
Titre:
Title:

Extraction des sous-graphes : identification des microarchitectures 
dans les logiciels évolutifs orientés objets

Auteur:
Author:

Ahmed Belderrar 

Date: 2011

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Belderrar, A. (2011). Extraction des sous-graphes : identification des 
microarchitectures dans les logiciels évolutifs orientés objets [Mémoire de 
maîtrise, École Polytechnique de Montréal]. PolyPublie. 
https://publications.polymtl.ca/658/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/658/

Directeurs de
recherche:

Advisors:
Giuliano Antoniol 

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/658/
https://publications.polymtl.ca/658/
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remarques pertinentes. Je suis très reconnaissant de son savoir et son expérience partagés, et

de son soutien scientifique.
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RÉSUMÉ

Les développeurs introduisent des nouvelles microarchitectures, et des microarchitectures

non documentées lorsqu’ils effectuent des tâches d’évolution sur les applications orientées

objets. Nous nous intéressons à chercher la relation entre les microarchitectures et les pro-

priétés telles que la stabilité et les défauts. Nous proposons une nouvelle approche basée

sur l’extraction des sous-graphes, un nouvel algorithme, et un outil SGFinder permettant de

recenser d’une manière efficace et exhaustive les microarchitectures dans le diagramme des

classes des petits et moyens systèmes orientés objets. Une fois que nous énumérons toutes

les occurrences des microarchitectures, nous les exploitons pour identifier leurs propriétés

souhaitables, comme la stabilité, ou leurs propriétés indésirables, comme les changements

et la prédisposition aux défauts. Nous avons effectué une étude empirique pour vérifier la

faisabilité de notre approche, en appliquant l’outil SGFinder sur le diagramme des classes de

plusieurs versions de deux systèmes orientés objets Rhino et ArgoUml. Nous identifions les

microarchitectures les plus et les moins prédisposées aux défauts, et les plus et les moins pré-

disposées aux changements. Finalement, nous concluons que le nouvel outil SGFinder ouvre

plusieurs voies pour d’autres éventuelles recherches.

Mots-clefs : Microarchitectures, changements et défauts des logiciels, mainte-

nance et évolution des logiciels.
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ABSTRACT

Developers introduce novel and undocumented micro-architectures when performing evo-

lution tasks on object-oriented applications. We are interested in understanding whether

those organizations of classes and relations can bear, much like cataloged design and anti-

patterns, potential harm or benefit to an object-oriented application. We present SGFinder,

a sub-graph mining approach and tool based on an efficient enumeration technique to identify

recurring micro-architectures in object-oriented class diagrams. Once SGFinder has detected

instances of micro-architectures, we exploit these instances to identify their desirable proper-

ties, such as stability, or unwanted properties, such as change or fault proneness. We perform

a feasibility study of our approach by applying SGFinder on the reverse-engineered class

diagrams of several releases of two Java applications: ArgoUML and Rhino. We characterize

and highlight some of the most interesting micro-architectures, the most fault prone and the

most stable, and conclude that SGFinder opens the way to further interesting studies.

Keywords : Micro-architectures, software changes and faults, software mainte-

nance and evolution.
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1.3 Esquisse de la méthodologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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CHAPITRE 5 RÉSULTATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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RÉFÉRENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ANNEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



x

LISTE DES TABLEAUX
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indique le résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max . . . . . . 46

Tableau 5.4 Microarchitectures existant dans les deux systèmes Rhino et ArgoUml.
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Figure 3.6 Connectivité d’un sous-ensemble de taille k = 5 . . . . . . . . . . . . . 26

Figure 3.7 Matrices d’adjacences d’un graphe . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.8 Un sous-graphe extrait de la version 1.7R1 de l’application Rhino avec

deux occurrences {2,4,5} et {7,1,3} d’ordre k = 3 . . . . . . . . . . . . 27
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sont supérieures à la médiane et 50 % lui sont inférieures).
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CHAPITRE 1

INTRODUCTION

Le travail présenté dans ce mémoire est la mise en place d’une nouvelle approche et d’un

outil SGFinder pour recenser des microarchitectures à partir de diagramme des classes. Nous

modélisons un diagramme des classes par un graphe orienté et étiqueté, et nous définissons

une microarchitecture comme un sous-graphe induit par un sous-ensemble de classes. Cette

technique de modélisation nous permet de recenser les sous-graphes d’un graphe orienté et

étiqueté au lieu de recenser les microarchitectures du diagramme des classes d’un système

OO. Pour grouper les sous-graphes isomorphes dans leurs propres catégories, nous utilisons

la librairie existante nauty (voir McKay, 1981). Notre outil SGFinder inclut une représen-

tation visuelle des sous-graphes correspondant aux microarchitectures. Cet outil permet un

recensement efficace des sous-graphes induits d’ordre prédéfini (nombre de sommets).

Définition de microarchitecture : Le concept de microarchitecture peut varier en fonc-

tion du domaine ou du contexte de son utilisation. Pour le diagramme des classes d’un système

orienté objet, une microarchitecture est définie comme un ensemble de composants et de ses

connecteurs. Autrement dit, cette microarchitecture comprend un ensemble de classes et de

ses interactions (les relations entre les classes), où aucune des classes n’est isolée du reste des

classes participantes à cette microarchitecture.

Nous utilisons l’outil SGFinder pour recenser des microarchitectures de taille trois, quatre

et cinq sur plusieurs versions de deux systèmes OO (Rhino et ArgoUml). Ensuite, nous

reportons les détails concernant le nombre total de toutes les microarchitectures, et le nombre

total des microarchitectures identiques. Aussi, nous identifions les microarchitectures les plus

et les moins prédisposées aux changements et aux défauts.

Dans ce chapitre, nous commençons par décrire le contexte de notre projet de recherche,

définir les éléments de la problématique, et les objectifs à atteindre. Ainsi, nous présentons la

méthodologie utilisée pour répondre à nos objectifs. Par la suite, nous rappelons brièvement

les notions de base en théorie des graphes et des ensembles. Finalement nous terminons par

le plan d’organisation de ce mémoire.
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1.1 Contexte

La mise en production d’un logiciel est l’aboutissement de plusieurs phases où différentes

équipes collaborent entre elles pour réaliser ce logiciel. Ces phases sont découpées selon un

cycle bien déterminé dans l’objectif de valider et de vérifier la conformité de ce logiciel avec les

besoins et les exigences de l’utilisateur final. Les erreurs commises durant le développement,

et/ou l’évolution du logiciel peuvent engendrer des coûts très élevés lors de l’opération de

maintenance après sa livraison. En effet, l’activité de maintenance est une phase importante

et cruciale dans le cycle de vie d’un logiciel.

Aujourd’hui, les ressources relatives à la maintenance d’un logiciel et de la gestion de son

évolution représentent plus de 50% des ressources du projet. En effet, plusieurs études ont

été effectuées pour définir ces ressources comme le budget, l’effort, et le temps. Ces ressources

sont récapitulées dans le tableau 1.1.

En industrie, les chefs de projets, les architectes logiciels, et les concepteurs consacrent une

partie importante de leur temps à la conception des systèmes informatiques solides et stables.

Donc, il est essentiel pour ces gestionnaires de bien gérer la conception et la maintenabilité

pour pouvoir mâıtriser le coût de développement des logiciels, et accélérer leurs réalisations

pour satisfaire les besoins de l’utilisateur final.

Les entreprises développant des systèmes informatiques cherchent d’un côté (i) des moyens

et des nouvelles techniques pour assurer la qualité de leurs logiciels, et d’un autre côté (ii)

des solutions pour réduire le coût des changements apportés au code après la livraison de

leurs logiciels aux clients. Pour atteindre les deux objectifs visés par ces entreprises, il faut

prendre en compte certains éléments dont :

i. Les développeurs doivent comprendre le code, y compris la structure interne des classes

et les relations entre elles, afin d’effectuer correctement les changements.

ii. Pendant la phase de conception détaillée du logiciel, les concepteurs des classes ne

doivent pas créer des structures prédisposées aux défauts (bogues), ou qui peuvent

créer beaucoup de changements.

Éléments de la problématique

Après la mise en œuvre des logiciels, des activités de maintenance seront ultérieurement

nécessaires pour corriger les bogues rencontrés par les utilisateurs finaux, ajouter des nouvelles
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Tableau 1.1 Coûts, efforts, et temps de maintenance des logiciels.

Ressource Description Référence

Coût
Selon une étude effectuée en 1986 aux États-Unis auprès
de 55 entreprises indique que 53% du coût total de la
réalisation d’un logiciel est réservé à sa maintenance. Ce
coût est réparti de la manière suivante :
– 34% de ce coût est attribué aux modifications des spé-

cifications initiales (évolution du logiciel).
– 17% est affecté aux corrections des bogues.
– 10% pour adapter le logiciel aux nouveaux utilisa-

teurs, ou aux nouveaux environnements de travail.
– Le reste du coût (39%) est reparti sur le contrôle de la

qualité, l’amélioration de la performance du logiciel,
et l’assistance aux utilisateurs.

(voir Audibert,
2009)

Jusqu’à 90% du coût total du projet est consacré à la
maintenance d’un système existant, et à son évolution.

(voir Erlikh, 2000;
Moad, 1990)

Environ 75% du budget est consommé pendant la phase
de maintenance selon une étude effectuée auprès de 1000
compagnies.

(voir Eastwood,
1993)

Le coût de maintenance peut consommer entre 60% et
70% du budget de gestion et de fonctionnement du pro-
jet.

(voir Huff, 1990;
Port, 1988)

Effort De 65% à 75% de l’effort logiciel est consacré à la main-
tenance des systèmes.

(voir McKay, 1984)

Temps Selon une étude effectuée auprès de 487 organisations,
plus de 50% du temps total du projet est consacré à la
maintenance des systèmes.

(voir Lientz et
Swanson, 1981)

fonctionnalités, améliorer l’efficacité, et adapter le code selon un nouvel environnement de

travail. Ces travaux sont donc inévitables pour augmenter la durée de vie des logiciels.

La taille du logiciel crôıt au fur et à mesure durant la phase de développement des com-

posants et leur intégration pour produire la version finale du logiciel. Donc, les logiciels

deviennent de plus en plus complexes, et par conséquent, leur maintenance, et leur mise au

point deviennent des tâches extrêmement difficiles pour les développeurs.

Afin d’effectuer efficacement les activités de maintenance, et avant de procéder à n’importe

quelle modification, les responsables de la maintenance doivent comprendre l’objectif de leurs

systèmes OO, ainsi que les concepts représentés dans ces systèmes. La compréhension com-
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prend évidemment les différents choix qui ont été pris pendant les phases de conception et

d’implémentation. Dans les systèmes orientés objets, les choix de conception comprennent la

structure interne des classes et les relations entre elles. Par exemple, les patrons de conception

(voir Gamma et al., 1994) sont des structures de classes permettant de décrire des solutions

standards à des problèmes de conception spécifiques et récurrents dans des contextes bien

précis. Ils sont conçus dans l’objectif de faire une conception plus souple, réutilisable et ro-

buste, ainsi que améliorer la qualité des logiciels. Par contre, les anti-patterns (voir Brown

et al., 1998) sont de ”mauvaises” solutions à des problèmes récurrents de conception logicielle.

Cependant, il y a des types de microarchitectures comme les patrons de conception et les

anti-patterns qui ont été déjà documentés. En effet, certaines microarchitectures ne sont pas

documentées parce qu’elles sont méconnues, ou bien leur domaine ou leur application sont

spécifiques. Nous supposons que ces microarchitectures peuvent avoir des propriétés utiles,

comme la stabilité, et les défauts (les bogues).

Dans les systèmes orientés objets, la plupart des approches existantes se focalisent sur les

patrons de conception, les anti-patterns et plus précisément sur une librairie d’abstraction de

microarchitectures existantes (ex. patrons de conception (voir Guéhéneuc et Antoniol, 2008)).

1.2 Objectifs de la recherche

L’objectif principal du travail présenté dans ce mémoire est d’implémenter un algorithme

et un outil efficace permettant d’une part, de recenser toutes les microarchitectures d’une

taille donnée, et d’autre part de regrouper les microarchitectures identiques. De plus, d’autres

objectifs sont pris en considération :

i. Chercher la relation entre les microarchitectures et les propriétés telles que la stabilité

et les défauts.

ii. Tracer l’évolution des microarchitectures entre les différentes versions d’un système OO.

iii. Caractériser les microarchitectures (définir les rôles joués par les classes, et identifier

les microarchitectures dans les trois côtés du tunnel 1) (voir la section 3.3).

1.3 Esquisse de la méthodologie

Pour atteindre les objectifs, tout d’abord le diagramme des classes d’un système orienté

objet est transformé en un graphe orienté et étiqueté où :

1. un tunnel est un ensemble de classes communes entre plusieurs versions
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– Les classes sont représentées par des sommets (nœuds).

– Les relations entre les classes sont représentées par des arcs.

– Les étiquettes associées aux arcs représentent les relations simples (agrégation, associa-

tion, et héritage) et composées.

Avec cette technique, nous modélisons le problème d’énumération des microarchitectures

comme un problème d’énumération des sous-graphes.

Par la suite, nous implémentons un algorithme efficace pour énumérer toutes les microar-

chitectures (sous-graphes) d’une taille trois, quatre, et cinq.

Nous identifions ensuite les classes boguées et les classes modifiées (voir la section 4.2.1), et

nous les exploitons pour déterminer les microarchitectures les plus et les moins prédisposées

aux défauts et aux changements.

1.4 Notations et notions de base en théorie des graphes et des ensembles

Afin d’avoir une terminologie cohérente, nous allons introduire les principaux concepts

de graphes et d’ensembles que nous utiliserons dans l’algorithme d’énumération des sous-

graphes.

1.4.1 Les graphes

Un graphe orienté et étiqueté G est un quadruplet G(V,A, L, l) où :

– V est un ensemble { v1, v2, .., vn } fini non vide dont les éléments sont appelés sommets

ou nœuds.

– A est un ensemble { a1, a2, .., am } dont les éléments sont appelés arcs. Un arc a de

l’ensemble A est défini par une paire ordonnée de sommets. Lorsque a = (u, v), on dira

que l’arc a va de u à v. On dit aussi que u est l’extrémité initiale et v est l’extrémité

finale de a.

– L est un ensemble d’étiquettes.

– l : A → L est une fonction d’étiquetage vérifiant la condition suivante : ∀a ∈ A ⇒
l(a) ∈ L.

Deux sommets d’un graphe sont dits adjacents ou voisins s’il existe un arc qui les relie. Le

nombre de sommets d’un graphe G est appelé ordre de ce graphe, et on le note par |V |. La

taille d’un graphe, notée |A| est le nombre de ses arcs.
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Une châıne µ = (v1, a1, v2, .., vp−1, ap, vp+1) est une suite de sommets dans laquelle deux

éléments successifs quelconques sont reliés par un arc. La longueur d’une châıne est le nombre

de sommets moins un et on la note par length(u) = p. La distance dist(u, v) entre deux

sommets u et v est la longueur de la plus petite châıne reliant ces deux sommets. Un graphe

connexe G est un graphe dans lequel il existe au moins une châıne µ = (u, .., v) entre toute

paire de sommets u et v de V (G). Il est utile de noter qu’un graphe orienté et étiqueté peut

être cyclique, et donc ce graphe peut avoir plusieurs châınes entre deux sommets données.

Un sous graphe partiel d’un graphe G est un graphe GS = (VS, AS, L, l
S) composé de

certains sommets de G et de certains arcs reliant ces sommets dans G. En effet, le graphe

GS = (VS, AS, L, l
S) est un sous graphe partiel de G(V,A, L, l) ssi VS ⊂ V , AS ⊂ A∩(VS×VS),

et la fonction d’étiquetage lS : AS → L vérifie la condition suivante : ∀(a, b) ∈ AS, lS(a, b) =

l(a, b).

Un graphe G′(V ′, A′, L, l′) est un sous-graphe induit d’un graphe G(V,A, L, l) si V ′ est un

sous-ensemble de V et si pour tout couple de sommets (u, v) de V ′, le sommet u est connecté

au sommet v dans G′ si et seulement si le sommet u est connecté au sommet v dans G, et

l’étiquette de l’arc (u, v) est la même dans G et G′. Autrement dit, le sous-graphe G′ est induit

si V ′ ⊂ V et A′ = {(u, v) ∈ A, u ∈ V ′ ∧ v ∈ V ′}. De même, le sous-graphe G′(V ′, A′, L, l′) est

dit induit par le sous-ensemble des sommets V ′ de V . Un k-sous-graphe est un sous-graphe

induit d’ordre k.

Deux sous-graphes GS = (VS, AS, L, l
S) et GH = (VH , AH , L, l

H) sont isomorphes s’ils sont

identiques. Formellement, les deux sous-graphes GS et GH sont isomorphes si seulement si

|VS| = |VH |, et s’il existe une fonction de bijection φ : VS → VH telle que, ∀(u, v) ∈ AS

⇒(φ(u), φ(v)) ∈ AH . La décision de l’existence d’un isomorphisme entre deux sous-graphes

est un problème NP-complet (voir Garey et Johnson, 1990).

