POLYPUBLIE

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Extraction des sous-graphes : identification des microarchitectures
dans les logiciels évolutifs orientés objets

Ahmed Belderrar

2011
Mémoire ou these / Dissertation or Thesis

Belderrar, A. (2011). Extraction des sous-graphes : identification des
microarchitectures dans les logiciels évolutifs orientés objets [Mémoire de
maitrise, Ecole Polytechnique de Montréal]. PolyPublie.

https://publications.polymtl.ca/658/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/658/

Directeurs de
recherche: Giuliano Antoniol

Programme

Advisors:

*|Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/658/
https://publications.polymtl.ca/658/

UNIVERSITE DE MONTREAL

EXTRACTION DES SOUS-GRAPHES : IDENTIFICATION DES
MICROARCHITECTURES DANS LES LOGICIELS EVOLUTIFS ORIENTES OBJETS.

AHMED BELDERRAR
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AOUT 2011

(© Ahmed Belderrar, 2011.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

EXTRACTION DES SOUS-GRAPHES : IDENTIFICATION DES
MICROARCHITECTURES DANS LES LOGICIELS EVOLUTIFS ORIENTES OBJETS.

présenté par : BELDERRAR, Ahmed

en vue de I'obtention du diplome de : Maitrise es Sciences Appliquées

a été dument accepté par le jury d’examen constitué de :

M. QUINTERO, Alejandro, Doct., président.
M. ANTONIOL, Giuliano, Ph.D., membre et directeur de recherche.
M. DESMARAIS, Michel C., Ph.D., membre.

111

A mes trés chers parents,

ma femme et mes enfants. ..

v

REMERCIEMENTS

En premier lieu, je tiens a remercier Monsieur le Professeur Giuliano Antoniol pour avoir
accepté et assuré la direction de mes travaux, pour la qualité de son encadrement, et ses
remarques pertinentes. Je suis tres reconnaissant de son savoir et son expérience partagés, et

de son soutien scientifique.

Je remercie aussi Monsieur Yann-Gaél Guéhéneuc, de son aide, de ses commentaires, et de

son outil Ptidej et son méta-modele PADL pour les données utilisées dans ce travail.

Je veux aussi adresser mes remerciements a Monsieur Philippe Galinier, qui nous a aidé a

valider notre algorithme.

Je veux également exprimer mes sinceres remerciements, et témoigner de ma grande re-
connaissance a Monsieur Segla Kpodjedo pour son soutien, et qui par son expérience, m’a

donné beaucoup de propositions tout au long de ce projet.

Mes plus profonds remerciements vont a ma femme. Tout au long de la période d’études,
elle m’a toujours soutenu, encouragé et aidé. Elle a su me donner toutes les chances pour

réussir.

La réalisation de ce travail s’appuie également sur le bon environnement de travail des
laboratoires "soccerlab” et "Ptidej”. A ce titre, je tiens a remercier tous ceux qui m’ont aidé
de pres ou de loin afin d’achever ce travail, ainsi que je remercie toutes les personnes intéressées
par notre travail, en espérant qu’elles puissent trouver dans ce rapport des explications utiles

pour leurs propres travaux.

RESUME

Les développeurs introduisent des nouvelles microarchitectures, et des microarchitectures
non documentées lorsqu’ils effectuent des taches d’évolution sur les applications orientées
objets. Nous nous intéressons a chercher la relation entre les microarchitectures et les pro-
priétés telles que la stabilité et les défauts. Nous proposons une nouvelle approche basée
sur I'extraction des sous-graphes, un nouvel algorithme, et un outil SGFinder permettant de
recenser d’une maniere efficace et exhaustive les microarchitectures dans le diagramme des
classes des petits et moyens systemes orientés objets. Une fois que nous énumérons toutes
les occurrences des microarchitectures, nous les exploitons pour identifier leurs propriétés
souhaitables, comme la stabilité, ou leurs propriétés indésirables, comme les changements
et la prédisposition aux défauts. Nous avons effectué une étude empirique pour vérifier la
faisabilité de notre approche, en appliquant 1'outil SGFinder sur le diagramme des classes de
plusieurs versions de deux systemes orientés objets Rhino et ArgoUml. Nous identifions les
microarchitectures les plus et les moins prédisposées aux défauts, et les plus et les moins pré-
disposées aux changements. Finalement, nous concluons que le nouvel outil SGFinder ouvre

plusieurs voies pour d’autres éventuelles recherches.

Mots-clefs : Microarchitectures, changements et défauts des logiciels, mainte-

nance et évolution des logiciels.

vi

ABSTRACT

Developers introduce novel and undocumented micro-architectures when performing evo-
lution tasks on object-oriented applications. We are interested in understanding whether
those organizations of classes and relations can bear, much like cataloged design and anti-
patterns, potential harm or benefit to an object-oriented application. We present SGFinder,
a sub-graph mining approach and tool based on an efficient enumeration technique to identify
recurring micro-architectures in object-oriented class diagrams. Once SGFinder has detected
instances of micro-architectures, we exploit these instances to identify their desirable proper-
ties, such as stability, or unwanted properties, such as change or fault proneness. We perform
a feasibility study of our approach by applying SGFinder on the reverse-engineered class
diagrams of several releases of two Java applications: ArgoUML and Rhino. We characterize
and highlight some of the most interesting micro-architectures, the most fault prone and the

most stable, and conclude that SGFinder opens the way to further interesting studies.

Keywords : Micro-architectures, software changes and faults, software mainte-

nance and evolution.

Vil

TABLE DES MATIERES

REMERCIEMENTHS

LISTE DES FIGURES

LISTE DES ALGORITHMIES

LISTE DES ANNEXES

(1.2 Objectits de la recherche| 000 4
(1.3 Esquisse de la méthodologielo 0oL 4
1.4 Notations et notions de base en théorie des graphes et des ensembles 5
(1.4.1 Les graphes 5
42 Tesensembled 7

(1.5 Organisation du mémoire|. 7
CHAPITRER REVUE DE LITTERATUREl. 8
[2.1 Algorithmes de recensement des motifs de réseau et des sous-graphes| 8
[2.1.1 Algorithme NeMofiwnder| 9
[2.1.2 Algorithme MFinder| 10
2.1.3 Algorithme Pajek{ 10
[2.1.4 Algorithme MAVisto| 11

2.1.5 Algorithme FanMod| 0. 11

2.1.6 Algorithme Kavosh| 12
[2.2 Patrons de conception, anti-patrons, et microarchitectures| 13
13subsection.2.2.1

[2.2.2 Détection des patrons de conception| 14

[2.2.3 Détection des anti-patrons|o 15

| SOUS-GRAPHEN

[3.2 Algorithme| 17
[3.2.1 Voisinage (GenerateNeighborsSet) 18
[3.2.2 Génération des k-sous-ensembles "Generate KSubSetsAnd Validate” (voir |

la section [2al) 21
3.23 Connectivitel. 23
.24 Classement] 26

[3.3 Caracteérisation des sous-graphes|. 28
3.3.1 Nombredeszones 28
[3.3.2 Rolesdesclasses 29
3.3.3 Tunmels 29
3.3.4 _Evolution des microarchitectures entre les versionsl. 31

B4 Conclusionl. 33

CHAPITRE A VALIDATION EMPIRIQUE] 34

[4.1 Questions de recherchel oo 34

.. 35
421 Tesdonnées 35

[4.3 Approchel 37

4.4 Methode d’analyse| 39
[4.4.1 Caracteristiques des microarchitectures| 39
[4.4.2 Reéponses aux questions de recherchel 40

Mo Conclusionl. o . oL 42

CHAPITRE[S _RESULTATS| oo 43

.1 QRI: Applicabilité de I'outil SGFinder et [a description des microarchitectures |

| trouveées| 43

1X

[b.1.1 Temps de calcul de I'outil SGFinder|. 46

[5.2 QR2 : Prédisposition des microarchitectures aux detauts| 50
[5.3 QR3 : Prédisposition des microarchitectures aux changements| 53
6.4 Timites de validitd 54
[b.4.1 [imite de validité de constructionl 55
H.4.2 [imite de validité internel. L Lo 55
[0.4.3 [imite de validité externel L. 56
[Hh.4.4 [imite de validité de [a conclusion|. 56

b0 Conclusionl. L 56
CHAPITRE[E_CONCLUSIONI 57
[6.1 Synthese des travaux| 57
[6.2 Limitations de la solution proposee| 58
6.3 Améliorations futureso Lo 59

ANNEXESI . . o 65

LISTE DES TABLEAUX

(Tableau 1.1 Couts, efforts, et temps de maintenance des logiciels.| 3
(Tableau 2.1 Limitation de ['algorithme FanMod sur le nombre d’étiquettes attri- |
[buées aux arétes des motifs de réseaul. L. 12
[Tableau 4.1 Sommaire des systemes orientés objets| 36
[Tableau 5.1 Les microarchitectures trouvées dans les deux systemes Rhino et Ar- |
| goUml ("Occ” est le nombre total des occurences des microarchitec- |
| tures, "Dif” est le nombre total des microarchitectures différentes).| . . . 44
[Tableau 5.2 Microarchitectures existant dans le systeme Rhino. Chaque ligne in- |
[dique le résume en 5 chifires : Min, Q1, Médiane, Q3, Maxl 45
[Tableau 5.3 Microarchitectures existant dans le systeme ArgoUml. Chaque ligne |
| indique le résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max| 46
[Tableau 5.4 Microarchitectures existant dans les deux systemes Rhino et ArgoUml. |
[Chaque ligne indique le résumé en 5 chiffres : Min, Q1, Médiane, Q3, |
[Maxl . . . e 46
[Tableau 5.5 Temps d’execution de ['algorithme SGFEinder sur les deux systemes |
[Rhino et ArgoUml|o 48
Tableau 5.6 Les microarchitectures les plus et les moins prédisposées aux détauts |
| des deux systemes Rhino et ArgoUml. Chaque ligne indique le résumé |
| en o chiffres : Min, Q1, mediane, Q3, Maxl 50
(Tableau 5.7 Les microarchitectures les plus et les moins prédisposées aux change- |
[ments qui existent dans les deux systemes Rhino et ArgoUml. Chaque |
[ligne indique le résumé en 5 chiffres : Min, Q1, mediane, Q3, Max| . . . 53

x1

LISTE DES FIGURES

[Figure 3.1 Un sous-graphe extrait de la version 1.7R1 du systeme Rhino. Les som- |
[mets représentent les classes, et les arcs représentent les relations entre |
| les classes. La description des étiquettes sur les arcs est definie dans la [
[section M2 1Ll oL 18
[Figure 3.2 Sommets de la premiere couche de la liste des sommets voisins N*(0), . 19
[Figure 3.3 Sommets de la deuxieme couche de la liste des sommets voisins N*(0).| 20
[Figure 3.4 Sommets de la troisicme couche de la liste des sommets voisins N*(0).. 20
[Figure 3.5 Sommets de la quatriéme couche de la liste des sommets voisins N*(0)[21
[Figure 3.6 Connectivité d'un sous-ensemble de taille k=5 26
[Figure 3.7 Matrices d’adjacences d'un graphel. 27
[Figure 3.8 Un sous-graphe extrait de la version 1.7R1 de ["application Rhino avec |
| deux occurrences {2,4,5} et {7,1,3} dordre k=3 27
[Figure 3.9 Un graphe en étoile (les sous-graphes contenant le sommet 0 et de taille |
| supérieure a un, appartiennent a la méme zone)| 28
[Figure 3.10 Patron de conception fabrique| 0L 29
[Figure 3.11 [llustration par ['outil SGViewer des roles joues par des classes.| 30
[Figure 3.12 Identification des microarchitectures dans les tunnels| 31
[Figure 3.13 Classification des microarchitectures selon leurs evolutions entre les ver- |
| sions d'un systeme orienté objet.| L., 32
[Figure 4.1 Apercu de la nouvelle approchelo 000 38
[Figure 5.1 Les microarchitectures les plus connectéees de taille cing dans les deux |
| systemes Rhino et ArgoUml.|. 47
[Figure 5.2 Temps d’éxecution de ['algorithme SGFinder sur les deux systemes |
| Rhino et ArgoUml.| 49
[Figure 5.3 Exemple d'une microarchitecture prédisposee aux défauts avec une pre- |
| cisionde P=S81% 52
[Figure 5.4 Exemple d'une microarchitecture sans défauts avec une précision P de |
| 3000 . . 55
[Figure A.1 Concepts de tréquences. Pour le concept (7, 1l y a quatre occurrences, |
| pour le concept C5, 1l vy a deux occurrences, et pour le concept Cjs, 1l y |
[a une seule occurrencel . ..o oLo 65
|Figure B.1 Elargissement d’un sous-graphe a un autre sous—graphe| 67
[Figure C.1 Un sous sous-graphe extrait de la version 1.7R1 de 'application Rhino.| 70

xii

[Figure C.2 Fichier d’entrée de I'outil SGFinder basés sur le sous sous-graphe de la |
| figure |[C.1L o 71
[Figure D.1 Apercu de la fenetre principale de SGViewer| 75
[Figure D.2 Représentation graphique des microarchitectures/. 76

xiil

LISTE DES ALGORITHMES

[3.1 Meéethode principale de 'algorithme| 17
[3.2 Voisinage | 22
[3.3 Geénérateur des sous ensembles de taille & 24
3.4 Connectivitel L 25
3.5 Calcul des zones 29

Xiv

LISTE DES ANNEXES

[Annexe A Concepts de frequences| oL 65
[Annexe B Algorithme nauty| o 66
[Annexe C Guide d’utilisation de SGFinder (Version 1.0)| 69

SGFinder
SGViewer
00

mAs
PADL
Ptidej

DP

AP

AST

CSP

nauty

Q1, Q3

Médiane

Résumé en 5 chiffres

XV

LISTE DES SIGLES ET ABREVIATIONS

Engin d’énumération des sous-graphes (Sub-Graph Finder).

Engin de visualisation des sous-graphes (Sub-Graph Viewer).

Orienté objet.

Microarchitectures.

Méta-modele (Pattern and Abstract-level Description Language).
Suite d’outils de rétro-conception (Pattern Trace Identification, Detec-
tion, and Enhancement in Java).

Un patron de conception est un concept permettant de décrire des so-
lutions standards pour résoudre des problemes récurrents et spécifiques
de conception dans des contextes bien précis.

Les anti-patrons sont de “mauvaises” solutions a des problemes récur-
rents de conception logicielle.

Arbre syntaxique abstrait (AST est un arbre dont les nceuds internes
marquent les opérateurs, et dont les feuilles représentent les opérandes
des opérateurs.).

Problemes de satisfaction de contraintes.

Est un ensemble de fonctions permettant de déterminer le groupe d’au-
tomorphismes d’un graphe. Il peut aussi fournir la matrice d’adjacence
représentant la forme canonique d’un graphe.

Les quartiles permettent de séparer une série des données en quatre
groupes de méme nombre d’éléments. Un quart des valeurs sont in-
férieures au premier quartile Q1, et un autre quart des valeurs sont
supérieures au troisieme quartile Q3.

Lorsqu’on ordonne les valeurs d’une variable, la médiane est défini par
le point milieu de cette liste ordonnée (c’est-a-dire que 50 % des valeurs
sont supérieures a la médiane et 50 % lui sont inférieures).

est la représentation d’'une série de données sous le format "Min, Q1,
Médiane, Q3, Max”.

CHAPITRE 1

INTRODUCTION

Le travail présenté dans ce mémoire est la mise en place d’'une nouvelle approche et d’un
outil SGFinder pour recenser des microarchitectures a partir de diagramme des classes. Nous
modélisons un diagramme des classes par un graphe orienté et étiqueté, et nous définissons
une microarchitecture comme un sous-graphe induit par un sous-ensemble de classes. Cette
technique de modélisation nous permet de recenser les sous-graphes d’un graphe orienté et
étiqueté au lieu de recenser les microarchitectures du diagramme des classes d’un systeme
0OO0. Pour grouper les sous-graphes isomorphes dans leurs propres catégories, nous utilisons
la librairie existante nauty (voir McKay, [1981)). Notre outil SGFinder inclut une représen-
tation visuelle des sous-graphes correspondant aux microarchitectures. Cet outil permet un

recensement efficace des sous-graphes induits d’ordre prédéfini (nombre de sommets).

Définition de microarchitecture : Le concept de microarchitecture peut varier en fonc-
tion du domaine ou du contexte de son utilisation. Pour le diagramme des classes d’un systeme
orienté objet, une microarchitecture est définie comme un ensemble de composants et de ses
connecteurs. Autrement dit, cette microarchitecture comprend un ensemble de classes et de
ses interactions (les relations entre les classes), ou aucune des classes n’est isolée du reste des

classes participantes a cette microarchitecture.

Nous utilisons 'outil SGFinder pour recenser des microarchitectures de taille trois, quatre
et cing sur plusieurs versions de deux systemes OO (Rhino et ArgoUml). Ensuite, nous
reportons les détails concernant le nombre total de toutes les microarchitectures, et le nombre
total des microarchitectures identiques. Aussi, nous identifions les microarchitectures les plus

et les moins prédisposées aux changements et aux défauts.

Dans ce chapitre, nous commencons par décrire le contexte de notre projet de recherche,
définir les éléments de la problématique, et les objectifs a atteindre. Ainsi, nous présentons la
méthodologie utilisée pour répondre a nos objectifs. Par la suite, nous rappelons brievement
les notions de base en théorie des graphes et des ensembles. Finalement nous terminons par

le plan d’organisation de ce mémoire.

1.1 Contexte

La mise en production d’un logiciel est 'aboutissement de plusieurs phases ou différentes
équipes collaborent entre elles pour réaliser ce logiciel. Ces phases sont découpées selon un
cycle bien déterminé dans I'objectif de valider et de vérifier la conformité de ce logiciel avec les
besoins et les exigences de I'utilisateur final. Les erreurs commises durant le développement,
et/ou l'évolution du logiciel peuvent engendrer des couts tres élevés lors de 'opération de
maintenance apres sa livraison. En effet, I’activité de maintenance est une phase importante

et cruciale dans le cycle de vie d’un logiciel.

Aujourd’hui, les ressources relatives a la maintenance d’un logiciel et de la gestion de son
évolution représentent plus de 50% des ressources du projet. En effet, plusieurs études ont
été effectuées pour définir ces ressources comme le budget, 1'effort, et le temps. Ces ressources
sont récapitulées dans le tableau [L.1]

En industrie, les chefs de projets, les architectes logiciels, et les concepteurs consacrent une
partie importante de leur temps a la conception des systemes informatiques solides et stables.
Dong, il est essentiel pour ces gestionnaires de bien gérer la conception et la maintenabilité
pour pouvoir maitriser le cout de développement des logiciels, et accélérer leurs réalisations

pour satisfaire les besoins de 'utilisateur final.

Les entreprises développant des systemes informatiques cherchent d’un coté (i) des moyens
et des nouvelles techniques pour assurer la qualité de leurs logiciels, et d'un autre coté (ii)
des solutions pour réduire le couit des changements apportés au code apres la livraison de
leurs logiciels aux clients. Pour atteindre les deux objectifs visés par ces entreprises, il faut

prendre en compte certains éléments dont :

i. Les développeurs doivent comprendre le code, y compris la structure interne des classes

et les relations entre elles, afin d’effectuer correctement les changements.

ii. Pendant la phase de conception détaillée du logiciel, les concepteurs des classes ne
doivent pas créer des structures prédisposées aux défauts (bogues), ou qui peuvent

créer beaucoup de changements.

Eléments de la problématique

Apres la mise en ceuvre des logiciels, des activités de maintenance seront ultérieurement

nécessaires pour corriger les bogues rencontrés par les utilisateurs finaux, ajouter des nouvelles

Tableau 1.1 Cotts, efforts, et temps de maintenance des logiciels.

’ Ressource \ Description \ Référence ‘
Selon une étude effectuée en 1986 aux Etats-Unis aupres | (voir Audibert),
Cout de 55 entreprises indique que 53% du cotut total de la | [2009)

réalisation d’un logiciel est réservé a sa maintenance. Ce

cout est réparti de la maniere suivante :

— 34% de ce cotit est attribué aux modifications des spé-
cifications initiales (évolution du logiciel).

— 17% est affecté aux corrections des bogues.

— 10% pour adapter le logiciel aux nouveaux utilisa-
teurs, ou aux nouveaux environnements de travail.

— Le reste du cott (39%) est reparti sur le controle de la
qualité, 'amélioration de la performance du logiciel,
et 'assistance aux utilisateurs.

Jusqu’a 90% du cout total du projet est consacré a la

(voir |Erlikh, [2000;

maintenance d’'un systéme existant, et a son évolution. | |[Moad} 1990)
Environ 75% du budget est consommé pendant la phase | (voir [Eastwood, |
de maintenance selon une étude effectuée aupres de 1000 | [1993)

compagnies.

