems, adjusting parameters, responding to alarms, and performing routine inspections.
Operators work in sectors such as manufacturing, chemical processing, power generation, and oil

refining, following operational procedures and regulatory standards [27].

Industrial plant

-

Command room

PC
Systems
Monitoring

(€
fam)

Operator

Alarm
system

Figure 2.2 Alarm management system where operators monitor industrial control process (PC)
and alarm systems in the command room.

2.1.2 Alarm Floods

Alarms play a crucial role in plant safety, acting as a safeguard to prevent faults from escalating
into serious hazards or accidents [25]. Their primary function is to help operators maintain
processes within normal operating conditions. By alerting operators to faults and failures, alarms
ensure timely intervention to prevent operational disruptions [28]. To ensure clarity and precision

in this thesis, it is essential to define key terms as follows:

e Faults: Unacceptable deviations of a process variable from its normal state. These
deviations reflect the difference between a threshold value and a fault value and can lead to
process malfunctions or failures. Faults may already exist in the process or arise at an
unpredictable time, with varying rates of progression [29].

e Failures: Permanent interruptions in a system's ability to perform its required function
under specified operating conditions. Failures are typically caused by multiple faults and
result in the inability of the system to execute production or fulfill a demanded function

[30].



e Abnormal situation: disturbances or deviations from normal operating conditions caused
by factors like equipment failures, human errors, or external influences [31].

e Alarms: Notifications provided to operators to indicate equipment malfunctions, process
deviations, or abnormal conditions that require immediate attention [32]. Alarm messages
are directly associated with faults and are triggered when the process variable exceeds or

falls below predetermined thresholds.

Alarm systems play a crucial role in alerting operators to abnormal situations in industrial
processes. An abnormal situation arises when a process deviates from normal operating
conditions, potentially leading to unsafe, inefficient, or environmentally hazardous outcomes [33].
These deviations can stem from equipment malfunctions, unexpected external influences, among

other possible factors.

1) Fault

3) Abnormal

. . Trigger:
situation £

May lead to ——Can cause—p-

!

2) Failure

Figure 2.3 Faults and failures can cause abnormal situations which triggers alarms.

Here is a step-by-step diagram illustrating the relationship between faults, failures, abnormal
situations, and alarms (Figure 2.3). We will use as an example a sudden rise pressure buildup from
a clogged valve. This can be seen in process industries due to crystallization or chemical residue
buildup. In this case, a blocked valve restricts fluid flow, disrupting normal operations (Step 1
fault). This obstruction causes pressure buildup in the system as fluid accumulates with no clear
path (Step 2 failure). As pressure continues to rise, the system deviates from safe operating
conditions, creating an abnormal situation that could lead to equipment damage or failure (Step 3
abnormal situation). To prevent further escalation, an alarm is triggered, alerting operators to the
high-pressure condition so they can take corrective action before a critical incident occurs (Step 4

alarm).



Alarms help maintain plant safety by preventing faults from escalating into hazards. They assist
operators in keeping processes within normal limits by signaling when action is needed. An alarm
is triggered when a monitored variable crosses a predefined threshold, regardless of the situation’s
context. Alarms do not analyze patterns or diagnose problems—they simply respond to specific

limits set in advance [34].

Each alarm message includes an operational procedure for corrective action [35]. In industrial
processes, messages are prioritized based on the level of urgency of the operator’s response [36],

[37]:

e Warning-level alarms require immediate awareness and an immediate operator’s response.
These alarms are usually color-coded in red.

e Caution-level alarms require immediate awareness and a subsequent operator’s response.
They are usually color-coded in amber or yellow.

e Advisory-level alarms provide information but do not require a response. These alarms can

be color-coded in cyan or white.

Operators follow predefined procedures to address warning- and caution-level alarms. Advisory-

level alarms do not have procedure since no action is required [36], [37].

A major issue arises when a single fault triggers multiple alarms at once, overwhelming operators
and making it difficult to isolate the root cause. This situation, known as alarm flood, happens
when alarms are configured without considering how different system components interact. In
large, interconnected industrial plants, disturbances can lead to multiple system failures, triggering
a cascade of alarms and potentially causing an alarm flood. An alarm flood is defined as 10 or more
alarms within a 10-minute period per operator [38]. It also refers to a situation in which the alarm
rate exceeds the operator’s capacity to respond effectively [39]. This operator overload limits the
ability to investigate alarms and isolate the root cause of system disturbances [31]. As failures
progress, new alarms accumulate without differentiating between causes, further complicating
response efforts [40]. Previous accidents, introduced in chapter 1, have revealed that operators were
overwhelmed by alarm floods that generated hundreds or thousands of process alarms, often
requiring operators to silence them without addressing the root issue [41]. The large volume of
alarms creates human factors challenges, primarily due to the limited capacity of human attention

[7]. The gap between the amount of information provided and what operators can effectively



process increases mental workload, contributes to human error, and reduces operational efficiency

[42].

Alarm floods increase the risk of loss of control, accidents, potential loss of life, equipment
damage, financial losses, and environmental harm [15]. The Engineering Equipment and Materials
Users Association (EEMUA) has identified them as a major factor in catastrophic incidents [3].
One notable case is the 1994 Milford Haven explosion at the Texaco refinery in Pembroke, South
Wales. A release of 20 tons of hydrocarbons from the flare header's knock-out pot led to a massive
explosion, preceded by hundreds of alarms in the final minutes. The Health and Safety Executive’s
investigation found that alarm overload can undermine safety by overwhelming operators rather
than aiding decision-making [43]. In the 1998 Esso Australia gas plant explosion, a fractured lean
oil vessel released gas, triggering hundreds of alarms. The excessive alerts desensitized operators,
contributing to ineffective response. The explosion resulted in two deaths, eight injuries, and a two-
week gas supply disruption in Melbourne [44]. These past incidents indicate that alarm floods often
overload operators’ cognitive processing capacity, presenting challenges related to attention and

decision-making [14], [45].

If we go back to the previous example of a clogged valve, the blockage can trigger multiple alarms
simultaneously (Figure 2.4). This can trigger high-pressure alarms before the blockage, followed
by a low-pressure and low-flow alarms, and potentially low temperature alarms if the restriction
affects heat transfer. Operators may struggle to identify whether the primary issue is the valve

blockage itself or its cascading effects on the system.

Alarm

Low pressure

Alarm Alarm

Blocked Valve Leads to——<—p» Low flow

Alarm

Low
temperature

Figure 2.4 Blocked valve causing multiple alarms simultaneously.



10

Adjusting alarms to avoid unnecessary triggers while ensuring important ones are not missed is
work-intensive. It requires fine-tuning thresholds and introducing deadbands [46], which prevent
alarms from repeatedly triggering when values fluctuate near setpoints. Because alarms are based

on thresholds, alarm floods can result from poor alarm design, system complexity, or both [47].

Alarm floods vary in their characteristics, including the rate at which alarms activate and the extent
to which the alarms indicate the root cause of a fault or only its consequences [48]. This thesis
investigates the impact of alarm floods based on their level of diagnostic clarity: "difficult" or
"complex" alarm floods, where alarms do not explicitly isolate the root cause, and "easy" or

"simple" alarm floods, where the root cause is clearly indicated.

Careful alarm management is necessary to keep alarms useful rather than overwhelming [49]. We

investigate this topic in the next section.

2.2 Alarm Floods mitigation strategies

Building on the challenges of alarm floods, this section explores strategies to mitigate their impact.
These strategies fall into three main categories: alarm management, alarm analysis, and fault
detection and diagnosis (FDD). Each approach equips operators with tools to improve safety and
performance by reducing alarm overload. Rather than competing, these methods complement each

other, offering different ways to manage alarm floods effectively.

2.2.1 Alarm Management

Alarm management is a structured approach to optimizing alarm systems to ensure operators
receive relevant alarms [50]. A high volume of alarms can overwhelm operators, reducing their
ability to respond effectively. To address this issue, industries implement strategies such as
dynamic threshold adjustments, alarm filtering, and rationalization. These methods help prioritize
important alarms, reduce unnecessary alarms, and improve overall system performance [51], [52].
There have been multiple case studies that showed the application of alarm management methods

to reduce alarm floods.

Effective alarm management minimizes unnecessary alarms, enabling operators to focus on urgent
process deviations and reducing the risk of accidents and downtime [25]. A study on chattering
alarms, which were repetitive alarm signals triggered in quick succession due to minor fluctuations

in process variables, introduced an optimization-based method for determining dead-band values
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to reduce their frequency and improve efficiency and safety [53]. The method was evaluated using
the Tennessee Eastman Process simulator, a standard benchmark for industrial systems, and
compared with standard practices, demonstrating improved dead-band specification and
operational performance. Reducing chattering alarms also lowered overall alarm volumes, aiding

in the management of alarm floods, and improving operator response in industrial settings.

A clustering algorithm was applied to an ethylene cracking furnace to optimize alarm management
systems and improve safety [54]. The implementation of the clustering—ranking algorithm in a
refinery in northern China showed that the number of alarms generated by the distributed control
systems (DCS) and those perceived by operators exceeded the manageable threshold set by
EEMUA. This increase in alarms contributed to operator disturbance and reduced decision-making
effectiveness. The proposed method provided a structured approach to alarm management,

improving process operations and plant safety in the chemical industry.

Multi-agent systems were used in petroleum settings to help operators manage an alarm flood
during emergencies [55]. A proposed multi-agent-based alarm management system synthesized
process conditions during emergencies, assisting operators in interpreting and managing alarms. It
incorporated reasoning, proactivity, communication, and adaptive behavior to improve alarm
handling. The system achieved a suppression rate of up to 93.76%, allowing operators to focus on

unexpected events rather than being overwhelmed by routine alarms.

Pattern mining was applied to a GE power plant dataset to reduce redundant alarms while
maintaining safety and efficiency [56]. The method analyzed alarm logs to identify frequent
patterns and correlations, enabling the removal of redundant alarms. It involved two steps:
automatic pattern detection and expert analysis to validate correlations. The approach, tested on
real power plant data, significantly reduced episodes of alarm flood without affecting operational

performance.

Advanced strategies, including dynamic alarm management, alarm shelving, and predictive
analytics, were used to improve refinery operations [57]. The study examined methods for reducing
episodes of alarm flood and nuisance alarms, which contributed to operator fatigue. It analyzed the
role of predictive analytics and machine learning in proactive monitoring and early issue detection.

The research also addressed best practices such as alarm rationalization, prioritization, audits,



12

philosophy documents, and operator training to manage alarm flood episodes and improve safety,

efficiency, and regulatory compliance in refinery operations.

Finally, recent studies have consistently highlighted the need for future research to focus on the
integration of emerging technologies, the ergonomic and human-centric design of alarm
management systems, and adherence to industry standards such as ISA 18.2 for effective alarm
management [58]. This includes incorporating artificial intelligence and machine learning for
prediction and diagnosis [55], [59], as well as improving training, continuous monitoring, and

operator feedback to enhance system effectiveness [57], [60].

2.2.2 Alarm Analysis

Alarm analysis is a data-driven method for evaluating alarm system performance [61]. By
assessing historical and real-time data, it eliminates redundant and low-priority alarms, ensuring
operators receive only relevant alerts [62]. The evaluation of alarm data reduces unnecessary
activations, enhancing system clarity and allowing operators to focus on critical situations [63].
Alarm analysis also prevents episodes of alarm flood by identifying inefficiencies and recurring
fault patterns [64]. Alarm analysis includes various methods such as statistical trend analysis, root
cause analysis, event correlation, and predictive analytics. However, for the scope of this paper,

the focus will be on methods that use historical data analysis and root cause isolation.

Previous papers have demonstrated that alarm analysis methods were successful alarm flood
mitigation strategies. A study designed a semi supervised, data-driven method to classify episodes
of alarm flood using historical data [63]. Their approach involved clustering, labeling alarms, and
online early classification process. The method was evaluated using the Tennessee Eastman
process (TEP) benchmark and an industrial alarm flood dataset. Results demonstrated a clustering
reliability of 99.52%, highlighting the method’s accuracy in detecting episodes of alarm flood at

an early stage.

Another research introduced a method for classifying episodes of alarm flood using sequence
mining and time series analysis to categorize floods based on historical data [64]. The apps operated
in two stages: identifying whether a flood belonged to a new class and classifying it when a
previous class provided a basis for comparison. A historical alarm classifier was integrated into

fault detection and identification. A case study on an offshore oil-gas separation plant demonstrated
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that the algorithm successfully matched new alarm flood episodes with past instances of the same
abnormal condition, enabling root cause isolation. The method achieved an average classification

accuracy of 92.2%.

A research paper introduced a self-attention-based classifier with word embeddings to analyze
historical alarm data [65]. The method was applied to the Tennessee Eastman process. The model
achieved perfect accuracy and precision while being trained on a dataset of 2,000 alarm tags,
significantly fewer than those required by existing methods. The training process was efficient,
completing in approximately 22 seconds, demonstrating its potential for real-time applications in

alarm-based root cause analysis.

A semi-supervised learning approach combined with case-based reasoning was used to analyze
alarm flood episodes with minimal expert annotations [66]. The method consisted of two stages:
offline learning, where historical alarm data was analyzed to identify patterns and build a case
library, and online detection, where incoming an alarm flood was compared against stored cases to
determine likely causes. Semi-supervised learning reduced the reliance on extensive labeled data,
while case-based reasoning allowed the system to retrieve and update cases based on new alarm
patterns. The approach was validated on real industrial alarm datasets, demonstrating its
effectiveness in isolating root causes, reducing downtime, and improving operational decision-

making.

Alarm analysis, such as historical data pattern matching and root cause identification, has proven
effective in testing environments for managing and preventing alarm. A recurring recommendation
from recent studies is to conduct more case studies to evaluate these methods in real-world
scenarios. Expanding case studies could provide deeper insights into practical implementation,

improving strategies for managing alarm floods and ensuring alarm systems operate efficiently.

2.2.3 Fault Detection and Diagnosis (FDD)

FDD is a proactive approach that detects, isolates, identifies, and diagnoses faults before they
escalate into failures [67]. By continuously monitoring system parameters, FDD helps mitigate
alarm floods by identifying anomalies early, preventing multiple alarms from being triggered by
undiagnosed faults [68]. FDD employs methods such as model-based detection, data-driven

analytics, signal processing, and machine learning to enhance fault recognition and resolution,
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preventing alarm overload, and improving response efficiency. The following section outlines the

FDD loop (Figure 2.5) and the definition of key terms for the clarity of this thesis.

r_ Fault diagnosis j

Fault Process
. . . o -——
identification | recovery

--»| Fault detection | »-| Fault isolation -

-
L

Figure 2.5 Steps of the Fault Detection and Diagnosis Loop

1. Fault detection: This step identifies deviations from normal operating conditions in a
system by monitoring key parameters such as temperature, pressure, flow, and performance
metrics. It involves analyzing real-time data to recognize anomalies that may indicate
potential problems [68].

2. Fault diagnosis: This refers to the process of isolating and identifying faults in a system to
determine their root causes and potential impacts, and whether it requires immediate
intervention [30].

o Fault isolation: Pinpointing the specific component, subsystem, or location within
a system responsible for a detected fault [69].

o Fault identification: Determining the fault’s characteristics, severity, and
underlying cause.

3. Process recovery: The method of restoring a system to normal operating conditions after
a fault, failure, or disruption. It involves implementing corrective actions and adjusting
system parameters. Recovery strategies may include automatic system reconfiguration,

manual operator intervention, or backup system activation to maintain process continuity.

Once the fault has been diagnosed, operators follow standardized operational procedures to apply
corrective actions [70]. Operational procedures are structured instructions that ensure the safe and
efficient execution of tasks in industrial settings. According to the Center for Chemical Process
Safety (CCPS), they outline the process, hazards, tools, protective equipment, and controls to help

operators manage risks and verify process behavior [71]. They also guide troubleshooting,
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emergency shutdowns, and handling special situations like out-of-service equipment, ensuring
consistency, compliance, and informed decision-making [32]. If fault detection, diagnosis, or the

applied procedure fails to resolve the issue, the operator may need to restart the FDD loop.

Recent studies have demonstrated the applications of FDD in improving alarm flood management.
A research paper examined the importance of early fault detection and diagnosis, particularly in
managing alarm flood episodes [72]. The study introduced a novel algorithm to classify episodes
of alarm flood by analyzing relationships between process variables and alarm data. The method
was capable of handling large-scale plants with simultaneous alarms. Designed for online fault
prediction, the algorithm was tested on the Tennessee Eastman Process system and a real industrial

setting, demonstrating its effectiveness in early fault detection and diagnosis.

Another study developed a novel alarm dataset using a simulated nuclear power plant to evaluate
fault detection and diagnosis (FDD) methods [73]. The researchers tested three Alarm Flood
Classification (AFC) methods, which supported operators and automated systems in detecting,
classifying, and diagnosing faults based on alarm patterns. The dataset contained controlled fault
and alarm flood scenarios, allowing for a structured assessment of each method. One approach
achieved 98% classification accuracy, demonstrating its effectiveness in fault identification. The
findings showed that alarm flood classification improved fault detection and diagnosis in industrial

systems.

Alarm Management, Alarm Analysis, and Fault Detection & Diagnosis (FDD) work together to
enhance system reliability, operator efficiency, and alarm flood prevention (Table 2.1). Alarm
Management ensures that alarms are structured and prioritized, Alarm Analysis continuously
refines alarm settings based on performance data, and FDD proactively prevents faults from
escalating into failures. For instance, during an alarm flood episode in an oil refinery, FDD can
isolate the root cause, such as a pump failure, while alarm management filters out redundant
notifications and highlights the most urgent alarms requiring immediate attention. At the same
time, alarm analysis examines alarm trends, identifies patterns in recurring alerts, and helps refine
alarm thresholds to prevent future episodes of alarm flood. This integration minimizes alarm

fatigue, enhances decision-making, and strengthens industrial safety and efficiency [20].
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Table 2.1 Summary of Alarm Management, Alarm Analysis and Fault Detection & Diagnosis
with a focus on alarm floods and operator performance.

. Fault Detection &
Alarm Management Alarm Analysis Diagnosis (FDD)

Definition The systematic design, The evaluation of alarm A proactive method that
implementation, and data to identify patterns, detects, isolates, and
maintenance of alarm root causes, and system diagnoses faults before
systems. improvements. they escalade.

Approach System-level configuration | Data-driven evaluation of | Real-time monitoring and

and Scope and optimization of alarm | alarm performance and detection of real system
settings. Prioritization, and | root cause. Continuous issues.
suppression of unnecessary | evaluation of historical
alarms. alarm data, data-driven

insights into alarm
frequency, trends, and
impact.

Key Methods | Alarm rationalization, Statistical trend analysis, Model-based detection,
prioritization, suppression, | root cause analysis, event data-driven diagnostics,
shelving, dynamic correlation, predictive machine learning, signal
thresholding. analytics. processing.

Role in Prevent alarm floods Analyse alarm floods to Prevent alarm generation

alarm flood | through alarm identify root causes and by detecting and

mitigation rationalization, optimize alarm thresholds. | diagnosing faults before
prioritization, and they escalate into failures.
suppression.

Although the reliability of these alarm flood mitigation strategies is not yet sufficient for real-world
process control applications, they can isolate the root cause of alarm flood episodes within
historical datasets and suggest it to the operator. While these approaches have shown to classify
alarm flood episodes, they have not eliminated them, and their accuracy remain below 100%.
Alarm floods remain a challenge, prompting industries to explore new strategies for improving
alarm systems and mitigating their impact. Recent advancements have focused on artificial
intelligence and machine learning to enhance FDD through more accurate fault prediction, real-

time diagnostics, and adaptive alarm systems [18].

In this thesis, an automated fault diagnostic tool will be used to simulate alarm analysis by matching

incoming alarms to a historical database in the Chapter 5 experiments. In the Chapter 6
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experiments, the study will simulate the behavior of a FDD system that provides fault diagnostic
recommendations to operators. This FDD system will also introduce Al failures, allowing an

investigation into how operators respond to incorrect diagnostic outputs.

2.3 Al Failure in Process Control

Up to this point, we have provided an overview of industrial process control, the causes of alarm
floods, and their impact on human performance and accidents. We then examined strategies for
managing alarm floods, discussing their strengths and limitations. The focus now shifts to how
emerging technologies, specifically Al and automation, enhance FDD as a tool for managing alarm
floods and improve operator performance. To provide a foundation for this analysis, the section

first presents an overview of Al and automation, followed by automation reliability and failures.

2.3.1 Artificial Intelligence and Automation

Artificial intelligence (AI) refers to the development of machines and systems capable of
performing tasks that typically require human intelligence [74], [75], [76]. Al is designed to enable
machines to perceive their surroundings, process information, and take actions to achieve specific
objectives, often learning and improving from experience over time [77], [78]. This is made
possible through advanced algorithms that can identify patterns, interpret data, and make decisions
with minimal human involvement [79], [80]. Al encompasses a broad range of disciplines,
including machine learning, which focuses on systems that adapt and evolve by analyzing data
[81]; natural language processing, which allows machines to comprehend and produce human
language [82]; computer vision, which enables the interpretation of visual inputs [83]; and deep
learning, which has driven applications like facial recognition, voice synthesis and real-time

language translation [84].

Al has become deeply embedded in the professional sphere, transforming how people work [85],
[86], [87], [88]. Al is transforming industrial operations through advanced applications that
enhance efficiency, reliability, and safety [89], [90]. One key application is predictive maintenance,
where Al analyzes sensor data and historical trends to forecast equipment failures in chemical
plants, allowing for proactive maintenance and reducing unplanned downtime [91]. Additionally,
Al-driven process optimization improves energy efficiency in manufacturing by dynamically
adjusting operational parameters based on real-time data [92]. In industrial control rooms,

intelligent alarm management systems utilize Al to reduce episodes of alarm flood by filtering and
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prioritizing critical alerts, preventing operator overload [93]. Furthermore, Al-based anomaly
detection enhances real-time process control and safety by identifying deviations from normal
operating conditions, enabling quick corrective actions to prevent system failures or hazardous
incidents [94], [95]. These Al applications are reshaping industrial environments by optimizing

processes, reducing risks, and improving overall operational performance.