Une matrice d’adjacence M est une structure de données permettant de représenter un

graphe G. La matrice M est une matrice carrée ayant pour taille le nombre de sommets

du graphe G. Le couple (i, j) désigne l’intersection de la ligne i et de la colonne j. Dans

une matrice d’adjacence, les lignes et les colonnes représentent les sommets du graphe. La

valeur mij 6= 0 à la position (i, j) signifie que le sommet i est adjacent au sommet j, et elle

représente l’étiquette sur l’arc reliant le sommet i et le sommet j. Donc, pour un graphe

orienté et étiqueté, M = (mij) où mij =

l(vi, vj), si (vi, vj) ∈ A

0, sinon
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1.4.2 Les ensembles

Soit S un ensemble contenant n éléments distincts et soit k un entier positif. Un k-sous-

ensemble est une combinaison de k éléments de l’ensemble S. Les k éléments sont pris sans

répétition et ne sont pas ordonnés. Le nombre total des combinaisons possibles est donné par

le coefficient binomial suivant :

Ck
n =

(
n

k

)
=

 n!
k!(n−k)! , si 0 ≤ k ≤ n

0, sinon

Exemple : les combinaisons de 2 éléments pris dans {1, 2, 3, 4} sont {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}. Donc, il y a 6 combinaisons possibles (C2

4 = 4!
2!(4−2)! = 6).

1.5 Organisation du mémoire

Ce mémoire est composé de six chapitres. Ce premier chapitre d’introduction met en évi-

dence le contexte de notre étude, les éléments de la problématique, la méthodologie, et le plan

de ce mémoire. Dans le deuxième chapitre, nous présentons une revue de littérature sur les

travaux effectués sur les algorithmes de recensement des sous-graphes (microarchitectures),

et les types des microarchitectures traitées. Dans le troisième chapitre, nous décrivons la

conception et l’implémentation de la technique proposée pour réaliser ce travail. Dans le qua-

trième chapitre, nous présentons la validation empirique. Le cinquième chapitre est consacré

à l’analyse et à l’interprétation des résultats obtenus par la nouvelle technique. Finalement

le dernier chapitre conclut ce mémoire, révèle les limitations de notre travail, et présente les

travaux futurs.
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CHAPITRE 2

REVUE DE LITTÉRATURE

Ce chapitre présente une revue de littérature en deux parties sur les travaux réalisés

précédemment. La première partie de cette revue de littérature est consacrée aux algorithmes

de recensement des motifs de réseau 1 et des sous-graphes. La deuxième partie est consacrée

aux études effectuées sur les patrons de conception, les anti-patrons, et les microarchitectures

des systèmes OO.

2.1 Algorithmes de recensement des motifs de réseau et des sous-graphes

Des travaux de recensement des motifs ont été réalisés dans les différents domaines d’ap-

plications comme les réseaux sociaux et les réseaux biologiques. Plus précisément, les réseaux

d’interaction protéine-protéine (PPI), les réseaux génétiques, et les réseaux métaboliques,

sont les réseaux les plus largement étudiés dans le domaine de la biologie (voir Milo et al.,

2002; Batagelj et Mrvar, 2003; Schreiber et Schwöbbermeyer, 2005; Sebastian, 2006; Razaghi

et Kashani, 2009). En effet, des techniques mathématiques et informatiques sont appliquées

pour analyser et modéliser les données à cause de la complexité de ces réseaux et de la quantité

des données qu’ils contiennent. Pour permettre l’établissement d’un modèle mathématique

convenable pour l’analyse de ces réseaux complexes, il est nécessaire d’utiliser les notions

de la théorie des graphes. Les éléments d’un réseau en traitement sont représentés par des

sommets (nœuds), et l’interaction entre eux sont représentés par des arcs ou des arêtes. Les

algorithmes peuvent ensuite être utilisés pour analyser, simuler et visualiser le réseau traité.

En effet, des méthodes puissantes de calcul, permettant l’extraction des informations perti-

nentes à partir d’une grande quantité de données, doivent être développées. Ces méthodes

sont basses sur des algorithmes de recensement des motifs de réseau, qui sont très coûteuses

en temps d’exécution et en consommation de mémoire. Ces algorithmes sont soumis à des

restrictions sur la taille des motifs de réseau, et la taille et les types des réseaux traités.

Généralement, les algorithmes proposés permettent soit d’énumérer exhaustivement tous les

motifs de réseau (voir Milo et al., 2002; Schreiber et Schwöbbermeyer, 2005; Sebastian, 2006;

Razaghi et Kashani, 2009), ou énumérer seulement les sous-graphes les plus fréquents (voir

Kuramochi et Karypis, 2004). Aussi, une autre caractéristique pertinente pour l’évaluation

1. Dans les réseaux biologiques, Les motifs de réseau sont définis par des sous-graphes, qui se trouvent
dans le réseau original beaucoup plus souvent que dans les réseaux randomisés (voir Milo et al., 2002).
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des algorithmes existants est la représentation visuelle des résultats.

Les algorithmes de recensement des motifs de réseau sont basés sur le même principe.

Chaque algorithme implémente les trois tâches suivantes :

1. Enumération : Chercher des motifs de réseau (sous-graphes) d’une taille donnée qui

se trouvent dans un réseau original (graphe en entrée).

2. Classement : Regrouper les sous-graphes identiques dans des catégories. La majorité

des algorithmes (voir Milo et al., 2002; Sebastian, 2006; Razaghi et Kashani, 2009)

utilise l’outil nauty (voir McKay, 1981) pour chercher la forme canonique de ces sous-

graphes. La forme canonique est un code unique permettant de distinguer les sous-

graphes isomorphes (identiques).

3. Randomisation : Générer des graphes aléatoires pour s’assurer que les motifs retrouvés

caractérisent bien les réseaux considérés. Un motif est défini par un petit sous-graphe

connexe qui se trouve dans le réseau considéré (original) avec une fréquence plus élevée

que dans les réseaux générées aléatoirement (voir Milo et al., 2002). Le recensement et

le classement sont effectués de nouveau sur les graphes générés aléatoirement.

Dans les sections suivantes, nous introduisons quelques algorithmes de recensement des

sous-graphes ou motifs de réseaux. Pour chaque algorithme, nous mettons en exergue les

raisons pour lesquelles il ne répond pas à nos besoins.

2.1.1 Algorithme NeMoFinder

NeMoFinder est un algorithme proposé par J. Chen et al (voir Chen et al., 2006) pour

chercher les motifs de réseau qui sont récurrents et uniques dans les réseaux d’interaction

protéine-protéine (PPI). Ces réseaux PPI sont représentés par des graphes non orientés et non

étiquetés. En effet, l’algorithme NeMoFinder est le premier algorithme utilisé pour extraire

les motifs de réseau d’une taille allant jusqu’à 12 dans les levures Saccharomyces cerevisiae

industrielles.

L’algorithme NeMoFinder utilise une technique de recherche basée sur les arbres récurrents

afin de partitionner le réseau PPI en un ensemble de graphes. Premièrement, il cherche les

sous-graphes fréquents de taille k dans le réseau PPI. Il commence par les arbres de taille 2,

puis, il les élargit en ajoutant des sommets voisins afin d’atteindre les tailles 3, 4, et ainsi de

suite jusqu’à obtenir la taille k. Par la suite, il utilise un algorithme basé sur les chaines de

Markov (voir Maslov et Sneppen, 2002) pour générer des graphes aléatoires en échangeant les
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arêtes aléatoirement entre les sommets du graphe original. Chaque sommet dans le graphe

aléatoire contient le même nombre de sommets voisins que le sommet correspondant dans le

graphe original. La procédure de recensement des sous-graphes dans les graphes aléatoires

est la même que dans le graphe original. Ensuite, l’algorithme NeMoFinder vérifie si les

sous-graphes du graphe original sont des motifs de réseau.

L’algorithme NeMoFinder ne peut traiter ni les graphes orientés et étiquetés, ni les boucles

sur les sommets des graphes non orientés.

2.1.2 Algorithme MFinder

L’algorithme MFinder (voir Milo et al., 2002) est le premier algorithme utilisé pour ex-

traire des motifs de réseau. Il fournit deux méthodes d’exploration qui sont :

1. Énumération exhaustive des motifs de réseau.

2. Énumération partielle de certains motifs de réseau. Le problème du recensement ex-

haustif est que le nombre des motifs crôıt exponentiellement avec la taille du réseau

considéré, et la taille des motifs eux-mêmes. Un algorithme d’approximation probabi-

liste est utilisé pour énumérer certains motifs de réseau du réseau considéré.

L’algorithme MFinder commence par choisir une arête e. Donc, le premier motif de réseau

est constitué des deux sommets de l’arête e. À chaque itération, il ajoute un nouveau sommet

situé à l’extrémité d’une arête reliée au motif de réseau généré partiellement. Une fois que

la taille du motif de réseau généré atteint la taille désirée, il génère un code unique basé sur

l’isomorphisme de ce motif de réseau. Le processus de génération des réseaux aléatoires et de

vérification des motifs de réseau est le même que l’algorithme NeMoFinder (voir la section

2.1.1).

L’algorithme MFinder a besoin de beaucoup de mémoire pour explorer tous les motifs de

réseau, ce qui entrave la recherche des motifs de réseau dans des réseaux de taille moyenne.

2.1.3 Algorithme Pajek

Pajek (voir Batagelj et Mrvar, 2003) est un outil d’analyse et de visualisation des grands

réseaux. Il permet de chercher certains motifs de réseau fréquents comme les tétrades ayant

certaines particularités, et les triades. Les triades et les tétrades sont des sous-graphes de

taille trois et quatre respectivement. Les triades peuvent être connectés ou déconnectés, et

leurs analyses proviennent de l’analyse des réseaux sociaux.
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En effet, le recensement des motifs de réseau par l’outil Pajek est limité aux motifs de

réseau de taille trois (triades), et au certains motifs de réseau de taille quatre (tétrades).

2.1.4 Algorithme MAVisto

MAVisto (voir Schreiber et Schwöbbermeyer, 2005) est un outil d’exploration et de visua-

lisation des motifs de réseau trouvés dans les réseaux biologiques. Il fournit un algorithme

de recherche des motifs, et différentes vues pour analyser et visualiser les motifs de réseau

par une interface graphique. MAVisto est compatible avec le format Pajek-.net- (voir Bata-

gelj et Mrvar, 2003), et le format GML (voir Himsolt, 1997). Il offre un éditeur graphique

pour manipuler et créer les réseaux. L’algorithme MAVisto cherche des motifs d’une taille

particulière, qui est donnée soit par le nombre de sommets, ou par le nombre d’arêtes.

L’algorithme MAVisto est particulièrement lent pour recenser les motifs de réseau de taille

trois. En effet, pour un réseau de 672 sommets et 1277 arcs, l’algorithme s’exécute en 13532.0

secondes (environ 4 heures). Pour chercher des motifs de taille quatre d’un réseau social de

67 sommet et 183 arcs, l’algorithme s’exécute en 1492 secondes (environ 25 minutes).

2.1.5 Algorithme FanMod

FanMod (voir Sebastian, 2006) est un outil de recensement des motifs de réseau de taille

comprise entre trois et huit sommets. L’outil FanMod énumère les motifs de réseau à l’aide de

l’algorithme Rand-ESU, ce qui rend la recherche des motifs plus rapide que les autres outils

basés sur d’autres algorithmes (voir Milo et al., 2002). Il comprend une interface graphique

pour faciliter la configuration des paramètres de l’algorithme comme la taille des motifs de

réseau. Les résultats peuvent être exportés en format HTML.

Contrairement à l’algorithme MFinder (voir Milo et al., 2002) qui commence par deux

sommets d’une arête e, l’outil FanMod commence par un sommet u, puis il explore ses

sommets successeurs ou prédécesseurs non encore visités. Ensuite d’une manière itérative,

l’algorithme FanMod cherche les sommets successeurs ou prédécesseurs de chaque sommet

visité précédemment. La recherche en profondeur des successeurs ou prédécesseurs s’arrête

lorsque la distance entre le premier sommet et le dernier sommet successeurs ou prédécesseurs

est égal à la taille désirée. Le processus de génération des réseaux aléatoires et de vérification

des motifs de réseau est le même que l’algorithme NeMoFinder (voir la section 2.1.1).

L’outil FanMod est l’outil le plus rapide comparativement aux autres outils (voir Milo

et al., 2002; Batagelj et Mrvar, 2003; Schreiber et Schwöbbermeyer, 2005; Chen et al., 2006).
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L’inconvénient majeur de l’outil FanMod est la limitation du nombre d’étiquettes attribuées

au réseau considéré (voir Rasche et Wernicke, 2006). Le tableau 2.1 montre le nombre d’éti-

quettes traité pour chaque taille de motif de réseau.

Tableau 2.1 Limitation de l’algorithme FanMod sur le nombre d’étiquettes attribuées aux
arêtes des motifs de réseau.

Taille des motifs de réseau Nombre d’étiquettes

3 7
4 7
5 3
6 3
7 1
8 1

2.1.6 Algorithme Kavosh

Kavosh (voir Razaghi et Kashani, 2009) est un algorithme de recensement exhaustif des

motifs de réseau d’une taille allant jusqu’à 12. Il permet d’explorer des graphes orientés et

non orientés pour chercher des sous-graphes de taille k ≤ 12.

Les sommets enfants d’un sommet quelconque sont définies par les sommets successeurs

ou prédécesseurs de ce sommet. Un niveau est défini par les sommets enfants d’un sommet

quelconque. L’algorithme Kavosh démarre du premier niveau qui contient le sommet u, et il

descend niveau par niveau pour choisir un sommet enfant qui n’a pas été visité auparavant.

Donc, la démarche de cet algorithme n’a pas à prendre en considération la notion de cyclicité

du graphe. Cet algorithme est basé sur la méthode de ”revolving door ordering”(voir Kreher et

Stinson, 1998) pour générer toutes les combinaisons possibles des sommets. Comme exemple,

pour chercher des sous-graphes de taille k = 4, les combinaisons possibles (incluant le sommet

u du premier niveau) sont :

– 3 sommets du deuxième niveau.

– 2 sommets du deuxième niveau, et 1 sommet du troisième niveau.

– 1 sommet du deuxième niveau, et 2 sommets du troisième niveau.

– 1 sommet du deuxième niveau, 1 sommet du troisième niveau, et 1 sommet du quatrième

niveau.

L’outil Kavosh ne traite pas les graphes étiquetés (orientés ou non orientés), et il consomme

beaucoup de mémoire pour stocker les sommets visités et non encore visités de l’arbre conte-

nant le sommet racine u.
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2.2 Patrons de conception, anti-patrons, et microarchitectures

Plusieurs approches ont été proposées pour identifier les microarchitectures similaires

aux patrons de conception, et aux anti-patrons. Généralement, ces approches sont basées

sur une bibliothèque des structures connues préalablement comme les patrons de conception

(voir Krämer et Prechelt, 1996; Seemann et von Gudenberg, 1998; Pettersson et Löwe, 2006;

Tsantalis et al., 2006), les anti-patrons (voir Brown et al., 1998), les plans (voir Rich et Waters,

1990), et quelques structures de microarchitectures (voir Guéhéneuc et Antoniol, 2008; Keller

et al., 1999). En effet, ces approches utilisent des techniques architecturales basées soit sur

l’appariement des sous-graphes, soit sur les propriétés associées aux structures des motifs

traités. Les algorithmes correspondants à ces techniques, ont été développés pour chercher

les structures des motifs prédéfinis dans le catalogue.

En particulier, les approches proposées pour identifier les patrons de conception (voir Pet-

tersson et Löwe, 2006), utilisent différentes techniques comme la méta-programmation, les

graphes, la programmation logique, les algorithmes de reconnaissance de clichés (voir Krämer

et Prechelt, 1996), les réseaux de raisonnement flou (voir Niere et al., 2002; Jahnke et Zün-

dorf, 1997), et les requêtes interrogeant les bases de données contenant les modèles génériques

des systèmes OO (voir Kullbach et Winter, 1999).

Les approches proposées pour spécifier et détecter les anti-patrons sont basées sur les

techniques manuelles d’inspection du code source (voir Travassos, 1999), les techniques de

visualisation (voir Dhambri. et al., 2008) pour afficher et présenter les résultats, les techniques

de détections automatiques (voir Lanza. et Marinescu., 2006), et les techniques heuristiques

et de mesures (voir Marinescu, 2004).

Dans les sections suivantes, nous introduisons brièvement quelques travaux majeurs pour

détecter les patrons de conception, les anti-patrons, les plans, et d’autres types de microar-

chitectures.

2.2.1 Détection des plans 2

Rich and Waters (voir Rich et Waters, 1990) ont proposé l’utilisation de la programmation

par contraintes pour identifier les plans2 du code source des programmes Cobol. Les systèmes

2. Un plan est un module exécutable contenant le chemin d’accès logique produit par l’optimiseur DB2.
Il peut être composé d’un ou plusieurs DBRMs et packages. Le plan est stocké dans le répertoire DB2, et
consulté lorsque son programme est exécuté. Les informations sur le plan sont stockées dans le catalogue
DB2.
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Cobol sont modélisés par des arbres syntaxiques abstraits (AST). Un plan est modélisé par

les sommets de l’arbre AST, et les relations entre elles sont représentées par les contraintes

comme les contrôles et les flux de données. Le plan d’un code source est converti en un

problème de satisfaction de contraintes (CSP) dans lequel les sommets du plan représentent

les variables, les relations entre les sommets représentent les contraintes entre les variables,

et le code source de l’arbre syntaxique abstrait représente le domaine des variables.

