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RÉSUMÉ 

Les environnements de contrôle des procédés industriels utilisent des systèmes de gestion des 

alarmes pour aider les opérateurs à identifier et à traiter les conditions anormales. Dans les systèmes 

interconnectés, une seule faute peut déclencher plusieurs alarmes simultanément, entraînant une 

inondation d'alarmes, où le nombre d'alarmes dépasse la capacité de l'opérateur à traiter 

efficacement l'information. Les inondations d'alarmes peuvent ralentir les temps de réponse, 

augmenter la charge cognitive, réduire la conscience de la situation et compliquer l'identification 

des fautes, augmentant ainsi le risque d'erreurs opérationnelles et d'accidents. L'intelligence 

artificielle et l'automatisation contribuent à relever ces défis grâce à des outils de diagnostic 

automatisés basés sur l'IA, qui aident les opérateurs à interpréter les alarmes et à identifier la cause 

principale des fautes. Bien que ces outils puissent améliorer la performance des opérateurs et la 

prise de décision, ils présentent également des risques lorsque l’IA fournit des recommandations 

incorrectes. Cette thèse examine l'influence des outils de diagnostic automatisés basés sur l'IA sur 

la performance des opérateurs et la prise de décision en situation d'inondation d'alarmes, en mettant 

l'accent sur la conscience de la situation, la charge de travail, la confiance et l'impact des 

défaillances de l'IA. 

Cette thèse s'appuie sur trois études, chacune publiée sous forme d'article distinct. La première 

étude a développé PER4Mance, un simulateur en accès libre et haute-fidélité basé sur le Tennessee 

Eastman Process. Ce simulateur a été conçu pour reproduire les conditions d'inondation d'alarmes 

et fournir un environnement contrôlé permettant d'étudier les interactions humain-machine. La 

deuxième étude a utilisé PER4Mance pour évaluer l'effet d'un outil de diagnostic automatisé sur la 

performance des opérateurs. Vingt participants ont pris part à cette étude, permettant le recueil de 

données sur la conscience de la situation, la charge de travail cognitive et l'oculométrie. Les 

résultats ont montré que l’outil a amélioré la conscience de la situation et réduit la charge cognitive, 

en particulier dans les scénarios de fautes complexes, où les alarmes seules ne fournissaient pas 

d’informations de diagnostic claires. Les données d'oculométrie ont indiqué que les opérateurs 

utilisant l’outil passaient moins de temps à parcourir la liste des alarmes et portaient davantage 

d’attention aux indicateurs de performance clés et aux recommandations diagnostiques. La 

troisième étude a analysé les effets des défaillances de l'IA sur la confiance, la dépendance, la 

charge de travail et la conscience de la situation. Vingt participants ont pris part à l’étude. Les 
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résultats ont montré qu’en cas de défaillances de l’IA, leur performance était réduite, caractérisée 

par une diminution de la conscience de la situation, un taux de bonnes réponses plus faible et une 

augmentation des temps de réponse. Bien qu'ils aient déclaré avoir moins confiance dans le système 

d'IA, ils ont continué à suivre ses diagnostics incorrects, montrant une tendance à s'appuyer sur les 

recommandations automatisées. 

Cette thèse contribue à l'avancement des connaissances sur (1) l'interaction humain-IA, en 

explorant les défis liés à l'intégration des outils d’aide à la décision basés sur l’IA tout en 

maintenant une supervision humaine, et en abordant les questions de biais d'automatisation et de 

masquage des fautes de l’IA ; (2) le rôle des outils d’aide à la décision basés sur l’IA dans la gestion 

des situations anormales, en montrant que leur efficacité dépend de la complexité des fautes, de 

l’expérience des opérateurs et du contexte opérationnel ; et (3) l’avenir des systèmes d’alarme, en 

questionnant le déclanchement d’alarmes comme principal moyen de transmission des 

informations, en raison du risque accru d'inondations d’alarmes dans les systèmes industriels, de 

transport, énergétiques et médicaux émergents et de plus en plus interconnectés. Les recherches 

futures devraient explorer l'automatisation adaptative, la formation dans des simulateurs haute-

fidélité avec des opérateurs expérimentés et l’évaluation des outils d’aide à la décision basés sur 

l’IA afin d’améliorer la conception et l’intégration de ces technologies dans les industries de 

procédés et autres environnements à haut risque. 
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ABSTRACT 

Industrial process control environments use alarm management systems to assist operators in 

identifying and addressing abnormal conditions. In interconnected systems, a single fault can 

activate multiple alarms at once, creating an alarm flood where the number of alarms exceeds an 

operator’s ability to process information efficiently. Alarm floods can slow response times, 

increase cognitive workload, reduce situational awareness, and complicate fault identification, 

raising the likelihood of operational errors and accidents. Artificial intelligence and automation 

help address these challenges through AI-based automated diagnostic tools that assist operators in 

interpreting alarm patterns and isolating root causes. While these tools can enhance operator 

performance and decision-making, they also pose risks when AI provides incorrect 

recommendations. This thesis examines how AI-based automated diagnostic tools influence 

operator performance and decision-making during alarm floods, focusing on situational awareness, 

workload, trust, and the impact of AI failures. 

The thesis was conducted in three studies, each published as a separate article. The first study 

developed PER4Mance, an open-source, high-fidelity process control simulator based on the 

Tennessee Eastman Process. The simulator was designed to replicate alarm flood conditions and 

provide a controlled environment for studying human-machine interactions. The second study used 

PER4Mance to assess the effects of an automated diagnostic tool on operator performance. Twenty 

participants took part in the study. Results showed that the tool improved situational awareness and 

reduced cognitive workload, particularly in complex fault scenarios where alarms alone did not 

provide clear diagnostic information. Eye-tracking data indicated that operators using the tool spent 

less time scanning alarm lists and directed more attention to key performance indicators and 

diagnostic recommendations. The third study examined the effects of AI failures on trust, reliance, 

workload, and situational awareness. Twenty participants contributed to the study. Results 

indicated that during AI failures, participants exhibited lower performance, as shown by reduced 

situational awareness, decreased accuracy, and slower response times. Although they reported 

lower trust and reliance on the AI system, they continued to follow its incorrect diagnoses, 

demonstrating a tendency to depend on automated recommendations. 

This thesis advances knowledge on (1) human-AI interaction, examining the challenges of 

balancing AI-based decision support tools with human oversight, while also addresses automation 
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bias and automation failure masking; (2) the role of AI-based decision support tools in abnormal 

situation management, demonstrating that their effectiveness depends on fault complexity, operator 

experience, and operational context; and (3) the future role of alarms, questioning the use of 

annunciated alarms due to the increasing risk of alarm floods in emerging and more advanced 

industrial, transportation, energy or medical systems. Future research should investigate adaptive 

automation, training in high-fidelity simulators with experienced operators, and further evaluation 

of AI-based decision support tools to enhance the design and integration of these technologies in 

process industries and other high-risk environments. 
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CHAPTER 1 INTRODUCTION 

1.1 Context 

In process industry, alarm management systems notify operators of deviations from nominal 

conditions. Abnormal situations—such as equipment overheating, pressure buildup, or chemical 

imbalances—can vary in severity, impacting safety, efficiency, and the environment [1]. In 

complex and interconnected process systems, deviations can trigger multiple alarms 

simultaneously, leading to alarm floods [2]. These events, characterized by a high number of 

alarms in a short period, have been identified as contributing factors in several industrial incidents, 

as they can overwhelm operators' capacity to process information and take corrective action [3]. 

Notable examples include the Piper Alpha Oil platform, BP Texas City refinery and Buncefield oil 

depot. 

The Piper Alpha Oil Platform Disaster (1988) accident began with a condensate pump failure, 

leading to a gas leak that triggered multiple alarms [4]. The overwhelming number of alarms made 

it challenging for operators to identify the critical threat. Subsequently, an explosion destroyed the 

control room, resulting in a loss of centralized command and hindering emergency response efforts. 

This sequence of events contributed to the loss of 167 lives. 

The BP Texas City Refinery Explosion (2005) occurred during the start-up of the isomerization 

unit [5]. Operators inadvertently overfilled the raffinate splitter tower, leading to an overpressure 

and the release of a hydrocarbon vapor cloud. This vapor cloud subsequently ignited, resulting in 

a catastrophic explosion. Investigations revealed that operators were inundated with a high volume 

of alarms, many of which lacked prioritization based on severity. This alarm overload impeded the 

operators’ ability to promptly identify and address critical warnings, delaying corrective actions. 

As process conditions deteriorated, the increasing number of alarms further overwhelmed 

operators, hindering effective management of the escalating situation. The explosion resulted in 15 

fatalities and over 170 injuries. 

The Buncefield Oil Depot Explosion (2005) accident began when a tank was overfilled with petrol 

due to a malfunctioning level gauge and an inoperative independent high-level switch, leading to 

the release of approximately 250,000 liters of fuel [6]. This resulted in a vapor cloud that ignited, 

causing a massive explosion and a fire that lasted five days. The malfunction of the tank control 

and alarm management systems was a key factor in the release. Operators were subjected to an 
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overwhelming influx of alarms within a brief timeframe, which impeded their ability to discern 

and prioritize critical warnings. This alarm overload led to delays in implementing corrective 

measures, thereby compromising the effectiveness of the incident response. The explosion caused 

significant damage to the facility and surrounding areas. 

Alarm floods occur in multiple sectors beyond industrial environments. In public transportation, 

automatic train control systems can generate thousands of alarms each week, making it more 

difficult for dispatchers to distinguish and respond to critical events [7], [8], [9]. In healthcare, the 

continuous activation of medical device alarms contributes to alarm fatigue, which can lead to 

slower response times and, in some cases, preventable harm [10], [11], [12], [13]. In aviation, 

frequent false or unreliable alarms reduce pilots' trust in automated systems, increasing the 

likelihood of overlooking essential warnings. Studies show that inaccurate alarms continue to be a 

challenge in flight operations [14], [15], [16]. Effective alarm management is necessary in various 

industries where an excessive number of alarms can interfere with timely and appropriate 

responses. 

Advancements in connectivity and data integration have improved alarm flood management, 

enhancing fault detection and diagnostics [17]. Artificial Intelligence (AI)-driven systems can 

process extensive alarm data, identify patterns, and predict potential failures, thereby assisting 

operators in filtering non-critical alarms, prioritizing essential ones, and recommend diagnostics 

[18]. However, increased reliance on AI and automation introduces new challenges. AI systems 

improve operational efficiency but are also prone to failures [19]. When these failures occur, 

operators may experience errors in decision-making and declines in performance [20]. This thesis 

examines the effects of integrating an automated decision support tool on human performance, with 

a focus on automated system failures. The research aims to identify methods to improve human-

AI collaboration and minimize operational risks in high-stakes environments. 

1.2 Objectives 

The objective of this thesis is to examine the effects of an automated decision support tool on 

human performance during an alarm flood episode, with a focus on automated system failures. To 

achieve this, the research aims to develop a simulator environment that represents a high-fidelity 

industrial process control system. This environment will allow for the simulation of faults and 

alarm flood scenarios, providing a controlled setting to study human interaction with automated 
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decision support tools. The study also seeks to evaluate human performance when using an 

automated diagnostic support tool, determining whether it improves an operator’s ability to manage 

alarm floods or has no measurable effect. Additionally, the research will investigate human-AI 

interaction during AI failures, analyzing how incorrect AI recommendations influence operator 

decision-making and performance. 

1.3 Thesis organization 

This thesis is made of three articles that are either published or under review in peer-review journals 

that constitutes the core of its scientific contributions. The thesis is structured as follows: 

• Chapter 1 (this chapter) introduces the research context, objectives, and overall

organization of the thesis.

• Chapter 2 provides a comprehensive literature review of the topics of alarm floods in

industrial process control, alarm flood mitigation strategies, human-AI collaboration, and

AI failures.

• Chapter 3 outlines the general research approach, research objectives and summarizes the

objectives of the three articles.

• Chapters 4, 5, and 6 present the research findings in the form of three scientific articles.

• Chapter 7 synthesizes the findings across the articles, discusses the contributions of this

thesis, and acknowledges its limitations.

• Chapter 8 concludes the thesis by highlighting recommendations for future research

directions.
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CHAPTER 2 LITERATURE REVIEW 

This thesis examines the effects of automated diagnostic tools on human performance during 

abnormal situation management (ASM) in industrial settings. The research lies at the intersection 

of process alarm management and process control, AI and automated fault diagnosis, and human-

machine interaction (HMI) and performance. To fully grasp the research objectives of this thesis, 

this literature review will explore key concepts within each of these domains, providing a 

comprehensive foundation for investigating the challenges and opportunities of human-AI 

collaboration in failure management scenarios. 

Figure 2.1 Break-down of the thesis’ literature review in three main sections. 

This literature review is structured into four main sections (Figure 2.1): The first section explores 

the foundational principles on alarm floods in industrial process control, such as faults, failures, 

and abnormal situations. The second section discusses alarm management, alarm analysis, and fault 

detection and diagnosis as alarm flood mitigation strategies. The third on Human-AI collaboration 

addresses key concepts between operator and automation interaction, including AI failures, 

situational awareness, trust and reliance, out-of-the-loop challenges, and cognitive workload. The 
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fourth section reviews related past research on automated diagnostic tools during failure 

management. 

2.1 Industrial Process Control and Alarm Floods 

This section examines industrial plants, process control, and alarm management systems. It begins 

by describing the structure and function of an industrial plant, followed by an explanation of 

process control and the role of the operator in maintaining system stability. Then, it examines the 

factors that contribute to abnormal situations, including faults and failures. Finally, it discusses 

alarm management systems and alarm floods, outlining their functions, causes, and impact on 

operator performance. This foundational overview establishes the context for the challenges 

associated with alarm floods in industrial environments. 

2.1.1 Industrial Process Control 

Key definitions are needed to explain the industrial process control and alarm management system 

(Figure 2.2). An industrial plant is a facility where chemical, physical, or mechanical processes 

convert raw materials into finished products [21]. Examples include oil refineries, chemical plants, 

power stations, food processing facilities, pharmaceutical production sites, and automotive 

assembly plants. 

Process control is the automated and manual regulation of industrial operations to optimize 

performance by monitoring and adjusting variables through real-time feedback and control 

mechanisms [22]. Industrial plant relies on process control systems to ensure efficiency, safety, 

and cost-effectiveness by monitoring and regulating variables such as temperature, pressure, flow, 

and chemical composition [23]. Effective process control enhances productivity, reduces waste, 

and ensures compliance with safety and environmental standards [21]. Automation and human 

oversight work together to maintain stability, minimize disruptions, and optimize performance 

[24]. 

Alarm systems identify deviations from normal operating conditions and notify operators to 

enable timely intervention [25]. Industrial facilities use these systems to monitor process control 

variables and signal when values exceed defined thresholds. While process control systems 

regulate operations, alarm systems provide notifications that support operator decision-making [3]. 
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An industrial plant operator monitors and controls equipment and processes in an industrial 

facility to ensure safe and efficient operations [26]. Responsibilities include interpreting data from 

control systems, adjusting parameters, responding to alarms, and performing routine inspections. 

Operators work in sectors such as manufacturing, chemical processing, power generation, and oil 

refining, following operational procedures and regulatory standards [27]. 

Figure 2.2 Alarm management system where operators monitor industrial control process (PC) 

and alarm systems in the command room. 

2.1.2 Alarm Floods 

Alarms play a crucial role in plant safety, acting as a safeguard to prevent faults from escalating 

into serious hazards or accidents [25]. Their primary function is to help operators maintain 

processes within normal operating conditions. By alerting operators to faults and failures, alarms 

ensure timely intervention to prevent operational disruptions [28]. To ensure clarity and precision 

in this thesis, it is essential to define key terms as follows: 

• Faults: Unacceptable deviations of a process variable from its normal state. These

deviations reflect the difference between a threshold value and a fault value and can lead to

process malfunctions or failures. Faults may already exist in the process or arise at an

unpredictable time, with varying rates of progression [29].

• Failures: Permanent interruptions in a system's ability to perform its required function

under specified operating conditions. Failures are typically caused by multiple faults and

result in the inability of the system to execute production or fulfill a demanded function

[30].
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• Abnormal situation: disturbances or deviations from normal operating conditions caused

by factors like equipment failures, human errors, or external influences [31].

• Alarms: Notifications provided to operators to indicate equipment malfunctions, process

deviations, or abnormal conditions that require immediate attention [32]. Alarm messages

are directly associated with faults and are triggered when the process variable exceeds or

falls below predetermined thresholds.

Alarm systems play a crucial role in alerting operators to abnormal situations in industrial 

processes. An abnormal situation arises when a process deviates from normal operating 

conditions, potentially leading to unsafe, inefficient, or environmentally hazardous outcomes [33]. 

These deviations can stem from equipment malfunctions, unexpected external influences, among 

other possible factors. 

Figure 2.3 Faults and failures can cause abnormal situations which triggers alarms. 

Here is a step-by-step diagram illustrating the relationship between faults, failures, abnormal 

situations, and alarms (Figure 2.3). We will use as an example a sudden rise pressure buildup from 

a clogged valve. This can be seen in process industries due to crystallization or chemical residue 

buildup. In this case, a blocked valve restricts fluid flow, disrupting normal operations (Step 1 

fault). This obstruction causes pressure buildup in the system as fluid accumulates with no clear 

path (Step 2 failure). As pressure continues to rise, the system deviates from safe operating 

conditions, creating an abnormal situation that could lead to equipment damage or failure (Step 3 

abnormal situation). To prevent further escalation, an alarm is triggered, alerting operators to the 

high-pressure condition so they can take corrective action before a critical incident occurs (Step 4 

alarm). 
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Alarms help maintain plant safety by preventing faults from escalating into hazards. They assist 

operators in keeping processes within normal limits by signaling when action is needed. An alarm 

is triggered when a monitored variable crosses a predefined threshold, regardless of the situation’s 

context. Alarms do not analyze patterns or diagnose problems—they simply respond to specific 

limits set in advance [34]. 

Each alarm message includes an operational procedure for corrective action [35]. In industrial 

processes, messages are prioritized based on the level of urgency of the operator’s response [36], 

[37]: 

• Warning-level alarms require immediate awareness and an immediate operator’s response. 

These alarms are usually color-coded in red. 

• Caution-level alarms require immediate awareness and a subsequent operator’s response. 

They are usually color-coded in amber or yellow. 

• Advisory-level alarms provide information but do not require a response. These alarms can 

be color-coded in cyan or white.  

Operators follow predefined procedures to address warning- and caution-level alarms. Advisory-

level alarms do not have procedure since no action is required [36], [37]. 

A major issue arises when a single fault triggers multiple alarms at once, overwhelming operators 

and making it difficult to isolate the root cause. This situation, known as alarm flood, happens 

when alarms are configured without considering how different system components interact. In 

large, interconnected industrial plants, disturbances can lead to multiple system failures, triggering 

a cascade of alarms and potentially causing an alarm flood. An alarm flood is defined as 10 or more 

alarms within a 10-minute period per operator [38]. It also refers to a situation in which the alarm 

rate exceeds the operator’s capacity to respond effectively [39]. This operator overload limits the 

ability to investigate alarms and isolate the root cause of system disturbances [31]. As failures 

progress, new alarms accumulate without differentiating between causes, further complicating 

response efforts [40]. Previous accidents, introduced in chapter 1, have revealed that operators were 

overwhelmed by alarm floods that generated hundreds or thousands of process alarms, often 

requiring operators to silence them without addressing the root issue [41]. The large volume of 

alarms creates human factors challenges, primarily due to the limited capacity of human attention 

[7]. The gap between the amount of information provided and what operators can effectively 
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process increases mental workload, contributes to human error, and reduces operational efficiency 

[42]. 

Alarm floods increase the risk of loss of control, accidents, potential loss of life, equipment 

damage, financial losses, and environmental harm [15]. The Engineering Equipment and Materials 

Users Association (EEMUA) has identified them as a major factor in catastrophic incidents [3]. 

One notable case is the 1994 Milford Haven explosion at the Texaco refinery in Pembroke, South 

Wales. A release of 20 tons of hydrocarbons from the flare header's knock-out pot led to a massive 

explosion, preceded by hundreds of alarms in the final minutes. The Health and Safety Executive’s 

investigation found that alarm overload can undermine safety by overwhelming operators rather 

than aiding decision-making [43]. In the 1998 Esso Australia gas plant explosion, a fractured lean 

oil vessel released gas, triggering hundreds of alarms. The excessive alerts desensitized operators, 

contributing to ineffective response. The explosion resulted in two deaths, eight injuries, and a two-

week gas supply disruption in Melbourne [44]. These past incidents indicate that alarm floods often 

overload operators’ cognitive processing capacity, presenting challenges related to attention and 

decision-making [14], [45]. 

If we go back to the previous example of a clogged valve, the blockage can trigger multiple alarms 

simultaneously (Figure 2.4). This can trigger high-pressure alarms before the blockage, followed 

by a low-pressure and low-flow alarms, and potentially low temperature alarms if the restriction 

affects heat transfer. Operators may struggle to identify whether the primary issue is the valve 

blockage itself or its cascading effects on the system. 

 

Figure 2.4 Blocked valve causing multiple alarms simultaneously. 
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Adjusting alarms to avoid unnecessary triggers while ensuring important ones are not missed is 

work-intensive. It requires fine-tuning thresholds and introducing deadbands [46], which prevent 

alarms from repeatedly triggering when values fluctuate near setpoints. Because alarms are based 

on thresholds, alarm floods can result from poor alarm design, system complexity, or both [47].  

Alarm floods vary in their characteristics, including the rate at which alarms activate and the extent 

to which the alarms indicate the root cause of a fault or only its consequences [48]. This thesis 

investigates the impact of alarm floods based on their level of diagnostic clarity: "difficult" or 

"complex" alarm floods, where alarms do not explicitly isolate the root cause, and "easy" or 

"simple" alarm floods, where the root cause is clearly indicated. 

Careful alarm management is necessary to keep alarms useful rather than overwhelming [49]. We 

investigate this topic in the next section. 

2.2 Alarm Floods mitigation strategies 

Building on the challenges of alarm floods, this section explores strategies to mitigate their impact. 

These strategies fall into three main categories: alarm management, alarm analysis, and fault 

detection and diagnosis (FDD). Each approach equips operators with tools to improve safety and 

performance by reducing alarm overload. Rather than competing, these methods complement each 

other, offering different ways to manage alarm floods effectively. 

2.2.1 Alarm Management 

Alarm management is a structured approach to optimizing alarm systems to ensure operators 

receive relevant alarms [50]. A high volume of alarms can overwhelm operators, reducing their 

ability to respond effectively. To address this issue, industries implement strategies such as 

dynamic threshold adjustments, alarm filtering, and rationalization. These methods help prioritize 

important alarms, reduce unnecessary alarms, and improve overall system performance [51], [52]. 

There have been multiple case studies that showed the application of alarm management methods 

to reduce alarm floods.  

Effective alarm management minimizes unnecessary alarms, enabling operators to focus on urgent 

process deviations and reducing the risk of accidents and downtime [25]. A study on chattering 

alarms, which were repetitive alarm signals triggered in quick succession due to minor fluctuations 

in process variables, introduced an optimization-based method for determining dead-band values 
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to reduce their frequency and improve efficiency and safety [53]. The method was evaluated using 

the Tennessee Eastman Process simulator, a standard benchmark for industrial systems, and 

compared with standard practices, demonstrating improved dead-band specification and 

operational performance. Reducing chattering alarms also lowered overall alarm volumes, aiding 

in the management of alarm floods, and improving operator response in industrial settings. 

A clustering algorithm was applied to an ethylene cracking furnace to optimize alarm management 

systems and improve safety [54]. The implementation of the clustering–ranking algorithm in a 

refinery in northern China showed that the number of alarms generated by the distributed control 

systems (DCS) and those perceived by operators exceeded the manageable threshold set by 

EEMUA. This increase in alarms contributed to operator disturbance and reduced decision-making 

effectiveness. The proposed method provided a structured approach to alarm management, 

improving process operations and plant safety in the chemical industry. 

Multi-agent systems were used in petroleum settings to help operators manage an alarm flood 

during emergencies [55]. A proposed multi-agent-based alarm management system synthesized 

process conditions during emergencies, assisting operators in interpreting and managing alarms. It 

incorporated reasoning, proactivity, communication, and adaptive behavior to improve alarm 

handling. The system achieved a suppression rate of up to 93.76%, allowing operators to focus on 

unexpected events rather than being overwhelmed by routine alarms. 