Automation involves the use of machines or systems to execute repetitive tasks based on predefined
rules, ensuring precision and consistency [96]. It is particularly effective for structured, predictable
processes that require minimal human intervention [97]. In industrial environments, automation
enhances efficiency and safety by streamlining operations, reducing errors, and maintaining
process reliability [98]. While often associated with Al, automation operates independently of
learning algorithms, relying instead on programmed logic to perform specific tasks [99]. One key
application is automated valve control in chemical processing plants, where programmable logic
controllers (PLCs) [100], [101] and DCS [102], [103] regulate fluid flow, temperature, pressure
and composition with precision, ensuring optimal process conditions. In manufacturing, conveyor
belt and robotic arm automation streamline assembly lines, increasing production speed and
reducing errors [104], [105]. Additionally, alarm suppression logic is implemented in industrial
control rooms to filter out nuisance alarms, preventing operator overload and ensuring that only
critical alerts are prioritized [106]. In pharmaceutical and chemical industries, batch process
automation ensures precise ingredient mixing, temperature control, and reaction timing, improving
product consistency and regulatory compliance [107], [108], [109]. These automation solutions

help industrial facilities optimize operations, enhance safety, and improve overall productivity.

While Al and automation are often conceptually distinct [110], Al typically involving data-driven
reasoning, and automation referring to rule-based functions, they frequently coexist and intertwine
in industrial control systems. In practice, Al is not replacing automation but rather enhancing it,
especially in the context of decision support and fault diagnosis. Many interactions between
operators and Al-based systems occur through automated interfaces, making the distinction less
visible from the operator's perspective. This is particularly true in environments like chemical

plants, where Al-driven tools are embedded within existing automation architectures.

In this thesis, Al and automation are treated as components of a common human-machine

ecosystem, where functional boundaries are less important than the cognitive consequences of
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system behavior. Failures, whether caused by automation logic or Al reasoning, can produce
similar effects on trust, situational awareness, and performance. Therefore, although the thesis
defines Al and automation separately for clarity, it draws extensively from the automation literature
to inform its analysis of human-Al interaction. This approach is justified given that the operator’s
experience of support, disruption, or failure often emerges from the integrated behavior of both Al

and automation systems.

2.3.2 Automation reliability

Understanding automation reliability is essential for studying how operators respond to decision-
support tools, especially in high-risk environments where system performance influences trust and
task management. In this context, reliability refers to the extent to which automated systems
function correctly and consistently across operating conditions. This concept is particularly

relevant when investigating automation failures and their effects on human performance.

In earlier literature, automation reliability was often defined as a performance ratio, described as
how often a system produces correct outputs. However, more recent work recognizes that reliability
is also shaped by user perception, system context, and the interaction between automation and
human operators [111]. Reliability may refer not only to technical performance but also to the

perceived consistency and dependability of the system during task execution.

Some researchers distinguish between performance reliability (accuracy of system outputs) and
explanatory reliability (clarity of the system's reasoning or logic), both of which influence how
operators trust and use automation [112]. This is especially relevant for Al-based systems, where
recommendations may appear uncertain or change based on input conditions. Studies show that
operators are more likely to lose trust in systems that fail unpredictably than in those that show
consistently poor performance [113]. In dynamic environments, such as process control or
emergency response, perceived reliability also shapes how and when operators intervene. When
reliability is unclear or inconsistent, operators may disengage, delay responses, or misinterpret

system outputs [114].

In this thesis, the reliability of a diagnostic tool is relevant because it influences operator behavior
even when the system appears to function normally. Perceived reliability sets the conditions under
which trust is formed, maintained, or degraded [115]. When reliability is violated—such as when

a system provides an incorrect or missing diagnosis—the outcome is typically experienced as an
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automation failure [116], [117]. For this reason, automation reliability provides the foundation for
understanding how failure conditions affect operator trust, workload, and situational awareness. In
the next section, we will provide an overview of notable Al failures, examining their causes and

consequences.

2.3.3 Al/Automation Failure

Alis increasingly used in chemical plants to improve efficiency, safety, and predictive maintenance
[118], [119]. However, Al systems can produce inaccurate or unreliable results, leading to
operational challenges [120]. Al-related failures in process industries include poor adaptation to
new operating conditions [121], where Al struggles to respond to variations beyond its training
data; cybersecurity risks [117], where Al-driven systems are vulnerable to hacking or data
manipulation; and algorithmic errors in analyzing chemical reactions [122], which can lead to

incorrect process optimizations.

Al-based decision-making tools can fail to perform its assigned function. Detection systems fail to
identify targets, classifiers assign incorrect categories, decision aids produce inaccurate
recommendations, and process automation deviates from expected operations [123]. An example
is data bias, which affects predictive accuracy [124], [125]. If an Al model is trained primarily on
data from normal operations without sufficient failure scenarios, it may fail to detect early signs of
equipment degradation. This limitation can result in undetected malfunctions, increasing the risk
of equipment failures and safety incidents. Another example of failure is sensor malfunctions and
faulty data inputs [126]. Al systems depend on real-time sensor readings to regulate processes, but
incorrect or inconsistent data—caused by calibration errors, physical damage, or interference—can
lead to flawed assessments [127]. This may result in improper adjustments to operational

parameters, reducing efficiency and potentially creating hazardous conditions.

Al failure does not always indicate an error in the system itself; it can occur when automation
obscures important information, making problem detection more difficult for human operators
[128]. Skjerve and colleagues examined how automation masked failures in a pressurized water
reactor simulation, affecting operators' ability to diagnose issues [129]. In one case, a valve failure
and a small leak developed in the letdown system, which regulates reactor pressure. The system’s
automatic controller adjusted its settings to compensate, concealing the leak and delaying operator

detection. A second leak then occurred in the primary purification system, also within the letdown
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system. Automation responded by activating charging pumps to maintain pressure, further masking
the problem. As the system continued to adjust for these changes, operators had to diagnose both
leaks without direct indicators, complicating their ability to identify the underlying failures. In this
scenario, both failures had similar symptoms and occurred within the same system. The automation
system responded as designed by adjusting parameters, such as activating controllers and charging
pumps, to stabilize pressure levels. While this maintained normal operations, it also concealed
important warning signs, making it difficult for operators to identify the underlying issues. As
automation continued to compensate, the crew struggled to differentiate between the leaks and

determine the cause.

This demonstrates a challenge of automation masking. Although the system functioned correctly
by maintaining stability, its actions hid failures that required operator intervention. By
compensating for pressure fluctuations, automation reduced direct indicators of malfunction,
delaying detection and response. In this case, automation operated as intended but had unintended
consequences that affected human decision-making. Similarly, Al systems designed to optimize
performance may prioritize maintaining output over providing diagnostic information. Instead of
indicating potential failures, Al-driven adjustments can obscure developing issues, increasing the

risk of delayed corrective action.

The definition of automation failure is contested, as it depends on whether the focus is on system
performance alone or its broader impact on operations [130]. One narrow perspective defines
automation failure as a malfunction, such as when biased data leads to incorrect predictions or
sensor errors produce inaccurate outputs [131]. Another broader definition considers failure to
include cases where automation functions as designed but creates unintended consequences, such
as masking faults and reducing human operators' ability to diagnose issues [132]. Mumaw, Dekker
and Woods, and Van Paassen and colleagues analyzed automation failures in commercial aviation
[133], [134], [135]. They question restrictive definitions of automation system boundaries, which
some designers use to argue that no failure occurred when automation operated within its
predefined limits, despite not assisting operators as needed. Their perspective adopts a systems-
based approach, defining failure based on the system’s functionality in an operational context rather

than solely on whether it performed within technical constraints.
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However, broadening the definition of automation failures excessively can diminish its precision
[136]. When categories become too general, distinguishing between failure types becomes more
challenging, limiting the classification's usefulness. An unclear definition may also encompass an
excessive range of cases, making validation and assessment more complex. A well-defined
classification enhances practical application and ensures accurate evaluation. This distinction raises
questions about whether automation failure should be limited to technical errors or if it should also
encompass situations where automation affects decision-making and operational oversight. The
debate highlights the ongoing need for a broader understanding of automation failure, one that

accounts for both system performance and its impact on overall safety and efficiency.

There is no agreed-upon framework for defining automation failure, as different disciplines
approach the concept with varying objectives [137], including human performance modeling,
system design, testing, interface design, and failure analysis. The lack of clear definitions has led
to uncertainty about which types of failures should be examined when studying human responses
to automation mishaps [138]. Kanaan and Donmez observe that research in cognitive engineering
often relies on a limited set of automation failure scenarios, which may not capture the full range
of possible system disruptions [ 139]. Definitions that are too broad or too narrow reduce the ability
of human performance models to explain operator interactions with automation. Al failure should
be understood as a disruption that affects an entire system, influenced by operational conditions
and the interactions between automated processes and human oversight. There is ongoing debate
about the appropriate tools, frameworks, and models for defining and categorizing automation

failure.

Skraaning and Jamieson have proposed a taxonomy of automation-induced human performance
challenges, highlighting its relevance for studying human-automation interaction [138]. The
taxonomy describes three categories of automation-induced human performance challenges:
elementary automation failures; systemic automation failures; and human-automation interaction
breakdowns. Elementary automation failures occur when specific automation components or
functions fail in isolation. Some describe these as failures within the “support system.” [131]. In
contrast, systemic automation failures result from interactions among equipment, functions, and
automated logic, disrupting system regulation and information processing. These failures cannot
be attributed solely to a support system or an underlying system but emerge from the

interconnectedness of system elements, where disruptions spread through automated processes and
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affect overall performance. Unlike these two categories, human-automation interaction
breakdowns do not involve a loss of automation functionality. Instead, they result from a mismatch
between automation design and human capabilities, limitations, and needs. In these cases,
automation functions as intended but does not align with human decision-making processes,

leading to errors or inefficiencies.

After the taxonomy was published, researchers have contributed by proposing revisions,
comments, and expansions to improve the taxonomy and its applications. For instance, a review
examines automation failures in surface transportation [139], [140], highlighting distinctions in
operational context and user expertise. Industrial operators receive specialized training, while the
general public often lacks formal instruction, influencing their interactions with automated
systems. These differences affect the occurrence and management of automation failures.
Modifying the taxonomy may be necessary to reflect these distinctions. Furthermore, it was
acknowledged that the taxonomy does not address the automation/autonomy conundrum [134],
[141], [142], [143], [144], which involves determining the appropriate level of automation while
maintaining effective human oversight. Increased automation can reduce human engagement,
affecting intervention capability in unexpected situations. Conversely, limited automation may
place higher cognitive demands on operators, increasing the likelihood of errors. Finally, several
commentaries highlight the need for automation failure scenarios in cognitive engineering research

to reflect real-world conditions more accurately [19], [144], [145], [146], [147].

This thesis relies on the taxonomy of automation failure to examine key challenges. It will analyze
user expertise and operational context, and study automation failure scenarios to align with real-
world conditions. The objective is to improve understanding of these failures and assess their

effects on system design and human performance.

Chapter 5 will examine an instance of elementary automation failure. The Al-based automated
diagnostic tool does not provide an incorrect diagnosis but fails to provide a diagnosis altogether.
This occurs when the system is unable to match incoming alarms to the historical dataset, which it
relies on for fault identification. Due to limitations in data availability or processing, the system
fails to recognize a match, preventing operators from receiving useful diagnostic information and

hindering their response.
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Chapter 6 will focus on a systemic automation failure, in which the Al applies incorrect logic when
diagnosing a fault. This failure does not stem from a single component malfunction but from
interactions among automated processes that influence decision-making. The AI processes
available data and follows predefined diagnostic rules, but errors in its reasoning lead to incorrect
conclusions. As a result, operators receive inaccurate information, which may delay or misdirect

their response to the fault.

2.3.4 Routine-Failure Trade-off Model

When automation fails, the expectation is that human operators will take over and correct the issue
[148], [149], [150]. However, this transition presents performance challenges, particularly when
operators have had limited engagement with the task due to high levels of automation [151]. The
Lumberjack Model [152], [153] describes a decline in task performance when automation fails
beyond a certain threshold. This model, also known as the Routine-Failure Trade-off Model,
explains how automation reduces workload during normal operations but can also lead to reduced
operator engagement and skill retention [154], [155]. As a result, when automation fails, operators
may struggle to intervene effectively. This can be illustrated with the example of a lumberjack who
replaces an axe with a chainsaw [132]. The chainsaw allows for easier tree cutting, reducing
physical effort. However, if the chainsaw stops working, the lumberjack may have difficulty using
the axe efficiently due to a lack of practice. Similarly, operators who rely heavily on automation
may experience skill degradation, making it more difficult to respond to failures. This concept can
also be applied to Al systems that process large amounts of data [156]. If an Al model overfits,
removes too much data during preprocessing, or prunes models excessively, it may lose important
information needed for accurate decision-making, reducing its effectiveness in changing conditions

[151].

Automation failures can be harder to detect and address when operators have limited involvement,
reduced engagement, and a tendency toward complacency [157]. When automation assumes
control of routine tasks, operators may have fewer opportunities to engage with the system, which
can weaken situation awareness [19]. This reduction in awareness makes it more difficult to detect
anomalies, assess system status, and anticipate future conditions [19]. Additionally, while
automation typically reduces workload during normal operations, failures can cause a sudden

increase in cognitive and physical demands [158], [159]. Operators may need to quickly process
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information, diagnose issues, and take corrective action under time constraints, which can lead to
errors or delays in response [160]. Over time, frequent reliance on automation can also result in
overreliance, where operators assume the system will function correctly and become less vigilant
in monitoring its performance [161], [162], [163]. Given these challenges, research on automation
failure examines task performance, workload, situation awareness, trust, and other cognitive factors

to better understand how automation affects human decision-making.

2.3.5 Implications for Human Performance

Al systems are susceptible to failure in complex, dynamic environments where conditions evolve
unpredictably [164]. While automation and Al-based fault detection and diagnosis offer significant
advantages in safety-critical domains [17], [165], their limitations pose substantial risks,
particularly during abnormal situations [166]. When Al fails, operators may struggle to regain
situational awareness, especially if prolonged automation use has diminished their engagement
with the system [167]. The consequences of undetected Al failures in high-risk environments can
be severe, underscoring the necessity of maintaining human oversight even as automation becomes
more advanced [168]. To provide deeper understanding of these challenges, the following sections
will examine the interplay in human-AlI collaboration with emphasis on the concepts of situational
awareness, cognitive workload, trust and reliance, the out-of-the-loop phenomenon, and the stages

of human information processing.
For the clarity of this thesis, we will definitions these key terms:

e Endsley’s Situational Awareness (SA): Individual's or team's ability to perceive,
comprehend, and anticipate relevant information in each environment to support effective
decision-making and action [169]. The model emphasizes the role of tools and systems,
such as Al in supporting human decision-making by improving information processing and
enhancing situational understanding.

o Cognitive workload: Mental effort required to perceive, process, and respond to
information while performing a task. It is influenced by task complexity, time constraints,
information density, and an individual's cognitive capacity [170].

e Trust in the machine: Degree of confidence an individual has in an automated system’s

reliability, accuracy, and effectiveness in performing its intended function [171]. Trust is
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influenced by several factors, including the system’s past performance, transparency,
predictability, and the user’s level of expertise.

e Reliance: The extent to which an individual depends on an automated system to perform
tasks, make decisions, or support operations [172]. Reliance is influenced by trust, system
reliability, and the perceived benefits of automation in reducing workload or improving
performance.

¢ Out-of-the-Loop phenomenon (OOTL): Cognitive state in which a human operator loses
situational awareness and the ability to effectively intervene in an automated system due to
prolonged disengagement or lack of direct interaction [166].

e Stages of Human Information Processing: A sequential model that describes how
humans perceive, interpret, and respond to information [173]. Helps explain human
cognitive limitations and the importance of designing user interfaces, automation, and

training programs that align with human cognitive capacities.

Endsley discussed the impact of human-Al task delegation when examined through the stages of
human information processing: perception, decision-making, and action execution [174]. At the
perception stage, Al processes raw data into meaningful insights, enhancing SA by enabling
proactive adjustments and anomaly detection. When Al effectively integrates and presents
contextual information, it reduces cognitive workload, improves operator engagement, and
minimizes OOTL effects. However, Al-generated data can be flawed due to inaccuracies,
omissions, or misinterpretations, distorting an operator’s perception of system status. Over-reliance
on Al may lead to operator disengagement. Trust in Al is dynamic—frequent errors undermine
confidence, leading to under-reliance, while consistent Al performance may cause over-reliance

and complacency.

During the decision-making stage, Al systems analyze complex data patterns to prioritize options.
However, the transparency of Al processes significantly influences operator trust and SA. A lack
of clear reasoning behind Al recommendations can lead to uncertainty, increased cognitive
workload, and OOTL phenomena, where operators become disengaged and less effective in
intervention scenarios. Conversely, when Al systems provide erroneous or opaque
recommendations, operators may need to engage in additional verification processes, elevating
cognitive demands and response times. This situation can degrade decision accuracy and SA,

particularly under time-sensitive conditions.
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At the action implementation stage, Al systems autonomously execute tasks such as adjusting
machinery or initiating system shutdowns, thereby reducing human workload. However, over-
reliance on automation can lead to the OOTL performance problem, where operators experience
diminished SA and a decline in manual control skills. This phenomenon leaves operators less
prepared to intervene effectively during automation failures, potentially compromising safety in

critical environments.

2.3.6 Related work

Now that we have established an overview of FDD, the role of Al in these systems, and its impact
on human performance, we turn to prior research examining their practical applications in alarm
floods and other operational contexts.

Al-based FDD systems leverage machine learning algorithms to process extensive sensor data,
recognize patterns, and detect faults in real time. Research indicates that Al-driven methods
outperform traditional fault detection approaches in both speed and accuracy [175]. For instance,
predictive models have successfully identified equipment failures early, allowing manufacturers to
reduce downtime and improve productivity [84]. Chang and colleagues demonstrated that an Al-
driven system for diagnosing operational issues in solar energy projects achieved a fault detection
precision of 98.6% [176]. Similarly, another study reported that an Al-based system deployed in a
chemical plant maintained a 98% agreement between predicted and actual anomalies over three
months, significantly enhancing fault detection reliability [177]. Researchers applied deep learning
to the Tennessee Eastman process, a benchmark for industrial chemical production, achieving
95.6% fault detection accuracy [178].

Beyond fault detection, Al-based FDD systems play a crucial role in alarm management and
operator performance. Past research has investigated Al-assisted alarm systems within a high-
fidelity ethylene manufacturing simulator, focusing on their impact on operator workload during
episodes of alarm flood [179]. Using the NASA-TLX scale, the study evaluated three alarm
management strategies—no rationalization, rationalized alarms, and smart alarms—under both
manual and Al-based automation. Findings revealed that Al-enhanced smart alarms reduced
operator workload and material losses during abnormal conditions, particularly during episodes of
alarm flood. Similarly, researchers have introduced a proactive alarm reduction methodology for
nuclear power plants, prioritizing alarms to reduce cognitive overload and improve situational

awareness in alarm-heavy environments [180]. Testing with eight nuclear power plant operators
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demonstrated that SA improved significantly when proactive alarm reduction was applied, helping
mitigate the effects of alarm floods.

These findings highlight the role of Al-driven FDD and alarm systems in enhancing fault detection,
reducing operator workload, and improving SA during alarm floods. These results are particularly
relevant to this thesis, which investigate the impact of an Al-based fault diagnostic tool in a

chemical plant simulator during alarm flood scenarios.
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CHAPTER 3 RESEARCH APPROACH

3.1 Research problem

Modern process industries, such as chemical plants and power generation facilities, depend on FDD
systems to monitor operations, identify anomalies, and support decision-making. The emergence
of Al-driven diagnostic tools has enhanced fault detection and analysis, improving plant efficiency
and reducing operational downtime [175], [176], [178]. However, these Al-based FDD systems
are fallible, as they are susceptible to misdiagnoses, false alarms, and undetected failures [84],
[115], [133], [177]. In safety-critical environments, such inaccuracies can lead to erroneous
operator decisions, heightened cognitive workload, and reduced SA.

A critical challenge in Al-based FDD lies in its integration with alarm management systems and
understanding its impact on human performance, particularly during abnormal situations. While
process alarm analysis algorithms have been refined using large datasets, their effectiveness
remains largely unvalidated in high-fidelity simulations with real operators. Furthermore, limited
research has examined how human operators interact with imperfect Al-based diagnostic tools in
realistic operational settings.

Current studies on human-Al collaboration in fault diagnosis primarily emphasize algorithmic
performance rather than human factors, such as trust, reliance, and SA during alarm floods.
Although some human-in-the-loop experiments exist [176], [179], [180], few investigated how Al
reliability influences operator decision-making in high-pressure environments. A major concern is
the potential for OOTL effects, where excessive reliance on Al diminishes an operator's ability to
intervene effectively when automation fails. This thesis addresses these gaps by assessing how Al-
based diagnostic tools affect operator performance and decision-making during alarm floods in a

high-fidelity process control simulator.

3.2 Research objectives
This thesis aims to investigate the impact of an imperfect Al-based FDD tools on operator
performance and decision-making during alarm floods using a high-fidelity process control
simulator. The research objectives are structured into three key steps:
1. Development of a high-fidelity simulator for research studies

o Design and develop a high-fidelity process control simulator that realistically replicates

industrial fault scenarios and alarm flood episodes.
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Validate the simulator’s effectiveness in simulating a fault detection and diagnosis system

within a chemical plant operational context.

2. Investigating whether an automated diagnostic tool supports human performance during

alarm flood episodes

Assess the reliability of an automated FDD tool in assisting human operators during alarm
flood episodes and fault diagnosis scenarios.

Analyze whether the Al-based automated diagnostic support tool enhances or hinders
operator performance in high-stress environments.

Complete a human-in-the-loop case study using the chemical plant simulator.

3. The effects of an imperfect Al-based automated diagnostic tool on human performance

during failure management

Examine how Al reliability influences operator trust and reliance.

Investigate the impact of an imperfect Al on situational awareness (SA) and cognitive
workload, particularly in high-pressure failure management situations.

Identify conditions that contribute to out-of-the-loop (OOTL) effects, where excessive
reliance on Al impairs operator intervention capabilities.

Identify strategies to optimize fault diagnostic tool, design for human-AlI collaboration, and

enhance operator training programs for safety-critical industrial environments.