2.2.2 Détection des patrons de conception

Kramer et Prechelt (voir Krämer et Prechelt, 1996) ont proposé une approche et déve-

loppé un outil appelé Pat pour chercher les instances des patrons de conception structurels

Adapter, Bridge, Composite, Decoration, et Proxy. Ces patrons ont été modélisés par l’outil

de conception OMT (voir Rumbaugh et al., 1990) et convertis dans des formats de base de

connaissances de règles en Prolog. Ensuite le code source est parsé par l’outil Paradigm Plus

pour décrire sa base de faits en Prolog. Par la suite, des requêtes sont effectuées pour dé-

terminer la correspondance entre la base de faits du code source et les règles définissant les

patrons de conception. L’outil Pat ne traite que des systèmes ayant de 150 à 300 classes, et

il peut détecter plus que 53% des instances des patrons de conception.

Seemann et al (voir Seemann et von Gudenberg, 1998) ont proposé une approche pour dé-

tecter et distinguer les relations d’agrégation et d’association entre les classes, et une technique

basée sur les graphes pour décrire et identifier les patrons de conception. La structure statique

d’un système OO est représentée par un graphe orienté et étiqueté. Ce graphe est composé

de trois types de sommets et de six types d’arcs. Les sommets du graphe représentent les

classes, les interfaces et les méthodes. Les arcs entre les sommets représentent les différentes re-

lations entre les classes, les interfaces, et les méthodes (CLASS×CLASS, INTERFACE×
INTERFACE, CLASS×INTERFACE, CLASS×METHOD,METHOD×METHOD,

METHOD × CLASS). Les etiquettes représentent les types : appel ”Calls”, possession

”Owns”, attributs, etc. Une technique de transformation de graphe est proposée pour détec-

ter les sous-graphes représentant les patrons de conception.

Peterson et al (voir Pettersson et Löwe, 2006) ont proposé une technique basée sur les

graphes planaires 3. La technique de transformation d’un graphe représentant un système

OO à un graphe planaire permet d’améliorer les performances de recherche des patrons de

conception. Pour les graphes non planaires, une technique de filtrage est utilisée afin de

3. Un graphe est planaire s’il accepte une représentation planaire c’est-à-dire une représentation dans
laquelle deux arcs (arêtes) distinctes ne se croisent pas.
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supprimer la majorité des arcs affectant la planarité, et de réduire considérablement la taille

du graphe. Cela permet évidement aussi de réduire le temps de recherche des patrons de

conception. L’approche proposée peut détecter jusqu’à 97% des instances des patrons de

conception.

Tsantalis et al. (voir Tsantalis et al., 2006) ont proposé une approche basée sur la similarité

entre les sommets du graphe pour détecter les patrons de conception. L’approche proposée

est capable de reconnâıtre les patrons de conception même si leur représentation standard est

modifiée. L’approche proposée prend en considération la relation d’héritage qui existe dans la

plupart des patrons de conception pour réduire la taille du système traité, en le partitionnant

en plusieurs sous-systèmes sans perdre aucune information structurelle. Les diagrammes des

classes des sous-systèmes et des patrons de conceptions sont modélisés par des matrices

carrées. Les lignes et les colonnes de ces matrices représentent les classes. Les éléments de

ces matrices indiquent la présence ou l’absence des relations entre les classes. L’approche

utilise un algorithme de similarité entre les matrices des sous-systèmes et les matrices des

patrons de conception pour chercher les patrons de conception dans chacun des sous-systèmes

séparément. L’algorithme de similarité calcule la matrice de scores (similarité) 4 pour vérifier

la correspondance entre un patron de conception et les sous-systèmes. Le taux de succès de

cette approche de détection des patrons de conception est de 100%.

2.2.3 Détection des anti-patrons

Brown (voir Brown et al., 1998) décrit 40 anti-patrons, y compris le ”Blob” et le code

”spaghetti”. Il a défini les anti-patrons comme des mauvaises pratiques pour résoudre les

problèmes de conception. Ces mauvaises pratiques sont liées principalement aux compétences,

et au manque d’expériences des développeurs, ainsi qu’une mauvaise application des patrons

de conception. Les auteurs montrent comment détecter les anti-patrons, et ils présentent aussi

des solutions de ”refactorisation” pour chaque anti-patron présenté.

2.2.4 Détection de certaines microarchitectures

Un nouvel environnement, appelé SPOOL (voir Keller et al., 1999), a été introduit pour

visualiser graphiquement la représentation abstraite du code source. SPOOL présente un

environnement pour la rétro-ingénierie des composants de conception basé sur la descrip-

tion structurelle des patrons de conception. Un patron de conception est modélisé par une

structure abstraite afin de faciliter sa recherche dans le modèle abstrait du code source. La

4. Une matrice de similarité est une matrice de scores qui expriment la similarité entre deux données.
Deux matrices A et B sont similaires s’il existe une matrice inversible P tel que A = PBP−1
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technique proposée permet de détecter manuellement, semi automatiquement, et automati-

quement, les composants abstraits de conception à l’aide des requêtes d’interrogation sur le

modèle abstrait du code source.

DeMIMA (voir Guéhéneuc et Antoniol, 2008) décrit une approche semi-automatique, et

une recherche structurelle basée sur la programmation par contraintes avec explication pour

identifier les microarchitectures similaires à des motifs de conception. De plus, cette technique

assure la traçabilité de ces microarchitectures entre l’implémentation et la conception. En

effet, cette technique comprend trois couches dans laquelle les deux premières sont consacrées

à la récupération du modèle abstrait du code source, et la dernière est consacrée à la détection

des patrons de conception dans le modèle abstrait. Le taux de succès de l’approche DeMIMA

est de 100%.

2.3 Conclusion

Dans ce chapitre, nous avons discuté quelques approches de recherche, dans les systèmes

OO, de certains types de microarchitectures prédéfinies comme les patrons de conception, les

anti-patrons, et les plans. Cependant, notre technique de recherche des microarchitectures

est similaire à des travaux antérieurs de Tonella et Antoniol (voir Tonella et Antoniol, 2001),

dans lequel une analyse conceptuelle a été utilisée pour déduire les patrons de conception

d’un domaine spécifique avec l’inspection manuelle du code source. Notre approche élimine

complètement le problème d’inspection manuelle du code source en s’appuyant sur la notion

des sous-graphes fréquents. De plus notre approche améliore l’évolutivité via une technique

efficace de recensement des microarchitectures.

Dans le chapitre suivant, nous présentons un nouvel algorithme et un outil SGFinder qui

ne se limitent ni à une bibliothèque contenant les microarchitectures connus préalablement,

ni à un ensemble de règles pour détecter les instances des microarchitectures.
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CHAPITRE 3

ALGORITHME DE RECENSEMENT ET DE CLASSIFICATION DES

SOUS-GRAPHES

3.1 Introduction

Nous avons modélisé le diagramme des classes d’un système OO par un graphe orienté

et étiqueté dont l’ensemble de ses sommets représentent l’ensemble des classes, et dont les

arcs représentent les relations entre les classes. Nous considérons qu’une microarchitecture est

équivalente à un sous-graphe. Donc, pour chercher les microarchitectures d’une taille donnée

k, il faut chercher les sous-graphes d’ordre k.

Dans ce chapitre, nous décrivons en détails un nouvel algorithme efficace permettant, d’une

part, de recenser tous les sous-graphes existants dans un graphe orienté et étiqueté, et d’une

autre part, de regrouper les sous-graphes identiques. L’outil mettant en évidence ce nouvel

algorithme est nommé SGFinder.

3.2 Algorithme

Dans cette section, nous présentons un nouvel algorithme permettant de recenser les

sous-graphes d’ordre k (noté k-sous-graphes) d’un graphe orienté et étiqueté G(V,A, L, l). Les

sommets du graphe G sont numérotés par des nombres entiers positifs, uniques, et consécutifs.

Algorithme 3.1 Méthode principale de l’algorithme

Entrées : Un graphe G(VG, A, L, l) et un nombre positif k.
1: for all vertex u ∈ V do
2: Nku = GenerateNeighborsSet(u, k) ;
3: VG0 = {}
4: GenerateKSubSetsAndValidate(Nku, u, VG0 , 0) ;
5: V .Remove(u) ;
6: end for

L’idée principale de l’algorithme 3.1 est de :

i. Chercher la liste des sommets voisins Nk(u) d’un sommet donnée u de l’ensemble VG

(GenerateNeighborsSet).

ii. Générer et valider des k-sous-ensembles (GenerateKSubSetsAndValidate).
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(a) Générer une combinaison d’un k-sous-ensemble S de la liste des sommets voisins

Nk(u).

(b) Si le sous-graphe GS induit par le k-sous-ensemble S n’est pas connexe, aller à (a).

(c) Sinon, chercher la matrice d’adjacence canonique du sous-graphe GS, pour le

mettre dans sa propre catégorie (voir la section 3.2.4). Il est utile de noter que

chaque catégorie contient les sous-graphes isomorphes.

(d) Répéter les étapes précédentes (a), (b), (c) jusqu’à générer toutes les combinaisons

possibles des k-sous-ensembles.

iii. Lorsque tous les sous-graphes d’ordre k contenant notamment le sommet de départ

u sont énumérés, nous retirons ce sommet u du graphe G pour ne pas dupliquer des

sous-graphes dans les étapes suivantes (ligne 5).

Afin de chercher tous les sous-graphes d’ordre k du graphe G, nous suivons le même pro-

cessus pour les autres sommets du graphe G.
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Figure 3.1 Un sous-graphe extrait de la version 1.7R1 du système Rhino. Les sommets repré-
sentent les classes, et les arcs représentent les relations entre les classes. La description des
étiquettes sur les arcs est définie dans la section 4.2.1.

3.2.1 Voisinage (GenerateNeighborsSet)

L’idée principale de l’algorithme de voisinage est de parcourir le graphe orienté et étiqueté

G(V,A, L, l) en largeur pour chercher d’une manière itérative la liste des sommets voisins

d’un sommet donné u. Ce type de parcours consiste à chercher d’une part, tous les sommets

successeurs auxquels on peut accéder directement à partir du sommet u, et d’autre part, tous

les sommets prédécesseurs depuis lesquels on peut arriver directement au sommet u, ensuite

de chercher les sommets qui sont accessibles par le premier successeur ou prédécesseur de u,

et le deuxième successeur ou prédécesseur de u et ainsi de suite.
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En effet, la recherche de la liste des sommets voisins consiste à explorer les sommets voisins

d’un graphe orienté et étiqueté G une couche à la fois. La première couche contient le sommet

de départ u, ensuite, la deuxième couche contient les sommets voisins du sommet u, et la

troisième couche contient les sommets voisins de la deuxième couche et ainsi de suite.

D’une manière formelle, nous décrivons les itérations de recherche de la liste des sommets

voisins d’un sommet donné u. Cette liste est noté par Nk(u) où k est l’ordre des sous-graphes.

Nous notons aussi par Ni l’ensemble des sommets trouvés à la ieme couche. Donc, la liste des

sommets voisins Nk(u) est défini par la formule suivante :

Nk(u) =
⋃k

i=1Ni(Ni−1) où


N1 = {u}

Ni(Ni−1) =
⋃

v∈Ni−1
N(v)

N(v) = {w : (v, w) ∈ A(G) ∨ (w, v) ∈ A(G)}

Les sommets de l’ensemble Ni du ieme couche sont insérés dans la liste des sommets voisins

Nk(u) juste après les sommets de Ni−1 du (i− 1)eme couche. Cet ordre, d’insertion des sous-

ensembles Ni dans la liste des sommets voisins Nk(u), est très important pour optimiser

l’algorithme de génération des k-sous-ensembles représentant les sous-graphes d’ordre k. De

plus, un sommet déjà visité ne sera pas inséré de nouveau dans l’ensemble des sommets Ni

de la couche courante.

Exemple : Prenons comme exemple le graphe orienté et étiqueté G définie dans la figure

3.1. Dans cet exemple nous cherchons la liste des sommets voisins N4(0) du sommet 0 avec

k = 4.

Premièrement, nous parcourons le graphe G en largeur en partant du sommet 0 qui se

trouve à la couche 1. Donc, la liste des sommets voisins est : N4(0) = {
couche 1

0 }.
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Figure 3.2 Sommets de la première couche de la liste des sommets voisins N4(0).

En effet, si nous partons du sommet 0 pour chercher tous les sommets successeurs ou

prédécesseurs, nous trouvons seulement un sommet successeur qui est le sommet 3. Donc, la
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liste des sommets voisins devient N4(0) = {
couche 1

0 ,
couche 2

3 }.
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Figure 3.3 Sommets de la deuxième couche de la liste des sommets voisins N4(0).

Dans la première couche, il n’y a plus de sommets qui sont directement accessibles à partir

du sommet 0. Donc, maintenant, il faut chercher les sommets qui sont accessibles à partir de

la deuxième couche. Il s’agit donc de chercher les voisins du sommet 3. Dans ce cas, il y a

seulement les deux sommets prédécesseurs 1 et 2. Maintenant, la liste des sommets voisins

devient N4(0) = {
couche 1

0 ,
couche 2

3 ,
couche 3

1, 2 }.
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Figure 3.4 Sommets de la troisième couche de la liste des sommets voisins N4(0).

À ce stade, il faut donc chercher les voisins des sommets 1 et 2. Nous commençons par le

premier sommet 1 qui a trois sommets successeurs 2, 3, et 6 et un seul sommet prédécesseur

7. Les sommets 2 et 3 ont déjà été insérés dans la liste des sommets voisins N4(0), donc, nous

ne devons pas les ajouter de nouveau dans N4(0). Par contre, le deuxième sommet 2 a trois

sommets successeurs 1, 3, et 4, mais les sommets 1 et 3 sont déjà présents dans la liste N4(0),

donc il ne faut pas les insérer de nouveaux. Cependant dans cette couche, les seuls voisins à

ajouter sont les sommets 6,7, et 4. Donc, la liste des sommets voisins N4(0) composant les

sommets des sous-graphes d’ordre 4 est la suivante :

N4(0) = {
couche 1

0 ,
couche 2

3 ,
couche 3

1, 2 ,
couche 4

6, 7, 4 }.
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Figure 3.5 Sommets de la quatrième couche de la liste des sommets voisins N4(0).

Description de l’algorithme de voisinage ”GenerateNeighborsSet” (voir les algo-

rithmes 3.1 et 3.2) : Essayons maintenant de passer à l’implémentation de l’algorithme

de voisinage (GenerateNeighborsSet). Nous utilisons une liste Nku pour stocker les sommets

voisins du sommet u. Au début de l’algorithme 3.2, aucun sommet n’a été visité, il faut donc

commencer par stocker le sommet de départ u par lequel nous allons commencer le parcours

du graphe G. Donc, le sommet u est stocké dans la liste Nku et dans la liste des sommets

voisins de la première couche Ni (lignes 2 & 3).

Ensuite nous cherchons les voisins de la ime couche Ni (lignes 6-13). La recherche des

sommets voisins d’un sommet v se fait par l’intermédiaire de la matrice d’adjacence M du

graphe G. Une fois que nous découvrons tous les voisins de la ime couche Ni, nous les ajoutons

dans la liste Nku (ligne 16). L’algorithme 3.2 s’arrête lorsqu’il trouve les sommets voisins de

la (k − 1)me couche (ligne 4).

Tous les sous-graphes incluant notamment le sommet u seront trouvés. Par la suite, le

sommet u sera retiré du graphe G. Cela signifie que la prochaine liste des sommets voisins ne

contient pas le sommet u pour éviter la duplication des sous-graphes trouvés. Le processus de

recherche de la liste des sommets voisins Nk(u) se répète sur les sommets restants du graphe

G non encore traités.

3.2.2 Génération des k-sous-ensembles ”GenerateKSubSetsAndValidate” (voir

la section 2a)

L’idée principale de l’algorithme SGFinder est de trouver les sous-graphes d’ordre k (où

k est le nombre des sommets) comportant un sommet de départ u. Pour ce faire,

1. Nous cherchons l’ensemble de tous les sommets voisins Nk(u) du sommet u (voir la

section 3.2.1).

2. Cet ensemble Nk(u) est utilisé pour trouver toutes les combinaisons possibles des sous-

ensembles des sommets de taille k (appelé aussi k-sous-ensemble).
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Algorithme 3.2 Voisinage

Entrées : Un sommet u de l’ensemble des sommets du graphe G(V,A, L, l).
k est l’ordre des sous-graphes à trouver.

Sorties : Une liste Nku contenant les sommets voisins de u.
# Joined(v, w) est une fonction qui retourne vraie si les deux sommets v et w sont
connectés.

1: function GenerateNeighborsSet (u, k)
2: Nku.Add(u) ;
3: Ni.Add(u) ;
4: for i = 1→ k do
5: # Chercher les voisins (N) de la ième couche (Ni)
6: for all v ∈ Ni do
7: N = {} ;
8: for all w ∈ V (G) do
9: if Joined(v, w) then

10: N .Add(w) ;
11: end if
12: end for
13: end for
14: Ni = {} ;
15: for all n ∈ N do
16: Nku.Add(n) ;
17: Ni.Add(n) ;
18: end for
19: end for
20: return Nku

21: end function

3. Chacune de ces combinaisons contient l’ensemble des sommets d’un sous-graphe induit

d’ordre k (appelé aussi k-sous-graphe) (voir la section 1.4.1).