Le cott de maintenance peut consommer entre 60% et | (voir |[Huff, |1990;
70% du budget de gestion et de fonctionnement du pro- | [Port, [1988)

jet.

Effort | De 65% a 75% de Ueffort logiciel est consacré a la main- | (voir [McKay, [1984) |
tenance des systemes.
Temps Selon une étude effectuée aupres de 487 organisations, | (voir |Lientz et/ |

plus de 50% du temps total du projet est consacré a la
maintenance des systemes.

Swanson, 1981))

fonctionnalités, améliorer 'efficacité, et adapter le code selon un nouvel environnement de

travail. Ces travaux sont donc inévitables pour augmenter la durée de vie des logiciels.

La taille du logiciel croit au fur et a mesure durant la phase de développement des com-

posants et leur intégration pour produire la version finale du logiciel. Donc, les logiciels

deviennent de plus en plus complexes, et par conséquent, leur maintenance, et leur mise au

point deviennent des taches extréemement difficiles pour les développeurs.

Afin d’effectuer efficacement les activités de maintenance, et avant de procéder a n’importe

quelle modification, les responsables de la maintenance doivent comprendre 1’objectif de leurs

systemes OO, ainsi que les concepts représentés dans ces systemes. La compréhension com-

prend évidemment les différents choix qui ont été pris pendant les phases de conception et
d’implémentation. Dans les systemes orientés objets, les choix de conception comprennent la
structure interne des classes et les relations entre elles. Par exemple, les patrons de conception
(voir |Gamma et all, [1994) sont des structures de classes permettant de décrire des solutions
standards a des problemes de conception spécifiques et récurrents dans des contextes bien
précis. Ils sont concus dans 'objectif de faire une conception plus souple, réutilisable et ro-
buste, ainsi que améliorer la qualité des logiciels. Par contre, les anti-patterns (voir Brown

et al., 1998) sont de "mauvaises” solutions & des problemes récurrents de conception logicielle.

Cependant, il y a des types de microarchitectures comme les patrons de conception et les
anti-patterns qui ont été déja documentés. En effet, certaines microarchitectures ne sont pas
documentées parce qu’elles sont méconnues, ou bien leur domaine ou leur application sont
spécifiques. Nous supposons que ces microarchitectures peuvent avoir des propriétés utiles,

comme la stabilité, et les défauts (les bogues).

Dans les systemes orientés objets, la plupart des approches existantes se focalisent sur les
patrons de conception, les anti-patterns et plus précisément sur une librairie d’abstraction de

microarchitectures existantes (ex. patrons de conception (voir |Guéhéneuc et Antoniol, | 2008))).

1.2 Objectifs de la recherche

L’objectif principal du travail présenté dans ce mémoire est d’implémenter un algorithme
et un outil efficace permettant d’une part, de recenser toutes les microarchitectures d’une
taille donnée, et d’autre part de regrouper les microarchitectures identiques. De plus, d’autres

objectifs sont pris en considération :

i. Chercher la relation entre les microarchitectures et les propriétés telles que la stabilité

et les défauts.
ii. Tracer I’évolution des microarchitectures entre les différentes versions d’'un systeme OO.

iii. Caractériser les microarchitectures (définir les roles joués par les classes, et identifier

les microarchitectures dans les trois cotés du tunnel[l]) (voir la section [3.3).

1.3 Esquisse de la méthodologie

Pour atteindre les objectifs, tout d’abord le diagramme des classes d’un systeme orienté

objet est transformé en un graphe orienté et étiqueté ou :

1. un tunnel est un ensemble de classes communes entre plusieurs versions

— Les classes sont représentées par des sommets (nceuds).
— Les relations entre les classes sont représentées par des arcs.
— Les étiquettes associées aux arcs représentent les relations simples (agrégation, associa-

tion, et héritage) et composées.

Avec cette technique, nous modélisons le probleme d’énumération des microarchitectures

comme un probleme d’énumération des sous-graphes.

Par la suite, nous implémentons un algorithme efficace pour énumérer toutes les microar-

chitectures (sous-graphes) d’une taille trois, quatre, et cing.

Nous identifions ensuite les classes boguées et les classes modifiées (voir la section 4.2.1)), et
nous les exploitons pour déterminer les microarchitectures les plus et les moins prédisposées

aux défauts et aux changements.

1.4 Notations et notions de base en théorie des graphes et des ensembles

Afin d’avoir une terminologie cohérente, nous allons introduire les principaux concepts
de graphes et d’ensembles que nous utiliserons dans 1’algorithme d’énumération des sous-

graphes.

1.4.1 Les graphes

Un graphe orienté et étiqueté G est un quadruplet G(V, A, L,[) ou :

— V est un ensemble { vy, vy, .., v, } fini non vide dont les éléments sont appelés sommets
ou neceuds.

— A est un ensemble { aj,as,..,a, } dont les éléments sont appelés arcs. Un arc a de
I'ensemble A est défini par une paire ordonnée de sommets. Lorsque a = (u,v), on dira
que l'arc a va de v a v. On dit aussi que u est 'extrémité initiale et v est 'extrémité
finale de a.

— L est un ensemble d’étiquettes.

— 1 : A — L est une fonction d’étiquetage vérifiant la condition suivante : Va € A =
l(a) € L.

Deux sommets d'un graphe sont dits adjacents ou voisins s’il existe un arc qui les relie. Le
nombre de sommets d'un graphe G est appelé ordre de ce graphe, et on le note par |V|]. La

taille d’un graphe, notée |A| est le nombre de ses arcs.

Une chaine p = (v1, a1, v2, .., Vp_1, Gy, Up+1) est une suite de sommets dans laquelle deux
éléments successifs quelconques sont reliés par un arc. La longueur d'une chaine est le nombre
de sommets moins un et on la note par length(u) = p. La distance dist(u,v) entre deux
sommets u et v est la longueur de la plus petite chaine reliant ces deux sommets. Un graphe
connexe GG est un graphe dans lequel il existe au moins une chaine y = (u,..,v) entre toute
paire de sommets u et v de V(G). Il est utile de noter qu'un graphe orienté et étiqueté peut

étre cyclique, et donc ce graphe peut avoir plusieurs chaines entre deux sommets données.

Un sous graphe partiel d'un graphe G est un graphe Gg = (Vs, Ag, L,[%) composé de
certains sommets de G et de certains arcs reliant ces sommets dans G. En effet, le graphe
Gs = (Vg, Ag, L,17) est un sous graphe partiel de G(V, A, L, 1) ssi Vg C V, Ag C AN(Vsx Vs),
et la fonction d’étiquetage [° : Ag — L vérifie la condition suivante : V(a,b) € Ag, I°(a,b) =
l(a,b).

Un graphe G'(V’,; A’, L, ') est un sous-graphe induit d'un graphe G(V, A, L,1) si V' est un
sous-ensemble de V' et si pour tout couple de sommets (u,v) de V', le sommet u est connecté
au sommet v dans G’ si et seulement si le sommet u est connecté au sommet v dans G, et
I'étiquette de I'arc (u, v) est la méme dans G et G'. Autrement dit, le sous-graphe G’ est induit
siV'c Vet A ={(u,v) € A,u € V' Nv e V'}. De méme, le sous-graphe G'(V', A", L,l') est
dit induit par le sous-ensemble des sommets V'’ de V. Un k-sous-graphe est un sous-graphe
induit d’ordre k.

Deux sous-graphes Gg = (Vg, Ag, L,1°) et Gy = (Vig, Ay, L, 1) sont isomorphes s’ils sont
identiques. Formellement, les deux sous-graphes Gg et Gy sont isomorphes si seulement si
|Vs| = |V, et s'il existe une fonction de bijection ¢ : Vs — Vi telle que, V(u,v) € Ag
=(¢(u), p(v)) € Ap. La décision de l'existence d’un isomorphisme entre deux sous-graphes

est un probleme NP-complet (voir |Garey et Johnson|, [1990)).

Une matrice d’adjacence M est une structure de données permettant de représenter un
graphe G. La matrice M est une matrice carrée ayant pour taille le nombre de sommets
du graphe G. Le couple (i,7) désigne l'intersection de la ligne ¢ et de la colonne j. Dans
une matrice d’adjacence, les lignes et les colonnes représentent les sommets du graphe. La
valeur m;; # 0 a la position (i, j) signifie que le sommet i est adjacent au sommet j, et elle
représente 1’étiquette sur 'arc reliant le sommet 7 et le sommet j. Donc, pour un graphe
l(vi,v;), si(vi,v;) € A

orienté et étiqueté, M = (m;;) ou m;; =
0, sinon

1.4.2 Les ensembles

Soit S un ensemble contenant n éléments distincts et soit k& un entier positif. Un k-sous-
ensemble est une combinaison de k éléments de I'ensemble S. Les k éléments sont pris sans
répétition et ne sont pas ordonnés. Le nombre total des combinaisons possibles est donné par

le coefficient binomial suivant :

n
k 0, sinon

Exemple : les combinaisons de 2 éléments pris dans {1,2,3,4} sont {1,2}, {1,3}, {1,4},
{2,3}, {2,4}, {3,4}. Donc, il y a 6 combinaisons possibles (C% = ﬁiz)! =6).

1.5 Organisation du mémoire

Ce mémoire est composé de six chapitres. Ce premier chapitre d’introduction met en évi-
dence le contexte de notre étude, les éléments de la problématique, la méthodologie, et le plan
de ce mémoire. Dans le deuxieme chapitre, nous présentons une revue de littérature sur les
travaux effectués sur les algorithmes de recensement des sous-graphes (microarchitectures),
et les types des microarchitectures traitées. Dans le troisieme chapitre, nous décrivons la
conception et I'implémentation de la technique proposée pour réaliser ce travail. Dans le qua-
trieme chapitre, nous présentons la validation empirique. Le cinquiéme chapitre est consacré
a l'analyse et a l'interprétation des résultats obtenus par la nouvelle technique. Finalement
le dernier chapitre conclut ce mémoire, révele les limitations de notre travail, et présente les

travaux futurs.

CHAPITRE 2

REVUE DE LITTERATURE

Ce chapitre présente une revue de littérature en deux parties sur les travaux réalisés
précédemment. La premiere partie de cette revue de littérature est consacrée aux algorithmes
de recensement des motifs de réseau[l] et des sous-graphes. La deuxiéme partie est consacrée
aux études effectuées sur les patrons de conception, les anti-patrons, et les microarchitectures

des systemes OO.

2.1 Algorithmes de recensement des motifs de réseau et des sous-graphes

Des travaux de recensement des motifs ont été réalisés dans les différents domaines d’ap-
plications comme les réseaux sociaux et les réseaux biologiques. Plus précisément, les réseaux
d’interaction protéine-protéine (PPI), les réseaux génétiques, et les réseaux métaboliques,
sont les réseaux les plus largement étudiés dans le domaine de la biologie (voir [Milo et al.
2002; Batagelj et Mrvar, |2003}; Schreiber et Schwobbermeyer, [2005; Sebastian), 2006; |Razaghi
et Kashani, 2009). En effet, des techniques mathématiques et informatiques sont appliquées
pour analyser et modéliser les données a cause de la complexité de ces réseaux et de la quantité
des données qu’ils contiennent. Pour permettre ’établissement d’'un modele mathématique
convenable pour l'analyse de ces réseaux complexes, il est nécessaire d’utiliser les notions
de la théorie des graphes. Les éléments d'un réseau en traitement sont représentés par des
sommets (noeuds), et l'interaction entre eux sont représentés par des arcs ou des arétes. Les
algorithmes peuvent ensuite étre utilisés pour analyser, simuler et visualiser le réseau traité.
En effet, des méthodes puissantes de calcul, permettant I'extraction des informations perti-
nentes a partir d'une grande quantité de données, doivent étre développées. Ces méthodes
sont basses sur des algorithmes de recensement des motifs de réseau, qui sont tres cotiteuses
en temps d’exécution et en consommation de mémoire. Ces algorithmes sont soumis a des
restrictions sur la taille des motifs de réseau, et la taille et les types des réseaux traités.
Généralement, les algorithmes proposés permettent soit d’énumérer exhaustivement tous les
motifs de réseau (voir |[Milo et al., 2002; Schreiber et Schwobbermeyer|, 2005}, |Sebastianl, [2006}
Razaghi et Kashani, |2009)), ou énumérer seulement les sous-graphes les plus fréquents (voir

Kuramochi et Karypis, 2004). Aussi, une autre caractéristique pertinente pour 1’évaluation

1. Dans les réseaux biologiques, Les motifs de réseau sont définis par des sous-graphes, qui se trouvent
dans le réseau original beaucoup plus souvent que dans les réseaux randomisés (voir Milo et all, 2002).

des algorithmes existants est la représentation visuelle des résultats.

Les algorithmes de recensement des motifs de réseau sont basés sur le méme principe.

Chaque algorithme implémente les trois taches suivantes :

1. Enumération : Chercher des motifs de réseau (sous-graphes) d’une taille donnée qui

se trouvent dans un réseau original (graphe en entrée).

2. Classement : Regrouper les sous-graphes identiques dans des catégories. La majorité
des algorithmes (voir Milo et al), 2002; Sebastian, 2006; Razaghi et Kashani, 2009))
utilise 'outil nauty (voir McKay), 1981) pour chercher la forme canonique de ces sous-
graphes. La forme canonique est un code unique permettant de distinguer les sous-

graphes isomorphes (identiques).

3. Randomisation : Générer des graphes aléatoires pour s’assurer que les motifs retrouvés
caractérisent bien les réseaux considérés. Un motif est défini par un petit sous-graphe
connexe qui se trouve dans le réseau considéré (original) avec une fréquence plus élevée
que dans les réseaux générées aléatoirement (voir [Milo et al) 2002). Le recensement et

le classement sont effectués de nouveau sur les graphes générés aléatoirement.

Dans les sections suivantes, nous introduisons quelques algorithmes de recensement des
sous-graphes ou motifs de réseaux. Pour chaque algorithme, nous mettons en exergue les

raisons pour lesquelles il ne répond pas a nos besoins.

2.1.1 Algorithme NeMoFinder

NeMoFinder est un algorithme proposé par J. Chen et al (voir |Chen et al., |2006) pour
chercher les motifs de réseau qui sont récurrents et uniques dans les réseaux d’interaction
protéine-protéine (PPI). Ces réseaux PPI sont représentés par des graphes non orientés et non
étiquetés. En effet, 'algorithme NeMoFinder est le premier algorithme utilisé pour extraire
les motifs de réseau d’une taille allant jusqu’a 12 dans les levures Saccharomyces cerevisiae

industrielles.

L’algorithme NeMoFinder utilise une technique de recherche basée sur les arbres récurrents
afin de partitionner le réseau PPI en un ensemble de graphes. Premierement, il cherche les
sous-graphes fréquents de taille k£ dans le réseau PPI. Il commence par les arbres de taille 2,
puis, il les élargit en ajoutant des sommets voisins afin d’atteindre les tailles 3, 4, et ainsi de
suite jusqu’a obtenir la taille k. Par la suite, il utilise un algorithme basé sur les chaines de

Markov (voir Maslov et Sneppen, |2002)) pour générer des graphes aléatoires en échangeant les

10

arétes aléatoirement entre les sommets du graphe original. Chaque sommet dans le graphe
aléatoire contient le méme nombre de sommets voisins que le sommet correspondant dans le
graphe original. La procédure de recensement des sous-graphes dans les graphes aléatoires
est la méme que dans le graphe original. Ensuite, ’algorithme NeMoFinder vérifie si les

sous-graphes du graphe original sont des motifs de réseau.

L’algorithme NeMoFinder ne peut traiter ni les graphes orientés et étiquetés, ni les boucles

sur les sommets des graphes non orientés.

2.1.2 Algorithme MFinder

L’algorithme MFinder (voir Milo et al) [2002) est le premier algorithme utilisé pour ex-

traire des motifs de réseau. Il fournit deux méthodes d’exploration qui sont :

1. Enumération exhaustive des motifs de réseau.

2. Enumération partielle de certains motifs de réseau. Le probleme du recensement ex-
haustif est que le nombre des motifs croit exponentiellement avec la taille du réseau
considéré, et la taille des motifs eux-mémes. Un algorithme d’approximation probabi-

liste est utilisé pour énumérer certains motifs de réseau du réseau considéré.

L’algorithme MFinder commence par choisir une aréte e. Donc, le premier motif de réseau
est constitué des deux sommets de Paréte e. A chaque itération, il ajoute un nouveau sommet
situé a 'extrémité d’une aréte reliée au motif de réseau généré partiellement. Une fois que
la taille du motif de réseau généré atteint la taille désirée, il génere un code unique basé sur
I'isomorphisme de ce motif de réseau. Le processus de génération des réseaux aléatoires et de
vérification des motifs de réseau est le méme que l'algorithme NeMoFinder (voir la section
2.1.1]).

L’algorithme MFinder a besoin de beaucoup de mémoire pour explorer tous les motifs de

réseau, ce qui entrave la recherche des motifs de réseau dans des réseaux de taille moyenne.

2.1.3 Algorithme Pajek

Pajek (voir Batagelj et Mrvar, 2003) est un outil d’analyse et de visualisation des grands
réseaux. Il permet de chercher certains motifs de réseau fréquents comme les tétrades ayant
certaines particularités, et les triades. Les triades et les tétrades sont des sous-graphes de
taille trois et quatre respectivement. Les triades peuvent étre connectés ou déconnectés, et

leurs analyses proviennent de ’analyse des réseaux sociaux.

11

En effet, le recensement des motifs de réseau par 'outil Pajek est limité aux motifs de

réseau de taille trois (triades), et au certains motifs de réseau de taille quatre (tétrades).

2.1.4 Algorithme MAVisto

MAVisto (voir [Schreiber et Schwobbermeyer, 2005|) est un outil d’exploration et de visua-
lisation des motifs de réseau trouvés dans les réseaux biologiques. Il fournit un algorithme
de recherche des motifs, et différentes vues pour analyser et visualiser les motifs de réseau
par une interface graphique. MAVisto est compatible avec le format Pajek-.net- (voir Bata-
gelj et Mrvar}, [2003)), et le format GML (voir Himsolt, [1997). Il offre un éditeur graphique
pour manipuler et créer les réseaux. L’algorithme MAVisto cherche des motifs d'une taille

particuliere, qui est donnée soit par le nombre de sommets, ou par le nombre d’arétes.

L’algorithme M AVisto est particulierement lent pour recenser les motifs de réseau de taille
trois. En effet, pour un réseau de 672 sommets et 1277 arcs, I’algorithme s’exécute en 13532.0
secondes (environ 4 heures). Pour chercher des motifs de taille quatre d’un réseau social de

67 sommet et 183 arcs, 'algorithme s’exécute en 1492 secondes (environ 25 minutes).

2.1.5 Algorithme FanMod

FanMod (voir Sebastian, 2006) est un outil de recensement des motifs de réseau de taille
comprise entre trois et huit sommets. L’outil FanMod énumere les motifs de réseau a ’aide de
I’algorithme Rand-ESU, ce qui rend la recherche des motifs plus rapide que les autres outils
basés sur d’autres algorithmes (voir Milo et al., 2002). Il comprend une interface graphique
pour faciliter la configuration des parametres de I'algorithme comme la taille des motifs de

réseau. Les résultats peuvent étre exportés en format HTML.

Contrairement a 1'algorithme MFinder (voir Milo et all 2002) qui commence par deux
sommets d'une arete e, l'outil FanMod commence par un sommet wu, puis il explore ses
sommets successeurs ou prédécesseurs non encore visités. Ensuite d’une maniere itérative,
I’algorithme FanMod cherche les sommets successeurs ou prédécesseurs de chaque sommet
visité précédemment. La recherche en profondeur des successeurs ou prédécesseurs s’arréte
lorsque la distance entre le premier sommet et le dernier sommet successeurs ou prédécesseurs
est égal a la taille désirée. Le processus de génération des réseaux aléatoires et de vérification

des motifs de réseau est le méme que l'algorithme NeMoFinder (voir la section [2.1.1]).

L’outil FanMod est l'outil le plus rapide comparativement aux autres outils (voir Milo
et al., 2002, Batagelj et Mrvar}, 2003} Schreiber et Schwobbermeyer, [2005; |(Chen et al., 2006)).

12

L’inconvénient majeur de I'outil FanMod est la limitation du nombre d’étiquettes attribuées
au réseau considéré (voir Rasche et Wernicke, 2006). Le tableau montre le nombre d’éti-

quettes traité pour chaque taille de motif de réseau.