3.3 Research methodology

HMI best
TEP + es PERAMANCE )4 ( Automated PERAMANCE )+
pratices . FDD -

Study 1 Study 2 Study 3
Imperfect
Al-based
FDD

J \ J \
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Figure 3.1 Overview of this thesis’s three studies

This research follows a structured methodology across three studies, each building on the previous

findings to examine human-Al interaction in abnormal situation management (Figure 3.1). Each

study forms the basis of an article. The first study focuses on the development of PER4Mance, a

chemical process simulator. Built using the Tennessee Eastman Process and designed according to
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HMI best practices and industry standards, the simulator provides a controlled environment for
studying episodes of alarm flood and Al-based fault diagnosis.

The second study evaluates an automated diagnostic support tool incorporated within PER4Mance
to assess its impact on operator performance during alarm flood episodes. The study measures
situational awareness, cognitive workload, and eye-tracking data to determine whether the tool
improves performance.

The third article expands on the findings of article 2 by examining how Al failures affect operator
response time, decision-making accuracy, situational awareness, trust, and reliance. It investigates
whether operators recognize Al misdiagnoses or rely on incorrect recommendations, particularly
under high cognitive workload and alarm flood episodes. The study provides insight into human-
Al interaction when Al reliability varies.

This progression moves from system development to human performance assessment and finally
to the impact of Al failures, ensuring a structured investigation into Al-assisted decision-making

in industrial environments.

3.3.1 Study 1: Development of a human-machine simulator environment

Objective: Design a realistic and working chemical plant simulator based on the Tennessee

Eastman Process (TEP) using HMI guidelines and industry standards.

3.3.2 Study 2: Impact of an automated fault diagnostic tool on human
performance

Objective: Investigate the difference in operator performance with and without the use of an

automated fault diagnostic tool during an abnormal situation.

3.3.3 Study 3: Impact of an AI’s misdiagnosis during an alarm flood episode
on human performance

Objective: Investigate the impact on operator performance during a process abnormal situation

when the diagnostic tool fails (provides a misdiagnosis).
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3.4 Thesis Hypothesis

Based on the literature review conducted, we formed three hypothesis that we will investigate in
the following studies. Chapter 7 will evaluate whether these hypotheses were confirmed based on

our main findings.

Hi: The implementation of a diagnostic tool enhances operator performance during episodes of
alarm flood.

H2: The impact of a diagnostic tool is significantly greater when managing difficult alarm flood
episodes compared to easier ones.

H3: Operators are capable of identifying incorrect Al diagnoses during episodes of alarm flood.
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CHAPTER 4 ARTICLE 1 : PER4MANCE PROTOTYPING
ENVIRONMENT FOR RESEARCH ON HUMAN-MACHINE
INTERACTIONS FOR ALARM FLOODS MANAGEMENT: THE CASE
STUDY OF A CHEMICAL PLANT PROCESS CONTROL

This article was published in the Proceedings of the Human Factors and Ergonomics Society

Annual Meeting on 27 October 2022. doi:10.1177/1071181322661248

Karine Ung (Polytechnique Montréal), Omar Nemer (Polytechnique Montréal), Aswin Krishna
(Indian Institute of Technology Guwahati), Moncef Chioua (Polytechnique Montréal), Philippe
Doyon-Poulin (Polytechnique Montréal)

4.1 Abstract

Alarm floods are dangerous because the quantity of alarms triggered is too numerous for operators
to reliably implement the right corrective action. Process operators of complex systems, such as
chemical plants or nuclear power production, are faced with alarm management systems that can
be better built in consideration of human capabilities and limitations. Developing human-machine
interfaces (HMIs) that better support operators is critical for ensuring the safe and reliable operation
of critical systems and processes. The research team has developed an accessible and adaptable
prototyping environment dedicated for research on alarm management and human-machine
interactions in the process industry. The method used was to build on the Tennessee Eastman
Process (TEP) simulator and incorporate Human-Machine design guidelines. The results are an
open-sourced prototyping environment that incorporates data from a real chemical plant and
integrates true alarm data and thresholds. At the end of this article, we share the Github link to the
entire MATLAB, Simulink and App Designer files of PER4Mance: a prototyping environment for

research on human-machine interactions for alarm flood management.

4.2 Introduction

Process alarms play a significant role in maintaining a chemical plant’s safety by providing a layer
of protection in preventing the occurrence of faults from escalating into process hazards. Alarms
aim at helping the process operators keep the plant within normal operating conditions. They
provide an indication to the operators that their action is required to fix a fault or to prevent an
undesired consequence. Throughout the years, the number and frequency of alarms have increased

with technology. In the days of pneumatic controls, installing a new alarm had significant financial
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costs. The addition of an alarm with mechanical panels required adding light indicators and
connecting them (hydraulically) to the sensor. As the number of alarms grew during plant
operations, it reached a point where there was no longer any space available on the dashboard to
add new alarms [181]. With the use of computer-based control systems, alarms became digital and
the operator can configure them by defining thresholds for triggering the alarm [40]. Therefore,
adding new alarms no longer had any financial costs or need for additional equipment.
Furthermore, with the discovery of each new fault, alarms were added to the alarm system. As a
result, the number of alarms has continued to increase over the years to a point where alarms could
no longer be handled effectively [48]. It is common in a process control plant to have well over
thousands of alarms per day, a number exceeding the recommended maximum manageable rate of
300 alarms per day [20].

Detrimental effects of alarm floods on safety and performance are documented in several
application domains. In public transportation, automatic train control systems generate alarms to
notify train dispatchers of the presence of faulty circuits. The rate of alarms can sometimes reach
8,000 per week and cause the dispatchers to become desensitized to the alarms [7]. In healthcare,
the constant alarms from blood pressure machines, ventilators, heart monitors, etc., can cause
health professionals to “tune out” the sounds. Alarm desensitization has been highlighted as a
widespread problem in hospitals and many alarm-related deaths and injuries have been reported
over the past few years [45]. Finally, in the aviation sector, the occurrence of unreliable alarms has
shown to foster mistrust and complacency in airline pilots. Studies have shown that alarm-related
problems frequently occur across flight operations and that false and incorrect alarms remain a
significant concern in aviation [14]. Research on alarm flood mitigation can be useful in chemical
process control as well as across multiple other domains.

According to the Abnormal Situation Management (ASM) Consortium, petrochemical plants suffer
one major accident every three years on average [51]. An important number of these incidents
reported were due to poor performance of alarm systems, resulting in plant damages, loss of
production, and environmental incidents.

One of the most famous incidents in the field of alarm management is the Milford Haven incident
at the Texaco refinery in Pembroke, South Wales, in July of 1994. A massive explosion resulted
from 20 tons of flammable hydrocarbons being released from the knock-out pot on the flare header,

leading up to hundreds of alarms being triggered. The Health Safety Executive’s investigation
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report [43] identified the concern that alarms can overwhelm the operator, and instead of improving
safety, can have the opposite effect and contribute to the incident.

This example illustrates that a fault can affect multiple related systems and trigger an overwhelming
number of alarms. An alarm flood is defined as 10 or more annunciated alarms in a 10-minute
period per operator [38]. In ISA-18.2 it is stated as: “A condition during which the alarm rate is
greater than the operator can effectively manage [182].”

Alarm floods are troublesome because the quantity of alarms triggered is too numerous for
operators to manage, making it difficult to implement the right corrective action. A fault can lead
to a cascade of alarms, or multiple faults can occur during the same time period. Both scenarios
can lead to an alarm flood, without any alarm differentiation between the separate faults. This
phenomenon can affect hundreds or even thousands of alarms, with many unnecessary and
redundant alarms resulting from the same root cause being enunciated and displayed to the
operator. The discrepancy between the amount of information presented and the amount of
information to which individuals can effectively manage leads to increased workloads, human
error, and decreases in efficiency [42]. Despite improvements in alarm rationalization and
prioritization processes, alarm floods are still a significant issue in abnormal situation management
[31]. In alarm flood situations, one of the only responses available to the operators is to
acknowledge and silence the alarms [41].

ANSI/ISA-18.2 Management of Alarm Systems for the Process Industries and the EEMUA 191
Human-Machine Interfaces (HMI) are standards providing guidelines for alarm systems
management in process control plants. However, alarm systems built using these standards still
need to be tested in a safe environment with human operators prior to the implementation in real
operating industrial processes [36].

There are existing prototyping tools or simulation environments available for HMI test, but with
limited availability. For instance, the company Corys [183], provides high-fidelity and dynamic
simulators. Their simulator has been previously used in a human-in-the-loop study which
investigated the impact of alarm management system design i.e. alarm rationalization, on the
process operator’s workload [179]. However, the simulator comes at a financial cost that limits its
accessibility to the public. Other researchers code their own simulator [184], but their simulator

and its codes are not made available to the general public.
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Alarm systems designed according to safety considerations provide the primary source of warning
for operators when it comes to abnormal situations. Still, to the best of our knowledge, there has
been no freely available and open-source process control simulator environment that has been
developed to provide a platform for research on human-machine interactions during alarm floods.
Following the approach of Simonson et al. 2022 [179], we developed a human-machine
prototyping environment that can be used as a research tool to investigate alarm flood management
in a process control environment. We aimed at creating an environment that can promote the study
of the impact of machine learning-based decision support systems to guide the operator during
periods of alarm floods, what we’ll call the "diagnostic tool". The next section presents the

development method, followed by validation results, discussion and conclusion.
4.3 Method
4.3.1 Step 1 - Tennessee Eastman Process (TEP)

The first step in creating the prototyping environment was to use the Tennessee Eastman Process
(TEP) simulator to represent a chemical process control [185]. The TEP is a realistic simulation of
a chemical process that runs on MATLAB [186]. It consists of five main process units: a reactor,
a separator, a stripper, a compressor and a condenser (Figure 4.1).

The process has a total of eight different chemical components identified as A through H. These
components consist of three gaseous reactants, A, D, and E that are fed to the reactor, which
contains a small amount of inert gas B. There is also the gaseous reactant C that is fed directly into
the stripper. Liquid products G and H exit the stripper base and are transferred to subsequent units
and cells. The primary objectives of the process are to maintain the specified ratio of G/H in the
product and maintain the specified product rate during normal operation and process disturbances.
There is also a liquid by-product F which is purged from the TEP. The operator can manipulate 12
input variables and monitor 41 output variables. The TEP simulator also has 20 pre-defined fault
scenarios [187]. The process control community has used TEP extensively as a benchmark to
compare the performance of control strategies, but has received little attention as a user-facing

simulator [ 188].

4.3.2 Step 2 - TEP alarm dataset

As the TEP simulator did not comprise of alarms embedded in its program, the second step of the

tool development consisted of adding an alarm dataset to the prototyping environment. We used
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the work from the IEEE TEP Alarm Management Dataset [189], where the authors identified the
TEP variables with their alarm high and low threshold values. We programmed their alarm
thresholds into our tool, so that the alarms are triggered at the correct threshold limits. Therefore,
whenever a variable’s actual value crosses the high or low threshold, the respective alarm is

triggered.
4.3.3 Step 3 - Real-Time Data Exchange

The next step involved creating a real-time data exchange link between the TEP simulator and our
prototype. By adding a scope block, the prototyping environment is able to locate the variables and
read the data from Simulink [186]. We added a single scope block to the default configuration of
the TEP at the output block of the variables. This enabled us to read the data of the variable outputs
from our prototype. Furthermore, by adding the additional scope blocks to all the variables, we
managed to capture the data generated by the simulator during its execution, and were able to
display them in real-time on our prototype. In addition to reading the data, this also allowed us to
make input changes to the variables during the simulation. It was therefore possible for operators
to change the manipulated variables, i.e. the valves opening and setpoints, while the environment

was running.
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Figure 4.1 Piping and Instrumentation Diagram of the Tennessee Eastman Process [190]
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4.3.4 Step 4 - Human-Machine Guidelines

Having the TEP simulator with its alarm dataset defined and the data exchange established, we
were ready to design the tool’s interface on MATLAB App Designer. We followed human-
machines guidelines of ISA-101 which provides a design model called High-Performance (HP)
HMI to design an interface that allows operators to detect, diagnose and correct efficiently dynamic
operations in a process control environment [191]. More specifically, the standard provides
guidelines on how to display information when developing the prototype’s interfaces.

The presentation of the data should be done in a hierarchical manner across four levels. The first
level is the most important and should present a global view of the whole process. It is also where
information about the most critical equipment should be displayed. The second level is dedicated
to the subunits of the system, with each subunit having its own view presenting more detailed
information on its operating conditions than on the first level. The third level is an even more
specific view of a particular piece of equipment of a subunit. Finally, the fourth level contains any
other useful information that can help the operators make their diagnosis. For levels one and two,
we identified the tasks the operators need to be able to perform, and defined the relevant variables.
We omitted levels three and four because all the information that was identified as relevant during
our analysis could be transmitted within the first two levels. Then, we defined the format for each
variable (e.g., graphs, trends, thermometers, lists, etc.) depending on their context.

Following these HP HMI principles, we were able to identify where to present the 41 variables and
their format, the key performance indicators (KPIs), the alarms, the diagnostic tool and the

controllers for the manipulated variables. We will present them in the following section.

4.3.5 Step S - Implementation

We chose to use App Designer [186] as the development tool because it is an extension of Matlab,
which was required for the TEP simulator to function properly. Since these three modules are under
the same working environment, communication and data exchange was running properly.
Moreover, the App Designer tool offers a library of objects (graphs, gauges, etc.) ready to use that
can be dragged and dropped onto the interface.

4.4 Results

The prototyping environment consists of two interfaces, one interface open per computer monitor

simultaneously. The first interface (Figure 4.2) represents the system overview, containing the
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global and critical information showing the system’s health status (level 1). This overview interface
has a panel on the top that provides the key performance indicators of the system. These are the
inputs’ flow rate, their concentration to the reactor, production rate, quality of the G and H products,
production cost per hour and finally the concentration of the chemical components at the output,
including the purge and the products. In this same section, on the right, we have the diagnostic tool
which displays a solution when a fault occurs. The user of the prototype can choose to provide a
correct solution, an incorrect solution or no solution at all. In the middle section, we integrated a
diagram representing the logical flow of the TEP system from left to right so that the operators

have a global view of the process.
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Figure 4.2 The environment system overview

These three blocks show the most critical equipment, i.e. the reactor, the separator and the stripper.
For each of these equipment, we displayed its pressure, temperature and flow. At the bottom of the
screen are three digital readouts indicating the incoming flow to the reactor, the outgoing flow from
the separator and the overall flow of products for the stripper. To the right of these blocks is the
alarm table. Under normal circumstances, there are no alarms displayed.

The second interface (Figure 4.3) represents detailed information per unit, displaying the variables
related to the reactor, condenser, separator, compressor and stripper under different tabs (level 2).
On the right side, the users can act on the process valves either in manual mode (openings

adjustments) or in automatic mode (setpoint settings). If the control is in automatic mode, the
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operator can modify these setpoints. If the control is in manual mode, the operator can directly
modify the valve opening.

At the top of the screen, there are tabs to navigate to other units of the system. The units on these
tabs follow the process flow navigation from left to right. Some units are simpler than others,
therefore, we combined them to save screen real estate; the condenser, separator and purge; and

the stripper with the final product information.
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Figure 4.3 The reactor interface

The interface adds further information when the system is under a fault condition. Figure 4.4
presents a fault condition scenario: a loss of feed of input A. The red dots indicate the variables
and units have exceeded their normal threshold values and that an alarm has been triggered. They
can be seen on the top KPIs section, but also on the overall TEP diagram. Furthermore, there is the
alarm table on the bottom right side of the interface. There is a checkbox on each alarm line so that
the operators can indicate that they have acknowledged the alarm. There is also the code of the
alarm, its time of appearance, its description and finally the unit involved.

The prototyping environment follows the standards of a High Performance HMI: a two-level
hierarchy was used and the data was grouped according to their corresponding sub-unit. Trend
graphs and analog indicators were used to visualize if the value of a variable is within the normal

range. The number of colors were limited by keeping the background gray, the operating limits in
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blue and the fault indications in red. By following these standards, the simulator environment
closely resembles the interfaces used in the industry, and users have access to a functioning

prototype that has an interface that represents those used in real-life-operations.
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Figure 4.4 Abnormal condition: loss of flow A

4.5 Discussion

Although there are multiple process control simulator environments available in the market, not all
are accessible and malleable. Our prototyping environment differs from others in the following
ways: it has no financial costs, it is open-sourced and it is extremely modifiable. From our original
files, users can change the codes and interfaces freely.

While developing this prototyping environment, there were a few limitations encountered. First,
App Designer offered a limited library of graphical elements. Although the tool is very easy to use,
the graphical elements provided by the program looked out-dated. The second disadvantage of this
tool is that the more we added graphical elements to the interface, the heavier and slower the editing
mode became. Finally, it is worth mentioning that the running speed to complete the simulation
was less than 1 minute. The prototyping environment reflects the same speed as Simulink, and we
therefore had to slow down the running speed on Simulink to be able to have a working prototype.
Despite these limitations, users can change the alarm thresholds and behaviors, add or remove

alarms, and configure the information provided by the diagnostic tool. Furthermore, users can
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remove the input controllers in case they want to reduce operator’s control over the environment.
We also developed this prototype to allow research with one operator, but modifications of the
environment to study multiple operators simultaneously or team dynamics could be possible and
worth investigating. We’ve created this prototyping environment to reflect our own goal, which is
to study the impact of machine learning-based decision support systems, the diagnostic tool, to
guide the operator during periods of alarm floods. But this prototype can be modified and adapted
to countless other environments to study different aspects of alarm management in industrial

settings.

4.6 Conclusion

This paper aimed to address the need for a prototyping environment to study human-machine in
the process industry. We’ve proposed a prototyping environment that was built on the TEP
simulator and HMI design guidelines and principles. With this public tool, we hope to encourage
shared research on human-machine interaction and alarm management in relation to machine
learning systems.

The next step for the research team is to test the prototyping environment with humans. Testing
with humans will allow us to improve the prototype itself and to study the effects of the prototype’s
design on human cognition. Even though we followed HMI design principles, there are still many
elements in the prototyping environment itself that can be improved, such as the way the variables
are presented, the alarm presentation and the solutions conveyed by the diagnosis box. Also, testing
the fault scenarios of the prototype with humans will allow us to perform fundamental research on
alarm flood management and diagnosis, thereby investigating the interface elements that would
help or hinder human diagnosis abilities. We have made this prototyping environment available to
all in order to encourage shared learning and promote further work on improving the prototype.
The US Federal definition of research is "a systematic investigation, including development,
testing, and. evaluation, designed to develop or contribute to generalizable knowledge"
(45CFR46.102). We hope that our approach and design might generalize to other research in
simulations or alarm floods in different domains. Don’t hesitate to contact us for any collaborative
work.

The PER4Mance (MATLAB, Simulink and App Designer files) are available to download via the
following link: https://github.com/karine-ung/perf4mance
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CHAPTER 5 ARTICLE 2: AUTOMATED DIAGNOSTIC TOOL
SUPPORTS HUMAN PERFORMANCE DURING ALARM FLOODS: A
CASE STUDY IN A CHEMICAL PLANT SIMULATOR

This article was submitted to the journal of IEEE Transactions on Human-Machine Systems on 12

November 2024.

Karine Ung (Polytechnique Montreal), Kairat Khismetzhan (The Hong Kong Polytechnic
University), Moncef Chioua (Polytechnique Montreal), Philippe Doyon-Poulin (Polytechnique
Montreal)

5.1 Abstract

During fault scenarios in complex systems, alarm management systems are used to assist the
operator in solving the failure. Alarm floods situations are often difficult to manage for the
operators due to the large quantity of alarms. Past work presented data-driven methods to help
manage alarm floods. Yet, few research has investigated the interaction between operators’
performance and alarm rationalization systems in alarm flood scenarios. This study aims to address
this gap by introducing an automated diagnostic tool designed to help operators manage alarm
floods. We developed an interface using a realistic chemical plant simulator based on the Tennessee
Eastman Process (TEP) and added a diagnostic support tool for managing alarm floods. Twenty
students enrolled in a chemical engineering program participated in the study and were presented
with two alarm flood scenarios. The diagnostic tool was activated in one scenario and deactivated
in the other. Results showed that using the diagnostic tool increased participants’ situational
awareness and assisted them in managing complex alarm flood situations. Eye tracking results
showed that the diagnostic tool reduced the gaze on the alarms and increased the gaze toward areas
of KPIs and diagnostic information. The results of this study illustrate the potential growth of the

use of automated decision support systems in the process industry.

5.2 Introduction

According to the industrial standard ANSI/ISA-18.2 [38], an alarm is “an audible and/or visible
means of indicating to the operator an equipment malfunction, process deviation, or abnormal
condition requiring a response” and “an alarm system is the collection of hardware and software
that detects an alarm state, communicates the indication of that state to operators, and records

changes in the alarm state”. Alarm systems have been an integral part of computerized monitoring
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systems, such as the distributed control systems (DCS) and supervisory control and data acquisition
(SCADA) systems [192]. These systems control, monitor, and manage production in often large
infrastructures, such as petrochemical operations, electric power generators, transportation systems

and chemical facilities, among others [193].

Alarms are important because they provide warnings for operators during abnormal situations
[194]. An abnormal situation is a disturbance or series of disturbances in an industrial process that
causes plant operations to deviate from their normal operating state. During an abnormal situation
in a large and interconnected infrastructure, a disturbance can cause the failure of multiple systems
and trigger a cascade of associated alarms [36], [37]. These alarms are triggered in the control room
and operators may not be able to properly investigate each of these alarms promptly [195]. This
phenomenon is described as an alarm flood, defined as the duration where the rate of alarm
annunciation is more than the response capability of an operator [39]. Alarm floods can lead to
situations of loss of control, which in turn, may lead to accidents [49]. According to ANSI/ISA-

18.2 (2009), an alarm flood is more than 10 alarms per 10 minutes.

During an alarm flood, each new system failure adds more alarms to the existing cascade of alarms,
without any differentiation between the root causes [7]. Reviews of previous accidents involving
an alarm flood revealed that it can affect hundreds or even thousands of alarms, with many
unnecessary and redundant alarms being annunciated and displayed to the operators [14], [45].
This excess of information presents several human factors challenges, mainly due to the limited
cognitive abilities of attention [196], [197]. The discrepancy between the amount of information
presented and the amount of information to which individuals can effectively attend leads to
increased mental workload, human error, and decreases in operational efficiency [42]. In such
situations, one of the only responses available to the operators is to silence the alarms, sometimes

without looking at them [41].