Pattern mining was applied to a GE power plant dataset to reduce redundant alarms while 

maintaining safety and efficiency [56]. The method analyzed alarm logs to identify frequent 

patterns and correlations, enabling the removal of redundant alarms. It involved two steps: 

automatic pattern detection and expert analysis to validate correlations. The approach, tested on 

real power plant data, significantly reduced episodes of alarm flood without affecting operational 

performance. 

Advanced strategies, including dynamic alarm management, alarm shelving, and predictive 

analytics, were used to improve refinery operations [57]. The study examined methods for reducing 

episodes of alarm flood and nuisance alarms, which contributed to operator fatigue. It analyzed the 

role of predictive analytics and machine learning in proactive monitoring and early issue detection. 

The research also addressed best practices such as alarm rationalization, prioritization, audits, 
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philosophy documents, and operator training to manage alarm flood episodes and improve safety, 

efficiency, and regulatory compliance in refinery operations. 

Finally, recent studies have consistently highlighted the need for future research to focus on the 

integration of emerging technologies, the ergonomic and human-centric design of alarm 

management systems, and adherence to industry standards such as ISA 18.2 for effective alarm 

management [58]. This includes incorporating artificial intelligence and machine learning for 

prediction and diagnosis [55], [59], as well as improving training, continuous monitoring, and 

operator feedback to enhance system effectiveness [57], [60].  

2.2.2 Alarm Analysis 

Alarm analysis is a data-driven method for evaluating alarm system performance [61]. By 

assessing historical and real-time data, it eliminates redundant and low-priority alarms, ensuring 

operators receive only relevant alerts [62]. The evaluation of alarm data reduces unnecessary 

activations, enhancing system clarity and allowing operators to focus on critical situations [63]. 

Alarm analysis also prevents episodes of alarm flood by identifying inefficiencies and recurring 

fault patterns [64]. Alarm analysis includes various methods such as statistical trend analysis, root 

cause analysis, event correlation, and predictive analytics. However, for the scope of this paper, 

the focus will be on methods that use historical data analysis and root cause isolation. 

Previous papers have demonstrated that alarm analysis methods were successful alarm flood 

mitigation strategies. A study designed a semi supervised, data-driven method to classify episodes 

of alarm flood using historical data [63]. Their approach involved clustering, labeling alarms, and 

online early classification process. The method was evaluated using the Tennessee Eastman 

process (TEP) benchmark and an industrial alarm flood dataset. Results demonstrated a clustering 

reliability of 99.52%, highlighting the method’s accuracy in detecting episodes of alarm flood at 

an early stage.  

Another research introduced a method for classifying episodes of alarm flood using sequence 

mining and time series analysis to categorize floods based on historical data [64]. The apps operated 

in two stages: identifying whether a flood belonged to a new class and classifying it when a 

previous class provided a basis for comparison. A historical alarm classifier was integrated into 

fault detection and identification. A case study on an offshore oil-gas separation plant demonstrated 



13 

that the algorithm successfully matched new alarm flood episodes with past instances of the same 

abnormal condition, enabling root cause isolation. The method achieved an average classification 

accuracy of 92.2%. 

A research paper introduced a self-attention-based classifier with word embeddings to analyze 

historical alarm data [65]. The method was applied to the Tennessee Eastman process. The model 

achieved perfect accuracy and precision while being trained on a dataset of 2,000 alarm tags, 

significantly fewer than those required by existing methods. The training process was efficient, 

completing in approximately 22 seconds, demonstrating its potential for real-time applications in 

alarm-based root cause analysis. 

A semi-supervised learning approach combined with case-based reasoning was used to analyze 

alarm flood episodes with minimal expert annotations [66]. The method consisted of two stages: 

offline learning, where historical alarm data was analyzed to identify patterns and build a case 

library, and online detection, where incoming an alarm flood was compared against stored cases to 

determine likely causes. Semi-supervised learning reduced the reliance on extensive labeled data, 

while case-based reasoning allowed the system to retrieve and update cases based on new alarm 

patterns. The approach was validated on real industrial alarm datasets, demonstrating its 

effectiveness in isolating root causes, reducing downtime, and improving operational decision-

making. 

Alarm analysis, such as historical data pattern matching and root cause identification, has proven 

effective in testing environments for managing and preventing alarm. A recurring recommendation 

from recent studies is to conduct more case studies to evaluate these methods in real-world 

scenarios. Expanding case studies could provide deeper insights into practical implementation, 

improving strategies for managing alarm floods and ensuring alarm systems operate efficiently. 

2.2.3 Fault Detection and Diagnosis (FDD) 

FDD is a proactive approach that detects, isolates, identifies, and diagnoses faults before they 

escalate into failures [67]. By continuously monitoring system parameters, FDD helps mitigate 

alarm floods by identifying anomalies early, preventing multiple alarms from being triggered by 

undiagnosed faults [68]. FDD employs methods such as model-based detection, data-driven 

analytics, signal processing, and machine learning to enhance fault recognition and resolution, 



14 

preventing alarm overload, and improving response efficiency. The following section outlines the 

FDD loop (Figure 2.5) and the definition of key terms for the clarity of this thesis. 

Figure 2.5 Steps of the Fault Detection and Diagnosis Loop 

1. Fault detection: This step identifies deviations from normal operating conditions in a

system by monitoring key parameters such as temperature, pressure, flow, and performance

metrics. It involves analyzing real-time data to recognize anomalies that may indicate

potential problems [68].

2. Fault diagnosis: This refers to the process of isolating and identifying faults in a system to

determine their root causes and potential impacts, and whether it requires immediate

intervention [30].

o Fault isolation: Pinpointing the specific component, subsystem, or location within

a system responsible for a detected fault [69].

o Fault identification: Determining the fault’s characteristics, severity, and

underlying cause.

3. Process recovery: The method of restoring a system to normal operating conditions after

a fault, failure, or disruption. It involves implementing corrective actions and adjusting

system parameters. Recovery strategies may include automatic system reconfiguration,

manual operator intervention, or backup system activation to maintain process continuity.

Once the fault has been diagnosed, operators follow standardized operational procedures to apply 

corrective actions [70]. Operational procedures are structured instructions that ensure the safe and 

efficient execution of tasks in industrial settings. According to the Center for Chemical Process 

Safety (CCPS), they outline the process, hazards, tools, protective equipment, and controls to help 

operators manage risks and verify process behavior [71]. They also guide troubleshooting, 
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emergency shutdowns, and handling special situations like out-of-service equipment, ensuring 

consistency, compliance, and informed decision-making [32]. If fault detection, diagnosis, or the 

applied procedure fails to resolve the issue, the operator may need to restart the FDD loop. 

Recent studies have demonstrated the applications of FDD in improving alarm flood management. 

A research paper examined the importance of early fault detection and diagnosis, particularly in 

managing alarm flood episodes [72]. The study introduced a novel algorithm to classify episodes 

of alarm flood by analyzing relationships between process variables and alarm data. The method 

was capable of handling large-scale plants with simultaneous alarms. Designed for online fault 

prediction, the algorithm was tested on the Tennessee Eastman Process system and a real industrial 

setting, demonstrating its effectiveness in early fault detection and diagnosis. 

Another study developed a novel alarm dataset using a simulated nuclear power plant to evaluate 

fault detection and diagnosis (FDD) methods [73]. The researchers tested three Alarm Flood 

Classification (AFC) methods, which supported operators and automated systems in detecting, 

classifying, and diagnosing faults based on alarm patterns. The dataset contained controlled fault 

and alarm flood scenarios, allowing for a structured assessment of each method. One approach 

achieved 98% classification accuracy, demonstrating its effectiveness in fault identification. The 

findings showed that alarm flood classification improved fault detection and diagnosis in industrial 

systems. 

Alarm Management, Alarm Analysis, and Fault Detection & Diagnosis (FDD) work together to 

enhance system reliability, operator efficiency, and alarm flood prevention (Table 2.1). Alarm 

Management ensures that alarms are structured and prioritized, Alarm Analysis continuously 

refines alarm settings based on performance data, and FDD proactively prevents faults from 

escalating into failures. For instance, during an alarm flood episode in an oil refinery, FDD can 

isolate the root cause, such as a pump failure, while alarm management filters out redundant 

notifications and highlights the most urgent alarms requiring immediate attention. At the same 

time, alarm analysis examines alarm trends, identifies patterns in recurring alerts, and helps refine 

alarm thresholds to prevent future episodes of alarm flood. This integration minimizes alarm 

fatigue, enhances decision-making, and strengthens industrial safety and efficiency [20].  
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Table 2.1 Summary of Alarm Management, Alarm Analysis and Fault Detection & Diagnosis 

with a focus on alarm floods and operator performance. 

Alarm Management Alarm Analysis 
Fault Detection & 

Diagnosis (FDD) 

Definition The systematic design, 

implementation, and 

maintenance of alarm 

systems.  

The evaluation of alarm 

data to identify patterns, 

root causes, and system 

improvements. 

A proactive method that 

detects, isolates, and 

diagnoses faults before 

they escalade. 

Approach 

and Scope 

System-level configuration 

and optimization of alarm 

settings. Prioritization, and 

suppression of unnecessary 

alarms. 

Data-driven evaluation of 

alarm performance and 

root cause. Continuous 

evaluation of historical 

alarm data, data-driven 

insights into alarm 

frequency, trends, and 

impact. 

Real-time monitoring and 

detection of real system 

issues. 

Key Methods Alarm rationalization, 

prioritization, suppression, 

shelving, dynamic 

thresholding. 

Statistical trend analysis, 

root cause analysis, event 

correlation, predictive 

analytics. 

Model-based detection, 

data-driven diagnostics, 

machine learning, signal 

processing. 

Role in 

alarm flood 

mitigation 

Prevent alarm floods 

through alarm 

rationalization, 

prioritization, and 

suppression. 

Analyse alarm floods to 

identify root causes and 

optimize alarm thresholds. 

Prevent alarm generation 

by detecting and 

diagnosing faults before 

they escalate into failures. 

Although the reliability of these alarm flood mitigation strategies is not yet sufficient for real-world 

process control applications, they can isolate the root cause of alarm flood episodes within 

historical datasets and suggest it to the operator. While these approaches have shown to classify 

alarm flood episodes, they have not eliminated them, and their accuracy remain below 100%. 

Alarm floods remain a challenge, prompting industries to explore new strategies for improving 

alarm systems and mitigating their impact. Recent advancements have focused on artificial 

intelligence and machine learning to enhance FDD through more accurate fault prediction, real-

time diagnostics, and adaptive alarm systems [18]. 

In this thesis, an automated fault diagnostic tool will be used to simulate alarm analysis by matching 

incoming alarms to a historical database in the Chapter 5 experiments. In the Chapter 6 
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experiments, the study will simulate the behavior of a FDD system that provides fault diagnostic 

recommendations to operators. This FDD system will also introduce AI failures, allowing an 

investigation into how operators respond to incorrect diagnostic outputs. 

2.3 AI Failure in Process Control 

Up to this point, we have provided an overview of industrial process control, the causes of alarm 

floods, and their impact on human performance and accidents. We then examined strategies for 

managing alarm floods, discussing their strengths and limitations. The focus now shifts to how 

emerging technologies, specifically AI and automation, enhance FDD as a tool for managing alarm 

floods and improve operator performance. To provide a foundation for this analysis, the section 

first presents an overview of AI and automation, followed by automation reliability and failures. 

2.3.1 Artificial Intelligence and Automation 

Artificial intelligence (AI) refers to the development of machines and systems capable of 

performing tasks that typically require human intelligence [74], [75], [76]. AI is designed to enable 

machines to perceive their surroundings, process information, and take actions to achieve specific 

objectives, often learning and improving from experience over time [77], [78]. This is made 

possible through advanced algorithms that can identify patterns, interpret data, and make decisions 

with minimal human involvement [79], [80]. AI encompasses a broad range of disciplines, 

including machine learning, which focuses on systems that adapt and evolve by analyzing data 

[81]; natural language processing, which allows machines to comprehend and produce human 

language [82]; computer vision, which enables the interpretation of visual inputs [83]; and deep 

learning, which has driven applications like facial recognition, voice synthesis and real-time 

language translation [84].  

AI has become deeply embedded in the professional sphere, transforming how people work [85], 

[86], [87], [88]. AI is transforming industrial operations through advanced applications that 

enhance efficiency, reliability, and safety [89], [90]. One key application is predictive maintenance, 

where AI analyzes sensor data and historical trends to forecast equipment failures in chemical 

plants, allowing for proactive maintenance and reducing unplanned downtime [91]. Additionally, 

AI-driven process optimization improves energy efficiency in manufacturing by dynamically 

adjusting operational parameters based on real-time data [92]. In industrial control rooms, 

intelligent alarm management systems utilize AI to reduce episodes of alarm flood by filtering and 
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prioritizing critical alerts, preventing operator overload [93]. Furthermore, AI-based anomaly 

detection enhances real-time process control and safety by identifying deviations from normal 

operating conditions, enabling quick corrective actions to prevent system failures or hazardous 

incidents [94], [95]. These AI applications are reshaping industrial environments by optimizing 

processes, reducing risks, and improving overall operational performance. 

Automation involves the use of machines or systems to execute repetitive tasks based on predefined 

rules, ensuring precision and consistency [96]. It is particularly effective for structured, predictable 

processes that require minimal human intervention [97]. In industrial environments, automation 

enhances efficiency and safety by streamlining operations, reducing errors, and maintaining 

process reliability [98]. While often associated with AI, automation operates independently of 

learning algorithms, relying instead on programmed logic to perform specific tasks [99]. One key 

application is automated valve control in chemical processing plants, where programmable logic 

controllers (PLCs) [100], [101] and DCS [102], [103] regulate fluid flow, temperature, pressure 

and composition with precision, ensuring optimal process conditions. In manufacturing, conveyor 

belt and robotic arm automation streamline assembly lines, increasing production speed and 

reducing errors [104], [105]. Additionally, alarm suppression logic is implemented in industrial 

control rooms to filter out nuisance alarms, preventing operator overload and ensuring that only 

critical alerts are prioritized [106]. In pharmaceutical and chemical industries, batch process 

automation ensures precise ingredient mixing, temperature control, and reaction timing, improving 

product consistency and regulatory compliance [107], [108], [109]. These automation solutions 

help industrial facilities optimize operations, enhance safety, and improve overall productivity. 

While AI and automation are often conceptually distinct [110], AI typically involving data-driven 

reasoning, and automation referring to rule-based functions, they frequently coexist and intertwine 

in industrial control systems. In practice, AI is not replacing automation but rather enhancing it, 

especially in the context of decision support and fault diagnosis. Many interactions between 

operators and AI-based systems occur through automated interfaces, making the distinction less 

visible from the operator's perspective. This is particularly true in environments like chemical 

plants, where AI-driven tools are embedded within existing automation architectures. 

In this thesis, AI and automation are treated as components of a common human-machine 

ecosystem, where functional boundaries are less important than the cognitive consequences of 
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system behavior. Failures, whether caused by automation logic or AI reasoning, can produce 

similar effects on trust, situational awareness, and performance. Therefore, although the thesis 

defines AI and automation separately for clarity, it draws extensively from the automation literature 

to inform its analysis of human-AI interaction. This approach is justified given that the operator’s 

experience of support, disruption, or failure often emerges from the integrated behavior of both AI 

and automation systems. 

2.3.2 Automation reliability 

Understanding automation reliability is essential for studying how operators respond to decision-

support tools, especially in high-risk environments where system performance influences trust and 

task management. In this context, reliability refers to the extent to which automated systems 

function correctly and consistently across operating conditions. This concept is particularly 

relevant when investigating automation failures and their effects on human performance. 

In earlier literature, automation reliability was often defined as a performance ratio, described as 

how often a system produces correct outputs. However, more recent work recognizes that reliability 

is also shaped by user perception, system context, and the interaction between automation and 

human operators [111]. Reliability may refer not only to technical performance but also to the 

perceived consistency and dependability of the system during task execution. 

Some researchers distinguish between performance reliability (accuracy of system outputs) and 

explanatory reliability (clarity of the system's reasoning or logic), both of which influence how 

operators trust and use automation [112]. This is especially relevant for AI-based systems, where 

recommendations may appear uncertain or change based on input conditions. Studies show that 

operators are more likely to lose trust in systems that fail unpredictably than in those that show 

consistently poor performance [113]. In dynamic environments, such as process control or 

emergency response, perceived reliability also shapes how and when operators intervene. When 

reliability is unclear or inconsistent, operators may disengage, delay responses, or misinterpret 

system outputs [114].  

In this thesis, the reliability of a diagnostic tool is relevant because it influences operator behavior 

even when the system appears to function normally. Perceived reliability sets the conditions under 

which trust is formed, maintained, or degraded [115]. When reliability is violated—such as when 

a system provides an incorrect or missing diagnosis—the outcome is typically experienced as an 
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automation failure [116], [117]. For this reason, automation reliability provides the foundation for 

understanding how failure conditions affect operator trust, workload, and situational awareness. In 

the next section, we will provide an overview of notable AI failures, examining their causes and 

consequences. 

2.3.3 AI/Automation Failure 

AI is increasingly used in chemical plants to improve efficiency, safety, and predictive maintenance 

[118], [119]. However, AI systems can produce inaccurate or unreliable results, leading to 

operational challenges [120]. AI-related failures in process industries include poor adaptation to 

new operating conditions [121], where AI struggles to respond to variations beyond its training 

data; cybersecurity risks [117], where AI-driven systems are vulnerable to hacking or data 

manipulation; and algorithmic errors in analyzing chemical reactions [122], which can lead to 

incorrect process optimizations.  

AI-based decision-making tools can fail to perform its assigned function. Detection systems fail to 

identify targets, classifiers assign incorrect categories, decision aids produce inaccurate 

recommendations, and process automation deviates from expected operations [123]. An example 

is data bias, which affects predictive accuracy [124], [125]. If an AI model is trained primarily on 

data from normal operations without sufficient failure scenarios, it may fail to detect early signs of 

equipment degradation. This limitation can result in undetected malfunctions, increasing the risk 

of equipment failures and safety incidents. Another example of failure is sensor malfunctions and 

faulty data inputs [126]. AI systems depend on real-time sensor readings to regulate processes, but 

incorrect or inconsistent data—caused by calibration errors, physical damage, or interference—can 

lead to flawed assessments [127]. This may result in improper adjustments to operational 

parameters, reducing efficiency and potentially creating hazardous conditions.   

AI failure does not always indicate an error in the system itself; it can occur when automation 

obscures important information, making problem detection more difficult for human operators 

[128]. Skjerve and colleagues examined how automation masked failures in a pressurized water 

reactor simulation, affecting operators' ability to diagnose issues [129]. In one case, a valve failure 

and a small leak developed in the letdown system, which regulates reactor pressure. The system’s 

automatic controller adjusted its settings to compensate, concealing the leak and delaying operator 

detection. A second leak then occurred in the primary purification system, also within the letdown 
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system. Automation responded by activating charging pumps to maintain pressure, further masking 

the problem. As the system continued to adjust for these changes, operators had to diagnose both 

leaks without direct indicators, complicating their ability to identify the underlying failures. In this 

scenario, both failures had similar symptoms and occurred within the same system. The automation 

system responded as designed by adjusting parameters, such as activating controllers and charging 

pumps, to stabilize pressure levels. While this maintained normal operations, it also concealed 

important warning signs, making it difficult for operators to identify the underlying issues. As 

automation continued to compensate, the crew struggled to differentiate between the leaks and 

determine the cause. 

This demonstrates a challenge of automation masking. Although the system functioned correctly 

by maintaining stability, its actions hid failures that required operator intervention. By 

compensating for pressure fluctuations, automation reduced direct indicators of malfunction, 

delaying detection and response. In this case, automation operated as intended but had unintended 

consequences that affected human decision-making. Similarly, AI systems designed to optimize 

performance may prioritize maintaining output over providing diagnostic information. Instead of 

indicating potential failures, AI-driven adjustments can obscure developing issues, increasing the 

risk of delayed corrective action. 

The definition of automation failure is contested, as it depends on whether the focus is on system 

performance alone or its broader impact on operations [130]. One narrow perspective defines 

automation failure as a malfunction, such as when biased data leads to incorrect predictions or 

sensor errors produce inaccurate outputs [131]. Another broader definition considers failure to 

include cases where automation functions as designed but creates unintended consequences, such 

as masking faults and reducing human operators' ability to diagnose issues [132]. Mumaw, Dekker 

and Woods, and Van Paassen and colleagues analyzed automation failures in commercial aviation 

[133], [134], [135]. They question restrictive definitions of automation system boundaries, which 

some designers use to argue that no failure occurred when automation operated within its 

predefined limits, despite not assisting operators as needed. Their perspective adopts a systems-

based approach, defining failure based on the system’s functionality in an operational context rather 

than solely on whether it performed within technical constraints. 
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However, broadening the definition of automation failures excessively can diminish its precision 

[136]. When categories become too general, distinguishing between failure types becomes more 

challenging, limiting the classification's usefulness. An unclear definition may also encompass an 

excessive range of cases, making validation and assessment more complex. A well-defined 

classification enhances practical application and ensures accurate evaluation. This distinction raises 

questions about whether automation failure should be limited to technical errors or if it should also 

encompass situations where automation affects decision-making and operational oversight. The 

debate highlights the ongoing need for a broader understanding of automation failure, one that 

accounts for both system performance and its impact on overall safety and efficiency. 

There is no agreed-upon framework for defining automation failure, as different disciplines 

approach the concept with varying objectives [137], including human performance modeling, 

system design, testing, interface design, and failure analysis. The lack of clear definitions has led 

to uncertainty about which types of failures should be examined when studying human responses 

to automation mishaps [138]. Kanaan and Donmez observe that research in cognitive engineering 

often relies on a limited set of automation failure scenarios, which may not capture the full range 

of possible system disruptions [139]. Definitions that are too broad or too narrow reduce the ability 

of human performance models to explain operator interactions with automation. AI failure should 

be understood as a disruption that affects an entire system, influenced by operational conditions 

and the interactions between automated processes and human oversight. There is ongoing debate 

about the appropriate tools, frameworks, and models for defining and categorizing automation 

failure. 

Skraaning and Jamieson have proposed a taxonomy of automation-induced human performance 

challenges, highlighting its relevance for studying human-automation interaction [138]. The 

taxonomy describes three categories of automation-induced human performance challenges: 

elementary automation failures; systemic automation failures; and human-automation interaction 

breakdowns. Elementary automation failures occur when specific automation components or 

functions fail in isolation. Some describe these as failures within the “support system.” [131]. In 

contrast, systemic automation failures result from interactions among equipment, functions, and 

automated logic, disrupting system regulation and information processing. These failures cannot 

be attributed solely to a support system or an underlying system but emerge from the 

interconnectedness of system elements, where disruptions spread through automated processes and 
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affect overall performance. Unlike these two categories, human-automation interaction 

breakdowns do not involve a loss of automation functionality. Instead, they result from a mismatch 

between automation design and human capabilities, limitations, and needs. In these cases, 

automation functions as intended but does not align with human decision-making processes, 

leading to errors or inefficiencies.  

After the taxonomy was published, researchers have contributed by proposing revisions, 

comments, and expansions to improve the taxonomy and its applications. For instance, a review 

examines automation failures in surface transportation [139], [140], highlighting distinctions in 

operational context and user expertise. Industrial operators receive specialized training, while the 

general public often lacks formal instruction, influencing their interactions with automated 

systems. These differences affect the occurrence and management of automation failures. 

Modifying the taxonomy may be necessary to reflect these distinctions. Furthermore, it was 

acknowledged that the taxonomy does not address the automation/autonomy conundrum [134], 

[141], [142], [143], [144], which involves determining the appropriate level of automation while 

maintaining effective human oversight. Increased automation can reduce human engagement, 

affecting intervention capability in unexpected situations. Conversely, limited automation may 

place higher cognitive demands on operators, increasing the likelihood of errors. Finally, several 

commentaries highlight the need for automation failure scenarios in cognitive engineering research 

to reflect real-world conditions more accurately [19], [144], [145], [146], [147]. 

This thesis relies on the taxonomy of automation failure to examine key challenges. It will analyze 

user expertise and operational context, and study automation failure scenarios to align with real-

world conditions. The objective is to improve understanding of these failures and assess their 

effects on system design and human performance. 

Chapter 5 will examine an instance of elementary automation failure. The AI-based automated 

diagnostic tool does not provide an incorrect diagnosis but fails to provide a diagnosis altogether. 

This occurs when the system is unable to match incoming alarms to the historical dataset, which it 

relies on for fault identification. Due to limitations in data availability or processing, the system 

fails to recognize a match, preventing operators from receiving useful diagnostic information and 

hindering their response. 
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Chapter 6 will focus on a systemic automation failure, in which the AI applies incorrect logic when 

diagnosing a fault. This failure does not stem from a single component malfunction but from 

interactions among automated processes that influence decision-making. The AI processes 

available data and follows predefined diagnostic rules, but errors in its reasoning lead to incorrect 

conclusions. As a result, operators receive inaccurate information, which may delay or misdirect 

their response to the fault. 

