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RESUME

Les erreurs volumétriques et géométriques des machines-outils sont dues aux imperfections dans
le procédé de construction, a l'usure et a des facteurs environnementaux. La compensation d'erreur
logicielle est une alternative a la correction physique qui permet de réduire les erreurs
systématiques et d’augmenter la précision lors de I’usinage de piéces. Une méthode de
compensation logicielle courante consiste en [’utilisation de tables de compensation CNC
définissables par l'utilisateur. La table de compensation des machines-outils a trois axes est
populaire pour compenser les erreurs volumétriques de mouvement de translation de la pointe de
I’outil ou le maillage 3D utilise I'espace articulaire mécanique comme entrée et sortie. Les valeurs
de compensation requises a chaque nceud du maillage sont optimisées sur la base des modéles de
parametres d'erreur géométrique de la machine. L'efficacité de la compensation est mesuré a l'aide
d'un test de barre a billes 3D le long des méridiens d'un espace hémisphérique. Les résultats
montrent une amélioration de plus de 82% de la non-sphéricité de la trajectoire de I'outil
relativement a I’espace de travail. Pour les machines-outils a cing axes, I'utilisation de tables de
compensation complexes a été explorée. Ces tables complexes peuvent étre combinés a l'aide de
multiplication et de sommation. Dans un modele préliminaire, 25 pseudo tables, 5 tables par axe,
sont combinées a 1’aide de sommations et remplis pour les deux modeles d'erreur. Toutes les
fonctions de table sont simulées par des polynémes de troisiéme degré. Le systeme d'équations est
linéarisé en générant la jacobienne des coefficients de la table. Les erreurs géométriques et
volumétriques sont comparées avant et apres compensation avec une compensation d'erreur plus
de 63%. Un autre modéle de compensation d'erreur basé sur une table de compensation, inspiré du
calcul de la jacobienne et de la jacobienne inverse, est proposée. Cette méthode permet de faire
ressortir une variété de termes trigonométriques qui sont utilisés pour peupler les tables de
compensation. Ce schéma augmente la compensation d'au moins 32% sur le modéle a base
polynomiale. Le dernier schéma de compensation basé sur une table de compensation qui a été
étudié utilise un modele variationnel direct et inverse linéarise exact représentant la relation entre
les paramétres d'erreur et les corrections nécessaires a la compensation. Pour la machine-outil
testée, 40 tableaux ont été créés dans le contréleur Siemens 840D pour compenser 13 parameétres

d'erreur. Une compensation de 79% des erreurs volumétriques est obtenue. Les normes des erreurs
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volumétriques estimées moyennes sont réduites de 44 pm avant compensation a 9 um apres

compensation.
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ABSTRACT

Machine tool volumetric and geometric errors occur during to initial construction imperfections,
and subsequent wear and tear and environmental factors. Software error compensation is an
alternative to physical correction to reduce systematic errors and achieve more accurate machined

parts. A practical software compensation method is the use of CNC user definable look up tables.

Three axis machine tools lookup table are common for the purpose of tool tip translational
volumetric error compensation. The 3D mesh grid uses the mechanical joint space as input and
output. The required compensation values at each mesh grid node are optimised based on one of
two machine geometric error parameter models. The compensation effectiveness is tested using a
3D ball-bar test along meridians of a hemispherical space. The results show an improvement over

82% of the out-of-sphericity of the tool trajectory relative to the workpiece frame.

For five-axis machine tools the use of complex compensation tables is studied. Such complex tables
can be combined using multiplication and summation functionalities. In a preliminary model, 25
pseudo tables, 5 tables per axis, are combined by summation functionality and populated for the
two error models. All table functions are simulated by polynomials of degree three. The system of
equations is linearized by generating the sensitive Jacobian of the table coefficients. The geometric
and volumetric errors before and after compensation are compared showing an error compensation
of over 63%.

Another table-based error compensation model is proposed which is inspired by the Jacobian and
the inverse Jacobian of command which leads to variety of trigonometric terms to populate the

tables. This scheme increases the compensation by at least 32% over the polynomial based model.

The last table-based compensation scheme studied implements an exact linearized forward and
inverse variational model representing the relationship between the error parameters and the
command corrections required for compensation. For the tested machine tool, 40 tables were
created in the Siemens controller 840D for compensating 13 error parameters. Compensation of
79% of the volumetric errors is achieved. The mean estimated volumetric error norms are reduced

from 44 pum before compensation to 9 pum after compensation.
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CHAPTER 1 INTRODUCTION

Machine tool error compensation becomes more important not only due to producing more
complicated parts with tighter tolerances but also to automate the process of keeping a machine at
its best accuracy potential. To maintain the maximum possible accuracy of the machine tools under
production mechanical maintenance such as applying overhaul, repairing parts and assemblies
might be useful especially when the errors are large. However, there are some software methods
by which small errors of micrometers can be compensated without mechanical correction which
are generally time and resource consuming. Since the machine is an open kinematic chain, its
geometric errors affect the relative movement of the tool to the workpiece. Hence, by correcting

this relative movement, the influence of the geometric errors on the tool tip can be reduced.

Among different software methods, using lookup tables is attractive because it is more practical
for the user to have the command correction automatically done in comparison with G-code
compensation in which the user modifies the G-code program. However, generating the complex
tables or modifying the control parameters requires a deep understanding of the errors, machine
tool kinematics and joint correction. To generate complex tables, a precise model of geometric
parameters and the optimization method is used. There is a lack of knowledge of producing such
complex tables which can mimic the behaviour of kinematic-based error compensation in which
the controller uses the tables to assign compensation value to every machine tool command. This

thesis aims to propose strategies and techniques to answer the following main research questions:

e How does table-based error compensation capability in the controller can improve

machine tool accuracy?
The detailed questions relative to the main one are;
e Which criteria indicate machine tool error compensation?

e What is the relationship between the geometric errors and the command corrections

required for volumetric error compensation?
e How to optimize and predict joint correction?
e Is the number of table entries important? If yes, How to optimize them?

e How to build compensation tables to mimic the kinematic-based error compensation?



e How many tables are required to fully compensate a set of errors in a machine tool?

1.1 Objectives

The main objective is to exploit the use of the capability of current indigenous software
compensation tables in machine controllers and to explore solutions where shortfalls are identified.

The specific objectives are defined as;

1. Correct translational errors using three-dimensional error compensation with optimized

mesh grid.

2. Propose a simplified table-based error compensation model in which the summation

functionality is participated to correct geometric and volumetric errors.

3. Introduce a more complex table-based error compensation model with multiplication and
summation functionalities with trigonometric terms as the table functions to correct

geometric and volumetric errors.

4. ldentify a table-based error compensation model, which behaves close to kinematic-based

error compensation to correct geometric and volumetric errors.

1.2 Hypothesis

A table-based error compensation model can be produced that behaves like kinematic-based error

compensation.

The geometric and volumetric error compensation is dependent on the numbers of mesh grids built

on the machine tool joint space.

The numbers of tables required for geometric and volumetric error compensation are dependent on

the magnitude of different geometric errors.

Multiplication and summation functionalities may be required in generating table-based error

compensation to correct different geometric errors.



1.3 Assumptions

e The machine is supposed to have rigid body behaviour resulting in neglecting error

variation of one component while moving on the other component.
e The machine tool controller is supposed to track all the input data.
e Compensation algorithm is applied on repeatable errors.

e The geometric error parameters and volumetric errors obtained using a SAMBA calibration

process are reliable.

e Although this project investigates the dynamic and thermal-induced deviations resulting in
some geometrical and volumetric deviations, it does not directly involve the dynamic and

thermal errors.



CHAPTER 2 THEORY AND LITERATURE REVIEW

2.1 Machine tool deviations

Hocken defined the error as “the difference between the actual response of a machine to a command
issued according to the accepted protocol of that machine's operation and the response to that
command anticipated by that protocol” (R. J. Hocken, 1980). A change in geometry of the
components like the tool, spindle shaft, housing, frame and guideways, bearings, drives and fixtures
leads to position and orientation error of the end-effector relative to the workpiece. The influence
of machine imperfections on the machined part dimensions and geometry appears as the volumetric
deviation. The overall machine imperfections may come from the interaction between several error
sources like kinematic errors, thermal effects, machining forces, loads, contouring and servo errors.
Hocken (R. J. Hocken, 1980) classified these discrepancies into two general classes as quasi-static
errors and dynamic errors. By neglecting the influence of a machine’s particular operating
conditions, the sources of quasi-static errors contain geometric deviations, the error induced by the
forces and deadweight of the machine components and thermal errors. Those errors are almost
constant or slowly vary in time. Dynamic error, the consequence of the machine’s dynamic
behaviour and machining conditions during the cutting operation, is classified by Hocken into sub-
categories, namely vibration of the machine structure, spindle error motions, tool deflection and
servo control and contouring errors (R. J. Hocken, 1980) (Figure 2.1). Some major error sources

are discussed in the following.

Thermal effect *

Vibration

Geometric
errors

Machine Error

forces and
dead
weights

sources

Tool deflection
and Spindle

error

Servo
control and
contouring
error

Figure 2.1. The overall effect of several error sources on a machine tool based on Hocken (R. J.
Hocken, 1980).



2.1.1 Thermal deviation

The heat generated in a machine tool may lead to expanding the machine base and its components.
The expansion coefficient varies depending on the temperature and thermal conductivity, resulting
in machine element thermal distortion (Schwenke et al., 2008). Among various sources of errors,
the thermal deviation has almost been a 40%-70% contributing factor of workpiece errors. Thermal
induced errors contribute to the part-dimensional deviations in precision machining and cause a
variation in the axes' actual position. Figure 2.2 illustrates a possible thermal error classification.
The thermal error sources can be heat produced by drive equipment or high ambient temperature.
However, the primary thermal source is produced by the cutting process (Haitao, Jianguo, &
Jinhua, 2007). The others are room environment, the heat created by coolant systems, hydraulic
oil, frame stabilizing, cutting fluid and lubricating oil. Electronic systems can also participate in
this heat generation. Besides, the effect of people and solar radiation cannot be negligible (Attia &
Kops, 1979; Haitao et al., 2007; J., 1990).

Heat effect

External sources Internal sources
| | Heatinduced || [ Heatinduced
environment cutting process
| | Heatinduced || [ Heatinduced
equipment kinematic

Figure 2.2. Thermal error classification based on (Attia & Kops, 1979; Haitao et al., 2007; J.,
1990).

The temperature-induced deformation of components may directly impact precision machining.
They can flow as convection, conduction or radiation depending on the thermal source. Heat can

flow uniformly or non-uniformly in all components of the machine tool. The classifications



proposed by Allen (J.P. Allen, 1997) for the thermal errors are the position-independent thermal
errors (PITE) and the position-dependent thermal errors (PDTE). In PITE, the errors can vary as a
function of temperature and influence on the machine offsets independently from the axis positions

and PDTE is the position and the temperature variation errors (J.P. Allen, 1997).

2.1.2 Load induced deviation

Because of the machine structure's limited static stiffness, components may be deformed by gravity
or cutting load resulting from the cutting process. Gravity force is defined as a function of machine
structural weight resulting in axis acceleration load. It mainly occurs because of the displacement
of machine components and the workpiece's mass (Slocum, 1992). Ramesh et al. (R. Ramesh,
2000) proposed that despite the strain caused by cutting load, it is minimal in finish machining and
can be neglected. However, due to the existence of large forces, this assumption cannot be
considered in machining hardened steel materials. New research has been done on the load-induced

error to reduce total discrepancies (Ratchev, Liu, Huang, & Becker, 2006).

2.1.3 Contouring and servo errors

The discrepancies may be caused by numerical control wherein the necessary calculations are
computed, such as the trajectory interpolation and tool path generation. Servo controller may be
the other reason for such errors in which the position and the speed of each axis are controlled in
real-time. Contouring deviation is a function of feed rate and can arise by increasing the feed rate
(Lavernhe, Tournier, & Lartigue, 2007).