According to the Abnormal Situation Management (ASM) Consortium, petrochemical plants suffer
on average one major accident every three years. The Engineering Equipment and Materials Users
Association (EEMUA) stated that inadequate alarm systems “were a major contributor to incidents,
which frequently involved the operator being overloaded with alarm floods” [3]. An example is the
Milford Haven petrochemical plant accident at the Texaco refinery in Pembroke, South Wales, in

July of 1994. An explosion resulted from 20 tons of hydrocarbons being released from the knock-
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out pot on the flare header. The two operators on duty were flooded with 275 alarms in the 10 min
time window before the explosion. The numerous alarms and their lack of logic made it too difficult
for the operators to manage the situation [43]. The Health and Safety Executive’s investigation
report identified the concern that alarms can overwhelm the operators, and instead of improving
safety, can hinder the operator’s diagnosis of the root cause. The contributing factors of the accident
were the alarm flood, poor alarm management, and an alarm system that did not support fault
diagnosis.

The poor design of alarm systems and misdiagnosis were reported to have contributed to accidents
in the process industry [36]. Alarms being triggered in the order in which the disturbances occur
do not support operators in finding the source of the problems. These accidents exemplify why
alarm rationalization is essential to support the operators in finding the root cause of alarm floods.
There is a need to provide rationale in the way alarms are shown to support the operators' diagnosis
of the root cause during abnormal situations. A study found that 15 facilities with varying sizes had
a high number of alarms installed, with a minimum of 500 and a maximum of 10,470 alerts [41].
During normal operations, the number of alarms ranged from 60-120 per hour. During abnormal
conditions, operators experienced alarm loads of around 390-3750 per hour, and in one case over
300 alarms in just 5 min [198], [199] found alarms in various industries were significantly higher
than EEMUA guidelines. These studies highlight the importance of proper alarm management and

the need for better monitoring and control of alarm systems.

As aresult, there has been increasing interest in the industry in addressing the issue of alarm floods
and investigating methods to help operators diagnose faults. A promising avenue is the use of
machine learning techniques that link the incoming flow of alarms to known faults and provide a
diagnosis to the operators [200]. Further investigation is needed to study the difference between
the use of “traditional” alarm management systems, which lead to the appearance of alarm floods,
from “advanced and automated” systems, which offer support to the operator. Few research has
investigated the interaction between operators and automated systems in alarm flood scenarios, and

this study aims to address this gap.

The contributions of this paper are the following: we did a human-in-the-loop experiment with a
diagnostic tool in a chemical plant simulator. We investigated how humans reacted to a diagnosis
provided by the tool during an alarm flood. The rest of this paper is structured as follows. In this

section, we provide an overview of related work in areas of alarm rationalization and human-
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automation interaction. In section III and IV, we describe the experimental methods and data
analysis. In section V and VI, we present the main results and discuss the impacts of using the

diagnostic tool on the operators’ performance.

5.2.1 Alarm rationalization

Several guidelines have been developed to improve alarm management systems, such as the
International Society of Automation and the ASM consortium [51], [182]. Various data-driven
methods have been developed to enhance alarm systems. In the last few decades, algorithms and
techniques have been created to reduce the number of alarms that are activated [50]. Among others,
Foong et al. developed a fuzzy-logic based alarm prioritization (ALAP) system to prioritize alarms
during alarm floods and reduce redundant or false alarms [201]. Higuchi et al. developed an alarm
reduction method using data-mining to identify statistical similarities among alarms [202]. Cheng
et al. used a modified Smith-Waterman algorithm to analyze alarm flood patterns and cluster

similar ones [203].

Another methodology to mitigate alarm floods is that of alarm rationalization [51]. Alarm
rationalization is a process that involves reviewing and validating alarms to ensure they are
necessary for maintaining safety and normal operations [52]. It aims to reduce nuisance alarms and
remove redundant ones, ensuring operators receive only those that require action [25]. This process
increases efficiency and reduces time spent on identifying the true cause of alarm activations. Up
to 80% of alarms during an event are redundant or nuisance alarms, which can divert attention and
interfere with operator acknowledgment [204]. A subset of alarm rationalization worth mentioning
is that of alarm classification. Alarm classification categorizes an incoming alarm flood on the basis
that the new alarms are matched with a set of previously occurred alarm floods [62]. The ongoing
alarm floods are matched to a known category and presented to the operator to help diagnose the
fault causing the alarm flood [61]. Seyed Alinezhad et al. developed a semisupervised data-driven
method for classifying ongoing alarm floods using historical data [63]. The method, based on the
Gaussian mixture model, includes alarm clustering and labeling, and online early classification.
The approach was validated using the Tennessee Eastman process (TEP) benchmark and an
industrial alarm flood dataset. The results showed accurate early classification of alarm floods by
considering historical alarm datasets [63]. Lucke et al. developed an alarm flood classification

method that uses sequence mining and time series analysis to classify alarm floods based on past
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events [67]. The method involves two stages: detecting when the flood belongs to a new class and
classifying when one class forms a basis to match incoming floods. The algorithm integrates a
historical alarm classifier into fault detection and identification. A case study was conducted on an
offshore oil-gas separation plant, revealing that the algorithm matched new alarm floods with
historical floods corresponding to the same abnormal situation, enabling the classification and
identification of the root cause of an alarm flood. They found an average accuracy classification of

92.2%.

Alarm flood classification targets recurrent types of alarm floods since it relies on training a
classifier on past events. A limitation is that the algorithm is unable to provide a classification if
an incoming alarm flood is not part of the historical set because the classifier wouldn’t be able to
match it. Therefore, the accuracy of all the methods does not reach 100% [67]. Even though the
reliability rate isn’t high enough to implement the algorithm in real-life process control
environments, it is, to some extent, able to identify the root cause of alarm floods that are part of
the historical set and propose the root cause to the operator. While these methods have significantly

reduced alarm floods, they have not eliminated them [205].

The literature review explored data-driven methods to mitigate the impact of alarm floods [23]. A
promising approach is alarm flood rationalization and classification based on historical events in
the control room. However, few studies have involved humans to investigate the impacts of alarm
flood management techniques on performance. This lack of performance-based research is likely
due to the need for high- fidelity simulators of manufacturing processes to assess the impact of
alarm design. This study aims to fill this gap by studying operators’ performance in a high-fidelity

chemical plant simulator.

5.2.2 Human-Automation interaction

Product refinement industries, such as mining, oil refining, chemical, and pharmaceutical
manufacturing, use process control to monitor and react to abnormal processes for safety and
efficiency [206]. Process monitoring requires demanding states of attention and skills from the

operators, and automation can enhance these processes.

An automated system accomplishes a function previously carried out by a human operator and can
help reduce operator workload in response to abnormal situations [207]. Research in the process

control industry shows that operators perform better when permitted to work in-the-loop with
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automation [208]. Automation offers numerous benefits such as reduced workload, increased
situational awareness, and improved performance [209]. However, inappropriate usage can
negatively impact the operators' understanding of the system, task processes, and overall
performance [210]. Negative impacts include excessive monitoring, boredom, over-reliance, low
situational awareness, out-of-the-loop performance, and reduced trust in the automation [211].
Consequently, it is crucial to carefully consider the benefits and potential risks of automation in

process control systems.

Previous work investigated the impacts of an automated alarm system in human-in-the-loop studies
in process control simulators. A study examined the impact of alarm management and automation
on process control operator workload (using NASA-TLX) and performance in a high-fidelity
ethylene manufacturing simulator [179]. The experiment involved eleven console qualified
operators in a simulator-based training exercise. The experimental design involved three levels of
alarm management schemas (no alarm rationalization, with alarm rationalization, and smart alarm)
and two levels of automation (no automation and with automation). Results showed that smart
alarm management and automation can help operators reduce workload and material lost during
abnormal operating conditions.

Jang et al. introduced a proactive alarm reduction method implemented in a nuclear power plant
environment [180]. The researchers designed the alarm reduction method to investigate alarm
processing techniques in coping with high volumes of alarms. They had eight nuclear power plant
operators test the effectiveness of the alarm rationalization method. The results indicated that the
operators’ situational awareness in the alarm reduction environment was higher than in the non-
reduction environment. A study evaluated the effectiveness of a decision support scheme called
Early Warning in a simulated setting of a chemical plant control room [50]. Early Warning
predicted the time of occurrence of critical alarms before they were triggered. An experimental
design was developed to assess the effectiveness of this decision support tool in enhancing
operators' performance in specific tasks. Early Warning offered control room operators early
warning of potential alarms within a specific time frame (e.g., in the next 90 sec.), enabling them
to be proactive and take corrective actions before alarm thresholds are breached. Participants were
asked to monitor the depropanizer unit and to diagnose the root cause of the fault. Results showed
that Early Warning supports the operator’s diagnosis but does not enhance the accuracy of

diagnosing the root cause.



49

Alarm management methods and automation are used in process control industries to prevent,
manage, and mitigate abnormal processes. Under normal conditions, operators can usually
passively supervise process units, focusing on efficiency through minor adjustments. However,
when abnormal situations occur, operators need to proactively manage the situation by taking
corrective actions. Automation is less error-prone and can produce repeatable actions, but it often
fails to address unforeseeable abnormal situations. In contrast, humans can be flexible and produce
creative solutions in response to unanticipated situations [26]. Despite automation and improved
alarm management systems, humans remain crucial in controlling chemical plants, particularly

during abnormal situations [173].

5.2.3 Wizard of Oz (WoZ)

Building automation technology in process control can be complex, time-consuming, and costly.
To save time on resources and test the technology quickly, researchers can simulate the response
of the technology by having a person “play” the role of the automation. This moderated research
method is called The Wizard of Oz, WoZ [212]. In a WoZ study, participants interact with a system
that appears to be autonomous but is actually partially or fully controlled by a human [213]. The
WoZ method might be seen as a low-level deceit employed to manage participants’ expectations,
but it has been used in several studies and is known to encourage participants’ natural behaviors to
the new system [214]. The "wizard" acts as a proxy for the system, emulating its intelligence and

interacting with the participant through an interface.

WoZ prototyping has been used in various contexts, including interface designs for automated cars
[215], natural language dialogue systems [216], speech recognition systems [217], and even
introducing children to machine learning concepts [218]. WoZ has also been used to test
autonomous systems, as it allows the researchers to mimic the model's computations and receive
feedback before the development process [219]. Recently, a study investigated the learning patterns
for human and artificial intelligence (Al) teams using the WoZ method [220]. Teams of one human
and an Al robot performed an Urban-Search-And- Rescue mission in a simulated environment.
The robot was controlled by a WoZ researcher, allowing for the study of human-robot interaction
without computational modeling of necessary robot competencies, such as environment sensing

and natural language communication. This method allows researchers to test autonomous systems
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at a lower cost than developing a functioning system, and to gather early insights into the system’s

design, user perception, and behavior.

Despite more than 30 years of research in alarm management leading to the development of various
data-driven methods and diagnostic tools, few studies have involved humans in investigating the
implications for applicable industries. The purpose of this study is to conduct a high-fidelity
human-in-the- loop experiment to quantify the effects of alarm rationalization in a chemical plant
simulator. We will be using the WoZ method to simulate the effects of an automated diagnostic

tool and its impact on the operator’s performance.

5.3 Research objective

Extensive research has been done on developing and improving data-driven algorithms and
methods to manage alarm floods. Alarm flood rationalization algorithms have often been tested
with large samples of datasets, but not often challenged in a high-fidelity simulator with real
operators. Few studies have investigated the interactions between humans and an automated fault
diagnostic tool in a high-fidelity process control simulator. This paper presents a study to address
this gap. This research aims to investigate how a fault diagnostic tool can support the operators
during alarm floods in a control room. To this end, we investigated the effects of an automation-
based fault diagnostic tool on the operator's performance during different alarm flood scenarios in

a Tennessee Eastman Process (TEP) chemical plant simulator.
5.4 Methodologies
5.4.1 Participants

The subjects were 20 students in chemical engineering at Polytechnique Montreal University. 60%
self-reported as female and 40% as male. 75% were between the ages of 20-29 years old, and 25%

were 30 years old or over. An informed consent was obtained from all the participants.
5.4.2 Apparatus

5.4.2.1 Chemical plant simulator

We used the TEP as the simulator for representing a chemical process control. TEP is a well-
established process control simulator that is downloadable onto MATLAB/Simulink [189]. TEP is
a realistic simulator of a chemical process consisting of five main process units: a reactor, a

separator, a stripper, a compressor, and a mixer. The process has a total of eight different chemical
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components identified as A through H. These components consist of four gaseous reactants: A, D,
and E that are fed to the reactor, and C which is fed into the stripper. The reactor contains a small
amount of inert gas B. The objective is to produce liquid products G and H, which exit the stripper
base and are transferred to subsequent units and cells. There is also a liquid by-product F which is

purged from the TEP. The operator can manipulate 12 input variables and monitor 41 output

variables. The TEP simulator has 20 pre-defined fault scenarios [187].
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Figure 5.1 Overview interface of the chemical plant simulator.
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In a previous study, we developed PER4Mance, an open-source graphical user interface for the

TEP simulator based on dashboards currently in use in the industry [221]. PER4Mance has two

windows. The first window displays key performance indicators, the overall Piping and

Instrumentation Diagram (P&ID), the alarm table, and the diagnostic tool (Figure 5.1). The second

window shows time trends and the current value of process variables for each unit, organized as

tabs, and the operator can control the unit’s valves from a menu (Figure 5.2). The user can navigate

between the units using tabs. Both windows were displayed at the same time on two computer

screens. The alarms are triggered when the value of the variables exceeds its thresholds. Each

variable has a low and a high threshold, within which are the normal operating values. When the

value exceeds either threshold, an alarm appears in red on the overview interface along with a

sound.
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Figure 5.3 Diagnostic tool evolution for Fault 1: a) 3 alarms, b) 6 alarms, c¢) 9 alarms, and d) 12

alarms.
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Figure 5.4 Diagnostic tool evolution for Fault 6: a) 3 alarms, b) 6 alarms, c) 9 alarms, and d) 12

alarms.
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5.4.2.2 Diagnostic Tool

This study investigates the impact of a fault diagnostic tool on operator performance through a
human-in-the-loop experiment. Training an algorithm to detect and identify the faults or alarm
floods was going to be too time-consuming and costly. For this reason, we used the WoZ method
to simulate the behavior of an automated fault diagnostic tool. Participants interacted with a
diagnostic tool that they believed to be autonomous but was actually operated by a member of our
research team. Participants thought that the fault diagnosis was being provided by the tool when it
was activated by the researchers.

In the condition where the diagnostic tool was deactivated, the area did not provide any new
information. It had the message “Fault found: Unknown” throughout the entire testing session. In
the condition where the diagnostic tool was activated, the research team wanted the diagnostic tool
to reflect a learning capability and to improve its accuracy of the likely fault as more information
was available. In this case, the information provided to the tool were the alarms triggered. Hence,
as there were more alarms triggered, more information was provided to help the tool classify the
situation into one of different probable faults and the diagnostic message updates. Practically, a
diagnostic message appeared after three alarms. The message was updated again after six, nine,
and twelve alarms (Figure 5.3 and Figure 5.4). After twelve alarms, the diagnostic was presented
as the final message.

Furthermore, the research team wanted to reflect the limited confidence level of the algorithms. To
do so, two to three possible diagnostics were provided at once, each with a confidence level
expressed in percentage. When there were two or three possible diagnoses, the sum of the
confidence levels was 100%. When there was only one diagnosis, the confidence level was at only
90%. After six alarms and again after nine alarms, the diagnostic message and its confidence levels
were updated. After twelve alarms, the final diagnosis was provided. To simulate alarm grouping
and to increase the tool’s transparency, clicking the “Alarms” button next to each fault highlighted
the related alarms in the alarm table (Figure 5.5). Note that in the two failure scenarios participants

experienced, the total number of alarms reached 15 and 27, respectively.
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Figure 5.5 The “Alarms” button highlights in dark red the alarms related to the Low Flow Feed
A fault selected in the alarm table.

5.4.3 Experimental variables

5.4.3.1 Independent variables

There were two independent variables: use of the fault diagnostic tool; and the type of fault used
in the scenario.

Fault diagnostic tool

There were two experimental conditions: the activation or deactivation of the fault diagnostic tool.
In condition 1, the fault diagnostic tool was deactivated. The only cues signaling the participants
of a malfunction were the alarms and indications on the interfaces. In condition 2, the fault
diagnostic tool was activated. The cues signaling a malfunction were the same as in condition 1
with the addition of messages for the faults found on the diagnostic tool. The Wizard of Oz method
was used to simulate the behavior of the fault diagnostic tool. The research team pre-programmed
the diagnostic tool’s message to be triggered on the operator’s screen during the alarm flood.
Type of faults: alarm flood scenarios

There were two different alarm flood scenarios. We reviewed all of TEP's predefined faults to
identify those that led to an alarm flood and found two such faults [222]. These were “Fault 6: A
feed loss” and “Fault 1: A/C feed ratio, B composition constant”.

Each participant completed a different fault for each condition to prevent any learning effect when
executing the second scenario. Fault 6 was considered to be an “easy” fault due to the first alarm
triggered locating the source of the fault (Low Flow Feed A). Fault 1 was considered to be a

“difficult” fault because the alarms that were triggered did not clearly describe the source of the
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fault. To resolve Fault 6, participants had to acknowledge that there was no feed of product A, and
to pause the plant until the refill was done. To resolve Fault 1 scenario, participants had to increase

the flow of product A by opening its valve in manual mode.

5.4.3.2 Dependent variables

There were three dependent variables: mental workload; situational awareness; and fixation
duration and count.

Mental workload questionnaire

Mental workload is a concept that has been invoked in human factors research and practice. Mental
workload reflects the cost of mental resources necessary to achieve a particular level of
performance during a task [223], [224]. Mental workload is viewed as the difference between the
human’s processing capacities that are required to perform the task and the capacity available at
the given moment [58]. Sustained high mental workload causes mental fatigue, decreased
performance, and can have detrimental health effects in the long run [225]. As a result,
understanding subjects’ mental workload under different alarm flood conditions could provide
insights into the effects of the diagnostic tool.

The NASA task load index (NASA TLX) questionnaire is a tool for measuring and conducting a
subjective mental workload assessment (see Appendix A). It is a well-established subjective
method using a multidimensional rating scale that is the most widely used in human factors studies
[226]. It assesses six dimensions related to the participant’s capability and nature of the task:
physical demand; mental demand; temporal demand; judgment of performance; effort required to
perform the task; and level of frustration. Participants rated each dimension on a 20-point scale.
Participants also completed 15 pairwise comparisons to determine the weight of each dimension.
The total workload score is the weighted sum of each dimension rating, reported as percentage. In
this study, the questionnaire was used to measure participants' workload after completing each
scenario.

Situation Awareness Global Assessment Technique (SAGAT) questionnaire

Endsley’s enduring definition of situational awareness (SA) is “the perception of the elements in
the environment within a volume of time and space, the comprehension of their meaning, and the
projection of their status in the near future” [227]. Endsley’s model of SA has three levels. Level

1: Perception of the elements in the environment is the first step in achieving SA. It is to perceive
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the status and dynamics of the relevant information in the environment. The information needs to
be displayed in a way that allows successful and effective gathering of information from different
sources. Level 2: Comprehension of the current situation includes being aware of the elements that
are present and understanding the significance of these elements considering the operator’s goals
or system variables. Level 3: Projection of future status is the ability to anticipate the system
dynamics in the near future. It represents the highest level of SA and is achieved through the
perception of elements and the comprehension of the situation (level 1 and 2 SA). This level is
important to allow operators to be proactive rather than reactive. Level 3 SA is concerned with
what is going to happen, or what is most likely to happen, based on the current state and dynamics
of elements [228].

In this study, we used the Situation Awareness Global Assessment Technique (SAGAT), a direct,
objective assessment of participants’ SA (see Appendix B). SAGAT is a widely used and validated
metric that has been shown to be effective across a variety of domains to measure participants’ SA
[229]. The SAGAT questionnaire that was developed for this study had six questions. It was based
on relevant probes from previous studies [230], [231] and covered all three levels of SA. There
were four questions pertaining to SA level 1, one question on SA level 2, and one question on SA
level 3.

The probes were administered at three predetermined moments: during normal operation, during
the alarm flood, and after application of a corrective action. Participants were not previously aware
of the timing of the probes. During each probe, the simulator was paused and displays were
blanked. Participants answered the SAGAT questions on a printed questionnaire using a pen. After
the participants completed the probing, the simulator was resumed from the exact moment it was
stopped and the session continued. After the test, participants’ answers were compared with the
actual state of the simulator at the moment the probe occurred. A correct response was rated as
100% and an incorrect response as 0%. Level 1 SA is the averaged response score of all level 1
questions, averaged over all participants. The same was done for SA levels | 2 and 3, whereas the
global SA was the averaged response score of all questions (levels 1, 2 and 3).

The freeze-probe approach used in the SAGAT can interrupt task flow and affect the measurement
of situation awareness [232]. By requiring participants to recall system status during simulation
pauses, the method may not fully reflect how SA is maintained during continuous operations. These

pauses can also shift attention or change the participant’s cognitive state. Nonetheless, SAGAT has
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been widely applied in fields such as air traffic control and medical training, where it provides a
structured way to compare perceived and actual system states and has been effective in identifying
gaps in operator awareness [233].

Fixation duration and count

Eye response metrics are among the most widely employed psychophysiological measures across
various research domains [234]. Eye metrics include pupil diameter, blinks, gaze, and fixations.
Fixations occur when eye-movements are nearly still in order to assemble the necessary
information. Past research found that longer fixation duration is related to difficulty in interpreting
the information presented or a greater involvement in its exploration [235]. It was found that more
complex problems resulted in longer fixation duration [236]. High cognitive workload led to a
failure to suppress irrelevant information, resulting in a longer mental processing time within a
fixation [237]. This results in longer fixation durations and fewer fixation counts [238].

The eye-tracker used was the Pupil Invisible made by Pupil Labs. The eye tracker looks like a
normal pair of glasses and measures 144 mm in width, 48mm in height, and 160 mm in length. The
eye-tracker has a scene camera to record what the participant is looking at and an infra-red sensor
to measure the participant’s eye position. It came with an Android smartphone on which the
PupilLab app is used to view real-time gaze and recordings. The recordings were uploaded onto
the Pupil Lab Cloud, where we retrieved them for data analysis. The Captiv Neurolab software was

used to analyze the fixation durations and counts.