2.3.4 Routine-Failure Trade-off Model 

When automation fails, the expectation is that human operators will take over and correct the issue 

[148], [149], [150]. However, this transition presents performance challenges, particularly when 

operators have had limited engagement with the task due to high levels of automation [151]. The 

Lumberjack Model [152], [153] describes a decline in task performance when automation fails 

beyond a certain threshold. This model, also known as the Routine-Failure Trade-off Model, 

explains how automation reduces workload during normal operations but can also lead to reduced 

operator engagement and skill retention [154], [155]. As a result, when automation fails, operators 

may struggle to intervene effectively. This can be illustrated with the example of a lumberjack who 

replaces an axe with a chainsaw [132]. The chainsaw allows for easier tree cutting, reducing 

physical effort. However, if the chainsaw stops working, the lumberjack may have difficulty using 

the axe efficiently due to a lack of practice. Similarly, operators who rely heavily on automation 

may experience skill degradation, making it more difficult to respond to failures. This concept can 

also be applied to AI systems that process large amounts of data [156]. If an AI model overfits, 

removes too much data during preprocessing, or prunes models excessively, it may lose important 

information needed for accurate decision-making, reducing its effectiveness in changing conditions 

[151]. 

Automation failures can be harder to detect and address when operators have limited involvement, 

reduced engagement, and a tendency toward complacency [157]. When automation assumes 

control of routine tasks, operators may have fewer opportunities to engage with the system, which 

can weaken situation awareness [19]. This reduction in awareness makes it more difficult to detect 

anomalies, assess system status, and anticipate future conditions [19]. Additionally, while 

automation typically reduces workload during normal operations, failures can cause a sudden 

increase in cognitive and physical demands [158], [159]. Operators may need to quickly process 
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information, diagnose issues, and take corrective action under time constraints, which can lead to 

errors or delays in response [160]. Over time, frequent reliance on automation can also result in 

overreliance, where operators assume the system will function correctly and become less vigilant 

in monitoring its performance [161], [162], [163]. Given these challenges, research on automation 

failure examines task performance, workload, situation awareness, trust, and other cognitive factors 

to better understand how automation affects human decision-making. 

2.3.5 Implications for Human Performance 

AI systems are susceptible to failure in complex, dynamic environments where conditions evolve 

unpredictably [164]. While automation and AI-based fault detection and diagnosis offer significant 

advantages in safety-critical domains [17], [165], their limitations pose substantial risks, 

particularly during abnormal situations [166]. When AI fails, operators may struggle to regain 

situational awareness, especially if prolonged automation use has diminished their engagement 

with the system [167]. The consequences of undetected AI failures in high-risk environments can 

be severe, underscoring the necessity of maintaining human oversight even as automation becomes 

more advanced [168]. To provide deeper understanding of these challenges, the following sections 

will examine the interplay in human-AI collaboration with emphasis on the concepts of situational 

awareness, cognitive workload, trust and reliance, the out-of-the-loop phenomenon, and the stages 

of human information processing. 

For the clarity of this thesis, we will definitions these key terms: 

• Endsley’s Situational Awareness (SA): Individual's or team's ability to perceive,

comprehend, and anticipate relevant information in each environment to support effective

decision-making and action [169]. The model emphasizes the role of tools and systems,

such as AI, in supporting human decision-making by improving information processing and

enhancing situational understanding.

• Cognitive workload: Mental effort required to perceive, process, and respond to

information while performing a task. It is influenced by task complexity, time constraints,

information density, and an individual's cognitive capacity [170].

• Trust in the machine: Degree of confidence an individual has in an automated system’s

reliability, accuracy, and effectiveness in performing its intended function [171]. Trust is
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influenced by several factors, including the system’s past performance, transparency, 

predictability, and the user’s level of expertise. 

• Reliance: The extent to which an individual depends on an automated system to perform

tasks, make decisions, or support operations [172]. Reliance is influenced by trust, system

reliability, and the perceived benefits of automation in reducing workload or improving

performance.

• Out-of-the-Loop phenomenon (OOTL): Cognitive state in which a human operator loses

situational awareness and the ability to effectively intervene in an automated system due to

prolonged disengagement or lack of direct interaction [166].

• Stages of Human Information Processing: A sequential model that describes how

humans perceive, interpret, and respond to information [173]. Helps explain human

cognitive limitations and the importance of designing user interfaces, automation, and

training programs that align with human cognitive capacities.

Endsley discussed the impact of human-AI task delegation when examined through the stages of 

human information processing: perception, decision-making, and action execution [174]. At the 

perception stage, AI processes raw data into meaningful insights, enhancing SA by enabling 

proactive adjustments and anomaly detection. When AI effectively integrates and presents 

contextual information, it reduces cognitive workload, improves operator engagement, and 

minimizes OOTL effects. However, AI-generated data can be flawed due to inaccuracies, 

omissions, or misinterpretations, distorting an operator’s perception of system status. Over-reliance 

on AI may lead to operator disengagement. Trust in AI is dynamic—frequent errors undermine 

confidence, leading to under-reliance, while consistent AI performance may cause over-reliance 

and complacency.  

During the decision-making stage, AI systems analyze complex data patterns to prioritize options. 

However, the transparency of AI processes significantly influences operator trust and SA. A lack 

of clear reasoning behind AI recommendations can lead to uncertainty, increased cognitive 

workload, and OOTL phenomena, where operators become disengaged and less effective in 

intervention scenarios. Conversely, when AI systems provide erroneous or opaque 

recommendations, operators may need to engage in additional verification processes, elevating 

cognitive demands and response times. This situation can degrade decision accuracy and SA, 

particularly under time-sensitive conditions.  
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At the action implementation stage, AI systems autonomously execute tasks such as adjusting 

machinery or initiating system shutdowns, thereby reducing human workload. However, over-

reliance on automation can lead to the OOTL performance problem, where operators experience 

diminished SA and a decline in manual control skills. This phenomenon leaves operators less 

prepared to intervene effectively during automation failures, potentially compromising safety in 

critical environments.  

2.3.6 Related work 

Now that we have established an overview of FDD, the role of AI in these systems, and its impact 

on human performance, we turn to prior research examining their practical applications in alarm 

floods and other operational contexts. 

AI-based FDD systems leverage machine learning algorithms to process extensive sensor data, 

recognize patterns, and detect faults in real time. Research indicates that AI-driven methods 

outperform traditional fault detection approaches in both speed and accuracy [175]. For instance, 

predictive models have successfully identified equipment failures early, allowing manufacturers to 

reduce downtime and improve productivity [84]. Chang and colleagues demonstrated that an AI-

driven system for diagnosing operational issues in solar energy projects achieved a fault detection 

precision of 98.6% [176]. Similarly, another study reported that an AI-based system deployed in a 

chemical plant maintained a 98% agreement between predicted and actual anomalies over three 

months, significantly enhancing fault detection reliability [177]. Researchers applied deep learning 

to the Tennessee Eastman process, a benchmark for industrial chemical production, achieving 

95.6% fault detection accuracy [178]. 

Beyond fault detection, AI-based FDD systems play a crucial role in alarm management and 

operator performance. Past research has investigated AI-assisted alarm systems within a high-

fidelity ethylene manufacturing simulator, focusing on their impact on operator workload during 

episodes of alarm flood [179]. Using the NASA-TLX scale, the study evaluated three alarm 

management strategies—no rationalization, rationalized alarms, and smart alarms—under both 

manual and AI-based automation. Findings revealed that AI-enhanced smart alarms reduced 

operator workload and material losses during abnormal conditions, particularly during episodes of 

alarm flood. Similarly, researchers have introduced a proactive alarm reduction methodology for 

nuclear power plants, prioritizing alarms to reduce cognitive overload and improve situational 

awareness in alarm-heavy environments [180]. Testing with eight nuclear power plant operators 
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demonstrated that SA improved significantly when proactive alarm reduction was applied, helping 

mitigate the effects of alarm floods. 

These findings highlight the role of AI-driven FDD and alarm systems in enhancing fault detection, 

reducing operator workload, and improving SA during alarm floods. These results are particularly 

relevant to this thesis, which investigate the impact of an AI-based fault diagnostic tool in a 

chemical plant simulator during alarm flood scenarios. 
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CHAPTER 3 RESEARCH APPROACH 

3.1 Research problem 

Modern process industries, such as chemical plants and power generation facilities, depend on FDD 

systems to monitor operations, identify anomalies, and support decision-making. The emergence 

of AI-driven diagnostic tools has enhanced fault detection and analysis, improving plant efficiency 

and reducing operational downtime [175], [176], [178]. However, these AI-based FDD systems 

are fallible, as they are susceptible to misdiagnoses, false alarms, and undetected failures [84], 

[115], [133], [177]. In safety-critical environments, such inaccuracies can lead to erroneous 

operator decisions, heightened cognitive workload, and reduced SA. 

A critical challenge in AI-based FDD lies in its integration with alarm management systems and 

understanding its impact on human performance, particularly during abnormal situations. While 

process alarm analysis algorithms have been refined using large datasets, their effectiveness 

remains largely unvalidated in high-fidelity simulations with real operators. Furthermore, limited 

research has examined how human operators interact with imperfect AI-based diagnostic tools in 

realistic operational settings. 

Current studies on human-AI collaboration in fault diagnosis primarily emphasize algorithmic 

performance rather than human factors, such as trust, reliance, and SA during alarm floods. 

Although some human-in-the-loop experiments exist [176], [179], [180], few investigated how AI 

reliability influences operator decision-making in high-pressure environments. A major concern is 

the potential for OOTL effects, where excessive reliance on AI diminishes an operator's ability to 

intervene effectively when automation fails. This thesis addresses these gaps by assessing how AI-

based diagnostic tools affect operator performance and decision-making during alarm floods in a 

high-fidelity process control simulator. 

3.2 Research objectives 

This thesis aims to investigate the impact of an imperfect AI-based FDD tools on operator 

performance and decision-making during alarm floods using a high-fidelity process control 

simulator. The research objectives are structured into three key steps: 

1. Development of a high-fidelity simulator for research studies

• Design and develop a high-fidelity process control simulator that realistically replicates

industrial fault scenarios and alarm flood episodes.
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• Validate the simulator’s effectiveness in simulating a fault detection and diagnosis system 

within a chemical plant operational context. 

2. Investigating whether an automated diagnostic tool supports human performance during 

alarm flood episodes 

• Assess the reliability of an automated FDD tool in assisting human operators during alarm 

flood episodes and fault diagnosis scenarios. 

• Analyze whether the AI-based automated diagnostic support tool enhances or hinders 

operator performance in high-stress environments. 

• Complete a human-in-the-loop case study using the chemical plant simulator. 

3. The effects of an imperfect AI-based automated diagnostic tool on human performance 

during failure management 

• Examine how AI reliability influences operator trust and reliance. 

• Investigate the impact of an imperfect AI on situational awareness (SA) and cognitive 

workload, particularly in high-pressure failure management situations. 

• Identify conditions that contribute to out-of-the-loop (OOTL) effects, where excessive 

reliance on AI impairs operator intervention capabilities. 

• Identify strategies to optimize fault diagnostic tool, design for human-AI collaboration, and 

enhance operator training programs for safety-critical industrial environments. 

3.3 Research methodology 

 

Figure 3.1 Overview of this thesis’s three studies 

This research follows a structured methodology across three studies, each building on the previous 

findings to examine human-AI interaction in abnormal situation management (Figure 3.1). Each 

study forms the basis of an article. The first study focuses on the development of PER4Mance, a 

chemical process simulator. Built using the Tennessee Eastman Process and designed according to 
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HMI best practices and industry standards, the simulator provides a controlled environment for 

studying episodes of alarm flood and AI-based fault diagnosis.  

The second study evaluates an automated diagnostic support tool incorporated within PER4Mance 

to assess its impact on operator performance during alarm flood episodes. The study measures 

situational awareness, cognitive workload, and eye-tracking data to determine whether the tool 

improves performance. 

The third article expands on the findings of article 2 by examining how AI failures affect operator 

response time, decision-making accuracy, situational awareness, trust, and reliance. It investigates 

whether operators recognize AI misdiagnoses or rely on incorrect recommendations, particularly 

under high cognitive workload and alarm flood episodes. The study provides insight into human-

AI interaction when AI reliability varies. 

This progression moves from system development to human performance assessment and finally 

to the impact of AI failures, ensuring a structured investigation into AI-assisted decision-making 

in industrial environments. 

3.3.1 Study 1: Development of a human-machine simulator environment 

Objective: Design a realistic and working chemical plant simulator based on the Tennessee 

Eastman Process (TEP) using HMI guidelines and industry standards. 

3.3.2 Study 2: Impact of an automated fault diagnostic tool on human 

performance 

Objective: Investigate the difference in operator performance with and without the use of an 

automated fault diagnostic tool during an abnormal situation. 

3.3.3 Study 3: Impact of an AI’s misdiagnosis during an alarm flood episode 

on human performance 

Objective: Investigate the impact on operator performance during a process abnormal situation 

when the diagnostic tool fails (provides a misdiagnosis). 
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3.4 Thesis Hypothesis 

Based on the literature review conducted, we formed three hypothesis that we will investigate in 

the following studies. Chapter 7 will evaluate whether these hypotheses were confirmed based on 

our main findings. 

H₁: The implementation of a diagnostic tool enhances operator performance during episodes of 

alarm flood. 

H2: The impact of a diagnostic tool is significantly greater when managing difficult alarm flood 

episodes compared to easier ones. 

H3: Operators are capable of identifying incorrect AI diagnoses during episodes of alarm flood. 



33 

 

CHAPTER 4 ARTICLE 1 : PER4MANCE PROTOTYPING 

ENVIRONMENT FOR RESEARCH ON HUMAN-MACHINE 

INTERACTIONS FOR ALARM FLOODS MANAGEMENT: THE CASE 

STUDY OF A CHEMICAL PLANT PROCESS CONTROL  

This article was published in the Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting on 27 October 2022. doi:10.1177/1071181322661248  

Karine Ung (Polytechnique Montréal), Omar Nemer (Polytechnique Montréal), Aswin Krishna 

(Indian Institute of Technology Guwahati), Moncef Chioua (Polytechnique Montréal), Philippe 

Doyon-Poulin (Polytechnique Montréal) 

 

4.1 Abstract 

Alarm floods are dangerous because the quantity of alarms triggered is too numerous for operators 

to reliably implement the right corrective action. Process operators of complex systems, such as 

chemical plants or nuclear power production, are faced with alarm management systems that can 

be better built in consideration of human capabilities and limitations. Developing human-machine 

interfaces (HMIs) that better support operators is critical for ensuring the safe and reliable operation 

of critical systems and processes. The research team has developed an accessible and adaptable 

prototyping environment dedicated for research on alarm management and human-machine 

interactions in the process industry. The method used was to build on the Tennessee Eastman 

Process (TEP) simulator and incorporate Human-Machine design guidelines. The results are an 

open-sourced prototyping environment that incorporates data from a real chemical plant and 

integrates true alarm data and thresholds. At the end of this article, we share the Github link to the 

entire MATLAB, Simulink and App Designer files of PER4Mance: a prototyping environment for 

research on human-machine interactions for alarm flood management.  

4.2 Introduction 

Process alarms play a significant role in maintaining a chemical plant’s safety by providing a layer 

of protection in preventing the occurrence of faults from escalating into process hazards. Alarms 

aim at helping the process operators keep the plant within normal operating conditions. They 

provide an indication to the operators that their action is required to fix a fault or to prevent an 

undesired consequence. Throughout the years, the number and frequency of alarms have increased 

with technology. In the days of pneumatic controls, installing a new alarm had significant financial 
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costs. The addition of an alarm with mechanical panels required adding light indicators and 

connecting them (hydraulically) to the sensor. As the number of alarms grew during plant 

operations, it reached a point where there was no longer any space available on the dashboard to 

add new alarms [181]. With the use of computer-based control systems, alarms became digital and 

the operator can configure them by defining thresholds for triggering the alarm [40]. Therefore, 

adding new alarms no longer had any financial costs or need for additional equipment. 

Furthermore, with the discovery of each new fault, alarms were added to the alarm system. As a 

result, the number of alarms has continued to increase over the years to a point where alarms could 

no longer be handled effectively [48]. It is common in a process control plant to have well over 

thousands of alarms per day, a number exceeding the recommended maximum manageable rate of 

300 alarms per day [20].  

Detrimental effects of alarm floods on safety and performance are documented in several 

application domains. In public transportation, automatic train control systems generate alarms to 

notify train dispatchers of the presence of faulty circuits. The rate of alarms can sometimes reach 

8,000 per week and cause the dispatchers to become desensitized to the alarms [7]. In healthcare, 

the constant alarms from blood pressure machines, ventilators, heart monitors, etc., can cause 

health professionals to “tune out” the sounds. Alarm desensitization has been highlighted as a 

widespread problem in hospitals and many alarm-related deaths and injuries have been reported 

over the past few years [45]. Finally, in the aviation sector, the occurrence of unreliable alarms has 

shown to foster mistrust and complacency in airline pilots. Studies have shown that alarm-related 

problems frequently occur across flight operations and that false and incorrect alarms remain a 

significant concern in aviation [14]. Research on alarm flood mitigation can be useful in chemical 

process control as well as across multiple other domains.  

According to the Abnormal Situation Management (ASM) Consortium, petrochemical plants suffer 

one major accident every three years on average [51]. An important number of these incidents 

reported were due to poor performance of alarm systems, resulting in plant damages, loss of 

production, and environmental incidents.  

One of the most famous incidents in the field of alarm management is the Milford Haven incident 

at the Texaco refinery in Pembroke, South Wales, in July of 1994. A massive explosion resulted 

from 20 tons of flammable hydrocarbons being released from the knock-out pot on the flare header, 

leading up to hundreds of alarms being triggered. The Health Safety Executive’s investigation 
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report [43] identified the concern that alarms can overwhelm the operator, and instead of improving 

safety, can have the opposite effect and contribute to the incident.  

This example illustrates that a fault can affect multiple related systems and trigger an overwhelming 

number of alarms. An alarm flood is defined as 10 or more annunciated alarms in a 10-minute 

period per operator [38]. In ISA-18.2 it is stated as: “A condition during which the alarm rate is 

greater than the operator can effectively manage [182].”  

Alarm floods are troublesome because the quantity of alarms triggered is too numerous for 

operators to manage, making it difficult to implement the right corrective action. A fault can lead 

to a cascade of alarms, or multiple faults can occur during the same time period. Both scenarios 

can lead to an alarm flood, without any alarm differentiation between the separate faults. This 

phenomenon can affect hundreds or even thousands of alarms, with many unnecessary and 

redundant alarms resulting from the same root cause being enunciated and displayed to the 

operator. The discrepancy between the amount of information presented and the amount of 

information to which individuals can effectively manage leads to increased workloads, human 

error, and decreases in efficiency [42]. Despite improvements in alarm rationalization and 

prioritization processes, alarm floods are still a significant issue in abnormal situation management 

[31]. In alarm flood situations, one of the only responses available to the operators is to 

acknowledge and silence the alarms  [41].  

ANSI/ISA-18.2 Management of Alarm Systems for the Process Industries and the EEMUA 191 

Human-Machine Interfaces (HMI) are standards providing guidelines for alarm systems 

management in process control plants. However, alarm systems built using these standards still 

need to be tested in a safe environment with human operators prior to the implementation in real 

operating industrial processes [36].  

There are existing prototyping tools or simulation environments available for HMI test, but with 

limited availability. For instance, the company Corys [183], provides high-fidelity and dynamic 

simulators. Their simulator has been previously used in a human-in-the-loop study which 

investigated the impact of alarm management system design i.e. alarm rationalization, on the 

process operator’s workload [179]. However, the simulator comes at a financial cost that limits its 

accessibility to the public. Other researchers code their own simulator [184], but their simulator 

and its codes are not made available to the general public.  
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Alarm systems designed according to safety considerations provide the primary source of warning 

for operators when it comes to abnormal situations. Still, to the best of our knowledge, there has 

been no freely available and open-source process control simulator environment that has been 

developed to provide a platform for research on human-machine interactions during alarm floods.  

Following the approach of Simonson et al. 2022 [179], we developed a human-machine 

prototyping environment that can be used as a research tool to investigate alarm flood management 

in a process control environment. We aimed at creating an environment that can promote the study 

of the impact of machine learning-based decision support systems to guide the operator during 

periods of alarm floods, what we’ll call the "diagnostic tool". The next section presents the  

development method, followed by validation results, discussion and conclusion.  

4.3 Method 

4.3.1 Step 1 - Tennessee Eastman Process (TEP)  

The first step in creating the prototyping environment was to use the Tennessee Eastman Process 

(TEP) simulator to represent a chemical process control [185]. The TEP is a realistic simulation of 

a chemical process that runs on MATLAB [186]. It consists of five main process units: a reactor, 

a separator, a stripper, a compressor and a condenser (Figure 4.1).  

The process has a total of eight different chemical components identified as A through H. These 

components consist of three gaseous reactants, A, D, and E that are fed to the reactor, which 

contains a small amount of inert gas B. There is also the gaseous reactant C that is fed directly into 

the stripper. Liquid products G and H exit the stripper base and are transferred to subsequent units 

and cells. The primary objectives of the process are to maintain the specified ratio of G/H in the 

product and maintain the specified product rate during normal operation and process disturbances. 

There is also a liquid by-product F which is purged from the TEP. The operator can manipulate 12 

input variables and monitor 41 output variables. The TEP simulator also has 20 pre-defined fault 

scenarios [187]. The process control community has used TEP extensively as a benchmark to 

compare the performance of control strategies, but has received little attention as a user-facing 

simulator [188].  

4.3.2 Step 2 - TEP alarm dataset  

As the TEP simulator did not comprise of alarms embedded in its program, the second step of the 

tool development consisted of adding an alarm dataset to the prototyping environment. We used 
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the work from the IEEE TEP Alarm Management Dataset [189], where the authors identified the 

TEP variables with their alarm high and low threshold values. We programmed their alarm 

thresholds into our tool, so that the alarms are triggered at the correct threshold limits. Therefore, 

whenever a variable’s actual value crosses the high or low threshold, the respective alarm is 

triggered.  

4.3.3 Step 3 - Real-Time Data Exchange  

The next step involved creating a real-time data exchange link between the TEP simulator and our 

prototype. By adding a scope block, the prototyping environment is able to locate the variables and 

read the data from Simulink [186]. We added a single scope block to the default configuration of 

the TEP at the output block of the variables. This enabled us to read the data of the variable outputs 

from our prototype. Furthermore, by adding the additional scope blocks to all the variables, we 

managed to capture the data generated by the simulator during its execution, and were able to 

display them in real-time on our prototype. In addition to reading the data, this also allowed us to 

make input changes to the variables during the simulation. It was therefore possible for operators 

to change the manipulated variables, i.e. the valves opening and setpoints, while the environment 

was running.  

 

Figure 4.1 Piping and Instrumentation Diagram of the Tennessee Eastman Process [190] 
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4.3.4 Step 4 - Human-Machine Guidelines  

Having the TEP simulator with its alarm dataset defined and the data exchange established, we 

were ready to design the tool’s interface on MATLAB App Designer. We followed human-

machines guidelines of ISA-101 which provides a design model called High-Performance (HP) 

HMI to design an interface that allows operators to detect, diagnose and correct efficiently dynamic 

operations in a process control environment [191]. More specifically, the standard provides 

guidelines on how to display information when developing the prototype’s interfaces.  

The presentation of the data should be done in a hierarchical manner across four levels. The first 

level is the most important and should present a global view of the whole process. It is also where 

information about the most critical equipment should be displayed. The second level is dedicated 

to the subunits of the system, with each subunit having its own view presenting more detailed 

information on its operating conditions than on the first level. The third level is an even more 

specific view of a particular piece of equipment of a subunit. Finally, the fourth level contains any 

other useful information that can help the operators make their diagnosis. For levels one and two, 

we identified the tasks the operators need to be able to perform, and defined the relevant variables. 

We omitted levels three and four because all the information that was identified as relevant during 

our analysis could be transmitted within the first two levels. Then, we defined the format for each 

variable (e.g., graphs, trends, thermometers, lists, etc.) depending on their context.  

Following these HP HMI principles, we were able to identify where to present the 41 variables and 

their format, the key performance indicators (KPIs), the alarms, the diagnostic tool and the 

controllers for the manipulated variables. We will present them in the following section.  