2.1.4 Dynamic force induced errors and vibrations

Machine tool structure is subjected to dynamic effects producing discrepancies in the nominal tool
path trajectory. Various factors can lead to this type of distortion, including vibrations of the
components, inertial forces caused by acceleration or deceleration of the axes and forces variation

resulting from the sudden change in cutting forces during the process (Jingxia Yuan, 1998).

The vibration effect is more detectable in the milling process because of the nature of periodically
forced vibration. Schmitz et al. (Schmitz, Ziegert, Canning, & Zapata, 2008) have studied the
impact of the spindle speed, teeth number of the tool, radial and axial depth of cut and cutter helix



angle on vibration in the milling process. Typically two types of vibration may be introduced
namely forced vibration produced by external sources such as foundation, bearings or other
components and self-excited vibration that occurs when the machine vibration is almost near the

one or several natural frequencies of the structure (R. J. Hocken, 1980).

2.1.5 Geometric errors

Geometric errors may be the result of imperfect geometry and dimensions of machine components,
its axes misalignments, errors of machine’s measuring systems, and elastic deformation of parts.
Assembly errors of machine structural components are directly affected by the errors in angles like
squareness, horizontal and vertical parallelism errors, or the errors in length like improper offsets
between components, wrong component dimensions, and linkage length. The weak surface
straightness of the machine components may also produce a negative effect. Also, having
inappropriate bearing pre-loads is the other reason for these errors (Schwenke et al., 2008). Thermal
errors can lead to permanent errors in the machine tool's structure or load, and load variation may

affect the spindle, holder, and tool's material properties.

Kinematic deviations lead to imprecise function resulting in one axis's error components being
functions of other axes positions. In general, two classifications are proposed for the geometric
errors, namely intra-axis errors or position-dependent geometric parameters (PDGEPS) and inter-
axis errors or position-independent geometric parameters (PIGEPs) (Schultschik, 1977). The
surface straightness of the guideways causes the first category. In contrast, the second one is caused
by structural component misalignments such as out of squareness, angular offset, and rotary axes
separation errors (Y A Mir, 2002). The volumetric error contains a functional point's overall
deviations in a machine tool caused by intra- (error motion) and inter-axis (link error) errors
(ISO/TR16907, 2015). The concepts of the volumetric error, inter- and intra-axis errors are

illustrated in Figure 2.3.



Volumetric error = Inter-axis error + Intra-axis error

Actual surface and actual links !

Nominal surface and nominal links — leeooood

Figure 2.3. Exaggerated machine tool errors schematic.

2.1.5.1 Intra- and inter-axis errors

This section yields the main description of intra-axis and inter-axis errors for prismatic and rotary
joints by which the machine tool error is modelled. Ideal prismatic joints provide straight
movements along the linear axes. Thus, possible six motions are for linear axes, three translations
along the X, Y, Z axes, and three rotations around them. Similarly, ideal rotary joints provide
angular motions around the axis of rotation. Actual rotary joints are influenced by six deviations,
including three translational error motions along the X, Y, Z axes and three angular error motions
around them (1SO230-1, 2012). The errors are mapped in Figure 2.4 and the definitions are
expressed in Table 2-1. The definitions are based on 1SO 230-1 (1SO230-1, 2012).

Y Reference

Axis

ZZ Reference
Axis

X Reference
Axis

Figure 2.4. Linear and angular error motions of a linear and a rotary axis considering the

movement respectively along Z- and C-axis (1ISO230-1, 2012).



Table 2-1. Error definitions for a linear and a rotary axis(Z- and C-axis) (1SO230-1, 2012).

Axis Error sign Error definition
EXZ Straightness error motion in X direction
. EYZ Straightness error motion in Y direction
= EZZ Linear positioning error motion in Z direction
N EAZ Angular error motion around X-axis (Pitch)
EBZ Angular error motion around Y-axis (Yaw)
ECZ Angular error motion around Z-axis (Roll)
EXC Radial error motion of C in X direction (after rotation)
" EYC Radial error motion of C in Y direction (after rotation)
= EZC Axial error motion in of C direction (after rotation)
) EAC Tilt error motion of C around X-axis (Pitch)
EBC Tilt error motion of C around Y-axis (Yaw)
ECC Angular positioning error motion around Z-axis (Roll)

Based on the inter-axis error description, which is an orientation and displacement of the actual
axis from the nominal location for a linear or rotary joint, the relevant parameters are defined as
the two orientation angle and one zero position error for the linear axis. The two orientation angles,
and two position coordinates and a zero position of the axis are the parameters of the inter-axis
errors for the rotary axis. Figure 2.5 illustrates these errors for the Z- and C-axis. The error
definitions are also expressed in Table 2-2 (1SO230-1, 2012).

7y Za
3
EB(OX‘)%‘\‘//\ ’)f/" EA(OY)Z
Ezoz Z=0

Figure 2.5. Inter-axis errors for linear Z-axis and rotary C-axis (1SO230-1, 2012).
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Table 2-2. Error definitions of inter-axis errors for linear Z-axis and rotary C-axis (150230-1,

2012).

AXis Error sign

Error definition

EZOZ
EA(OY)Z
EB(OX)Z

Zero position error of Z
Squareness error of Z related to Y
Squareness error of Z related to X

Z-axis

EXOC
EYOC
EA(OY)C
EB(OX)C
ECOC

C-axis

Zero position error of C

Position error of C in the direction of X
Position error of C in the direction of Y
Orientation error of C in the direction of A (squareness of C to Y)
Orientation error of C in the direction of B (squareness of C to X)

2.1.5.2 Actual machine tools with errors

Among various machine tools, five-axis machines are more popular because of providing the

necessary movements and producing complicated parts. In general, five-axis machines have three

prismatic and two rotary axes, which can be variously sequenced considering their specific

application. Figure 2.6 illustrates the kinematic of two types of five-axis machine tools.
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Figure 2.6. Kinematic of two five-axis machine tools with topologies of CBXFZY, CAYFXZ.

Everett et al. (Everett, 1988) propose a zero-order minimal model to explain the errors. They

introduce N as the minimum essential number of properties for a

end-effector frame obtained as,

kinematic chain from base to the
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N=4R+2P+6 (1)

where, R and P refer to the number of rotary and translation axes, respectively. The coefficient of
P becomes two in this model because the prismatic joint is as a vector without a specific origin
where the orientation of the actual axis is adjusted to the nominal one by two angle corrections.
The first term's coefficient in Eq. (1) becomes four because the rotary axis is defined as a vector
with a specific origin. Hence, to bring the actual axis to the nominal one, two angle corrections and
two displacement corrections are needed. The third term in Eq. (1) is the tool orientation and
displacement. In 1991, Mooring et al. (Mooring, 1991) proposed another equation close to the
former model. The only difference between the two models is the third term in Eq. (1). The latest
minimum model expresses that depending on the type of operation of the tool in machines, five
degrees of freedom can be considered instead of six for the tool errors. So, the tool's orientation
around its axis can be ignored, and the third term becomes 5 instead of 6 (Freeman, 2016).

Based on the first theory, there are 20 independent parameters for a five-axis machine. Thus, by
considering 6 parameters for the workpiece branch and 6 parameters for the tool branch, 8
parameters remain which can refer to the link errors. However, this number is decreased to 7 in
latest model (Zargarbashi & Mayer, 2009).

2.2 Error measurement

Typically, there are two methods for measuring the geometric errors called direct and indirect
measurement. A suitable measuring technique is selected depending on the type of errors and the

relevant parameters to be estimated.

Direct measurement refers to an approach resulting in analyzing the errors directly. It is an
applicable method for measuring a single error of a specific axis in the machine tool without
considering other axes errors. Direct measurement can be material-based and laser-based. The
material-based method utilizes such artefacts as straightedges, line scales, step gauges, and
multidimensional artefacts, which have been recently used (Weckenmann A, 2005). Laser-based
measurement is a common approach to identify individual errors like positioning errors,
straightness, and angular errors (Schwenke et al., 2008). This technique uses waves’ interference

in the laser to calculate the distance between the reference and measurement object. The Michelson
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interferometer principle is splitting a monochromatic light source into two beams using a half-
silvered mirror (Loughridge & Abramovitch, 2013). Li et al. (Z. Li, Yang, Fan, & Zhang, 2014)
applied laser measurement to calculate 18 error parameters and the electronic level to measure
three roll errors of the translational axes in a three-axis machine. Due to its high precision and long
coherence length, it is an appropriate choice in characterizing the accuracy and the repeatability of
the machine tools. However, the interferometer can be affected by environmental conditions like
thermal, surrounding air, and relative humidity variation. Laser wavelength, which is considered
as the reference, can vary by the surroundings (Castro, 2008). A precise initial setup is essential to
avoid any misalignment between the laser beam and the measured axis. Figure 2.7 shows the

measurement procedure by a laser with a retroreflector.

Reference
retro-reflector

Beam
splitter

Measurement
retro-reflector

Figure 2.7. Laser interferometer measurement.

The indirect method relies on simultaneously measuring multiple positions or multiple axes in the
machine tool's working volume. Some indirect tests are R-test (Bryan J, 1967; Hong, Ibaraki, &
Oyama, 2012), ball-bar tests (Abbaszadeh-Mir, Mayer, Cloutier, & Fortin, 2002; Bryan, 1982a,
1982b; Kato, Masaomi., & Sato, 2013; M. Esmaeili & Mayer, 2020; Yang & Ding, 2016) and
calibrated or non-calibrated artefacts. The indirect method can also use the advantages of the laser
sequential diagonal measurement techniques demonstrated by Wang (C. Wang, 2000) and Liotto
(Liotto & C.P., 1997) to calculate volumetric errors. This technique incorporated with Laser

Doppler Displacement Meter (LDDM) allows finding positioning volumetric errors with a single
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beam, single aperture, and a flat mirror as the target. LaserTRACER and laser trackers are laser
interferometry methods to indirectly calibrate the machine tool. LaserTRACER measures the
distances between the retro-reflector target installed at the tool tip and the reference sphere in the
LaserTRACER. A linearized set of equations obtained from multiple setups measurements are then
solved by a Gaussian fit (Hartig et al., 2009) to calculate machine geometric errors. The error
motions of rotary axes can be also measured by LaserTRACER (Schwenke, Schmitt, Jatzkowski,
& Warmann, 2009). Zha et al. (Zha, Wang, Li, & Chen, 2020) validated LaserTRACER calibration
results with a conventional laser interferometer in a three-axis machine tool. The effect of the
ambient temperature on LaserTRACER geometric errors estimation results was studied by Groos
et al. (Groos et al., 2020). They concluded that in comparison with straightness and rotational
errors, linear axes’ positioning and squareness errors are more affected by the temperature
variation. The principle of Laser trackers is using two angles and a distance resulting in measuring
the spherical coordinate for each position. Using multiple setups during calibration increases the

estimation results accuracy (Schwenke, Franke, & Hannaford, 2005).

Calibrated or non-calibrated artefacts such as one, two or three-dimensional ones are the other
indirect calibration methods composing a plate and several balls variously distributed on the plate
(Bringmann, King, & Knapp, 2005; G. X. Zhang & Zang, 1991). Those artefacts are probed in
different positions and provide sufficient information while simultaneously moving linear and
rotary axes (Bringmann et al., 2005). Bi et al. (Bi et al., 2015) probed a cubic element to identify
geometric errors of the rotary axes in a five-axis machine. Measuring the linear displacement
between the tool and the workpiece is carried out by radial test (R-test). This technique uses at least
three linear displacement sensors installed on a precision artefact. The sensors read against a
reference sphere and measure the displacements (Bryan J, 1967). Hong et al. (Hong et al., 2012)
used R-test to measure three-dimensional trajectories and calculate the rotary axes motion errors.
Yang and Ding (Yang & Ding, 2016) ran a ball-bar test with different setups on a five-axis machine
tool. Afterwards, by establishing the differential motion matrices, they estimated position-

independent geometric errors.