4. La connectivité de chacun de ces sous-graphes induits d’ordre k doit être vérifiée.

L’algorithme de génération des k-sous-ensembles est basé sur une méthode récursive. En

effet, les k-sous-ensembles générés représentent évidemment les ensembles des sommets des

k-sous-graphes. Cependant, nous devons vérifier que les k-sous-graphes générés sont connexes

tels que définis dans la section 3.2.3.

Le problème de génération des sous-ensembles de taille k est connu comme un problème

de combinaison sans répétition de k éléments d’un ensemble S de taille n. Le nombre des k-

sous-ensembles croit exponentiellement avec la taille de S et de k. Le nombre total de toutes

les combinaisons possibles de ce problème est donné par le coefficient binomial Ck
n.
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Dans le but de réduire le nombre de combinaisons possibles, nous introduisons deux cri-

tères de sélection des sommets de la liste des sommets voisins Nk(u) pour générer des sous-

ensembles de taille k. Grâce à ces deux critères, nous pouvons donc éviter plusieurs combi-

naisons inutiles.

Premier critère de sélection : L’objectif de l’algorithme dédié au voisinage (voir la

section 3.2.1) est de chercher une liste des sommets voisins contenant un sommet de départ

u et tous ces voisins qui sont accessibles via un chemin passant par le sommet u. Cependant,

le premier élément des sous-ensembles est toujours le sommet de départ u, ce qui signifie que

le sommet u doit être nécessairement inclu dans tous les k-sous-ensembles.

Deuxième critère de sélection : Pour chercher le ième élément d’un k-sous-ensemble, il

faut choisir seulement un sommet parmi les sommets de la première à la ième couche de la

liste des sommets voisins Nk(u). En d’autres termes, pour l’exemple 3.2.1, il faut prendre en

compte les points clés suivants :

– Le deuxième élément d’un k-sous-ensemble est toujours l’un des sommets de la deuxième

couche de Nk(u).

– Le troisième élément d’un k-sous-ensemble est toujours l’un des sommets de la deuxième

ou de la troisième couche de Nk(u).

– Le dernier élément d’un k-sous-ensemble est l’un des sommets situés entre la deuxième

et la kème couche de Nk(u).

Description de l’algorithme de génération des k-sous-ensembles : Tout d’abord,

nous avons besoin d’un vecteur VG pour stocker les éléments du k-sous-ensemble à engendrer.

Premièrement, le vecteur VG contient le sommet de départ u, et la variable n indique le

prochain sommet à prendre de la liste des sommets voisins Nk(u) pour compléter le k-sous-

ensemble (vecteur VG) (ligne 3). A chaque itération, nous devons vérifier si le sous-ensemble

généré est de taille k (ligne 4). Si c’est le cas, il faut passer ce k-sous-ensemble à la fonction

Validate(VG) pour vérifier sa connectivité, et enfin, le remettre dans la catégorie contenant

ses sous-graphes identiques (ligne 5). Si le nombre des sommets présents dans le vecteur VG

est différent de k, nous procédons à une autre opération récursive sur le reste des sommets

de la liste Nk(u) (ligne 7) pour chercher le sommet candidat suivant à insérer dans VG.

3.2.3 Connectivité

Dans cette section nous décrivons la méthode utilisée pour vérifier la connectivité des

k-sous-ensembles engendrés par l’algorithme couvert à la section 3.3. Dans la littérature, il
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Algorithme 3.3 Générateur des sous ensembles de taille k

Entrées : N est la liste des sommets voisins du sommet u (Nk(u)).
u est le sommet en traitement.
VG est un vecteur contenant les sommets d’un sous-graphe.
n indique le prochain sommet à prendre de la liste des sommets voisins N .

Sorties : Tous les k-sous-ensembles contenant le sommet u.
1: Procedure GenerateKSubSets (N , u, VG, n)
2: for i = n to |N | do
3: VG.Add(N [i]) ;
4: if |VG| == k then
5: Validate(VG) ;
6: else
7: GenerateKSubSets (N , u, VG, n+ 1) ;
8: end if
9: end for

10: end Procedure

existe deux techniques d’exploration qui sont différentes pour vérifier la connectivité d’un

graphe.

i. La première est la recherche en profondeur d’abord (Depth First Search ou DFS ) qui

explore immédiatement les successeurs de tout sommet visité et,

ii. La deuxième est la recherche en largeur d’abord (Breadth First Search ou BFS ) qui

visite les sommets couche par couche c’est-à-dire il ne visite aucun sommet de la couche

n+ 1 avant qu’il explore tous les sommets de la couche n (une couche est un ensemble

de sommets auxquels ils sont accessibles directement via un sommet donné).

Dans notre approche, nous utilisons l’algorithme de recherche en largeur d’abord (BFS).

Il est décrit dans l’algorithme 3.4, et la figure 3.6 met en évidence son fonctionnement sur

un exemple de sous-graphe composé de l’ensemble des sommets {0, 4, 2, 3, 1} (voir la figure

3.6).

Description de l’algorithme de connectivité : L’idée principale de l’algorithme de

connectivité est de construire d’une manière itérative un k-sous-graphe connexeGS(VS, AS, l, L),

induit par un k-sous-ensemble S.

– À la première étape de l’algorithme, nous construisons VS par le sommet de départ u,

puis nous retirons ce sommet u de S (ligne 2 & 3).

– À la deuxième étape, nous ajoutons certains sommets de S à l’ensemble VS. Ces sommets

ajoutés doivent être connectés dans le graphe G(V,A, l, L) (équivalent au diagramme

des classes), au sommet u. Ces sommets ajoutés sont ensuite retirés de S (ligne 5 & 6).
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– À chaque étape suivante, nous ajoutons certains sommets de S à l’ensemble VS. Ces

sommets ajoutés doivent être connectés dans le graphe G, au moins à un des sommets

de VS. Ces sommets ajoutés sont ensuite retirés de S (ligne 5 & 6).

– L’algorithme s’arrête si l’une des deux conditions suivantes est satisfaite :

– Le k-sous-ensemble S est vide. Dans ce cas, le k-sous-graphe GS est connexe.

– Il existe au moins un sommet de S qui n’est pas connecté à aucun sommet de VS.

Dans ce cas, le k-sous-graphe GS n’est pas connexe.

Algorithme 3.4 Connectivité

Entrées : Un k-sous-ensemble S.
Le sommet u en traitement.

Sorties : Vrai si le k−sous-graphe GS induit par le k-sous-ensemble S est connexe
# La fonction Connected(v, VS) retourne vrai si le sommet v est connecté à un sommet
de VS.

1: Function Connectivity (S, u)
2: VS.Add(u)
3: S.Remove(u)
4: while ∃v ∈ S and Connected(v, VS) do
5: VS.Add(v)
6: S.Remove(v)
7: end while
8: if S is empty then
9: return true

10: end if
11: return false
12: End Function

Exemple Considérons l’exemple illustré par la figure 3.6, que k = 5, et le k-sous-ensemble

S = {0, 4, 2, 3, 1}. Donc, pour vérifier la connectivité du k-sous-graphe GS(VS, AS, l, L) induit

par S, il faut premièrement commencer l’algorithme 3.4 par le sous-ensemble VS = {0} et

donc S devient {4, 2, 3, 1} suite au retrait du sommet 0. Ensuite :

i. Dans la deuxième étape, l’algorithme cherche les sommets de S qui sont connectés à au

moins un sommet appartenant à VS. Donc, dans ce cas, il y a seulement le sommet 4.

Par conséquent, VS = {0, 4} et S = {2, 3, 1}.

ii. Dans la troisième étape, il faut examiner de nouveau les sommets de S. Le sommet 2

est connecté au sommet 4. Donc, VS devient {0, 4, 2} et S = {1, 3}.

iii. Dans la quatrième étape, le sommet 1 est connecté au sommet 2. Donc, VS devient

{0, 4, 2, 1} et S = {3}.
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iv. Dans la cinqième étape, le sommet 3 est connecté au sommet 1 (VS = {0, 4, 2, 1, 3} et

S = {}). Donc, l’algorithme s’arrête, avec un sous-graphe connexeGS({0, 4, 2, 1, 3}, AS, l, L)

Couche 1 Couche 2 Couche 3 Couche 4 Couche 5

0

4

5

2

3
1

Figure 3.6 Connectivité d’un sous-ensemble de taille k = 5

3.2.4 Classement

Dans cette section, nous introduisons quelques notions élémentaires utilisées dans notre

algorithme pour regrouper les sous-graphes identiques dans des catégories. Il s’agit de l’iso-

morphisme des graphes, et de l’utilisation de la librairie Nauty de McKay(voir McKay, 1981,

2009) pour chercher la matrice d’adjacence représentant la forme canonique 1 d’un sous-graphe

donné.

Un graphe G de n sommets peut-être représenté par plusieurs matrices d’adjacences d’ordre

n (voir l’exemple de la figure 3.7). En fonction des permutations possibles des sommets sur

les lignes et les colonnes, le nombre total des matrices d’adjacences générées est égal à n!. La

forme canonique1 d’un graphe G permet de représenter de manière unique cette multiplicité

de matrices possibles. Cette forme canonique 1 est définie par la concaténation des lignes ou

des colonnes de la matrice d’adjacence canonique. Cette matrice canonique est fournie par la

librairie Nauty.

Exemple Soit la matrice d’adjacence canonique M =


l11 l12 . . . l1n

l21 l22 ... l2n
...

...
. . .

...

ln1 ln2 . . . lnn

 du graphe

G(V,A, L, l). Alors, la forme canonique de G est définie par l’un des deux chaines suivantes :

cl1(M) = l11l12 . . . l1nl21l22 . . . l2n . . . ln1ln2 . . . lnn.

cl1(M) = l11l21 . . . ln1l12l22 . . . ln2 . . . l1nl2n . . . lnn.

1. La forme canonique d’un objet est un moyen de représentation de cet objet. Pour tester si deux objets
sont équivalents, il suffit de tester l’égalité de leurs formes canoniques.
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3

2

1

1

112

1

0 12 1
1 0 1
0 0 0

,

0 1 12
0 0 0
1 1 0

,

0 0 0
1 0 12
1 1 0

,

 0 1 1
12 0 1
0 0 0

,

 0 1 1
0 0 0
12 1 0

,

0 0 0
1 0 1
1 12 0


Figure 3.7 Matrices d’adjacences d’un graphe

.

Pour déterminer si deux graphes G1 et G2 sont isomorphes (identiques), il faut comparer

les formes canoniques (chaines) de leurs matrices d’adjacences canoniques. Si les chaines

de la forme canonique de G1 et G2 sont égaux (autrement dit cl1(G1) = cl1(G2) ou bien

cl2(G1) = cl2(G2)), donc les deux sous-graphes G1 et G2 sont isomorphes.

Afin de chercher les matrices d’adjacences canoniques, nous avons utilisé la librairie Nauty

(voir McKay, 1981). Chaque matrice d’adjacence M ′ de chaque sous-graphe G′ est fournie à la

fonction nauty. La matrice d’adjacence canonique M ′′ retournée par nauty est transformée en

une chaine cl(M ′′). Ensuite la chaine cl(M ′′) est transformée en un Hash Code 2 (voir Coffey,

2011). Celui-ci permet l’optimisation de l’espace mémoire alloué pour identifier les sous-

graphes. Par conséquent, nous identifions les catégories contenant les sous-graphes identiques

par les Hash Code.

0 3

2

1

7

4

6

5

1

1

112

1 12

12 1

13

Figure 3.8 Un sous-graphe extrait de la version 1.7R1 de l’application Rhino avec deux
occurrences {2,4,5} et {7,1,3} d’ordre k = 3

2. Une fonction de hachage utilisant 64bits peut engendrer une seule collision sur 3.7 × 107 hash code
(http ://www.javamex.com/tutorials/collections/strong hash code.shtml).
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3.3 Caractérisation des sous-graphes

Dans cette section, nous détaillons les opérations effectuées pendant la recherche des

microarchitectures. Au cours de cette étude, nous nous intéressons seulement au calcul des

zones définies à la section 3.3.1. Tandis que les autres opérations sont utiles pour effectuer

d’éventuelles recherches, que nous mentionnons pour les réalisations futures à la section 6.3.

3.3.1 Nombre des zones

Nous avons vu à la section des classements des sous-graphes (voir 3.2.4) que l’algorithme

est capable de regrouper tous les sous-graphes identiques dans des catégories. Le nombre total

des occurrences des sous-graphes identiques est très grand à cause de certains sommets qui

sont très connectés (voir la figure 3.9). Nous introduisons les zones pour réduire ce nombre

d’occurrences qui n’a pas de signification. Le nombre des zones des sous-graphes identiques

est défini par le nombre des régions disjointes qui n’ont pas d’arcs en commun. Autrement dit,

deux sous-graphes isomorphes G1(V1, A1, L, l1) et G2(V2, A2, L, l2) sont dans la même zone si

seulement s’il existe au moins (vi, vj) ∈ A1 tel que (vi, vj) ∈ A2.

0

1 2

3

456

7

8

3 3

3

333

3

3

Figure 3.9 Un graphe en étoile (les sous-graphes contenant le sommet 0 et de taille supérieure
à un, appartiennent à la même zone)

.

En effet, lorsqu’un nouveau sous-graphe G′ est détecté par l’algorithme de recensement des

sous-graphes, il sera mis dans sa propre catégorie, et nous recomptons le nombre des zones

seulement si G′ n’a aucun arc commun avec l’un des sous-graphes identiques à lui.

Nous allons maintenant décrire l’algorithme de calcul des zones. Donc, il s’agit d’utiliser

un hashmap Tz pour stocker les arcs des sous-graphes détectés par l’algorithme 3.1 sachant

que les clés représentent le code ”Hash Code” de la forme canonique des sous-graphes.
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Algorithme 3.5 Calcul des zones.
Entrées : une microarchitecture mA.

1: nbArcs = sizeof(Tz) ;
2: insérer tous les arcs de mA dans Tz
3: if sizeof(Tz) = nbArcs+ sizeof(mA) then
4: nbZones+ + ;
5: end if

3.3.2 Rôles des classes

Chaque microarchitecture est représentée par une structure composée d’un ensemble de

classes coopérant entre elles par plusieurs relations. Plusieurs classes participantes peuvent

jouer le même rôle dans les microarchitectures identiques. De même, une classe peut jouer

différents rôles dans des microarchitectures différentes.

La figure 3.8 montre que la classe 1 et la classe 4 jouent le même rôle. L’exemple de la

figure 3.10 décrit le patron de conception fabrique (Factory). Le rôle de la classe ”Fabrique”

est de créer les objets de la classe ”Produit” sans exposer la logique d’instanciation.

Figure 3.10 Patron de conception fabrique

Nous identifions les rôles des classes par l’intermédiaire de l’ordre des sommets de la

matrice d’adjacence canonique retournée par l’algorithme nauty (voir McKay, 1981, 2009).

Les rôles associés aux classes peuvent être visualisés par notre outil graphique SGViewer (voir

la figure 3.11).

3.3.3 Tunnels

Le diagramme des classes évolue d’une version à une autre en subissant quelques change-

ments sur sa structure. Étant donné que les microarchitectures sont les sous-graphes extraits
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Figure 3.11 Illustration par l’outil SGViewer des rôles joués par des classes.

de ces diagrammes de classes, nous nous intéressons à la relation entre l’évolution des dia-

grammes et les microarchitectures extraites. Nous définissons un tunnel (voir Kpodjedo et al.,

2009) comme un ensemble de classes communes entre plusieurs versions. Les classes communes

comportent notamment les classes renommées. En particulier, le tunnel de la première ver-

sion contient toutes les classes. Dans cette section, nous allons voir comment identifier les

microarchitectures dans les trois côtés du tunnel (figure 3.12) suivants :

i. Intra-tunnel : Microarchitectures complètement à l’intérieur du tunnel (ex : dans la

figure 3.12, le sous-graphe G1 est dans le troixième tunnel).

ii. Extra-tunnel : Microarchitectures complètement à l’extérieur du tunnel (ex : dans la

figure 3.12, toutes les classes du sous-graphe G2 se trouvent à l’extérieur du troixième

tunnel).

iii. Inter-tunnel : Microarchitectures dont une partie des classes se trouve à l’intérieur du

tunnel, et dont une autre partie des classes se trouve à l’extérieur de ce tunnel (ex :

dans la figure 3.12, le sous-graphe G3 a une classe à l’intérieur du troixième tunnel et

deux classes à l’extérieur de ce troixième tunnel).

L’idée principale de l’algorithme est très simple. Il s’agit donc de comparer les classes

d’une microarchitecture mAi avec celles du tunnel (vecteur T ) associé à une version donnée

(lignes 1 & 4). Toutefois, nous utilisons un map mapT comme structure de données pour

stocker les occurrences des microarchitectures d’un tunnel (lignes 2, 5 & 7). Cependant, nous

disons que les microarchitectures sont (voir l’algorithme 3.6) :

– À l’intérieur (IN) du tunnel si toutes ses classes sont dans le vecteur T (ligne 2).

– À l’extérieur (OUT ) du tunnel si toutes ses classes ne sont pas dans le vecteur T (ligne

5).
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Version 1 Version i Version i+ 1 Version n

G1

G2

G3

premier tunnel deuxième tunnel troixième tunnel

Figure 3.12 Identification des microarchitectures dans les tunnels

– Entre les deux côtés (BTW ) du tunnel si seulement si certaines de ses classes se trouvent

à l’intérieur du tunnel T et d’autres classes sont à l’extérieur de T (ligne 7).