5.4.4 Procedure

Two days prior to the experiment, participants were asked to watch a training video on the TEP
simulator. It provided an overview of the simulator and gave examples of four fault scenarios,
including the two fault scenarios that were used in the experiment. Two participants did not watch
the training video before their arrival, so they watched the video before the start of the experiment.
All the experimental sessions took place at a laboratory at Polytechnique Montreal University. At
the participants’ arrival, a briefing of the entire session was given. Subjects were seated at the
computer simulator and were shown the two simulator interfaces. Then, they calibrated the eye-
tracker. Participants were instructed to monitor the plant production and that if a fault occurred,
they had to diagnose the fault and execute corrective actions to the best of their knowledge. At
random, each participant was assigned one of the following scenarios:

1) Fault 1 with the diagnostic tool, followed by Fault 6 without the diagnostic tool.
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2) Fault 1 without the diagnostic tool, followed by Fault 6 with the diagnostic tool.

3) Fault 6 with the diagnostic tool, followed by Fault 1 without the diagnostic tool.

4) Fault 6 without the diagnostic tool, followed by Fault 1 with the diagnostic tool.
In total, there were 5 participants per scenario. The order of faults and use of diagnostic tool
presentation were balanced between participants. During each test, SAGAT probes were given at
three predetermined moments. At the end of each test, the NASA-TLX questionnaire was

administered. The eye- tracker recorded the entire session for each condition.

5.5 Data Analysis
5.5.1 NASA-TLX questionnaire

Each participant’s ratings were inputted into the NASA-TLX application, and the weighted
workload scores were calculated. The statistical tests ANOVA and Student’s t-tests were

performed to evaluate the impact of the type of fault and of condition on mental workload.

5.5.2 SAGAT questionnaire

We calculated participants’ global SA, SA level 1, SA level 2, SA level 3, and SA for each of the
three probes. We performed ANOV As for each level and each probe, to analyze the impact of the
diagnostic tool and type of fault on SA.

5.5.3 Eye-tracking fixation data

For each interface, we identified the areas of interest (AOI). The overview interface had four areas
of interest (Figure 5.6): 1) key performance indicators, 2) plant overview, 3) alarm table, 4) fault
diagnostic tool. The detailed unit interface had three areas of interest (Figure 5.7): 1) key

performance indicators, 2) plant overview, 3) controls.



60

Diagnostic Tool

| Foums tounn
|

Alarms Detalis A4

Haman hLE T g Fme ewt A Fant Ranw
T sy e Mames2y 1T s Corowmmon Fest C YR Meacer O
12288 el 11N Low Camcmmmen & % Puge Purge Conc.

Lo

L

3

17:22:.41

Reactor
Aeactor Lewel
Flow Comarol Viive A
- -
S - |

L

Frow Conusl Valve ©

[
: o

et ngti

Prow Contret vaive § Sl

Figure 5.7 Detailed unit interface AOlIs.

In our study, the eye-tracker measured the total fixation duration and the total fixation count in
each AOI. After gathering the raw fixation duration and count of each participant, we had to control
for the differences in eye fixation between participants i.e., some participants had much higher

fixation counts than others for the same duration of time. To do so, we calculated each participant’s



61

relative fixation duration (RFD) and relative fixation count (RFC). The RFD was calculated by
dividing the fixation duration in each area by the total fixation duration on the entire interface (ex:
fixation duration in AOI 4 / total fixation duration on the overview interface). The RFC was
calculated by dividing the fixation count in each area by the total fixation count on the entire
interface. Furthermore, RFD and RFC were calculated for each participant, for each AOI. Finally,
ANOV As were performed for each AOI, to evaluate the impact of conditions and type of faults
on RFD and RFC. Note that there were 15 missing recordings out of 40 due to technical problems

with the eye-tracker. We report results from the 25 valid recordings from 16 participants.

5.6 Results
The following section will report statistically significant results only.

5.6.1 Mental workload

A two-way within subject ANOV A was performed to analyze the effects of the diagnostic tool and
the faults on the workload. Results show that the type of fault had a significant impact on the
workload (F1,19=7.01, p <0.05), see Figure 5.8. The Tukey post- hoc test showed that workload
during Fault 1 was significantly higher than during Fault 6 (p < 0.05). The diagnostic tool and the
interaction between the fault and diagnostic tool showed no statistically significant effect on the

workload.
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Figure 5.8 Mental workload between faults F1 and F6, with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.
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5.6.2 Situational awareness

Significant results were reported for the global SA, the SA level 3, and during probe 3 (after the
corrective action). No significant results were found for SA levels 1 and 2, and for probes 1

(normal operations) and 2 (during the alarm flood).

5.6.2.1 Global SA

A two-way within subject ANOVA was performed to evaluate the impact of the diagnostic tool
and the type of fault on participants’ global SA. Results show that the use of diagnostic tool has a
significant impact on the SA (F1,19=6.32, p <0.05) see Figure 5.9. The Tukey post-hoc test showed
that SA with the diagnostic tool was significantly higher than without it (p < 0.05). The type of
fault and its interaction with the use of diagnostic tool showed no statistically significant effect on

the global SA.
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Figure 5.9 Global SA between faults F1 and F6, with (WD) and without (WOD) the diagnostic

tool. Error bars represent the standard error.

5.6.2.2 SA level 3

Statistical analysis was performed to evaluate the effects of the diagnostic tool and faults on SA
level 3. A two-way within subject ANOVA analysis showed that the use of diagnostic tool has a
significant impact on the SA level 3 (F1,19=4.00, p < 0.05) see Figure 5.10. The Tukey post-hoc
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test showed that SA level 3 with the diagnostic tool was significantly higher than without it (p <
0.05).

The ANOVA also showed that the type of fault also had a significant impact on SA level 3 (F1.19
=4.00, p < 0.05). Tukey post-hoc showed that SA level 3 was significantly higher during Fault 1
than Fault 6 (p < 0.05). The interaction between the use of diagnostic tool and the type of fault

showed no statistically significant effect on SA level 3.
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Figure 5.10 SA Level 3 between faults F1 and F6, with (WD) and without (WOD) the diagnostic
tool. Error bars represent the standard error.

Student’s t-tests were performed to evaluate the effect of the diagnostic tool on the SA level 3, in
an easy scenario as compared to a difficult scenario. Results showed that the SA level 3 during
Fault 1 (difficult scenario) was significantly higher with the diagnostic tool than without it (p <
0.05), see Figure 5.11. A t-test was also completed for Fault 6 (easy scenario) with and without

the diagnostic tool, and the results showed no significant difference.
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Figure 5.11 Difference in SA level 3 during Fault 1 with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.

5.6.2.3 SA at probe 3

A two-way within subject ANOVA was performed to evaluate the effect of the diagnostic tool and
the type of fault on the SA at probe 3, which was the moment after the resolution of the fault.
Results showed no statistically significant effect. A paired t-test was performed to evaluate the
effect of the diagnostic tool in an easy as compared to a difficult scenario. Results showed that the
global SA at probe 3 during Fault 1 with the diagnostic tool was 73.33%, and 88.33% without it,
see Figure 5.12. The difference was significant (p < 0.05). A t-test was also performed between

conditions for Fault 6, but the results showed no statistically significant difference.
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Figure 5.12 Difference in SA at probe 3 during Fault 1 between with (WD) and without (WOD)
the diagnostic tool. Error bars represent the standard error.
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5.6.3 Fixation duration and count

This paper reported the significant results that were found for the Overview interface on AOI 1, 3,
and 4. Statistical tests were also completed for the Overview interface AOI 2, and all three areas

of interest of the Detailed interface, and no statistically significant results were found.

5.6.3.1 Area of interest (AOI) 1: KPIs

An ANOVA analysis showed that the use of diagnostic tool had a significant impact on the RFD
(F1,15=5.30, p < 0.05), see Figure 5.13. The interaction between the type of fault and the use of
diagnostic tool also showed an effect on the RFD (F1,15=5.03, p < 0.05). The Tukey post hoc test
showed that the RFD was significantly higher in AOI 1 when the diagnostic tool was activated (p
< 0.05). The type of fault showed no significant effect on the RFD.
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Figure 5.13 RFD in AOII between faults F1 and F6, with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.

An ANOVA analysis showed that the use of the diagnostic tool had a significant impact on the
RFC (F1,15 = 6.21, p < 0.05). The Tukey post hoc test showed that the RFC (p < 0.05) was
significantly higher in AOI 1 when the diagnostic tool was activated (Figure 5.14). The type of
fault showed no significant effect on the RFD.
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Figure 5.14 RFC in AOI1 between faults F1 and F6, with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.

5.6.3.2 Area of interest (AOI) 3: Alarm table

A two-way ANOVA shows that the use of diagnostic tool affects the RFD on AOI 3 (F1,15=4.59,
p < 0.05). Tukey post- hoc test shows that the RFD was significantly lower when the diagnostic
tool was activated (p < 0.05), see Figure 5.15. The type of fault and its interaction with the use of
diagnostic tool did not show any statistically significant results.

A two-way ANOVA was also performed to study the effect of the type of fault and the use of the
diagnostic tool on the relative fixation count (RFC) in the AOI 3. Results showed no statistical

significance.
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Figure 5.15 RFD in AOI3 between faults F1 and F6, with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.
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5.6.3.3 Area of interest (AOI) 4: Diagnostic tool

A two-way ANOVA test was performed to study the impact of the type of fault and diagnostic tool
usage on the RFC on the AOI 4 (Figure 5.16). Results showed that the use of the diagnostic tool
had an impact on the RFC (F1,15= 7.88, p < 0.05). The post- hoc test showed that the RFC was
significantly higher when the diagnostic tool was activated (p < 0.05). The type of fault and its
interaction with the use of diagnostic tool did not show any statistically significant results. A two-
way ANOV A was completed to evaluate the effect of the type of fault and the use of the diagnostic

tool on the RFD in the AOI 4. Results showed no statistical significance.
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Figure 5.16 RFC in AOI4 between faults F1 and F6, with (WD) and without (WOD) the
diagnostic tool. Error bars represent the standard error.

5.7 Discussion

The findings showed that the use of the diagnostic tool supported the operators during alarm floods.
The global SA was high in all conditions (>80%), which suggests that PER4Mance was a good
SA-oriented design for process control. PER4Mance was designed based on interfaces currently
being used in the industry, to which we added a new window for the diagnostic support tool. Our
results showed that having diagnostic support was beneficial and improved participants’ SA
without much of a change in user interface design. The use of the diagnostic tool improved global
SA, SA level 3, and SA at probe 3. Having the diagnostic tool as a support increased operators’
overall SA during the entire scenario, increased their ability to project future status, and increased
their SA at the end of the scenario.

The use of the diagnostic tool showed benefits to operators’ performance during difficult situations.

Operators’ workload was shown to be significantly higher during Fault 1 than during Fault 6. This
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confirmed the initial understanding that Fault 1 was the more difficult scenario and Fault 6 was the
easier scenario. The use of the diagnostic tool increased SA level 3 during Fault 1, but not during
Fault 6. In addition, the use of the diagnostic tool also increased SA at probe 3 during Fault 1 and
showed no significant difference during Fault 6.

Although the findings suggested that the use of the diagnostic tool may not have helped operators
during easy situations, they showed that the use of the diagnostic tool supported operators in
situations that were complex with no obvious solution. Hence, the diagnostic tool showed no
support to operators when the alarms clearly described the fault but showed significant benefit
when the situation was complex, and the alarms were ambiguous.

The diagnostic tool led the operators’ gaze to more solution- oriented areas of interest, rather than
a diagnosis based on a multitude of alarms. As seen in the literature, alarms were annunciated
without any differentiation between the root causes, which can overwhelm the operators. In
addition, longer fixation duration was linked to high cognitive workload due to a failure to suppress
irrelevant information [237]. When the diagnostic tool was activated, the fixation duration and
count on AOI 1 (KPIs) increased, the fixation count on AOI 4 (diagnostic tool) increased, and the
fixation duration on AOI 3 (alarm table) decreased. These findings suggested that the diagnostic
tool reduced the attention from the alarm table and increased the exploration of the KPIs and the
analysis of the information provided by the diagnostic tool. Taking the gaze away from the alarms
and towards the KPIs and diagnostic tool is beneficial because it can reduce the risks of being
overwhelmed by the alarms. This illustrated the potential of the diagnostic tool to help suppress
the irrelevant information that required longer processing time such as the alarm table and rather
focus on other effective information like the KPI’s or the diagnostic tool.

Jang et al. (2013) introduced a proactive alarm reduction method used in a nuclear power plant
environment and found that the operators’ SA in the alarm reduction environment was greater than
in the non-reduction environment. The findings in this paper, where participants’ SA is higher in
situations with the diagnostic tool activated, corroborate these results. Adhitya et al. (2014)
developed a proactive system to inform chemical plant operators of an alarm before it happened,
but the early warning did not improve operators’ accuracy in identifying the root cause. In our
study, we found that the diagnostic tool provided assistance to the operators in complex fault
scenarios such as Fault 1 but did not show a significant impact in straightforward situations such

as Fault 6. Therefore, our study partially confirms these results, where the system also did not
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support in easy scenarios yet supported in complex scenarios. This study supported previous
research findings and added new findings related to the difficulty of the alarm flood scenario and
the redirection of the eye gaze.

This study had three main limitations. First, the sample size was limited due to the availability of
qualifying participants. A larger sample size would also have increased the internal and external
validity of this study. Second, participants were not working operators from real chemical plants.
The participating students in chemical engineering had limited exposure and experience in real-life
chemical plants, and the simulator was a new setup for them. The third point of concern was the
lack of validation from real plant operators in the simulated environment. Although the interfaces
were developed based on best practices used in the industry, they hadn’t been reviewed by
industrial users. In addition, the behavior of the automated alarm rationalization system, i.e., the
WoZ, was yet to be confirmed by a working operator.

Future directions include implementing the TEP simulator in real automation systems and
improving designs based on system limitations and user feedback. To enhance the efficiency and
realistic behavior of the simulated alarm rationalization system, more studies should be made to

design better visualizations and interactive displays.

5.8 Conclusion

In this study, we conducted a human-in-the-loop experiment using a diagnostic support tool during
two alarm flood scenarios. We found that the diagnostic support tool improved participants’
situation awareness, especially in a complex scenario where the alarms triggered do not provide a
clear root cause. Also, the diagnostic tool redirected participants’ attention to the main operational
KPIs and less on the list of alarms, encouraging a more solution-oriented approach when managing
the chemical plant with the tool present. In a complex environment with human-automation
interaction, issues related to trust in the machine can arise. There is a need for future studies to
investigate which factors contribute to and how they impact the human’s trust in an automated tool.
Future work should also investigate the balance between trust in the automated tool, its
transparency, and keeping the human’s situational awareness when provided an erroneous

diagnostic. This will be the next step of this project.
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6.1 Abstract

Process alarm management in complex industrial systems is challenging, especially during alarm
floods, which can impair operator performance. Al shows potential in fault detection and
diagnostics, supporting decision-making and situational awareness (SA). However, issues like
inaccurate recommendations, insufficient transparency, and overreliance raise safety concerns.
This study explored the effects of imperfect Al alarm analysis tools on operator performance.
Twenty participants used an Al diagnostic tool in the Tennessee Eastman Process simulator, which
provided either a correct or incorrect diagnosis. Performance measures included response times,
diagnostic accuracy, SA, trust, reliance intentions, and workload. Findings showed incorrect Al
diagnoses led to longer response times, lower SA, and reduced trust. Despite this, 85% of
participants followed the AI’s incorrect recommendations. Operators demonstrated reduced trust
in the Al when its diagnostics were inaccurate but continued to rely on its recommendations. This
disconnect between reported trust and actual reliance on Al highlights risks in alarm floods.
Findings provide empirical evidence and recommendations to mitigate risks from imperfect Al,

aiming to improve human performance and system safety in industrial environments.

6.2 Introduction

Artificial Intelligence (Al) refers to creating machines that exhibit intelligent behaviors, enabling
them to perform tasks typically requiring human cognition [74]. Al systems are capable of
analyzing data, recognizing patterns, and making decisions autonomously, contributing to various
sectors from robotics to manufacturing industries [91]. The incorporation of Al systems in
industrial process control has led to improvements in productivity and safety. According to a 2023

report by McKinsey, companies that adopt Al technologies see a 20-25% increase in operational
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efficiency [239]. Despite their efficiency, Al models remain challenging to interpret, as
understanding how they reach conclusions is still an active area of research.

As Al became more integrated into industrial processes, it has allowed more complex tasks to be
automated, and it transformed the nature of people's work [240]. However, the increasing reliance
on these systems also exposes risks of Al failures, which can have severe consequences in safety-
critical work settings [241]. Al can enhance situational awareness, lower out-of-the-loop issues,
and improve overall performance by providing real-time insights [242]. However, during failures,
operators may be left without the necessary context or control to address unexpected situations
effectively [19]. This dual nature of AI highlights both its potential and the risks associated with
its integration in critical industrial workplaces [243]. Our study will focus on exploring the impact

of an unreliable Al-based diagnostic tool on human performance in a process control environment.

6.3 Literature Review

The literature review begins with an overview of autonomous systems, followed by a discussion
on Al and automation failures in manufacturing, including challenges such as alarm floods. It then
examines the implications of these issues for human performance, focusing on trust and reliance,
out-of-the-loop challenges, and situational awareness. Next, the role of Al transparency is explored,

culminating in an overview of Al-based fault detection and diagnosis.

6.3.1 Autonomous Systems

The integration of autonomous systems into industrial processes has advanced in recent years,
reshaping the management of engineering, operations, and maintenance [244]. Gamer et al.
envisioned a future in which industrial facilities function with minimal human intervention,
enabled by technologies such as Al, machine learning, and robotics [245]. This vision is being
realized as Al-driven systems demonstrate their capacity to optimize workflows in real time and
adapt to rapidly changing conditions [246]. For instance, manufacturing and chemical industries
exemplify this shift by harnessing automation to reduce downtime and enhance overall productivity
[247]. These developments underscore the influence of autonomous systems on traditional
operational models, setting new benchmarks for performance and reliability [248].

Al, Machine Learning (ML), and Deep Learning (DL) are terms often used interchangeably, yet
they hold distinct, hierarchical relationships in the field of computer science. Machine Learning, a
subset of A, enables machines to learn and improve from data independently [81]. Deep Learning,

a specialized branch within ML, uses multi-layer neural networks to recognize complex patterns in
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large datasets, driving advancements in areas like image and speech recognition and autonomous
vehicles [249].

Despite the progress, achieving fully autonomous industrial systems remains challenging.
Regulatory frameworks are still evolving, creating uncertainty for companies seeking to deploy
these technologies at scale [245]. Technical hurdles, such as ensuring consistent performance in
unpredictable settings, demand ongoing innovation [250]. The human element is another critical
aspect requiring attention: while automation reduces repetitive tasks and enhances efficiency, it
adds a supervisory role to human workers and alters their decision- making responsibilities [251].
This study aimed to explore the effects of an Al on the user, more specifically on human
performance. We investigated the effects of Al failures on the operator’s trust, situational
awareness and decision-making processes. The study took place in a chemical plant simulator with
alarm flood scenarios. By studying these aspects, we investigated the risks posed by an unreliable
Al, while fostering autonomous systems that support human resilience and adaptability in industrial

environments.

6.3.2 Al/Automation Failures in Manufacturing and Alarm Floods

6.3.2.1 AI and automation

Al and automation have demonstrated effectiveness across various applications, yet it is not
without flaws [252]. Failures in Al and failures in automation differ in nature and consequences.
Al failures arise in data-driven systems due to biased training data or model/algorithmic flaws,
resulting in incorrect or unintended outcomes [253]. For example, an Al failure in a chemical plant,
where a predictive maintenance system wrongly predicts a pump failure, can lead to unnecessary
shutdowns and production delays [254]. The accuracy of Al models largely depends on the quality
and completeness of their training data, as Al may misclassify faults or fail to detect anomalies
when encountering scenarios beyond its training experience [255].

In contrast, automation failures occur in rule-based systems due to hardware malfunctions, software
bugs, or human errors [256]. For instance, a robotic arm could cease operation because of a
misaligned sensor [257]. This paper focused on Al failures, specifically examining how an Al's
misdiagnosis affected human performance in a chemical plant simulator. While automation
systems will be referenced for context, the study emphasizes the challenges posed by Al-based

systems failures in high-stakes environments.
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6.3.2.2 Al/automation failures in manufacturing

Failure within automated systems, particularly in industrial plants, can lead to production delays,
equipment damage, or safety risks. Studies highlighted that complex process control systems
frequently exhibit unpredictable behaviors due to software or hardware issues, leading to serious
failures [84], [258], [259]. For example, the Texaco Refinery Milford Haven accident in 1994
illustrated the potential dangers of automated systems when not adequately monitored. An
excessive reliance on the system for managing equipment contributed to a series of failures that led
to a massive explosion. The automated systems did not detect an unusual buildup of pressure, and
the operators, overwhelmed by process alarms, failed to respond suitably [43]. Automation failures
in manufacturing can result in dangerous outcomes, making it essential to design systems that
support operators in effectively managing such situations [179].

6.3.2.3 Alarm floods

Such failures can lead to alarm floods, where cascading process alarms overwhelm operators, as
seen in chemical plants where a single sensor failure triggers numerous alarms [260]. An "alarm
flood" is when numerous alarms are triggered simultaneously, often resulting from cascading
failures, typically more than ten alarms within a ten-minute period [261]. In many industrial
settings, operators can receive hundreds or even thousands of alarms within minutes when critical
system malfunctions, and they can hinder operators' ability to identify the root cause of the problem
[37]. Alarm floods exacerbate system failures, as operators struggle to differentiate critical alarms
from irrelevant or redundant ones, leading to delayed responses [262]. An example was the
ExxonMobil Baton Rouge refinery incident in 2012, where an alarm flood overwhelmed operators,

resulting in a chemical release and subsequent fire [263].

6.3.3 Al failures, implications for Human Performance

Al systems are particularly vulnerable to failures in complex, dynamic environments where
conditions change rapidly [164]. When Al makes mistakes, prompt human intervention is essential
to address potential failures, especially in industrial settings where undetected Al issues could have
severe safety consequences [168]. As operators increasingly depend on Al, they can become
disengaged from the system, impairing their ability to respond effectively when unexpected
situations arise that require human take-over [167]. This underscored the necessity of establishing

an appropriate level of trust in Al systems to facilitate effective human-Al collaboration and ensure
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operators can assume control when required [264]. To provide a deeper understanding of these
challenges, we will now explore the concepts of trust and reliance, out-of-the-loop phenomena, and

situational awareness.