René Mayer (Mayer, 2012) proposed SAMBA (scale and master ball artefact) in which several
master balls and a scale bar were probed. The software of the method contains the homogeneous

transformation matrix (HTM) to estimate the error parameters. HTM is a four-by-four matrix used
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in the indirect methods to model the erroneous kinematic of a machine. A rigidity assumption
between the axes joints (prismatic or rotary joints) is considered (Srivastava, Veldhuis, &
Elbestawlt, 1995). Bringmann and Knapp (Bringmann & Knapp, 2006) proposed an artefact calling
chase the ball in which one master ball was probed by a strategy to measure the machine tool errors.
Reconfigurable uncalibrated master ball artefact (RUMBA) has been introduced by René Mayer
(Mayer, 2012). It contains several master balls which are probed during simultaneous movement
of the axes. The differences between the methods containing the masterballs are the models' ability
to estimate a certain number of error parameters. The artefact containing masterballs is subject to
have a certain number of masterballs and an optimized measurement strategy done by Mchichi and
Mayer (McHichi & Mayer, 2019). The error model concept has been introduced and used by some
researchers while estimating the maximum possible machine error parameters (Abbaszadeh-Mir et
al., 2002; Mayer, 2012; McHichi & Mayer, 2014; M. M. Rahman & Mayer, 2015). The error model
is an optimized model of all possible errors in a machine tool in which the reliability of the model
has been considered during error estimation. The reliability is determined by applying the SVD on
the Jacobian of the error parameters (Abbaszadeh-Mir et al., 2002).

2.3 Concept of rigid and Non-rigid body behavior

Rigid-body and non-rigid body behavior are common techniques considered to model a machine
tool while estimating the errors. According to the type of machine, one of them may be appropriate.
In general, the rigid body approach relies on the independence of the prismatic axes' angular
deviation from the relative position of the machine's other components. Non-rigid body modeling
is applicable especially for heavy machine tools with cross-table configuration. Due to the possible
deformation of the guideway, the impact of the machine tool components' relative position on the
angular error of the linear motions cannot be neglected in this approach. So, every deviation in one
axis is affected by the other axes. Hence, offset from the measuring point to the destination point
must be considered. In 1992, Wang (S.M. Wang, 1992) presented non-rigid modeling to
compensate the volumetric errors in any arbitrary multi-axis machine. The method is based on
FEM wherein; by using a linear order shape function, precise interpolated values are achieved in
sample points(S.M. Wang, 1992).



15

2.4 Error compensation

Compensation is an approach for eliminating errors or the effect of the errors by a virtual equal and
opposite error. However, due to uncertainty in the mechanical chain, the errors cannot be entirely
deleted. Error correction plays an essential role in the industry wherein to have an accurate part,
the approximate costs significantly grow.

Error compensation can be done mechanically or numerically. Changing and repairing the parts,
which generate the errors are the techniques for mechanically compensating the errors. Having
been time and money consuming on one hand and having the necessity for calibration after
mechanical compensation, on the other hand, motivated the industry to pay attention to the
numerical approaches. Later approaches are helpful for minor deviations and enhance machine
accuracy.

Nevertheless, the numerical correction may have its limitations. Due to considering the axes'
additional movement to compensate the errors, which are nominally supposed to be fixed, the
finished surface may not be obtained. Especially, if this movement is combined with the hysteresis,
it may cause some discrepancies. Nonetheless, for the present generation of controllers, this can be
neglected. In the following sub-sections, types of numerical correction are discussed.

2.4.1 First part inspection

It is a method whereby the first machined part is entirely inspected by an independent machine
such as a coordinate measurement machine (CMM) and the errors are calculated. Then, the tool
path is adjusted concerning the measured error. This approach has high reliability due to
considering the effects of all error sources on the machined part. However, it is not very useful
when there is flexible manufacturing (LO & HSIAO, 1998).

2.4.2 Probing after machining

This method is also called In-cycle inspection in some references. Predicting machine errors can
be done after the part is machined and before moving it. After the part is machined, the process is
stopped and the touch probe replaces the tool to measure it and the machine tool acts like a CMM
in this case. Thus, the measuring is performed by the same set-up to increase the accuracy of the

error prediction. The probe radius and probe pre-travel could hurt the estimation of the deviations.
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However, by combining the HTM and the present method, the error approximation can be
improved in vertical machining (M.-W. Cho, Seo, & Kwon, 2003; M. W. Cho & Seo, 2002).

2.4.3 G-code correction

“It involves modifying the original G-code offline to produce an ephemeral G-code.” (Givi &
Mayer, 2014). Thus, the measurement is done by offline methods, then the HTM is constructed,
and the new G-code is built concerning the corrections and finally, commands are up-to-date. It is
a practical approach for volumetric error compensation to reduce the deviations. The
compensability is claimed 90% (Givi & Mayer, 2014) for a five-axis machine tool under the test.

This kind of compensation may be time-consuming while the production frequently varies.

2.4.4 On-line compensation

On-line or real-time compensation is a technique that deals with the actual values wherein the
workpiece errors are measured during the actual machining process. It is then fed forward by
writing them directly on the current position without any interruption to the process itself. Thus,
reading and writing commands must be accessible in the NC. Although it offers an overall solution
for absolute improvement in machining quality, it is not applicable in most machining operations,
and due to lack of dedicated probes on the machine tool, most compensation studies are limited to
identify thermal errors and partially cutting force-induced errors (Zhan-Qiang, Venuvinod, &
Ostafiev, 1998). By installing temperature sensors in particular locations during the machining
process, the thermally induced errors are measured. This approach's accuracy highly depends on
carefully recognizing the optimal location of the sensors, such as thermocouples. Although, some
trial-and-error processes may be necessary (Chen, Chang, Hung, Lee, & Wang, 2016). Figure 2.8
shows two setups for thermocouple for temperature distribution in two different machine tools.
Due to the on-line compensation's random nature, the error model is usually approximated with the
neural network. Generally, the neural network is an algorithm that consists of an input layer of
neurons, hidden layers, and output layers (Prakash Vinoda, 2014). A simplified error model was
proposed by Kang et al (Kang, Chang, Huang, Hsu, & Nieh, 2007), to optimize the process using
the limited data.
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Figure 2.8. Thermocouple setup for temperature distribution analysis in two different machine
tools a. (Kang et al., 2007) b. (Chen et al., 2016)

2.4.5 Table-based error compensation

Controllers are equipped with several predefined compensation tables whereby the associated
parameters can be modified to ameliorate the machining quality towards making more precise
parts. Also, a general compensation facility is provided in some controllers for the users for
generating complex lookup tables that are not predefined in the controller. In the table-based error
compensation method, the controller uses the table entries to compensate the input commands
directly without interruption in the feedback loop resulting in saving time and increasing the

precision.

2451 Standard - ISO/TR 16907

ISO/TR 16907 (ISO/TR16907, 2015) has classified typical geometric error compensation for
conventional machine tools with up to six axes, two or three linear axes, and up to three rotary
axes. The classification clarifies the type of geometric errors to be compensated. Some examples

are positioning, straightness, squareness error, and angular error motions.
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Based on ISO/TR 16907 (ISO/TR16907, 2015), some of the compensation facilities are for
compensating the translational volumetric error effects such as L-POS (compensation for
positioning errors of linear axes along specific lines), L-STR (compensation for straightness errors
of linear axes along specific lines), L-SQR (compensation for squareness error between axes of
linear motion at specific lines), L-ANG (compensation for the angular error motions of linear axes
on 3-D position of functional point in the working volume) and L-VOL ( volumetric compensation
of linear axes) while some of the others are for compensating the angular volumetric error effects
such as R-RAX (compensation for radial and axial error motion of the rotary axes), FOR (physical
compensation for errors in functional orientation) and R-ANG (compensation for position and
orientation errors of the rotary axes). Based on ISO/TR 16907 (ISO/TR16907, 2015), there are also
some compensation types by which the volumetric error effect can be compensated, like L-VOL+
(volumetric compensation of linear axes including functional orientation), which includes L-VOL
and FOR.

The grid compensation table structure is explained in ISO/TR 16907 (ISO/TR16907, 2015), where
the spatial grid compensation tables for the linear axes and the rotary axes are separately presented.
The spatial compensation grid for linear axes contains the sampling points for each linear axis and
three-dimensional positioning or angular errors or their relative compensation values. Figure 2.9
illustrates a spatial grid structure for linear axes. Similarly, to generate the spatial grid
compensation tables for the rotary axes, sampling points for each rotary axis and three-dimensional

linear and angular errors or their relative compensation values are required.
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Figure 2.9. A spatial grid structure for linear axes (ISO/TR16907, 2015).

2.4.5.2 Control parameter modification

Each type of controller may contain a series of compensation facilities for compensating
positioning, backlash, straightness, and thermal errors ("Fanuc Controller,” Series 30i/Model A,
"Siemens Controller,” SINUMERIK 840D/840Di/810D Extended Functions). Those facilities are
like simple lookup tables embedded for individual error parameter compensation. However, the
general effect of compensation will indirectly impact the relative tool tip position to the workpiece

position.

Another control parameter modification is three-dimensional error compensation embedded in
Fanuc controller ("Fanuc Controller,” Series 30i/Model A). Three-dimensional error compensation
for the linear axes is a lookup table allowing the users to compensate translational volumetric
errors. This type of compensation directly affects the tooltip linear position. It is a spatial error
compensation wherein the table is constructed based on a mesh grid on the machine joint space.
Three compensation values for the translational axes of X, Y, and Z are assigned to each 3D mesh
grid node. By enabling the generated table, the controller uses the trilinear interpolation on the
table entries when a G-code command is entered ("Fanuc Controller,” Series 30i/Model A). Figure

2.10 shows the three-dimensional error compensation screen of Fanuc controller.

Fagor controller ("Fagor Controller, 8070 / 8065 CNC "), has a 3D error compensation table

solution for Cartesian volumetric error compensation for CNC machine tools. Fagor controller
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proposes an integrated calibration and compensation method called “Volumetric Compensation”
to generate this table. Hence, a cloud of points on the Cartesian volume is defined, and the errors
in each position are measured. The measured errors are then entered into the table.
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Figure 2.10. Three-dimensional error compensation screen of Fanuc controller ("Fanuc
Controller,” Series 30i/Model A).

2.4.5.3 General compensation facilities

The previous table-based compensation methods were limited to the tables already existed in the
controllers, while the general compensation facility lets the users arrange the complex
compensation tables based on their need. Those lookup tables can be also used for compensating
volumetric errors (translational and angular errors) wherein the compensation is automatic. Hence,
the user generates the tables based on the rules and the language of the specific controller under
test. Summation and multiplication functionalities can be used in generating the tables. These tables
can have different input and output axes. The input axis is an axis on which the table function is
based, and the output axis is the one on which the table will be applied. By enabling the controllers'
tables, the controller performs linear interpolation on the table entries while entering a G-code

command. Figure 2.11 illustrates a table function graph, the linear interpolation concept, and the
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required criteria in generating a table ("Siemens Controller,” SINUMERIK 840D/840Di/810D

Extended Functions).

Compensation value

of compensation axis ——  Emorcurve
A — —  Compensation curve

1

Linear interpolation

n n+1 n+2 n+3 Position of
Interpolation point the base axis

Figure 2.11. Linear interpolation between the interpolation points ("Siemens Controller,"
SINUMERIK 840D/840Di/810D Extended Functions).

ISO/TR 16907 does not specifically explain the combinatory tables or the required table functions
(ISO/TR16907, 2015). However, an industrial table-based package like VCS was developed by
Siemens (AG, 2010) for volumetric error compensation. The laserTRCAER is used for 21 machine
tool error measurements, followed by calculating the tool tip's volumetric error. The NC program,
including the tables, is then provided for the controller (AG, 2010). Similarly, KinematicsComp
provides volumetric compensation in Heidenhain Controller ("Heidenhain Controller: iTNC 530
"), and “Extended Screw Compensation” is offered by Fidia controller ("Fidia Controller: C10 -
C20 - C20 Vision,") to compensate for 21 machine error parameters. Fidia controller has offered
another compensation feature calling “Volumetric Axes Compensation”. By combining VAC and
rotary axes error compensation, maximum accuracy for all linear and rotary axes errors is achieved
("Fidia Controller: C10 - C20 - C20 Vision,").