Tableau 2.1 Limitation de l'algorithme FanMod sur le nombre d’étiquettes attribuées aux
arétes des motifs de réseau.

’ Taille des motifs de réseau \ Nombre d’étiquettes ‘

3 7
4 7
5 3
6 3
7 1
8 1

2.1.6 Algorithme Kavosh

Kavosh (voir Razaghi et Kashani, [2009)) est un algorithme de recensement exhaustif des
motifs de réseau d’une taille allant jusqu’a 12. Il permet d’explorer des graphes orientés et

non orientés pour chercher des sous-graphes de taille £ < 12.

Les sommets enfants d'un sommet quelconque sont définies par les sommets successeurs
ou prédécesseurs de ce sommet. Un niveau est défini par les sommets enfants d’'un sommet
quelconque. L’algorithme Kavosh démarre du premier niveau qui contient le sommet u, et il
descend niveau par niveau pour choisir un sommet enfant qui n’a pas été visité auparavant.
Donc, la démarche de cet algorithme n’a pas a prendre en considération la notion de cyclicité
du graphe. Cet algorithme est basé sur la méthode de "revolving door ordering” (voir Kreher et
Stinson|, |1998) pour générer toutes les combinaisons possibles des sommets. Comme exemple,
pour chercher des sous-graphes de taille k = 4, les combinaisons possibles (incluant le sommet
w du premier niveau) sont :

— 3 sommets du deuxieme niveau.

— 2 sommets du deuxieme niveau, et 1 sommet du troisieme niveau.

— 1 sommet du deuxieme niveau, et 2 sommets du troisieme niveau.

— 1 sommet du deuxieme niveau, 1 sommet du troisieme niveau, et 1 sommet du quatrieme

niveau.

L’outil Kavosh ne traite pas les graphes étiquetés (orientés ou non orientés), et il consomme
beaucoup de mémoire pour stocker les sommets visités et non encore visités de ’arbre conte-

nant le sommet racine w.

13

2.2 Patrons de conception, anti-patrons, et microarchitectures

Plusieurs approches ont été proposées pour identifier les microarchitectures similaires
aux patrons de conception, et aux anti-patrons. Généralement, ces approches sont basées
sur une bibliotheque des structures connues préalablement comme les patrons de conception
(voir [Kramer et Prechelt] |1996; Seemann et von Gudenberg, 1998} Pettersson et Lowe, [2006;
Tsantalis et all},2006), les anti-patrons (voir Brown et al.,[1998)), les plans (voir Rich et Waters|,
1990)), et quelques structures de microarchitectures (voir Guéhéneuc et Antoniol, 2008; [Keller
et al), 11999). En effet, ces approches utilisent des techniques architecturales basées soit sur
I’appariement des sous-graphes, soit sur les propriétés associées aux structures des motifs
traités. Les algorithmes correspondants a ces techniques, ont été développés pour chercher

les structures des motifs prédéfinis dans le catalogue.

En particulier, les approches proposées pour identifier les patrons de conception (voir [Pet-
tersson et Lowel 20006)), utilisent différentes techniques comme la méta-programmation, les
graphes, la programmation logique, les algorithmes de reconnaissance de clichés (voir Kramer
et Prechelt, |1996), les réseaux de raisonnement flou (voir Niere et all 2002; Jahnke et Ziin-
dorf, [1997)), et les requétes interrogeant les bases de données contenant les modeles génériques
des systemes OO (voir |[Kullbach et Winter], 1999).

Les approches proposées pour spécifier et détecter les anti-patrons sont basées sur les
techniques manuelles d’inspection du code source (voir [Travassos, [1999), les techniques de
visualisation (voir Dhambri. et al., 2008)) pour afficher et présenter les résultats, les techniques
de détections automatiques (voir Lanza. et Marinescu., 2006)), et les techniques heuristiques

et de mesures (voir [Marinescul, 2004)).

Dans les sections suivantes, nous introduisons brievement quelques travaux majeurs pour
détecter les patrons de conception, les anti-patrons, les plans, et d’autres types de microar-

chitectures.

2.2.1 Détection des plansf]

Rich and Waters (voir Rich et Waters, |1990) ont proposé I'utilisation de la programmation

par contraintes pour identifier les plans? du code source des programmes Cobol. Les systémes

2. Un plan est un module exécutable contenant le chemin d’acces logique produit par I'optimiseur DB2.
Il peut étre composé d’un ou plusieurs DBRMs et packages. Le plan est stocké dans le répertoire DB2, et
consulté lorsque son programme est exécuté. Les informations sur le plan sont stockées dans le catalogue
DB2.

14

Cobol sont modélisés par des arbres syntaxiques abstraits (AST). Un plan est modélisé par
les sommets de 'arbre AST, et les relations entre elles sont représentées par les contraintes
comme les controles et les flux de données. Le plan d'un code source est converti en un
probleme de satisfaction de contraintes (CSP) dans lequel les sommets du plan représentent
les variables, les relations entre les sommets représentent les contraintes entre les variables,

et le code source de I'arbre syntaxique abstrait représente le domaine des variables.

2.2.2 Détection des patrons de conception

Kramer et Prechelt (voir Kramer et Prechelt|, |1996]) ont proposé une approche et déve-
loppé un outil appelé Pat pour chercher les instances des patrons de conception structurels
Adapter, Bridge, Composite, Decoration, et Prozxy. Ces patrons ont été modélisés par 'outil
de conception OMT (voir Rumbaugh et al., |1990)) et convertis dans des formats de base de
connaissances de regles en Prolog. Ensuite le code source est parsé par 'outil Paradigm Plus
pour décrire sa base de faits en Prolog. Par la suite, des requétes sont effectuées pour dé-
terminer la correspondance entre la base de faits du code source et les regles définissant les
patrons de conception. L’outil Pat ne traite que des systemes ayant de 150 a 300 classes, et

il peut détecter plus que 53% des instances des patrons de conception.

Seemann et al (voir Seemann et von Gudenberg), [1998) ont proposé une approche pour dé-
tecter et distinguer les relations d’agrégation et d’association entre les classes, et une technique
basée sur les graphes pour décrire et identifier les patrons de conception. La structure statique
d’un systeme OO est représentée par un graphe orienté et étiqueté. Ce graphe est composé
de trois types de sommets et de six types d’arcs. Les sommets du graphe représentent les
classes, les interfaces et les méthodes. Les arcs entre les sommets représentent les différentes re-
lations entre les classes, les interfaces, et les méthodes (CLASS x CLASS, INTERFACE x
INTERFACE,CLASSXINTERFACE, CLASSxMETHOD, METHODXMETHOD,
METHOD x CLASS). Les etiquettes représentent les types : appel ”Calls”, possession
"Owns”, attributs, etc. Une technique de transformation de graphe est proposée pour détec-

ter les sous-graphes représentant les patrons de conception.

Peterson et al (voir [Pettersson et Lowe, 2006) ont proposé une technique basée sur les
graphes planairesﬂ La technique de transformation d’un graphe représentant un systeme
OO a un graphe planaire permet d’améliorer les performances de recherche des patrons de

conception. Pour les graphes non planaires, une technique de filtrage est utilisée afin de

3. Un graphe est planaire s’il accepte une représentation planaire c’est-a-dire une représentation dans
laquelle deux arcs (arétes) distinctes ne se croisent pas.

15

supprimer la majorité des arcs affectant la planarité, et de réduire considérablement la taille
du graphe. Cela permet évidement aussi de réduire le temps de recherche des patrons de
conception. L’approche proposée peut détecter jusqu’a 97% des instances des patrons de

conception.

Tsantalis et al. (voir Tsantalis et al.,[2006]) ont proposé une approche basée sur la similarité
entre les sommets du graphe pour détecter les patrons de conception. L’approche proposée
est capable de reconnaitre les patrons de conception méme si leur représentation standard est
modifiée. L’approche proposée prend en considération la relation d’héritage qui existe dans la
plupart des patrons de conception pour réduire la taille du systeme traité, en le partitionnant
en plusieurs sous-systemes sans perdre aucune information structurelle. Les diagrammes des
classes des sous-systemes et des patrons de conceptions sont modélisés par des matrices
carrées. Les lignes et les colonnes de ces matrices représentent les classes. Les éléments de
ces matrices indiquent la présence ou l'absence des relations entre les classes. L’approche
utilise un algorithme de similarité entre les matrices des sous-systemes et les matrices des
patrons de conception pour chercher les patrons de conception dans chacun des sous-systemes
séparément. L’algorithme de similarité calcule la matrice de scores (similarité)ﬁ pour vérifier
la correspondance entre un patron de conception et les sous-systemes. Le taux de succes de

cette approche de détection des patrons de conception est de 100%.

2.2.3 Détection des anti-patrons

Brown (voir Brown et al. [1998)) décrit 40 anti-patrons, y compris le "Blob” et le code
"spaghetti”. 11 a défini les anti-patrons comme des mauvaises pratiques pour résoudre les
problemes de conception. Ces mauvaises pratiques sont liées principalement aux compétences,
et au manque d’expériences des développeurs, ainsi qu'une mauvaise application des patrons
de conception. Les auteurs montrent comment détecter les anti-patrons, et ils présentent aussi

des solutions de "refactorisation” pour chaque anti-patron présenté.

2.2.4 Détection de certaines microarchitectures

Un nouvel environnement, appelé SPOOL (voir [Keller et al.l [1999), a été introduit pour
visualiser graphiquement la représentation abstraite du code source. SPOOL présente un
environnement pour la rétro-ingénierie des composants de conception basé sur la descrip-
tion structurelle des patrons de conception. Un patron de conception est modélisé par une

structure abstraite afin de faciliter sa recherche dans le modele abstrait du code source. La

4. Une matrice de similarité est une matrice de scores qui expriment la similarité entre deux données.
Deux matrices A et B sont similaires s’il existe une matrice inversible P tel que A = PBP~!

16

technique proposée permet de détecter manuellement, semi automatiquement, et automati-
quement, les composants abstraits de conception a 'aide des requétes d’interrogation sur le

modele abstrait du code source.

DeMIMA (voir (Guéhéneuc et Antoniol, 2008) décrit une approche semi-automatique, et
une recherche structurelle basée sur la programmation par contraintes avec explication pour
identifier les microarchitectures similaires a des motifs de conception. De plus, cette technique
assure la tracabilité de ces microarchitectures entre I'implémentation et la conception. En
effet, cette technique comprend trois couches dans laquelle les deux premieres sont consacrées
a la récupération du modele abstrait du code source, et la derniere est consacrée a la détection
des patrons de conception dans le modele abstrait. Le taux de succes de 'approche DeMIMA
est de 100%.

2.3 Conclusion

Dans ce chapitre, nous avons discuté quelques approches de recherche, dans les systemes
0O, de certains types de microarchitectures prédéfinies comme les patrons de conception, les
anti-patrons, et les plans. Cependant, notre technique de recherche des microarchitectures
est similaire a des travaux antérieurs de Tonella et Antoniol (voir Tonella et Antoniol, [2001]),
dans lequel une analyse conceptuelle a été utilisée pour déduire les patrons de conception
d’un domaine spécifique avec 'inspection manuelle du code source. Notre approche élimine
completement le probleme d’inspection manuelle du code source en s’appuyant sur la notion
des sous-graphes fréquents. De plus notre approche améliore I'évolutivité via une technique

efficace de recensement des microarchitectures.

Dans le chapitre suivant, nous présentons un nouvel algorithme et un outil SGFinder qui
ne se limitent ni & une bibliotheque contenant les microarchitectures connus préalablement,

ni a un ensemble de regles pour détecter les instances des microarchitectures.

17

CHAPITRE 3

ALGORITHME DE RECENSEMENT ET DE CLASSIFICATION DES
SOUS-GRAPHES

3.1 Introduction

Nous avons modélisé le diagramme des classes d'un systeme OO par un graphe orienté
et étiqueté dont ’ensemble de ses sommets représentent ’ensemble des classes, et dont les
arcs représentent les relations entre les classes. Nous considérons qu’une microarchitecture est
équivalente a un sous-graphe. Donc, pour chercher les microarchitectures d'une taille donnée

k, il faut chercher les sous-graphes d’ordre k.

Dans ce chapitre, nous décrivons en détails un nouvel algorithme efficace permettant, d'une
part, de recenser tous les sous-graphes existants dans un graphe orienté et étiqueté, et d’une
autre part, de regrouper les sous-graphes identiques. L’outil mettant en évidence ce nouvel

algorithme est nommé SGFinder.

3.2 Algorithme

Dans cette section, nous présentons un nouvel algorithme permettant de recenser les
sous-graphes d’ordre k (noté k-sous-graphes) d’un graphe orienté et étiqueté G(V, A, L, 1). Les

sommets du graphe G sont numérotés par des nombres entiers positifs, uniques, et consécutifs.

Algorithme 3.1 Méthode principale de I'algorithme
Entrées : Un graphe G(Vg, A, L, 1) et un nombre positif k.
1: for all vertex u € V do
2: Nj, = GenerateNeighborsSet(u, k) ;

3: VGO = {}

4: GenerateKSubSetsAndValidate(Ng,, u, Vi, 0);
5

6:

V.Remove(u);
end for

L’idée principale de 'algorithme [3.1] est de :

i. Chercher la liste des sommets voisins N*(u) d’'un sommet donnée u de I’ensemble Vg
(GenerateNeighborsSet).

ii. Générer et valider des k-sous-ensembles (GenerateKSubSetsAndValidate).

18

(a) Générer une combinaison d’'un k-sous-ensemble S de la liste des sommets voisins
NE(u).
(b) Si le sous-graphe G induit par le k-sous-ensemble S n’est pas connexe, aller a (a).

(¢) Sinon, chercher la matrice d’adjacence canonique du sous-graphe Gg, pour le
mettre dans sa propre catégorie (voir la section [3.2.4)). Il est utile de noter que

chaque catégorie contient les sous-graphes isomorphes.

(d) Répéter les étapes précédentes (a), (b), (c) jusqu’a générer toutes les combinaisons

possibles des k-sous-ensembles.

iii. Lorsque tous les sous-graphes d’ordre k£ contenant notamment le sommet de départ
u sont énumérés, nous retirons ce sommet v du graphe G pour ne pas dupliquer des

sous-graphes dans les étapes suivantes (ligne 5).

Afin de chercher tous les sous-graphes d’ordre k du graphe G, nous suivons le méme pro-

N
@1@ 12 1 \CD
1 12-{4)r145)

Figure 3.1 Un sous-graphe extrait de la version 1.7R1 du systeme Rhino. Les sommets repré-
sentent les classes, et les arcs représentent les relations entre les classes. La description des
étiquettes sur les arcs est définie dans la section [£.2.1]

cessus pour les autres sommets du graphe G.

3.2.1 Voisinage (GenerateNeighborsSet)

L’idée principale de I’algorithme de voisinage est de parcourir le graphe orienté et étiqueté
G(V, A, L,l) en largeur pour chercher d’une maniere itérative la liste des sommets voisins
d’un sommet donné u. Ce type de parcours consiste a chercher d’une part, tous les sommets
successeurs auxquels on peut accéder directement a partir du sommet u, et d’autre part, tous
les sommets prédécesseurs depuis lesquels on peut arriver directement au sommet u, ensuite
de chercher les sommets qui sont accessibles par le premier successeur ou prédécesseur de u,

et le deuxieme successeur ou prédécesseur de u et ainsi de suite.

19

En effet, la recherche de la liste des sommets voisins consiste a explorer les sommets voisins
d’un graphe orienté et étiqueté G une couche a la fois. La premiere couche contient le sommet
de départ u, ensuite, la deuxieme couche contient les sommets voisins du sommet u, et la

troisieme couche contient les sommets voisins de la deuxiéme couche et ainsi de suite.

D’une maniere formelle, nous décrivons les itérations de recherche de la liste des sommets
voisins d'un sommet donné u. Cette liste est noté par N*(u) ot k est 'ordre des sous-graphes.
Nous notons aussi par IV; ’ensemble des sommets trouvés a la ¢ couche. Donc, la liste des

sommets voisins N*(u) est défini par la formule suivante :
Ny = {u}
N*(u) = ULy Ni(Nic1) ott § Ny(N;—1) = Upen, , N(©)
N@w)=A{w: (v,w) € A(G) V (w,v) € A(G)}

Les sommets de ’ensemble N; du "¢ couche sont insérés dans la liste des sommets voisins

eme couche. Cet ordre, d’insertion des sous-

N*¥(u) juste apres les sommets de N;_; du (i — 1)
ensembles N; dans la liste des sommets voisins N*(u), est trés important pour optimiser
I’algorithme de génération des k-sous-ensembles représentant les sous-graphes d’ordre k. De
plus, un sommet déja visité ne sera pas inséré de nouveau dans ’ensemble des sommets N;

de la couche courante.

Exemple : Prenons comme exemple le graphe orienté et étiqueté G' définie dans la figure
3.1l Dans cet exemple nous cherchons la liste des sommets voisins N4(0) du sommet 0 avec
k=4.

Premierement, nous parcourons le graphe GG en largeur en partant du sommet 0 qui se
couche 1

trouve a la couche 1. Donc, la liste des sommets voisins est : N*(0) = { 0

o d AN
1
Yoo

Figure 3.2 Sommets de la premiere couche de la liste des sommets voisins N4(0).

En effet, si nous partons du sommet 0 pour chercher tous les sommets successeurs ou

prédécesseurs, nous trouvons seulement un sommet successeur qui est le sommet 3. Donc, la

20

couche 1 couche 2
liste des sommets voisins devient N*(0)={ 0 , 3 }.

13—>@

i) YR

Figure 3.3 Sommets de la deuxiéme couche de la liste des sommets voisins N4(0).

Dans la premiere couche, il n’y a plus de sommets qui sont directement accessibles a partir
du sommet 0. Donc, maintenant, il faut chercher les sommets qui sont accessibles a partir de
la deuxieme couche. Il s’agit donc de chercher les voisins du sommet 3. Dans ce cas, il y a

seulement les deux sommets prédécesseurs 1 et 2. Maintenant, la liste des sommets voisins

couche 1 couche 2 couche 3

devient N*(0)={ 0 , 3 , 1,2 L

13—>@

‘14 3412@1@

Figure 3.4 Sommets de la troisitme couche de la liste des sommets voisins N4(0).

A ce stade, il faut donc chercher les voisins des sommets 1 et 2. Nous commencons par le
premier sommet 1 qui a trois sommets successeurs 2, 3, et 6 et un seul sommet prédécesseur
7. Les sommets 2 et 3 ont déja été insérés dans la liste des sommets voisins N*(0), donc, nous
ne devons pas les ajouter de nouveau dans N4(0). Par contre, le deuxiéme sommet 2 a trois
sommets successeurs 1, 3, et 4, mais les sommets 1 et 3 sont déja présents dans la liste N4(0),
donc il ne faut pas les insérer de nouveaux. Cependant dans cette couche, les seuls voisins a
ajouter sont les sommets 6,7, et 4. Donc, la liste des sommets voisins N4(0) composant les

sommets des sous-graphes d’ordre 4 est la suivante :

couche 1 couche 2 couche 3 couche 4

NYO)={ 0 , 3 , 1,2 ,6,7,4}.

21

. 4 //%13*
¥u+ @

Figure 3.5 Sommets de la quatritme couche de la liste des sommets voisins N4(0).

Description de ’algorithme de voisinage ”GenerateNeighborsSet” (voir les algo-
rithmes et : Essayons maintenant de passer a I'implémentation de I'algorithme
de voisinage (GenerateNeighborsSet). Nous utilisons une liste N, pour stocker les sommets
voisins du sommet u. Au début de l'algorithme [3.2] aucun sommet n’a été visité, il faut donc
commencer par stocker le sommet de départ u par lequel nous allons commencer le parcours
du graphe G. Donc, le sommet u est stocké dans la liste N, et dans la liste des sommets
voisins de la premiere couche N; (lignes 2 & 3).

Ensuite nous cherchons les voisins de la i™¢ couche N; (lignes 6-13). La recherche des
sommets voisins d’un sommet v se fait par l'intermédiaire de la matrice d’adjacence M du
graphe GG. Une fois que nous découvrons tous les voisins de la 1" couche N;, nous les ajoutons
dans la liste Ny, (ligne 16). L’algorithme s’arréte lorsqu’il trouve les sommets voisins de
la (k — 1)™ couche (ligne 4).

Tous les sous-graphes incluant notamment le sommet w seront trouvés. Par la suite, le
sommet u sera retiré du graphe G. Cela signifie que la prochaine liste des sommets voisins ne
contient pas le sommet u pour éviter la duplication des sous-graphes trouvés. Le processus de
recherche de la liste des sommets voisins N*(u) se répete sur les sommets restants du graphe

GG non encore traités.