Algorithme 3.6 Identification des microarchitectures dans les tunnels.
Entrées : Un vecteur contenant les classes d’un tunnel T et une microarchitecture mA.

1: if all classes of mA ∈ T then
2: mapT [mA].IN + + ;
3: else
4: if all classes of mA /∈ T then
5: mapT [mA].OUT + + ;
6: else
7: mapT [mA].BTW + + ;
8: end if
9: end if

3.3.4 Évolution des microarchitectures entre les versions

Dans cette section, nous proposons une classification des microarchitectures en sept profils

selon leurs évolutions. Nous distinguons un profil par rapport à un autre par l’évolution des

occurrences des microarchitectures. Cette classification tient en compte toutes les microar-

chitectures de toutes les versions du système traité. Donc, les sept profils sont les suivants

(voir la figure 3.13) :

1. Profil croissant : Ce profil identifie les microarchitectures dont le nombre d’occur-

rences est toujours en croissance.

2. Profil croissant instable : Le nombre d’occurrences des microarchitectures n’est pas

toujours en croissance c’est-à-dire, il peut baisser avec un taux faible au moins une fois
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Figure 3.13 Classification des microarchitectures selon leurs évolutions entre les versions d’un
système orienté objet.

dans une version, puis il continue généralement sa croissance.

3. Profil décroissant : Le nombre d’occurrences des microarchitectures est toujours en

décroissance.

4. Profil décroissant instable : Ce profil définit les microarchitectures dont le nombre

d’occurrences n’est pas toujours décroissant d’une version et sa suivante, mais il peut

augmenter au moins une fois avec un taux faible, puis il décrôıt généralement.

5. Profil constant : Le nombre d’occurrences des microarchitectures est toujours constant.

6. Profil constant instable : Le nombre d’occurrences des microarchitectures peut

augmenter et diminuer avec un taux faible par rapport à une valeur constante.
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7. Profil indéfini : Pour ce profil, le nombre d’occurrences des microarchitectures peut

augmenter, ou baisser avec un taux élevé entre les différentes versions du système traité.

Donc, étant donné n versions {v1, v2, . . . , vn} d’un système orienté objet, et n nombre

d’occurrences {yk1, yk2, . . . , ykn} d’une microarchitecture mAk. En effet, pour définir les sept

profils, nous utilisons la droite de régression qui est donnée par la formule suivante :

Y = a.X + b

où :

– X représente les versions du système traité.

– Y représente le nombre d’occurrences de la microarchitecture mAk .

– La pente a = Covariance(X,Y )
V ariance(X)

=
∑n

i=1(vi−v)(yki−y)∑n
i=1(vi−v)2

– b = y − a.v

– v =
∑n

i=1 vi
n

est la moyenne des versions.

– y =
∑n

i=1 yki

n
est la moyenne des occurrences des microarchitectures.

Remarque : La pente a est sensible au nombre d’occurrences, de sorte qu’avec un ac-

croissement relatif équivalent, la covariance peut être plus forte pour la tendance avec le plus

grand nombre d’occurrences. La corrélation r peut être une meilleure mesure pour définir les

7 profils.

r =
∑n

i=1(vi−v)(yki−y)√∑n
i=1(vi−v)2×

√∑n
i=1(yki−y)2

3.4 Conclusion

L’algorithme de recensement et de regroupement des sous-graphes, et les techniques dé-

crites dans ce chapitre sont implémentés dans l’outil SGFinder. Cet outil est développé en

C++. Le guide d’utilisation de cet outil est décrit dans l’annexe C.

Dans le chapitre suivant, nous décrivons la validation empirique qui est basée sur l’outil

SGFinder.
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CHAPITRE 4

VALIDATION EMPIRIQUE

Nous présentons dans ce chapitre les étapes suivies pour valider notre outils SGFinder.

Nous effectuons une étude empirique basée sur notre outil SGFinder (voir la section 3) dont

l’objectif est de vérifier son efficacité, et son applicabilité sur les petits et les moyens systèmes

OO. Ainsi, nous posons des questions de recherche reliées aux propriétés de la stabilité et des

défauts des microarchitectures existantes dans les systèmes OO.

4.1 Questions de recherche

Nos questions de recherche sont dérivées de nos objectifs visant à :

– Identifier les microarchitectures des systèmes OO.

– Chercher la relation entre les microarchitectures et les propriétés telles que la stabilité

et les défauts.

Nous nous intéressons donc à répondre aux questions de recherche suivantes :

QR1 : SGFinder est-il capable de recenser les microarchitectures des systèmes

OO de moyenne envergure ? Et quels types de microarchitectures existent

dans les systèmes OO ?

Étant donné les différentes relations possibles entre les classes d’un diagramme des

classes, les combinaisons des microarchitectures théoriquement possibles sont élevées.

Par conséquent, il est nécessaire de vérifier l’applicabilité et l’efficacité de SGFinder

sur les systèmes OO. Donc, notre premier objectif pour la question QR1 est de vérifier

l’applicabilité de SGFinder sur les petits et les moyens systèmes OO. Par ailleurs, il est

intéressant d’avoir un aperçu sur les types des microarchitectures existantes dans les

systèmes OO.

QR2 : Existe-t-il des microarchitectures sans aucun défaut ou prédisposées aux

défauts ?

En ce qui concerne la deuxième question QR2, nous voulons déterminer s’il existe des

microarchitectures prédisposées aux défauts. Ainsi, nous voulons également identifier

les microarchitectures qui ne peuvent pas avoir des défauts.

QR3 : Existe-t-il des microarchitectures stables ou prédisposées aux changements ?
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Notre objectif pour la troisième question QR3 est de déterminer les microarchitectures

stables, ainsi que les microarchitectures impliquées dans les changements effectués sur

le code source. Donc une information préalable sur les microarchitectures prédisposées

aux changements peut aider les concepteurs, les développeurs, et les mainteneurs des

logiciels.

La complexité d’un logiciel a une conséquence directe sur les erreurs de programmation

commises par les développeurs. Les architectes logiciels, les concepteurs, et les développeurs

participant à la conception du diagramme des classes, peuvent engendrer des structures pou-

vant causer des défauts, et augmenter les chances de modification ultérieures au code source

du logiciel. Il est donc important d’aider les concepteurs et les développeurs en signalant les

microarchitectures prédisposées aux défauts et aux changements. De plus, une analyse quali-

tative (voir la section 5) pourrait donner une information suffisante sur les microarchitectures

désirables ou à risque.

4.2 Objets

Pour évaluer l’efficacité et vérifier l’applicabilité de notre algorithme SGFinder, nous

l’avons testé sur deux systèmes orientés objets développés en Java (Rhino et ArgoUml).

Les données de ces deux systèmes sont illustrées dans le tableau 4.1.

– Système Rhino 1 : Rhino est un interpréteur JavaScript. Il implémente le langage

JavaScript du standard ECMAScript (voir ECMA, 2007). Il est entièrement développé

en Java et géré aujourd’hui par la communauté Mozilla. Il est capable de fonctionner

avec les deux modes (i) compilé (intégré dans les applications), et (ii) interprété (script

compilé en objets JavaScript). Actuellement, Rhino est le seul moteur inclus dans le

noyau de JDK 1.6 et ses successeurs.

– Système ArgoUml 2 : ArgoUml est un outil d’analyse et de conception en UML

des systèmes OO. Il est entièrement implémenté en Java par l’université de Southern

California. Il est également capable de générer le code source à partir du diagramme

des classes pour accélérer le développement des systèmes orientés objets.

4.2.1 Les données

Les deux systèmes Rhino et ArgoUml sont sélectionnés en raison de la disponibilité des

données relatives à l’historique des défauts, et des changements. Nous illustrons au tableau

1. http ://www.mozilla.org/rhino/
2. http ://argouml.tigris.org/
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4.1, les versions, et les données relatives aux défauts et aux changements des deux systèmes

Rhino et ArgoUml.

Tableau 4.1 Sommaire des systèmes orientés objets

Systèmes Versions
Nombre de

Rhino

Classes Relations Bogues Changements

1.4R3 99 499 33 1466
1.5R1 134 718 22 1020
1.5R2 183 935 12 106
1.5R3 178 929 41 666
1.5R4 193 1017 115 236
1.5R4.1 193 1017 95 835
1.5R5 194 1027 53 808
1.6R1 191 1118 21 217

ArgoUml

0.10 876 3491 218 1856
0.10.1 876 3491 459 4006
0.12 960 4232 133 2355
0.14 1239 5609 142 1039
0.15.6 1187 5898 102 541
0.16 1190 5909 181 1299
0.16.1 1190 5910 664 5048
0.17.5 1243 7357 169 739

Nous avons téléchargé huit versions de chaque système pour recenser les microarchitectures

de taille trois, quatre, et cinq.

Pour le premier système Rhino, nous avons traité les versions entre 1.4R3 et 1.6R1. Les

défauts ont été récupérés via l’étude de Eaddy (voir Eaddy et al., 2008), et les données

concernant les changements sont extraites du fichier des journaux (logs) CSV.

Pour le deuxième système ArgoUml, nous avons traité les versions entre 0.10 et 0.17.5. Les

données des défauts sont extraites du serveur de suivi des bogues ”Bugzilla” et du serveur

SVN, et les changements sont extraits du serveur SVN.

Relations traitées : Dans les systèmes OO, la communication entre les classes peut être

exprimée par les trois types de relations d’association (1), d’agrégation (2), et d’héritage (3).

De plus, dans un système, une classe A peut hériter d’une classe B, et en même temps les

éléments de la classe A peuvent participer à plusieurs relations avec la classe B. Donc, nous
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considérons que les relations en parallèle (dans le même sens i.e. de A vers B) entre les deux

classes A et B comme une seule relation composée. En effet, un système contenant les trois

relations simple 1, 2, et 3 peut contenir les quatre relations composées suivantes :

– 12 : L’association et l’agrégation

– 13 : L’association et l’héritage.

– 23 : L’agrégation et l’héritage.

– 123 : L’association, l’agrégation et l’héritage.

Notons que la relation composée entre une classe A et une classe B (de A vers B) est la

concaténation de toutes les relations simples (1, 2, et 3) entre A et B (de A vers B). Cette

concaténation est faite du plus petit au plus grand chiffre.

4.3 Approche

Nous avons utilisé la suite d’outils Ptidej 3 et son méta-modèle PADL 4 pour construire

le diagramme des classes des deux systèmes orientés objets Rhino et ArgoUml, puis nous

avons transformé le diagramme des classes de chaque système à un graphe orienté et étiqueté

G(V,A, L, l) tel que :

– L’ensemble des sommets V du graphe G représente l’ensemble des classes du système

traité.

– L’ensemble des arcs A du graphe G représente les relations entre les classes.

– L’ensemble des étiquettes L = {1, 2, 3, 12, 13, 23, 123} représente les relations simples

et les relations composées.

– l est une fonction d’étiquetage (voir la section 1.4.1).

Ensuite, nous utilisons SGFinder (voir le chapitre 3) pour recenser toutes les microarchitec-

tures de taille trois, quatre, et cinq. Puis, nous regroupons les microarchitectures identiques

dans des catégories en utilisant l’outil nauty (voir la section 3.2.4). Et finalement, nous pro-

cédons à l’analyse de ces microarchitectures. La figure 4.1 illustre un aperçu global de cette

approche.

Avec cette technique, le problème de recensement des microarchitectures d’une taille donnée

k d’un système OO est modélisé comme un problème de recensements des sous-graphes

3. Ptidej (voir Guéhéneuc, 2004) est un ensemble d’outils de rétro-conception. Il permet d’extraire le
diagramme des classes à partir du code source des programmes.

4. Le méta-modèle PADL (voir Albin-Amiot et Guéhéneuc, 2001) fait partie de la suite d’outils Ptidej. Il
permet de donner la représentation générique d’un système OO quelconque. Il est indépendant des langages
de programmation. Il comprend un analyseur de Java et un générateur des graphes.
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d’ordre k d’un graphe orienté et étiqueté G(V,A, L, l).

Figure 4.1 Aperçu de la nouvelle approche
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4.4 Méthode d’analyse

Tout d’abord, nous présentons les informations associées aux microarchitectures, et leurs

présences dans les différentes versions. Par la suite, nous décrivons l’utilisation de ces infor-

mations pour répondre à nos questions de recherche.

4.4.1 Caractéristiques des microarchitectures

Afin d’analyser les microarchitectures d’une manière exhaustive, nous introduisons les

deux types d’informations suivantes :

Connectivité des classes participantes aux microarchitectures

Une microarchitecture est définie par une structure de classes reliées entre elles par des

relations simples ou composées. Donc, pour le premier type d’information, nous nous focali-

sons sur les différents modèles de relations pouvant exister dans les microarchitectures. Nous

distinguons les modèles des relations selon les variables suivantes :

i. nbRel est le nombre total des relations. Ce nombre comprend les trois types de relations

simples et les quatre types de relations composées 5.

ii. nbAssoc est le nombre total des relations de type association.

iii. nbAggr est le nombre total des relations de type agrégation.

iv. nbInher est le nombre total des relations de type héritage.

v. nbCycl est le nombre total des relations cycliques. Une relation cyclique entre deux

classes A et B est généralement générée par une paire d’associations c’est-à-dire la classe

A appelle ou utilise la classe B et vice-versa.

Présence des microarchitectures

La présence des microarchitectures est la manière dont elles sont reparties dans les sys-

tèmes OO. Donc ce type d’information est défini par les quatre variables suivantes :

i. nbVersions est le nombre total des versions contenant une microarchitecture donnée.

ii. nbOccurrences est le nombre total des occurrences des microarchitectures identiques.

iii. nbZones est le nombre total des régions (voir la section 3.3.1) contenant les microar-

chitectures identiques.

5. Dans la présente étude, nous n’avons pas traité les relations qui sont sous forme d’une boucle sur une
classe c’est-à-dire les relations d’une classe avec elle-même.
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iv. nbClasses est la cardinalité de l’ensemble des classes participant au moins une fois

dans une microarchitecture donnée.

4.4.2 Réponses aux questions de recherche

Tout d’abord, nous rappelons quelques notions de statistique descriptive, et la recherche

d’information. Ces notions sont essentielles pour analyser les données représentées par les

différentes variables définies dans la section 4.4.1.

Notions de la statistique descriptive

– Médiane : La médiane sépare une série des données en deux groupes de même nombres

d’éléments. Le premier groupe contient les plus petites valeurs et le deuxième groupe

contient les plus grandes valeurs.

– Quartiles : Les quartiles permettent de séparer une série des données en quatre groupes

de même nombre d’éléments. Un quart des valeurs sont inférieures au premier quartile

Q1, et un autre quart des valeurs sont supérieures au troisième quartile Q3.

– Résumé en 5 chiffres : Ce résumé se compose de minimum, premier quartile, médiane,

troisième quartile, et maximum (Min, Q1, Médiane, Q3, Max).

Précision, Rappel, et F1

– Précision (P ) : La précision est la proportion des éléments pertinents parmi les

éléments sélectionnés.

– Rappel (R) : Le rappel est le rapport du nombre des éléments pertinents trouvés

par le nombre des éléments pertinents disponibles. Il s’agit donc d’une proportion des

éléments bien classés dans la classe des éléments pertinents.

– F1 : Est une mesure qui combine la précision et le rappel (F1 = 2×P×R
P+R

).

Pour répondre à nos questions de recherche, nous utilisons les notions de la statistique

descriptive pour analyser les données des variables définies dans la section 4.4.1. Plus préci-

sément, nous utilisons la représentation de résumé en 5 chiffres pour analyser et comparer la

distribution des données de ces variables.

Question QR1 : Pour répondre à la question de recherche QR1 visant à vérifier l’applica-

bilité de l’algorithme SGFinder sur les petits et les moyens systèmes OO, nous représentons



41

les données des variables (voir la section 4.4.1) sous le format de résumé en 5 chiffres. Nous re-

présentons les microarchitectures des deux systèmes Rhino et ArgoUml séparément. Ensuite,

nous représentons les microarchitectures communes entre ces deux systèmes. Étant donné

que ces deux systèmes Rhino et ArgoUml sont développés par deux équipes différentes, donc

le traitement des microarchitectures communes permettra de généraliser les résultats.

Pour vérifier l’efficacité de l’algorithme, nous calculons le temps d’exécution total de SG-

Finder sur les huit versions des deux systèmes Rhino et ArgoUml.

Questions QR2 : Notre objectif pour cette question est d’identifier les microarchitectures

prédisposées aux défauts ou celles qui n’ont aucun défaut. Donc, premièrement, nous identi-

fions les classes possédant des défauts. Ensuite, nous utilisons pour chaque microarchitecture,

son ensemble de classes, et nous calculons le pourcentage de ses classes boguées. Autrement

dit, pour une microarchitecture donnée mAi, nous devons adapter la précision P et le rappel

R comme suivant :

– Précision P : La précision est le pourcentage des classes boguées par rapport à

l’ensemble des classes participantes à la microarchitecture mAi. Une précision de 100%

signifie que la totalité des classes de la microarchitecture mAi sont boguées, alors que

une précision de 0% signifie qu’aucune des classes de mAi n’est boguée. Donc, si la

précision P est faible (respectivement élevée), la majorité des classes participantes aux

microarchitectures ne sont pas boguées (sont boguées respectivement).