Recent researches tend towards using these kinds of tables. Creamer et al. (Jennifer Creamer et al.,
2016) proposed 25 tables, five tables per axis, in producing the complex tables. Summation

functionalities have been utilized in generating those tables. They claimed their methodology in
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developing the tables fulfills compensating the volumetric errors in the five-axis machine tool
under the test. Later, they studied generating the optimal set of tables for the machine tool under
the test. Their study is beneficial where the numbers of the tables are limited (J. Creamer, Bristow,
& Landers, 2017). The multiplication functionalities were also used to develop the LUTSs in a five-
axis gantry machine. The volumetric error compensation was studied without considering inter-

and intra-axis error parameters sources (J. Li, Mei, Shuai, Liu, & Liu, 2019).

A complex table includes one to several simple tables. The input to each simple table is an axis
joint command, and the output is the associated correction to the output axis. Based on ISO/TR
16907 ("ISO/TR 16907. Technical report: Machine tools - Numerical compensation of geometric
errors, 2015,"), identifying the nominal position, the direction to be compensated, the input, and
the output axis must be defined while generating the lookup tables. Noted that the rules in
developing the tables may vary from one controller to the other, which may affect the number of
the tables required for compensating specific types of machine error parameters. For instance, the
function that allows the users to generate these complex tables in Siemens controller is called
Interpolatory compensation ("Siemens Controller,” SINUMERIK 840D/840Di/810D Extended

Functions). Some rules of the LUTs above are,

1. There are one input axis and one output axis as per each table. The input and output axes
might be any mechanical axis of the machine tool. They are defined in the NC code by the
syntaxes of SAN_CEC_INPUT_AXIS and $AN_CEC_OUTPUT_AXIS.

2. The table function can be anything but just one input axis-dependent.

3. The tables can be summed up or multiplied to each other by previously defining them in
the NC program by the syntax $AN_CEC_MULT_BY_TABLE. If the syntax is equal to O,
no multiplication is applied, and the table is added to the others who have the same output
axis. If the syntax is not 0, the table is multiplied by the table whose table number is equal

to this syntax.
4. One table can be multiplied by several tables as long as the output axes are the same.

5. Each table can possess one weight which is constant for that table.
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6. The user may define a table to be applied on a specific range of stroke length of the machine
by considering the minimum and the maximum coverage with syntax $AN_CEC_MIN and
$AN_CEC_MAX.

7. The tables entries' numbers are defined by the step value chosen for a range of stroke length
with syntax $AN_CEC_STEP.

8. The LUT may be activated in a positive or negative direction or both. This option is
essential where there is a backlash, and so the values in the positive direction might be
different from the negative one with syntax $AN_CEC_DIRECTION.

9. There is an option called modulo function for compensating the rotary axes, which lets the
user expect the table to be still applicable when the rotation is more than 360°. The
associated syntax is $AN_CEC_IS_MODULUO.

A simple NC code is illustrated in Figure 2.12 where table 1 is multiplied by table 2. The number
of the table entries for the first and second tables are 10 and 15, respectively. The input axes for
the first and second tables are Z- and Y-axis, respectively, and the output axis for both of them is
X-axis. By entering any axis joint command of X and Y, the two tables' outputs are multiplied

together.



%_N_NC_CEC_INI
METRIC

CHANDATA(1)

SAN_CEC[0,0]-0.0048
SAN_CEC[0,1]-0.0037
SAN_CEC[0,2]=0.0026

SAN_CEC[0,8]=-0.0039
SAN_CEC[0,9]=-0.0050
SAN_CEC_INPUT_AXIS[0]=AX3
SAN_CEC_OUTPUT_AXIS[0]-AX1
SAN_CEC_STEP[0]=50
SAN_CEC_MIN[0]=-450
SAN_CEC_MAX[0]=0
SAN_CEC_IS_MODULO[0]-0
SAN_CEC_DIRECTION[0]=0
SAN_CEC_MULT_BY_TABLE[0]=0
SAN_CEC[1,0]=0.0055
SAN_CEC[1,1]=0.0047
SAN_CEC[1,2]-0.0040

SAN_CEC[1,13]=-0.0041
SAN_CEC[1,14]=-0.0048
SAN_CEC_INPUT_AXIS[1]=AX2
SAN_CEC_OUTPUT_AXIS[1]=AX1
SAN_CEC_STEP[1]=50
SAN_CEC_MIN[1]=700
SAN_CEC_MAX[1]=0
SAN_CEC_IS_MODULO[1]=0
SAN_CEC_DIRECTION[1]-0
SAN_CEC_MULT_BY_TABLE[1]-1
SAN_CEC[2,0]=0.032
SAN_CEC[2,1]=0.053
SAN_CEC[2,2]=0.031

M17

Basic axis commands
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LUT2 1 W
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Figure 2.12. NC code for a sample of table multiplication.
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CHAPTER 3 ORGANIZATION OF THE WORK

This chapter presents the general organization of the work. Four main research articles have been
proposed to achieve the project's objectives and answer the research questions. The researches
contain table-based translational and volumetric error compensation. All the experimental tests
have been done on five-axis machine tools. Among various types of NC facilities that existed in
the controllers for precision enhancement, the author has focused on two types of lookup tables

that existed in Fanuc and Siemens controllers.

Chapter 4 includes the first article entitled “Generation of a 3D error compensation grid from ISO
230-1 error parameters obtained by a SAMBA indirect calibration and validated by a ball-bar
spherical test”. It was published in the International Journal of Advanced Manufacturing
Technology. This paper answers the question “Which criteria indicate machine tool error
compensation?”. The paper proposes generating a three-dimensional error compensation table
wherein the mesh grid nodes' numbers have been optimized. The table can compensate translational
volumetric errors and not the angular volumetric errors. The experiments were run on a five-axis
machine tool called HU40 and SAMBA indirect method is used to calibrate the machine. Two error
models were developed, each containing a certain number of machine error parameters. A ball-bar
spherical test including several meridians and an equator movement was designed to validate the
compensation method. Two pseudo three-dimensional compensation tables were generated based
on the two error models' error parameters. The ball-bar test was run three times, the first of which
there was no use of the table and the second and the third of which the pseudo tables were used to
compensate the joint positions located on the meridians and equator. The effectiveness of the table
for the target machine tool was over 82%.

Chapter 5 includes the second article entitled “Five-axis machine tool volumetric and geometric
error reduction by indirect geometric calibration and lookup tables”. It was published in the Journal
of Manufacturing Science and Engineering. This paper proposes compensating volumetric error
compensation using complex tables, interpolatory tables. This article focuses on using summation
functionalities in generating such tables. The experiments were run on a five-axis machine tool
called Kolibri. The indirect RUMBA method was used to calibrate the machine tool. 25 pseudo

tables, five tables per axis, were developed to compensate two error models error parameters and
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volumetric errors. Chase-the-ball was used for validation purposes. The data of chase-the-ball was
processed two times, before and after applying for the compensation. For after compensation, the
data were treated using generated 25 pseudo tables. The results showed a good improvement for

the geometric and volumetric errors but not perfect.

Because using just summation functionalities in generating the tables did not provide a perfect
compensation, the idea of using the multiplication and summation functionalities was developed
in the third article presented in chapter 6. This paper was entitled “Trigonometrically enriched
weighted lookup tables - a combinatorial scheme for accuracy improvement of a five axis machine
tool” submitted to the International Journal of Machine Tools and Manufacture. The paper proposes
23Trigo-T consisting of the terms present in the Jacobian and the inverse Jacobian of command.
Comparing the kinematic-based, 25 and 23 tables compensation results answers the question “How
to optimize and predict joint correction?”. The table entries for 25 tables were calculated using
iterative method, and for 23 tables, they were calculated using a classic optimization method. The
results show that adding multiplication functionalities and the trigonometric terms in generating
the tables improves the table-based compensation model while bringing the model closer to the
kinematic-based error compensation. Also, the scheme is simulated on a non-orthogonal machine

with excellent results supporting the potential generality of this work.

The idea of the fourth article came from the results of the third article. It answers the questions of
“What is the relationship between the geometric errors and the command corrections required for
volumetric error compensation?”, “How to build compensation tables to mimic the kinematic-
based error compensation?” and “How many tables are required to fully compensate the errors?”.
Chapter 7 includes the fourth article entitled “CNC table based compensation of inter-axis and
linear axis scale gain errors for a five-axis machine tool from symbolic variational kinematics”. It
was submitted to the CIRP Journal of Manufacturing Science and Technology. The forward inverse
kinematics LUTs scheme (FIK-LUT) was developed in this paper, where the direct relationship
between the geometric errors and the required joint corrections for the target machine tool was
achieved. Summation and multiplication functionalities were used in generating such complex
tables. The target machine was a non-perpendicular five-axis machine tool calling Huron. The

results show that the exact model, consisting of 40 tables, can mimic the kinematic-based error



27

compensation and compensate the 13 error parameters in a 13-error model. FIK-LUT compensated

over 79% of the mean estimated volumetric error. Figure 3.1 highlights the articles’ structure.

Thesis organization

| Article 1 (Chapter 4) |
v

Generation of a 3D error compensation grid from ISO 230-1 error parameters obtained
by a SAMBA indirect calibration and validated by a ball-bar spherical test

*Calibrating machine by SAMBA indirect method and estimating 13 and 84 error parameters
*Running 3D ball-bar test and eliminating the setup errors

*Optimizing the number of mesh grid elements

*Generating pseudo two 3D error compensation tables from 13 and 84 error model for
translational error compensation

*Compensating positions on 3D ball-bar by applying for trilinear interpolation on the table data
*Running 3D ball-bar with compensated positions and eliminating the setup errors

*Comparing the results before and after applying the compensation

Five-axis machine tool volumetric and geometric error reduction by indirect geometric
calibration and lookup tables

*Calibrating machine by RUMBA indirect method and estimating 12 and 81 error parameters
*Running validation test before compensation

*Generating 25 pseudo complex table from 12 and 81 error model for volumetric error
compensation

*Running validation test after compensation using the two generated pseudo complex tables
*Comparing the volumetric error and geometric error before and after compensation

Trigonometrically enriched weighted lookup tables - a combinatorial scheme for
accuracy improvement of a five axis machine tool

*Calibrating machine by RUMBA indirect method and estimating 12 error parameters
*Case study simulation: Error compensability evaluation of K-B, 25Poly-T and 23Trigo-T
compensation models

*Running validation test before compensation

*Generating 25 and 30 pseudo complex tables for volumetric error compensation

*Running validation test after compensation using the two generated pseudo complex tables
*Running validation test after kinematic-based error compensation

*Comparing all compensation models results

| Article 4 (Chapter 7) | Article 3 (Chapter 6) | | Article 2 (Chapter 5) |
v

CNC table based compensation of inter-axis and linear axis scale gain errors for a five-
axis machine tool from symbolic variational kinematics

*Obtaining symbolic equations for forward inverse kinematics LUTs scheme (FIK-LUT) error
compensation

*Case study simulation: Error compensability evaluation of FIK-LUT

*Running validation test before compensation

*Generating 40 complex tables for volumetric error compensation

*Running validation test after compensation using the generated 40 complex tables

*Comparing geometric and volumetric errors before and after applying compensation

Figure 3.1. Thesis organization.
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CHAPTER 4 ARTICLE 1: GENERATION OF A 3D ERROR
COMPENSATION GRID FROM ISO 230-1 ERROR PARAMETERS
OBTAINED BY A SAMBA INDIRECT CALIBRATION AND
VALIDATED BY A BALL-BAR SPHERICAL TEST