6.3.3.1 Trust and reliance

Trust is central to effective collaboration between humans and Al systems [171], [265], [266].
Mayer et al. conceptualized trust as “a willingness to be vulnerable to the actions of another, based
on the belief that the other will act in a manner beneficial to the trustor” [267]. Lee and See refined
this definition by characterizing trust as an attitudinal construct and reliance as its behavioral
counterpart.

Reliance refers to the act of depending on another entity to fulfill specific tasks or responsibilities
[268], [269]. Trust lays the groundwork for reliance, as it shapes the individual’s confidence in the
system’s capability and dependability [266]. Without trust, reliance is unlikely to materialize
because individuals hesitate to depend on systems they find unreliable [171]. Successful
interactions where systems perform as anticipated tend to bolster trust and encourage continued
reliance [270].

The appropriate calibration of trust is essential for the optimal utilization of Al systems [271].
Calibration ensures that reliance corresponds appropriately to the system’s actual performance
capabilities, which is essential for promoting both operational safety and efficiency. Properly
calibrated trust enables users to confidently delegate routine responsibilities to Al systems while
maintaining active oversight in more complex or high-stakes situations [272], [273]. When there
is insufficient trust, users perceive these Al systems as unreliable, they can be reluctant to rely on
them, reject or underutilize systems [274]. This usually results in unnecessary manual interventions
or overrides that disrupt workflows and reduce operational efficiency [275].

On the other hand, overtrust—a scenario in which trust exceeds a system’s actual capabilities—
can result in over-reliance and detrimental consequences [276]. Overtrust causes users to disengage
from essential oversight roles, undermining the overall reliability of operations [241], [270]. For
example, in aviation, excessive reliance on autopilot systems has caused pilots to overlook critical
flight data, thereby increasing the risk of adverse events during crucial phases such as takeoff or
landing [277]. Excessive trust can delay the detection and correction of errors, compromising

system integrity and effectiveness [278].



75

Studies showed that individuals exhibiting higher levels of trust in Al agents are more likely to rely
on their guidance [266], [274]. We aimed to explore the implications of overtrust and over-reliance,
particularly focusing on alarm flood scenarios where participants risk failing to reject erroneous Al
diagnosis.

6.3.3.2 Out-of-the-loop (OOTL)

The OOTL problem arises when operators disengage from monitoring tasks due to an over- reliance
on Al hindering their ability to respond effectively during critical failures [152], [279]. For
instance, in industrial manufacturing, operators rely on automated quality control systems to detect
defects. When these systems fail, operator’s response delays can impact safety, production, and
product quality [280], [281]. Studies show that OOTL operators often struggle to re-engage during
system malfunctions, leading to delayed responses and increased risks of accidents [209], [282],
[283].

The concept of OOTL was useful for our study as we investigated the effects of an unreliable Al
when participants re-entered the loop after a period of monitoring, and tried to regain control of the

fault situation.

6.3.3.3 Situational Awareness (SA)

Situational awareness is a fundamental component of effective decision-making and performance.
Maintaining SA is essential to ensuring optimal human performance in complex and dynamic
environments. Endsley’s model divides situational awareness into three hierarchical levels: 1)
Perception, 2) Comprehension, and 3) Projection. First, perception involves detecting relevant
environmental information. Second, comprehension is about interpreting and understanding the
significance of these elements. Third, projection is the ability to anticipate future events based on
the current understanding [166]. Al enhances SA by transforming complex data into actionable
insights and detecting anomalies [174], [284], [285]. In industrial settings, Al monitors variables
like temperature and pressure, identifying patterns that signal potential issues [286], [287].

Studies show that when Al insights are clear and relevant, they improve SA, reduce OOTL effects,
and enable faster decision-making [152], [280], [288]. Al can analyze patterns to prioritize issues
and assist with complex choices [258], [289]. When Al provides an accurate assessment and
relevant projections, it can significantly enhance SA, reduce OOTL issues, and improve human
performance by enabling quick, informed responses [62]. However, when Al provides an

inaccurate assessment or fails to justify its recommendations, it can undermine trust and create
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significant challenges for operators in maintaining SA. This issue becomes particularly critical in
emergencies, where decisions require rapid verification and interpretation of Al-driven guidance,
potentially leading to confusion, mistrust, and OOTL problems [241], [290]. For example, during
an alarm flood, an Al system could prioritize a specific alarm without explaining that it detected
an underlying equipment failure as the root cause. This lack of clarity can significantly impair
operators' SA, leaving them uncertain about the broader context and the reliability of the Al's
judgment [276]. Unclear Al logic delays actions, compromising SA, safety and performance [291],
[292], [293].

Finally, AI systems can also be useful for executing decisions and action, especially for routine
and repetitive tasks [294]. For instance, in industrial settings, Al can autonomously adjust
machinery to maintain optimal performance or shut down equipment in case of detected
malfunctions, reducing the need for constant human oversight [295]. However, during Al failures
or emergencies, operators must quickly regain control of critical systems, but sudden manual
intervention combined with low SA and OOTL issues can lead to confusion, delays, and
compromised safety and performance [251], [262], [282].

Therefore, effective Al design should prioritize maintaining SA, calibrating trust, and minimizing
OOTL issues in complex environments [296]. Enhancing Al transparency plays a critical role in
keeping operators actively engaged, ensuring readiness for emergency takeovers, and supporting
system effectiveness by fostering trust, reducing OOTL risks, and preserving SA in high-stakes
situations [19].

6.3.3.4 Al Transparency

Transparent Al systems provide operators with clear, understandable explanations for
recommendations, allowing for informed decision-making [297]. Enhancing transparency in Al
systems is critical for improving SA and mitigating OOTL issues [298], particularly in
manufacturing environments. For instance, Al can present real-time sensor data, such as
temperature, vibration, and pressure readings, alongside specific justifications for maintenance
actions [258]. In the automotive industry, transparency reveals how an Al-based system predicts
maintenance needs in vehicles by disclosing the data and criteria used in autonomous driving
decisions [291]. If the AI recommends shutting down a machine, it can identify which safety

thresholds have been exceeded and explain the associated risks. These suggestions can be
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supported by summaries of past incidents, offering operators a comprehensive understanding of
the system’s reasoning [276].

Further, transparency can be enhanced by incorporating clear language, confidence levels, and
alternative options considered by the Al system [299]. Displaying confidence levels allows
operators to evaluate the reliability of Al-generated recommendations, particularly in uncertain or
high-stakes scenarios [271]. Such features promote trust and empower operators to critically assess
and decide whether to act on Al outputs [300]. By keeping operators engaged in the decision-
making process, transparency mitigates OOTL issues and ensures a collaborative dynamic between
humans and Al systems [241]. This dynamic is particularly vital in emergencies, where a rapid yet
well-informed evaluation of Al recommendations is necessary [293]. Consequently, transparent Al
systems support improved SA, proactive responses to emerging risks, and enhanced decision-
making quality.

6.3.4 Al-Based Fault Detection and Diagnosis (FDD)

Al can be used for managing faults and mitigating alarm floods in manufacturing environments.
By analyzing historical data, suppressing non-critical alarms, and prioritizing essential ones, Al
systems enable operators to focus on critical issues while filtering out less significant alarms [301].
For example, in industrial plants, Al can group related alarms stemming from a single fault,
allowing operators to address the root cause more effectively [302]. Additionally, Al-based systems
automate routine monitoring tasks, enabling human operators to focus on complex challenges
[303].

Building on these capabilities, Fault Detection and Diagnosis (FDD) can be used to support the
safety, efficiency, and reliability of industrial operations [30]. It focuses on identifying system
faults and analyzing their root causes using advanced techniques like artificial intelligence and
machine learning [255]. Al-based FDD systems detect anomalies and diagnose issues in real-time,
supporting faster corrective actions [304]. FDD can be useful in high-risk industrial environments,
where timely fault resolution is essential to prevent accidents. Traditional FDD methods relied on
rule-based systems, predefined thresholds, and expert judgment, which limited their adaptability
and accuracy [51]. These systems were primarily reactive, identifying faults only after their
occurrence and required human expertise to interpret alarms [41]. Statistical process control
techniques, commonly used in manufacturing, were constrained by their inability to detect subtle

anomalies in dynamic environments [305].
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Al-based FDD systems detect faults by leveraging machine learning algorithms to process large
amounts of sensor data, identify patterns, and detect faults in real time. These systems outperform
traditional methods in both speed and accuracy [175]. For example, machine learning models have
been shown to predict equipment failures early, helping manufacturers prevent downtime and
improve productivity [84]. Chang et al. implemented an Al system for detecting and diagnosing
operational issues in solar projects, achieving a fault detection precision of 98.6% [176]. Another
study demonstrated that an Al-based system achieved a 98% agreement between predicted and
actual anomalies in chemical plants over three months, improving fault detection accuracy [177].
Similarly, a deep learning model applied to the Tennessee Eastman process in chemical production
achieved a fault detection accuracy of 95.6% [178].

The application of FDD systems in real-world scenarios has also been explored. For instance, one
experiment evaluated Al-based alarm systems in a high-fidelity ethylene manufacturing simulator
[179]. The study assessed the impact of alarm management strategies on operator workload and
performance using the NASA-TLX scale. Participants included eleven console-qualified operators
who engaged in training simulations incorporating three levels of alarm management (no
rationalization, rationalized alarms, and smart alarms) and two levels of automation (manual and
Al-based). Results indicated that smart alarm management combined with Al-based automation
reduced operator workload and material losses during abnormal conditions.

Another study by Jang et al. introduced a proactive alarm reduction methodology designed for
high-volume alarm environments in nuclear power plants [180]. This approach prioritized alarms
to reduce cognitive overload and improve situational awareness among operators. Eight nuclear
power plant operators tested the method, and results showed that situational awareness improved
in environments with proactive alarm reduction compared to those without.

Additionally, the effectiveness of decision-support tools in alarm analysis has been studied. For
example, Cappelli et al. investigated the Early Warning system, which predicts critical alarms
within a specific time frame (e.g., 90 seconds before activation) in chemical plant control rooms
[286]. Operators monitored a depropanizer unit and diagnosed faults using this system. While Early
Warning enhanced operators' ability to respond proactively to potential alarms, it did not
significantly improve the accuracy of diagnosing root causes.

Our previous study investigated the impact of a reliable automated FDD tool on human

performance in a chemical plant simulator during an alarm flood, compared to the same scenario
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without any support tool [306]. The findings demonstrated that the diagnostic tool was particularly
helpful when the fault was complex, with alarms that did not clearly indicate the root cause. In such
scenarios, the tool significantly reduced cognitive workload, improved situational awareness, and
aided operators in identifying root causes and applying corrective actions. However, for simpler
alarm flood scenarios where the fault triggers a clearly identifiable root cause, the diagnostic tool
showed no significant benefits. We anticipate these effects may differ when the diagnostic tool is
unreliable.

Collectively, these studies document the role of Al-based FDD systems in fault detection, alarm
analysis, and operator performance. This background will be particularly useful for our research,
as we will be studying the effects of an Al-based FDD tool in a chemical plant simulator during
alarm flood scenarios.

This study aims to investigate scenarios of imperfect process alarm analysis, focusing on situations
where an Al-based diagnostic tool may misdiagnose faults. The literature shows that previous
research has suggested that Al-based fault diagnostic systems are never 100% accurate and are
therefore prone to failures and misdiagnoses. Process alarm analysis algorithms have often been
improved using large datasets, but they have rarely been tested in high-fidelity simulators with real
operators. Moreover, few studies have examined the interactions between humans and imperfect
Al-based fault diagnostic tools in such realistic settings. While some human-in-the-loop
experiments in simulators have been conducted, only a subset of these studies report significant
findings. This research aims to bridge these gaps by evaluating the impact of unreliable Al-based
diagnostic tools on operator performance and decision-making during alarm floods in a high-

fidelity process control simulator.

6.4 Research Objectives

This study addresses key gaps in human-Al interaction research, focusing on imperfect alarm
analysis tools and operator performance. Using a human-in-the-loop experiment in a chemical plant
simulator, we examined the impact of Al failures on participants’ situational awareness, trust, and
decision-making during alarm flood scenarios. The experiment also evaluated operators' ability to
detect Al misdiagnosis during emergencies and the subsequent effects on decision- making,
particularly in diagnosing malfunctions and determining the need for intervention. By assessing
the effects of imperfect Al decision-support tools, this study seeks to improve operator performance

and safety in complex, high-stakes environments.
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The structure of this article is as follows: the next section outlines the experimental methodology,
providing details on the apparatus and diagnostic tool. This is followed by a description of the data
analysis methods and a presentation of the results. The article concludes with a discussion of the

key findings, contributions, and limitations of the research.

6.5 Methodology
6.5.1 Participants

The participants were 20 students enrolled in the chemical engineering program at Polytechnique
Montreal. 70% self-reported as female and 30% as male. 90% were aged 20-29, and 10% were
aged 30-35 years old. This experiment was reviewed and approved by Polytechnique Montreal’s
Ethics Committee (CER-2122-48-D). Informed consent was obtained, and each participant was

given 20$ for their participation at the end of the experiment.

6.5.2 Apparatus
6.5.2.1 Chemical plant simulator

In a previous study, we developed PER4Mance, an open-source graphical user interface designed
to control the Tennessee Eastman Process (TEP) chemical plant simulator [221]. The TEP is a
well-known benchmark used in process control and includes a comprehensive representation of a
chemical production system. TEP simulator serves as a powerful tool for understanding complex
chemical processes, training operators, and refining control strategies in process industries.

It consists of five main units: a reactor, which facilitates the chemical reaction between gaseous
reactants; a separator, responsible for dividing the gaseous and liquid phases; a stripper, which
removes unwanted components and concentrates the desired liquid products; a compressor that
increases the pressure of the gaseous outputs; and a mixer, which blends different components
including the liquid by-product F. The TEP process has eight components, which include both
gaseous reactants and inert gas. The primary objective is to produce liquid products G and H, which
exit through the base of the stripper and are subsequently transferred to other units for further
processing. In addition to these main products, a liquid by-product, F, is removed from the process
to manage waste and ensure efficiency [307].

Operators using PER4Mance can manipulate 12 input variables to optimize the process conditions
and control the chemical reactions. They can monitor 41 output variables, providing critical

feedback on the performance of the system and allowing for real-time adjustments. The simulator
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is equipped with 20 pre-defined fault scenarios that simulate various operational challenges and
failures, enhancing training and preparedness [185], [308]. To ensure safety and proper operation,
the simulator includes a robust alarm system. When monitored variables exceed either the low or
high thresholds, an alarm is triggered, which appears in red on the overview interface, accompanied
by a sound alarm. This immediate feedback helps operators respond quickly to potential issues,
reducing the risk of process deviations and enhancing overall safety in the chemical production
environment [307].

PER4Mance featured two interfaces: The Plant Overview (Figure 6.1) interface presented the key
performance indicators (KPIs) at the plant-level, the overall Piping and Instrumentation Diagram
(P&ID), an alarm table, and the diagnostic tool; The Detailed Unit (Figure 6.2) interface offered
in-depth information about each of the five units within the system, including time trends, and
controls for the unit's valves. Both windows were displayed simultaneously on two computer

screens, and alarms were triggered when variables exceeded their thresholds.
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Figure 6.1 Overview interface of the chemical plant simulator.
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Figure 6.2 Detailed unit interface of the chemical plant simulator.

6.5.2.2 Wizard-of-Oz (WoZ) method to Simulate Al

The Wizard-of-Oz (WoZ) experimental method is a cost-effective approach used to simulate Al
systems by having a human "wizard" manually operate aspects of the system while participants
believe they are interacting with an autonomous Al [216]. This method has been successfully used
in complex environments to evaluate how operators interact with Al-based systems. A paper
presented an open-source WoZ interface designed for human-robot interaction experiments,
relevant to manufacturing environments where robots and humans collaborate [309]. In a simulated
urban search-and-task using WoZ to control the Al team partner, the study evaluated the human-
robot team’s situational awareness and performance [220]. A WoZ vehicle was developed to
explore human interactions with Al-driven cars, using simulated Al systems to study how people
engage with and trust Al processes [310]. Finally, a tool for conducting WoZ studies on machine
learning (ML) systems was developed to simulate ML errors during user experience assessment.
The study investigated the importance of considering and preventing ML errors in design [311]. In
all these cases, the WoZ method helped identify challenges in human-AlI interaction, such as over-
reliance on the simulated Al, and provided valuable feedback for developing real Al systems. In
our study, we will use the WoZ method to simulate an imperfect Al-based fault diagnosis system

making recommendations to the participants for fault diagnosis.
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6.5.2.3 Diagnostic Tool

The study investigated the influence of a fault diagnostic tool on operator performance through a
human-in-the-loop experiment. Utilizing the Wizard of Oz (WoZ) method, researchers simulated
an Al-controlled system. Participants interacted with a diagnostic tool they believed to be powered
by artificial intelligence, when in fact, it was manually operated by a team member. To emulate Al
behavior, the research team simulated the diagnostic tool's learning capabilities and transparency
by integrating additional information. As more alarms were triggered, the tool progressively
improved its ability to identify and classify the situation into increasingly likely faults, thereby
updating its diagnostic message accordingly. An initial diagnostic message was generated after
three alarms triggered, which was then refined following subsequent activations at six, nine, and
twelve alarms. The final diagnostic message was delivered after twelve alarms.

Two alarm flood scenarios, Fault 1 and Fault 6, were selected for use in the experiment. For Fault
1, the correct diagnoses are illustrated in Figure 6.3, and the incorrect diagnoses in Figure 6.4.
Fault 1 “A/C feed ratio, B composition constant", involved a step change in the feed ratio of
components A and C while maintaining a constant composition of component B. This disruption
altered the balance in the reactor, leading to deviations in product quality and process stability. The
interconnected nature of the process made this fault challenging to detect, as its effects propagated
through variables such as concentrations, temperatures, and pressures in both upstream and
downstream units. To resolve Fault 1, participants had to increase product A flow by opening its
valve manually.

For Fault 6, the correct diagnoses are illustrated in Figure 6.5, and the incorrect diagnoses in
Figure 6.6. Fault 6 “A feed loss", represented a complete loss in the flow rate of component A, a
critical reactant. This disruption directly impacted the chemical reaction dynamics, resulting in
reduced product yield, altered reactor conditions, and instability throughout the system. Detecting
and diagnosing this fault was complex due to its cascading effects on multiple process variables.
To resolve Fault 6, participants had to acknowledge the loss of feed A verbally, or pause the plant
manually.

To illustrate the inherent uncertainty in Al algorithmic confidence, the research team presented two
to three potential diagnoses simultaneously, each accompanied by a confidence level expressed as
a percentage. For scenarios with two or three diagnoses, the total confidence levels summed to

100%, while in cases with a single diagnosis, the confidence level was set at 90%. The diagnostic
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message and its associated confidence levels were updated at six, nine, and twelve alarms. The
diagnosis tool also had a button to highlight the alarms used to make the diagnosis. During the
failure scenarios, the total number of alarms reached 15 during Fault 1 and 27 during Fault 6.

This approach highlighted key practices in human-machine interaction, focusing on transparency
and iterative learning to build operator trust in automated systems. Transparency ensures that
operators understand how tools function and make decisions, enhancing their confidence in the
system's reliability [262]. Additionally, iterative learning enables systems to continuously improve
based on new data, which is crucial in dynamic environments like chemical facilities, where rapid
changes demand precise and educated decision-making [311]. By delivering timely updates

through real-time alarm data, the diagnostic tool mimics Al behaviors.
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Figure 6.3 Al’s evolution for Fault 1 with a correct diagnosis after: a) 3 alarms, b) 6 alarms, ¢) 9
alarms, and d) 12 alarms.
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6.5.3 Experimental variables

6.5.3.1 Independent variables

The study had two independent variables: the type of fault used in the scenario (Fault 1 and Fault
6) and the type of diagnosis provided by the fault diagnostic tool (correct or incorrect).

Type of fault

Fault scenarios in the TEP were predefined disturbances or malfunctions introduced into the
process to test monitoring, fault detection, and diagnosis techniques. Two alarm flood scenarios
were chosen as scenarios to use in the experiment: Fault 1 and Fault 6. Participants were required
to complete different faults for each different condition to prevent any learning effect during the
execution of the second scenario.

Fault diagnostic tool

The study tested the functionality of a fault diagnostic tool under two experimental conditions. In
the first condition, the tool provided a correct diagnosis. In the second condition, the tool provided

an incorrect diagnosis. In both conditions, the out-of-bound variables, alarms triggered and
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highlighted were the same. The only difference was the diagnostic message provided by the tool.
If a participant wanted to identify the right diagnosis in the incorrect diagnosis situation, it was
possible by analyzing the alarms and variables.

The diagnostic tool provided the participants with the root cause of the alarm flood but did not
specify the corrective action to apply. For instance, the Al tool identified the issue as "low feed A,"
prompting participants to determine the appropriate response. In this case, they needed to recognize
that increasing the opening of valve A would restore the feed flow. This approach was deliberately
designed to prevent participants from simply applying corrective actions suggested by the tool
without engaging in analysis. Participants had to be enrolled in a chemical engineering program to
be qualified to participate in our study, ensuring they possessed the necessary expertise to perform
these basic deductions and analyze process dynamics effectively.

6.5.3.2 Dependent variables

The study analyzed four dependent variables: response time, assessment accuracy, situational
awareness and trust.
Response time
The response time consisted of the duration between the first alarm and the execution of the
corrective action.
Assessment accuracy
For each test, the participant’s corrective action was recorded. Their grading was “passed” if they
applied the right corrective action, and “failed” if they applied a wrong corrective action.
Situational awareness
This study employed the Situation Awareness Global Assessment Technique (SAGAT), which
provides a direct and objective measure of participants' SA. This method of evaluating SA has been
supported in the literature, emphasizing its effectiveness in understanding how operators maintain
awareness in dynamic and complex environments [233]. The SAGAT questionnaire consisted of
six questions that addressed all three SA levels and was administered at three predetermined
intervals:

e Probe 1 during normal operations,

® Probe 2 during an alarm flood,

e Probe 3 following corrective actions.