3.2.2 Génération des k-sous-ensembles "GenerateKSubSetsAndValidate” (voir

la section

L’idée principale de I'algorithme SGFinder est de trouver les sous-graphes d’ordre k (ou

k est le nombre des sommets) comportant un sommet de départ u. Pour ce faire,

1. Nous cherchons I'ensemble de tous les sommets voisins N*(u) du sommet u (voir la

section |3.2.1)).

2. Cet ensemble N*(u) est utilisé pour trouver toutes les combinaisons possibles des sous-

ensembles des sommets de taille k (appelé aussi k-sous-ensemble).

22

Algorithme 3.2 Voisinage
Entrées : Un sommet u de I’ensemble des sommets du graphe G(V, A, L,).
k est I'ordre des sous-graphes a trouver.
Sorties : Une liste Vg, contenant les sommets voisins de wu.
Joined(v,w) est une fonction qui retourne vraie si les deux sommets v et w sont

connectés.
1: function GenerateNeighborsSet (u, k)
2: Ny -Add(u) ;
4: fori=1—k do
5. # Chercher les voisins (N) de la iéme couche (N;)
6: for all v e N; do
o N={}
8: for all w € V(G) do
9: if Joined(v,w) then
10: N.Add(w);
11: end if
12: end for
13: end for
14: N; ={};
15: for all n € N do
16: Niw.Add(n) ;

17: N;.Add(n);
18: end for

19: end for

20: return N,
21: end function

3. Chacune de ces combinaisons contient I’ensemble des sommets d'un sous-graphe induit

d’ordre k (appelé aussi k-sous-graphe) (voir la section |1.4.1)).

4. La connectivité de chacun de ces sous-graphes induits d’ordre k doit étre vérifiée.

L’algorithme de génération des k-sous-ensembles est basé sur une méthode récursive. En
effet, les k-sous-ensembles générés représentent évidemment les ensembles des sommets des
k-sous-graphes. Cependant, nous devons vérifier que les k-sous-graphes générés sont connexes
tels que définis dans la section [3.2.3

Le probleme de génération des sous-ensembles de taille k£ est connu comme un probleme
de combinaison sans répétition de k£ éléments d’un ensemble S de taille n. Le nombre des k-
sous-ensembles croit exponentiellement avec la taille de S et de k. Le nombre total de toutes

les combinaisons possibles de ce probleme est donné par le coefficient binomial C*.

23

Dans le but de réduire le nombre de combinaisons possibles, nous introduisons deux cri-
teres de sélection des sommets de la liste des sommets voisins N*(u) pour générer des sous-
ensembles de taille k. Grace a ces deux criteres, nous pouvons donc éviter plusieurs combi-

naisons inutiles.

Premier critére de sélection : IL’objectif de I'algorithme dédié au voisinage (voir la
section est de chercher une liste des sommets voisins contenant un sommet de départ
u et tous ces voisins qui sont accessibles via un chemin passant par le sommet u. Cependant,
le premier élément des sous-ensembles est toujours le sommet de départ u, ce qui signifie que

le sommet u doit étre nécessairement inclu dans tous les k-sous-ensembles.

Deuxiéme critére de sélection : Pour chercher le *™¢ élément d’un k-sous-ensemble, il
faut choisir seulement un sommet parmi les sommets de la premiere a la i®™¢ couche de la
liste des sommets voisins N*(u). En d’autres termes, pour 'exemple , il faut prendre en
compte les points clés suivants :
— Le deuxieme élément d’'un k-sous-ensemble est toujours 'un des sommets de la deuxieme
couche de N*(u).
— Le troisieme élément d'un k-sous-ensemble est toujours I'un des sommets de la deuxieme
ou de la troisieme couche de N*(u).
— Le dernier élément d’un k-sous-ensemble est I'un des sommets situés entre la deuxieme
et la k®™ couche de N*(u).

Description de l’algorithme de génération des k-sous-ensembles : Tout d’abord,
nous avons besoin d'un vecteur V; pour stocker les éléments du k-sous-ensemble a engendrer.
Premierement, le vecteur Vg contient le sommet de départ u, et la variable n indique le
prochain sommet & prendre de la liste des sommets voisins N*(u) pour compléter le k-sous-
ensemble (vecteur Vi) (ligne 3). A chaque itération, nous devons vérifier si le sous-ensemble
généré est de taille &k (ligne 4). Si c’est le cas, il faut passer ce k-sous-ensemble a la fonction
Validate(Vg;) pour vérifier sa connectivité, et enfin, le remettre dans la catégorie contenant
ses sous-graphes identiques (ligne 5). Si le nombre des sommets présents dans le vecteur Vg
est différent de k, nous procédons a une autre opération récursive sur le reste des sommets

de la liste N*(u) (ligne 7) pour chercher le sommet candidat suivant & insérer dans V.

3.2.3 Connectivité

Dans cette section nous décrivons la méthode utilisée pour vérifier la connectivité des

k-sous-ensembles engendrés par I'algorithme couvert a la section [3.3] Dans la littérature, il

24

Algorithme 3.3 Générateur des sous ensembles de taille k&

Entrées : N est la liste des sommets voisins du sommet u (N*(u)).
u est le sommet en traitement.
Vi est un vecteur contenant les sommets dun sous-graphe.
n indique le prochain sommet a prendre de la liste des sommets voisins N.
Sorties : Tous les k-sous-ensembles contenant le sommet w.
1: Procedure GenerateKSubSets (N, u, Vg, n)
2: for i =n to |N| do

3: Vg . Add(NJi]);

4: if |Vi| ==k then

5: Validate(Vg) ;

6: else

7: GenerateKSubSets (N, u, Vg, n+1);
8 end if

9: end for

10: end Procedure

existe deux techniques d’exploration qui sont différentes pour vérifier la connectivité d’un

graphe.

i. La premiere est la recherche en profondeur d’abord (Depth First Search ou DFS) qui

explore immédiatement les successeurs de tout sommet visité et,

ii. La deuxieme est la recherche en largeur d’abord (Breadth First Search ou BFS) qui
visite les sommets couche par couche c’est-a-dire il ne visite aucun sommet de la couche
n + 1 avant qu’il explore tous les sommets de la couche n (une couche est un ensemble

de sommets auxquels ils sont accessibles directement via un sommet donné).

Dans notre approche, nous utilisons I'algorithme de recherche en largeur d’abord (BFS).
Il est décrit dans l'algorithme [3.4] et la figure met en évidence son fonctionnement sur

un exemple de sous-graphe composé de 'ensemble des sommets {0, 4, 2, 3, 1} (voir la figure

530).

Description de l’algorithme de connectivité : L’idée principale de l'algorithme de
connectivité est de construire d’une maniére itérative un k-sous-graphe connexe Gg(Vs, Ag, 1, L),
induit par un k-sous-ensemble S.
— A la premitre étape de l'algorithme, nous construisons Vg par le sommet de départ v,
puis nous retirons ce sommet u de S (ligne 2 & 3).
— A la deuxiéme étape, nous ajoutons certains sommets de S a I’ensemble Vg. Ces sommets
ajoutés doivent étre connectés dans le graphe G(V, A, [, L) (équivalent au diagramme

des classes), au sommet u. Ces sommets ajoutés sont ensuite retirés de S (ligne 5 & 6).

25

- A chaque étape suivante, nous ajoutons certains sommets de S a ’ensemble Vg. Ces
sommets ajoutés doivent étre connectés dans le graphe G, au moins a un des sommets
de Vs. Ces sommets ajoutés sont ensuite retirés de S (ligne 5 & 6).

— L’algorithme s’arréte si 'une des deux conditions suivantes est satisfaite :

— Le k-sous-ensemble S est vide. Dans ce cas, le k-sous-graphe Gg est connexe.
— Il existe au moins un sommet de S qui n’est pas connecté a aucun sommet de Vs.

Dans ce cas, le k-sous-graphe Gg n’est pas connexe.

Algorithme 3.4 Connectivité

Entrées : Un k-sous-ensemble S.

Le sommet u en traitement.

Sorties : Vrai si le k—sous-graphe G g induit par le k-sous-ensemble S est connexe

— = =
o=

La fonction Connected(v, Vs) retourne vrai si le sommet v est connecté a un sommet
de Vs.
Function Connectivity (S, u)
Vs.Add(u)
S.Remove(u)
while 3v € S and Connected(v, Vs) do
VSAdd(’U)
S.Remove(v)
end while
if S is empty then
return true
end if
return false

: End Function

Exemple Considérons 'exemple illustré par la figure 3.6, que k& = 5, et le k-sous-ensemble
S ={0,4,2,3,1}. Donc, pour vérifier la connectivité du k-sous-graphe Gg(Vs, Ag, [, L) induit
par S, il faut premieérement commencer ’algorithme par le sous-ensemble Vs = {0} et

donc S devient {4,2, 3,1} suite au retrait du sommet 0. Ensuite :

i

i. Dans la deuxieme étape, l'algorithme cherche les sommets de S qui sont connectés a au
moins un sommet appartenant a Vg. Donc, dans ce cas, il y a seulement le sommet 4.
Par conséquent, Vg = {0,4} et S = {2,3,1}.

ii. Dans la troisieme étape, il faut examiner de nouveau les sommets de S. Le sommet 2
est connecté au sommet 4. Donc, Vg devient {0,4,2} et S = {1, 3}.

ii. Dans la quatrieme étape, le sommet 1 est connecté au sommet 2. Donc, Vg devient
{0,4,2,1} et S = {3}.

26

iv. Dans la cingieme étape, le sommet 3 est connecté au sommet 1 (Vs = {0,4,2,1,3} et

S = {}). Donc, l'algorithme s’arréte, avec un sous-graphe connexe G5({0,4,2,1, 3}, Ag, [, L)

Couche 1 Couche 2 Couche 3 Couche 4 Couche 5

Figure 3.6 Connectivité d'un sous-ensemble de taille k = 5

3.2.4 Classement

Dans cette section, nous introduisons quelques notions élémentaires utilisées dans notre
algorithme pour regrouper les sous-graphes identiques dans des catégories. Il s’agit de I'iso-
morphisme des graphes, et de 'utilisation de la librairie Nauty de McKay(voir McKay}, [1981),
2009) pour chercher la matrice d’adjacence représentant la forme canoniqueE]d’un sous-graphe

donné.

Un graphe G de n sommets peut-étre représenté par plusieurs matrices d’adjacences d’ordre
n (voir I'exemple de la figure . En fonction des permutations possibles des sommets sur
les lignes et les colonnes, le nombre total des matrices d’adjacences générées est égal a n!. La
forme canoniquél d’un graphe G permet de représenter de maniére unique cette multiplicité
de matrices possibles. Cette forme canonique I est définie par la concaténation des lignes ou
des colonnes de la matrice d’adjacence canonique. Cette matrice canonique est fournie par la

librairie Nauty.

ha i lin
. . . . log log .. lop

Exemple Soit la matrice d’adjacence canonique M = L i du graphe
lnl ln2 s lnn

G(V, A, L,1). Alors, la forme canonique de GG est définie par I'un des deux chaines suivantes :

Cll(M) = lllllg R llnlgllgg R lgn R lnllng R lnn-
Cll(M) = 111l21 Ce ln1l12l22 Ce lng ce llnl2n R lnn

1. La forme canonique d’un objet est un moyen de représentation de cet objet. Pour tester si deux objets
sont équivalents, il suffit de tester I’égalité de leurs formes canoniques.

e
RAY

012 1\ /0 1 12\ /0 0 0 0 11 011\ /0 0 0
1o 1], {loo o], {10 12],{1201],{0 00],[1 01
0 0 0 11 0 11 0 0 00 12 1 0 1 12 0

Figure 3.7 Matrices d’adjacences d’un graphe

Pour déterminer si deux graphes GGy et G5 sont isomorphes (identiques), il faut comparer
les formes canoniques (chaines) de leurs matrices d’adjacences canoniques. Si les chaines
de la forme canonique de G; et Gy sont égaux (autrement dit cl;(G1) = cli(G2) ou bien

cly(Gh) = cly(G3)), donc les deux sous-graphes G et G5 sont isomorphes.

Afin de chercher les matrices d’adjacences canoniques, nous avons utilisé la librairie Nauty
(voir , . Chaque matrice d’adjacence M’ de chaque sous-graphe G’ est fournie a la
fonction nauty. La matrice d’adjacence canonique M"” retournée par nauty est transformée en
une chaine c/(M"). Ensuite la chaine cl(M") est transformée en un Hash Codef] (voir [Coffey]
2011)). Celui-ci permet l'optimisation de l'espace mémoire alloué¢ pour identifier les sous-

graphes. Par conséquent, nous identifions les catégories contenant les sous-graphes identiques

A

(o)1 e \.
Y.

Figure 3.8 Un sous-graphe extrait de la version 1.7R1 de l'application Rhino avec deux
occurrences {2,4,5} et {7,1,3} d’ordre k =3

par les Hash Code.

2. Une fonction de hachage utilisant 64bits peut engendrer une seule collision sur 3.7 x 107 hash code
(http ://www.javamex.com/tutorials/collections/strong_hash_code.shtml).

28

3.3 Caractérisation des sous-graphes

Dans cette section, nous détaillons les opérations effectuées pendant la recherche des
microarchitectures. Au cours de cette étude, nous nous intéressons seulement au calcul des
zones définies a la section [3.3.1] Tandis que les autres opérations sont utiles pour effectuer

d’éventuelles recherches, que nous mentionnons pour les réalisations futures a la section [6.3]

3.3.1 Nombre des zones

Nous avons vu a la section des classements des sous-graphes (voir que 'algorithme
est capable de regrouper tous les sous-graphes identiques dans des catégories. Le nombre total
des occurrences des sous-graphes identiques est tres grand a cause de certains sommets qui
sont trées connectés (voir la figure . Nous introduisons les zones pour réduire ce nombre
d’occurrences qui n’a pas de signification. Le nombre des zones des sous-graphes identiques
est défini par le nombre des régions disjointes qui n’ont pas d’arcs en commun. Autrement dit,
deux sous-graphes isomorphes G1(V1, Ay, L, l1) et Go(Va, Ag, L, l5) sont dans la méme zone si

seulement s’il existe au moins (v;,v;) € A; tel que (v;,v;) € As.

SRS
@ﬁé{a@
7 6%

Figure 3.9 Un graphe en étoile (les sous-graphes contenant le sommet 0 et de taille supérieure
a un, appartiennent a la méme zone)

En effet, lorsqu’un nouveau sous-graphe G’ est détecté par I’algorithme de recensement des
sous-graphes, il sera mis dans sa propre catégorie, et nous recomptons le nombre des zones

seulement si G’ n’a aucun arc commun avec I'un des sous-graphes identiques & lui.

Nous allons maintenant décrire ’algorithme de calcul des zones. Donc, il s’agit d’utiliser
un hashmap T, pour stocker les arcs des sous-graphes détectés par ’algorithme sachant

que les clés représentent le code "Hash Code” de la forme canonique des sous-graphes.

29

Algorithme 3.5 Calcul des zones.

Entrées : une microarchitecture mA.

nbArcs = sizeof(T,);

insérer tous les arcs de mA dans 7T,

if sizeof(T,) = nbArcs+ sizeof(mA) then
nbZones + +

end if

3.3.2 Roles des classes

Chaque microarchitecture est représentée par une structure composée d'un ensemble de
classes coopérant entre elles par plusieurs relations. Plusieurs classes participantes peuvent
jouer le méme role dans les microarchitectures identiques. De méme, une classe peut jouer
différents roles dans des microarchitectures différentes.

La figure montre que la classe 1 et la classe 4 jouent le méme role. L’exemple de la
figure décrit le patron de conception fabrique (Factory). Le role de la classe "Fabrique”

est de créer les objets de la classe "Produit” sans exposer la logique d’instanciation.

Utilise— Client —|
Demande |a création
d"un objet

<<interface>>

Produit
l."".

T Fabrique

Produit —Créer

+créerProduit() : Produit

Figure 3.10 Patron de conception fabrique

Nous identifions les roles des classes par l'intermédiaire de l'ordre des sommets de la
matrice d’adjacence canonique retournée par 'algorithme nauty (voir McKay, 1981}, [2009)).

Les roles associés aux classes peuvent étre visualisés par notre outil graphique SGViewer (voir
la figure |3.11)).
3.3.3 Tunnels

Le diagramme des classes évolue d’une version a une autre en subissant quelques change-

ments sur sa structure. Etant donné que les microarchitectures sont les sous-graphes extraits

30

Fie 3 i Flokes
oriepace Folymi] Froject Binaces Rinof4Rhno 1 _#Fgp '._.]
Suberaphs Class Fole 0 Fole 1 Role 2 Role3 *
From Yertex To Verbex Cipe T ¥ E
1 o 4 2 75
Erequents Irestances o0 9
512 L33 a0 B3
ol 45
whash Code B Fnd | :: :]
i & 154
Harsh Code Instances Lones = 1 a7
128BH5T36 1809 3 b 555
3601871376 1404 d] 144
1600713 1336 2 — — -
WA 1HA] =

Figure 3.11 Mlustration par 'outil SGViewer des roles joués par des classes.

de ces diagrammes de classes, nous nous intéressons a la relation entre 1’évolution des dia-
grammes et les microarchitectures extraites. Nous définissons un tunnel (voir Kpodjedo et all,
2009) comme un ensemble de classes communes entre plusieurs versions. Les classes communes
comportent notamment les classes renommées. En particulier, le tunnel de la premiere ver-
sion contient toutes les classes. Dans cette section, nous allons voir comment identifier les
microarchitectures dans les trois cotés du tunnel (figure suivants :

i. Intra-tunnel : Microarchitectures completement a l'intérieur du tunnel (ex : dans la
figure le sous-graphe Gy est dans le troixieme tunnel).

ii. Extra-tunnel : Microarchitectures completement a extérieur du tunnel (ex : dans la
figure [3.12] toutes les classes du sous-graphe G5 se trouvent a l'extérieur du troixieme

tunnel).

iii. Inter-tunnel : Microarchitectures dont une partie des classes se trouve a l'intérieur du
tunnel, et dont une autre partie des classes se trouve a 'extérieur de ce tunnel (ex :
dans la figure [3.12] le sous-graphe GG3 a une classe a 'intérieur du troixieme tunnel et

deux classes a l'extérieur de ce troixieme tunnel).

L’idée principale de l'algorithme est tres simple. Il s’agit donc de comparer les classes
d’une microarchitecture mA; avec celles du tunnel (vecteur 7T") associé a une version donnée
(lignes 1 & 4). Toutefois, nous utilisons un map mapT comme structure de données pour
stocker les occurrences des microarchitectures d'un tunnel (lignes 2, 5 & 7). Cependant, nous
disons que les microarchitectures sont (voir l’algorithme :

— A l'intérieur (/N) du tunnel si toutes ses classes sont dans le vecteur T (ligne 2).

— A Dextérieur (OUT) du tunnel si toutes ses classes ne sont pas dans le vecteur 7" (ligne

5).

31

premier tunnel deuxieme tunnel troixieme tunnel

Tor
¢

iy

4
!
|
|
|
I
I
I
I
I
I
I
I
|
|
|
I
I
I
|
|
!
!

PN
!
|
|
|
I
1
I
I
I
I
I
I
U
I
1
1
|
|
!
!

4 »
! !
| |
| |
| |
| |
| |
1 |
1 |
1 J
I 1
I !
I !
I |
¥ 1
I |

|
| |
| |
| |
| |
! !
! !

¥ v

+ N
Version 1 Version % Version 7 + 1 Version n

Figure 3.12 Identification des microarchitectures dans les tunnels

— Entre les deux c6tés (BT'W') du tunnel si seulement si certaines de ses classes se trouvent

a l'intérieur du tunnel 7" et d’autres classes sont a l'extérieur de 7 (ligne 7).

Algorithme 3.6 Identification des microarchitectures dans les tunnels.
Entrées : Un vecteur contenant les classes d’un tunnel 7' et une microarchitecture mA.
1: if all classes of mA € T then
2. mapT[mA|.IN + +;
3: else
4: if all classes of mA ¢ T then
5 mapT[mA].OUT + +;
6: else
7
8
9

mapT[mA].BTW + +;
. end if
. end if

3.3.4 Evolution des microarchitectures entre les versions

Dans cette section, nous proposons une classification des microarchitectures en sept profils
selon leurs évolutions. Nous distinguons un profil par rapport a un autre par I’évolution des
occurrences des microarchitectures. Cette classification tient en compte toutes les microar-

chitectures de toutes les versions du systeme traité. Donc, les sept profils sont les suivants
(voir la figure [3.13)) :

1. Profil croissant : Ce profil identifie les microarchitectures dont le nombre d’occur-

rences est toujours en croissance.