4.3.5 Step 5 - Implementation  

We chose to use App Designer [186] as the development tool because it is an extension of Matlab, 

which was required for the TEP simulator to function properly. Since these three modules are under 

the same working environment, communication and data exchange was running properly. 

Moreover, the App Designer tool offers a library of objects (graphs, gauges, etc.) ready to use that 

can be dragged and dropped onto the interface.  

4.4 Results 

The prototyping environment consists of two interfaces, one interface open per computer monitor 

simultaneously. The first interface (Figure 4.2) represents the system overview, containing the 
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global and critical information showing the system’s health status (level 1). This overview interface 

has a panel on the top that provides the key performance indicators of the system. These are the 

inputs’ flow rate, their concentration to the reactor, production rate, quality of the G and H products, 

production cost per hour and finally the concentration of the chemical components at the output, 

including the purge and the products. In this same section, on the right, we have the diagnostic tool 

which displays a solution when a fault occurs. The user of the prototype can choose to provide a 

correct solution, an incorrect solution or no solution at all. In the middle section, we integrated a 

diagram representing the logical flow of the TEP system from left to right so that the operators 

have a global view of the process.  

 

Figure 4.2 The environment system overview  

These three blocks show the most critical equipment, i.e. the reactor, the separator and the stripper. 

For each of these equipment, we displayed its pressure, temperature and flow. At the bottom of the 

screen are three digital readouts indicating the incoming flow to the reactor, the outgoing flow from 

the separator and the overall flow of products for the stripper. To the right of these blocks is the 

alarm table. Under normal circumstances, there are no alarms displayed.  

The second interface (Figure 4.3) represents detailed information per unit, displaying the variables 

related to the reactor, condenser, separator, compressor and stripper under different tabs (level 2). 

On the right side, the users can act on the process valves either in manual mode (openings 

adjustments) or in automatic mode (setpoint settings). If the control is in automatic mode, the 
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operator can modify these setpoints. If the control is in manual mode, the operator can directly 

modify the valve opening.  

At the top of the screen, there are tabs to navigate to other units of the system. The units on these 

tabs follow the process flow navigation from left to right. Some units are simpler than others, 

therefore, we combined them to save screen real estate; the condenser, separator and purge; and 

the stripper with the final product information.  

 

Figure 4.3 The reactor interface  

The interface adds further information when the system is under a fault condition. Figure 4.4 

presents a fault condition scenario: a loss of feed of input A. The red dots indicate the variables 

and units have exceeded their normal threshold values and that an alarm has been triggered. They 

can be seen on the top KPIs section, but also on the overall TEP diagram. Furthermore, there is the 

alarm table on the bottom right side of the interface. There is a checkbox on each alarm line so that 

the operators can indicate that they have acknowledged the alarm. There is also the code of the 

alarm, its time of appearance, its description and finally the unit involved.  

The prototyping environment follows the standards of a High Performance HMI: a two-level 

hierarchy was used and the data was grouped according to their corresponding sub-unit. Trend 

graphs and analog indicators were used to visualize if the value of a variable is within the normal 

range. The number of colors were limited by keeping the background gray, the operating limits in 
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blue and the fault indications in red. By following these standards, the simulator environment 

closely resembles the interfaces used in the industry, and users have access to a functioning 

prototype that has an interface that represents those used in real-life-operations.  

 

Figure 4.4 Abnormal condition: loss of flow A  

4.5 Discussion 

Although there are multiple process control simulator environments available in the market, not all 

are accessible and malleable. Our prototyping environment differs from others in the following 

ways: it has no financial costs, it is open-sourced and it is extremely modifiable. From our original 

files, users can change the codes and interfaces freely.  

While developing this prototyping environment, there were a few limitations encountered. First, 

App Designer offered a limited library of graphical elements. Although the tool is very easy to use, 

the graphical elements provided by the program looked out-dated. The second disadvantage of this 

tool is that the more we added graphical elements to the interface, the heavier and slower the editing 

mode became. Finally, it is worth mentioning that the running speed to complete the simulation 

was less than 1 minute. The prototyping environment reflects the same speed as Simulink, and we 

therefore had to slow down the running speed on Simulink to be able to have a working prototype.  

Despite these limitations, users can change the alarm thresholds and behaviors, add or remove 

alarms, and configure the information provided by the diagnostic tool. Furthermore, users can 
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remove the input controllers in case they want to reduce operator’s control over the environment. 

We also developed this prototype to allow research with one operator, but modifications of the 

environment to study multiple operators simultaneously or team dynamics could be possible and 

worth investigating. We’ve created this prototyping environment to reflect our own goal, which is 

to study the impact of machine learning-based decision support systems, the diagnostic tool, to 

guide the operator during periods of alarm floods. But this prototype can be modified and adapted 

to countless other environments to study different aspects of alarm management in industrial 

settings.  

4.6 Conclusion 

This paper aimed to address the need for a prototyping environment to study human-machine in 

the process industry. We’ve proposed a prototyping environment that was built on the TEP 

simulator and HMI design guidelines and principles. With this public tool, we hope to encourage 

shared research on human-machine interaction and alarm management in relation to machine 

learning systems.  

The next step for the research team is to test the prototyping environment with humans. Testing 

with humans will allow us to improve the prototype itself and to study the effects of the prototype’s 

design on human cognition. Even though we followed HMI design principles, there are still many 

elements in the prototyping environment itself that can be improved, such as the way the variables 

are presented, the alarm presentation and the solutions conveyed by the diagnosis box. Also, testing 

the fault scenarios of the prototype with humans will allow us to perform fundamental research on 

alarm flood management and diagnosis, thereby investigating the interface elements that would 

help or hinder human diagnosis abilities. We have made this prototyping environment available to 

all in order to encourage shared learning and promote further work on improving the prototype.  

The US Federal definition of research is "a systematic investigation, including development, 

testing, and. evaluation, designed to develop or contribute to generalizable knowledge" 

(45CFR46.102). We hope that our approach and design might generalize to other research in 

simulations or alarm floods in different domains. Don’t hesitate to contact us for any collaborative 

work.  

The PER4Mance (MATLAB, Simulink and App Designer files) are available to download via the 

following link: https://github.com/karine-ung/perf4mance 
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5.1 Abstract 

During fault scenarios in complex systems, alarm management systems are used to assist the 

operator in solving the failure. Alarm floods situations are often difficult to manage for the 

operators due to the large quantity of alarms. Past work presented data-driven methods to help 

manage alarm floods. Yet, few research has investigated the interaction between operators’ 

performance and alarm rationalization systems in alarm flood scenarios. This study aims to address 

this gap by introducing an automated diagnostic tool designed to help operators manage alarm 

floods. We developed an interface using a realistic chemical plant simulator based on the Tennessee 

Eastman Process (TEP) and added a diagnostic support tool for managing alarm floods. Twenty 

students enrolled in a chemical engineering program participated in the study and were presented 

with two alarm flood scenarios. The diagnostic tool was activated in one scenario and deactivated 

in the other. Results showed that using the diagnostic tool increased participants’ situational 

awareness and assisted them in managing complex alarm flood situations. Eye tracking results 

showed that the diagnostic tool reduced the gaze on the alarms and increased the gaze toward areas 

of KPIs and diagnostic information. The results of this study illustrate the potential growth of the 

use of automated decision support systems in the process industry.  

5.2 Introduction 

According to the industrial standard ANSI/ISA-18.2 [38], an alarm is “an audible and/or visible 

means of indicating to the operator an equipment malfunction, process deviation, or abnormal 

condition requiring a response” and “an alarm system is the collection of hardware and software 

that detects an alarm state, communicates the indication of that state to operators, and records 

changes in the alarm state”. Alarm systems have been an integral part of computerized monitoring 



44 

 

systems, such as the distributed control systems (DCS) and supervisory control and data acquisition 

(SCADA) systems [192]. These systems control, monitor, and manage production in often large 

infrastructures, such as petrochemical operations, electric power generators, transportation systems 

and chemical facilities, among others [193].  

Alarms are important because they provide warnings for operators during abnormal situations 

[194]. An abnormal situation is a disturbance or series of disturbances in an industrial process that 

causes plant operations to deviate from their normal operating state. During an abnormal situation 

in a large and interconnected infrastructure, a disturbance can cause the failure of multiple systems 

and trigger a cascade of associated alarms [36], [37]. These alarms are triggered in the control room 

and operators may not be able to properly investigate each of these alarms promptly [195]. This 

phenomenon is described as an alarm flood, defined as the duration where the rate of alarm 

annunciation is more than the response capability of an operator [39]. Alarm floods can lead to 

situations of loss of control, which in turn, may lead to accidents [49]. According to ANSI/ISA-

18.2 (2009), an alarm flood is more than 10 alarms per 10 minutes.  

During an alarm flood, each new system failure adds more alarms to the existing cascade of alarms, 

without any differentiation between the root causes [7]. Reviews of previous accidents involving 

an alarm flood revealed that it can affect hundreds or even thousands of alarms, with many 

unnecessary and redundant alarms being annunciated and displayed to the operators [14], [45]. 

This excess of information presents several human factors challenges, mainly due to the limited 

cognitive abilities of attention [196], [197]. The discrepancy between the amount of information 

presented and the amount of information to which individuals can effectively attend leads to 

increased mental workload, human error, and decreases in operational efficiency [42]. In such 

situations, one of the only responses available to the operators is to silence the alarms, sometimes 

without looking at them [41]. 

According to the Abnormal Situation Management (ASM) Consortium, petrochemical plants suffer 

on average one major accident every three years. The Engineering Equipment and Materials Users 

Association (EEMUA) stated that inadequate alarm systems “were a major contributor to incidents, 

which frequently involved the operator being overloaded with alarm floods” [3]. An example is the 

Milford Haven petrochemical plant accident at the Texaco refinery in Pembroke, South Wales, in 

July of 1994. An explosion resulted from 20 tons of hydrocarbons being released from the knock-
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out pot on the flare header. The two operators on duty were flooded with 275 alarms in the 10 min 

time window before the explosion. The numerous alarms and their lack of logic made it too difficult 

for the operators to manage the situation [43]. The Health and Safety Executive’s investigation 

report identified the concern that alarms can overwhelm the operators, and instead of improving 

safety, can hinder the operator’s diagnosis of the root cause. The contributing factors of the accident 

were the alarm flood, poor alarm management, and an alarm system that did not support fault 

diagnosis.  

The poor design of alarm systems and misdiagnosis were reported to have contributed to accidents 

in the process industry [36]. Alarms being triggered in the order in which the disturbances occur 

do not support operators in finding the source of the problems. These accidents exemplify why 

alarm rationalization is essential to support the operators in finding the root cause of alarm floods. 

There is a need to provide rationale in the way alarms are shown to support the operators' diagnosis 

of the root cause during abnormal situations. A study found that 15 facilities with varying sizes had 

a high number of alarms installed, with a minimum of 500 and a maximum of 10,470 alerts [41]. 

During normal operations, the number of alarms ranged from 60-120 per hour. During abnormal 

conditions, operators experienced alarm loads of around 390-3750 per hour, and in one case over 

300 alarms in just 5 min [198], [199] found alarms in various industries were significantly higher 

than EEMUA guidelines. These studies highlight the importance of proper alarm management and 

the need for better monitoring and control of alarm systems.  

As a result, there has been increasing interest in the industry in addressing the issue of alarm floods 

and investigating methods to help operators diagnose faults. A promising avenue is the use of 

machine learning techniques that link the incoming flow of alarms to known faults and provide a 

diagnosis to the operators [200]. Further investigation is needed to study the difference between 

the use of “traditional” alarm management systems, which lead to the appearance of alarm floods, 

from “advanced and automated” systems, which offer support to the operator. Few research has 

investigated the interaction between operators and automated systems in alarm flood scenarios, and 

this study aims to address this gap.  

The contributions of this paper are the following: we did a human-in-the-loop experiment with a 

diagnostic tool in a chemical plant simulator. We investigated how humans reacted to a diagnosis 

provided by the tool during an alarm flood. The rest of this paper is structured as follows. In this 

section, we provide an overview of related work in areas of alarm rationalization and human-
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automation interaction. In section III and IV, we describe the experimental methods and data 

analysis. In section V and VI, we present the main results and discuss the impacts of using the 

diagnostic tool on the operators’ performance.  

5.2.1 Alarm rationalization 

Several guidelines have been developed to improve alarm management systems, such as the 

International Society of Automation and the ASM consortium [51], [182]. Various data-driven 

methods have been developed to enhance alarm systems. In the last few decades, algorithms and 

techniques have been created to reduce the number of alarms that are activated [50]. Among others, 

Foong et al. developed a fuzzy-logic based alarm prioritization (ALAP) system to prioritize alarms 

during alarm floods and reduce redundant or false alarms [201]. Higuchi et al. developed an alarm 

reduction method using data-mining to identify statistical similarities among alarms [202]. Cheng 

et al. used a modified Smith-Waterman algorithm to analyze alarm flood patterns and cluster 

similar ones [203].  

Another methodology to mitigate alarm floods is that of alarm rationalization [51]. Alarm 

rationalization is a process that involves reviewing and validating alarms to ensure they are 

necessary for maintaining safety and normal operations [52]. It aims to reduce nuisance alarms and 

remove redundant ones, ensuring operators receive only those that require action [25]. This process 

increases efficiency and reduces time spent on identifying the true cause of alarm activations. Up 

to 80% of alarms during an event are redundant or nuisance alarms, which can divert attention and 

interfere with operator acknowledgment [204]. A subset of alarm rationalization worth mentioning 

is that of alarm classification. Alarm classification categorizes an incoming alarm flood on the basis 

that the new alarms are matched with a set of previously occurred alarm floods [62]. The ongoing 

alarm floods are matched to a known category and presented to the operator to help diagnose the 

fault causing the alarm flood [61]. Seyed Alinezhad et al. developed a semisupervised data-driven 

method for classifying ongoing alarm floods using historical data [63]. The method, based on the 

Gaussian mixture model, includes alarm clustering and labeling, and online early classification. 

The approach was validated using the Tennessee Eastman process (TEP) benchmark and an 

industrial alarm flood dataset. The results showed accurate early classification of alarm floods by 

considering historical alarm datasets [63]. Lucke et al. developed an alarm flood classification 

method that uses sequence mining and time series analysis to classify alarm floods based on past 
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events [67]. The method involves two stages: detecting when the flood belongs to a new class and 

classifying when one class forms a basis to match incoming floods. The algorithm integrates a 

historical alarm classifier into fault detection and identification. A case study was conducted on an 

offshore oil-gas separation plant, revealing that the algorithm matched new alarm floods with 

historical floods corresponding to the same abnormal situation, enabling the classification and 

identification of the root cause of an alarm flood. They found an average accuracy classification of 

92.2%.  

Alarm flood classification targets recurrent types of alarm floods since it relies on training a 

classifier on past events. A limitation is that the algorithm is unable to provide a classification if 

an incoming alarm flood is not part of the historical set because the classifier wouldn’t be able to 

match it. Therefore, the accuracy of all the methods does not reach 100% [67]. Even though the 

reliability rate isn’t high enough to implement the algorithm in real-life process control 

environments, it is, to some extent, able to identify the root cause of alarm floods that are part of 

the historical set and propose the root cause to the operator. While these methods have significantly 

reduced alarm floods, they have not eliminated them [205].  

The literature review explored data-driven methods to mitigate the impact of alarm floods [23]. A 

promising approach is alarm flood rationalization and classification based on historical events in 

the control room. However, few studies have involved humans to investigate the impacts of alarm 

flood management techniques on performance. This lack of performance-based research is likely 

due to the need for high- fidelity simulators of manufacturing processes to assess the impact of 

alarm design. This study aims to fill this gap by studying operators’ performance in a high-fidelity 

chemical plant simulator.  

5.2.2 Human-Automation interaction 

Product refinement industries, such as mining, oil refining, chemical, and pharmaceutical 

manufacturing, use process control to monitor and react to abnormal processes for safety and 

efficiency [206]. Process monitoring requires demanding states of attention and skills from the 

operators, and automation can enhance these processes.  

An automated system accomplishes a function previously carried out by a human operator and can 

help reduce operator workload in response to abnormal situations [207]. Research in the process 

control industry shows that operators perform better when permitted to work in-the-loop with 
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automation [208]. Automation offers numerous benefits such as reduced workload, increased 

situational awareness, and improved performance [209]. However, inappropriate usage can 

negatively impact the operators' understanding of the system, task processes, and overall 

performance [210]. Negative impacts include excessive monitoring, boredom, over-reliance, low 

situational awareness, out-of-the-loop performance, and reduced trust in the automation [211]. 

Consequently, it is crucial to carefully consider the benefits and potential risks of automation in 

process control systems.  

Previous work investigated the impacts of an automated alarm system in human-in-the-loop studies 

in process control simulators. A study examined the impact of alarm management and automation 

on process control operator workload (using NASA-TLX) and performance in a high-fidelity 

ethylene manufacturing simulator [179]. The experiment involved eleven console qualified 

operators in a simulator-based training exercise. The experimental design involved three levels of 

alarm management schemas (no alarm rationalization, with alarm rationalization, and smart alarm) 

and two levels of automation (no automation and with automation). Results showed that smart 

alarm management and automation can help operators reduce workload and material lost during 

abnormal operating conditions.  

Jang et al. introduced a proactive alarm reduction method implemented in a nuclear power plant 

environment [180]. The researchers designed the alarm reduction method to investigate alarm 

processing techniques in coping with high volumes of alarms. They had eight nuclear power plant 

operators test the effectiveness of the alarm rationalization method. The results indicated that the 

operators’ situational awareness in the alarm reduction environment was higher than in the non-

reduction environment. A study evaluated the effectiveness of a decision support scheme called 

Early Warning in a simulated setting of a chemical plant control room [50]. Early Warning 

predicted the time of occurrence of critical alarms before they were triggered. An experimental 

design was developed to assess the effectiveness of this decision support tool in enhancing 

operators' performance in specific tasks. Early Warning offered control room operators early 

warning of potential alarms within a specific time frame (e.g., in the next 90 sec.), enabling them 

to be proactive and take corrective actions before alarm thresholds are breached. Participants were 

asked to monitor the depropanizer unit and to diagnose the root cause of the fault. Results showed 

that Early Warning supports the operator’s diagnosis but does not enhance the accuracy of 

diagnosing the root cause.  
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Alarm management methods and automation are used in process control industries to prevent, 

manage, and mitigate abnormal processes. Under normal conditions, operators can usually 

passively supervise process units, focusing on efficiency through minor adjustments. However, 

when abnormal situations occur, operators need to proactively manage the situation by taking 

corrective actions. Automation is less error-prone and can produce repeatable actions, but it often 

fails to address unforeseeable abnormal situations. In contrast, humans can be flexible and produce 

creative solutions in response to unanticipated situations [26]. Despite automation and improved 

alarm management systems, humans remain crucial in controlling chemical plants, particularly 

during abnormal situations [173].  

5.2.3 Wizard of Oz (WoZ) 

Building automation technology in process control can be complex, time-consuming, and costly. 

To save time on resources and test the technology quickly, researchers can simulate the response 

of the technology by having a person “play” the role of the automation. This moderated research 

method is called The Wizard of Oz, WoZ [212]. In a WoZ study, participants interact with a system 

that appears to be autonomous but is actually partially or fully controlled by a human [213]. The 

WoZ method might be seen as a low-level deceit employed to manage participants’ expectations, 

but it has been used in several studies and is known to encourage participants’ natural behaviors to 

the new system [214]. The "wizard" acts as a proxy for the system, emulating its intelligence and 

interacting with the participant through an interface.  

WoZ prototyping has been used in various contexts, including interface designs for automated cars 

[215], natural language dialogue systems [216], speech recognition systems [217], and even 

introducing children to machine learning concepts [218]. WoZ has also been used to test 

autonomous systems, as it allows the researchers to mimic the model's computations and receive 

feedback before the development process [219]. Recently, a study investigated the learning patterns 

for human and artificial intelligence (AI) teams using the WoZ method [220]. Teams of one human 

and an AI robot performed an Urban-Search-And- Rescue mission in a simulated environment. 

The robot was controlled by a WoZ researcher, allowing for the study of human-robot interaction 

without computational modeling of necessary robot competencies, such as environment sensing 

and natural language communication. This method allows researchers to test autonomous systems 
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at a lower cost than developing a functioning system, and to gather early insights into the system’s 

design, user perception, and behavior.  

Despite more than 30 years of research in alarm management leading to the development of various 

data-driven methods and diagnostic tools, few studies have involved humans in investigating the 

implications for applicable industries. The purpose of this study is to conduct a high-fidelity 

human-in-the- loop experiment to quantify the effects of alarm rationalization in a chemical plant 

simulator. We will be using the WoZ method to simulate the effects of an automated diagnostic 

tool and its impact on the operator’s performance.  

5.3 Research objective 

Extensive research has been done on developing and improving data-driven algorithms and 

methods to manage alarm floods. Alarm flood rationalization algorithms have often been tested 

with large samples of datasets, but not often challenged in a high-fidelity simulator with real 

operators. Few studies have investigated the interactions between humans and an automated fault 

diagnostic tool in a high-fidelity process control simulator. This paper presents a study to address 

this gap. This research aims to investigate how a fault diagnostic tool can support the operators 

during alarm floods in a control room. To this end, we investigated the effects of an automation-

based fault diagnostic tool on the operator's performance during different alarm flood scenarios in 

a Tennessee Eastman Process (TEP) chemical plant simulator.  

5.4 Methodologies 

5.4.1 Participants 

The subjects were 20 students in chemical engineering at Polytechnique Montreal University. 60% 

self-reported as female and 40% as male. 75% were between the ages of 20-29 years old, and 25% 

were 30 years old or over. An informed consent was obtained from all the participants.  

5.4.2 Apparatus 

5.4.2.1 Chemical plant simulator 

We used the TEP as the simulator for representing a chemical process control. TEP is a well-

established process control simulator that is downloadable onto MATLAB/Simulink [189]. TEP is 

a realistic simulator of a chemical process consisting of five main process units: a reactor, a 

separator, a stripper, a compressor, and a mixer. The process has a total of eight different chemical 



51 

 

components identified as A through H. These components consist of four gaseous reactants: A, D, 

and E that are fed to the reactor, and C which is fed into the stripper. The reactor contains a small 

amount of inert gas B. The objective is to produce liquid products G and H, which exit the stripper 

base and are transferred to subsequent units and cells. There is also a liquid by-product F which is 

purged from the TEP. The operator can manipulate 12 input variables and monitor 41 output 

variables. The TEP simulator has 20 pre-defined fault scenarios [187].  

 

Figure 5.1 Overview interface of the chemical plant simulator.  
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Figure 5.2 Detailed unit interface of the chemical plant simulator.  

In a previous study, we developed PER4Mance, an open-source graphical user interface for the 

TEP simulator based on dashboards currently in use in the industry [221]. PER4Mance has two 

windows. The first window displays key performance indicators, the overall Piping and 

Instrumentation Diagram (P&ID), the alarm table, and the diagnostic tool (Figure 5.1). The second 

window shows time trends and the current value of process variables for each unit, organized as 

tabs, and the operator can control the unit’s valves from a menu (Figure 5.2). The user can navigate 

between the units using tabs. Both windows were displayed at the same time on two computer 

screens. The alarms are triggered when the value of the variables exceeds its thresholds. Each 

variable has a low and a high threshold, within which are the normal operating values. When the 

value exceeds either threshold, an alarm appears in red on the overview interface along with a 

sound. 



53 

 

 

Figure 5.3 Diagnostic tool evolution for Fault 1: a) 3 alarms, b) 6 alarms, c) 9 alarms, and d) 12 

alarms.  

 

Figure 5.4 Diagnostic tool evolution for Fault 6: a) 3 alarms, b) 6 alarms, c) 9 alarms, and d) 12 

alarms.  

a b 

c d 

a b 

c d 
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5.4.2.2 Diagnostic Tool 

This study investigates the impact of a fault diagnostic tool on operator performance through a 

human-in-the-loop experiment. Training an algorithm to detect and identify the faults or alarm 

floods was going to be too time-consuming and costly. For this reason, we used the WoZ method 

to simulate the behavior of an automated fault diagnostic tool. Participants interacted with a 

diagnostic tool that they believed to be autonomous but was actually operated by a member of our 

research team. Participants thought that the fault diagnosis was being provided by the tool when it 

was activated by the researchers.  

In the condition where the diagnostic tool was deactivated, the area did not provide any new 

information. It had the message “Fault found: Unknown” throughout the entire testing session. In 

the condition where the diagnostic tool was activated, the research team wanted the diagnostic tool 

to reflect a learning capability and to improve its accuracy of the likely fault as more information 

was available. In this case, the information provided to the tool were the alarms triggered. Hence, 

as there were more alarms triggered, more information was provided to help the tool classify the 

situation into one of different probable faults and the diagnostic message updates. Practically, a 

diagnostic message appeared after three alarms. The message was updated again after six, nine, 

and twelve alarms (Figure 5.3 and Figure 5.4). After twelve alarms, the diagnostic was presented 

as the final message.  