– Rappel R : Le rappel est le pourcentage des classes boguées dans la microarchitecture

mAi par rapport à la totalité des classes boguées dans le diagramme des classes.

Pour un nombre fixe de classes (ex. quatre), nous trions les microarchitectures par ordre

décroissant de la précision P (c’est-à-dire les plus boguées vers les moins boguées). Nous

sélectionnons ensuite les premières 10%, et les dernières 10% des microarchitectures de la

liste des microarchitectures triées. Il est utile à noter que les microarchitectures sélectionnées

sont les microarchitectures des deux systèmes OO Rhino et ArgoUml séparément, et les

microarchitectures communes entre ces deux systèmes.

Questions QR3 : Pour répondre à cette question, nous utilisons la même méthodologie

de réponse à la question QR2, sauf que nous analysons les changements effectuées sur les

classes participantes aux microarchitectures au lieu d’analyser leurs défauts.
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4.5 Conclusion

Dans ce chapitre nous avons présenté la validation empirique de l’outil SGFinder. Nous

avons posé des questions de recherche, et présenté les réponses à ces questions. Dans le

chapitre suivant, nous décrivons et discutons les résultats trouvés par notre outil SGFinder.
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CHAPITRE 5

RÉSULTATS

Dans ce chapitre, nous présentons et analysons les résultats obtenus par l’outil SGFinder.

Nous répondons aux trois questions de recherche qui visent à vérifier l’applicabilité de l’al-

gorithme SGFinder sur les petits et les moyens systèmes OO, et à chercher la relation entre

les microarchitectures et les propriétés telles que la stabilité et les défauts.

Remarque : Il est utile de noter que notre étude se focalise uniquement sur les versions

déjà réalisées des deux systèmes Rhino et ArgoUml. Autrement dit, nous ne pouvons pas

introduire des facteurs de bruit comme l’augmentation, ou la diminution de la taille du

diagramme des classes, ou de modification de sa structure. Par conséquent, cette étude ne

permet de prédire les mêmes résultats, ni pour les nouvelles versions à venir de ces deux

systèmes, ni à d’autres systèmes autres que Rhino et ArgoUml.

5.1 QR1 : Applicabilité de l’outil SGFinder et la description des microarchitec-

tures trouvées

Le tableau 5.1 présente le nombre total des occurrences des microarchitectures (Occ), et le

nombre total des microarchitectures différentes (Dif) des deux systèmes Rhino et ArgoUml.

Les microarchitectures de taille trois, quatre, et cinq sont indiquées dans l’entête du tableau.

Nous constatons que :

– Le nombre total des microarchitectures différentes des deux systèmes est presque le

même, malgré que le diagramme des classes du système Rhino contient environ 10

fois moins de classes que le diagramme des classes du système ArgoUml (Ex. pour

les microarchitectures de taille quatre, la deuxième version ”1.5R1” du système Rhino

contient 3390 microarchitectures différentes, et la deuxième version ”0.10.1” du sys-

tème ArgoUml contient 3432 microarchitectures différentes). Donc, le nombre total des

microarchitectures différentes n’est pas strictement liée à la taille de diagramme des

classes.

– Le système ArgoUml contient plus d’occurrences de microarchitectures par rapport au

système Rhino.



44

Tableau 5.1 Les microarchitectures trouvées dans les deux systèmes Rhino et ArgoUml (”Occ”
est le nombre total des occurences des microarchitectures, ”Dif” est le nombre total des
microarchitectures différentes).

Systèmes Versions Nombre
Taille des microarchitectures

Rhino

3 4 5

1.4R3
Occ 6352 106933 1556177
Dif 162 2522 32572

1.5R1
Occ 11046 230096 4255632
Dif 197 3390 51800

1.5R2
Occ 15417 389589 8926000
Dif 229 4165 67237

1.5R3
Occ 15519 398616 9254224
Dif 226 4160 67069

1.5R4
Occ 18203 509826 12968171
Dif 249 4653 77010

1.5R4.1
Occ 18203 509826 12968171
Dif 249 4653 77010

1.5R5
Occ 17235 453162 10841181
Dif 275 5052 81859

1.6R1
Occ 19782 534127 12862920
Dif 265 4929 84538

ArgoUml

0.10
Occ 71114 2326149 76638002
Dif 222 3432 48932

0.10.1
Occ 71114 2326149 76638002
Dif 222 3432 48932

0.12
Occ 103935 4193438 174509644
Dif 224 3833 62962

0.14
Occ 171783 8614757 458176012
Dif 266 5290 104706

0.15.6
Occ 315612 38570009 4948807397
Dif 269 5072 93893

0.16
Occ 316138 38716539 4978353074
Dif 269 5005 90458

0.16.1
Occ 316710 38881514 5010343101
Dif 269 5005 90458

0.17.5
Occ 564424 91643885 13741073588
Dif 279 4906 82877

Considérant les trois relations de base (association, agrégation et l’héritage), les quatre re-

lations composées, et l’absence des relations, donc il y a huit connexions possibles entre deux

graphes. Cela signifie que pour n×n paires de sommets (y compris les boucles), nous pouvons

avoir (si nous ne prenons pas en considération la symétrie) au maximum 8(n×n−(n−1)) × 7n−1

sous-graphes connexes de n sommets. Par exemple, nous pouvons obtenir environ 22 × 1021
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microarchitectures différentes de taille cinq. Si nous considérons l’union des microarchitec-

tures de taille cinq des deux systèmes Rhino et ArgoUml, nous obtenons seulement 32× 104

différents microarchitectures, ce qui semble être un nombre très élevé, cependant ce nombre

est juste une fraction du nombre total des combinaisons possibles.

Les tableaux 5.2 et 5.3 présentent les microarchitectures de taille trois, quatre et cinq,

trouvées dans les deux systèmes OO Rhino et ArgoUml. Le tableau 5.4 présente les mi-

croarchitectures communes aux deux systèmes OO Rhino et ArgoUml. Les résultats sont

représentés sous le format de résumé en 5 chiffres (Min, Q1, Médiane, Q2, Max). Bien que la

taille du système Rhino soit petite par rapport au système ArgoUml, Rhino contient plus de

combinaisons de graphes connexes pour toutes les tailles des microarchitectures. Le tableau

5.4 montre qu’il existe un nombre important des microarchitectures communes entre les deux

systèmes Rhino et ArgoUml, ce qui permettrai d’augmenter les chances de généralisation des

résultats.

Tableau 5.2 Microarchitectures existant dans le système Rhino. Chaque ligne indique le ré-
sumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Variables
Microarchitectures de taille

trois quatre cinq
(373) (9203) (190061)

nbRel 2,4,5,6,11 3,6,7,9,20 4,8,10,11,27
nbAssoc 0,2,3,4,6 0,4,5,6,12 0,6,7,9,18
nbAggr 0,0,1,2,4 0,1,1,2,7 0,1,1,2,9
nbInher 0,0,1,1,3 0,0,1,2,5 0,0,1,2,6
nbCycl 0,0,1,1,3 0,0,1,2,6 0,0,1,2,8

nbZones 1,1,1,2,68 1,1,1,1,33 1,1,1,1,20
nbClasses 3,3,5,10,140 4,4,5,9,147 5,5,6,10,156
nbVersions 1,2,5,8,8 1,1,3,6,8 1,1,2,4,8

Concernant les informations de connectivité, les microarchitectures du système Rhino

contiennent plus de relations par rapport à celles du système ArgoUml. En regardant le

nombre maximum des relations, nous constatons que certaines microarchitectures plus connec-

tées se trouvent dans les deux systèmes Rhino et ArgoUml. La figure 5.1 illustre une de ces

microarchitectures. Cette figure représente trois microarchitectures de taille cinq avec le plus

grand nombre de relations dans le système Rhino (22 relations), dans le système ArgoUml

(21 relations), et dans les deux systèmes (19 relations).
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Tableau 5.3 Microarchitectures existant dans le système ArgoUml. Chaque ligne indique le
résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Variables
Microarchitectures de taille
trois quatre cinq

(349) (8224) (180295)

nbRel 2,4,5,6,10 3,6,7,8,17 4,8,9,10,23
nbAssoc 0,2,3,4,6 0,3,4,6,11 0,5,6,8,15
nbAggr 0,0,1,2,4 0,1,1,2,6 0,1,2,2,8
nbInher 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7
nbCycl 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7

nbZones 1,1,1,3,583 1,1,1,2,315 1,1,1,1,171
nbClasses 3,3,6,19,944 4,4,7,16,940 5,5,8,19,944
nbVersions 1,4,7,8,8 1,2,4,7,8 1,1,3,5,8

Tableau 5.4 Microarchitectures existant dans les deux systèmes Rhino et ArgoUml. Chaque
ligne indique le résumé en 5 chiffres : Min, Q1, Médiane, Q3, Max

Variables
Microarchitectures de taille
trois quatre cinq

(250) (3993) (52862)

nbRel 2,4,4,5,8 3,5,6,7,11 4,7,8,9,15
nbAssoc 0,2,3,4,6 0,3,4,5,10 0,5,6,7,14
nbAggr 0,0,1,2,4 0,0,1,2,4 0,0,1,2,6
nbInher 0,0,1,1,3 0,0,1,1,4 0,0,1,1,6
nbCycl 0,0,0,1,3 0,0,1,1,4 0,0,1,1,5

nbZones 1,1,2,5,326 1,1,1,2,174 1,1,1,2,95
nbClasses 3,5,8,26,542 4,6,11,24,544 5,8,14,31,540
nbVersions 1,5,7,8,8 1,3,5,7,8 1,3,4,6,8

5.1.1 Temps de calcul de l’outil SGFinder

Le tableau 5.5 et la figure 5.2 présentent le temps total d’exécution de l’outil SGFinder,

sur les huit versions des deux systèmes OO Rhino et ArgoUml. En effet, le temps d’exécution

global de l’outil SGFinder pour le recensement des microarchitectures se varie entre 0 secondes

et 28 heures. Pour les microarchitectures de taille trois, l’outil SGFinder s’exécute en moins

d’une seconde, et pour les microarchitectures de taille quatre, l’outil SGFinder s’exécute entre

0 à 2 secondes. Alors que le temps total d’exécution le plus long est utilisé pour le recensement

des microarchitectures de taille cinq. En particulier l’outil SGFinder s’exécute pendant 28

heures pour recenser 82.877 microarchitectures différentes, et 13.741.073.588 occurrences dans

le système ArgoUml.



47

Figure 5.1 Les microarchitectures les plus connectées de taille cinq dans les deux systèmes
Rhino et ArgoUml.
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En effet, le temps total d’exécution de l’outil SGFinder ne dépend pas des versions d’un

système. Cependant, il dépend principalement de la densité du diagramme des classes, c’est-

à-dire du nombre de relations existantes entre les classes, et la taille du diagramme des classes.

Compte tenu de la présence de certaines classes fortement connectées, le nombre des com-

binaisons possibles augmente énormément le nombre d’occurrences des microarchitectures.

Par conséquent, les classes les plus connectées font augmenter exponentiellement le temps

d’exécution global de l’algorithme SGFinder.

Tableau 5.5 Temps d’éxecution de l’algorithme SGFinder sur les deux systèmes Rhino et
ArgoUml.

Systèmes Versions
Temps d’exécution (h mm ss)

Rhino

3 4 5

1.4R3 0 00 00 0 00 00 0 00 07
1.5R1 0 00 00 0 00 01 0 00 20
1.5R2 0 00 00 0 00 01 0 00 46
1.5R3 0 00 00 0 00 02 0 00 47
1.5R4 0 00 00 0 00 02 0 01 06
1.5R4.1 0 00 00 0 00 01 0 01 06
1.5R5 0 00 01 0 00 01 0 00 57
1.6R1 0 00 00 0 00 02 0 01 06

ArgoUml

0.10 0 00 00 0 00 14 0 33 43
0.10.1 0 00 01 0 00 14 0 34 00
0.12 0 00 00 0 00 26 1 18 13
0.14 0 00 01 0 00 49 04 09 11
0.15.6 0 00 01 0 03 12 11 57 36
0.16 0 00 01 0 03 11 12 05 49
0.16.1 0 00 01 0 03 04 11 55 39
0.17.5 0 00 02 0 06 57 28 02 56

En effet l’outil SGFinder est capable d’explorer les petits et les moyens systèmes OO, pour

recenser les microarchitectures de taille allant jusqu’à cinq. Nous pouvons donc répondre

positivement à cette première question de recherche QR1.
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Figure 5.2 Temps d’éxecution de l’algorithme SGFinder sur les deux systèmes Rhino et Ar-
goUml.
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5.2 QR2 : Prédisposition des microarchitectures aux défauts

Le tableau 5.6 présente les microarchitectures de taille trois, quatre et cinq, et qui sont

communes entre les deux systèmes Rhino et ArgoUml. En utilisant la précision P , ce tableau

5.6 rapporte les premières 10% des microarchitectures les plus prédisposées aux défauts, ainsi

que les dernières 10% qui sont les moins prédisposées aux défauts. Les résultats sont repré-

sentés sous le format de résumé en 5 chiffres (Min, Q1, Médiane, Q2, Max). Bien qu’il existe

des microarchitectures intéressantes dans chacun des deux systèmes OO séparément, nous

nous focalisons uniquement sur les microarchitectures communes pour les raisons suivantes :

– Les deux systèmes sont développés par deux équipes différentes.

– Ils ont des tailles différentes.

– Ils appartiennent à deux domaines d’applications différents.

Tableau 5.6 Les microarchitectures les plus et les moins prédisposées aux défauts des deux
systèmes Rhino et ArgoUml. Chaque ligne indique le résumé en 5 chiffres : Min, Q1, médiane,
Q3, Max

Variables Échantillon

Microarchitectures de taille
trois quatre cinq

(250) (3994) (52862)

Precision
Première 10% 41,44,47,52,67 42,45,48,54,83 41,43,46,52,84
Dernière 10% 0, 5, 9,11,13 0, 8,10,13,14 0, 2, 5, 7,22

F1
Première 10% 5,8,13,17,30 2,10,12,15,40 4,11,14,18,54
Dernière 10% 0,1, 1, 2, 5 0, 1, 3, 5,16 0, 2, 5, 7,22

nbRel
Première 10% 3,4,6,6,8 4,7,8,8,10 4,8,9,10,14
Dernière 10% 2,4,4,5,6 3,6,6,7,09 4,7,8,09,13

nbAssoc
Première 10% 2,3,4,5,6 2,5,6,7,10 2,7,8,9,14
Dernière 10% 0,2,2,3,4 0,3,4,5,08 0,4,5,6,11

nbAggr
Première 10% 0,1,1,2,4 4,7,8,8,10 4,8,9,10,14
Dernière 10% 0,1,1,2,2 3,6,6,7,09 4,7,8,09,13

nbInher
Première 10% 0,0,0,1,2 0,0,0,1,3 0,0,0,1,4
Dernière 10% 0,1,1,2,2 0,0,1,1,3 0,0,1,2,5

nbCycl
Première 10% 0,1,1,2,3 0,1,1,2,4 0,1,2,2,5
Dernière 10% 0,0,0,1,1 0,0,0,1,4 0,0,0,1,5

nbZones
Première 10% 1,1,2,2,9 1,1,1,1,6 1,1,1,1, 7
Dernière 10% 1,1,1,2,5 1,1,1,1,7 1,1,1,1,14

nbClasses
Première 10% 3,4,5,7,33 4,5,6, 9, 59 1,1,1,1, 7
Dernière 10% 3,4,5,7,18 4,5,7,12,133 1,1,1,1,14

nbVersions
Première 10% 1,4,5,6,8 1,3,4,5,8 1,2,3,5,8
Dernière 10% 1,3,4,5,8 1,2,3,5,8 1,2,3,4,8
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Donc, le choix des microarchitectures communes pourrait augmenter les chances de géné-

ralisation des résultats.

D’après la précision P , le tableau 5.6 montre la présence de certaines microarchitectures

particulièrement prédisposées aux défauts, et d’autres microarchitectures sans aucun défaut.

Nous constatons d’après la variable nbV ersions que les huit versions des deux systèmes Rhino

et ArgoUml contiennent certaines microarchitectures qui sont continuellement prédisposées

aux défauts.

Prenons comme exemple les microarchitectures de taille cinq. Rappelons que la précision

P est la proportion des classes boguées parmi l’ensemble des classes participantes aux mi-

croarchitectures. La précision P la plus élevée est P = 84% et l’unité de mesure la plus

élevée est F1 = 54%. Autrement dit, certaines microarchitectures sont particulièrement pré-

disposées aux défauts, et elles contiennent la majorité des classes boguées (c’est-à-dire il

existe un nombre important de classes boguées dans l’ensemble des classes participantes aux

microarchitectures). Par contre, il existe des microarchitectures sans aucun défaut (préci-

sion P = 0%, c’est-à-dire il n’y a aucune classe boguée dans l’ensemble des classes de ces

microarchitectures).