88

Participants were unaware of when the probes would occur. During each probe, the simulator was
paused, screens were blanked, and participants responded to the SAGAT questions using a printed
questionnaire. After completing the questions, the simulation resumed, allowing participants to
continue their tasks. The accuracy of their responses was then compared with the actual state of the
simulator at the time of the probe, with correct responses scoring 100% and incorrect ones scoring
0%. Level 1 SA scores were averaged for all questions at that level, and the same was done for
levels 2 and 3, while global SA was calculated as the average score across all questions.

Trust

We used a 10-item questionnaire developed to capture trust and reliance (see Appendix C). This
form was adapted from Lyons & Guznov where trust is the intention to be vulnerable to another
entity with little control or observability [312]. The questionnaire consisted of 4-item measuring
the trust in Al versus interpersonal trust, and 6-item to measure reliance intentions. Participants

answered using a 5-point likert scale (from 1-strongly disagree to 5-strongly agree).

6.5.4 Procedure

Two days before the experiment, participants watched a training video providing an overview of
the TEP interfaces and examples of four fault scenarios. All participants provided a signed
informed consent prior to arriving at the laboratory. The experimental sessions took place at
Polytechnique Montreal, with participants briefed on the simulator and shown the interfaces. They
were instructed to monitor plant production and diagnose faults and execute corrective actions.
They were warned that the Al could make mistakes and provide a wrong diagnosis. Participants
were assigned to one of the following scenarios:

1) Fault 1 correct diagnosis, followed by Fault 6 incorrect diagnosis.

2) Fault 1 incorrect diagnosis, followed by Fault 6 correct diagnosis.

3) Fault 6 correct diagnosis, followed by Fault 1 incorrect diagnosis.

4) Fault 6 incorrect diagnosis, followed by Fault 1 correct diagnosis.
The order of faults and use of the diagnostic tool presentation was balanced between participants.
Five participants completed each scenario. SAGAT probes were given at three predetermined

moments during each test, and the trust questionnaire was administered at the end of each test.
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6.6 Data Analysis

Response time

The duration of Fault 1 and Fault 6 was calculated from the first to the last alarm. The faults had
different duration, where Fault 1 lasted 487 seconds and Fault 6 was 912 seconds. The recorded
response times were analyzed using the Student's t-test to compare the effect of the diagnostic tool.
A t-test was completed for each fault because their duration was different.

Assessment accuracy

The compiled grading was analyzed using Fisher’s exact test, and the odds ratio was calculated to
quantify the association between the accuracy and the effect of the diagnostic tool.

SAGAT questionnaire

Participants' global SA, SA level 1, SA level 2, SA level 3, and SA for each probe were calculated,
and two-way within-subject ANOV As were performed to analyze the impact of the diagnostic tool
and fault type on SA.

Trust

Following Kyons (2019), we analyzed three compound measures from the trust questionnaire:
global trust score (average of questions 1 to 10), trust in Al versus interpersonal trust (average of
questions 1 to 4) and reliance intentions (average of questions 5 to 10). Two-way within-subject
ANOVAs were used to analyze the effects of the diagnostic tool and type of fault on participants’

trust.

6.7 Results
6.7.1 Response time

A paired t-test was performed to evaluate the effect of the diagnostic tool on participants’ response
time during Fault 1 and Fault 6, see Figure 6.7. During Fault 1, results showed that the mean
response time with the correct diagnostic tool was 64.3s and 141.4s with the incorrect diagnosis.
The difference was statistically significant (t(19) = -4.88, p < 0.001).

During Fault 6, the results showed that the response time with the correct diagnosis was 67.9s, and
173.8s with the incorrect diagnosis. The difference was significant (t(19) = -9.02, p < 0.0001). For

both faults, the response time was significantly slower when the diagnosis was incorrect.
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Fault 1 and Fault 6. Error bars represent the standard error.

6.7.2 Assessment accuracy

A t-test was completed to assess the impact of the assessment accuracy, results showed no

significant difference.

Fisher's exact test and odds ratio were calculated to evaluate the effect of the diagnostic tool on

participants’ accuracy of their corrective action. Results showed a statistically significant positive

association between the Pass grade and the correct diagnosis (p < 0.05, odds ratio = 6.93), see

Figure 6.8. Participants were more likely to have a Pass grade when the diagnosis was correct, and

a Fail grade when the diagnosis was incorrect. In the latter case, it means that participants were

more likely to follow the inaccurate diagnosis presented by the tool.
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6.7.3 Situational awareness

6.7.3.1 Global SA

An ANOVA was performed to evaluate the impact of the diagnostic tool and the type of fault on
participants’ global SA. Results show that the tool's diagnosis had a significant impact on the global
SA (F1,19=28.44, p <0.0001) see Figure 6.9. The Tukey post-hoc test showed that the global SA
with the incorrect diagnosis was significantly lower than with a correct diagnosis (p < 0.001). The
type of fault and its interaction with the diagnostic tool showed no statistically significant effect on

the global SA.

6.7.3.2 SA Level 1

Statistical analysis was performed to evaluate the effects of the diagnostic tool and type of fault on
SA level 1. A two-way within-subject ANOVA analysis showed that the diagnostic tool had a
significant impact on the SA level 1 (Fi,19=14.81, p <0.0001) see Figure 6.9. The Tukey post-
hoc test showed that SA level 1 with the incorrect diagnosis was significantly lower than with a
correct one (p < 0.001). The type of fault and its interaction with the diagnostic tool showed no

statistically significant effect on the SA level 1.

6.7.3.3 SA Level 2

The ANOVA showed that the type of diagnosis had a significant impact on SA level 2 (F1,19=
13.93, p < 0.001). Tukey post-hoc showed that SA level 2 was significantly lower when the
diagnosis was incorrect than correct (p <0.001). The interaction between the use of diagnostic tool

and the type of fault showed no statistically significant effect on SA level 2.

6.7.3.4 SA Level 3

An ANOVA analysis showed that the tool’s diagnosis had a significant impact on the SA level 3
(F1,19="7.89, p <0.01). The Tukey post hoc test showed that the SA level 3 was significantly lower
when the diagnosis was incorrect (p < 0.01). The type of fault and the interaction between the two

independent variables showed no significant effect.
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6.7.3.5 SA at probe 1

An ANOVA was performed to evaluate the effect of the diagnostic tool, the type of fault, and their
interaction on the SA at probe 1, which was the moment before the start of the fault. Results showed

no statistically significant effect (p > 0.05).

6.7.3.6 SA at probe 2

An ANOVA was performed to study the impact of the type of fault and type of diagnosis on SA at
probe 2, which was during the alarm flood (i.e., when 10 alarms were triggered). Results showed
that the diagnostic tool had an impact on SA at probe 2 (Fi,19=7.61, p < 0.01), see Figure 6.10.
The post-hoc test showed that the SA at probe 2 was significantly lower when the diagnostic tool
was incorrect (p < 0.01). The type of fault and its interaction with the diagnostic tool did not show

any statistically significant results.

6.7.3.7 SA at probe 3

An ANOVA was performed to evaluate the effect of the diagnostic tool and the type of fault on the
SA at probe 3, which was the moment after the resolution of the fault. Results showed that the

diagnostic tool had a significant effect on SA at probe 3 (Fi19=31.87, p < 0.0001), see Figure



93

6.10. The post-hoc showed that the SA at probe 3 was significantly lower when the diagnosis was

incorrect (p < 0.001). The type of fault and the interaction showed no significant difference.
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Figure 6.10 Difference in SA at probes 2 and 3 during Fault 1 and Fault 6 between correct (CD)
and incorrect (ID) diagnosis. Error bars represent the standard error.

6.7.4 Trust

6.7.4.1 Global trust

An ANOVA analysis was performed to evaluate the effects of type of diagnosis and fault on the
participants’ global trust score. Results showed that the tool’s diagnosis had a significant impact
on the global trust score (Fi,19=15.52, p <0.05), see Figure 6.11. The Tukey post hoc test showed
that the global trust was significantly lower when the diagnosis was incorrect (p < 0.05). The type

of fault and the interaction between the independent variables showed no significant effect.

6.7.4.2 Trust in Al versus interpersonal trust

An ANOVA was performed to study the impact of the type of fault and type of diagnosis on the
trust in the Al versus interpersonal trust. Results showed that the tool’s diagnosis had a significant
effect (F1,19=4.47, p <0.05), see Figure 6.11. The post-hoc test showed that the trust in Al was
significantly lower when the diagnostic tool was incorrect (p < 0.05). The type of fault and its

interaction with the diagnostic tool did not show any statistically significant results.
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6.7.4.3 Reliance intentions

Statistical analysis was performed to evaluate the effects of the diagnostic tool and type of fault on
reliance intentions. An ANOVA analysis showed that the diagnostic tool had a significant impact
on the reliance intentions (F1,19=4.28, p <0.05) see Figure 6.11. The Tukey post-hoc test showed
that reliance intentions with the incorrect diagnosis was significantly lower than with a correct one

(p < 0.05). The type of fault and its interaction with the diagnostic tool showed no statistically

significant effect.
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Figure 6.11 Difference in global trust, interpersonal trust and reliance during Fault 1 and Fault 6
between correct (CD) and incorrect (ID) diagnosis. Error bars represent the standard error.

6.7.5 Workload

An ANOVA was performed to evaluate the effect of the diagnostic tool, the type of fault, and their
interaction on the workload, see Figure 6.12. Results showed no statistically significant effect (p
>0.05).

The mean workload with a correct diagnosis was 63.78 and the one with an incorrect diagnosis was
68.20. The literature defines that these NASA-TLX numbers in a process control environment

represent high levels of workload [226].
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Figure 6.12 Difference in workload during Fault 1 and Fault 6 between correct (CD) and
incorrect (ID) diagnosis. Error bars represent the standard error.

6.8 Discussion

6.8.1 Trust and reliance

Our results showed that response times for faults 1 and 6 were significantly slower when the Al
diagnosis was incorrect, indicating participants hesitated to rely on the AI’s suggestion when it was
under an incorrect condition. These results supported previous research by Pearson et al. and
Hoffman et al. which showed that trust in AI diminishes when reliability is in question, leading to
slower decision-making and increased hesitation [274], [278].

In terms of accuracy, results from the global trust questionnaire provided further clarity on these
dynamics. Global trust scores were significantly lower when the diagnosis was incorrect,
supporting earlier findings by J. D. Lee & See that trust in Al erodes following system failures
[171]. The compound trust in Al versus interpersonal trust revealed a significant decline in trust
toward Al when it provided incorrect diagnosis. This aligned with previous findings by Klingbeil
et al. suggesting that successful interactions where systems perform as anticipated tend to develop
trust [270]. Since our participants were using the simulator for the first time and had no prior

successful interactions with the Al system, they had not yet developed trust in its capabilities.

Furthermore, reliance intentions were significantly reduced when the diagnosis was incorrect,

corroborating prior studies by Pearson et al. that found that operators were less likely to trust the
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Al they perceived as unreliable [274]. However, this contrasts with participants' actual behavior,
as shown in the assessment accuracy results where they mainly followed the AI’s incorrect
suggestion. Observations showed that participants were more likely to achieve a Pass grade when
the diagnosis was correct but tended to Fail when it was incorrect. Accuracy assessment results
during an Al misdiagnosis showed that 85% of participants followed the AI’s incorrect suggestion.
This result revealed a vulnerability to over-rely, as participants used the incorrect diagnoses. This
observation aligned with findings from Buginca et al., who noted that people frequently over-rely
on the AI’s suggestion even when that suggestion is wrong, as well as Leveson, who indicated that
operators often follow procedures without considering context [241], [259]. This may be attributed
to the fact that participants were students acting as novice operators who lacked the practical

expertise to critically evaluate Al outputs.

The results from the trust and reliance questionnaire showed that participants measured low
reliance intentions in the Al, but they still relied on it for diagnostic recommendations. This can be
explained by an overtrust on the AI’s capabilities specifically, which aligned with findings by
Miro6- Nicolau et al., who noted that trust that exceeds a system’s actual capabilities can result in

detrimental consequences [276].

In summary, while operators demonstrated hesitation and reduced trust when Al diagnoses were
incorrect, they still exhibited overreliance when the Al failures were presented and their workload
was high. The findings highlighted a critical disconnect between reported trust and actual reliance,

particularly under high cognitive workload, as seen in alarm flood scenarios.

6.8.2 Situational Awareness and Out-of-the-Loop

Our study revealed a significant decline in SA across all levels when the diagnostic tool provided
incorrect assessments. At SA Level 1 (perception), which involves the gathering and integration of
system information, participants demonstrated reduced SA under conditions of incorrect diagnoses.
This supported Endsley’s assertion that faulty or misleading information disrupts the foundational
stage of SA formation, which is critical for building a coherent understanding of system status
[294]. The degradation of perception in our study also exacerbated OOTL effects. Studies by
Lorenz et al. and Gouraud et al. have shown that operators often disengage cognitively during

routine monitoring, making it difficult to re-engage during malfunctions [209], [282]. Our findings
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mirrored this phenomenon, as participants in monitoring roles showed reduced SA and delayed

responsces.

For SA level 2 (comprehension), which requires operators to interpret and contextualize system
information, SA similarly declined when incorrect diagnostic outputs were presented. Our results
suggested that reliance on an imperfect Al can lower comprehension of the situation. Additionally,
results highlighted increased OOTL issues, exacerbated delays and reduced accuracy when manual
intervention was required. Our NASA-TLX results demonstrated that the experiment required high
cognitive effort, which increased the likelihood of failed corrective action and delayed response
times. These findings corroborated earlier research, including Dixon and Wickens who identified
the challenges OOTL operators encountered in re-establishing situational awareness [262].
Additionally, our high workload results were consistent with Lewis et al., who emphasized the
cognitive strain involved in regaining control following periods of disengagement from automated

systems [283].

At SA level 3 (projection), which involves anticipating system behavior to enable proactive
decision-making, participants exhibited significantly lowered SA during incorrect diagnoses by the
Al tool. This finding further validates Endsley’s assertion that accurate perception and

comprehension are prerequisites for predictive abilities [294].

During the second SA probe — measured during the alarm flood — participants demonstrated lower
SA when diagnostic information was incorrect. At probe 3, which followed corrective actions, SA
remained significantly impaired in the scenario of an incorrect diagnosis. These results further
supported previous research highlighting the influence of overreliance and OOTL issues on SA

degradation [19], [251].

Our findings demonstrated that incorrect Al diagnostic outputs disrupted SA across all levels and
exacerbated the challenges of re-engaging during fault situations. These disruptions aligned with
prior research showing that operators in OOTL states struggle to reconnect with system operations,
resulting in delayed responses and compromised decision-making and performance [262]. Our
study validated previous research by confirming that imperfect Al impairs SA and intensifies

OOTL states and mistrust, leading to delayed recovery and reduced operator performance [298].
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6.8.3 Limitations

The limitations of this study must be carefully considered when interpreting the findings. Most
notably, the use of students as participants instead of professional operators raised questions about
the generalizability of the results to real-world contexts. Novice operators lacked the expertise and
situational familiarity required to critically evaluate Al outputs, often defaulting to the guidance
provided by the Al, even when it was incorrect. These findings aligned with previous research
suggesting that inexperienced operators rely heavily on rule-based decision-making due to a lack
of contextual understanding, which limits their ability to adapt to changing operational conditions
[207]. Furthermore, the results supported Hollnagel’s observations that unexpected Al outputs can
lead operators to rigidly adhere to predefined rules, even when the context demands a more flexible

approach [167].

Additionally, the use of the Wizard-of-Oz (WoZ) method in this study introduced a limitation, as
it relied on a simulated Al system controlled by a human operator instead of a fully autonomous
system. While this approach enabled a controlled exploration of human-Al interactions in our
specific context, it did not accurately replicate the adaptive behaviors, decision-making processes,
or error dynamics of a real operational Al. Participants interacted with pre-determined outputs,
which may not reflect how they would respond to a functional Al system. This limitation restricted
the study's ability to capture the full range of operator-Al interactions present in real-world

scenarios.

Conducting the study in a controlled laboratory environment introduced another limitation. The
simulation lacked the dynamic, high-pressure conditions and operational complexities of real
industrial control rooms. Although the controlled setting facilitated consistency in experimental
conditions, it did not reflect the cognitive and multitasking demands operators face in real-world
environments. Furthermore, the absence of organizational and team dynamics, which are integral

to decision-making in actual control rooms, limited the ecological validity of the findings.

6.9 Conclusion
The study demonstrated that imperfect Al diagnostic outputs undermined situational awareness,
intensified out-of-the-loop effects, delayed response times, and diminished trust in the Al-based

systems, collectively degrading operator performance. Participants exhibited hesitation and lower
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trust when encountering Al failures, yet they were prone to over-rely on the system, even when it
provided an incorrect diagnosis. This revealed a disconnect between operators’ self-reported trust
in Al and their actual reliance on it. These challenges were particularly evident during alarm floods,
where heightened cognitive demands led operators to follow Al recommendations without
adequately evaluating their appropriateness. Such reliance resulted in delays and poor decisions,
especially in high-pressure scenarios. Novice operators were particularly affected, struggling to
manage erroneous outputs, regain situational awareness, and maintain control in complex, dynamic

environments.

While accurate Al outputs supported improved SA and decision-making, imperfect Al systems
introduced risks that adversely affected operator performance. The persistence of OOTL effects
and reductions in trust and SA observed in the study emphasized the importance of addressing
these challenges. Future research should focus on the development and evaluation of strategies to
optimize human-Al interaction in high-stakes environments. Enhancing Al transparency is critical
to fostering trust, while advanced operator training can strengthen critical thinking skills regarding
an imperfect Al. Additionally, designing adaptive interfaces that reduce cognitive overload and
support the maintenance of SA is essential. These measures are necessary to ensure operators
remain engaged, effectively manage Al failures, and take control when required. The PER4mance
open-source simulator provides a valuable platform for conducting such studies, enabling the

exploration and validation of these investigations.
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CHAPTER 7 GENERAL DISCUSSION

This chapter presents a synthesis of the research objectives accomplished in the thesis, along a
review of the main findings from the three studies conducted. It then presents the limitations

applicable to this work and future research stemming from this thesis.

7.1 Research Objectives

Modern process industries rely on fault detection and diagnosis systems to monitor operations,
identify anomalies, and support decision-making. Al-based automated diagnostic tools improved
fault detection and reduced downtime, but they remained prone to misdiagnoses, false alarms, and
undetected failures. In safety-critical environments, these errors led to incorrect operator decisions,

increased cognitive workload, and reduced situational awareness.

A key challenge in Al-based automated diagnostic tools is their integration with alarm management
systems and their effect on human performance, particularly during alarm flood episodes. While
alarm analysis algorithms had been developed using large datasets, their effectiveness in real-world
scenarios with human operators remained insufficiently validated. Limited research had explored
how operators interacted with imperfect Al-based automated diagnostic tools in realistic
operational settings. Most studies on human-Al collaboration in fault detection and diagnosis
focused on algorithmic accuracy rather than human factors such as trust, reliance, and SA. A major
concern was out-of-the-loop effects, where excessive reliance on Al reduced an operator’s ability

to respond effectively when automation failed.

This thesis addressed these gaps by examining how Al-based automated diagnostic tools
influenced operator performance and decision-making during alarm flood episodes using a high-
fidelity process control simulator. The research had three main objectives. The first was to develop
a high-fidelity simulator designed to study fault detection, diagnosis, and alarm management in
realistic industrial settings. The second was to determine whether an Al-based automated
diagnostic tools improved operator performance during alarm flood episodes. The third was to
examine how an Al-based diagnostic tool affected human decision-making in failure management,
particularly in scenarios where the system provided incorrect or misleading diagnoses.

The thesis tested three hypotheses:
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e Hi: The implementation of a diagnostic tool enhances operator performance during
episodes of alarm flood.

e Hz: The impact of a diagnostic tool is significantly greater when managing difficult alarm
flood episodes compared to easier ones.

e Hs: Operators are capable of identifying incorrect Al diagnoses during episodes of alarm
flood.

The following discussion examines whether the findings supported or rejected these hypotheses.

7.2 Synthesis of main findings

7.2.1 Hi: The implementation of a diagnostic tool enhances operator
performance during episodes of alarm flood

Chapter 4 focused on the development of PER4Mance, an open-source prototyping environment
for alarm management research. The simulator was built using HMI design principles and followed
industry standards and guidelines. It provided a testing environment where researchers could
examine operator interactions with alarm systems and evaluate the efficiency of decision support
tools. The simulator allowed modifications to alarm thresholds, the addition or removal of alarms,
and the integration of automated diagnostic tools. These features enabled researchers to study how
operators responded to different fault scenarios and assess the impact of interface design on their
performance. By replicating alarm flood episodes, the simulator facilitated controlled experiments

on alarm management strategies and human-machine interactions.

Although the simulator was developed based on best HMI practices and using the well-established
TEP simulation, it had not yet been tested with human participants at this stage. The chapter
concluded that PER4Mance provided a structured environment for examining alarm management
strategies, but its effectiveness in improving operator performance remained to be evaluated.
Chapter 4 concluded with stating that further experimental research was required to determine how
well the interface supported operator decision-making and whether it facilitated performance

improvements in practical applications.

Chapter 5 presented the first documented use of PER4Mance to evaluate operator performance in
alarm flood episodes. This study introduced an automated diagnostic tool within the simulator and

examined its effects on situational awareness, workload, and eye fixations. The interface integrated
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real-time fault diagnostic information while preserving standard process control displays. Through
a controlled experiment, this research assessed the impact of the automated diagnostic tool on
operator performance. Each participant completed two conditions: a control condition, where the
automated diagnostic tool was deactivated, and an experimental condition, where the automated

diagnostic tool was activated and provided fault diagnostic recommendations to them.

When the automated diagnostic tool was activated, fixation duration and count on AOI 1 (KPlIs)
and AOI 4 (diagnostic tool) increased, while fixation duration on AOI 3 (alarm table) decreased.
Eye-tracking data showed that participants using the tool spent less time scanning alarms and
focused more on KPIs and diagnostic recommendations, suggesting that the tool helped them
prioritize relevant system information. In addition, the SAGAT assessment revealed that SA with
the automated diagnostic tool was significantly higher than without it. Participants without the
automated diagnostic tool relied on manually interpreting multiple alarms, which increased eye

fixations on the alarm table and lowered situational awareness.

The results indicated that the automated diagnostic tool improved participants performance by
increasing situational awareness and directing attention toward KPIs and diagnostic
recommendations, suggesting that it helped participants prioritize relevant system information
more effectively. These findings support Hypothesis 1: The implementation of a diagnostic tool

enhances operator performance during episodes of alarm flood.