2. Profil croissant instable : Le nombre d’occurrences des microarchitectures n’est pas

toujours en croissance c’est-a-dire, il peut baisser avec un taux faible au moins une fois

32

= mxRate, mnRate et MaxRate
sont des parameétres

o = j=1l.n

= ¥,=awvith

= e=|yi-yl

version i, a==mxRate
version j, a<=mnRate

{Micr:}architecture midy |

.,-o-"""--h""“-\-.__ |

i e I Profil croissant
e » MaxRate i a »= mxRate T
I non stable
Profil décroissant
—__ oal®| nonstable

Profil constant
non stable

a»= mxRate oui » Profil croissant

¥

Profil décroissant

a <= mnRate o

2
= = =
~<>§—{ je——F—— ¢ Je3
x5
M
n
=5
=
-
[+ F)
w
=
:

Profil constant

h 4

» Profil quelcongue

Figure 3.13 Classification des microarchitectures selon leurs évolutions entre les versions d'un
systeme orienté objet.

dans une version, puis il continue généralement sa croissance.

3. Profil décroissant : Le nombre d’occurrences des microarchitectures est toujours en

décroissance.

4. Profil décroissant instable : Ce profil définit les microarchitectures dont le nombre
d’occurrences n’est pas toujours décroissant d’une version et sa suivante, mais il peut

augmenter au moins une fois avec un taux faible, puis il décroit généralement.
5. Profil constant : Le nombre d’occurrences des microarchitectures est toujours constant.

6. Profil constant instable : Le nombre d’occurrences des microarchitectures peut

augmenter et diminuer avec un taux faible par rapport a une valeur constante.

33

7. Profil indéfini : Pour ce profil, le nombre d’occurrences des microarchitectures peut

augmenter, ou baisser avec un taux élevé entre les différentes versions du systeme traité.

Donc, étant donné n versions {vq,vs,...,v,} d'un systeme orienté objet, et n nombre
d’occurrences {yk1, Yr2, - - -, Ykn} d’une microarchitecture mAy. En effet, pour définir les sept

profils, nous utilisons la droite de régression qui est donnée par la formule suivante :
Y=aX+0

ou :

— X représente les versions du systeme traité.

— Y représente le nombre d’occurrences de la microarchitecture mAy, .

Covariance(X,Y) _ >71(vi—0)(yri—7)

- La pente a = Variance(X) > (vi—7)2

. Vi .
=i=1— est la moyenne des versions.

no
— v 7 . .
-y = Z*le’“ est la moyenne des occurrences des microarchitectures.

Remarque : La pente a est sensible au nombre d’occurrences, de sorte qu’avec un ac-
croissement relatif équivalent, la covariance peut étre plus forte pour la tendance avec le plus
grand nombre d’occurrences. La corrélation r peut étre une meilleure mesure pour définir les
7 profils.

> (vi—=0) (Yri—7)

r =
Vi i)/ (yki =)

3.4 Conclusion

L’algorithme de recensement et de regroupement des sous-graphes, et les techniques dé-
crites dans ce chapitre sont implémentés dans 1'outil SGFinder. Cet outil est développé en
C++. Le guide d’utilisation de cet outil est décrit dans I’annexe [C|

Dans le chapitre suivant, nous décrivons la validation empirique qui est basée sur 1’outil
SGFinder.

34
CHAPITRE 4

VALIDATION EMPIRIQUE

Nous présentons dans ce chapitre les étapes suivies pour valider notre outils SGFinder.
Nous effectuons une étude empirique basée sur notre outil SGFinder (voir la section [3)) dont
I'objectif est de vérifier son efficacité, et son applicabilité sur les petits et les moyens systemes
OO. Ainsi, nous posons des questions de recherche reliées aux propriétés de la stabilité et des

défauts des microarchitectures existantes dans les systemes OO.

4.1 Questions de recherche

Nos questions de recherche sont dérivées de nos objectifs visant a :
— Identifier les microarchitectures des systemes OO.
— Chercher la relation entre les microarchitectures et les propriétés telles que la stabilité

et les défauts.

Nous nous intéressons donc a répondre aux questions de recherche suivantes :

QR1 : SGFinder est-il capable de recenser les microarchitectures des systemes
OO de moyenne envergure ? Et quels types de microarchitectures existent
dans les systemes OO ?

Etant donné les différentes relations possibles entre les classes d’un diagramme des
classes, les combinaisons des microarchitectures théoriquement possibles sont élevées.
Par conséquent, il est nécessaire de vérifier 'applicabilité et l'efficacité de SGFinder
sur les systemes OO. Donc, notre premier objectif pour la question QR1 est de vérifier
I’applicabilité de SGFinder sur les petits et les moyens systemes OO. Par ailleurs, il est
intéressant d’avoir un apercu sur les types des microarchitectures existantes dans les

systemes OO.

QR2 : Existe-t-il des microarchitectures sans aucun défaut ou prédisposées aux
défauts ?
En ce qui concerne la deuxieme question QR2, nous voulons déterminer s’il existe des
microarchitectures prédisposées aux défauts. Ainsi, nous voulons également identifier

les microarchitectures qui ne peuvent pas avoir des défauts.

QR3 : Existe-t-il des microarchitectures stables ou prédisposées aux changements ?

35

Notre objectif pour la troisieme question QR3 est de déterminer les microarchitectures
stables, ainsi que les microarchitectures impliquées dans les changements effectués sur
le code source. Donc une information préalable sur les microarchitectures prédisposées
aux changements peut aider les concepteurs, les développeurs, et les mainteneurs des

logiciels.

La complexité d'un logiciel a une conséquence directe sur les erreurs de programmation
commises par les développeurs. Les architectes logiciels, les concepteurs, et les développeurs
participant a la conception du diagramme des classes, peuvent engendrer des structures pou-
vant causer des défauts, et augmenter les chances de modification ultérieures au code source
du logiciel. Il est donc important d’aider les concepteurs et les développeurs en signalant les
microarchitectures prédisposées aux défauts et aux changements. De plus, une analyse quali-
tative (voir la section [5)) pourrait donner une information suffisante sur les microarchitectures

désirables ou a risque.

4.2 Objets

Pour évaluer l'efficacité et vérifier 'applicabilité de notre algorithme SGFinder, nous
I'avons testé sur deux systémes orientés objets développés en Java (Rhino et ArgoUml).
Les données de ces deux systemes sont illustrées dans le tableau [4.1]

— Systéme Rhino[l] : Rhino est un interpréteur JavaScript. Il implémente le langage
JavaScript du standard ECMAScript (voir ECMA| 2007). Il est entierement développé
en Java et géré aujourd’hui par la communauté Mozilla. Il est capable de fonctionner
avec les deux modes (i) compilé (intégré dans les applications), et (ii) interprété (script
compilé en objets JavaScript). Actuellement, Rhino est le seul moteur inclus dans le

noyau de JDK 1.6 et ses successeurs.

— Systéme ArgoUmlf|: ArgoUml est un outil d’analyse et de conception en UML
des systemes OO. Il est entierement implémenté en Java par 'université de Southern
California. Il est également capable de générer le code source a partir du diagramme

des classes pour accélérer le développement des systemes orientés objets.

4.2.1 Les données

Les deux systemes Rhino et ArgoUml sont sélectionnés en raison de la disponibilité des

données relatives a 'historique des défauts, et des changements. Nous illustrons au tableau

1. http ://www.mozilla.org/rhino/
2. http ://argouml.tigris.org/

36

[4.1] les versions, et les données relatives aux défauts et aux changements des deux systemes
Rhino et ArgoUml.

Tableau 4.1 Sommaire des systemes orientés objets

Systemes | Versions Nombre de
Classes | Relations | Bogues | Changements

1.4R3 99 499 33 1466
1.5R1 134 718 22 1020

Rhino | LOR2Z | 183 935 12 106
1.5R3 178 929 41 666
1.5R4 193 1017 115 236
1.5R4.1 193 1017 95 835
1.5R5 194 1027 53 808
1.6R1 191 1118 21 217
0.10 876 3491 218 1856
0.10.1 876 3491 459 4006
0.12 960 4232 133 2355

ArgoUml 0.14 1239 5609 142 1039
0.15.6 1187 5898 102 541
0.16 1190 5909 181 1299
0.16.1 1190 5910 664 5048
0.17.5 1243 7357 169 739

Nous avons téléchargé huit versions de chaque systeme pour recenser les microarchitectures

de taille trois, quatre, et cinqg.

Pour le premier systeme Rhino, nous avons traité les versions entre 1.4R3 et 1.6R1. Les
défauts ont été récupérés via I'étude de Eaddy (voir [Eaddy et al), 2008), et les données

concernant les changements sont extraites du fichier des journaux (logs) CSV.

Pour le deuxiéme systeme ArgoUml, nous avons traité les versions entre 0.10 et 0.17.5. Les
données des défauts sont extraites du serveur de suivi des bogues "Bugzilla” et du serveur

SVN;, et les changements sont extraits du serveur SVN.

Relations traitées : Dans les systemes OO, la communication entre les classes peut étre
exprimée par les trois types de relations d’association (1), d’agrégation (2), et d’héritage (3).
De plus, dans un systeme, une classe A peut hériter d’une classe B, et en méme temps les

éléments de la classe A peuvent participer a plusieurs relations avec la classe B. Donc, nous

37

considérons que les relations en parallele (dans le méme sens i.e. de A vers B) entre les deux
classes A et B comme une seule relation composée. En effet, un systeme contenant les trois
relations simple 1, 2, et 3 peut contenir les quatre relations composées suivantes :

— 12 : L’association et 'agrégation

— 13 : L’association et 1'héritage.

— 23 : L’agrégation et 1’héritage.

— 123 : L’association, I'agrégation et I’héritage.

Notons que la relation composée entre une classe A et une classe B (de A vers B) est la
concaténation de toutes les relations simples (1, 2, et 3) entre A et B (de A vers B). Cette

concaténation est faite du plus petit au plus grand chiffre.

4.3 Approche

Nous avons utilisé la suite d’outils PtidejE| et son méta-modele PADLH pour construire
le diagramme des classes des deux systemes orientés objets Rhino et ArgoUml, puis nous
avons transformé le diagramme des classes de chaque systeme a un graphe orienté et étiqueté
G(V, A, L,1) tel que :

— L’ensemble des sommets V' du graphe G représente I’ensemble des classes du systeme

traité.
— L’ensemble des arcs A du graphe G représente les relations entre les classes.

— L’ensemble des étiquettes L = {1,2,3,12,13,23,123} représente les relations simples

et les relations composées.

— [est une fonction d’étiquetage (voir la section [1.4.1]).

Ensuite, nous utilisons SGFinder (voir le chapitre|3]) pour recenser toutes les microarchitec-
tures de taille trois, quatre, et cinq. Puis, nous regroupons les microarchitectures identiques
dans des catégories en utilisant 1’outil nauty (voir la section . Et finalement, nous pro-
cédons a I'analyse de ces microarchitectures. La figure illustre un apercu global de cette

approche.

Avec cette technique, le probleme de recensement des microarchitectures d’une taille donnée

k d’un systeme OO est modélisé comme un probleme de recensements des sous-graphes

3. Ptidej (voir |Guéhéneuc, [2004) est un ensemble d’outils de rétro-conception. Il permet d’extraire le
diagramme des classes a partir du code source des programmes.

4. Le méta-modele PADL (voir |[Albin-Amiot et Guéhéneuc, 2001) fait partie de la suite d’outils Ptidej. Il
permet de donner la représentation générique d’un systeme OO quelconque. Il est indépendant des langages
de programmation. Il comprend un analyseur de Java et un générateur des graphes.

d’ordre k d'un graphe orienté et étiqueté G(V, A, L,).

#

serveur SWN

Changements

>

—

Groupe 2 Groupe 1

Groupe i

A

f@

Rhino

/

Microarchitectures de taille trois

éfauts

38

@ Arguuﬂﬂ

serveur SVN

Figure 4.1 Apercu de la nouvelle approche

39

4.4 Méthode d’analyse

Tout d’abord, nous présentons les informations associées aux microarchitectures, et leurs
présences dans les différentes versions. Par la suite, nous décrivons 1'utilisation de ces infor-

mations pour répondre a nos questions de recherche.

4.4.1 Caractéristiques des microarchitectures

Afin d’analyser les microarchitectures d’'une maniere exhaustive, nous introduisons les

deux types d’informations suivantes :

Connectivité des classes participantes aux microarchitectures

Une microarchitecture est définie par une structure de classes reliées entre elles par des
relations simples ou composées. Donc, pour le premier type d’information, nous nous focali-
sons sur les différents modeles de relations pouvant exister dans les microarchitectures. Nous

distinguons les modeles des relations selon les variables suivantes :

i. nbRel est le nombre total des relations. Ce nombre comprend les trois types de relations

simples et les quatre types de relations composéesﬂ
ii. nbAssoc est le nombre total des relations de type association.
iii. nbAggr est le nombre total des relations de type agrégation.
iv. nbInher est le nombre total des relations de type héritage.

v. nbCycl est le nombre total des relations cycliques. Une relation cyclique entre deux
classes A et B est généralement générée par une paire d’associations c’est-a-dire la classe

A appelle ou utilise la classe B et vice-versa.

Présence des microarchitectures

La présence des microarchitectures est la maniere dont elles sont reparties dans les sys-

temes OO. Donc ce type d’information est défini par les quatre variables suivantes :

1. nbVersions est le nombre total des versions contenant une microarchitecture donnée.
ii. nbOccurrences est le nombre total des occurrences des microarchitectures identiques.

ili. nbZones est le nombre total des régions (voir la section [3.3.1)) contenant les microar-

chitectures identiques.

5. Dans la présente étude, nous n’avons pas traité les relations qui sont sous forme d’une boucle sur une
classe c’est-a-dire les relations d’une classe avec elle-méme.

40

iv. nbClasses est la cardinalité de I'ensemble des classes participant au moins une fois

dans une microarchitecture donnée.

4.4.2 Réponses aux questions de recherche

Tout d’abord, nous rappelons quelques notions de statistique descriptive, et la recherche
d’information. Ces notions sont essentielles pour analyser les données représentées par les

différentes variables définies dans la section 4.4.11

Notions de la statistique descriptive

— Meédiane : La médiane sépare une série des données en deux groupes de méme nombres
d’éléments. Le premier groupe contient les plus petites valeurs et le deuxieme groupe

contient les plus grandes valeurs.

— Quartiles : Les quartiles permettent de séparer une série des données en quatre groupes
de méme nombre d’éléments. Un quart des valeurs sont inférieures au premier quartile

Q1, et un autre quart des valeurs sont supérieures au troisieme quartile Q3.

— Résumé en 5 chiffres : Ce résumé se compose de minimum, premier quartile, médiane,

troisieme quartile, et maximum (Min, Q1, Médiane, Q3, Max).

Précision, Rappel, et F1

— Précision (P) : La précision est la proportion des éléments pertinents parmi les

éléments sélectionnés.

— Rappel (R) : Le rappel est le rapport du nombre des éléments pertinents trouvés
par le nombre des éléments pertinents disponibles. Il s’agit donc d’une proportion des
éléments bien classés dans la classe des éléments pertinents.

2><P><R)_

— F1 : Est une mesure qui combine la précision et le rappel (F1 = =5 TE

Pour répondre a nos questions de recherche, nous utilisons les notions de la statistique
descriptive pour analyser les données des variables définies dans la section [£.4.1] Plus préci-
sément, nous utilisons la représentation de résumé en 5 chiffres pour analyser et comparer la

distribution des données de ces variables.

Question QR1 : Pour répondre a la question de recherche QR1 visant a vérifier 'applica-

bilité de ’algorithme SGFinder sur les petits et les moyens systemes OO, nous représentons

41

les données des variables (voir la section [4.4.1)) sous le format de résumé en 5 chiffres. Nous re-
présentons les microarchitectures des deux systemes Rhino et ArgoUml séparément. Ensuite,
nous représentons les microarchitectures communes entre ces deux systemes. Etant donné
que ces deux systemes Rhino et ArgoUml sont développés par deux équipes différentes, donc

le traitement des microarchitectures communes permettra de généraliser les résultats.

Pour vérifier I'efficacité de ’algorithme, nous calculons le temps d’exécution total de SG-

Finder sur les huit versions des deux systemes Rhino et ArgoUml.

Questions QR2 : Notre objectif pour cette question est d’identifier les microarchitectures
prédisposées aux défauts ou celles qui n’ont aucun défaut. Donc, premierement, nous identi-
fions les classes possédant des défauts. Ensuite, nous utilisons pour chaque microarchitecture,
son ensemble de classes, et nous calculons le pourcentage de ses classes boguées. Autrement
dit, pour une microarchitecture donnée mA;, nous devons adapter la précision P et le rappel
R comme suivant :

— Précision P : La précision est le pourcentage des classes boguées par rapport a
I’ensemble des classes participantes a la microarchitecture mA;. Une précision de 100%
signifie que la totalité des classes de la microarchitecture mA; sont boguées, alors que
une précision de 0% signifie qu’aucune des classes de mA; n’est boguée. Donc, si la
précision P est faible (respectivement élevée), la majorité des classes participantes aux

microarchitectures ne sont pas boguées (sont boguées respectivement).

— Rappel R : Le rappel est le pourcentage des classes boguées dans la microarchitecture

mA; par rapport a la totalité des classes boguées dans le diagramme des classes.

Pour un nombre fixe de classes (ex. quatre), nous trions les microarchitectures par ordre
décroissant de la précision P (c’est-a-dire les plus boguées vers les moins boguées). Nous
sélectionnons ensuite les premieres 10%, et les dernieres 10% des microarchitectures de la
liste des microarchitectures triées. Il est utile a noter que les microarchitectures sélectionnées
sont les microarchitectures des deux systemes OO Rhino et ArgoUml séparément, et les

microarchitectures communes entre ces deux systemes.

Questions QR3 : Pour répondre a cette question, nous utilisons la méme méthodologie
de réponse a la question QR2, sauf que nous analysons les changements effectuées sur les

classes participantes aux microarchitectures au lieu d’analyser leurs défauts.

42

4.5 Conclusion

Dans ce chapitre nous avons présenté la validation empirique de I'outil SGFinder. Nous
avons posé des questions de recherche, et présenté les réponses a ces questions. Dans le

chapitre suivant, nous décrivons et discutons les résultats trouvés par notre outil SGFinder.

43
CHAPITRE 5

RESULTATS

Dans ce chapitre, nous présentons et analysons les résultats obtenus par ’outil SGFinder.
Nous répondons aux trois questions de recherche qui visent a vérifier I’applicabilité de 1’al-
gorithme SGFinder sur les petits et les moyens systemes OO, et a chercher la relation entre

les microarchitectures et les propriétés telles que la stabilité et les défauts.

Remarque : 1l est utile de noter que notre étude se focalise uniquement sur les versions
déja réalisées des deux systemes Rhino et ArgoUml. Autrement dit, nous ne pouvons pas
introduire des facteurs de bruit comme l'augmentation, ou la diminution de la taille du
diagramme des classes, ou de modification de sa structure. Par conséquent, cette étude ne
permet de prédire les mémes résultats, ni pour les nouvelles versions a venir de ces deux

systemes, ni a d’autres systemes autres que Rhino et ArgoUml.

5.1 QR1 : Applicabilité de I’'outil SGFinder et la description des microarchitec-

tures trouvées

Le tableau [5.1) présente le nombre total des occurrences des microarchitectures (Occ), et le
nombre total des microarchitectures différentes (Dif) des deux systémes Rhino et ArgoUml.

Les microarchitectures de taille trois, quatre, et cinq sont indiquées dans I’entéte du tableau.

Nous constatons que :

— Le nombre total des microarchitectures différentes des deux systemes est presque le
méme, malgré que le diagramme des classes du systeme Rhino contient environ 10
fois moins de classes que le diagramme des classes du systéme ArgoUml (Ex. pour
les microarchitectures de taille quatre, la deuxieme version "1.5R1” du systeme Rhino
contient 3390 microarchitectures différentes, et la deuxieme version 70.10.17 du sys-
teme ArgoUml contient 3432 microarchitectures différentes). Donc, le nombre total des
microarchitectures différentes n’est pas strictement liée a la taille de diagramme des
classes.

— Le systeme ArgoUml contient plus d’occurrences de microarchitectures par rapport au

systeme Rhino.

44

Tableau 5.1 Les microarchitectures trouvées dans les deux systemes Rhino et ArgoUml ("Occ”
est le nombre total des occurences des microarchitectures, "Dif” est le nombre total des
microarchitectures différentes).