Analysons maintenant les informations de connectivité. Nous remarquons que les microar-

chitectures les plus prédisposées aux défauts sont les plus connectées par rapport à celles

les moins prédisposées aux défauts. En particulier, les microarchitectures ayant des défauts

contiennent généralement plusieurs relations d’associations. Lorsque nous évaluons la corréla-

tion 1 entre le nombre des relations d’associations dans les microarchitectures et la précision

P , nous trouvons que les deux corrélations de Spearman et Pearson donnent des valeurs

supérieures à 0,4 avec un niveau de confiance plus de 99% (les valeurs de corrélation obte-

nues sont similaires pour les relations cycliques). L’inverse semble être vrai pour les relations

d’agrégations et d’héritages qui ont tendance à être moins élevées dans la plupart des mi-

croarchitectures prédisposées aux défauts (les valeurs de corrélation sont environ -0,15).

Les informations de la présence et de la répartition des microarchitectures les plus et

les moins prédisposées aux défauts, indiquent que la plupart d’entre elles ne sont pas très

communes ou bien réparties sur le diagramme des classes. Généralement, elles sont reparties

sur une seule zone. Cependant, le nombre maximal des zones contenant les microarchitectures

les plus prédisposées aux défauts est égal à sept, ce qui est une exception remarquable. Ceci

1. La corrélation est le degré de liaison qui unit deux ou plusieurs variables.
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peut être expliqué par le pourcentage faible des classes boguées dans les deux systèmes.

Compte tenu du nombre relativement restreint des classes boguées dans les deux systèmes

Rhino et ArgoUml, les précisions P obtenues sont très intéressantes.

Figure 5.3 Exemple d’une microarchitecture prédisposée aux défauts avec une précision de
P = 81%

Nous illustrons dans la figure 5.3 une microarchitecture de taille quatre qui est prédisposée

aux défauts. Elle a une précision moyenne P = 81.25%. Cette microarchitecture se trouve

dans les deux versions 1.5R4, et 1.5R4.1 du système Rhino et dans les quatre versions 0.14,

0.15.6, 0.16, et 0.16.1 du système ArgoUml. Chaque classe participante à cette microarchi-

tecture communique avec les autres classes via la relation d’association.

En particulier, lorsque nous récupérons l’ensemble des microarchitectures ayant trois rela-

tions cycliques et dont chaque classe communique avec les autres, nous obtenons le résumé

en 5 chiffres (28, 44, 56, 67, 81). Ce résumé se rapproche de celui des microarchitectures les
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plus prédisposée aux défauts (42, 45, 48, 54, 83).

Finalement, nous pouvons donc conclure que la réponse à la question de recherche QR2

est positive, parce qu’il existe des microarchitectures communes entre les deux systèmes OO

Rhino et ArgoUml, qui n’ont aucun défaut, et d’autres qui sont fortement prédisposées aux

défauts.

5.3 QR3 : Prédisposition des microarchitectures aux changements

Tableau 5.7 Les microarchitectures les plus et les moins prédisposées aux changements qui
existent dans les deux systèmes Rhino et ArgoUml. Chaque ligne indique le résumé en 5
chiffres : Min, Q1, médiane, Q3, Max

Variables Échantillon

Microarchitectures de taille
trois quatre cinq

(250) (3994) (52862)

Precision
Première 10% 83,86,88,91,97 85,88,90,93,100 84,86,89,92,100
Dernière 10% 20,35,38,39,44 17,38,43,48, 50 10,42,47,50, 53

F1
Première 10% 3,5,6,9,27 4,5,6,8,22 5,8,9,12,37
Dernière 10% 0,1,1,2,13 0,2,3,5,33 0,3,6,11,55

nbRel
Première 10% 3,5,6,6,7 4,6,7,8,10 4,8,9,10,15
Dernière 10% 2,4,4,6,7 3,5,6,7,10 4,7,8, 9,13

nbAssoc
Première 10% 1,3,4,5,6 2,5,6,7,10 1,6,8,9,13
Dernière 10% 0,1,2,3,4 0,3,4,5,08 1,4,5,7,11

nbAggr
Première 10% 0,0,0,1,3 0,0,1,2,4 0,0,1,1,5
Dernière 10% 0,1,2,2,3 0,1,2,2,4 0,1,2,2,6

nbInher
Première 10% 0,0,1,1,2 0,0,0,1,4 0,0,0,1,5
Dernière 10% 0,1,1,2,2 0,0,1,1,3 0,0,1,1,4

nbCycl
Première 10% 0,1,1,2,3 0,1,1,2,4 0,0,1,2,5
Dernière 10% 0,0,1,1,2 0,1,1,2,3 0,0,1,1,4

nbZones
Première 10% 1,1,2,2,5 1,1,1,1, 5 1,1,1,1,10
Dernière 10% 1,1,1,2,5 1,1,1,1,11 1,1,1,1,10

nbClasses
Première 10% 3,4,5,7,26 4,5,6, 8, 90 5,6, 8,11,158
Dernière 10% 3,4,5,7,69 4,5,8,14,321 5,8,13,29,404

nbVersions
Première 10% 1,4,5,7,8 1,2,4,5,8 1,2,3,4,8
Dernière 10% 2,4,5,7,7 1,3,4,5,8 1,2,3,5,8

Le tableau 5.7 présente les microarchitectures communes entre les deux systèmes Rhino

et ArgoUml. En utilisant la précision P , ce tableau 5.7 rapporte les premières 10% des

microarchitectures les plus prédisposées aux changements, ainsi que les dernières 10% qui
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sont les moins prédisposées aux changements. Les résultats sont représentés sous le format de

résumé en 5 chiffres (Min, Q1, Médiane, Q2, Max). Pour les mêmes raisons mentionnées dans

la section de la question de recherche QR2 (voir la section 5.2), nous choisissons d’analyser

les microarchitectures communes entre les deux systèmes. Ce choix pourrait aussi augmenter

les chances de généralisation des résultats sur les changements.

Les résultats illustrés dans le tableau 5.7 montrent bien qu’il existe certaines microar-

chitectures particulièrement stables. Cependant, étant donné que les changements sont très

communs dans les deux systèmes choisis, nos données (avec une précision de P = 100%)

sont moins concluantes pour les microarchitectures les plus fréquemment changées. Nous

constatons d’après la variable nbV ersions que les huit versions des deux systèmes Rhino et

ArgoUml contiennent certaines microarchitectures qui sont continuellement prédisposées aux

changements.

Les informations de la connectivité des microarchitectures donnent des conclusions simi-

laires à la question de recherche RQ2. La majorité des microarchitectures prédisposées aux

changements contiennent plus de relations d’associations et moins de relations d’agrégations

et d’héritages.

Vu le nombre élevé des classes modifiées dans les deux systèmes Rhino et ArgoUml, les

microarchitectures avec des précisions P faibles méritent plus de traitement.

La figure 5.4 illustre une microarchitecture particulièrement stable. Cette microarchitecture

se trouve dans la version 1.6R1 du système Rhino, et dans la version 0.17.5 du système

ArgoUml. Cette microarchitecture a une précision moyenne P = 30%. Elle est comme un

patron avec la forme d’une cascade.

5.4 Limites de validité

Nous avons montré précédemment dans la section 5.1 que l’algorithme SGFinder peut

fonctionner sur les petits et les moyens systèmes orientés objets. Afin de chercher les mi-

croarchitectures des grands systèmes, nous partitionnons le diagramme des classes de ces

systèmes soit en composantes, ou en sous-systèmes, soit nous introduisons des méthodes

heuristiques.
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Figure 5.4 Exemple d’une microarchitecture sans défauts avec une précision P de 30%

5.4.1 Limite de validité de construction

Cette limite concerne la relation entre la théorie et l’observation. Il est principalement

dû à la nécessité d’une validation manuelle et d’une analyse qualitative. En effet, nous ne

pouvons pas donner une interprétation spécifique aux microarchitectures prédisposées aux

défauts et aux changements. Nous ne pouvons pas deviner l’intention des développeurs sur

les structures des classes crées pendant l’implémentation. Donc, nous supposons que nous

connaissons seulement le domaine d’application du système traité, les classes, et les relations

entre elles.

5.4.2 Limite de validité interne

Cette limite est principalement liée à toute confusion pouvant influencer les résultats obte-

nus. En particulier, cette limite peut être due à la distinction entre les relations d’associations

et d’agrégations, aussi, elle peut être liée au nombre des défauts et des changements attribués
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aux classes du système traité. Nous évitons plusieurs facteurs, en utilisant des outils solides,

et en réutilisant les données des défauts fournies soit par d’autres chercheurs, soit par les

applications de suivi des bogues et des changements.

5.4.3 Limite de validité externe

Cette limite concerne la généralisation des résultats obtenus. Notre étude est limitée

à deux systèmes Rhino et ArgoUml, sachant que notre approche est faisable sur d’autres

systèmes de taille équivalentes. En effet, nous ne pouvons pas garantir que nous obtenons les

mêmes microarchitectures communes qui sont prédisposées aux défauts et aux changements.

Nous croyons que le choix des systèmes répond à cette limite parce que les deux systèmes

choisis appartiennent à deux différents domaines d’applications, ils ont des tailles différentes,

et ils sont développés par deux équipes différentes.

5.4.4 Limite de validité de la conclusion

Cette limite concerne la relation entre le traitement et les résultats obtenus. Nous ne

prétendons aucune relation entre les microarchitectures et les caractéristiques indésirables.

En effet, le jugement de l’existence de telle relation peut-être confirmé par l’expérience des

développeurs. Dans cette étude, nous mettons en évidence les microarchitectures les plus et

les moins prédisposées aux défauts et aux changements, en utilisant la précision P et le rappel

R comme unités de mesure.

5.5 Conclusion

Dans ce chapitre, nous avons présenté, et analysé les résultats trouvés par SGFinder.

Nous avons montré que notre outil SGFinder permet de recenser les microarchitectures des

petits et moyens systèmes OO. Nous avons utilisé les informations de connectivité, et de

présence des microarchitectures dans les différentes versions des deux systèmes OO Rhino et

ArgoUml, pour chercher la relation entre ces microarchitectures et leurs propriétés telles que

les changements et les défauts.
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CHAPITRE 6

CONCLUSION

Les microarchitectures existantes dans les systèmes OO sont des modèles (i.e. structures

de classes et des relations entre elles) conçus pour réaliser un ou plusieurs composants d’un

logiciel. Dans le cadre de ce projet, nous avons présenté un nouvel algorithme efficace, et

un outil appelé SGFinder pour énumérer toutes les microarchitectures d’une taille donnée.

Le nouvel outil SGFinder utilise une technique d’énumération efficace pour détecter toutes

les microarchitectures des petits et moyens systèmes orientés objets. Cet outil est capable

de regrouper les microarchitectures identiques dans des catégories, en utilisant la librairie

existante nauty (voir McKay, 1981). N. De plus, il nous permet d’étudier les propriétés

associées aux microarchitectures telles que leur stabilité, et leur prédisposition aux bogues et

aux défauts.

Dans les sections suivantes, nous synthétisons les travaux que nous avons effectué pendant

notre recherche, ensuite, nous exposons la limitation de la technique proposée, puis, nous

finissons par les orientations et les réalisations éventuelles pour améliorer notre travail.

6.1 Synthèse des travaux

Pour valider la technique de recensement des microarchitectures des systèmes orientés

objets, et atteindre les objectifs visés par notre recherche,

– Nous avons testé l’algorithme SGFinder sur :

i. Huit versions de l’interpréteur JavaScript/ECMAScript (Rhino 1) intégré dans les

applications Java de la communauté Mozilla, et

ii. Huit versions de l’outil d’analyse et de conception en UML des systèmes orientés

objets (ArgoUml 2)

– Nous avons démontré que notre algorithme SGFinder est capable de recenser toutes les

microarchitectures de taille trois, quatre et cinq appartenant aux systèmes Rhino1 et

ArgoUml2.

– Nous avons effectué de nombreuses opérations pour définir les rôles joués par les classes,

identifier les microarchitectures dans les trois côtés du tunnel, et tracer l’évolution des

1. http ://www.mozilla.org/rhino/
2. http ://argouml.tigris.org/
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microarchitectures entre les différentes versions. Ces opérations ont été réalisées lors de

cette recherche, et peuvent servir pour des éventuelles publications et travaux futures.

– Nous avons concentré notre étude sur les deux propriétés de la stabilité et des défauts

(bogues) des microarchitectures.

– Nous avons concentré notre recherche sur les microarchitectures les plus boguées, ainsi

que sur celles les moins boguées. De même, cette étude s’est concentrée sur les mi-

croarchitectures les plus impliquées dans les changements, et également celles les moins

impliquées dans les changements.

– Nous avons rapporté quelques microarchitectures les plus intéressantes relativement à

leurs connectivités (relations entre les classes), à leurs présences dans les différentes

versions des systèmes traités, et à leurs nombre d’occurrence dans le diagramme des

classes.

6.2 Limitations de la solution proposée

A travers ce travail, nous avons pu démontrer que l’algorithme SGFinder est capable de

recenser toutes les microarchitectures de taille trois, quatre, et cinq appartenant aux petits et

moyens systèmes orientés objets. Par ailleurs, nous avons vu que le problème de recensement

de toutes les microarchitectures est un problème exponentiel. Donc, parmi les limitations

notables de nos travaux, nous pouvons toutefois distinguer les deux principales limitations

suivantes :

– Une limitation sur la taille des microarchitectures et des systèmes : La mé-

thode proposée pour recenser toutes les microarchitectures dépend toujours de la taille

des microarchitectures à trouver, ainsi que de la taille des systèmes orientés objets

à traiter. En effet, notre algorithme SGFinder ne peut pas garantir la recherche de

toutes les microarchitectures d’une taille supérieure à cinq des petits et moyens sys-

tèmes orientés objets. De plus, l’outil SGFinder ne peut pas garantir le traitement des

grands systèmes.

– Une limitation technique des ressources matérielles : Nous notons principale-

ment le fait que nous traitons un problème exponentiel, qui a une conséquence reliée

directement aux ressources matérielles telles que la taille de la mémoire RAM, et la

vitesse du CPU. Cependant, nous ne pouvons ni prévoir le temps total d’exécution

que l’algorithme SGFinder peut prendre pour détecter toutes les microarchitectures,

ni l’espace mémoire à allouer pour stocker les résultats reliés à la recherche de ces mi-

croarchitectures. En effet, ce problème est lié principalement à la densité du graphe

représentant le système orienté objet à traiter.
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6.3 Améliorations futures

Malgré que nous ayons atteint nos objectifs de recherche, il reste encore d’autres travaux

à faire dans l’intention d’optimiser l’algorithme SGFinder, d’effectuer une analyse qualitative

pour documenter les microarchitectures stables, et les analyser de la même façon que les

précédentes études réalisées sur les patrons de conception. Ces éléments sont détaillés ci-

dessous :

i. Optimisation de l’algorithme : Lorsqu’un logiciel est mis en œuvre, il rentre dans sa

phase de maintenance lui rapportant des changements sur le code comme les corrections

des bogues et l’ajout des nouvelles fonctionnalités. De plus, la maintenance a un grand

impact sur la génération de plusieurs versions. Les versions contiennent souvent le

même diagramme des classes avec quelques modifications mineures sur la structure de

ce diagramme des classes. Ces modifications consistent à ajouter ou enlever certaines

classes ou méthodes. Donc, dans le cas général, la plupart des changements apportés

au code ne touchent pas la structure globale des classes et les relations entre elles.

Donc, afin d’optimiser le temps global d’exécution de l’algorithme SGFinder et le rendre

efficace, il faut recenser les microarchitectures d’une manière incrémentale c’est-à-dire

nous ne devons pas énumérer de nouveau les microarchitectures existantes dans le dia-

gramme des classes qui est commun entre les versions. Donc, avec cette technique, nous

réduisons le temps d’exécution de l’algorithme par rapport à la technique classique où le

recensement des microarchitectures est effectué sur le diagramme des classes de chaque

version au complet. En conséquence, nous exploitons les résultats de recensement des

microarchitectures d’une version précédente pour trouver les microarchitectures d’une

version courante.

ii. Rôles des classes : Une éventuelle étude possible serait de traiter et analyser les

microarchitectures de la même façon que les patrons de conception c’est-à-dire étudier

les microarchitectures en définissant le rôle attribué à chacune des classes qui les com-

pose, et de définir les particularités structurelles associées à chaque rôle. Par analogie

aux sous-graphes, il faudrait prendre en compte le type et le nombre d’arcs sortants et

entrants au niveau de chaque sommet qui fait partie de l’ensemble des sommets d’un

sous-graphe.

iii. Généraliser l’étude : Une autre étude possible serait donc d’étendre notre recherche

sur plusieurs systèmes orientés objets. Pour les grands systèmes, nous pouvons les dé-

composer en plusieurs sous-systèmes en utilisant soit les techniques existantes de décou-

page des graphes en sous-graphes connexes, soit en traitant les composants du logiciel

un à la fois indépendamment des autres composants.
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iv. Microarchitectures stables : Il est possible de chercher les microarchitectures stables

qui se trouvent à l’intérieur du tunnel et dont leur nombre d’occurrences augmente

toujours entre les différentes versions. Donc, nous pouvons utiliser les résultats trouvées

par notre algorithme SGFinder concernant la progression des microarchitectures et leurs

présences dans les tunnels pour atteindre cet objectif.

v. Analyser les microarchitectures : Un autre domaine de recherche possible serait

l’analyse qualitative qui consiste à documenter les microarchitectures intéressantes pour

le développement des logiciels. Ces microarchitectures donc, peuvent exploiter par les

concepteurs et les architectes logiciels pour créer le diagramme des classes d’un système

orienté objet. Cette analyse exige une compréhension approfondie de l’historique du

projet, de l’évolution du développement du logiciel, ainsi que de l’interaction avec les

différents groupes de développement.
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software. B. Scherlis, éditeur, Proceedings of 5th international symposium on Foundations

of Software Engineering. ACM Press, 10–16.