Sareh M. Esmaeili*, J.R.R. Mayer

“Email: sareh.esmaeili-marzdashti@polymtl.ca "Tel.: +15143404711 Ext.: 2292, “Fax: (514)
340-5170

“Address: Department of Mechanical Engineering, Ecole Polytechnique (Montréal), P.O. Box 6079,
Station Downtown, H3C 3A7 Montréal, QC, Canada

NOTE: Based on the paper published in the International Journal of Advanced Manufacturing
Technology: volume 106, pages 4649-4662(2020)

4.1 Abstract

Tool path deviation reduces machined parts quality. To enhance machine tool accuracy,
compensation tables are provided in most controllers to automatically apply small corrections to
axis commands. A model-based approach, considering the 1SO 230-1 machine geometric error
parameters, is proposed to generate the table entries. The error parameters are estimated using
model-based indirect calibration results from a scale and master balls artefact probing (SAMBA)
test. Two models are used, one with primarily the axis alignment errors and scale errors and the
other including many error motions. The 3D grid error compensation is generated with a minimal
optimum mesh grid dimension to achieve a preset precision considering the estimated model error
parameters. The efficiency of the table is evaluated using a 3D ball-bar test consisting of various
circular trajectories along several meridians and the equator before and after applying the table-
based error compensation. It is shown that the volumetric errors due to out-of-squareness errors
and linear axis linear positioning errors can be compensated using a 2x2x2, 8 nodes, grid. However,
when including error motions the optimum grid dimension depends on the specific error values of
the machine. For the tested machine, a 19x19x19 for 6859 nodes grid was required, with which

the out-of-sphericity of the tool trajectory relative to the workpiece frame is improved by over 82%.
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Keywords: CNC machine tool, table-based error compensation, geometric error parameters,

Cartesian volumetric error

4.2 Introduction

Machine tools impart a trajectory to a cutting tool relative to a workpiece. Any error in the path
actually followed by the tool is likely to affect the quality of the machined part. Trajectory errors
originate from the numerical control, the servo-drives, thermal deformation and geometric errors
to name a few. Geometric errors are the focus of this paper. Different methods have been developed
to reduce the effect of geometric errors through compensation such as cutter location file
compensation, G-code compensation and direct axis command compensation either through
inverse kinematics calculation or through table-based compensation. Koliskor (Koliskor, 1971)
proposed an early error compensation technique wherein he corrected the tool path trajectory, by
G-code compensation, for subsequently machined parts by applying a post-machining inspection
of previously machined parts. Cartesian volumetric error compensation was applied by Lee et al.
(Eung-Suk, Suk-Hwan, & Jin-Wook, 1998) wherein the tool tip position was corrected using the
homogeneous transformation matrix (HTMs) followed by the G-code modification. Mahbubur et
al. (R. M. Mahbubur, J. Heikkala, K. Lappalainen, & J. A. Karjalainen, 1997) proposed to alter the
CL-data to modify the tool path trajectory so that the nominal G-code generation process yields a
corrected tool path when ran on the erroneous machine. Nojdeh et al. (Vahebi Nojedeh, Habibi, &
Arezoo, 2011) applied laser interferometry measurements to directly measure the 21 error
parameters for a three-axis machine tool. They estimated the volumetric error at the tool tip using
the forward kinematics. Then, using the reverse kinematics, they developed an NC program editor
which uses the inverse kinematics to provide axis command corrections and generate a corrected
G-code. G-code correction for a five-axis machine tool error compensation was proposed by Givi
and Mayer (Givi & Mayer, 2014). They calculated the volumetric error of the tool in the desired
cutter location (DCL) frame and then used the control Jacobian to calculate the axis command
corrections needed to compensate this volumetric error. Zhu et al. (Zhu et al., 2012) estimated 27
machine error parameters including 21 geometric errors for the linear axes and 6 angular geometric
error parameters for the rotary axes followed by error compensation using the inverse kinematics
and then NC code modification. Xiang et al. (Xiang & Altintas, 2016) measured 30 intra-axis errors

and 11 inter-axis errors of a five-axis machine using laser interferometry and ball-bar
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measurements. The volumetric errors due to those components errors were then calculated at the
tooltip for the erroneous machine tool and then compensated, all using screw theory. Cui et al.
(Cui, Lu, Li, Gao, & Yao, 2012) introduced a geometric error compensation interface in which
they used the inverse kinematics to reconstruct NC program for the purpose of error compensation.
The G-code modification provided the compensated G-code for positioning, linear and circular

movements.

Khan et al. (Khan & Chen, 2010) proposed the error compensation algorithm using the inverse
kinematics by which they could find the corrected joint positions in a five-axis machine tool
followed by correcting the G-code. They validated their technique by measuring the typical
standard machined workpieces. Lei et al. (Lei & Hsu, 2003a) developed a methodology using 3D
probe-ball and spherical test to estimate link errors. They also proposed a real-time model-based
volumetric error compensation method for a five-axis machine tool using the inverse kinematics

for any tool pose.

Machine tool controllers are equipped with compensation lookup tables. Some of the tables are
predefined for specific purposes such as straightness errors, positioning errors, backlashes,
squareness error compensation and so on ("Fanuc Controller,” Series 30i/Model A; "Siemens
Controller,” SINUMERIK 840D/840Di/810D Extended Functions) and their values can be
modified by the user. They are offered as simple and complex tables. The latter can be generated
by combining the simple tables with multiplication or weighted summations. Some controllers
provide spatial compensation grid tables which may be separately generated for linear axes and rotary
axes (ISO/TR16907, 2015). The predefined lookup tables are mostly simple tables for correcting
specific geometric error sources. As an example, the Sinumerik 840D controller proposes a
volumetric compensation system (VCS) package. It provides the user the ability of error
measurement, the error compensation data evaluation and finally the error compensation table
generation. The tables are then transmitted to the NC program for volumetric error compensation
(AG, 2010).

Most previous works (Cui et al., 2012; Eung-Suk et al., 1998; Givi & Mayer, 2014; Khan & Chen,
2010; Koliskor, 1971; R. M. Mahbubur et al., 1997; Vahebi Nojedeh et al., 2011; Xiang & Altintas,
2016; Zhu et al., 2012) focused on compensating the errors using kinematics-based error

compensation. However, Creamer et al. (Jennifer Creamer et al., 2016) proposed two models, a
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kinematics-based and a table-inspired one to generate a total of 25 compensation lookup tables.
Each axis compensation is the sum of five tables output, one table per axis. The initial data are
coordinate readings of a tool tip, an optical target, at random locations taken by a laser tracker. The
kinematic model has six geometric errors, modeled as Chebyshev polynomials after each nominal
axis moves similar to Mir et al. (Y. A. Mir, Mayer, & Fortin, 2005) but using small error
approximated matrices. The two error models are used to generate optimized compensation table
values via Chebyshev polynomial regression. Creamer et al. (J. Creamer et al., 2017) proposed an
artificial intelligence approach to select an optimal set of combination of compensation tables. They
performed their approach while limiting the number of tables to six instead of 25 for a five-axis

machine tool.

One widely available compensation scheme in CNC to reduce Cartesian volumetric error is a 3-
dimensional (3D) grid error compensation table (ISO/TR16907, 2015). The machine user is
responsible for generating the table but the CNC performs the compensation automatically. 3D grid
tables contain sets of compensation values corresponding to sets of linear axes positions. The
compensation values are added to the commanded linear axes positions, to bring the tool to the
desired position. For commanded positions not located at the mesh grid nodes, the corrections are
interpolated. Since the resolution of the tables may be limited in some controllers, a method to
obtain the minimal mesh grid dimension for 3D grid table is needed in order to compensate the
machine errors. The mesh grid dimension becomes important when the machine errors have
nonlinear behaviour. The primary contribution of this paper is proposing a novel methodology in
using two error modeling framework for automatically generating the table entries from indirectly
measured ISO 230-1 inter- and intra-axis error parameters. The second contribution of the paper is
selecting the optimal mesh grid dimension in producing the 3D grid table. The compensation-table
generating algorithm for each error model is presented and experimental evaluation of both
methods are obtained and compared. The paper is organized as follows; in section 4.3, the
kinematic model of the tested machine tool is introduced. Section 4.4 describes the mathematics of
volumetric error calculations. Section 4.5 explains the process of determining values for the table
and identifying its input and output. In section 4.6, the experimental case study is explained
including calibration test and error compensation validation. The results are presented and

discussed in section 4.7. Finally, the conclusion follows in Section 4.8.
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4.3 Machine modeling

4.3.1 Machine configuration

Figure 4.1 shows a five-axis machine tool with topology wCBXFZY St including three prismatic
axes (X, Y and Z), two rotary axes (B and C) and a spindle (S) with stroke lengths of 610, 560 and
560 mm in the X, Y and Z directions, respectively. The workpiece branch consists of the X-, B-
and C-axis and the tool branch consists of the Z- and Y-axis and the spindle. The foundation frame
called F has its origin on the B-axis so that the x axis of the F frame hits the C-axis. The alignment
of the F-frame is defined by the X- and Z-axis as primary and secondary axes respectively. The B-
, C- and spindle axes are nominally parallel to Y-, Z- and again Z-axis, respectively. The w, S and
t letters represent the workpiece, the spindle and the tool, respectively.

{t} {S}

B- and C-axis used for calibration

Machine frame

Figure 4.1. Machine tool kinematics with topology wWCBXFZY St.
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4.3.2 Kinematic model

A machine tool can be seen as an open kinematic chain from workpiece to tool. Under the
assumption of rigid body behaviour, the arbitrary transformation matrix between the pose of frame

I relative to frame j is given by,

J'-|-i _ {SM P31><1:| 1)
3

where R, ; and P, are the rotation submatrix and the translation vector, respectively. In order to

model the relative perfect movement of the tool relative to the workpiece, a series of homogeneous

transformation matrices are multiplied in sequence as,
WnTtn = WnTF FTtn = (CTwn - BTC_l XTB_l FTx _1)(FTz ZTY YTs STtn) (2)

where the first parenthesis denotes the kinematic chain of the workpiece branch showing the HTM
of the workpiece to the foundation frame (F) and the second one denotes the HTM of the tool
relative to the foundation frame. In the presence of geometric errors, the kinematics of the target

machine tool is completed with HTMs containing errors as follows:

-1C" - -1CyT -1C -1B" - -1By1 -1B, -1 X" - -1 X4 -
WaTt — WnTW 1C TW 1 CT , 1Cy TC 1 OT , 1 B-I-C 1 BT ' 1By TB 1 OT , 1X TB 1 XT , 1 OTX 1
a a h C Co 0 B By 0 X

3)
X - - z Z " Y, Yo ! " t
oT T, T, AT AT, T AT, T T YT, YT T ST T,
Xo 0 0 Zy Z 0 Yo Y n a

where Xo, Yo, Zo, Bo, Co, Wn, S and t, describe the nominal joint locations and X, Y, Z, B and
C describe the nominal movement of each axis. The actual joint locations before movement are

Xo', Yo', Zo',Bo" and , Co’ and actual locations of the axes, workpiece and tool are X', Y',Z",

B',C',wa,S" and ta.

The geometric errors in a five-axis machine tool are classified into two groups: intra- and inter-
axis errors. In order to remove the redundancy between the two groups and provide a better
estimation while calculating error parameters by indirect measurement methods, different error
models are defined in which several intra- and inter-axis errors (M. M. Rahman & Mayer, 2015)

participate. Those intra- and inter-axis errors are equivalent to the motion and link errors in ISO



34

230-1 (Zhu et al., 2012), respectively. Inter-axis (link) errors are defined as the errors of position
and orientation between the average line of axes of movement and intra-axis (motion) errors are
the motion imperfections of each individual mechanical axis (Schultschik, 1977). Two error
models are studied, the first one is called the 13-error model. It requires the eight inter-axis error
parameters of the five axes and two translation error parameters for the spindle axis apposition
relative to the two main rotary axes of the machine. Finally, three intra-axis error modeling the
scale gain errors of the positioning errors of the linear axes are included (Mayer, 2012). The other
error model, called the 84-error model, includes many intra- and inter-axis errors and also the two
angular positioning backlashes of the B- and C-axis. This model uses ordinary polynomials for
modeling the error parameters (McHichi & Mayer, 2014). The 84-error model is made of the
polynomials coefficients. The error coefficients and parameters relative to the two models are
detailed in section 4.6, Table 4-2 and Table 4-3.