Systemes | Versions | Nombre Tail?}e‘ des micrza‘rchitectures .
L4R3 Occ 6352 106933 1556177
Dif 162 2522 32572

15R1 Occ 11046 230096 4255632
Dif 197 3390 51800

15R9 Occ 15417 389589 8926000
Dif 229 4165 67237

Rhino 15R3 Occ 15519 398616 9254224
’ Dif 226 4160 67069
15R4 Occ 18203 509826 12968171
’ Dif 249 4653 77010
Occ 18203 509826 12968171

1.oR4.1 Dif 249 4653 77010
15R5 Occ 17235 453162 10841181
Dif 275 5052 81859

L6R1 Occ 19782 534127 12862920
Dif 265 4929 84538

0.10 Occ 71114 | 2326149 76638002
Dif 222 3432 48932

0.10.1 Occ 71114 | 2326149 76638002
Dif 222 3432 48932

0.12 Occ 103935 | 4193438 174509644
Dif 224 3833 62962

0.14 O.CC 171783 | 8614757 458176012
ArgoUml Dif 266 5290 104706
0.15.6 Occ 315612 | 38570009 | 4948807397
Dif 269 5072 93893

0.16 Occ 316138 | 38716539 | 4978353074
Dif 269 5005 90458

0.16.1 Occ 316710 | 38881514 | 5010343101
Dif 269 5005 90458

0175 Occ 564424 | 91643885 | 13741073588
Dif 279 4906 82877

Considérant les trois relations de base (association, agrégation et I'héritage), les quatre re-

lations composées, et I’absence des relations, donc il y a huit connexions possibles entre deux

graphes. Cela signifie que pour n X n paires de sommets (y compris les boucles), nous pouvons

avoir (si nous ne prenons pas en considération la symétrie) au maximum 8(*m=(=1) x 771

sous-graphes connexes de n sommets. Par exemple, nous pouvons obtenir environ 22 x 10%!

45

microarchitectures différentes de taille cing. Si nous considérons 'union des microarchitec-
tures de taille cing des deux systémes Rhino et ArgoUml, nous obtenons seulement 32 x 10*
différents microarchitectures, ce qui semble étre un nombre tres élevé, cependant ce nombre

est juste une fraction du nombre total des combinaisons possibles.

Les tableaux et présentent les microarchitectures de taille trois, quatre et cinq,
trouvées dans les deux systemes OO Rhino et ArgoUml. Le tableau présente les mi-
croarchitectures communes aux deux systemes OO Rhino et ArgoUml. Les résultats sont
représentés sous le format de résumé en 5 chiffres (Min, Q1, Médiane, 2, Max). Bien que la
taille du systeme Rhino soit petite par rapport au systeme ArgoUml, Rhino contient plus de
combinaisons de graphes connexes pour toutes les tailles des microarchitectures. Le tableau
montre qu’il existe un nombre important des microarchitectures communes entre les deux
systemes Rhino et ArgoUml, ce qui permettrai d’augmenter les chances de généralisation des

résultats.

Tableau 5.2 Microarchitectures existant dans le systeme Rhino. Chaque ligne indique le ré-
sumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Microarchitectures de taille
Variables trois quatre cing

(373) (9203) (190061)
nbRel 2,4,56,11 | 3,6,7,9,20 | 4,8,10,11,27
nbAssoc 0,2,34,6 | 0,4,5,6,12 0,6,7,9,18
nbAggr 0,0,1,24 0,1,1,2,7 0,1,1,2.9
nblnher 0,0,1,1,3 0,0,1,2,5 0,0,1,2,6
nbCycl 0,0,1,1,3 0,0,1,2,6 0,0,1,2,8
nbZones 1,1,1,2,68 | 1,1,1,1,33 1,1,1,1,20
nbClasses | 3,3,5,10,140 | 4,4,5,9,147 | 5,5,6,10,156
nbVersions 1,2,5,8,8 1,1,3,6,8 1,1,2,4,8

Concernant les informations de connectivité, les microarchitectures du systeme Rhino
contiennent plus de relations par rapport a celles du systeme ArgoUml. En regardant le
nombre maximum des relations, nous constatons que certaines microarchitectures plus connec-
tées se trouvent dans les deux systemes Rhino et ArgoUml. La figure illustre une de ces
microarchitectures. Cette figure représente trois microarchitectures de taille cinq avec le plus
grand nombre de relations dans le systeme Rhino (22 relations), dans le systéme ArgoUml

(21 relations), et dans les deux systemes (19 relations).

46

Tableau 5.3 Microarchitectures existant dans le systeme ArgoUml. Chaque ligne indique le
résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Microarchitectures de taille
Variables trois quatre cing

(349) (8224) (180295)
nbRel 2,4,5.6,10 3,6,7,.8,17 | 4,89,10,23
nbAssoc 0,2,3,4,6 0,3,4,6,11 0,5,6,8,15
nbAggr 0,0,1,24 0,1,1,2,6 0,1,2,2.8
nbInher 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7
nbCycl 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7
nbZones 1,1,1,3,583 | 1,1,1,2,315 | 1,1,1,1,171
nbClasses | 3,3,6,19,944 | 4,4,7,16,940 | 5,5,8,19,944
nbVersions 1,4,7,8,8 1,2,4,7.8 1,1,3,5,8

Tableau 5.4 Microarchitectures existant dans les deux systemes Rhino et ArgoUml. Chaque
ligne indique le résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Microarchitectures de taille
Variables trois quatre cing

(250) (3993) (52862)
nbRel 2,4,4,5.8 3,5,6,7,11 4,7,8,9,15
nbAssoc 0,2,3,4,6 0,3,4,5,10 0,5,6,7,14
nbAggr 0,0,1,2,4 0,0,1,24 0,0,1,2,6
nbInher 0,0,1,1,3 0,0,1,14 0,0,1,1,6
nbCycl 0,0,0,1,3 0,0,1,1,4 0,0,1,1,5
nbZones 1,1,2,5,326 1,1,1,2,174 1,1,1,2.95
nbClasses | 3,5,8,26,542 | 4,6,11,24,544 | 5,8,14,31,540
nbVersions 1,5,7,8,8 1,3,5,7,8 1,3,4,6,8

5.1.1 Temps de calcul de 'outil SGFinder

Le tableau et la figure présentent le temps total d’exécution de 'outil SGFinder,
sur les huit versions des deux systemes OO Rhino et ArgoUml. En effet, le temps d’exécution
global de I'outil SGFinder pour le recensement des microarchitectures se varie entre 0 secondes
et 28 heures. Pour les microarchitectures de taille trois, 'outil SGFinder s’exécute en moins
d’une seconde, et pour les microarchitectures de taille quatre, 'outil SGFinder s’exécute entre
0 a 2 secondes. Alors que le temps total d’exécution le plus long est utilisé pour le recensement
des microarchitectures de taille cinq. En particulier l'outil SGFinder s’exécute pendant 28
heures pour recenser 82.877 microarchitectures différentes, et 13.741.073.588 occurrences dans

le systeme ArgoUml.

181, crg.mozilla,javascriptxmlimpl.Mamespace

184, crg.mozillajavascriptxmlimpl XML

186, org.mozillajavascriptamlimpl XMLLibImnpl
187, org.mozillajavascriptamlimpl XMLList

189, org.moazilla.javascriptamlimpl XMLO bjectimpl

68, org.argouml.cognitive.critics. Critic
&3, org.argouml.cognitive. Designer
87 org.argouml.cognitive, Poster

90, org.argouml.cognitive, ToDoltem
9, org.argoumnl.cognitive. ToDoList

* org.mozilla javascript.*

* org.argouml.®

47

Figure 5.1 Les microarchitectures les plus connectées de taille cinq dans les deux systemes

Rhino et ArgoUml.

48

En effet, le temps total d’exécution de 'outil SGFinder ne dépend pas des versions d’un
systeme. Cependant, il dépend principalement de la densité du diagramme des classes, c’est-
a-dire du nombre de relations existantes entre les classes, et la taille du diagramme des classes.
Compte tenu de la présence de certaines classes fortement connectées, le nombre des com-
binaisons possibles augmente énormément le nombre d’occurrences des microarchitectures.
Par conséquent, les classes les plus connectées font augmenter exponentiellement le temps

d’exécution global de I'algorithme SGFinder.

Tableau 5.5 Temps d’éxecution de l'algorithme SGFinder sur les deux systemes Rhino et
ArgoUml.

Temps d’exécution (h mm ss)

3] i 5
1.4R3 0 00 00 | 0 00 00 0 00 07
1.5R1 00000 | 00001 0 00 20
Rhino | L5RZ 0000000001 | 00046
1.5R3 0 00 00 | 000 02 0 00 47
1.0R4 0 00 00 | 0 00 02 0 01 06
1.5R4.1 | 00000 | 000 01 0 01 06
1.5R5 00001 | 00001 0 00 57
1.6R1 0 0000 | 000 02 001 06

Systemes | Versions

0.10 00000 | 000 14 03343
0.10.1 00001 |000 14 034 00
0.12 0 00 00 | 000 26 11813
ArgoUml 0.14 00001 | 00049 04 09 11
0.15.6 00001 |00312 11 57 36
0.16 0000100311 12 05 49

0.16.1 00001 | 00304 11 55 39
0.17.5 00002 | 006 57 28 02 56

En effet 'outil SGFinder est capable d’explorer les petits et les moyens systemes OO, pour
recenser les microarchitectures de taille allant jusqu’a cing. Nous pouvons donc répondre

positivement a cette premiere question de recherche QRI.

49

< 1) 1 g 2t .
= =
3 \ 3
g 08l 1 8
= = 15))
<] <]
2 06 . =
g 04 108
& &
< 02f 1 = 097 |
= =
0f | 0f |
ﬁ | | | | ﬁ | | | |
2 4 6 8 2 4 6 8
Systéme Rhino (taille=3) Systéme Rhino (taille=4)
g g
E i |
s 60} | 3
& ?
z c 15 .
<5 (&)
g a0 1 & | |
= =
g 3
& &
= 20| 4 = 05p i
n n
2 =
5 E oof .
H | | | | B | | | |
2 4 6 8 2 4 6 8
Systeme Rhino (taille=5) Systeme ArgoUml (taille=3)
-10°
8 8
T 400 1 E 1
3 3
e 2 0.8 8
= 300 | 1 =
k g 06y |
s 200 1 =
3 g 04 :
¥ %
L L
= 100 © 1 =
- 100 ° 02| |
2 2,
: = f
E‘ 0 L 1 1 1 1 i H 1 1 1 1
2 4 6 8 2 4 6 8
Systeme ArgoUml (taille=4) Systeme ArgoUml (taille=5)

Figure 5.2 Temps d’éxecution de ’algorithme SGFinder sur les deux systemes Rhino et Ar-
goUml.

20

5.2 QR2 : Prédisposition des microarchitectures aux défauts

Le tableau présente les microarchitectures de taille trois, quatre et cing, et qui sont
communes entre les deux systemes Rhino et ArgoUml. En utilisant la précision P, ce tableau
rapporte les premieres 10% des microarchitectures les plus prédisposées aux défauts, ainsi
que les dernieres 10% qui sont les moins prédisposées aux défauts. Les résultats sont repré-
sentés sous le format de résumé en 5 chiffres (Min, Q1, Médiane, Q2, Max). Bien qu’il existe
des microarchitectures intéressantes dans chacun des deux systemes OO séparément, nous
nous focalisons uniquement sur les microarchitectures communes pour les raisons suivantes :

— Les deux systemes sont développés par deux équipes différentes.
— IIs ont des tailles différentes.

— Ils appartiennent a deux domaines d’applications différents.

Tableau 5.6 Les microarchitectures les plus et les moins prédisposées aux défauts des deux
systemes Rhino et ArgoUml. Chaque ligne indique le résumé en 5 chiffres : Min, Q1, médiane,
Q3, Max

Microarchitectures de taille

Variables Echantillon trois quatre cing
(250) (3994) (52862)

Premiere 10% | 41,44,47,52,67 | 42,45,48,54,83 | 41,43,46,52,84

Precision Derniere 10% 0, 5, 9,11,13 0, 8,10,13,14 0, 2, 5, 7,22
Premiere 10% 5,8,13,17,30 | 2,10,12,15,40 | 4,11,14,18,54

F1 Derniere 10% 0,1,1,2,5 0,1, 3, 5,16 0, 2, 5, 7,22
Premiere 10% 3,4,6,6,8 4,7,.8,8,10 4,8,9,10,14

nbRel Derniere 10% 2,4,4,5,6 3,6,6,7,09 4,7,8,09,13
Premiere 10% 2,3,4,5,6 2,5,6,7,10 2,7,8,9,14

nbAssoc Derniere 10% 0,2,2,3.4 0,3,4,5,08 0,4,5,6,11
Premiere 10% 0,1,1,24 4,7.8,8.10 4.8.9,10,14

nbAggr Derniere 10% 0,1,1,2,2 3,6,6,7,09 4,7,8,09,13
Premiere 10% 0,0,0,1,2 0,0,0,1,3 0,0,0,1,4

nbInher Derniere 10% 0,1,1,2,2 0,0,1,1,3 0,0,1,2,5
Premiere 10% 0,1,1,2,3 0,1,1,24 0,1,2,2,5

nbCycl Derniere 10% 0,0,0,1,1 0,0,0,1,4 0,0,0,1,5
Premiere 10% 1,1,2,2,9 1,1,1,1,6 1,1,1,1, 7

nbZones Derniere 10% 1,1,1,2,5 1,1,1,1,7 1,1,1,1,14
Premiere 10% 3,4,5,7,33 4,56, 9, 59 1,1,1,1, 7

nbClasses | Derniere 10% 3,4,5,7,18 4,5,7,12,133 1,1,1,1,14
Premiere 10% 1,4,5,6,8 1,3,4,5,8 1,2,3,5,8

nbVersions | Derniere 10% 1,3,4,5,8 1,2,3,5,8 1,2,3,4,8

51

Dong, le choix des microarchitectures communes pourrait augmenter les chances de géné-

ralisation des résultats.

D’apres la précision P, le tableau montre la présence de certaines microarchitectures
particulierement prédisposées aux défauts, et d’autres microarchitectures sans aucun défaut.
Nous constatons d’apres la variable nbV ersions que les huit versions des deux systemes Rhino
et ArgoUml contiennent certaines microarchitectures qui sont continuellement prédisposées

aux défauts.

Prenons comme exemple les microarchitectures de taille cinq. Rappelons que la précision
P est la proportion des classes boguées parmi I’ensemble des classes participantes aux mi-
croarchitectures. La précision P la plus élevée est P = 84% et l'unité de mesure la plus
élevée est F'1 = 54%. Autrement dit, certaines microarchitectures sont particulierement pré-
disposées aux défauts, et elles contiennent la majorité des classes boguées (c’est-a-dire il
existe un nombre important de classes boguées dans ’ensemble des classes participantes aux
microarchitectures). Par contre, il existe des microarchitectures sans aucun défaut (préci-
sion P = 0%, c’est-a-dire il n’y a aucune classe boguée dans ’ensemble des classes de ces

microarchitectures).

Analysons maintenant les informations de connectivité. Nous remarquons que les microar-
chitectures les plus prédisposées aux défauts sont les plus connectées par rapport a celles
les moins prédisposées aux défauts. En particulier, les microarchitectures ayant des défauts
contiennent généralement plusieurs relations d’associations. Lorsque nous évaluons la corréla-
tion[[] entre le nombre des relations d’associations dans les microarchitectures et la précision
P, nous trouvons que les deux corrélations de Spearman et Pearson donnent des valeurs
supérieures a 0,4 avec un niveau de confiance plus de 99% (les valeurs de corrélation obte-
nues sont similaires pour les relations cycliques). L’inverse semble étre vrai pour les relations
d’agrégations et d’héritages qui ont tendance a étre moins élevées dans la plupart des mi-

croarchitectures prédisposées aux défauts (les valeurs de corrélation sont environ -0,15).

Les informations de la présence et de la répartition des microarchitectures les plus et
les moins prédisposées aux défauts, indiquent que la plupart d’entre elles ne sont pas tres
communes ou bien réparties sur le diagramme des classes. Généralement, elles sont reparties
sur une seule zone. Cependant, le nombre maximal des zones contenant les microarchitectures

les plus prédisposées aux défauts est égal a sept, ce qui est une exception remarquable. Ceci

1. La corrélation est le degré de liaison qui unit deux ou plusieurs variables.

52

peut étre expliqué par le pourcentage faible des classes boguées dans les deux systemes.
Compte tenu du nombre relativement restreint des classes boguées dans les deux systemes

Rhino et ArgoUml, les précisions P obtenues sont tres intéressantes.

93, org.mozilla,javascript.MativelavaMethod
94, org.mozillajavascript.MativelavaObject
112 org.mozillajavascript. ScriptRuntime
123, org.mozillajavascript. WrapFactory

Figure 5.3 Exemple d’une microarchitecture prédisposée aux défauts avec une précision de

P =81%

Nous illustrons dans la figure [5.3| une microarchitecture de taille quatre qui est prédisposée
aux défauts. Elle a une précision moyenne P = 81.25%. Cette microarchitecture se trouve
dans les deux versions 1.5R4, et 1.5R4.1 du systeme Rhino et dans les quatre versions 0.14,
0.15.6, 0.16, et 0.16.1 du systeme ArgoUml. Chaque classe participante a cette microarchi-

tecture communique avec les autres classes via la relation d’association.

En particulier, lorsque nous récupérons l’ensemble des microarchitectures ayant trois rela-
tions cycliques et dont chaque classe communique avec les autres, nous obtenons le résumé

en 5 chiffres (28,44,56,67,81). Ce résumé se rapproche de celui des microarchitectures les

93

plus prédisposée aux défauts (42, 45,48, 54, 83).

Finalement, nous pouvons donc conclure que la réponse a la question de recherche QR2
est positive, parce qu’il existe des microarchitectures communes entre les deux systemes OO
Rhino et ArgoUml, qui n’ont aucun défaut, et d’autres qui sont fortement prédisposées aux

défauts.

5.3 QR3 : Prédisposition des microarchitectures aux changements

Tableau 5.7 Les microarchitectures les plus et les moins prédisposées aux changements qui
existent dans les deux systemes Rhino et ArgoUml. Chaque ligne indique le résumé en 5
chiffres : Min, Q1, médiane, Q3, Max

Microarchitectures de taille

Variables | Echantillon trois quatre cing
(250) (3994) (52862)
Precision Premiere 10% | 83,86,88,91,97 | 85,88,90,93,100 | 84,86,89,92,100
Derniere 10% | 20,35,38,39,44 | 17,38,43,48, 50 | 10,42,47,50, 53
Pl Premiere 10% 3,5,6,9,27 4,5,6,8,22 5,8,9,12,37
Derniere 10% 0,1,1,2,13 0,2,3,5,33 0,3,6,11,55
1bRel Premiere 10% 3,5,6,6,7 4,6,7,8,10 4,8.9,10,15
Derniere 10% 2,4,4.6,7 3,5,6,7,10 4,78,9,13
nbAssoc Premiere 10% 1,3,4,5,6 2,5,6,7,10 1,6,8,9,13
Derniere 10% 0,1,2,3,4 0,3,4,5,08 1,4,5,7,11
nbAggr Premiere 10% 0,0,0,1,3 0,0,1,2,4 0,0,1,1,5
Derniere 10% 0,1,2,2,3 0,1,2,2,4 0,1,2,2,6
ibInher Premiere 10% 0,0,1,1,2 0,0,0,1,4 0,0,0,1,5
Derniere 10% 0,1,1,2,2 0,0,1,1,3 0,0,1,1,4
Premiere 10% 0,1,1,2,3 0,1,1,2,4 0,0,1,2,5

nbCycl N
Derniere 10% 0,0,1,1,2 0,1,1,2,3 0,0,1,1,4
nbZones Premiere 10% 1,1,2,2,5 1,1,1,1, 5 1,1,1,1,10
Derniere 10% 1,1,1,2,5 1,1,1,1,11 1,1,1,1,10
1bClasses Premiere 10% 3,4,5,7,26 4,5,6, 8, 90 5,6, 811,158
Derniere 10% 3,4,5,7,69 4,5,8,14,321 5,8,13,29.404
nbVersions Premiere 10% 1,4,5,7.8 1,2,4,5,8 1,2,3,4,8
Derniere 10% 2,4.5,7.,7 1,3,4,5,8 1,2,3,5,8

Le tableau présente les microarchitectures communes entre les deux systemes Rhino
et ArgoUml. En utilisant la précision P, ce tableau rapporte les premieres 10% des

microarchitectures les plus prédisposées aux changements, ainsi que les dernieres 10% qui

o4

sont les moins prédisposées aux changements. Les résultats sont représentés sous le format de
résumé en 5 chiffres (Min, Q1, Médiane, Q2, Max). Pour les mémes raisons mentionnées dans
la section de la question de recherche QR2 (voir la section [5.2)), nous choisissons d’analyser
les microarchitectures communes entre les deux systemes. Ce choix pourrait aussi augmenter

les chances de généralisation des résultats sur les changements.