7.2.2 H:: The impact of a diagnostic tool is significantly greater when
managing difficult alarm flood episodes compared to easier ones
In the Chapter 5 experiment, participants experienced two different fault scenarios to avoid any
learning effect during the second session. Each participant completed one condition with Fault 1,
the most difficult scenario, and one with Fault 6, the easier scenario. Fault 6 was easier because the
first alarms that appeared clearly indicated the source of the issue, which was the absence of feed
A. Fault 1 was more complex because the alarms were triggered by secondary variables affected
by the fault, making it harder to isolate the root cause. This design allowed for a comparison of
operator performance with and without the use of the automated diagnostic tool while accounting

for differences in fault complexity.
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The workload analysis showed that participants experienced greater cognitive demand during Fault
1 than Fault 6, confirming that Fault 1 was the more difficult scenario. The results also indicated
that participants had higher global SA scores when using the automated diagnostic tool. A
significant increase was observed in SA level 3 (projection), which involved anticipating system
behavior. The tool improved SA level 3 during Fault 1, but no significant effect was found in Fault
6. Additionally, SA at probe 3, measured at the end of the experimental session, was higher when

the tool was used in Fault 1, while no significant difference was observed in Fault 6.

The automated diagnostic tool helped participants project future system status, enabling them to
anticipate system dynamics in the near future. Additionally, the automated diagnostic tool
improved awareness at the end of the experiment, indicating that participants retained a better
understanding of system conditions throughout the task. This study indicate that the automated
diagnostic tool supported their ability to interpret process conditions more effectively, particularly
in Fault 1, where alarms alone did not provide sufficient diagnostic information. The study also
found that the effectiveness of the automated diagnostic tool depended on the complexity of the
fault scenario. In Fault 6, where alarms clearly indicated the fault, the tool had little impact on
performance. However, in Fault 1, where alarms provided symptomatic alarms, the tool improved

SA and workload.

The results indicated that the implementation of an automated diagnostic tool improved participant
performance, especially in scenarios where alarms alone did not provide clear diagnostic
information (Fault 1) and had less effect in simpler scenarios (Fault 6). The findings supported
Hypothesis 2, which states that the impact of the diagnostic tool is significantly greater when

managing difficult alarm flood episodes compared to easier ones.

7.2.3 Hs: Operators are capable of identifying incorrect Al diagnoses during
episodes of alarm flood

Chapter 6 examined the effects of imperfect Al-based fault detection and diagnosis tools on

operator performance, focusing on how incorrect Al recommendations influenced decision-making

during alarm flood episodes. Literature has shown that Al-based diagnostic tools can assist

operators in identifying faults and responding to system disturbances. However, these tools can

also provide incorrect diagnoses, which may lead to delayed responses, reduced situational
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awareness, and misplaced trust in automation. The study investigated whether participants would
recognize inaccurate Al recommendations and adjust their decisions or continue to rely on them

despite errors.

The objective was to assess the impact of incorrect Al diagnoses on operator performance. It aimed
to determine whether participants would identify AI misdiagnoses or accept inaccurate
recommendations without verification. The research also examined how reliance on Al tools
affected situational awareness at different levels, particularly in high-cognitive-load scenarios

during episodes of alarm flood.

The study used the PER4Mance simulation to present participants with two alarm flood scenarios.
An Al-based diagnostic tool provided either correct or incorrect fault identifications. Participant
performance was evaluated based on response times, diagnostic accuracy, situational awareness
scores, workload, trust and reliance ratings. This experimental design allowed for a direct
comparison of participant behavior when interacting with accurate versus inaccurate Al-based

diagnoses.

The mean workload score was 63.78 when the Al provided a correct diagnosis and 68.20 when the
diagnosis was incorrect. Although a lower workload was expected when the Al provided a correct
recommendation, the difference was not statistically significant. Nonetheless, these results indicate
that the workload during the experiments were high for process control environments [226]. This

could also reflect the high operator workload that may occur during real-life alarm flood episodes.

Response times were significantly longer when the Al provided an incorrect diagnosis. Global SA
was lower with incorrect diagnoses, with significant reductions observed across all SA levels. SA
Level 1, SA Level 2, and SA Level 3 were all lower when the diagnosis was incorrect. SA scores

at probe 2 and probe 3 also decreased under incorrect Al recommendations.

Participants who received incorrect Al diagnoses demonstrated lower SA scores and longer
response times, indicating that inaccurate Al recommendations negatively affected situational

awareness and delayed corrective actions.

The accuracy assessment showed a statistically significant positive association between receiving

a Pass grade and the Al providing a correct diagnosis. Participants were more likely to receive a
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Pass grade when the Al diagnosis was accurate and a Fail grade when it was incorrect. This

indicated that participants tended to follow the Al's recommendations regardless of their accuracy.

Global trust in the Al was significantly lower when the Al-based diagnostic tool provided incorrect
information. Trust in Al and reliance intentions ratings also decreased under incorrect diagnoses.
However, despite the lower reliance ratings, 85% of participants still followed the incorrect Al
diagnosis, suggesting a continued dependence on automation even when reporting reduced trust in

the tool.

These results showed that providing accurate Al recommendation positively impacted situational
awareness, response times and accuracy, trust, and reliance. This reconfirms Hypothesis 1, that a
diagnostic tool enhances operator performance during episodes of alarm flood. On the other hand,
incorrect Al recommendations resulted in delayed and inaccurate responses, reduced situational
awareness, and lower trust, yet participants continued to follow inaccurate Al suggestions. The
study rejects Hypothesis 3 that operators are capable of identifying incorrect Al diagnoses during

episodes of alarm flood.

7.3 Limitations

Developing a fully functional FDD system was beyond the scope of this study. The research team
used a Wizard-of-Oz method to simulate Al-based diagnostic behavior by pre-programming the
PER4Mance simulator to display diagnostic outputs at specific moments during the experiments.
This ensured consistent Al responses across participants and scenarios. However, this approach
introduced limitations. The system did not process data autonomously or respond to operator
interactions. Outputs were static and did not adapt to changing conditions, which differs from how
an autonomous Al system would function in practice. The simulation also excluded features typical
of real Al tools, such as learning from new data or adjusting behavior over time. These constraints
may have affected how participants interpreted and relied on the tool, particularly when it provided
incorrect or missing recommendations. Future studies could incorporate interactive Al systems that
respond in real time to better reflect operational settings and capture more representative human-

Al interactions.

Another key limitation of the studies was the use of student participants instead of professional

operators. While chemical engineering students provided relevant insights, their lack of industry



106

experience may have influenced their performance. Additionally, the limited number of available
participants and the protocol constraints imposed by COVID-19 at the time further restricted the
study. The small sample size may have reduced the statistical power of the findings, limiting the
ability to detect significant effects. These factors prevented the examination of team dynamics,

which are an important aspect of real-world industrial operations.

The use of a laboratory-based simulation introduced several constraints. While the PER4Mance
simulator provided a controlled environment for studying human-Al interaction, it did not fully
replicate the complexities of real-world industrial settings. Team dynamics, time constraints, and
multitasking are integral to operational environments and can influence how operators engage with
Al-based systems. The absence of these factors may have affected participants' behavior, limiting
the study’s ecological validity, which refers to the extent to which research findings can be applied
to real-world conditions. Findings from a controlled setting may not fully translate to industrial
environments, where additional pressures and collaborative decision-making processes shape

operator interactions with Al tools.

7.4 Theoretical implications

7.4.1 Automation failures do not always cause negative consequences

Referring back to the Jamieson and Skraaning taxonomy [138] and the findings from Chapter 5,
the Al-based automated diagnostic tool used in the study exhibited an elementary automation
failure, meaning it did not fully meet its intended function. The study found that the impact of the
Al-based automated diagnostic tool was significantly greater in difficult alarm flood episodes

compared to easier ones.

Automation failures do not always produce negative consequences, particularly when automation
plays a limited role in task execution and decision-making. In operational settings with low
cognitive demands, operators rely on their expertise and established procedures, reducing the
impact of automation failures. In these cases, operators can detect and address issues manually,

minimizing disruptions and maintaining workflow continuity.

For example, if an automation system designed for routine monitoring fails, an operator can still

manually assess the system’s status and make necessary adjustments. Similarly, if an automated
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function intended to provide supplemental information malfunctions, operators may recognize the

issue and rely on existing procedures to manage the situation effectively.

In such cases, automation acts as a secondary aid rather than a primary decision-making tool. Its
failure does not significantly affect workflow because operators have alternative methods to detect
and resolve issues. Therefore, the impact of an automation failure is largely dependent on the level
of operator reliance and the complexity of the task—when cognitive demands are low and manual

processes remain effective, automation failures are less likely to cause operational disruptions.

Thus, the impact of automation failure on performance is influenced by user experience and
operational context. This aligns with the observations from previous research [139], [140], that
emphasized that the effects of automation failure vary depending on the operational environment
and the level of user knowledge. The thesis suggests that in routine scenarios, operators can rely

on their skills, making elementary automation failures less significant.

7.4.2 Ghost Failures

The automation-induced human performance challenges taxonomy defines systemic automation
failure as a failure triggered by situational factors, leading to a system-wide breakdown of
integrated functions. Unlike isolated technical malfunctions affecting a single function, these
failures arise when automation fails to coordinate effectively across interconnected processes and

disrupting operations.

Chapter 6 examined a systemic automation failure that was more difficult for participants to detect
than the elementary automation failure in Chapter 5. In Chapter 5, the failure was more apparent,
allowing operators to recognize the issue and adjust accordingly. In contrast, the failure in Chapter
6 was embedded within the broader interaction between automation and human decision-making,
making it harder to identify. Participants often did not detect the Al failure and followed incorrect
diagnostic recommendations provided by the system, suggesting that automation failures are not

always apparent, particularly when the system presents information that appears reliable.

Process faults and alarm flood episodes can obscure systemic automation failures by diverting the
operator's attention. In high-demand situations, operators prioritize resolving immediate process

disruptions, reducing their capacity to evaluate automation performance. The cognitive and
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operational workload in these conditions makes it less likely that incorrect or unreliable automation
outputs will be detected. When managing real-time system faults, operators may not have the
cognitive resources to recognize automation failures, leading to delays or missed detections. The
literature review identified masked failures, where automation malfunctions are difficult to detect
due to system complexity or a lack of direct feedback. In this case, the process fault itself conceals
the automation failure, as operators focus on stabilizing the system rather than verifying automation
performance. This differs from other masked failures in the literature, where automation defects
remain hidden due to design limitations or infrequent system interactions. Here, the masking occurs
because the operator's attention is occupied by process-related issues, preventing them from
assessing whether automation is functioning correctly. As a result, the automation failure persists

undetected.

These findings align with automation bias, where users rely on automation without verifying its
outputs. Systemic automation failures reinforce this bias, as operators may not receive clear cues
that the system is providing incorrect recommendations. In some cases, process faults or alarm
flood episodes camouflage automation failures, limiting the operator’s ability to detect errors in
system outputs. Without direct feedback or conflicting information, operators are more likely to

accept automation recommendations without independent assessment.

This relates to John Sweller’s cognitive load theory developed in 1988, which explains that under
high workload conditions, cognitive resources are strained, and can negatively impact decision-
making, learning, and task performance. When managing multiple tasks or responding to system
faults, operators may prioritize efficiency over verification, increasing reliance on automated
recommendations. In such cases, automation bias and cognitive overload interact, reducing the
likelihood that automation failures will be identified. These findings emphasize the importance of
automation designs that facilitate operator engagement and verification, especially in high-demand

environments where cognitive capacity is strained and Al failures may go unnoticed.

7.4.3 Alarm management, or automation management?

This thesis indicates that Al-based automated diagnostic tools can influence alarm management by
refining how alarms are processed, ranked by priority, and communicated to operators.

Conventional alarm systems often generate a high volume of alerts, contributing to alarm fatigue,
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where operators become desensitized to alarms or struggle to differentiate between essential and
non-essential alarms. Al-based automated diagnostic tools can support alarm management by
filtering out non-relevant alarms, detecting patterns, and providing contextual information to
improve decision-making. Furthermore, not all alarms require immediate attention from operators.
Some alarms result from self-correcting conditions, minor variations, or low-priority events that
do not require intervention. Al systems can evaluate alarm relevance in real time, differentiating

between those that necessitate immediate action and those that can be recorded for later review.

During alarm flood episodes, automation can help operators manage high volumes of alarms by
highlighting the most relevant information and isolating root causes. However, in stable conditions
with fewer alarms, operators can rely on their expertise without additional automation support.
Both of these situations raise questions about the usefulness of modern alarm systems. If
automation can effectively prioritize critical alarms during high-demand situations and operators
can manage simple conditions, it may be worth reconsidering the necessity of traditional alarm
systems. Instead of relying on alarms as the primary means of alerting operators, alternative
approaches, such as Al-driven diagnostics or predictive monitoring, could provide more effective
and context-aware decision support. This challenges the conventional role of alarms and suggests

that eliminating or significantly redesigning them.

Completely removing alarms could be problematic, as operators must remain aware of system
conditions. Rather than eliminating alarms, Al can restructure how they are presented by grouping
related notifications, delaying non-urgent signals, or summarizing less critical events. Instead of
displaying separate alarms for similar issues, the system could consolidate them into a single,
concise message. If a condition is likely to stabilize without intervention, the system could
temporarily delay the alarm, minimizing distractions. Rather than generating an alert for every
minor fluctuation, Al could produce periodic summaries that highlight trends and potential
concerns, allowing operators to focus on more critical tasks. Additionally, alarm lists or tables
could be placed outside the operator’s primary line of sight, ensuring that non-urgent information

is accessible without interfering with immediate decision-making.

Al can refine alarm presentation, but operator oversight remains necessary to maintain control.
Automated systems should be designed to allow operators to access delayed or hidden alarms when

required and to override Al-based prioritization when needed. Maintaining a balance between
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automation and human intervention is essential to ensuring that alarm management supports
decision-making and operational reliability. As Al takes on a greater role in filtering and
prioritizing alarms, it raises the question of whether the focus for humans is shifting from alarm
management to automation management, where operators increasingly monitor and manage Al-

driven decision processes rather than the alarms themselves.

7.5 Future Research Directions

7.5.1 Adaptive automation

This thesis demonstrates that automation’s effect on human performance and decision-making is
shaped by multiple factors, such as task complexity, operator expertise, system conditions, and the
limitations of human information processing. The usefulness of automation depends on how well
it adapts to these elements, ensuring it aids decision-making without diminishing operator

involvement or awareness.

The operational context and environment play a key role in determining the level of automation
support needed [313]. In demanding situations, such as alarm flood episodes, where multiple faults
occur at once and the cause of failure is unclear, operators must analyze large amounts of
information under time constraints. Automation can help by filtering alarms, prioritizing critical
data, and providing structured decision support, reducing cognitive workload. Conversely, in
simpler fault conditions where system status remains stable, excessive automation may be
unnecessary. In these cases, operators can depend on their expertise without additional support,

allowing them to stay engaged in monitoring and control.

An adaptive automation system should assess operator workload, task complexity, and system
conditions to determine the appropriate level of assistance. Additionally, automation should adjust
based on the operator’s experience level. Less experienced users may benefit from structured
guidance, while experienced operators may require only targeted support to enhance efficiency

rather than direct their decision-making.

Future research should focus on automation that can dynamically adjust its level of support to
match changing conditions, ensuring that it enhances performance without diminishing operator

engagement. Verification mechanisms should also be incorporated to encourage operators to
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reassess automation outputs, maintaining a balance between automation assistance and human
oversight. By aligning automation with workload, task complexity, operator expertise, and system
demands, adaptive automation can improve operational efficiency while supporting effective

decision-making.

7.5.2 Training the human

This thesis has shown that Human-Al interactions are prone to automation bias and overreliance
on Al, often caused by trust miscalibration—where operators either place too much or too little
trust in automation [314] [315] [316]. Well-designed training programs can help mitigate these
effects by improving operators’ ability to assess Al reliability, recognize potential automation

failures, and develop appropriate verification strategies.

Training in simulated environments with varied Al accuracy and failure scenarios can help
operators calibrate trust and develop assessment skills [317]. Exposure to both correct and incorrect
Al recommendations allow trainees to practice decision-making under different conditions and
verify automation outputs. Scenario-based exercises requiring operators to analyze Al

recommendations, identify errors, and justify decisions improve their ability to assess Al reliability.

Training programs should focus on Al awareness and understanding. Instruction on Al capabilities,
limitations, how recommendations are generated, potential errors, and factors influencing accuracy
can help operators assess Al outputs. This knowledge allows them to determine when further

verification is needed, reducing over-reliance on automation.

Training should also include methods for cross-checking Al recommendations against independent
system data [278]. Operators should apply manual verification techniques, refer to secondary data
sources, and analyze historical trends before taking action. These approaches help ensure that
decisions are based on validated information rather than unverified automation outputs. Training
should include performance feedback to help operators understand when they trust Al too much or
too little. Real-time assessments and feedback can help Al systems decide when to provide more

explanations or ask for operator verification, preventing over-reliance in high-demand situations.

Future research should explore how different training methods affect operator trust calibration over
time. Studies could investigate how long-term exposure to Al recommendations influences

verification behaviors and decision-making patterns. Additionally, research should examine how
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adaptive training programs—where training intensity and content adjust based on an operator’s
experience and performance—impact the ability to recognize Al errors. Further research is needed
to assess how training interventions affect operators' ability to develop automation judgment,
mitigating automation bias and overreliance. These findings can inform training strategies that

enhance Al-assisted decision-making while ensuring human oversight and control.
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CHAPTER 8 CONCLUSION AND RECOMMANDATIONS

This thesis contributes to the understanding of Al integration in high-risk environments by
examining its impact on human performance and decision-making. As automation becomes more
common in many industries, including aviation, healthcare, manufacturing, and industrial process
control, it is necessary to design systems that support rather than replace human expertise. The
findings highlight how automation bias, trust miscalibration, and overreliance on Al affect fault
detection, diagnosis, and response. By identifying strategies to improve Human-Al interaction,
such as adaptive automation and training interventions, this research provides a foundation for

developing Al systems that enhance operator performance while maintaining human oversight.

As systems become more interconnected, the number of alarms being programmed into
technologies continues to grow. New aircraft include more alarms, modern trains integrate
additional monitoring systems, and novel medical devices generate a higher volume of alarms.
While these systems aim to improve safety and efficiency, they also contribute to alarm flood
episodes. As technology advances, alarm management will become an increasing challenge,
requiring solutions that help operators prioritize information, reduce cognitive workload, and

improve response times.

This research provides insights that can guide policymakers, system designers, and industry leaders
in shaping Al design, regulation, and implementation. Addressing alarm management and Al-
assisted decision-making is necessary to ensure that automation remains a tool that supports human

decision-making rather than introducing new challenges in complex operational environments.

By building on these insights, this research contributes to the development of Al-driven solutions
that enhance human performance and decision-making. With thoughtful design and training,
automation can be a valuable tool that improves efficiency, supports human expertise, and ensures
safer and more reliable operations. As industries continue to evolve, the integration of Al and
automation presents an opportunity to create systems that are more responsive, adaptive, and

aligned with human capabilities.
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APPENDIX A NASA TASK LOAD INDEX (NASA-TLX)

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

D Task Date
Mental Demand How mentally demanding was the task?
HEEEEEEEEE NN
Very Low Very High
Physical Demand How physically demanding was the task?
I I I I | I I T I
Very Low Very High

Temporal Demand How hurried or rushed was the pace of the task?

EEEEEEEEEE NN

Very Low Very High

Performance How successful were you in accomplishing what
you were asked to do?

Ll Lt

Perfect Failure

Eftort How hard did you have to work to accomplish
your level of performance?

EEEEEEEEEE NN

Very Low Very High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

EEEEEEEEEE NN

Very Low Very High




For each of the pairs listed below, circle the dimension that represents
the more important contributor to workload during the tasks?

Mental Demand

Mental Demand

Mental Demand

Mental Demand

Mental Demand

Physical Demand

Physical Demand

Physical Demand

Physical Demand

Temporal Demand

Temporal Demand

Temporal Demand

Performance

Performance

Effort

or
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or
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or

or

or

or
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or

or

or
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Physical Demand

Temporal Demand

Performance

Effort

Frustration

Temporal Demand

Performance

Effort

Frustration

Performance

Effort

Frustration

Effort

Frustration

Frustration
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APPENDIX B SITUATION AWARENESS GLOBAL ASSESSMENT

TECHNIQUE (SAGAT)
{a) 0-3
(b) 4-6
(a) How many alarms are triggered? (c) 79
{(d) 10+

(a) 10% - 25%
(b) 26% - 45%
(c) 46% - 60%
(d) 61% - 80%
(¢) 81% - 100%

(b) What is the product concentration of G?

(a) 0% - 100$
{(b) 101$% - 200%
(c) Approximately, what is the current cost of | (¢) 201$ - 500$
production? (d) 5018 - 700%
(e) over 700%

(a) A
(b) E
(d) Which feed has a red alert? Select all (c) C
applicable. (d)D
(e) none

(a) Feeds

(b) Reactor

(c) Condenser

(e) Which element(s) are causing the fault? (d) Stripper

(e) Purge

(f) There is no fault

(a) Simulator shutdown
(f) What is the projected situation over the (b) Need to apply a corrective action
next 10 minutes? (c) Simulation will operate normally
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(1) (2) (3) (4) Agree (5)
Question Strongly | Disagree | Neither Strongly
disagree agree nor agree
disagree

1 | If I had my way, | would NOT let the diagnostic
tool have any influence over issues that are O O O O g
important (ex: fix a fault).

2 | I would be comfortable giving the diagnostic
tool complete responsibility for the monitoring O O O . g
task.

3 | I really wish | had a good way to monitor the O O O O O
route decisions of the diagnostic tool.

4 | | would be comfortable allowing the diagnostic
tool to implement its route decision, even if | O O O O O
could not monitor it.

5 | I would rely on the diagnostic tool without O O O O O
hesitation.

6 | Ithink using the diagnostic tool will lead to O O O O O
positive outcomes.

7 | I would feel comfortable relying on the O O O O O
diagnostic tool in the future.

8 | When the task was hard, | felt like | could O O O O (|
depend on the diagnostic tool.

9 | If | were facing a very hard task in the future, | O O O O O
would want to have this diagnostic tool with
me.

10 | I would be comfortable allowing this diagnostic O O O O O
tool to make all decisions.
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