Furthermore, the research team wanted to reflect the limited confidence level of the algorithms. To 

do so, two to three possible diagnostics were provided at once, each with a confidence level 

expressed in percentage. When there were two or three possible diagnoses, the sum of the 

confidence levels was 100%. When there was only one diagnosis, the confidence level was at only 

90%. After six alarms and again after nine alarms, the diagnostic message and its confidence levels 

were updated. After twelve alarms, the final diagnosis was provided. To simulate alarm grouping 

and to increase the tool’s transparency, clicking the “Alarms” button next to each fault highlighted 

the related alarms in the alarm table (Figure 5.5). Note that in the two failure scenarios participants 

experienced, the total number of alarms reached 15 and 27, respectively.  
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Figure 5.5 The “Alarms” button highlights in dark red the alarms related to the Low Flow Feed 

A fault selected in the alarm table.  

5.4.3 Experimental variables 

5.4.3.1 Independent variables 

There were two independent variables: use of the fault diagnostic tool; and the type of fault used 

in the scenario.  

Fault diagnostic tool  

There were two experimental conditions: the activation or deactivation of the fault diagnostic tool. 

In condition 1, the fault diagnostic tool was deactivated. The only cues signaling the participants 

of a malfunction were the alarms and indications on the interfaces. In condition 2, the fault 

diagnostic tool was activated. The cues signaling a malfunction were the same as in condition 1 

with the addition of messages for the faults found on the diagnostic tool. The Wizard of Oz method 

was used to simulate the behavior of the fault diagnostic tool. The research team pre-programmed 

the diagnostic tool’s message to be triggered on the operator’s screen during the alarm flood.  

Type of faults: alarm flood scenarios  

There were two different alarm flood scenarios. We reviewed all of TEP's predefined faults to 

identify those that led to an alarm flood and found two such faults [222]. These were “Fault 6: A 

feed loss” and “Fault 1: A/C feed ratio, B composition constant”.  

Each participant completed a different fault for each condition to prevent any learning effect when 

executing the second scenario. Fault 6 was considered to be an “easy” fault due to the first alarm 

triggered locating the source of the fault (Low Flow Feed A). Fault 1 was considered to be a 

“difficult” fault because the alarms that were triggered did not clearly describe the source of the 
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fault. To resolve Fault 6, participants had to acknowledge that there was no feed of product A, and 

to pause the plant until the refill was done. To resolve Fault 1 scenario, participants had to increase 

the flow of product A by opening its valve in manual mode.  

5.4.3.2 Dependent variables 

There were three dependent variables: mental workload; situational awareness; and fixation 

duration and count.  

Mental workload questionnaire  

Mental workload is a concept that has been invoked in human factors research and practice. Mental 

workload reflects the cost of mental resources necessary to achieve a particular level of 

performance during a task [223], [224]. Mental workload is viewed as the difference between the 

human’s processing capacities that are required to perform the task and the capacity available at 

the given moment [58]. Sustained high mental workload causes mental fatigue, decreased 

performance, and can have detrimental health effects in the long run [225]. As a result, 

understanding subjects’ mental workload under different alarm flood conditions could provide 

insights into the effects of the diagnostic tool.  

The NASA task load index (NASA TLX) questionnaire is a tool for measuring and conducting a 

subjective mental workload assessment (see Appendix A). It is a well-established subjective 

method using a multidimensional rating scale that is the most widely used in human factors studies 

[226]. It assesses six dimensions related to the participant’s capability and nature of the task: 

physical demand; mental demand; temporal demand; judgment of performance; effort required to 

perform the task; and level of frustration. Participants rated each dimension on a 20-point scale. 

Participants also completed 15 pairwise comparisons to determine the weight of each dimension. 

The total workload score is the weighted sum of each dimension rating, reported as percentage. In 

this study, the questionnaire was used to measure participants' workload after completing each 

scenario.  

Situation Awareness Global Assessment Technique (SAGAT) questionnaire  

Endsley’s enduring definition of situational awareness (SA) is “the perception of the elements in 

the environment within a volume of time and space, the comprehension of their meaning, and the 

projection of their status in the near future” [227]. Endsley’s model of SA has three levels. Level 

1: Perception of the elements in the environment is the first step in achieving SA. It is to perceive 
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the status and dynamics of the relevant information in the environment. The information needs to 

be displayed in a way that allows successful and effective gathering of information from different 

sources. Level 2: Comprehension of the current situation includes being aware of the elements that 

are present and understanding the significance of these elements considering the operator’s goals 

or system variables. Level 3: Projection of future status is the ability to anticipate the system 

dynamics in the near future. It represents the highest level of SA and is achieved through the 

perception of elements and the comprehension of the situation (level 1 and 2 SA). This level is 

important to allow operators to be proactive rather than reactive. Level 3 SA is concerned with 

what is going to happen, or what is most likely to happen, based on the current state and dynamics 

of elements [228].  

In this study, we used the Situation Awareness Global Assessment Technique (SAGAT), a direct, 

objective assessment of participants’ SA (see Appendix B). SAGAT is a widely used and validated 

metric that has been shown to be effective across a variety of domains to measure participants’ SA 

[229]. The SAGAT questionnaire that was developed for this study had six questions. It was based 

on relevant probes from previous studies [230], [231] and covered all three levels of SA. There 

were four questions pertaining to SA level 1, one question on SA level 2, and one question on SA 

level 3.  

The probes were administered at three predetermined moments: during normal operation, during 

the alarm flood, and after application of a corrective action. Participants were not previously aware 

of the timing of the probes. During each probe, the simulator was paused and displays were 

blanked. Participants answered the SAGAT questions on a printed questionnaire using a pen. After 

the participants completed the probing, the simulator was resumed from the exact moment it was 

stopped and the session continued. After the test, participants’ answers were compared with the 

actual state of the simulator at the moment the probe occurred. A correct response was rated as 

100% and an incorrect response as 0%. Level 1 SA is the averaged response score of all level 1 

questions, averaged over all participants. The same was done for SA levels l 2 and 3, whereas the 

global SA was the averaged response score of all questions (levels 1, 2 and 3).  

The freeze-probe approach used in the SAGAT can interrupt task flow and affect the measurement 

of situation awareness [232]. By requiring participants to recall system status during simulation 

pauses, the method may not fully reflect how SA is maintained during continuous operations. These 

pauses can also shift attention or change the participant’s cognitive state. Nonetheless, SAGAT has 
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been widely applied in fields such as air traffic control and medical training, where it provides a 

structured way to compare perceived and actual system states and has been effective in identifying 

gaps in operator awareness [233]. 

Fixation duration and count  

Eye response metrics are among the most widely employed psychophysiological measures across 

various research domains [234]. Eye metrics include pupil diameter, blinks, gaze, and fixations. 

Fixations occur when eye-movements are nearly still in order to assemble the necessary 

information. Past research found that longer fixation duration is related to difficulty in interpreting 

the information presented or a greater involvement in its exploration [235]. It was found that more 

complex problems resulted in longer fixation duration [236]. High cognitive workload led to a 

failure to suppress irrelevant information, resulting in a longer mental processing time within a 

fixation [237]. This results in longer fixation durations and fewer fixation counts [238].  

The eye-tracker used was the Pupil Invisible made by Pupil Labs. The eye tracker looks like a 

normal pair of glasses and measures 144 mm in width, 48mm in height, and 160 mm in length. The 

eye-tracker has a scene camera to record what the participant is looking at and an infra-red sensor 

to measure the participant’s eye position. It came with an Android smartphone on which the 

PupilLab app is used to view real-time gaze and recordings. The recordings were uploaded onto 

the Pupil Lab Cloud, where we retrieved them for data analysis. The Captiv Neurolab software was 

used to analyze the fixation durations and counts.  

5.4.4 Procedure 

Two days prior to the experiment, participants were asked to watch a training video on the TEP 

simulator. It provided an overview of the simulator and gave examples of four fault scenarios, 

including the two fault scenarios that were used in the experiment. Two participants did not watch 

the training video before their arrival, so they watched the video before the start of the experiment. 

All the experimental sessions took place at a laboratory at Polytechnique Montreal University. At 

the participants’ arrival, a briefing of the entire session was given. Subjects were seated at the 

computer simulator and were shown the two simulator interfaces. Then, they calibrated the eye- 

tracker. Participants were instructed to monitor the plant production and that if a fault occurred, 

they had to diagnose the fault and execute corrective actions to the best of their knowledge. At 

random, each participant was assigned one of the following scenarios:  

1) Fault 1 with the diagnostic tool, followed by Fault 6 without the diagnostic tool.  
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2) Fault 1 without the diagnostic tool, followed by Fault 6 with the diagnostic tool.  

3) Fault 6 with the diagnostic tool, followed by Fault 1 without the diagnostic tool.  

4) Fault 6 without the diagnostic tool, followed by Fault 1 with the diagnostic tool.  

In total, there were 5 participants per scenario. The order of faults and use of diagnostic tool 

presentation were balanced between participants. During each test, SAGAT probes were given at 

three predetermined moments. At the end of each test, the NASA-TLX questionnaire was 

administered. The eye- tracker recorded the entire session for each condition.  

5.5 Data Analysis 

5.5.1 NASA-TLX questionnaire 

Each participant’s ratings were inputted into the NASA-TLX application, and the weighted 

workload scores were calculated. The statistical tests ANOVA and Student’s t-tests were 

performed to evaluate the impact of the type of fault and of condition on mental workload.  

5.5.2 SAGAT questionnaire 

We calculated participants’ global SA, SA level 1, SA level 2, SA level 3, and SA for each of the 

three probes. We performed ANOVAs for each level and each probe, to analyze the impact of the 

diagnostic tool and type of fault on SA.  

5.5.3 Eye-tracking fixation data 

For each interface, we identified the areas of interest (AOI). The overview interface had four areas 

of interest (Figure 5.6): 1) key performance indicators, 2) plant overview, 3) alarm table, 4) fault 

diagnostic tool. The detailed unit interface had three areas of interest (Figure 5.7): 1) key 

performance indicators, 2) plant overview, 3) controls.  
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Figure 5.6 Overview interface AOIs.  

 

Figure 5.7 Detailed unit interface AOIs.  

In our study, the eye-tracker measured the total fixation duration and the total fixation count in 

each AOI. After gathering the raw fixation duration and count of each participant, we had to control 

for the differences in eye fixation between participants i.e., some participants had much higher 

fixation counts than others for the same duration of time. To do so, we calculated each participant’s 
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relative fixation duration (RFD) and relative fixation count (RFC). The RFD was calculated by 

dividing the fixation duration in each area by the total fixation duration on the entire interface (ex: 

fixation duration in AOI 4 / total fixation duration on the overview interface). The RFC was 

calculated by dividing the fixation count in each area by the total fixation count on the entire 

interface. Furthermore, RFD and RFC were calculated for each participant, for each AOI. Finally, 

ANOV As were performed for each AOI, to evaluate the impact of conditions and type of faults 

on RFD and RFC. Note that there were 15 missing recordings out of 40 due to technical problems 

with the eye-tracker. We report results from the 25 valid recordings from 16 participants.  

5.6 Results 

The following section will report statistically significant results only.  

5.6.1 Mental workload 

A two-way within subject ANOVA was performed to analyze the effects of the diagnostic tool and 

the faults on the workload. Results show that the type of fault had a significant impact on the 

workload (F1,19 = 7.01, p < 0.05), see Figure 5.8. The Tukey post- hoc test showed that workload 

during Fault 1 was significantly higher than during Fault 6 (p < 0.05). The diagnostic tool and the 

interaction between the fault and diagnostic tool showed no statistically significant effect on the 

workload. 

 

Figure 5.8 Mental workload between faults F1 and F6, with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  
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5.6.2 Situational awareness 

Significant results were reported for the global SA, the SA level 3, and during probe 3 (after the 

corrective action). No significant results were found for SA levels 1 and 2, and for probes 1 

(normal operations) and 2 (during the alarm flood).  

5.6.2.1 Global SA 

A two-way within subject ANOVA was performed to evaluate the impact of the diagnostic tool 

and the type of fault on participants’ global SA. Results show that the use of diagnostic tool has a 

significant impact on the SA (F1,19 = 6.32, p < 0.05) see Figure 5.9. The Tukey post-hoc test showed 

that SA with the diagnostic tool was significantly higher than without it (p < 0.05). The type of 

fault and its interaction with the use of diagnostic tool showed no statistically significant effect on 

the global SA. 

 

Figure 5.9 Global SA between faults F1 and F6, with (WD) and without (WOD) the diagnostic 

tool. Error bars represent the standard error.  

5.6.2.2 SA level 3 

Statistical analysis was performed to evaluate the effects of the diagnostic tool and faults on SA 

level 3. A two-way within subject ANOVA analysis showed that the use of diagnostic tool has a 

significant impact on the SA level 3 (F1,19 = 4.00, p < 0.05) see Figure 5.10. The Tukey post-hoc 
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test showed that SA level 3 with the diagnostic tool was significantly higher than without it (p < 

0.05).  

The ANOVA also showed that the type of fault also had a significant impact on SA level 3 (F1,19 

= 4.00, p < 0.05). Tukey post-hoc showed that SA level 3 was significantly higher during Fault 1 

than Fault 6 (p < 0.05). The interaction between the use of diagnostic tool and the type of fault 

showed no statistically significant effect on SA level 3.  

 

Figure 5.10 SA Level 3 between faults F1 and F6, with (WD) and without (WOD) the diagnostic 

tool. Error bars represent the standard error.  

Student’s t-tests were performed to evaluate the effect of the diagnostic tool on the SA level 3, in 

an easy scenario as compared to a difficult scenario. Results showed that the SA level 3 during 

Fault 1 (difficult scenario) was significantly higher with the diagnostic tool than without it (p < 

0.05), see Figure 5.11. A t-test was also completed for Fault 6 (easy scenario) with and without 

the diagnostic tool, and the results showed no significant difference.  



64 

 

 

Figure 5.11 Difference in SA level 3 during Fault 1 with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  

5.6.2.3 SA at probe 3 

A two-way within subject ANOVA was performed to evaluate the effect of the diagnostic tool and 

the type of fault on the SA at probe 3, which was the moment after the resolution of the fault. 

Results showed no statistically significant effect. A paired t-test was performed to evaluate the 

effect of the diagnostic tool in an easy as compared to a difficult scenario. Results showed that the 

global SA at probe 3 during Fault 1 with the diagnostic tool was 73.33%, and 88.33% without it, 

see Figure 5.12. The difference was significant (p < 0.05). A t-test was also performed between 

conditions for Fault 6, but the results showed no statistically significant difference.  

 

Figure 5.12 Difference in SA at probe 3 during Fault 1 between with (WD) and without (WOD) 

the diagnostic tool. Error bars represent the standard error.  
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5.6.3 Fixation duration and count 

This paper reported the significant results that were found for the Overview interface on AOI 1, 3, 

and 4. Statistical tests were also completed for the Overview interface AOI 2, and all three areas 

of interest of the Detailed interface, and no statistically significant results were found.  

5.6.3.1 Area of interest (AOI) 1: KPIs 

An ANOVA analysis showed that the use of diagnostic tool had a significant impact on the RFD 

(F1,15 = 5.30, p < 0.05), see Figure 5.13. The interaction between the type of fault and the use of 

diagnostic tool also showed an effect on the RFD (F1,15 = 5.03, p < 0.05). The Tukey post hoc test 

showed that the RFD was significantly higher in AOI 1 when the diagnostic tool was activated (p 

< 0.05). The type of fault showed no significant effect on the RFD.  

 

Figure 5.13 RFD in AOI1 between faults F1 and F6, with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  

An ANOVA analysis showed that the use of the diagnostic tool had a significant impact on the 

RFC (F1,15 = 6.21, p < 0.05). The Tukey post hoc test showed that the RFC (p < 0.05) was 

significantly higher in AOI 1 when the diagnostic tool was activated (Figure 5.14). The type of 

fault showed no significant effect on the RFD.  



66 

 

 

Figure 5.14 RFC in AOI1 between faults F1 and F6, with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  

5.6.3.2 Area of interest (AOI) 3: Alarm table 

A two-way ANOVA shows that the use of diagnostic tool affects the RFD on AOI 3 (F1,15 = 4.59, 

p < 0.05). Tukey post- hoc test shows that the RFD was significantly lower when the diagnostic 

tool was activated (p < 0.05), see Figure 5.15. The type of fault and its interaction with the use of 

diagnostic tool did not show any statistically significant results.  

A two-way ANOVA was also performed to study the effect of the type of fault and the use of the 

diagnostic tool on the relative fixation count (RFC) in the AOI 3. Results showed no statistical 

significance.  

 

Figure 5.15 RFD in AOI3 between faults F1 and F6, with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  
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5.6.3.3 Area of interest (AOI) 4: Diagnostic tool 

A two-way ANOVA test was performed to study the impact of the type of fault and diagnostic tool 

usage on the RFC on the AOI 4 (Figure 5.16). Results showed that the use of the diagnostic tool 

had an impact on the RFC (F1,15 = 7.88, p < 0.05). The post- hoc test showed that the RFC was 

significantly higher when the diagnostic tool was activated (p < 0.05). The type of fault and its 

interaction with the use of diagnostic tool did not show any statistically significant results. A two-

way ANOV A was completed to evaluate the effect of the type of fault and the use of the diagnostic 

tool on the RFD in the AOI 4. Results showed no statistical significance.  

 

Figure 5.16 RFC in AOI4 between faults F1 and F6, with (WD) and without (WOD) the 

diagnostic tool. Error bars represent the standard error.  

5.7 Discussion 

The findings showed that the use of the diagnostic tool supported the operators during alarm floods. 

The global SA was high in all conditions (>80%), which suggests that PER4Mance was a good 

SA-oriented design for process control. PER4Mance was designed based on interfaces currently 

being used in the industry, to which we added a new window for the diagnostic support tool. Our 

results showed that having diagnostic support was beneficial and improved participants’ SA 

without much of a change in user interface design. The use of the diagnostic tool improved global 

SA, SA level 3, and SA at probe 3. Having the diagnostic tool as a support increased operators’ 

overall SA during the entire scenario, increased their ability to project future status, and increased 

their SA at the end of the scenario.  

The use of the diagnostic tool showed benefits to operators’ performance during difficult situations. 

Operators’ workload was shown to be significantly higher during Fault 1 than during Fault 6. This 
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confirmed the initial understanding that Fault 1 was the more difficult scenario and Fault 6 was the 

easier scenario. The use of the diagnostic tool increased SA level 3 during Fault 1, but not during 

Fault 6. In addition, the use of the diagnostic tool also increased SA at probe 3 during Fault 1 and 

showed no significant difference during Fault 6.  

Although the findings suggested that the use of the diagnostic tool may not have helped operators 

during easy situations, they showed that the use of the diagnostic tool supported operators in 

situations that were complex with no obvious solution. Hence, the diagnostic tool showed no 

support to operators when the alarms clearly described the fault but showed significant benefit 

when the situation was complex, and the alarms were ambiguous.  

The diagnostic tool led the operators’ gaze to more solution- oriented areas of interest, rather than 

a diagnosis based on a multitude of alarms. As seen in the literature, alarms were annunciated 

without any differentiation between the root causes, which can overwhelm the operators. In 

addition, longer fixation duration was linked to high cognitive workload due to a failure to suppress 

irrelevant information [237]. When the diagnostic tool was activated, the fixation duration and 

count on AOI 1 (KPIs) increased, the fixation count on AOI 4 (diagnostic tool) increased, and the 

fixation duration on AOI 3 (alarm table) decreased. These findings suggested that the diagnostic 

tool reduced the attention from the alarm table and increased the exploration of the KPIs and the 

analysis of the information provided by the diagnostic tool. Taking the gaze away from the alarms 

and towards the KPIs and diagnostic tool is beneficial because it can reduce the risks of being 

overwhelmed by the alarms. This illustrated the potential of the diagnostic tool to help suppress 

the irrelevant information that required longer processing time such as the alarm table and rather 

focus on other effective information like the KPI’s or the diagnostic tool.  

Jang et al. (2013) introduced a proactive alarm reduction method used in a nuclear power plant 

environment and found that the operators’ SA in the alarm reduction environment was greater than 

in the non-reduction environment. The findings in this paper, where participants’ SA is higher in 

situations with the diagnostic tool activated, corroborate these results. Adhitya et al. (2014) 

developed a proactive system to inform chemical plant operators of an alarm before it happened, 

but the early warning did not improve operators’ accuracy in identifying the root cause. In our 

study, we found that the diagnostic tool provided assistance to the operators in complex fault 

scenarios such as Fault 1 but did not show a significant impact in straightforward situations such 

as Fault 6. Therefore, our study partially confirms these results, where the system also did not 



69 

 

support in easy scenarios yet supported in complex scenarios. This study supported previous 

research findings and added new findings related to the difficulty of the alarm flood scenario and 

the redirection of the eye gaze.  

This study had three main limitations. First, the sample size was limited due to the availability of 

qualifying participants. A larger sample size would also have increased the internal and external 

validity of this study. Second, participants were not working operators from real chemical plants. 

The participating students in chemical engineering had limited exposure and experience in real-life 

chemical plants, and the simulator was a new setup for them. The third point of concern was the 

lack of validation from real plant operators in the simulated environment. Although the interfaces 

were developed based on best practices used in the industry, they hadn’t been reviewed by 

industrial users. In addition, the behavior of the automated alarm rationalization system, i.e., the 

WoZ, was yet to be confirmed by a working operator.  

Future directions include implementing the TEP simulator in real automation systems and 

improving designs based on system limitations and user feedback. To enhance the efficiency and 

realistic behavior of the simulated alarm rationalization system, more studies should be made to 

design better visualizations and interactive displays.  

5.8 Conclusion 

In this study, we conducted a human-in-the-loop experiment using a diagnostic support tool during 

two alarm flood scenarios. We found that the diagnostic support tool improved participants’ 

situation awareness, especially in a complex scenario where the alarms triggered do not provide a 

clear root cause. Also, the diagnostic tool redirected participants’ attention to the main operational 

KPIs and less on the list of alarms, encouraging a more solution-oriented approach when managing 

the chemical plant with the tool present. In a complex environment with human-automation 

interaction, issues related to trust in the machine can arise. There is a need for future studies to 

investigate which factors contribute to and how they impact the human’s trust in an automated tool. 

Future work should also investigate the balance between trust in the automated tool, its 

transparency, and keeping the human’s situational awareness when provided an erroneous 

diagnostic. This will be the next step of this project.  
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CHAPTER 6 ARTICLE 3 : THE EFFECTS OF AN IMPERFECT AI-

BASED DIAGNOSTIC TOOL ON HUMAN SITUATIONAL 

AWARENESS, TRUST AND DECISION-MAKING DURING FAILURE 

MANAGEMENT 
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Karine Ung (Polytechnique Montréal), Prakhar Shukla (Indian Institute of Technology Guwahati), 

Moncef Chioua (Polytechnique Montréal), Philippe Doyon-Poulin (Polytechnique Montréal) 

6.1 Abstract 

Process alarm management in complex industrial systems is challenging, especially during alarm 

floods, which can impair operator performance. AI shows potential in fault detection and 

diagnostics, supporting decision-making and situational awareness (SA). However, issues like 

inaccurate recommendations, insufficient transparency, and overreliance raise safety concerns. 

This study explored the effects of imperfect AI alarm analysis tools on operator performance. 

Twenty participants used an AI diagnostic tool in the Tennessee Eastman Process simulator, which 

provided either a correct or incorrect diagnosis. Performance measures included response times, 

diagnostic accuracy, SA, trust, reliance intentions, and workload. Findings showed incorrect AI 

diagnoses led to longer response times, lower SA, and reduced trust. Despite this, 85% of 

participants followed the AI’s incorrect recommendations. Operators demonstrated reduced trust 

in the AI when its diagnostics were inaccurate but continued to rely on its recommendations. This 

disconnect between reported trust and actual reliance on AI highlights risks in alarm floods. 

Findings provide empirical evidence and recommendations to mitigate risks from imperfect AI, 

aiming to improve human performance and system safety in industrial environments.  

6.2 Introduction  

Artificial Intelligence (AI) refers to creating machines that exhibit intelligent behaviors, enabling 

them to perform tasks typically requiring human cognition [74]. AI systems are capable of 

analyzing data, recognizing patterns, and making decisions autonomously, contributing to various 

sectors from robotics to manufacturing industries [91]. The incorporation of AI systems in 

industrial process control has led to improvements in productivity and safety. According to a 2023 

report by McKinsey, companies that adopt AI technologies see a 20-25% increase in operational 
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efficiency [239]. Despite their efficiency, AI models remain challenging to interpret, as 

understanding how they reach conclusions is still an active area of research.  