To calibrate the machine tool, an indirect technique called SAMBA (Mayer, 2012) is applied. The
SAMBA hardware is an artefact consisting of a variable number of master balls, typically four, and
a fixed length scale bar which are probed following a specific strategy to cover the maximum
working volume and the maximum rotation of the rotary axes in order to enable better estimation
of the machine error parameters (McHichi & Mayer, 2014). The measurement data are then
processed using the Newton-Gauss to estimate the best values for the unknown inter- and intra-

axis error parameters that match the measurements in a least square sense (Y. A. Mir et al., 2005).

4.4 Volumetric error compensation

A kinematics-based approach is used to calculate the axis command correction necessary to reduce
the volumetric error. The volumetric errors are the relative linear and angular deviation of the tool

to the workpiece calculated by,

HE, =twist(("T, (a)) T, (@) @)
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for command position g, where {t}’WE\,t is the volumetric error twist expressed in the tool frame.

The twist function extracts the three linear and three angular deviations from the tool relative to
the workpiece HTM (4x4). q is,

q:[qx 0 0; G qc] (5)

where 0y, 0y, 0,, ds and . are the components of the nominal command in X, Y, Z,Band C

directions, respectively. As in (Givi & Mayer, 2014), assuming small angular volumetric errors,

the necessary volumetric correction twist is given by,

Ecv = _{t}YWEVt (6)
and
.
ECV = [EXCV EYCV EZCV EACV EBCV ECCV ] (7)

is the volumetric correction twist where Ecvx, Ecvy and Ecvz are its linear elements and, Ecva, Ecve
and Ecvc are its the angular elements. In order to calculate the axis command correction, the
sensitivity matrix, Jq, is calculated which describes the linear relationship between differential

changes in axis command correction and the volumetric error. Therefore, the relationship between

E.y and the axes command correction, Ad,,, . for each set of commands is given by,

Aqump = ‘JqT ECV (8)
where,
Aqump = [Aqx AqY qu AQA AQB ch ]T (9)

JqT is the pseudo-inverse of Jq . A Gauss-Newton iterative method is applied for a numerically

exact solution.
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4.5 3D error compensation table - generation and interpolation

4.5.1 Table generation

The 3D table is a mesh grid, Figure 4.2, with its node coordinates corresponding to the mechanical
axes nominal commands and each node is attributed an axis command correction vector. For
commands not corresponding exactly to a grid node, an interpolation using surrounding nodes is
conducted. The input values to the table are the nominal axis commands and the output are the axis
command correction values to be added to the nominal commands to reduce the effect of machine

tool errors. For this 3D grid table only the linear axes are considered.

{Table}

L,

3D mesh grid

Figure 4.2. Schematic of a sample 3D mesh grid dimension.

The 3D table mesh grid dimension may affect the compensation quality since the interpolation is
applied linearly for the commands located in between the mesh grid nodes. This may also depend
on the nature of the dominant error parameters, and whether their effects are proportional to axis
commands or nonlinear. The objective is to obtain the optimal mesh grid dimension based on the
specific machine error parameters’ values. Hence, an algorithm is used in Figure 4.4 in which the
process of obtaining the minimal optimum mesh grid nodes is illustrated. This procedure uses, as
inputs, the estimated machine error parameters and a set of random commands in the Cartesian

working volume.

The smallest mesh grid dimension is 2x2x2. A 1x1x1 mesh grid would apply the same correction
to every nominal command set which is akin to a workpiece reference frame offset and is handled
by other G-code functions. To generate a 3D table for a specific mesh grid dimension, the
volumetric error at the nominal command associated with each mesh grid node is calculated by Eq.

(4). A number is assigned to each mesh grid node which is then used as an entry in the 3D table.
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Then, the compensated volumetric error is obtained by Eq. (6). Afterwards, the corresponded
command correction is computed by Eq. (8). This process corresponds to the Conversion algorithm
in Figure 4.4. Ultimately, the table is generated with the nominal mesh grid node numbers and their

associated commands and the corresponding nominal commands corrections (Figure 4.3).

3D error compensation table

Mesh grid Joint Joint Joint Joint Joint Joint

_;‘ pxXmxn node command command command correction correction correction
Number X) ) (Z) [69) Y) @)
3D mesh grid :

pxmx2 1 Ax: Ay, A1 Aqy, Aqy, Aqy,

pxm 2 Ax Uy2 gz Aqy, Aqy, Aqy,

: Y. oy i Axi) Ay g1 Agy; Ady, Aqy,

p X m+l * . . . . : .
pt . 7

pxmXn qX(pmen) qY(mexn) qZ(pmen) AQX(pXan) AqY(pxm)(n) AqZ(pxm)(n)

Figure 4.3. The 3D mesh grid and the error compensation table.

To decide on the optimality of the selected mesh grid dimension, the table is used for 2000 random

commands (d,, O, 0,, O 0), where the compensated command (q,. G U, O 0)is
calculated by adding the command correction (Aq, Ag, Aq, 0 0) achieved by applying the

interpolation explained in section 4.5.2 to the nominal command (dy, G, d,, 0 0),

[0 Oc Ge O O]=[dy, G, Gm O O]+[Aq, Ag, Ag, 0 0] (10)

The remaining volumetric error, after using the 3D grid table, is recalculated by Eq. (4). Regarding
the initial and also the optimal grid dimension, choosing this number as random commands seems
to be reasonable. The number of mesh grid nodes are increased until the norm of the differences of
the root mean square (RMS) of the Cartesian volumetric errors for the random commands in the
considered working volume after numerically using the 3D grid table become less than a preset
threshold of 10* mm. The preset threshold is introduced as the decision parameter for the simulated

machine, which has no other errors than the modeled errors. So that,

if [|(RMS(E, ) —RMS(E 1)) lI< preset threshold . (12)
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where K can be substituted by X, Y and Z. E; is the volumetric error for step i and E,; ,,for

step (i — 1). The RMS of the volumetric error in the K direction ( E,, ) is calculated by,

RMS (E,y) 201004/2(% (12)

where j = 1 to 2000 for the 2000 random commands.

3D grid error compensation table
With minimal optimum mesh grid size (i-1)

Yes

22::1::::;" Compensated commands
[ (gxc, Gve, Gzc, 0,0) If
L (Gxs ., Qys» G250, 0) o R= ~ R< Preset
* [IRMS(EV gy -RMS(EV eyl threshold
3D error No

compensation
table Trilinear
interpolation
Y

Joint positions
Calibration test M:chme error | Conversion cor;ect.lgn 'z > 3D error
arameters algorithm mesh grid node » compensation table

Commands corrections
(Aqx, Aqy, Aqg, 0,0)

X, Y, Z joint positions
in the mesh grid node

Stroke length of o Mesh grid L
machine in X, Y Select mesh grid size (i) node number | v g Bupee) pemser s Wrpemess g

and Z direction *

Figure 4.4. Process of generating the table with optimal mesh grid dimension.

Two simulated error models, the 84- and the 13-error models, are used for verifying the proposed
method to generate the 3D grid table. This 84-error model uses cubic polynomials to model the
error motion and so can model nonlinear errors while the 13-error model one contains errors having
linear behaviour. As seen in Figure 4.5, the initial grid has a dimension 2x2x2 for 8 nodes. For a
threshold of 10 mm and using a step of 1 for each grid dimension, e.g. 2x2x2, 3x3x3, 4x4x4, etc.,
the optimum 3D tables for the two simulated parameter and coefficient value sets of the 84-error
model are shown in Figure 4.5. The dimension of the mesh grid that fulfils the preset threshold is

different for the two simulated error sets. The optimum mesh grid dimension for the first simulated
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84-error models error parameters’ set is 14x14x14, 2744 nodes, while for the second simulated
error parameters’ set, the optimum mesh grid dimension is 19x19x19, 6859 nodes. Hence,
depending on the specific error parameters values of the 84-error model, the optimum mesh grid
dimension may vary. However, the grid dimension of 2x2x2 is appropriate for the simulated
erroneous machine tool having 13 error parameters to reach to the predetermined threshold for
2000 random commands. This may be due to the quasi-linear relationship between the effect of
those errors and the nominal commands. The relevant errors are the out-of-squarenesses between

the linear axes and the linear axes linear positioning errors.

Norm of the RMS of the volumetric error
using different mesh grid dimensions

0.04 - .
\ -+-First simulated 84-error model

! ®-Second simulated 84-error model
bl <4-First simulated 13-error model '
v =-Second simulated 13-error model||

0.035 ¢

o
o
b

0.025

1
o
15

Error [mm]
2
F
F

°
2
-
L

~Preset threshold
0 .
197 2744 3375 4096 4913 5832 6859

0.005 S

Rk b S SN

L T TR R R R ~0-0-0-0 -0 -9
82197 2744 3375 4096 4913 5832 6859
Mesh grid dimensiof

o————
8 27 64 125 216 343 512 729 10001331 172

Figure 4.5. The norm of the Root Mean Square of the volumetric errors for the 2000 random
commands in the stroke length of the machine while using the 3D grid table with different mesh

grid dimension for the two simulated 13- and 84-error model parameters.

4.5.2 Interpolation

Because of the number of entries for the tables are limited, typically controllers interpolate for
commands located between the mesh grid nodes. For instance, the mesh grid dimension in the
Fanuc controller is 15625 or 25x25x25 for the X, Y and Z-axis ("Fanuc Controller,” Series
30i/Model A). Intermediate values are calculated using a multivariate trilinear interpolation
("Fanuc Controller,” Series 30i/Model A). Assuming P as the command needed to be compensated,
the process can be simplified to perform the interpolation in an element forming a rectangular prism

using the eight command corrections on the lattice points surrounding P (Figure 4.6).
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P3:(P3x'P3)”P32)
(3L C3) P7=(P7,,P7,,P7,)
o o e(7=(C7,,C7,,CT,)
PA=(P, PAy PA) T L o
C4=(C4,, C4,,C4;) s

P23(P2,,P2,,P2,) C8=(C82, €8y, (8,)
C29(C2y, €2,,C2,); |y

==y ‘ _#P6=(P6,, P6,,P6,)
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X €1=(C1,,C1,,C1,) P5=(P5,,P5,,P5,)
7 €5=(C5,, C5,,C5,)

Figure 4.6. Schematic of a rectangular prism for applying trilinear interpolation.