64

TONELLA, P. et ANTONIOL, G. (2001). Inference of object oriented design patterns.

Journal of Software Maintenance - Research and Practice, 13, 309–330.

TRAVASSOS, G. H. (1999). Detecting defects in object oriented designs : Using reading

techniques to increase software quality. In Conference on Object-oriented Programming

Systems, Languages Applications (OOPSLA. 47–56.

TSANTALIS, N., CHATZIGEORGIOU, A., STEPHANIDES, G. et HALKIDIS, S. (2006).

Design pattern detection using similarity scoring. Transactions on Software Engineering,

32.



65

ANNEXE A

Concepts de fréquences

Définitions

La fréquence d’un sous-graphe G′ dans un graphe G est définie par le nombre des sous-

graphes identiques à G′ dans G. Il y a trois concepts raisonnables pour déterminer la fréquence

d’un sous-graphe. Ces concepts sont basés sur des restrictions de partage des éléments du

graphe G (sommets et arcs) (voir la figure A.1). Dans le premier concept C1, il y a aucune

restriction c’est-à-dire les éléments du graphe peuvent être utilisés plusieurs fois. Ce concept

C1 est utilisé pour chercher le nombre total des occurrences des sous-graphes. Le deuxième

concept C2 permet de partager les sommets, mais pas les arcs. Donc, les sous-graphes iden-

tiques ne peuvent pas partager les arcs entre elles. Nous avons utilisé ce concept C2 pour

définir des zones. Dans le troisième concept C3, les sous-graphes identiques ne partage ni les

sommets ni les arcs.

Figure A.1 Concepts de fréquences. Pour le concept C1, il y a quatre occurrences, pour le
concept C2, il y a deux occurrences, et pour le concept C3, il y a une seule occurrence.
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ANNEXE B

Algorithme nauty

Utilisation de l’algorithme nauty

Pour chercher la matrice d’adjacence représentant la forme canonique, nous avons utilisé

la fonction nauty suivante :

nauty(g, lab, ptn, active, orbits, options, stats, workspace, worksize,m, n, canong)

Voici la description des paramètres importants de la fonction nauty.

– g : Le sous-graphe duquel nous voulons chercher la forme canonique.

– lab : Un vecteur contenant les indices des sommets de g.

– ptn : Un vecteur indiquant les groupes des sommets ayant la même étiquette.

– options : Définit certaines caractéristiques comme le type du sous-graphe à traiter s’il

est orienté (options.digraph = TRUE) ou non, et s’il faut chercher la forme canonique

(options.getcanon = TRUE) ou non, etc.

– canong : Retourne la matrice d’adjacence qui représente la forme canonique.

L’idée principale de l’algorithme nauty est de chercher la forme canonique d’un graphe

ayant des sommets coloriés (i.e. ayant des étiquètes sur les sommets). Donc, pour chercher

la forme canonique d’un sous-graphe G′ étiqueté (i.e. ayant des étiquettes sur les arcs),

nous devons transformer le sous-graphe G′ en un autre sous-graphe G′′ dont l’ensemble des

sommets est composé par tous les sommets de G′ plus des sommets additionnels remplaçant

les arcs ayant des étiquettes différents de ”1” (voir McKay, 2009).

Comme l’algorithme nauty traite l’isomorphisme des graphes coloriés, chaque groupe de

sommets est représenté par une seule couleur tel que :

i. Le premier groupe contient tous les sommets de G′.

ii. Le deuxième groupe contient les nouveaux sommets ajoutés pour remplacer les arcs

ayant des étiquettes identiques.

iii. Et ainsi de suite.

De plus, le nombre d’arcs du nouveau sous-graphe G′′ est égale au nombre d’arcs de G′

plus le nombre des sommets additionnels.
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Exemple : Considérons l’exemple illustré par la figure B.1. Cet exemple montre bien

comment élargir le sous-graphe G′ induit par l’ensemble des sommets {1, 2, 6, 7} (tous les

sommets sont coloriés par une seule couleur). Premièrement, nous constatons que certaines

étiquettes associées aux arcs de G′ sont différents de ”1”. Il s’agit donc ici les trois arcs (1,2),

(1,6), et (7,1). Donc, il faut élargir le sous-graphe G′ pour pouvoir utiliser nauty correctement.

Dans ce cas, nous procédons aux étapes suivantes :

i. En premier lieu, les arcs (1,2) et (7,1) du graphe G′ ont la même étiquette. Nous devons

donc les remplacer respectivement par deux nouveaux sommets A et B.

ii. En deuxième lieu, nous ajoutons aussi un autre sommet C entre les sommets de G′

reliés par l’arc (1,6) qui a l’étiquette 13 .

Donc, l’ensemble des sommets du nouveau sous-grapheG′′ est défini par {1, 2, 6, 7, A,B,C},
et qui contient trois groupes de couleurs {1, 2, 6, 7}, {A,B}, et {C}.

Sous-graphe G′ Nouveau sous-graphe G′′

0 3

2

1

7

4

6

5

1

1

112

1 12

12 1

13

2

1

7

6

A B

C

1

1

1
1

1

1 1

M ′ =


0 12 13 0
1 0 0 0
0 0 0 0
12 0 0 0

 Sommets 1 2 6 7 A B C

lab 0 1 2 3 4 5 6

ptn 1 1 1 0 1 0 0

M ′′ =



0 0 0 0 1 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1



Figure B.1 Élargissement d’un sous-graphe à un autre sous-graphe

La figure B.1 montre aussi les valeurs des paramètres de la fonction nauty (B) (g = M ′′,

lab et ptn) pour chercher la forme canonique de G′.
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En résumé, la matrice d’adjacence M ′′ de chaque sous-graphe G′′ doit être fournie à la

fonction nauty pour obtenir la matrice d’adjacence M ′′
new qui représente la forme canonique

cl(M ′′
new) de G′′. Pour générer la forme canonique cl(G′) du sous-graphe G′, nous procédons à

la relation inverse c’est-à-dire nous utilisons la forme canonique de G′′, puis nous remplaçons

les étiquettes des sommets additionnelles par les étiquettes des arcs de G′ correspondants.
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ANNEXE C

Guide d’utilisation de SGFinder (Version 1.0)

Introduction

L’objectif de cette section est de fournir un guide complet permettant aux utilisateurs de

pouvoir utiliser notre outil SGFinder.

Qu’est-ce l’outil SGFinder ?

SGFinder est une application console destinée à l’énumération des microarchitectures d’un

système orienté objet. L’outil SGFinder est capable d’explorer des systèmes ayant jusqu’à

1716 classes et 10287 relations entre elles pour chercher des microarchitectures de taille allant

jusqu’à cinq sans avoir de problème de débordement de mémoire. SGFinder est développé en

C++ sous l’IDE Qt de Nokia. De plus, il est conçu pour fonctionner sur plusieurs plateformes.

Qu’offre l’outil SGFinder ?

– Il permet de recenser toutes les occurrences des microarchitectures d’un système orienté

objet et compter également leurs présences dans les différentes régions (zones).

– Il est capable de regrouper les microarchitectures identiques.

– Il fournit les rôles joués par les classes.

– Il identifie les microarchitectures dans les trois côté du tunnel (intra-tunnel, extra-

tunnel, et inter-tunnel).

Démarrage de l’outil SGFinder

Cette section fournit les paramètres disponibles pour utiliser l’outil SGFinder de la re-

cherche des microarchitectures. L’utilisation de SGFinder est assez simple. Il suffit donc de

passer tous les paramètres nécessaires pour l’exécuter. Le message d’aide suivant est affiché

si les paramètres obligatoires n’ont pas été passés à l’outil SGFinder.

Usage : SGFinder options[inputfile...]

-h –help ”Display this usage information”

-i –input graphfile ”Input Graph File Name”

-o –output folder ”Output Folder”
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-s –size subgraphsize ”Subgraph size”

-b –start vertex ”Start vertex”

-e –end vertex ”End Vertex”

-t –tunnel classesfile ”Tunnel Classes File”

Donc, pour lancer l’outil SGFinder, vous devez taper la commande suivante :

SGFinder –i inputfile –o outputfolder –s size –b vertexn –e vertexm –t tunnelfile

Paramètres de l’outil SGFinder

0 3

2

1

7

4

6

5

1

1

112

1 12

12 1

13

Figure C.1 Un sous sous-graphe extrait de la version 1.7R1 de l’application Rhino.

• Graphe du système en entrée (-i inputfile) (paramètre obligatoire) : La pre-

mière étape est de choisir le fichier en entrée contenant le graphe représentant le système

à analyser. Le fichier d’entrée doit contenir une ligne pour chaque arc du graphe à l’ex-

ception de la première ligne qui contient le nombre de sommets du graphe. Les lignes

suivantes doivent contenir trois entiers séparés par un espace, et doit être ressemblé à

la ligne suivante :

int1 int2 int3

Les deux entiers int1 et int2 représentent respectivement l’extrémité initiale et l’extré-

mité finale de l’arc, et int3 représente l’étiquette associée à cet arc. Pour le graphe de

la figure C.1, le contenu du fichier en entrée est indiqué dans la figure C.

• -s size (paramètre obligatoire) : Le paramètre size représente la taille des microar-

chitectures à trouver c’est-à-dire le nombre des classes présentes dans les microarchi-

tectures.

• -o outputfile (paramètre optionnel) : Après l’exécution de l’outil SGFinder, les

résultats seront stockés dans le répertoire outputfolder. Si le répertoire de stockage n’est

pas indiqué, l’outil SGFinder sauvegarde les résultats dans le répertoire courant. Pour

plus de détails sur le format et le contenu des fichiers contenant les résultats, il faut

consulter la section C.
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8
0 3 1
1 3 1
1 2 12
1 6 13
2 3 1
2 1 1
2 4 12
4 5 1
7 1 12

Figure C.2 Fichier d’entrée de l’outil SGFinder basés sur le sous sous-graphe de la figure
C.1.

• -b vertexn et –e vertexm (paramètres optionnels) : Les deux paramètres

consistent à énumérer toutes les microarchitectures contenant la classe de départ numé-

rotée par vertexn, puis la classe numérotée par vertexn+1, et ainsi de suite jusqu’à la

classe numérotée par vertexm. Par défaut, le paramètre vertexn=0 et le paramètre

vertexm égale l’ordre du graphe en entrée.

La consultation des résultats

À la fin de l’exécution de l’outil SGFinder, les résultats de recherche des microarchitectures

seront stockés dans quatre fichiers au format CSV.

i. Fichier des fréquences : Ce fichier est nommé avec l’extension ”.frq”. Il contient

un en-tête comprenant différentes informations comme le temps d’exécution de l’outil

SGFinder, le nombre total des microarchitectures trouvées par SGFinder, le nombre

des microarchitectures différentes, et la taille des microarchitectures. Le reste du fichier

contient des lignes sous le format suivant :

HashCode,Int1,Int2

HashCode est un code représentant la forme canonique d’une microarchitecture don-

née.

Int1 est le nombre d’occurrence d’une miroarchitecture dans le système orienté objet

donné en entrée à l’outil SGFinder.

Int2 représente le nombre des zones contenant cette microarchitecture.

ii. Fichier des structures : Ce fichier est nommé avec l’extension ”.sgr”. Chaque ligne

de ce fichier représente une catégorie c’est-à-dire une seule microarchitecture identique.
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Ce fichier est exploité par l’outil SGViewer (section D) pour visualiser graphiquement

les microarchitectures. Donc, le format d’une ligne définissant une microarchitecture

est la suivante :

HashCode,Int1,Int2,. . . ,Intk

Le HasheCode est un entier qui représente la forme canonique d’une structure quel-

conque. Le reste des entiers (Int1, Int2,. . . ,Intk) représente les numéros des classes

qui font partie d’une microarchitecture donnée.

iii. Fichier des rôles : Ce fichier est nommé avec l’extension ”.rol”. Les lignes de ce fichier

définissent les rôles joués par les classes dans les microarchitectures trouvées par l’outil

SGFinder. Chaque ligne prend le format suivant :

HashCode,Int1,Int2,Int3

HashCode est un code représentant la forme canonique d’une microarchitecture don-

née.

Int1 détermine le rôle joué par la classe numérotée par Int2. Cette valeur est toujours

dans l’intervalle [0..k − 1] où k est la taille des microarchitectures.

In2 identifie le numéro de l’une des classes d’une microarchitecture.

Int3 est le nombre d’occurrences des classes numérotées par Int2 dans toutes les mi-

croarchitectures identiques, et qui sont identifiées par le code unique HashCode.

iv. Fichier des tunnels : Ce fichier est nommé avec l’extension ”.tnl”. Les lignes de

ce fichier identifient les microarchitectures dans les trois côtés du tunnel (intra-tunnel,

extra-tunnel, et inter-tunnel). Elles sont sous le format suivant :

HashCode,Int1,Int2,Int3

HashCode est la forme canonique d’une microarchitecture donnée.

Int1 est le nombre des microarchitectures qui sont à l’intérieur du tunnel.

In2 est le nombre des microarchitectures qui ont des classes à l’intérieur et d’autres

classes à l’extérieur du tunnel.

Int3 est le nombre des microarchitectures qui sont à l’extérieur du tunnel.

License

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met :
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• SGFinder is a free tool, it may be used, modified and distributed under the same terms

as Qt Nokia. See the file COPYING in the Qt distribution. Note that SGFinder uses

the nauty program version 2.4 by Brendan McKay (voir McKay, 2009) ; hence nauty’s

license restrictions also apply to your use of SGFinder.

• Redistributions in binary form must reproduce this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

ABSOLUTELY NO GUARANTEES OR WARRANTIES ARE MADE CONCERNING

THE SUITABILITY, CORRECTNESS, OR ANY OTHER ASPECT OF THE DISTRI-

BUTED FILES. ANY USE IS AT YOUR OWN RISK (ANY WARRANTY YOU MIGHT

DREAM OF).
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ANNEXE D

Guide d’utilisation de SGViewer

Qu’est-ce l’outil SGViewer ?

SGViewer est une application Windows permettant de visualiser en mode graphique les

microarchitectures trouvées par l’outil SGFinder vu précédemment dans la section C. L’ou-

til SGViewer utilise la librairie graphviz 1 pour engendrer les sous-graphes représentants les

microarchitectures existant dans le diagramme des classes des systèmes OO. Il est entière-

ment développé en C++ sous l’IDE Qt de Nokia. De plus, il peut fonctionner sur plusieurs

plateformes.

Démarrage rapide

Cette section décrit les différentes sections de l’interface graphique de l’outil SGViewer

sans rentrer trop dans les détails. La figure D.1 montre la fenêtre principale de l’outil SGVie-

wer.

Section 1 : La première étape consiste à choisir le fichier contenant le graphe (fichier avec

l’extension ”.grp”) représentant le diagramme des classes d’un système orienté objet.

Les quatre fichiers indiqués dans la section C ayant les extensions ”.frq”, ”.grp”, ”.sgr”,

et ”.rol” doivent être placés dans le même répertoire.

Une fois que le fichier contenant le graphe est sélectionné, l’outil SGViewer affiche

• La taille des microarchitectures énumérées par l’outil SGFinder dans le champ ”Size”.

• La liste des microarchitectures récurrentes dans la section 3 de la figure D.1.

• Le nombre total des microarchitectures récurrentes dans le champ ”Frequents”.

• Le nombre total des occurrences des microarchitectures dans le champ ”Instances”.

Section 2 : Cette section permet de chercher une microarchitecture bien spécifique, en

utilisant son ”Hash Code” pour visualiser le sous-graphe représentant sa structure.

Section 3 : Cette partie affiche la liste des microarchitectures identiques, le nombre d’oc-

currences de chaque structure, et le nombre des zones contenant les microarchitectures

identiques.

Section 4 : Cette section affiche le rôle joué par les classes participantes à la microarchitec-

ture sélectionnée. Le rôle est défini par l’ordre des classes dans la matrice d’adjacence

1. http ://www.graphviz.org/
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Figure D.1 Aperçu de la fenêtre principale de SGViewer

retournée par l’algorithme nauty (voir McKay, 1981). En effet, pour afficher les rôles

joués par les classes, il faut sélectionner une microarchitecture de la liste des microar-

chitectures identiques (voir la section 3).

Section 5 : Cette section affiche l’ensemble des classes participantes aux microarchitectures

identiques.

Section 6 : Le bouton ”View” permet d’afficher la fenêtre de visualisation graphique du

sous-graphe représentant la microarchitecture sélectionnée. Cette fenêtre est illustrée

par la figure D.2. Elle contient les sections suivantes :

Section a : Cette section affiche les rôles joués par les classes participantes à la mi-

croarchitecture sélectionnée.

Section b : Cette section affiche la liste des classes participantes à la microarchitec-

ture sélectionnée.

Section c : Cette section affiche le sous-graphe représentant la structure des classes et

les relations entre elles. Le sous-graphe est généré à l’aide de la librairie graphviz,

et stocké dans le répertoire contenant l’exécutable de l’outil SGViewer.
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Figure D.2 Représentation graphique des microarchitectures
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