Les résultats illustrés dans le tableau montrent bien qu’il existe certaines microar-
chitectures particulierement stables. Cependant, étant donné que les changements sont tres
communs dans les deux systemes choisis, nos données (avec une précision de P = 100%)
sont moins concluantes pour les microarchitectures les plus fréquemment changées. Nous
constatons d’apres la variable nbVersions que les huit versions des deux systemes Rhino et
ArgoUml contiennent certaines microarchitectures qui sont continuellement prédisposées aux

changements.

Les informations de la connectivité des microarchitectures donnent des conclusions simi-
laires a la question de recherche RQ2. La majorité des microarchitectures prédisposées aux
changements contiennent plus de relations d’associations et moins de relations d’agrégations

et d’héritages.

Vu le nombre élevé des classes modifiées dans les deux systemes Rhino et ArgoUml, les

microarchitectures avec des précisions P faibles méritent plus de traitement.

La figure |5.4]illustre une microarchitecture particulierement stable. Cette microarchitecture
se trouve dans la version 1.6R1 du systeme Rhino, et dans la version 0.17.5 du systeme
ArgoUml. Cette microarchitecture a une précision moyenne P = 30%. Elle est comme un

patron avec la forme d’une cascade.

5.4 Limites de validité

Nous avons montré précédemment dans la section que l'algorithme SGFinder peut
fonctionner sur les petits et les moyens systemes orientés objets. Afin de chercher les mi-
croarchitectures des grands systemes, nous partitionnons le diagramme des classes de ces
systemes soit en composantes, ou en sous-systemes, soit nous introduisons des méthodes

heuristiques.

55

43, org.mozilla.javascript. Context

73, org.mozillajavascript.Kit

181, crg.mozilla.javascriptxmlimpl. Mamespace
186, org.mozilla.javascriptaxmlimpl XMLLibImpl

Figure 5.4 Exemple d’une microarchitecture sans défauts avec une précision P de 30%

5.4.1 Limite de validité de construction

Cette limite concerne la relation entre la théorie et I'observation. Il est principalement
di a la nécessité d’une validation manuelle et d’une analyse qualitative. En effet, nous ne
pouvons pas donner une interprétation spécifique aux microarchitectures prédisposées aux
défauts et aux changements. Nous ne pouvons pas deviner I'intention des développeurs sur
les structures des classes crées pendant I'implémentation. Donc, nous supposons que nous
connaissons seulement le domaine d’application du systeme traité, les classes, et les relations

entre elles.

5.4.2 Limite de validité interne

Cette limite est principalement liée a toute confusion pouvant influencer les résultats obte-
nus. En particulier, cette limite peut étre due a la distinction entre les relations d’associations

et d’agrégations, aussi, elle peut étre liée au nombre des défauts et des changements attribués

o6

aux classes du systeme traité. Nous évitons plusieurs facteurs, en utilisant des outils solides,
et en réutilisant les données des défauts fournies soit par d’autres chercheurs, soit par les

applications de suivi des bogues et des changements.

5.4.3 Limite de validité externe

Cette limite concerne la généralisation des résultats obtenus. Notre étude est limitée
a deux systemes Rhino et ArgoUml, sachant que notre approche est faisable sur d’autres
systemes de taille équivalentes. En effet, nous ne pouvons pas garantir que nous obtenons les
mémes microarchitectures communes qui sont prédisposées aux défauts et aux changements.
Nous croyons que le choix des systemes répond a cette limite parce que les deux systemes
choisis appartiennent a deux différents domaines d’applications, ils ont des tailles différentes,

et ils sont développés par deux équipes différentes.

5.4.4 Limite de validité de la conclusion

Cette limite concerne la relation entre le traitement et les résultats obtenus. Nous ne
prétendons aucune relation entre les microarchitectures et les caractéristiques indésirables.
En effet, le jugement de l'existence de telle relation peut-étre confirmé par I’expérience des
développeurs. Dans cette étude, nous mettons en évidence les microarchitectures les plus et
les moins prédisposées aux défauts et aux changements, en utilisant la précision P et le rappel

R comme unités de mesure.

5.5 Conclusion

Dans ce chapitre, nous avons présenté, et analysé les résultats trouvés par SGFinder.
Nous avons montré que notre outil SGFinder permet de recenser les microarchitectures des
petits et moyens systemes OO. Nous avons utilisé les informations de connectivité, et de
présence des microarchitectures dans les différentes versions des deux systemes OO Rhino et
ArgoUml, pour chercher la relation entre ces microarchitectures et leurs propriétés telles que

les changements et les défauts.

o7
CHAPITRE 6

CONCLUSION

Les microarchitectures existantes dans les systemes OO sont des modeles (i.e. structures
de classes et des relations entre elles) congus pour réaliser un ou plusieurs composants d’un
logiciel. Dans le cadre de ce projet, nous avons présenté un nouvel algorithme efficace, et
un outil appelé SGFinder pour énumérer toutes les microarchitectures d’une taille donnée.
Le nouvel outil SGFinder utilise une technique d’énumération efficace pour détecter toutes
les microarchitectures des petits et moyens systemes orientés objets. Cet outil est capable
de regrouper les microarchitectures identiques dans des catégories, en utilisant la librairie
existante nauty (voir McKay| [1981)). N. De plus, il nous permet d’étudier les propriétés
associées aux microarchitectures telles que leur stabilité, et leur prédisposition aux bogues et

aux défauts.

Dans les sections suivantes, nous synthétisons les travaux que nous avons effectué pendant
notre recherche, ensuite, nous exposons la limitation de la technique proposée, puis, nous

finissons par les orientations et les réalisations éventuelles pour améliorer notre travail.

6.1 Syntheése des travaux

Pour valider la technique de recensement des microarchitectures des systemes orientés
objets, et atteindre les objectifs visés par notre recherche,

— Nous avons testé 'algorithme SGFinder sur :

i. Huit versions de I'interpréteur JavaScript/ECMAScript (Rhinol[l)) intégré dans les

applications Java de la communauté Mozilla, et

ii. Huit versions de 'outil d’analyse et de conception en UML des systemes orientés

objets (ArgoUmlE[)

— Nous avons démontré que notre algorithme SGFinder est capable de recenser toutes les
microarchitectures de taille trois, quatre et cing appartenant aux systemes RhindT et
ArgoUmI2.

— Nous avons effectué de nombreuses opérations pour définir les roles joués par les classes,

identifier les microarchitectures dans les trois cotés du tunnel, et tracer ’évolution des

1. http ://www.mozilla.org/rhino/
2. http ://argouml.tigris.org/

o8

microarchitectures entre les différentes versions. Ces opérations ont été réalisées lors de
cette recherche, et peuvent servir pour des éventuelles publications et travaux futures.

— Nous avons concentré notre étude sur les deux propriétés de la stabilité et des défauts
(bogues) des microarchitectures.

— Nous avons concentré notre recherche sur les microarchitectures les plus boguées, ainsi
que sur celles les moins boguées. De méme, cette étude s’est concentrée sur les mi-
croarchitectures les plus impliquées dans les changements, et également celles les moins
impliquées dans les changements.

— Nous avons rapporté quelques microarchitectures les plus intéressantes relativement a
leurs connectivités (relations entre les classes), a leurs présences dans les différentes
versions des systemes traités, et a leurs nombre d’occurrence dans le diagramme des

classes.

6.2 Limitations de la solution proposée

A travers ce travail, nous avons pu démontrer que ’algorithme SGFinder est capable de
recenser toutes les microarchitectures de taille trois, quatre, et cinq appartenant aux petits et
moyens systemes orientés objets. Par ailleurs, nous avons vu que le probleme de recensement
de toutes les microarchitectures est un probléme exponentiel. Donc, parmi les limitations
notables de nos travaux, nous pouvons toutefois distinguer les deux principales limitations
suivantes :

— Une limitation sur la taille des microarchitectures et des systemes : La mé-
thode proposée pour recenser toutes les microarchitectures dépend toujours de la taille
des microarchitectures a trouver, ainsi que de la taille des systemes orientés objets
a traiter. En effet, notre algorithme SGFinder ne peut pas garantir la recherche de
toutes les microarchitectures d'une taille supérieure a cing des petits et moyens sys-
temes orientés objets. De plus, 'outil SGFinder ne peut pas garantir le traitement des
grands systemes.

— Une limitation technique des ressources matérielles : Nous notons principale-
ment le fait que nous traitons un probleme exponentiel, qui a une conséquence reliée
directement aux ressources matérielles telles que la taille de la mémoire RAM, et la
vitesse du CPU. Cependant, nous ne pouvons ni prévoir le temps total d’exécution
que l'algorithme SGFinder peut prendre pour détecter toutes les microarchitectures,
ni 'espace mémoire a allouer pour stocker les résultats reliés a la recherche de ces mi-
croarchitectures. En effet, ce probleme est lié principalement a la densité du graphe

représentant le systeme orienté objet a traiter.

6.3

99

Améliorations futures

Malgré que nous ayons atteint nos objectifs de recherche, il reste encore d’autres travaux

a faire dans 'intention d’optimiser I'algorithme SGFinder, d’effectuer une analyse qualitative

pour documenter les microarchitectures stables; et les analyser de la méme facon que les

précédentes études réalisées sur les patrons de conception. Ces éléments sont détaillés ci-

dessous :

1.

11.

1il.

Optimisation de 1’algorithme : Lorsqu’un logiciel est mis en ceuvre, il rentre dans sa
phase de maintenance lui rapportant des changements sur le code comme les corrections
des bogues et 'ajout des nouvelles fonctionnalités. De plus, la maintenance a un grand
impact sur la génération de plusieurs versions. Les versions contiennent souvent le
méme diagramme des classes avec quelques modifications mineures sur la structure de
ce diagramme des classes. Ces modifications consistent a ajouter ou enlever certaines
classes ou méthodes. Donc, dans le cas général, la plupart des changements apportés
au code ne touchent pas la structure globale des classes et les relations entre elles.

Donc, afin d’optimiser le temps global d’exécution de I'algorithme SGFinder et le rendre
efficace, il faut recenser les microarchitectures d’une maniere incrémentale c’est-a-dire
nous ne devons pas énumérer de nouveau les microarchitectures existantes dans le dia-
gramme des classes qui est commun entre les versions. Donc, avec cette technique, nous
réduisons le temps d’exécution de I'algorithme par rapport a la technique classique ou le
recensement des microarchitectures est effectué sur le diagramme des classes de chaque
version au complet. En conséquence, nous exploitons les résultats de recensement des
microarchitectures d’une version précédente pour trouver les microarchitectures d’une

version courante.

Roéles des classes : Une éventuelle étude possible serait de traiter et analyser les
microarchitectures de la méme facon que les patrons de conception c’est-a-dire étudier
les microarchitectures en définissant le role attribué a chacune des classes qui les com-
pose, et de définir les particularités structurelles associées a chaque role. Par analogie
aux sous-graphes, il faudrait prendre en compte le type et le nombre d’arcs sortants et
entrants au niveau de chaque sommet qui fait partie de ’ensemble des sommets d’'un

sous-graphe.

Généraliser ’étude : Une autre étude possible serait donc d’étendre notre recherche
sur plusieurs systemes orientés objets. Pour les grands systemes, nous pouvons les dé-
composer en plusieurs sous-systemes en utilisant soit les techniques existantes de décou-
page des graphes en sous-graphes connexes, soit en traitant les composants du logiciel

un a la fois indépendamment des autres composants.

60

iv. Microarchitectures stables : Il est possible de chercher les microarchitectures stables
qui se trouvent a l'intérieur du tunnel et dont leur nombre d’occurrences augmente
toujours entre les différentes versions. Donc, nous pouvons utiliser les résultats trouvées
par notre algorithme SGFinder concernant la progression des microarchitectures et leurs

présences dans les tunnels pour atteindre cet objectif.

v. Analyser les microarchitectures : Un autre domaine de recherche possible serait
I’analyse qualitative qui consiste a documenter les microarchitectures intéressantes pour
le développement des logiciels. Ces microarchitectures donc, peuvent exploiter par les
concepteurs et les architectes logiciels pour créer le diagramme des classes d'un systeme
orienté objet. Cette analyse exige une compréhension approfondie de I’historique du
projet, de I'évolution du développement du logiciel, ainsi que de l'interaction avec les

différents groupes de développement.

61

REFERENCES

ALBIN-AMIOT, H. et GUEHENEUC, Y.-G. (2001). Meta-modeling design patterns : Ap-
plication to pattern detection and code synthesis. P. van den Broek, P. Hruby, M. Saeki,
G. Sunyé et B. Tekinerdogan, éditeurs, Proceedings of the 15t ECOOP workshop on Automa-
ting Object-Oriented Software Development Methods. Centre for Telematics and Information

Technology, University of T'wente.
AUDIBERT, L. (2009). UML 2 : De lapprentissage a la pratique. Ellipses Marketing,.

BATAGELJ, V. et MRVAR, A. (2003). Pajek - analysis and visualization of large networks.
Graph Drawing Software. Springer, 77-103.

BROWN, W. J., MALVEAU, R. C., BROWN, W. H., MCCORMICK III, H. W. et MOW-
BRAY, T. J. (1998). Anti Patterns : Refactoring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1% édition.

CHEN, J., HSU, W., LEE, M. L. et NG, S.-K. (2006). Nemofinder : dissecting genome-wide
protein-protein interactions with meso-scale network motifs. Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM, New
York, NY, USA, KDD ’06, 106-115.

COFFEY, N. (2011). A strong 64-bit hash function in java (ctd). http://www.javamex.
com/tutorials/collections/strong_hash_code_implementation.shtml.

DHAMBRI., K., SAHRAOUI., H., et POULIN, P. (2008). Visual detection of design ano-

malies. In Proceedings of the 12th European Conference on Software Maintenance and

Reengineering, Tampere, Finland. 279—283.

EADDY, M., ZIMMERMANN, T., SHERWOOD, K. D., GARG, V., MURPHY, G. C,,
NAGAPPAN, N. et AHO, A. V. (2008). Do crosscutting concerns cause defects? IEEE
Transaction on Software Engineering, 34, 497-515.

EASTWOOD, A. (1993). Firm fires shots at legacy systems. Computing Canada, vol. 19
(2), p. 17.

ECMA (2007). ECMAScript Standard - ECMA-262 v3. ISO/IEC 16262.

ERLIKH, L. (2000). Leveraging legacy system dollars for e-business. (IEEE) IT Pro,
pp. 17-23.

GAMMA, E., HELM, R., JOHNSON, R. et VLISSIDES, J. (1994). Design Patterns —
FElements of Reusable Object-Oriented Software. Addison-Wesley, 15¢ édition.

http://www.javamex.com/tutorials/collections/strong_hash_code_implementation.shtml
http://www.javamex.com/tutorials/collections/strong_hash_code_implementation.shtml

62

GAREY, M. R. et JOHNSON, D. S. (1990). Computers and Intractability ; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

GUEHENEUC, Y.-G. (2004). A reverse engineering tool for precise class diagrams. J. Sin-
ger et H. Lutfiyya, éditeurs, Proceedings of the 14" IBM Centers for Advanced Studies
Conference (CASCON). ACM Press, 28-41.

GUEHENEUC, Y.-G. et ANTONIOL, G. (2008). DeMIMA : A multi-layered framework
for design pattern identification. Transactions on Software Engineering (TSE), 34, 667-684.
HIMSOLT, M. (1997). Gml : A portable graph file format.

HUFF, S. (1990). Information systems maintenance. The Business Quarterly, vol. 55, 30-32.

JAHNKE, J. H. et ZUNDORF, A. (1997). Rewriting poor design patterns by good design
patterns. S. Demeyer et H. C. Gall, éditeurs, Proceedings the 1°* ESEC/FSE workshop on
Object-Oriented Reengineering. Distributed Systems Group, Technical University of Vienna.
KELLER, R. K., SCHAUER, R., ROBITAILLE, S. et PAGE, P. (1999). Pattern-based
reverse-engineering of design components. D. Garlan et J. Kramer, éditeurs, Proceedings of
the 215 International Conference on Software Engineering. ACM Press, 226-235.
KPODJEDO, S., RICCA, F., GALINIER, P. et ANTONIOL, G. (2009). Recovering the
evolution stable part using an ecgm algorithm : Is there a tunnel in mozilla? CSMR. 179-
188.

KRAMER, C. et PRECHELT, L. (1996). Design recovery by automated search for structural
design patterns in object-oriented software. L. M. Wills et I. Baxter, éditeurs, Proceedings
of the 3" Working Conference on Reverse Engineering. IEEE Computer Society Press,
208-215.

KREHER, D. L. et STINSON, D. R. (1998). Combinatorial algorithms : generation, enu-
meration, and search. CRC.

KULLBACH, B. et WINTER, A. (1999). Querying as an enabling technology in software
reengineering. P. Nesi et C. Verhoef, éditeurs, Proceedings of the 3"¢ Conference on Software
Maintenance and Reengineering. IEEE Computer Society Press, 42-50.

KURAMOCHI, M. et KARYPIS, G. (2004). An efficient algorithm for discovering frequent
subgraphs. IEEE Trans. on Knowl. and Data Eng., 16, 1038-1051.

LANZA., M. et MARINESCU., R. (2006). Object-Oriented Metrics in Practice. Springer.

LIENTZ, B. et SWANSON, E. (1981). Problems in application software maintenance. Com-
munications of the ACM, vol. 24 (11), 763-769.

MARINESCU, R. (2004). Detection strategies : Metrics-based rules for detecting design

flaws. In Proc. IEEE International Conference on Software Maintenance.

63

MASLOV, S. et SNEPPEN, K. (2002). Specificity and stability in topology of protein
networks. Science. vol. 296 (5569), 910-913.

MCKAY, B. D. (1981). Practical graph isomorphism. Congressus Numerantium, vol. 30,
45-87.

MCKAY, B. D. (2009). nauty User’s Guide (Version 2.4). Department of Computer Science,
Australian National University Canberra ACT 0200, Australia.

MCKAY, J. (1984). Maintenance as a function of design. Proceedings of the AFTPS National
Computer Conference, 187-193.

MILO, R., SHEN-ORR, S., ITZKOVITZ, S., KASHTAN, N., CHKLOVSKII, D. et ALON,
U. (2002). Network motifs : simple building blocks of complex networks. Science. vol. 298,
824-827.

MOAD, J. (1990). Maintaining the competitive edge. Datamation, 61-62, 64, 66.

NIERE, J., SCHAFER, W., WADSACK, J. P., WENDEHALS, L. et WELSH, J. (2002).
Towards pattern-based design recovery. M. Young et J. Magee, éditeurs, Proceedings of the
24 International Conference on Software Engineering. ACM Press, 338-348.

PETTERSSON, N. et LOWE, W. (2006). Efficient and accurate software pattern detection.
P. Jalote, éditeur, Proceedings of the 13" Asia Pacific Software Engineering Conference.
[EEE Computer Society Press, 317-326.

PORT, O. (1988). The software trap automate or else. Business Week, vol. 3051 (9),
142-154.

RASCHE, F. et WERNICKE, S. (2006). fast network motif detection.
RAZAGHI, Z. et KASHANI, M. (2009). Kavosh : a new algorithm for finding network

motifs. Bioinformatics. vol. 10, 0-0.

RICH, C. et WATERS, R. C. (1990). The Programmer’s Apprentice. ACM Press Frontier
Series and Addison-Wesley, New York, NY, USA, premiere édition.

RUMBAUGH, J. R., BLAHA, M. R., LORENSEN, W., EDDY, F. ¢t PREMERLANT, W.
(1990). Object-Oriented Modeling and Design. Prentice-Hall.

SCHREIBER, F. et SCHWOBBERMEYER, H. (2005). Mavisto : a tool for the exploration
of network motifs. Bioinformatics. vol. 21, 3572-3574.

SEBASTIAN, W. (2006). A tool for fast network motif detection. Bioinformatics. vol. 22,
1152-1153.

SEEMANN;, J. et VON GUDENBERG, J. W. (1998). Pattern-based design recovery of

software. B. Scherlis, éditeur, Proceedings of 5" international symposium on Foundations
of Software Engineering. ACM Press, 10-16.

64

TONELLA, P. et ANTONIOL, G. (2001). Inference of object oriented design patterns.
Journal of Software Maintenance - Research and Practice, 13, 309-330.