Considering p1, p2, p3, p4, p5, p6, p7 and p8 as the rectangular prism corners, ratios rx, ry and rz
are respectively calculated in the X, Y and Z directions by (Bourke, 1999),

dx _ ‘py_ply‘ _ dy
|p2, - pl,

P, — P,

- pl d
Iz = P PoI L (13)

,ry_‘p4y_p1v‘_‘p4y_p1y" _|p5z_p1z |p5z_plz

p2, - pL,

where Py, Py and P; are the X, y and z target joint positions in the joint space. In cases where the
joint command is located at a mesh grid node, the program returns the value of zero to the
associated ratio. The correction values in the X direction, C, in the following equation, for position
P is given by (Bourke, 1999),

C,=CL1-rx)A-ry)Ad-rz)+C2,rx(L-ry)(L-rz) +C3 rxry(l-rz)+ C4 (1-rx)ry(1-rz)

+C5, (L-rx)A-ry)rz+C6, rx(1—ry)rz+C7 rxryrz+C8, (1-rx)ryrz (14)

where Cly, C2x, C3x, C4y, C5y, C6y, C7xand C8y are the scalar correction values at each rectangular
prism corner, obtained from the 3D grid table. Similarly, the correction values in the Y and Z
directions, Cy and C,, are calculated by respectively substituting C1y, C2y, C3x, C4y, C5x, C6yx, C7x
and C8y with C1y, C2y, C3,, C4y, C5y, C6y, C7y and C8y and C1,, C2,, C3,, C4,, C5;, C6;, C7; and
C8;in Eq. (14).
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4.6 Experimental case study

To study the efficiency of the generated 3D grid error compensation table, a series of experimental
tests were conducted including machine error parameters identification test (SAMBA) followed by
3D ball-bar validation tests. The experimental validation procedure is illustrated in Figure 4.9. In
order to reduce thermal effect differences between the calibration and the validation tests, the tests
were executed in the sequence 3D ball-bar, SAMBA and 3D ball-bar. Although a SAMBA test
could be applied as validation a 3D ball-bar test was chosen instead as it provides a more
independent validation means. Machine error parameters and error coefficients are estimated for
both the 13- and 84-error error models from the SAMBA test data conducted “before
compensation”. Then, “after compensation”, the SAMBA procedure is repeated just to ensure
similar thermal states of the machine. The mean values of the radial errors (ball-bar measurements
of the volumetric error along its sensitive direction) before compensation (el, e2) and after
compensation (elc, e2c) were used for analyzing the effectiveness of the compensation. The
calibration zone, mesh grid zone and 3D ball-bar test zone are shown in Figure 4.8. The test zone
is entirely contained with the calibration zone in order to avoid error extrapolation. Because the
tested machine does not have a 3D compensation table option a pseudo 3D table was produced by
which the command compensation process was conducted offline and a compensated G-code
produced. As shown in Figure 4.9, before comparing the two mean measured radial errors, the
effect of ball-bar setup errors, i.e. eccentricity of the ball-bar tool ball circular trajectory relative to
the workpiece ball, are removed using a linearized geometric error model. The resulting Jacobian

of the first partial derivatives of the radial errors to the setup error was constructed. So that,

1 0 0|]|u
p=[sindcosg sindsing cosh]|0 1 Of|v =JsempermrESetuperror (15)

0 0 1||w

‘]setup error Esetup error

where J Is the projected Jacobian for the setup error, , is the ball-bar reading column

setup error

matrix, E is a column matrix containing the setup errors and u, v and w are the setup errors

setup error
in the X, Y and Z directions, respectively. The 8 and ¢ are respectively the polar and the azimuthal

angles (Figure 4.7).
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Figure 4.7. Projection of the tool tip position in the ball-bar direction.

Because the balls of the tool and the workpiece have the same effect on the Jacobian, one set of

setup errors is kept and the other is redundant. Therefore, the setup error is denoted by,

-1

E =J (16)

setup error setup error P

and the setup error compensated measurement data is then calculated by,

u

!

P =p- ‘]setup error v
w

Calibration zone and
3D mesh grid compensation table zone

> 3D ball-bar test zone

Machine tool mechanical table {w}

Figure 4.8. The calibration zone, mesh grid zone and 3D ball-bar test zone.

(17)
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Figure 4.9. Experimental test procedure. (el, e2): the measured radial error before compensation,
(elc, e2c): the measured radial error after compensation using pseudo table of the 13-error model

or the 84-error model.

4.6.1 Machine error parameters identification

Figure 4.10 shows the calibration system (SAMBA) with the four 9.525 mm radius precision
master balls and the scale bar artefact with a 304.6686 mm (U = 1.2 um) length installed on the
pallet of the tested machine tool. The rotary B- and C-axis are indexed within the ranges of -90° to
90° and -360° to 360°, respectively. A Renishaw machine tool touch trigger probe (MP700) with a
total tool length of 275.86 mm measures the x, y and z coordinate of the balls’ positions for 32 sets
of B and C angular position pairs. The measurement strategy is designed to cover the full rotation
of the rotary axes to have a better estimation of machine error parameters. However, depending on
the accessibility of the probe to the target balls, the number of balls measured in different
indexations may vary. The measurement strategy is shown in Table 4-1. As seen, the spindle (S-
axis) is also indexed at 60°, 120°, 180°, 240° and 300° which allow distinguishing the stylus tip
offsets from the spindle position error parameters. In the conducted tests, the scale bar is also
probed to allow the three scale gain errors to be estimated with respect to the international meter.
The SAMBA data is processed to estimate the machine error model. The tests were repeated five
times over five consecutive days. Each test for measuring 123 positions lasted for 3H10M (3 h and

10 min). The room temperature was between 21°C and 22°C during the test.



Table 4-1. Strategy of measurement in SAMBA technique.

44

Indexation (°)

Indexation (°)

Index number (SB.C) Ball ID | Index number (SB.C) Ball ID
1 (0,10,30) 34,5 17 (0,0,90) 1,2,3,4,5,6
2 (0,30,90) 3,45 18 (0,0,240) 3,45
3 (0,50,150) 34,5 19 (0,0,300) 345
4 (0,70,210) 3,45 20 (0,0,180) 1,2,3,4,5,6
5 (0,90,270) 3,4,5,6 21 (0,0,45) 1,2,3,4,5,6
6 (0,60,180) 3,45 22 (0,0,-45) 1,2,3,4,5,6
7 (0,40,120) 3,4,6 23 (0,0,-180) 1,2,3,4,5,6
8 (0,20,60) 3,4,6 24 (0,0,-300) 3,45
9 (0,-10,-30) 34,5 25 (0,0,-240) 345
10 (0,-30,-90) 3,45 26 (0,0,-90) 1,2,3,4,5,6
11 (0,-50,-150) 345 27 (0,0,0) 1,2,3,4,5,6
12 (0,-70,-210) 3,45 28 (60,0,0) 3
13 (0,-90,-270) 3,4,5,6 29 (120,0,0) 3
14 (0,-60,-180) 3,45 30 (180,0,0) 3
15 (0,-40,-120) 34,6 31 (240,0,0) 3
16 (0,-20,-60) 3,4,6 32 (300,0,0) 3

Scale bar

Figure 4.10. SAMBA artefact (1-2: Scale bar), (3,4,5,6: Master ball) used to estimate the machine
tool error parameters and coefficients to be used to prepare the compensation table.

4.6.2 3D ball-bar test with single setup for compensation validation

The telescopic magnetic ball-bar measures the distance between its two ball centers using its

internal linear transducer and an external calibrated distance in the form of two kinematic ball seats
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separated by a calibrated distance, on which the ball-bar can be temporarily mounted. The nominal
ball-bar length is 150 mm with an uncertainty of £1.4 um on the readings and a measuring range
of approximately £1 mm. Figure 4.11 shows the 3D ball-bar test. Five half meridian travels form
a hemisphere while transiting between the meridians via arcs on the equator. The first engagement
is at the first position (position “A”), the feed in and feed out are located on the third forward
meridional travel (position “B”) and the disengagement is at the end in front of the engagement
point (position “C”). The G-code before compensation uses the nominal trajectories. To minimize
error contribution from the NC linear interpolation between the programmed points an angular
increment of 0.1 degree along the meridians was used thus ensuring a maximum distance of
0.00014 pum between the meridians and the trajectory linear segments. As a result, 19809 positions
are programmed with GO1 commands. The number of ball-bar measurements is controlled by the
Renishaw software. At the slower feed rate of 200 mm/min is selected for the test, the slower
sampling rate is automatically selected by the ball-bar software yielding a total of 5990 distance
readings. The 3D ball-bar test was run before and after compensation.

Any compensation table present on the machine controller, such as linear axis positioning and
angular axis positioning, were deactivated for all tests. The room temperature was between 21°C
and 22°C during the test but fluctuations outside this range were possible overnight between tests.
The test was repeated ten times over five consecutive days while the machine was assumed to be
in the same environmental situation. Each test lasted 37 minutes without considering the setup

time.
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Figure 4.11. 3D ball-bar validation test used to evaluate the effectiveness of the compensation.
(A: start-travel 1, B: travel 2, C: travel 3, D: travel 4, E: travel 5, F: end).

4.7 Results and discussions

Table 4-2 lists the error coefficients for the 84-error model obtained by SAMBA calibration. Each
intra-axis error is fitted with third degree ordinary polynomials. However, some of them are
partially confounded as is expected for ordinary polynomials. The errors are presented for each
axis separately in Table 4-2. The 84-error model is capable of providing positioning backlashes for
the two rotary axes as well. Table 4-3 lists the error parameters and coefficients for the 13-error
model obtained by SAMBA calibration. The maximum standard deviations of the five repeated

measurements (SAMBA test) along X, Y and Z were 0.8, 1.2 and 1.1 um, respectively.

The 3D ball-bar tests data before and after compensation are compared for compensation
validation. The setup error calculated by Eq. (16), accounted for less than 5% of the 3D ball-bar
data before compensation. For 3D ball-bar “after compensation” test, first, the pseudo 3D grid error
compensation table was provided for the two error models. A simulator was developed for the

target machine tool topology which used the erroneous machine tool forward kinematics. By
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entering the tool specification and the machine tool error parameters estimated from the SAMBA
test for one of the two error models, the volumetric errors for each mesh grid node position are
predicted. The optimal mesh grid was obtained for the two error models with the error parameters
and coefficients values listed in Table 4-2 and Table 4-3 using the process explained in Figure 4.4.
Starting the initial guess for the mesh grid dimension as 2x2x2 (resulting in eight nodes) and
considering a step of 1 for the mesh grid dimension in the optimization process, the 2x2x2 mesh
grid dimension was appropriate for the 13-error model but for the 84-error model, the minimal
optimum grid dimension for the real data was 19x19x19 for 6859 nodes. Two pseudo 3D grid error
compensation tables were then generated and the trilinear interpolation used to compensate the
nominal G-code for the 3D ball-bar tests. No corrections exceeded 100 um. The setup error was
recalculated for the 3D ball-bar data after compensation by Eq. (16) showing less than 5% of the
3D ball-bar data after compensation. The radial errors before and after G-code 3D grid error
compensation are shown in Figure 4.12 and Figure 4.13 for 13- and 84-error parameter models,
respectively. The machine tool exhibits scale errors before applying the compensation. The
discrepancy between the maximum and the minimum ball-bar measurements was 33.6 um before
compensation. This discrepancy was reduced to 6.3 um and 5.8 um after compensation for the 13-
and 84-error model, respectively. Thus, the machine tool accuracy was improved by 81.25% and
82.74% for 13- and 84-error, respectively. The root mean square (RMS) of the Cartesian volumetric
error was reduced from 24.5 um before compensation down to 4.3 um and 3.5 um after
compensation for the 13- and 84-error model, respectively. The two error models do not estimate
linear axes backlashes. However, independent circular ball-bar tests showed a backlash of around
5 um for the linear axes. The 84-error model contains more error parameters but only performed
marginally better than the 13 error parameter model probably because the parameters which were

common in the two models were the dominant ones.