As AI became more integrated into industrial processes, it has allowed more complex tasks to be 

automated, and it transformed the nature of people's work [240]. However, the increasing reliance 

on these systems also exposes risks of AI failures, which can have severe consequences in safety-

critical work settings [241]. AI can enhance situational awareness, lower out-of-the-loop issues, 

and improve overall performance by providing real-time insights [242]. However, during failures, 

operators may be left without the necessary context or control to address unexpected situations 

effectively [19]. This dual nature of AI highlights both its potential and the risks associated with 

its integration in critical industrial workplaces [243]. Our study will focus on exploring the impact 

of an unreliable AI-based diagnostic tool on human performance in a process control environment.  

6.3 Literature Review  

The literature review begins with an overview of autonomous systems, followed by a discussion 

on AI and automation failures in manufacturing, including challenges such as alarm floods. It then 

examines the implications of these issues for human performance, focusing on trust and reliance, 

out-of-the-loop challenges, and situational awareness. Next, the role of AI transparency is explored, 

culminating in an overview of AI-based fault detection and diagnosis.  

6.3.1 Autonomous Systems  

The integration of autonomous systems into industrial processes has advanced in recent years, 

reshaping the management of engineering, operations, and maintenance [244]. Gamer et al.  

envisioned a future in which industrial facilities function with minimal human intervention, 

enabled by technologies such as AI, machine learning, and robotics [245]. This vision is being 

realized as AI-driven systems demonstrate their capacity to optimize workflows in real time and 

adapt to rapidly changing conditions [246]. For instance, manufacturing and chemical industries 

exemplify this shift by harnessing automation to reduce downtime and enhance overall productivity 

[247]. These developments underscore the influence of autonomous systems on traditional 

operational models, setting new benchmarks for performance and reliability [248].  

AI, Machine Learning (ML), and Deep Learning (DL) are terms often used interchangeably, yet 

they hold distinct, hierarchical relationships in the field of computer science. Machine Learning, a 

subset of AI, enables machines to learn and improve from data independently [81]. Deep Learning, 

a specialized branch within ML, uses multi-layer neural networks to recognize complex patterns in 
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large datasets, driving advancements in areas like image and speech recognition and autonomous 

vehicles [249].  

Despite the progress, achieving fully autonomous industrial systems remains challenging. 

Regulatory frameworks are still evolving, creating uncertainty for companies seeking to deploy 

these technologies at scale [245]. Technical hurdles, such as ensuring consistent performance in 

unpredictable settings, demand ongoing innovation [250]. The human element is another critical 

aspect requiring attention: while automation reduces repetitive tasks and enhances efficiency, it 

adds a supervisory role to human workers and alters their decision- making responsibilities [251].  

This study aimed to explore the effects of an AI on the user, more specifically on human 

performance. We investigated the effects of AI failures on the operator’s trust, situational 

awareness and decision-making processes. The study took place in a chemical plant simulator with 

alarm flood scenarios. By studying these aspects, we investigated the risks posed by an unreliable 

AI, while fostering autonomous systems that support human resilience and adaptability in industrial 

environments.  

6.3.2 AI/Automation Failures in Manufacturing and Alarm Floods  

6.3.2.1 AI and automation  

AI and automation have demonstrated effectiveness across various applications, yet it is not 

without flaws [252]. Failures in AI and failures in automation differ in nature and consequences. 

AI failures arise in data-driven systems due to biased training data or model/algorithmic flaws, 

resulting in incorrect or unintended outcomes [253]. For example, an AI failure in a chemical plant, 

where a predictive maintenance system wrongly predicts a pump failure, can lead to unnecessary 

shutdowns and production delays [254]. The accuracy of AI models largely depends on the quality 

and completeness of their training data, as AI may misclassify faults or fail to detect anomalies 

when encountering scenarios beyond its training experience [255].  

In contrast, automation failures occur in rule-based systems due to hardware malfunctions, software 

bugs, or human errors [256]. For instance, a robotic arm could cease operation because of a 

misaligned sensor [257]. This paper focused on AI failures, specifically examining how an AI's 

misdiagnosis affected human performance in a chemical plant simulator. While automation 

systems will be referenced for context, the study emphasizes the challenges posed by AI-based 

systems failures in high-stakes environments.  
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6.3.2.2 AI/automation failures in manufacturing  

Failure within automated systems, particularly in industrial plants, can lead to production delays, 

equipment damage, or safety risks. Studies highlighted that complex process control systems 

frequently exhibit unpredictable behaviors due to software or hardware issues, leading to serious 

failures [84], [258], [259]. For example, the Texaco Refinery Milford Haven accident in 1994 

illustrated the potential dangers of automated systems when not adequately monitored. An 

excessive reliance on the system for managing equipment contributed to a series of failures that led 

to a massive explosion. The automated systems did not detect an unusual buildup of pressure, and 

the operators, overwhelmed by process alarms, failed to respond suitably [43]. Automation failures 

in manufacturing can result in dangerous outcomes, making it essential to design systems that 

support operators in effectively managing such situations [179].  

6.3.2.3 Alarm floods  

Such failures can lead to alarm floods, where cascading process alarms overwhelm operators, as 

seen in chemical plants where a single sensor failure triggers numerous alarms [260]. An "alarm 

flood" is when numerous alarms are triggered simultaneously, often resulting from cascading 

failures, typically more than ten alarms within a ten-minute period [261]. In many industrial 

settings, operators can receive hundreds or even thousands of alarms within minutes when critical 

system malfunctions, and they can hinder operators' ability to identify the root cause of the problem 

[37]. Alarm floods exacerbate system failures, as operators struggle to differentiate critical alarms 

from irrelevant or redundant ones, leading to delayed responses [262]. An example was the 

ExxonMobil Baton Rouge refinery incident in 2012, where an alarm flood overwhelmed operators, 

resulting in a chemical release and subsequent fire [263].  

6.3.3 AI failures, implications for Human Performance  

AI systems are particularly vulnerable to failures in complex, dynamic environments where 

conditions change rapidly [164]. When AI makes mistakes, prompt human intervention is essential 

to address potential failures, especially in industrial settings where undetected AI issues could have 

severe safety consequences [168]. As operators increasingly depend on AI, they can become 

disengaged from the system, impairing their ability to respond effectively when unexpected 

situations arise that require human take-over [167]. This underscored the necessity of establishing 

an appropriate level of trust in AI systems to facilitate effective human-AI collaboration and ensure 
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operators can assume control when required [264]. To provide a deeper understanding of these 

challenges, we will now explore the concepts of trust and reliance, out-of-the-loop phenomena, and 

situational awareness.  

6.3.3.1 Trust and reliance  

Trust is central to effective collaboration between humans and AI systems [171], [265], [266]. 

Mayer et al. conceptualized trust as “a willingness to be vulnerable to the actions of another, based 

on the belief that the other will act in a manner beneficial to the trustor” [267]. Lee and See refined 

this definition by characterizing trust as an attitudinal construct and reliance as its behavioral 

counterpart.  

Reliance refers to the act of depending on another entity to fulfill specific tasks or responsibilities 

[268], [269]. Trust lays the groundwork for reliance, as it shapes the individual’s confidence in the 

system’s capability and dependability [266]. Without trust, reliance is unlikely to materialize 

because individuals hesitate to depend on systems they find unreliable [171]. Successful 

interactions where systems perform as anticipated tend to bolster trust and encourage continued 

reliance [270]. 

The appropriate calibration of trust is essential for the optimal utilization of AI systems [271]. 

Calibration ensures that reliance corresponds appropriately to the system’s actual performance 

capabilities, which is essential for promoting both operational safety and efficiency. Properly 

calibrated trust enables users to confidently delegate routine responsibilities to AI systems while 

maintaining active oversight in more complex or high-stakes situations [272], [273]. When there 

is insufficient trust, users perceive these AI systems as unreliable, they can be reluctant to rely on 

them, reject or underutilize systems [274]. This usually results in unnecessary manual interventions 

or overrides that disrupt workflows and reduce operational efficiency [275].  

On the other hand, overtrust—a scenario in which trust exceeds a system’s actual capabilities— 

can result in over-reliance and detrimental consequences [276]. Overtrust causes users to disengage 

from essential oversight roles, undermining the overall reliability of operations [241], [270]. For 

example, in aviation, excessive reliance on autopilot systems has caused pilots to overlook critical 

flight data, thereby increasing the risk of adverse events during crucial phases such as takeoff or 

landing [277]. Excessive trust can delay the detection and correction of errors, compromising 

system integrity and effectiveness [278].  
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Studies showed that individuals exhibiting higher levels of trust in AI agents are more likely to rely 

on their guidance [266], [274]. We aimed to explore the implications of overtrust and over-reliance, 

particularly focusing on alarm flood scenarios where participants risk failing to reject erroneous AI 

diagnosis.  

6.3.3.2 Out-of-the-loop (OOTL)  

The OOTL problem arises when operators disengage from monitoring tasks due to an over- reliance 

on AI, hindering their ability to respond effectively during critical failures [152], [279]. For 

instance, in industrial manufacturing, operators rely on automated quality control systems to detect 

defects. When these systems fail, operator’s response delays can impact safety, production, and 

product quality [280], [281]. Studies show that OOTL operators often struggle to re-engage during 

system malfunctions, leading to delayed responses and increased risks of accidents [209], [282], 

[283].  

The concept of OOTL was useful for our study as we investigated the effects of an unreliable AI 

when participants re-entered the loop after a period of monitoring, and tried to regain control of the 

fault situation.  

6.3.3.3 Situational Awareness (SA)  

Situational awareness is a fundamental component of effective decision-making and performance. 

Maintaining SA is essential to ensuring optimal human performance in complex and dynamic 

environments. Endsley’s model divides situational awareness into three hierarchical levels: 1) 

Perception, 2) Comprehension, and 3) Projection. First, perception involves detecting relevant 

environmental information. Second, comprehension is about interpreting and understanding the 

significance of these elements. Third, projection is the ability to anticipate future events based on 

the current understanding [166]. AI enhances SA by transforming complex data into actionable 

insights and detecting anomalies [174], [284], [285]. In industrial settings, AI monitors variables 

like temperature and pressure, identifying patterns that signal potential issues [286], [287].  

Studies show that when AI insights are clear and relevant, they improve SA, reduce OOTL effects, 

and enable faster decision-making [152], [280], [288]. AI can analyze patterns to prioritize issues 

and assist with complex choices [258], [289]. When AI provides an accurate assessment and 

relevant projections, it can significantly enhance SA, reduce OOTL issues, and improve human 

performance by enabling quick, informed responses [62]. However, when AI provides an 

inaccurate assessment or fails to justify its recommendations, it can undermine trust and create 
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significant challenges for operators in maintaining SA. This issue becomes particularly critical in 

emergencies, where decisions require rapid verification and interpretation of AI-driven guidance, 

potentially leading to confusion, mistrust, and OOTL problems [241], [290]. For example, during 

an alarm flood, an AI system could prioritize a specific alarm without explaining that it detected 

an underlying equipment failure as the root cause. This lack of clarity can significantly impair 

operators' SA, leaving them uncertain about the broader context and the reliability of the AI's 

judgment [276]. Unclear AI logic delays actions, compromising SA, safety and performance [291], 

[292], [293].  

Finally, AI systems can also be useful for executing decisions and action, especially for routine 

and repetitive tasks [294]. For instance, in industrial settings, AI can autonomously adjust 

machinery to maintain optimal performance or shut down equipment in case of detected 

malfunctions, reducing the need for constant human oversight [295]. However, during AI failures 

or emergencies, operators must quickly regain control of critical systems, but sudden manual 

intervention combined with low SA and OOTL issues can lead to confusion, delays, and 

compromised safety and performance [251], [262], [282].  

Therefore, effective AI design should prioritize maintaining SA, calibrating trust, and minimizing 

OOTL issues in complex environments [296]. Enhancing AI transparency plays a critical role in 

keeping operators actively engaged, ensuring readiness for emergency takeovers, and supporting 

system effectiveness by fostering trust, reducing OOTL risks, and preserving SA in high-stakes 

situations [19].  

6.3.3.4 AI Transparency  

Transparent AI systems provide operators with clear, understandable explanations for 

recommendations, allowing for informed decision-making [297]. Enhancing transparency in AI 

systems is critical for improving SA and mitigating OOTL issues [298], particularly in 

manufacturing environments. For instance, AI can present real-time sensor data, such as 

temperature, vibration, and pressure readings, alongside specific justifications for maintenance 

actions [258]. In the automotive industry, transparency reveals how an AI-based system predicts 

maintenance needs in vehicles by disclosing the data and criteria used in autonomous driving 

decisions [291]. If the AI recommends shutting down a machine, it can identify which safety 

thresholds have been exceeded and explain the associated risks. These suggestions can be 
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supported by summaries of past incidents, offering operators a comprehensive understanding of 

the system’s reasoning [276].  

Further, transparency can be enhanced by incorporating clear language, confidence levels, and 

alternative options considered by the AI system [299]. Displaying confidence levels allows 

operators to evaluate the reliability of AI-generated recommendations, particularly in uncertain or 

high-stakes scenarios [271]. Such features promote trust and empower operators to critically assess 

and decide whether to act on AI outputs [300]. By keeping operators engaged in the decision-

making process, transparency mitigates OOTL issues and ensures a collaborative dynamic between 

humans and AI systems [241]. This dynamic is particularly vital in emergencies, where a rapid yet 

well-informed evaluation of AI recommendations is necessary [293]. Consequently, transparent AI 

systems support improved SA, proactive responses to emerging risks, and enhanced decision-

making quality.  

6.3.4 AI-Based Fault Detection and Diagnosis (FDD)  

AI can be used for managing faults and mitigating alarm floods in manufacturing environments. 

By analyzing historical data, suppressing non-critical alarms, and prioritizing essential ones, AI 

systems enable operators to focus on critical issues while filtering out less significant alarms [301]. 

For example, in industrial plants, AI can group related alarms stemming from a single fault, 

allowing operators to address the root cause more effectively [302]. Additionally, AI-based systems 

automate routine monitoring tasks, enabling human operators to focus on complex challenges 

[303].  

Building on these capabilities, Fault Detection and Diagnosis (FDD) can be used to support the 

safety, efficiency, and reliability of industrial operations [30]. It focuses on identifying system 

faults and analyzing their root causes using advanced techniques like artificial intelligence and 

machine learning [255]. AI-based FDD systems detect anomalies and diagnose issues in real-time, 

supporting faster corrective actions [304]. FDD can be useful in high-risk industrial environments, 

where timely fault resolution is essential to prevent accidents. Traditional FDD methods relied on 

rule-based systems, predefined thresholds, and expert judgment, which limited their adaptability 

and accuracy [51]. These systems were primarily reactive, identifying faults only after their 

occurrence and required human expertise to interpret alarms [41]. Statistical process control 

techniques, commonly used in manufacturing, were constrained by their inability to detect subtle 

anomalies in dynamic environments [305].  
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AI-based FDD systems detect faults by leveraging machine learning algorithms to process large 

amounts of sensor data, identify patterns, and detect faults in real time. These systems outperform 

traditional methods in both speed and accuracy [175]. For example, machine learning models have 

been shown to predict equipment failures early, helping manufacturers prevent downtime and 

improve productivity [84]. Chang et al. implemented an AI system for detecting and diagnosing 

operational issues in solar projects, achieving a fault detection precision of 98.6% [176]. Another 

study demonstrated that an AI-based system achieved a 98% agreement between predicted and 

actual anomalies in chemical plants over three months, improving fault detection accuracy [177]. 

Similarly, a deep learning model applied to the Tennessee Eastman process in chemical production 

achieved a fault detection accuracy of 95.6% [178].  

The application of FDD systems in real-world scenarios has also been explored. For instance, one 

experiment evaluated AI-based alarm systems in a high-fidelity ethylene manufacturing simulator 

[179]. The study assessed the impact of alarm management strategies on operator workload and 

performance using the NASA-TLX scale. Participants included eleven console-qualified operators 

who engaged in training simulations incorporating three levels of alarm management (no 

rationalization, rationalized alarms, and smart alarms) and two levels of automation (manual and 

AI-based). Results indicated that smart alarm management combined with AI-based automation 

reduced operator workload and material losses during abnormal conditions.  

Another study by Jang et al. introduced a proactive alarm reduction methodology designed for 

high-volume alarm environments in nuclear power plants [180]. This approach prioritized alarms 

to reduce cognitive overload and improve situational awareness among operators. Eight nuclear 

power plant operators tested the method, and results showed that situational awareness improved 

in environments with proactive alarm reduction compared to those without.  

Additionally, the effectiveness of decision-support tools in alarm analysis has been studied. For 

example, Cappelli et al. investigated the Early Warning system, which predicts critical alarms 

within a specific time frame (e.g., 90 seconds before activation) in chemical plant control rooms 

[286]. Operators monitored a depropanizer unit and diagnosed faults using this system. While Early 

Warning enhanced operators' ability to respond proactively to potential alarms, it did not 

significantly improve the accuracy of diagnosing root causes.  

Our previous study investigated the impact of a reliable automated FDD tool on human 

performance in a chemical plant simulator during an alarm flood, compared to the same scenario 



79 

 

without any support tool [306]. The findings demonstrated that the diagnostic tool was particularly 

helpful when the fault was complex, with alarms that did not clearly indicate the root cause. In such 

scenarios, the tool significantly reduced cognitive workload, improved situational awareness, and 

aided operators in identifying root causes and applying corrective actions. However, for simpler 

alarm flood scenarios where the fault triggers a clearly identifiable root cause, the diagnostic tool 

showed no significant benefits. We anticipate these effects may differ when the diagnostic tool is 

unreliable.  

Collectively, these studies document the role of AI-based FDD systems in fault detection, alarm 

analysis, and operator performance. This background will be particularly useful for our research, 

as we will be studying the effects of an AI-based FDD tool in a chemical plant simulator during 

alarm flood scenarios.  

This study aims to investigate scenarios of imperfect process alarm analysis, focusing on situations 

where an AI-based diagnostic tool may misdiagnose faults. The literature shows that previous 

research has suggested that AI-based fault diagnostic systems are never 100% accurate and are 

therefore prone to failures and misdiagnoses. Process alarm analysis algorithms have often been 

improved using large datasets, but they have rarely been tested in high-fidelity simulators with real 

operators. Moreover, few studies have examined the interactions between humans and imperfect 

AI-based fault diagnostic tools in such realistic settings. While some human-in-the-loop 

experiments in simulators have been conducted, only a subset of these studies report significant 

findings. This research aims to bridge these gaps by evaluating the impact of unreliable AI-based 

diagnostic tools on operator performance and decision-making during alarm floods in a high-

fidelity process control simulator.  

6.4 Research Objectives  

This study addresses key gaps in human-AI interaction research, focusing on imperfect alarm 

analysis tools and operator performance. Using a human-in-the-loop experiment in a chemical plant 

simulator, we examined the impact of AI failures on participants’ situational awareness, trust, and 

decision-making during alarm flood scenarios. The experiment also evaluated operators' ability to 

detect AI misdiagnosis during emergencies and the subsequent effects on decision- making, 

particularly in diagnosing malfunctions and determining the need for intervention. By assessing 

the effects of imperfect AI decision-support tools, this study seeks to improve operator performance 

and safety in complex, high-stakes environments.  
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The structure of this article is as follows: the next section outlines the experimental methodology, 

providing details on the apparatus and diagnostic tool. This is followed by a description of the data 

analysis methods and a presentation of the results. The article concludes with a discussion of the 

key findings, contributions, and limitations of the research.  

6.5 Methodology  

6.5.1 Participants  

The participants were 20 students enrolled in the chemical engineering program at Polytechnique 

Montreal. 70% self-reported as female and 30% as male. 90% were aged 20-29, and 10% were 

aged 30-35 years old. This experiment was reviewed and approved by Polytechnique Montreal’s 

Ethics Committee (CER-2122-48-D). Informed consent was obtained, and each participant was 

given 20$ for their participation at the end of the experiment.  

6.5.2 Apparatus  

6.5.2.1 Chemical plant simulator  

In a previous study, we developed PER4Mance, an open-source graphical user interface designed 

to control the Tennessee Eastman Process (TEP) chemical plant simulator [221]. The TEP is a 

well-known benchmark used in process control and includes a comprehensive representation of a 

chemical production system. TEP simulator serves as a powerful tool for understanding complex 

chemical processes, training operators, and refining control strategies in process industries.  

It consists of five main units: a reactor, which facilitates the chemical reaction between gaseous 

reactants; a separator, responsible for dividing the gaseous and liquid phases; a stripper, which 

removes unwanted components and concentrates the desired liquid products; a compressor that 

increases the pressure of the gaseous outputs; and a mixer, which blends different components 

including the liquid by-product F. The TEP process has eight components, which include both 

gaseous reactants and inert gas. The primary objective is to produce liquid products G and H, which 

exit through the base of the stripper and are subsequently transferred to other units for further 

processing. In addition to these main products, a liquid by-product, F, is removed from the process 

to manage waste and ensure efficiency [307].  

Operators using PER4Mance can manipulate 12 input variables to optimize the process conditions 

and control the chemical reactions. They can monitor 41 output variables, providing critical 

feedback on the performance of the system and allowing for real-time adjustments. The simulator 
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is equipped with 20 pre-defined fault scenarios that simulate various operational challenges and 

failures, enhancing training and preparedness [185], [308]. To ensure safety and proper operation, 

the simulator includes a robust alarm system. When monitored variables exceed either the low or 

high thresholds, an alarm is triggered, which appears in red on the overview interface, accompanied 

by a sound alarm. This immediate feedback helps operators respond quickly to potential issues, 

reducing the risk of process deviations and enhancing overall safety in the chemical production 

environment [307].  

PER4Mance featured two interfaces: The Plant Overview (Figure 6.1) interface presented the key  

performance indicators (KPIs) at the plant-level, the overall Piping and Instrumentation Diagram 

(P&ID), an alarm table, and the diagnostic tool; The Detailed Unit (Figure 6.2) interface offered 

in-depth information about each of the five units within the system, including time trends, and 

controls for the unit's valves. Both windows were displayed simultaneously on two computer 

screens, and alarms were triggered when variables exceeded their thresholds.  

 

Figure 6.1 Overview interface of the chemical plant simulator. 
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Figure 6.2 Detailed unit interface of the chemical plant simulator. 

6.5.2.2 Wizard-of-Oz (WoZ) method to Simulate AI  

The Wizard-of-Oz (WoZ) experimental method is a cost-effective approach used to simulate AI 

systems by having a human "wizard" manually operate aspects of the system while participants 

believe they are interacting with an autonomous AI [216]. This method has been successfully used 

in complex environments to evaluate how operators interact with AI-based systems. A paper 

presented an open-source WoZ interface designed for human-robot interaction experiments, 

relevant to manufacturing environments where robots and humans collaborate [309]. In a simulated 

urban search-and-task using WoZ to control the AI team partner, the study evaluated the human-

robot team’s situational awareness and performance [220]. A WoZ vehicle was developed to 

explore human interactions with AI-driven cars, using simulated AI systems to study how people 

engage with and trust AI processes [310]. Finally, a tool for conducting WoZ studies on machine 

learning (ML) systems was developed to simulate ML errors during user experience assessment. 

The study investigated the importance of considering and preventing ML errors in design [311]. In 

all these cases, the WoZ method helped identify challenges in human-AI interaction, such as over-

reliance on the simulated AI, and provided valuable feedback for developing real AI systems. In 

our study, we will use the WoZ method to simulate an imperfect AI-based fault diagnosis system 

making recommendations to the participants for fault diagnosis.  



83 

 

6.5.2.3 Diagnostic Tool  

The study investigated the influence of a fault diagnostic tool on operator performance through a 

human-in-the-loop experiment. Utilizing the Wizard of Oz (WoZ) method, researchers simulated 

an AI-controlled system. Participants interacted with a diagnostic tool they believed to be powered 

by artificial intelligence, when in fact, it was manually operated by a team member. To emulate AI 

behavior, the research team simulated the diagnostic tool's learning capabilities and transparency 

by integrating additional information. As more alarms were triggered, the tool progressively 

improved its ability to identify and classify the situation into increasingly likely faults, thereby 

updating its diagnostic message accordingly. An initial diagnostic message was generated after 

three alarms triggered, which was then refined following subsequent activations at six, nine, and 

twelve alarms. The final diagnostic message was delivered after twelve alarms.  