TRAVASSOS, G. H. (1999). Detecting defects in object oriented designs : Using reading
techniques to increase software quality. In Conference on Object-oriented Programming

Systems, Languages Applications (OOPSLA. 47-56.
TSANTALIS, N., CHATZIGEORGIOU, A., STEPHANIDES, G. et HALKIDIS, S. (2006).

Design pattern detection using similarity scoring. Transactions on Software Engineering,
32.

65
ANNEXE A

Concepts de fréquences

Définitions

La fréquence d’un sous-graphe G dans un graphe G est définie par le nombre des sous-
graphes identiques a G’ dans G. Il y a trois concepts raisonnables pour déterminer la fréquence
d'un sous-graphe. Ces concepts sont basés sur des restrictions de partage des éléments du
graphe G (sommets et arcs) (voir la figure [A.T)). Dans le premier concept Ci, il y a aucune
restriction c’est-a-~dire les éléments du graphe peuvent étre utilisés plusieurs fois. Ce concept
(' est utilisé pour chercher le nombre total des occurrences des sous-graphes. Le deuxieme
concept Cs permet de partager les sommets, mais pas les arcs. Dongc, les sous-graphes iden-
tiques ne peuvent pas partager les arcs entre elles. Nous avons utilisé ce concept Cy pour

définir des zones. Dans le troisieme concept Cj, les sous-graphes identiques ne partage ni les

e
Sl

Sous-graphes identiques a G’

sommets ni les arcs.

Figure A.1 Concepts de fréquences. Pour le concept (i, il y a quatre occurrences, pour le
concept Cs, il y a deux occurrences, et pour le concept Cj, il y a une seule occurrence.

66

ANNEXE B

Algorithme nauty

Utilisation de 1’algorithme nauty

Pour chercher la matrice d’adjacence représentant la forme canonique, nous avons utilisé

la fonction nauty suivante :
nauty(g, lab, ptn, active, orbits, options, stats, workspace, worksize, m,n, canong)

Voici la description des parametres importants de la fonction nauty.

— ¢ : Le sous-graphe duquel nous voulons chercher la forme canonique.

— lab : Un vecteur contenant les indices des sommets de g.

— ptn : Un vecteur indiquant les groupes des sommets ayant la méme étiquette.

— options : Définit certaines caractéristiques comme le type du sous-graphe a traiter s’il
est orienté (options.digraph = TRUE) ou non, et s’il faut chercher la forme canonique
(options.getcanon = TRUE) ou non, etc.

— canong : Retourne la matrice d’adjacence qui représente la forme canonique.

L’idée principale de l'algorithme nauty est de chercher la forme canonique dun graphe
ayant des sommets coloriés (i.e. ayant des étiquetes sur les sommets). Donc, pour chercher
la forme canonique d’un sous-graphe G’ étiqueté (i.e. ayant des étiquettes sur les arcs),
nous devons transformer le sous-graphe G’ en un autre sous-graphe G’ dont ’ensemble des
sommets est composé par tous les sommets de G’ plus des sommets additionnels remplacant

les arcs ayant des étiquettes différents de ”1” (voir McKay, [2009)).

Comme I’algorithme nauty traite 'isomorphisme des graphes coloriés, chaque groupe de

sommets est représenté par une seule couleur tel que :

i. Le premier groupe contient tous les sommets de G'.

ii. Le deuxieme groupe contient les nouveaux sommets ajoutés pour remplacer les arcs

ayant des étiquettes identiques.
iii. Et ainsi de suite.

De plus, le nombre d’arcs du nouveau sous-graphe G” est égale au nombre d’arcs de G’

plus le nombre des sommets additionnels.

67

Exemple : Considérons l'exemple illustré par la figure [B.1] Cet exemple montre bien
comment élargir le sous-graphe G’ induit par 'ensemble des sommets {1,2,6,7} (tous les
sommets sont coloriés par une seule couleur). Premiérement, nous constatons que certaines
étiquettes associées aux arcs de G’ sont différents de "17. Il s’agit donc ici les trois arcs (1,2),
(1,6), et (7,1). Dong, il faut élargir le sous-graphe G’ pour pouvoir utiliser nauty correctement.

Dans ce cas, nous procédons aux étapes suivantes :

i. En premier lieu, les arcs (1,2) et (7,1) du graphe G’ ont la méme étiquette. Nous devons
donc les remplacer respectivement par deux nouveaux sommets A et B.
ii. En deuxieéme lieu, nous ajoutons aussi un autre sommet C' entre les sommets de G’
reliés par 1'arc (1,6) qui a I'étiquette 13 .
Donc, I’ensemble des sommets du nouveau sous-graphe G”’ est défini par {1,2,6,7, A, B, C},
et qui contient trois groupes de couleurs {1,2,6,7}, {A, B}, et {C}.

Sous-graphe G’ Nouveau sous-graphe G”

° @ @
oNORIN ‘5
oo e

0 0

|0 0o
0 0 0 0 lab
12 0 0 0

%

ptn

M/I —

(el evi el el =
SO == OO oo
SO OO O oo
SO OO o oo
S OO OO O
OO O O OO
_ o O O O o

Figure B.1 Elargissement d’un sous-graphe a un autre sous-graphe

La figure montre aussi les valeurs des parametres de la fonction nauty (g = M",

lab et ptn) pour chercher la forme canonique de G'.

68

En résumé, la matrice d’adjacence M” de chaque sous-graphe G” doit étre fournie a la

/

fonction nauty pour obtenir la matrice d’adjacence M), qui représente la forme canonique

cl(M),,,) de G". Pour générer la forme canonique ¢l(G’) du sous-graphe G’, nous procédons a

la relation inverse c’est-a-dire nous utilisons la forme canonique de G”, puis nous remplacons

les étiquettes des sommets additionnelles par les étiquettes des arcs de G’ correspondants.

69

ANNEXE C

Guide d’utilisation de SGFinder (Version 1.0)

Introduction

L’objectif de cette section est de fournir un guide complet permettant aux utilisateurs de

pouvoir utiliser notre outil SGFinder.

Qu’est-ce I'outil SGFinder ?

SGFinder est une application console destinée a I’énumération des microarchitectures d'un
systeme orienté objet. L’outil SGFinder est capable d’explorer des systemes ayant jusqu’a
1716 classes et 10287 relations entre elles pour chercher des microarchitectures de taille allant
jusqu’a cinqg sans avoir de probleme de débordement de mémoire. SGFinder est développé en

C++ sous 'IDE Qt de Nokia. De plus, il est congu pour fonctionner sur plusieurs plateformes.

Qu’offre 'outil SGFinder ?

— Il permet de recenser toutes les occurrences des microarchitectures d’un systeme orienté

objet et compter également leurs présences dans les différentes régions (zones).

Il est capable de regrouper les microarchitectures identiques.
— Il fournit les roles joués par les classes.
— 11 identifie les microarchitectures dans les trois coté du tunnel (intra-tunnel, extra-

tunnel, et inter-tunnel).

Démarrage de 1’outil SGFinder

Cette section fournit les parametres disponibles pour utiliser 'outil SGFinder de la re-
cherche des microarchitectures. L utilisation de SGFinder est assez simple. Il suffit donc de
passer tous les parametres nécessaires pour 'exécuter. Le message d’aide suivant est affiché

si les parametres obligatoires n’ont pas été passés a l'outil SGFinder.

Usage : SGFinder options|inputfile...]
-h ~help "Display this usage information”
-i <input graphfile "Input Graph File Name”
-0 —output folder "Output Folder”

70

-s —size subgraphsize "Subgraph size”
-b —start vertex "Start vertex”
-¢ —end vertex "End Vertex”

-t —tunnel classesfile "Tunnel Classes File”

Donc, pour lancer I'outil SGFinder, vous devez taper la commande suivante :

SGFinder —i inputfile —o outputfolder —s size —b vertexn —e vertexm —t tunnelfile

Parametres de 1’outil SGFinder

0
12

@1@5) O
RO TONe

Figure C.1 Un sous sous-graphe extrait de la version 1.7R1 de 'application Rhino.

e Graphe du systéme en entrée (-i inputfile) (parameétre obligatoire) : La pre-
miere étape est de choisir le fichier en entrée contenant le graphe représentant le systeme
a analyser. Le fichier d’entrée doit contenir une ligne pour chaque arc du graphe a 'ex-
ception de la premiere ligne qui contient le nombre de sommets du graphe. Les lignes
suivantes doivent contenir trois entiers séparés par un espace, et doit étre ressemblé a
la ligne suivante :

mntl int2 int3
Les deux entiers intl et int2 représentent respectivement I'extrémité initiale et 'extré-
mité finale de I'arc, et int3 représente I’étiquette associée a cet arc. Pour le graphe de
la figure [C.1] le contenu du fichier en entrée est indiqué dans la figure [C]

e -s size (parameétre obligatoire) : Le parameétre size représente la taille des microar-
chitectures a trouver c’est-a-dire le nombre des classes présentes dans les microarchi-
tectures.

e -0 outputfile (paramétre optionnel) : Aprés I'exécution de l'outil SGFinder, les
résultats seront stockés dans le répertoire outputfolder. Si le répertoire de stockage n’est
pas indiqué, 'outil SGFinder sauvegarde les résultats dans le répertoire courant. Pour
plus de détails sur le format et le contenu des fichiers contenant les résultats, il faut

consulter la section [Cl

71

1
1
12
13
1
1
12
1
12

= NN NDNBRF—R PR B~ O
— Ot R = WO N W W

~J

Figure C.2 Fichier d’entrée de I'outil SGFinder basés sur le sous sous-graphe de la figure

C1

-b vertexn et —e vertexm (parameétres optionnels) : Les deux parametres
consistent a énumérer toutes les microarchitectures contenant la classe de départ numé-
rotée par vertexn, puis la classe numérotée par vertexn—1, et ainsi de suite jusqu’a la
classe numérotée par vertexm. Par défaut, le parametre vertexn=0 et le parametre

vertexm égale 1'ordre du graphe en entrée.

La consultation des résultats

A la fin de I'exécution de 'outil SGFinder, les résultats de recherche des microarchitectures

seront stockés dans quatre fichiers au format CSV.

i

ii.

Fichier des fréquences : Ce fichier est nommé avec 'extension ”.frq”. Il contient
un en-téte comprenant différentes informations comme le temps d’exécution de 'outil
SGFinder, le nombre total des microarchitectures trouvées par SGFinder, le nombre
des microarchitectures différentes, et la taille des microarchitectures. Le reste du fichier

contient des lignes sous le format suivant :
HashCode,Int1,Int2
HashCode est un code représentant la forme canonique d’une microarchitecture don-
née.

Intl est le nombre d’occurrence d’une miroarchitecture dans le systeme orienté objet

donné en entrée a ’outil SGFinder.

Int2 représente le nombre des zones contenant cette microarchitecture.

Fichier des structures : Ce fichier est nommé avec I'extension ”.sgr”. Chaque ligne

de ce fichier représente une catégorie c¢’est-a-dire une seule microarchitecture identique.

72

Ce fichier est exploité par 'outil SGViewer (section [D)) pour visualiser graphiquement
les microarchitectures. Donc, le format d’une ligne définissant une microarchitecture

est la suivante :
HashCode,Int1,Int2,. .. Intk

Le HasheCode est un entier qui représente la forme canonique d’une structure quel-
conque. Le reste des entiers (Intl, Int2,... Intk) représente les numéros des classes

qui font partie d’'une microarchitecture donnée.

iii. Fichier des roles : Ce fichier est nommé avec I’extension ”.rol”. Les lignes de ce fichier
définissent les roles joués par les classes dans les microarchitectures trouvées par 'outil

SGFinder. Chaque ligne prend le format suivant :

HashCode,Int1,Int2,Int3
HashCode est un code représentant la forme canonique d’une microarchitecture don-
née.
Intl détermine le role joué par la classe numérotée par Int2. Cette valeur est toujours
dans l'intervalle [0..k — 1] ou & est la taille des microarchitectures.
In2 identifie le numéro de I'une des classes d’'une microarchitecture.
Int3 est le nombre d’occurrences des classes numérotées par Int2 dans toutes les mi-

croarchitectures identiques, et qui sont identifiées par le code unique HashCode.

iv. Fichier des tunnels : Ce fichier est nommé avec l'extension ”.tnl”. Les lignes de
ce fichier identifient les microarchitectures dans les trois cotés du tunnel (intra-tunnel,

extra-tunnel, et inter-tunnel). Elles sont sous le format suivant :

HashCode,Int1,Int2,Int3

HashCode est la forme canonique d’une microarchitecture donnée.
Intl est le nombre des microarchitectures qui sont a l'intérieur du tunnel.

In2 est le nombre des microarchitectures qui ont des classes a l'intérieur et d’autres

classes a l'extérieur du tunnel.

Int3 est le nombre des microarchitectures qui sont a l'extérieur du tunnel.

License

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met :

73

e SGFinder is a free tool, it may be used, modified and distributed under the same terms
as Qt Nokia. See the file COPYING in the Qt distribution. Note that SGFinder uses
the nauty program version 2.4 by Brendan McKay (voir McKay, 2009) ; hence nauty’s
license restrictions also apply to your use of SGFinder.

e Redistributions in binary form must reproduce this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

ABSOLUTELY NO GUARANTEES OR WARRANTIES ARE MADE CONCERNING
THE SUITABILITY, CORRECTNESS, OR ANY OTHER ASPECT OF THE DISTRI-
BUTED FILES. ANY USE IS AT YOUR OWN RISK (ANY WARRANTY YOU MIGHT
DREAM OF).

74
ANNEXE D

Guide d’utilisation de SGViewer

Qu’est-ce I'outil SGViewer ?

SGViewer est une application Windows permettant de visualiser en mode graphique les
microarchitectures trouvées par 'outil SGFinder vu précédemment dans la section [C] L’ou-
til SGViewer utilise la librairie graphviz[[] pour engendrer les sous-graphes représentants les
microarchitectures existant dans le diagramme des classes des systemes OO. Il est entiere-
ment développé en C++ sous 'IDE Qt de Nokia. De plus, il peut fonctionner sur plusieurs

plateformes.

Démarrage rapide

Cette section décrit les différentes sections de l'interface graphique de 'outil SGViewer
sans rentrer trop dans les détails. La figure montre la fenétre principale de 'outil SGVie-

Wer.

Section 1 : La premiére étape consiste a choisir le fichier contenant le graphe (fichier avec

)

I'extension ”.grp”) représentant le diagramme des classes d’un systéme orienté objet.

Les quatre fichiers indiqués dans la section [C| ayant les extensions ".frq”, ”.grp”, ".sgr”,
et ".rol” doivent étre placés dans le méme répertoire.

Une fois que le fichier contenant le graphe est sélectionné, 1'outil SGViewer affiche

e La taille des microarchitectures énumérées par 1’'outil SGFinder dans le champ ”Size”.
e La liste des microarchitectures récurrentes dans la section 3 de la figure [D.1]

e Le nombre total des microarchitectures récurrentes dans le champ ”Frequents”.

e Le nombre total des occurrences des microarchitectures dans le champ "Instances”.

Section 2 : Cette section permet de chercher une microarchitecture bien spécifique, en

utilisant son "Hash Code” pour visualiser le sous-graphe représentant sa structure.

Section 3 : Cette partie affiche la liste des microarchitectures identiques, le nombre d’oc-
currences de chaque structure, et le nombre des zones contenant les microarchitectures
identiques.

Section 4 : Cette section affiche le role joué par les classes participantes a la microarchitec-

ture sélectionnée. Le role est défini par 'ordre des classes dans la matrice d’adjacence

1. http ://www.graphviz.org/

75

e ———
Floles

Fie sorkspace Fobymil ProjectBinaces fthinof4fthina 1_#ALlgp g
Subgraghs
From Vertex To Vertex Sire

Role D Role 1 Role 2 Eole3 =
] =
15

85

45

Ji

H
sermaesesesf

p!

Code [S Fnd | 5
_Frm _ 154
Harsh Code Instances Tones - @
128885736 1409 3 355
IG018TLITG 1404 4 144
160713 1336 2 - -
362378824 1316 4 ey
T 4 I]
639539722 1241 1 0, sxarnples.Cantrol A
2600015747 1108 13 1 xamgples:File
392734557 103 5 L examglesFoo
H19827501 580 & 3, exarnples. Matro
T | |4 oreies «—®
moma | |iesmesoncs
; 2ng.miozilia.C e lassil ¥
Eilqlff‘" EEE :‘_‘ - | 7, eng.meilla.clissfile. ClassFilehdethod pll

Figure D.1 Apercu de la fenétre principale de SGViewer

retournée par l'algorithme nauty (voir 1981). En effet, pour afficher les roles
joués par les classes, il faut sélectionner une microarchitecture de la liste des microar-

chitectures identiques (voir la section 3).

Section 5 : Cette section affiche ’ensemble des classes participantes aux microarchitectures
identiques.

Section 6 : Le bouton ”View” permet d’afficher la fenétre de visualisation graphique du
sous-graphe représentant la microarchitecture sélectionnée. Cette fenétre est illustrée

par la figure Elle contient les sections suivantes :

Section a : Cette section affiche les roles joués par les classes participantes a la mi-
croarchitecture sélectionnée.

Section b : Cette section affiche la liste des classes participantes a la microarchitec-
ture sélectionnée.

Section c : Cette section affiche le sous-graphe représentant la structure des classes et

les relations entre elles. Le sous-graphe est généré a ’aide de la librairie graphviz,

et stocké dans le répertoire contenant 1’exécutable de l'outil SGViewer.

T, o il v ESCRPLSCpRusbime
®_i‘ 72, pig renila grvasenpt Seriptable

Fartopant Canses

.Jt.wg-rm‘:l-l-rwlmivll\'ﬂim
88, gy preascriptrvaSonpibec epbion

8, g mccilla preascnpt tocle shell Runnar

Figure D.2 Représentation graphique des microarchitectures

76

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES ALGORITHMES
	LISTE DES ANNEXES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Contexte
	1.2 Objectifs de la recherche
	1.3 Esquisse de la méthodologie
	1.4 Notations et notions de base en théorie des graphes et des ensembles
	1.4.1 Les graphes
	1.4.2 Les ensembles

	1.5 Organisation du mémoire

	2 REVUE DE LITTÉRATURE
	2.1 Algorithmes de recensement des motifs de réseau et des sous-graphes
	2.1.1 Algorithme NeMoFinder
	2.1.2 Algorithme MFinder
	2.1.3 Algorithme Pajek
	2.1.4 Algorithme MAVisto
	2.1.5 Algorithme FanMod
	2.1.6 Algorithme Kavosh

	2.2 Patrons de conception, anti-patrons, et microarchitectures
	2.2.1 Détection des plans Un plan est un module exécutable contenant le chemin d’accès logique produit par l’optimiseur DB2. Il peut être composé d’un ou plusieurs DBRMs et packages. Le plan est stocké dans le répertoire DB2, et consulté lorsque son programme est exécuté. Les informations sur le plan sont stockées dans le catalogue DB2.
	2.2.2 Détection des patrons de conception
	2.2.3 Détection des anti-patrons
	2.2.4 Détection de certaines microarchitectures

	2.3 Conclusion

	3 ALGORITHME DE RECENSEMENT ET DE CLASSIFICATION DES SOUS-GRAPHES
	3.1 Introduction
	3.2 Algorithme
	3.2.1 Voisinage (GenerateNeighborsSet)
	3.2.2 Génération des k-sous-ensembles "GenerateKSubSetsAndValidate" (voir la section 2a)
	3.2.3 Connectivité
	3.2.4 Classement

	3.3 Caractérisation des sous-graphes
	3.3.1 Nombre des zones
	3.3.2 Rôles des classes
	3.3.3 Tunnels
	3.3.4 Évolution des microarchitectures entre les versions

	3.4 Conclusion

	4 VALIDATION EMPIRIQUE
	4.1 Questions de recherche
	4.2 Objets
	4.2.1 Les données

	4.3 Approche
	4.4 Méthode d'analyse
	4.4.1 Caractéristiques des microarchitectures
	4.4.2 Réponses aux questions de recherche

	4.5 Conclusion

	5 RÉSULTATS
	5.1 QR1 : Applicabilité de l’outil SGFinder et la description des microarchitectures trouvées
	5.1.1 Temps de calcul de l’outil SGFinder

	5.2 QR2 : Prédisposition des microarchitectures aux défauts
	5.3 QR3 : Prédisposition des microarchitectures aux changements
	5.4 Limites de validité
	5.4.1 Limite de validité de construction
	5.4.2 Limite de validité interne
	5.4.3 Limite de validité externe
	5.4.4 Limite de validité de la conclusion

	5.5 Conclusion

	6 CONCLUSION
	6.1 Synthèse des travaux
	6.2 Limitations de la solution proposée
	6.3 Améliorations futures

	RÉFÉRENCES
	ANNEXES