Two alarm flood scenarios, Fault 1 and Fault 6, were selected for use in the experiment. For Fault 

1, the correct diagnoses are illustrated in Figure 6.3, and the incorrect diagnoses in Figure 6.4. 

Fault 1 “A/C feed ratio, B composition constant", involved a step change in the feed ratio of 

components A and C while maintaining a constant composition of component B. This disruption 

altered the balance in the reactor, leading to deviations in product quality and process stability. The 

interconnected nature of the process made this fault challenging to detect, as its effects propagated 

through variables such as concentrations, temperatures, and pressures in both upstream and 

downstream units. To resolve Fault 1, participants had to increase product A flow by opening its 

valve manually.  

For Fault 6, the correct diagnoses are illustrated in Figure 6.5, and the incorrect diagnoses in 

Figure 6.6. Fault 6 “A feed loss", represented a complete loss in the flow rate of component A, a 

critical reactant. This disruption directly impacted the chemical reaction dynamics, resulting in 

reduced product yield, altered reactor conditions, and instability throughout the system. Detecting 

and diagnosing this fault was complex due to its cascading effects on multiple process variables. 

To resolve Fault 6, participants had to acknowledge the loss of feed A verbally, or pause the plant 

manually.  

To illustrate the inherent uncertainty in AI algorithmic confidence, the research team presented two 

to three potential diagnoses simultaneously, each accompanied by a confidence level expressed as 

a percentage. For scenarios with two or three diagnoses, the total confidence levels summed to 

100%, while in cases with a single diagnosis, the confidence level was set at 90%. The diagnostic 
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message and its associated confidence levels were updated at six, nine, and twelve alarms. The 

diagnosis tool also had a button to highlight the alarms used to make the diagnosis. During the 

failure scenarios, the total number of alarms reached 15 during Fault 1 and 27 during Fault 6.  

This approach highlighted key practices in human-machine interaction, focusing on transparency 

and iterative learning to build operator trust in automated systems. Transparency ensures that 

operators understand how tools function and make decisions, enhancing their confidence in the 

system's reliability [262]. Additionally, iterative learning enables systems to continuously improve 

based on new data, which is crucial in dynamic environments like chemical facilities, where rapid 

changes demand precise and educated decision-making [311]. By delivering timely updates 

through real-time alarm data, the diagnostic tool mimics AI behaviors. 

 

Figure 6.3 AI’s evolution for Fault 1 with a correct diagnosis after: a) 3 alarms, b) 6 alarms, c) 9 

alarms, and d) 12 alarms. 

a b 

c d 
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Figure 6.4 AI’s evolution for Fault 1 with an incorrect diagnosis: a) 3 alarms, b) 6 alarms, c) 9 

alarms, and d) 12 alarms. 

 

Figure 6.5 AI’s evolution for Fault 6 with a correct diagnosis after: a) 3 alarms, b) 6 alarms, c) 9 

alarms, and d) 12 alarms. 

a b 

c d 

a b 

c d 
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Figure 6.6 AI’s evolution for Fault 6 with an incorrect diagnosis: a) 3 alarms, b) 6 alarms, c) 9 

alarms, and d) 12 alarms. 

6.5.3 Experimental variables  

6.5.3.1 Independent variables  

The study had two independent variables: the type of fault used in the scenario (Fault 1 and Fault 

6) and the type of diagnosis provided by the fault diagnostic tool (correct or incorrect).  

Type of fault  

Fault scenarios in the TEP were predefined disturbances or malfunctions introduced into the 

process to test monitoring, fault detection, and diagnosis techniques. Two alarm flood scenarios 

were chosen as scenarios to use in the experiment: Fault 1 and Fault 6. Participants were required 

to complete different faults for each different condition to prevent any learning effect during the 

execution of the second scenario.  

Fault diagnostic tool  

The study tested the functionality of a fault diagnostic tool under two experimental conditions. In 

the first condition, the tool provided a correct diagnosis. In the second condition, the tool provided 

an incorrect diagnosis. In both conditions, the out-of-bound variables, alarms triggered and 

a b 

c d 
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highlighted were the same. The only difference was the diagnostic message provided by the tool. 

If a participant wanted to identify the right diagnosis in the incorrect diagnosis situation, it was 

possible by analyzing the alarms and variables.  

The diagnostic tool provided the participants with the root cause of the alarm flood but did not 

specify the corrective action to apply. For instance, the AI tool identified the issue as "low feed A," 

prompting participants to determine the appropriate response. In this case, they needed to recognize 

that increasing the opening of valve A would restore the feed flow. This approach was deliberately 

designed to prevent participants from simply applying corrective actions suggested by the tool 

without engaging in analysis. Participants had to be enrolled in a chemical engineering program to 

be qualified to participate in our study, ensuring they possessed the necessary expertise to perform 

these basic deductions and analyze process dynamics effectively.  

6.5.3.2 Dependent variables  

The study analyzed four dependent variables: response time, assessment accuracy, situational 

awareness and trust.  

Response time  

The response time consisted of the duration between the first alarm and the execution of the 

corrective action.  

Assessment accuracy  

For each test, the participant’s corrective action was recorded. Their grading was “passed” if they 

applied the right corrective action, and “failed” if they applied a wrong corrective action.  

Situational awareness  

This study employed the Situation Awareness Global Assessment Technique (SAGAT), which 

provides a direct and objective measure of participants' SA. This method of evaluating SA has been 

supported in the literature, emphasizing its effectiveness in understanding how operators maintain 

awareness in dynamic and complex environments [233]. The SAGAT questionnaire consisted of 

six questions that addressed all three SA levels and was administered at three predetermined 

intervals:  

● Probe 1 during normal operations,  

● Probe 2 during an alarm flood,  

● Probe 3 following corrective actions.  
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Participants were unaware of when the probes would occur. During each probe, the simulator was 

paused, screens were blanked, and participants responded to the SAGAT questions using a printed 

questionnaire. After completing the questions, the simulation resumed, allowing participants to 

continue their tasks. The accuracy of their responses was then compared with the actual state of the 

simulator at the time of the probe, with correct responses scoring 100% and incorrect ones scoring 

0%. Level 1 SA scores were averaged for all questions at that level, and the same was done for 

levels 2 and 3, while global SA was calculated as the average score across all questions.  

Trust  

We used a 10-item questionnaire developed to capture trust and reliance (see Appendix C). This 

form was adapted from Lyons & Guznov where trust is the intention to be vulnerable to another 

entity with little control or observability [312]. The questionnaire consisted of 4-item measuring 

the trust in AI versus interpersonal trust, and 6-item to measure reliance intentions. Participants 

answered using a 5-point likert scale (from 1-strongly disagree to 5-strongly agree).  

6.5.4 Procedure  

Two days before the experiment, participants watched a training video providing an overview of 

the TEP interfaces and examples of four fault scenarios. All participants provided a signed 

informed consent prior to arriving at the laboratory. The experimental sessions took place at 

Polytechnique Montreal, with participants briefed on the simulator and shown the interfaces. They 

were instructed to monitor plant production and diagnose faults and execute corrective actions. 

They were warned that the AI could make mistakes and provide a wrong diagnosis. Participants 

were assigned to one of the following scenarios:  

1)  Fault 1 correct diagnosis, followed by Fault 6 incorrect diagnosis.  

2)  Fault 1 incorrect diagnosis, followed by Fault 6 correct diagnosis.  

3)  Fault 6 correct diagnosis, followed by Fault 1 incorrect diagnosis.  

4)  Fault 6 incorrect diagnosis, followed by Fault 1 correct diagnosis.  

The order of faults and use of the diagnostic tool presentation was balanced between participants. 

Five participants completed each scenario. SAGAT probes were given at three predetermined 

moments during each test, and the trust questionnaire was administered at the end of each test.  
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6.6 Data Analysis  

Response time  

The duration of Fault 1 and Fault 6 was calculated from the first to the last alarm. The faults had 

different duration, where Fault 1 lasted 487 seconds and Fault 6 was 912 seconds. The recorded 

response times were analyzed using the Student's t-test to compare the effect of the diagnostic tool. 

A t-test was completed for each fault because their duration was different.  

Assessment accuracy  

The compiled grading was analyzed using Fisher’s exact test, and the odds ratio was calculated to 

quantify the association between the accuracy and the effect of the diagnostic tool.  

SAGAT questionnaire  

Participants' global SA, SA level 1, SA level 2, SA level 3, and SA for each probe were calculated, 

and two-way within-subject ANOVAs were performed to analyze the impact of the diagnostic tool 

and fault type on SA.  

Trust  

Following Kyons (2019), we analyzed three compound measures from the trust questionnaire: 

global trust score (average of questions 1 to 10), trust in AI versus interpersonal trust (average of 

questions 1 to 4) and reliance intentions (average of questions 5 to 10). Two-way within-subject 

ANOVAs were used to analyze the effects of the diagnostic tool and type of fault on participants’ 

trust.  

6.7 Results  

6.7.1 Response time  

A paired t-test was performed to evaluate the effect of the diagnostic tool on participants’ response 

time during Fault 1 and Fault 6, see Figure 6.7. During Fault 1, results showed that the mean 

response time with the correct diagnostic tool was 64.3s and 141.4s with the incorrect diagnosis. 

The difference was statistically significant (t(19) = -4.88, p < 0.001).  

During Fault 6, the results showed that the response time with the correct diagnosis was 67.9s, and 

173.8s with the incorrect diagnosis. The difference was significant (t(19) = -9.02, p < 0.0001). For 

both faults, the response time was significantly slower when the diagnosis was incorrect.  
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Figure 6.7 Difference in response time with correct (CD) and incorrect (ID) diagnosis during 

Fault 1 and Fault 6. Error bars represent the standard error.  

6.7.2 Assessment accuracy  

A t-test was completed to assess the impact of the assessment accuracy, results showed no 

significant difference.  

Fisher's exact test and odds ratio were calculated to evaluate the effect of the diagnostic tool on 

participants’ accuracy of their corrective action. Results showed a statistically significant positive 

association between the Pass grade and the correct diagnosis (p < 0.05, odds ratio = 6.93), see 

Figure 6.8. Participants were more likely to have a Pass grade when the diagnosis was correct, and 

a Fail grade when the diagnosis was incorrect. In the latter case, it means that participants were 

more likely to follow the inaccurate diagnosis presented by the tool.  

 

Figure 6.8 Occurrences of Pass and Fail grading with correct (CD) and incorrect (ID) diagnosis.  
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6.7.3 Situational awareness  

6.7.3.1 Global SA  

An ANOVA was performed to evaluate the impact of the diagnostic tool and the type of fault on 

participants’ global SA. Results show that the tool's diagnosis had a significant impact on the global 

SA (F1,19 = 28.44, p < 0.0001) see Figure 6.9. The Tukey post-hoc test showed that the global SA 

with the incorrect diagnosis was significantly lower than with a correct diagnosis (p < 0.001). The 

type of fault and its interaction with the diagnostic tool showed no statistically significant effect on 

the global SA.  

6.7.3.2 SA Level 1  

Statistical analysis was performed to evaluate the effects of the diagnostic tool and type of fault on 

SA level 1. A two-way within-subject ANOVA analysis showed that the diagnostic tool had a 

significant impact on the SA level 1 (F1,19 = 14.81, p < 0.0001) see Figure 6.9. The Tukey post-

hoc test showed that SA level 1 with the incorrect diagnosis was significantly lower than with a 

correct one (p < 0.001). The type of fault and its interaction with the diagnostic tool showed no 

statistically significant effect on the SA level 1.  

6.7.3.3 SA Level 2  

The ANOVA showed that the type of diagnosis had a significant impact on SA level 2 (F1,19 = 

13.93, p < 0.001). Tukey post-hoc showed that SA level 2 was significantly lower when the 

diagnosis was incorrect than correct (p < 0.001). The interaction between the use of diagnostic tool 

and the type of fault showed no statistically significant effect on SA level 2.  

6.7.3.4 SA Level 3  

An ANOVA analysis showed that the tool’s diagnosis had a significant impact on the SA level 3 

(F1,19 = 7.89, p < 0.01). The Tukey post hoc test showed that the SA level 3 was significantly lower 

when the diagnosis was incorrect (p < 0.01). The type of fault and the interaction between the two 

independent variables showed no significant effect.  
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Figure 6.9 Difference in global SA, SA at levels 1, 2 and 3 during Fault 1 and Fault 6 between 

correct (CD) and incorrect (ID) diagnosis. Error bars represent the standard error.  

6.7.3.5 SA at probe 1  

An ANOVA was performed to evaluate the effect of the diagnostic tool, the type of fault, and their 

interaction on the SA at probe 1, which was the moment before the start of the fault. Results showed 

no statistically significant effect (p > 0.05).  

6.7.3.6 SA at probe 2  

An ANOVA was performed to study the impact of the type of fault and type of diagnosis on SA at 

probe 2, which was during the alarm flood (i.e., when 10 alarms were triggered). Results showed 

that the diagnostic tool had an impact on SA at probe 2 (F1,19 = 7.61, p < 0.01), see Figure 6.10. 

The post-hoc test showed that the SA at probe 2 was significantly lower when the diagnostic tool 

was incorrect (p < 0.01). The type of fault and its interaction with the diagnostic tool did not show 

any statistically significant results.  

6.7.3.7 SA at probe 3  

An ANOVA was performed to evaluate the effect of the diagnostic tool and the type of fault on the 

SA at probe 3, which was the moment after the resolution of the fault. Results showed that the 

diagnostic tool had a significant effect on SA at probe 3 (F1,19 = 31.87, p < 0.0001), see Figure 
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6.10. The post-hoc showed that the SA at probe 3 was significantly lower when the diagnosis was 

incorrect (p < 0.001). The type of fault and the interaction showed no significant difference.  

 

Figure 6.10 Difference in SA at probes 2 and 3 during Fault 1 and Fault 6 between correct (CD) 

and incorrect (ID) diagnosis. Error bars represent the standard error.  

6.7.4 Trust  

6.7.4.1 Global trust  

An ANOVA analysis was performed to evaluate the effects of type of diagnosis and fault on the 

participants’ global trust score. Results showed that the tool’s diagnosis had a significant impact 

on the global trust score (F1,19 = 5.52, p < 0.05), see Figure 6.11. The Tukey post hoc test showed 

that the global trust was significantly lower when the diagnosis was incorrect (p < 0.05). The type 

of fault and the interaction between the independent variables showed no significant effect.  

6.7.4.2 Trust in AI versus interpersonal trust  

An ANOVA was performed to study the impact of the type of fault and type of diagnosis on the 

trust in the AI versus interpersonal trust. Results showed that the tool’s diagnosis had a significant 

effect (F1,19 = 4.47, p < 0.05), see Figure 6.11. The post-hoc test showed that the trust in AI was 

significantly lower when the diagnostic tool was incorrect (p < 0.05). The type of fault and its 

interaction with the diagnostic tool did not show any statistically significant results.  
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6.7.4.3 Reliance intentions  

Statistical analysis was performed to evaluate the effects of the diagnostic tool and type of fault on 

reliance intentions. An ANOVA analysis showed that the diagnostic tool had a significant impact 

on the reliance intentions (F1,19 = 4.28, p < 0.05) see Figure 6.11. The Tukey post-hoc test showed 

that reliance intentions with the incorrect diagnosis was significantly lower than with a correct one 

(p < 0.05). The type of fault and its interaction with the diagnostic tool showed no statistically 

significant effect.  

 

Figure 6.11 Difference in global trust, interpersonal trust and reliance during Fault 1 and Fault 6 

between correct (CD) and incorrect (ID) diagnosis. Error bars represent the standard error.  

6.7.5 Workload  

An ANOVA was performed to evaluate the effect of the diagnostic tool, the type of fault, and their 

interaction on the workload, see Figure 6.12. Results showed no statistically significant effect (p 

> 0.05).  

The mean workload with a correct diagnosis was 63.78 and the one with an incorrect diagnosis was 

68.20. The literature defines that these NASA-TLX numbers in a process control environment 

represent high levels of workload [226].  
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Figure 6.12 Difference in workload during Fault 1 and Fault 6 between correct (CD) and 

incorrect (ID) diagnosis. Error bars represent the standard error.  

6.8 Discussion  

6.8.1 Trust and reliance  

Our results showed that response times for faults 1 and 6 were significantly slower when the AI 

diagnosis was incorrect, indicating participants hesitated to rely on the AI’s suggestion when it was 

under an incorrect condition. These results supported previous research by Pearson et al. and 

Hoffman et al. which showed that trust in AI diminishes when reliability is in question, leading to 

slower decision-making and increased hesitation [274], [278].  

In terms of accuracy, results from the global trust questionnaire provided further clarity on these 

dynamics. Global trust scores were significantly lower when the diagnosis was incorrect, 

supporting earlier findings by J. D. Lee & See that trust in AI erodes following system failures 

[171]. The compound trust in AI versus interpersonal trust revealed a significant decline in trust 

toward AI when it provided incorrect diagnosis. This aligned with previous findings by Klingbeil 

et al. suggesting that successful interactions where systems perform as anticipated tend to develop 

trust [270]. Since our participants were using the simulator for the first time and had no prior 

successful interactions with the AI system, they had not yet developed trust in its capabilities.  

Furthermore, reliance intentions were significantly reduced when the diagnosis was incorrect, 

corroborating prior studies by Pearson et al. that found that operators were less likely to trust the 
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AI they perceived as unreliable [274]. However, this contrasts with participants' actual behavior, 

as shown in the assessment accuracy results where they mainly followed the AI’s incorrect 

suggestion. Observations showed that participants were more likely to achieve a Pass grade when 

the diagnosis was correct but tended to Fail when it was incorrect. Accuracy assessment results 

during an AI misdiagnosis showed that 85% of participants followed the AI’s incorrect suggestion. 

This result revealed a vulnerability to over-rely, as participants used the incorrect diagnoses. This 

observation aligned with findings from Buçinca et al., who noted that people frequently over-rely 

on the AI’s suggestion even when that suggestion is wrong, as well as Leveson, who indicated that 

operators often follow procedures without considering context [241], [259]. This may be attributed 

to the fact that participants were students acting as novice operators who lacked the practical 

expertise to critically evaluate AI outputs.  

The results from the trust and reliance questionnaire showed that participants measured low 

reliance intentions in the AI, but they still relied on it for diagnostic recommendations. This can be 

explained by an overtrust on the AI’s capabilities specifically, which aligned with findings by 

Miró- Nicolau et al., who noted that trust that exceeds a system’s actual capabilities can result in 

detrimental consequences [276].  

In summary, while operators demonstrated hesitation and reduced trust when AI diagnoses were 

incorrect, they still exhibited overreliance when the AI failures were presented and their workload 

was high. The findings highlighted a critical disconnect between reported trust and actual reliance, 

particularly under high cognitive workload, as seen in alarm flood scenarios.  

6.8.2 Situational Awareness and Out-of-the-Loop  

Our study revealed a significant decline in SA across all levels when the diagnostic tool provided 

incorrect assessments. At SA Level 1 (perception), which involves the gathering and integration of 

system information, participants demonstrated reduced SA under conditions of incorrect diagnoses. 

This supported Endsley’s assertion that faulty or misleading information disrupts the foundational 

stage of SA formation, which is critical for building a coherent understanding of system status 

[294]. The degradation of perception in our study also exacerbated OOTL effects. Studies by 

Lorenz et al. and Gouraud et al. have shown that operators often disengage cognitively during 

routine monitoring, making it difficult to re-engage during malfunctions [209], [282]. Our findings 
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mirrored this phenomenon, as participants in monitoring roles showed reduced SA and delayed 

responses.  

For SA level 2 (comprehension), which requires operators to interpret and contextualize system 

information, SA similarly declined when incorrect diagnostic outputs were presented. Our results 

suggested that reliance on an imperfect AI can lower comprehension of the situation. Additionally, 

results highlighted increased OOTL issues, exacerbated delays and reduced accuracy when manual 

intervention was required. Our NASA-TLX results demonstrated that the experiment required high 

cognitive effort, which increased the likelihood of failed corrective action and delayed response 

times. These findings corroborated earlier research, including Dixon and Wickens who identified 

the challenges OOTL operators encountered in re-establishing situational awareness [262]. 

Additionally, our high workload results were consistent with Lewis et al., who emphasized the 

cognitive strain involved in regaining control following periods of disengagement from automated 

systems [283].  

At SA level 3 (projection), which involves anticipating system behavior to enable proactive 

decision-making, participants exhibited significantly lowered SA during incorrect diagnoses by the 

AI tool. This finding further validates Endsley’s assertion that accurate perception and 

comprehension are prerequisites for predictive abilities [294].  

During the second SA probe – measured during the alarm flood – participants demonstrated lower 

SA when diagnostic information was incorrect. At probe 3, which followed corrective actions, SA 

remained significantly impaired in the scenario of an incorrect diagnosis. These results further 

supported previous research highlighting the influence of overreliance and OOTL issues on SA 

degradation [19], [251]. 

Our findings demonstrated that incorrect AI diagnostic outputs disrupted SA across all levels and 

exacerbated the challenges of re-engaging during fault situations. These disruptions aligned with 

prior research showing that operators in OOTL states struggle to reconnect with system operations, 

resulting in delayed responses and compromised decision-making and performance [262]. Our 

study validated previous research by confirming that imperfect AI impairs SA and intensifies 

OOTL states and mistrust, leading to delayed recovery and reduced operator performance [298].  
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6.8.3 Limitations  

The limitations of this study must be carefully considered when interpreting the findings. Most 

notably, the use of students as participants instead of professional operators raised questions about 

the generalizability of the results to real-world contexts. Novice operators lacked the expertise and 

situational familiarity required to critically evaluate AI outputs, often defaulting to the guidance 

provided by the AI, even when it was incorrect. These findings aligned with previous research 

suggesting that inexperienced operators rely heavily on rule-based decision-making due to a lack 

of contextual understanding, which limits their ability to adapt to changing operational conditions 

[207]. Furthermore, the results supported Hollnagel’s observations that unexpected AI outputs can 

lead operators to rigidly adhere to predefined rules, even when the context demands a more flexible 

approach [167].  

Additionally, the use of the Wizard-of-Oz (WoZ) method in this study introduced a limitation, as 

it relied on a simulated AI system controlled by a human operator instead of a fully autonomous 

system. While this approach enabled a controlled exploration of human-AI interactions in our 

specific context, it did not accurately replicate the adaptive behaviors, decision-making processes, 

or error dynamics of a real operational AI. Participants interacted with pre-determined outputs, 

which may not reflect how they would respond to a functional AI system. This limitation restricted 

the study's ability to capture the full range of operator-AI interactions present in real-world 

scenarios.  

Conducting the study in a controlled laboratory environment introduced another limitation. The 

simulation lacked the dynamic, high-pressure conditions and operational complexities of real 

industrial control rooms. Although the controlled setting facilitated consistency in experimental 

conditions, it did not reflect the cognitive and multitasking demands operators face in real-world 

environments. Furthermore, the absence of organizational and team dynamics, which are integral 

to decision-making in actual control rooms, limited the ecological validity of the findings.  

6.9 Conclusion  

The study demonstrated that imperfect AI diagnostic outputs undermined situational awareness, 

intensified out-of-the-loop effects, delayed response times, and diminished trust in the AI-based 

systems, collectively degrading operator performance. Participants exhibited hesitation and lower 
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trust when encountering AI failures, yet they were prone to over-rely on the system, even when it 

provided an incorrect diagnosis. This revealed a disconnect between operators’ self-reported trust 

in AI and their actual reliance on it. These challenges were particularly evident during alarm floods, 

where heightened cognitive demands led operators to follow AI recommendations without 

adequately evaluating their appropriateness. Such reliance resulted in delays and poor decisions, 

especially in high-pressure scenarios. Novice operators were particularly affected, struggling to 

manage erroneous outputs, regain situational awareness, and maintain control in complex, dynamic 

environments.  

While accurate AI outputs supported improved SA and decision-making, imperfect AI systems 

introduced risks that adversely affected operator performance. The persistence of OOTL effects 

and reductions in trust and SA observed in the study emphasized the importance of addressing 

these challenges. Future research should focus on the development and evaluation of strategies to 

optimize human-AI interaction in high-stakes environments. Enhancing AI transparency is critical 

to fostering trust, while advanced operator training can strengthen critical thinking skills regarding 

an imperfect AI. Additionally, designing adaptive interfaces that reduce cognitive overload and 

support the maintenance of SA is essential. These measures are necessary to ensure operators 

remain engaged, effectively manage AI failures, and take control when required. The PER4mance 

open-source simulator provides a valuable platform for conducting such studies, enabling the 

exploration and validation of these investigations. 
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CHAPTER 7 GENERAL DISCUSSION 

This chapter presents a synthesis of the research objectives accomplished in the thesis, along a 

review of the main findings from the three studies conducted. It then presents the limitations 

applicable to this work and future research stemming from this thesis. 

7.1 Research Objectives 

Modern process industries rely on fault detection and diagnosis systems to monitor operations, 

identify anomalies, and support decision-making. AI-based automated diagnostic tools improved 

fault detection and reduced downtime, but they remained prone to misdiagnoses, false alarms, and 

undetected failures. In safety-critical environments, these errors led to incorrect operator decisions, 

increased cognitive workload, and reduced situational awareness. 

A key challenge in AI-based automated diagnostic tools is their integration with alarm management 

systems and their effect on human performance, particularly during alarm flood episodes. While 

alarm analysis algorithms had been developed using large datasets, their effectiveness in real-world 

scenarios with human operators remained insufficiently validated. Limited research had explored 

how operators interacted with imperfect AI-based automated diagnostic tools in realistic 

operational settings. Most studies on human-AI collaboration in fault detection and diagnosis 

focused on algorithmic accuracy rather than human factors such as trust, reliance, and SA. A major 

concern was out-of-the-loop effects, where excessive reliance on AI reduced an operator’s ability 

to respond effectively when automation failed. 

This thesis addressed these gaps by examining how AI-based automated diagnostic tools 

influenced operator performance and decision-making during alarm flood episodes using a high-

fidelity process control simulator. The research had three main objectives. The first was to develop 

a high-fidelity simulator designed to study fault detection, diagnosis, and alarm management in 

realistic industrial settings. The second was to determine whether an AI-based automated 

diagnostic tools improved operator performance during alarm flood episodes. The third was to 

examine how an AI-based diagnostic tool affected human decision-making in failure management, 

particularly in scenarios where the system provided incorrect or misleading diagnoses. 

The thesis tested three hypotheses: 
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• H₁: The implementation of a diagnostic tool enhances operator performance during 

episodes of alarm flood. 

• H₂: The impact of a diagnostic tool is significantly greater when managing difficult alarm 

flood episodes compared to easier ones. 

• H₃: Operators are capable of identifying incorrect AI diagnoses during episodes of alarm 

flood. 

The following discussion examines whether the findings supported or rejected these hypotheses. 

7.2 Synthesis of main findings 

7.2.1 H₁: The implementation of a diagnostic tool enhances operator 

performance during episodes of alarm flood 

Chapter 4 focused on the development of PER4Mance, an open-source prototyping environment 

for alarm management research. The simulator was built using HMI design principles and followed 

industry standards and guidelines. It provided a testing environment where researchers could 

examine operator interactions with alarm systems and evaluate the efficiency of decision support 

tools. The simulator allowed modifications to alarm thresholds, the addition or removal of alarms, 

and the integration of automated diagnostic tools. These features enabled researchers to study how 

operators responded to different fault scenarios and assess the impact of interface design on their 

performance. By replicating alarm flood episodes, the simulator facilitated controlled experiments 

on alarm management strategies and human-machine interactions. 

Although the simulator was developed based on best HMI practices and using the well-established 

TEP simulation, it had not yet been tested with human participants at this stage. The chapter 

concluded that PER4Mance provided a structured environment for examining alarm management 

strategies, but its effectiveness in improving operator performance remained to be evaluated. 

Chapter 4 concluded with stating that further experimental research was required to determine how 

well the interface supported operator decision-making and whether it facilitated performance 

improvements in practical applications. 

Chapter 5 presented the first documented use of PER4Mance to evaluate operator performance in 

alarm flood episodes. This study introduced an automated diagnostic tool within the simulator and 

examined its effects on situational awareness, workload, and eye fixations. The interface integrated 
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real-time fault diagnostic information while preserving standard process control displays. Through 

a controlled experiment, this research assessed the impact of the automated diagnostic tool on 

operator performance. Each participant completed two conditions: a control condition, where the 

automated diagnostic tool was deactivated, and an experimental condition, where the automated 

diagnostic tool was activated and provided fault diagnostic recommendations to them.  

When the automated diagnostic tool was activated, fixation duration and count on AOI 1 (KPIs) 

and AOI 4 (diagnostic tool) increased, while fixation duration on AOI 3 (alarm table) decreased. 

Eye-tracking data showed that participants using the tool spent less time scanning alarms and 

focused more on KPIs and diagnostic recommendations, suggesting that the tool helped them 

prioritize relevant system information. In addition, the SAGAT assessment revealed that SA with 

the automated diagnostic tool was significantly higher than without it. Participants without the 

automated diagnostic tool relied on manually interpreting multiple alarms, which increased eye 

fixations on the alarm table and lowered situational awareness.  

The results indicated that the automated diagnostic tool improved participants performance by 

increasing situational awareness and directing attention toward KPIs and diagnostic 

recommendations, suggesting that it helped participants prioritize relevant system information 

more effectively. These findings support Hypothesis 1: The implementation of a diagnostic tool 

enhances operator performance during episodes of alarm flood. 

7.2.2 H2: The impact of a diagnostic tool is significantly greater when 

managing difficult alarm flood episodes compared to easier ones 

In the Chapter 5 experiment, participants experienced two different fault scenarios to avoid any 

learning effect during the second session. Each participant completed one condition with Fault 1, 

the most difficult scenario, and one with Fault 6, the easier scenario. Fault 6 was easier because the 

first alarms that appeared clearly indicated the source of the issue, which was the absence of feed 

A. Fault 1 was more complex because the alarms were triggered by secondary variables affected 

by the fault, making it harder to isolate the root cause. This design allowed for a comparison of 

operator performance with and without the use of the automated diagnostic tool while accounting 

for differences in fault complexity. 



103 

 

The workload analysis showed that participants experienced greater cognitive demand during Fault 

1 than Fault 6, confirming that Fault 1 was the more difficult scenario. The results also indicated 

that participants had higher global SA scores when using the automated diagnostic tool. A 

significant increase was observed in SA level 3 (projection), which involved anticipating system 

behavior. The tool improved SA level 3 during Fault 1, but no significant effect was found in Fault 

6. Additionally, SA at probe 3, measured at the end of the experimental session, was higher when 

the tool was used in Fault 1, while no significant difference was observed in Fault 6.  

The automated diagnostic tool helped participants project future system status, enabling them to 

anticipate system dynamics in the near future. Additionally, the automated diagnostic tool 

improved awareness at the end of the experiment, indicating that participants retained a better 

understanding of system conditions throughout the task. This study indicate that the automated 

diagnostic tool supported their ability to interpret process conditions more effectively, particularly 

in Fault 1, where alarms alone did not provide sufficient diagnostic information. The study also 

found that the effectiveness of the automated diagnostic tool depended on the complexity of the 

fault scenario. In Fault 6, where alarms clearly indicated the fault, the tool had little impact on 

performance. However, in Fault 1, where alarms provided symptomatic alarms, the tool improved 

SA and workload.  

The results indicated that the implementation of an automated diagnostic tool improved participant 

performance, especially in scenarios where alarms alone did not provide clear diagnostic 

information (Fault 1) and had less effect in simpler scenarios (Fault 6). The findings supported 

Hypothesis 2, which states that the impact of the diagnostic tool is significantly greater when 

managing difficult alarm flood episodes compared to easier ones. 

7.2.3 H3: Operators are capable of identifying incorrect AI diagnoses during 

episodes of alarm flood 

Chapter 6 examined the effects of imperfect AI-based fault detection and diagnosis tools on 

operator performance, focusing on how incorrect AI recommendations influenced decision-making 

during alarm flood episodes. Literature has shown that AI-based diagnostic tools can assist 

operators in identifying faults and responding to system disturbances. However, these tools can 

also provide incorrect diagnoses, which may lead to delayed responses, reduced situational 
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awareness, and misplaced trust in automation. The study investigated whether participants would 

recognize inaccurate AI recommendations and adjust their decisions or continue to rely on them 

despite errors. 

The objective was to assess the impact of incorrect AI diagnoses on operator performance. It aimed 

to determine whether participants would identify AI misdiagnoses or accept inaccurate 

recommendations without verification. The research also examined how reliance on AI tools 

affected situational awareness at different levels, particularly in high-cognitive-load scenarios 

during episodes of alarm flood. 

The study used the PER4Mance simulation to present participants with two alarm flood scenarios. 

An AI-based diagnostic tool provided either correct or incorrect fault identifications. Participant 

performance was evaluated based on response times, diagnostic accuracy, situational awareness 

scores, workload, trust and reliance ratings. This experimental design allowed for a direct 

comparison of participant behavior when interacting with accurate versus inaccurate AI-based 

diagnoses. 

The mean workload score was 63.78 when the AI provided a correct diagnosis and 68.20 when the 

diagnosis was incorrect. Although a lower workload was expected when the AI provided a correct 

recommendation, the difference was not statistically significant. Nonetheless, these results indicate 

that the workload during the experiments were high for process control environments [226]. This 

could also reflect the high operator workload that may occur during real-life alarm flood episodes. 

Response times were significantly longer when the AI provided an incorrect diagnosis. Global SA 

was lower with incorrect diagnoses, with significant reductions observed across all SA levels. SA 

Level 1, SA Level 2, and SA Level 3 were all lower when the diagnosis was incorrect. SA scores 

at probe 2 and probe 3 also decreased under incorrect AI recommendations. 

Participants who received incorrect AI diagnoses demonstrated lower SA scores and longer 

response times, indicating that inaccurate AI recommendations negatively affected situational 

awareness and delayed corrective actions. 

The accuracy assessment showed a statistically significant positive association between receiving 

a Pass grade and the AI providing a correct diagnosis. Participants were more likely to receive a 
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Pass grade when the AI diagnosis was accurate and a Fail grade when it was incorrect. This 

indicated that participants tended to follow the AI's recommendations regardless of their accuracy. 

Global trust in the AI was significantly lower when the AI-based diagnostic tool provided incorrect 

information. Trust in AI and reliance intentions ratings also decreased under incorrect diagnoses. 

However, despite the lower reliance ratings, 85% of participants still followed the incorrect AI 

diagnosis, suggesting a continued dependence on automation even when reporting reduced trust in 

the tool. 

These results showed that providing accurate AI recommendation positively impacted situational 

awareness, response times and accuracy, trust, and reliance. This reconfirms Hypothesis 1, that a 

diagnostic tool enhances operator performance during episodes of alarm flood. On the other hand, 

incorrect AI recommendations resulted in delayed and inaccurate responses, reduced situational 

awareness, and lower trust, yet participants continued to follow inaccurate AI suggestions. The 

study rejects Hypothesis 3 that operators are capable of identifying incorrect AI diagnoses during 

episodes of alarm flood. 

7.3 Limitations 

Developing a fully functional FDD system was beyond the scope of this study. The research team 

used a Wizard-of-Oz method to simulate AI-based diagnostic behavior by pre-programming the 

PER4Mance simulator to display diagnostic outputs at specific moments during the experiments. 

This ensured consistent AI responses across participants and scenarios. However, this approach 

introduced limitations. The system did not process data autonomously or respond to operator 

interactions. Outputs were static and did not adapt to changing conditions, which differs from how 

an autonomous AI system would function in practice. The simulation also excluded features typical 

of real AI tools, such as learning from new data or adjusting behavior over time. These constraints 

may have affected how participants interpreted and relied on the tool, particularly when it provided 

incorrect or missing recommendations. Future studies could incorporate interactive AI systems that 

respond in real time to better reflect operational settings and capture more representative human-

AI interactions. 

Another key limitation of the studies was the use of student participants instead of professional 

operators. While chemical engineering students provided relevant insights, their lack of industry 
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experience may have influenced their performance. Additionally, the limited number of available 

participants and the protocol constraints imposed by COVID-19 at the time further restricted the 

study. The small sample size may have reduced the statistical power of the findings, limiting the 

ability to detect significant effects. These factors prevented the examination of team dynamics, 

which are an important aspect of real-world industrial operations.  

The use of a laboratory-based simulation introduced several constraints. While the PER4Mance 

simulator provided a controlled environment for studying human-AI interaction, it did not fully 

replicate the complexities of real-world industrial settings. Team dynamics, time constraints, and 

multitasking are integral to operational environments and can influence how operators engage with 

AI-based systems. The absence of these factors may have affected participants' behavior, limiting 

the study’s ecological validity, which refers to the extent to which research findings can be applied 

to real-world conditions. Findings from a controlled setting may not fully translate to industrial 

environments, where additional pressures and collaborative decision-making processes shape 

operator interactions with AI tools. 

7.4 Theoretical implications 

7.4.1 Automation failures do not always cause negative consequences  

Referring back to the Jamieson and Skraaning taxonomy [138]  and the findings from Chapter 5, 

the AI-based automated diagnostic tool used in the study exhibited an elementary automation 

failure, meaning it did not fully meet its intended function. The study found that the impact of the 

AI-based automated diagnostic tool was significantly greater in difficult alarm flood episodes 

compared to easier ones. 

Automation failures do not always produce negative consequences, particularly when automation 

plays a limited role in task execution and decision-making. In operational settings with low 

cognitive demands, operators rely on their expertise and established procedures, reducing the 

impact of automation failures. In these cases, operators can detect and address issues manually, 

minimizing disruptions and maintaining workflow continuity. 

For example, if an automation system designed for routine monitoring fails, an operator can still 

manually assess the system’s status and make necessary adjustments. Similarly, if an automated 
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function intended to provide supplemental information malfunctions, operators may recognize the 

issue and rely on existing procedures to manage the situation effectively. 

In such cases, automation acts as a secondary aid rather than a primary decision-making tool. Its 

failure does not significantly affect workflow because operators have alternative methods to detect 

and resolve issues. Therefore, the impact of an automation failure is largely dependent on the level 

of operator reliance and the complexity of the task—when cognitive demands are low and manual 

processes remain effective, automation failures are less likely to cause operational disruptions. 

Thus, the impact of automation failure on performance is influenced by user experience and 

operational context. This aligns with the observations from previous research [139], [140], that 

emphasized that the effects of automation failure vary depending on the operational environment 

and the level of user knowledge. The thesis suggests that in routine scenarios, operators can rely 

on their skills, making elementary automation failures less significant. 

7.4.2 Ghost Failures 

The automation-induced human performance challenges taxonomy defines systemic automation 

failure as a failure triggered by situational factors, leading to a system-wide breakdown of 

integrated functions. Unlike isolated technical malfunctions affecting a single function, these 

failures arise when automation fails to coordinate effectively across interconnected processes and 

disrupting operations. 

Chapter 6 examined a systemic automation failure that was more difficult for participants to detect 

than the elementary automation failure in Chapter 5. In Chapter 5, the failure was more apparent, 

allowing operators to recognize the issue and adjust accordingly. In contrast, the failure in Chapter 

6 was embedded within the broader interaction between automation and human decision-making, 

making it harder to identify. Participants often did not detect the AI failure and followed incorrect 

diagnostic recommendations provided by the system, suggesting that automation failures are not 

always apparent, particularly when the system presents information that appears reliable. 

Process faults and alarm flood episodes can obscure systemic automation failures by diverting the 

operator's attention. In high-demand situations, operators prioritize resolving immediate process 

disruptions, reducing their capacity to evaluate automation performance. The cognitive and 
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operational workload in these conditions makes it less likely that incorrect or unreliable automation 

outputs will be detected. When managing real-time system faults, operators may not have the 

cognitive resources to recognize automation failures, leading to delays or missed detections. The 

literature review identified masked failures, where automation malfunctions are difficult to detect 

due to system complexity or a lack of direct feedback. In this case, the process fault itself conceals 

the automation failure, as operators focus on stabilizing the system rather than verifying automation 

performance. This differs from other masked failures in the literature, where automation defects 

remain hidden due to design limitations or infrequent system interactions. Here, the masking occurs 

because the operator's attention is occupied by process-related issues, preventing them from 

assessing whether automation is functioning correctly. As a result, the automation failure persists 

undetected. 

These findings align with automation bias, where users rely on automation without verifying its 

outputs. Systemic automation failures reinforce this bias, as operators may not receive clear cues 

that the system is providing incorrect recommendations. In some cases, process faults or alarm 

flood episodes camouflage automation failures, limiting the operator’s ability to detect errors in 

system outputs. Without direct feedback or conflicting information, operators are more likely to 

accept automation recommendations without independent assessment. 

This relates to John Sweller’s cognitive load theory developed in 1988, which explains that under 

high workload conditions, cognitive resources are strained, and can negatively impact decision-

making, learning, and task performance. When managing multiple tasks or responding to system 

faults, operators may prioritize efficiency over verification, increasing reliance on automated 

recommendations. In such cases, automation bias and cognitive overload interact, reducing the 

likelihood that automation failures will be identified. These findings emphasize the importance of 

automation designs that facilitate operator engagement and verification, especially in high-demand 

environments where cognitive capacity is strained and AI failures may go unnoticed. 

7.4.3 Alarm management, or automation management? 

This thesis indicates that AI-based automated diagnostic tools can influence alarm management by 

refining how alarms are processed, ranked by priority, and communicated to operators. 

Conventional alarm systems often generate a high volume of alerts, contributing to alarm fatigue, 
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where operators become desensitized to alarms or struggle to differentiate between essential and 

non-essential alarms. AI-based automated diagnostic tools can support alarm management by 

filtering out non-relevant alarms, detecting patterns, and providing contextual information to 

improve decision-making. Furthermore, not all alarms require immediate attention from operators. 

Some alarms result from self-correcting conditions, minor variations, or low-priority events that 

do not require intervention. AI systems can evaluate alarm relevance in real time, differentiating 

between those that necessitate immediate action and those that can be recorded for later review. 

During alarm flood episodes, automation can help operators manage high volumes of alarms by 

highlighting the most relevant information and isolating root causes. However, in stable conditions 

with fewer alarms, operators can rely on their expertise without additional automation support. 

Both of these situations raise questions about the usefulness of modern alarm systems. If 

automation can effectively prioritize critical alarms during high-demand situations and operators 

can manage simple conditions, it may be worth reconsidering the necessity of traditional alarm 

systems. Instead of relying on alarms as the primary means of alerting operators, alternative 

approaches, such as AI-driven diagnostics or predictive monitoring, could provide more effective 

and context-aware decision support. This challenges the conventional role of alarms and suggests 

that eliminating or significantly redesigning them. 

Completely removing alarms could be problematic, as operators must remain aware of system 

conditions. Rather than eliminating alarms, AI can restructure how they are presented by grouping 

related notifications, delaying non-urgent signals, or summarizing less critical events. Instead of 

displaying separate alarms for similar issues, the system could consolidate them into a single, 

concise message. If a condition is likely to stabilize without intervention, the system could 

temporarily delay the alarm, minimizing distractions. Rather than generating an alert for every 

minor fluctuation, AI could produce periodic summaries that highlight trends and potential 

concerns, allowing operators to focus on more critical tasks. Additionally, alarm lists or tables 

could be placed outside the operator’s primary line of sight, ensuring that non-urgent information 

is accessible without interfering with immediate decision-making. 

AI can refine alarm presentation, but operator oversight remains necessary to maintain control. 

Automated systems should be designed to allow operators to access delayed or hidden alarms when 

required and to override AI-based prioritization when needed. Maintaining a balance between 
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automation and human intervention is essential to ensuring that alarm management supports 

decision-making and operational reliability. As AI takes on a greater role in filtering and 

prioritizing alarms, it raises the question of whether the focus for humans is shifting from alarm 

management to automation management, where operators increasingly monitor and manage AI-

driven decision processes rather than the alarms themselves. 

7.5 Future Research Directions 

7.5.1 Adaptive automation 

This thesis demonstrates that automation’s effect on human performance and decision-making is 

shaped by multiple factors, such as task complexity, operator expertise, system conditions, and the 

limitations of human information processing. The usefulness of automation depends on how well 

it adapts to these elements, ensuring it aids decision-making without diminishing operator 

involvement or awareness. 

The operational context and environment play a key role in determining the level of automation 

support needed [313]. In demanding situations, such as alarm flood episodes, where multiple faults 

occur at once and the cause of failure is unclear, operators must analyze large amounts of 

information under time constraints. Automation can help by filtering alarms, prioritizing critical 

data, and providing structured decision support, reducing cognitive workload. Conversely, in 

simpler fault conditions where system status remains stable, excessive automation may be 

unnecessary. In these cases, operators can depend on their expertise without additional support, 

allowing them to stay engaged in monitoring and control. 

An adaptive automation system should assess operator workload, task complexity, and system 

conditions to determine the appropriate level of assistance. Additionally, automation should adjust 

based on the operator’s experience level. Less experienced users may benefit from structured 

guidance, while experienced operators may require only targeted support to enhance efficiency 

rather than direct their decision-making. 

Future research should focus on automation that can dynamically adjust its level of support to 

match changing conditions, ensuring that it enhances performance without diminishing operator 

engagement. Verification mechanisms should also be incorporated to encourage operators to 
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reassess automation outputs, maintaining a balance between automation assistance and human 

oversight. By aligning automation with workload, task complexity, operator expertise, and system 

demands, adaptive automation can improve operational efficiency while supporting effective 

decision-making. 

7.5.2 Training the human 

This thesis has shown that Human-AI interactions are prone to automation bias and overreliance 

on AI, often caused by trust miscalibration—where operators either place too much or too little 

trust in automation [314] [315] [316]. Well-designed training programs can help mitigate these 

effects by improving operators’ ability to assess AI reliability, recognize potential automation 

failures, and develop appropriate verification strategies.  

Training in simulated environments with varied AI accuracy and failure scenarios can help 

operators calibrate trust and develop assessment skills [317]. Exposure to both correct and incorrect 

AI recommendations allow trainees to practice decision-making under different conditions and 

verify automation outputs. Scenario-based exercises requiring operators to analyze AI 

recommendations, identify errors, and justify decisions improve their ability to assess AI reliability.  

Training programs should focus on AI awareness and understanding. Instruction on AI capabilities, 

limitations, how recommendations are generated, potential errors, and factors influencing accuracy 

can help operators assess AI outputs. This knowledge allows them to determine when further 

verification is needed, reducing over-reliance on automation. 

Training should also include methods for cross-checking AI recommendations against independent 

system data [278]. Operators should apply manual verification techniques, refer to secondary data 

sources, and analyze historical trends before taking action. These approaches help ensure that 

decisions are based on validated information rather than unverified automation outputs. Training 

should include performance feedback to help operators understand when they trust AI too much or 

too little. Real-time assessments and feedback can help AI systems decide when to provide more 

explanations or ask for operator verification, preventing over-reliance in high-demand situations. 

Future research should explore how different training methods affect operator trust calibration over 

time. Studies could investigate how long-term exposure to AI recommendations influences 

verification behaviors and decision-making patterns. Additionally, research should examine how 
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adaptive training programs—where training intensity and content adjust based on an operator’s 

experience and performance—impact the ability to recognize AI errors. Further research is needed 

to assess how training interventions affect operators' ability to develop automation judgment, 

mitigating automation bias and overreliance. These findings can inform training strategies that 

enhance AI-assisted decision-making while ensuring human oversight and control.  
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CHAPTER 8 CONCLUSION AND RECOMMANDATIONS 
 

This thesis contributes to the understanding of AI integration in high-risk environments by 

examining its impact on human performance and decision-making. As automation becomes more 

common in many industries, including aviation, healthcare, manufacturing, and industrial process 

control, it is necessary to design systems that support rather than replace human expertise. The 

findings highlight how automation bias, trust miscalibration, and overreliance on AI affect fault 

detection, diagnosis, and response. By identifying strategies to improve Human-AI interaction, 

such as adaptive automation and training interventions, this research provides a foundation for 

developing AI systems that enhance operator performance while maintaining human oversight. 

As systems become more interconnected, the number of alarms being programmed into 

technologies continues to grow. New aircraft include more alarms, modern trains integrate 

additional monitoring systems, and novel medical devices generate a higher volume of alarms. 

While these systems aim to improve safety and efficiency, they also contribute to alarm flood 

episodes. As technology advances, alarm management will become an increasing challenge, 

requiring solutions that help operators prioritize information, reduce cognitive workload, and 

improve response times. 

This research provides insights that can guide policymakers, system designers, and industry leaders 

in shaping AI design, regulation, and implementation. Addressing alarm management and AI-

assisted decision-making is necessary to ensure that automation remains a tool that supports human 

decision-making rather than introducing new challenges in complex operational environments. 

By building on these insights, this research contributes to the development of AI-driven solutions 

that enhance human performance and decision-making. With thoughtful design and training, 

automation can be a valuable tool that improves efficiency, supports human expertise, and ensures 

safer and more reliable operations. As industries continue to evolve, the integration of AI and 

automation presents an opportunity to create systems that are more responsive, adaptive, and 

aligned with human capabilities. 
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