Table 4-2. Calibration results for 84-error model. It estimates 84 error coefficients.
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X-axis Y-axis Z-axis B-axis C-axis
Name Value Name Value Name Value Name Value Name Value
Exx: -3.13E-04 Exyo -2.41E-02 Exn 2.29E-04 Exso -1.08E-01 Exci  -5.06E-04
Exx2 7.53E-08 Exvy2 3.43E-08 Exzz -6.27E-07 Exg1 -1.21E-02  Exc 2.81E-05
Exx3 1.35E-10 Exyz -5.12E-10  Exz 5.55E-10 Exg2 4.19E-02 Excs 3.39E-05
Evxe -2.74E-09 Evvo 6.10E-02 Evz 5.12E-07 Exgs 1.53E-02 Evci 2.08E-04
Evxs 1.22E-10 Evy:i: -1.09E-04 Eyz -3.06E-10 Eyps -1.58E-03 Eyc, -7.80E-05
Ezx; -1.57E-08 Eyy2 -2.46E-08 Ezzn 1.04E-04 Eve -4.16E-04 Evcs -2.51E-05
Ezxs  -1.32E-11  Evys 3.64E-11 Ezzz -3.76E-07 Evps -4.16E-04 Ezci  -2.74E-04
Eaxo  -5.99E-04  Ezv; 3.30E-08 Ezzs 3.26E-10 Ezsr  -1.08E-02 Ezc» -4.94E-05
Eax1 2.86E-08 Ezvs -1.19E-10 Eaz  -2.60E-04 Ez  -4.89E-02  Ezcs 1.40E-05
Eaxz 2.97E-10 Eazz  -1.15E-07 Ezgs 1.05E-02 Eact 5.41E-07
Eaxs -1.82E-13 Eaz 4.06E-10 Eago 3.00E-04 Eac2  -1.35E-08
Egx1  -7.27E-08 Eazzs -5.07E-13  Eap1  -3.62E-04 Eacs -5.51E-08
Egxs -1.10E-10 Eczo -4.28E-04 Eap2 -1.30E-04 Egc1 1.89E-06
Egxs 3.61E-13 Ecz1 3.47E-06 Eags 5.03E-05 Esco -5.42E-08
Ecxo  -3.62E-03 Eczz -8.99E-09  Esggmo 1.95E-05 Egcz  -1.58E-07
Ecx1 6.46E-08 Eczs 7.56E-12 Egsr -2.39E-05 Ecc 1.64E-06
Ecx2  -2.59E-11 Egs2 3.92E-06 Ecco 9.84E-08
Ecxs  -1.82E-12 Eggs 1.51E-05 Eccs  -9.73E-08
Egab 7.12E-06 Eccp 5.76E-06
Eca1 3.13E-04
Ecg,  -1.55E-04
Ecgs -4.66E-05

ERHb[rad]

Units examples:
R and H are the linear axes: Erno[mm], Ernzi[mm/mm], Ernz[mm/mm?], Erpz[mm/mm?], Erpp[mm]
R is the rotary axis and H is the linear axis: Erno[rad], Erna[rad/mm], Ermz[rad/mm?], Erns[rad/mm?],

R and H are the rotary axes: Erpo[rad], Erpa[rad/rad], Erpz[rad/rad?], Erns[rad/rad®], Ermp[rad]
R is the linear axis and H is the rotary axis: Erro[mm], Erni[mm/rad], Ernz[mm/rad?], Erns[mm/rad®],
ERHb[mm]
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Table 4-3. Calibration results for 13-error model. It estimates 13 error parameters.

Error definition Symbol [unit] Value

Out-of-squareness angle of the B-axis relative to the Z-axis  Eaos [rad] -0.000040
Out-of-squareness angle of the B-axis relative to the X-axis Ecos [rad] -0.000001
Offsets between the B and C axes Exoc [mm] -0.095600
Out-of-squareness of the C-axis relative to the B-axis Eaoc [rad] -0.000012
Out-of-squareness of the C-axis relative to the X-axis Egoc [rad] 0.000011
Out-of-squareness of the Z-axis relative to the X-axis Egoz [rad] -0.000010
Out-of-squareness of the Y-axis relative to the Z-axis Eaov [rad] -0.000038
Out-of-squareness of the Y-axis relative to the X-axis Ecov [rad] 0.000015
Offset of the spindle relative to the C-axisin Y Evos [mm] 0.029300
Offset of the spindle relative to the B-axis in X Exos [mm] -0.100000
Positioning linear error of the X-axis Exx: [mm/mm] -0.000017
Positioning linear error of the Y -axis Evyi [mm/mm] -0.000023
Positioning linear error of the Z-axis Ezz: [mm/mm]  -0.000032

The results before and after compensation are also compared by inspecting the radial residuals of
a least squares sphere fitted to the ball-bar data. The size error (isotropic effect) is the deviation
between the radii of fitted sphere and that of the nominal trajectory while the form error is defined
as the residuals. Figure 4.14 shows the errors of size and form before and after applying the
compensation for forward and backward movements. The reference sphere is also shown. The
results are listed in Table 4-4. The compensated machine tool has size errors larger than the form
errors. The radius of the fitted sphere before compensation was 19.3 um bigger than the reference
sphere. However, after applying the error compensation technique and using the 13- and 84—error
models, the radii of the fitted spheres respectively became 3.8 um and 2.6 um bigger than the
reference sphere. The standard deviation of the residuals was changed from 4.1 before
compensation to 1.1 and 0.7 after compensation using the 13- and 84-error model, respectively.
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Figure 4.12. Projection of volumetric Cartesian error on the ball-bar axis direction before

compensation (red) and after compensation through using 3D grid error compensation from the

13-error model (blue).



o1

90 90 90
120 60 120 60 120 60
150 30 m 150 30
180 — 0 180 0
15t M-F 15t M-B 2" M-F
90 90 90
120 60 120 60
150 30 ﬁ 150 30
180 0 180 0
2" Mm-B 3" M-F 3"M-B
90 90 90
120 60
fr\_\ m 150 30
180 0
4" M-F 4" m-B 51" M-F
90 90 Angular segments=30° 90 Radial segment=5 um
%120 - 60
150 ot & im
m m X%{/ %z % o
th 180 0
5 M B Equator Base circle
Feed=200 mm/min , ball-bar axis length=150 mm , test on 3D space (XYZ
i = After compensation
axes)Error magnitute scale=1000

== Before compensation

Figure 4.13. Projection of volumetric Cartesian error on the ball-bar axis direction before
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Figure 4.14. Projected volumetric error (radial error) before and after the error compensation for
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Table 4-4. The calculations regarding the size and form errors before and after applying the error

compensation.

After After
Category Calculations Before _ co_mpensatlon compensatlon
compensation using 13-error using 84-
model error model
Form error max(residuals) — min(residuals) 14.1 1.7 1.3
Form error std(residuals) 4.1 11 0.7
Size error radiusgiireq — radius,gminal 19.3 3.8 2.6

4.8 Conclusion

3D compensation table were generated from an indirectly estimated 1SO-230-1:2012 machine tool
error parameters, and the forward kinematic model, to compensate the Cartesian volumetric error
of a five axis machine tool in 3-axis operation mode. The effect of the number of nodes, the
dimension of the table was studied in order to find the minimal mesh grid dimension necessary to
achieve a given compensation precision. Two machine error models were calibrated using the
SAMBA method, one model includes inter-axis errors and numerous intra-axis errors as 84 error
polynomial coefficients and the other models includes only the inter-axis errors and linear axes
scale factors with 13 error parameters. The errors of the 13-error model, as far as the linear axes
are concerned, could be compensated with an eight node grid which is coherent with the linear
nature of these error parameters such as out-of-squarenesses and linear axes linear positioning
errors. As for the 84-error model, the optimum dimension of the table depends on the actual error
parameters values. For the tested machine a 19x19x19 for 6859 nodes tables was needed to achieve
the preset threshold of 0.1 micrometer if the machine had no other errors than the estimated ones.
To verify the efficiency of the generated tables, a validation test consisting in a 3D ball-bar test
was used. The path best fit sphere radius deviation from the nominal sphere (size error) was reduced
from 19.3 pum, before compensation, down to 3.8 and 2.6 um after compensation for the 13- and
84-error model, respectively. The standard deviations of the residuals (form error) were reduced
from 4.1 um, before error compensation, down to 1.1 and 0.7 um after error compensation for the
13- and 84-error models, respectively. The discrepancy between the maximum and minimum radial
residuals (form error) were reduced from 14.1 um before compensation, down to 1.7 and 1.3 pum

after error compensation for the 13- and 84-error models, respectively. The machine tool showed
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significant scale errors which were modeled by the two error models and compensated. The
experimental average effectiveness of the 3D grid error compensation table was over 82%.
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5.1 Abstract

Modern CNC machine tools provide lookup tables to enhance the machine tool’s precision but the
generation of table entries can be a demanding task. In this paper, the coefficients of the 25 cubic
polynomial functions used to generate the LUTS entries for a five-axis machine tool are obtained
by solving a linear system incorporating a Vandermonde expansion of the nominal control
jacobian. The necessary volumetric errors within the working volume are predicted from machine’s
geometric errors estimated by the indirect error identification method based on the on-machine
touch probing measurement of a reconfigurable uncalibrated master ball artefact (RUMBA). The
proposed scheme is applied to a small Mitsubishi M730 CNC machine. Two different error models
are used for modeling the erroneous machine tool, one estimating mainly inter-axis errors and the
other including numerous intra-axis errors. The table-based compensation is validated through
additional on-machine measurements. Experimental tests demonstrate a significant reduction in
volumetric errors and in the effective machine error parameters. The LUTs reduce most of the
dominant machine error parameters. It is concluded that although being effective in correcting
some geometric errors, the generated LUTSs cannot compensate some axis misalignments such as
EB(OX)A and EB(OX)Z. The Root Mean Square of the translational volumetric errors are
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improved from 87.3, 75.4 and 71.5 um down to 24.8, 18.8 and 22.1 um in the X, Y and Z directions,

respectively.

Keywords: Lookup Table, Five-axis machine tool, Table-based error compensation, Geometric

error, VVolumetric error

5.2 Introduction

The need for producing geometrically complex parts meeting tight tolerances on one hand and
increasing the productivity on the other hand brings the necessity to maintain the accuracy of the
machine tool while limiting machine downtime for mechanical realignment of its various
components. The tool positioning errors mostly result from inter- and intra-axis errors, thermal
errors and force-induced errors (Srivastava et al., 1995). Considering the errors that are at least
partly repeatable, their calibration and compensation using a table-based error compensation
scheme is potentially cost-effective when compared to the downtime resulting from mechanical

maintenance and overhaul operations or producing scrap parts due to out-of-tolerance part features.

Numerical compensation, used to improve machine accuracy requires machine calibration and
introducing the error correction in the machine controller. Machine calibration approaches have
been categorized into direct and indirect methods (Sartori & Zhang, 1995). The direct methods use
instruments and setups that either measure the resulting volumetric errors, i.e. the inaccurate
position and orientation of the tool relative to the workpiece, or measure the causal geometric error
parameters individually. The indirect methods measure the combined effects, as volumetric errors,
of more than one causal error parameter and estimate their respective values through mathematical
models (Schwenke et al., 2008). Indirect methods facilitate machine tool calibration (Abbaszadeh-
Mir et al., 2002; Esmaeili & Mayer, 2020; Lei & Hsu, 2003a; Montavon, Dahlem, & Schmitt,
March 2019; Suh, Lee, & Sohn, 1999) by relaxing many instrument related constraints. Such
models often rely on homogenous transformation matrices (HTM) which are a convenient
mathematical tool to build the error model and have been widely used in indirect machine tool
calibration and also for geometric error compensation (Lei & Hsu, 2003a; Suh et al., 1999). In such
model, the geometric errors can be limited to the relative axes location (Abbaszadeh-Mir et al.,
2002) or can also incorporate general shape functions, such as polynomials as in (Y A. Mir, Mayer,

& Fortin, 2002), to model the intra-axis errors of each axis.
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Error compensation has been widely studied (J. G. Li, Zhao, Yao, & Liu, 2007; Ramesh, Mannan,
& Poo, 2000b; Shih-Ming Wang, Yu, & Liao, 2005; Xi, Poo, Hong, & Huo, 2010; H. Zhang, Yang,
Zhang, Shen, & Wang, 2010). Compensation schemes were implemented either through off-line
modifications of NC codes (M. Rahman, Heikkala, & Lappalainen, 2000) or real-time error
compensation (Yuan & Ni, 1998). Ji-Hun et al. (Jung, Choi, & Lee, 2006) modified G-code
program in a three-axis machine tool to compensate linear and circular interpolation movements.
Srivastava et al. (Srivastava et al., 1995) enriched the HTM model with time-varying terms in order
to also model thermal errors to compensate the tool path. Wang et al. (Shih-Ming Wang, Liu, &
Kang, 2002) proposed an automatic volumetric error compensation wherein the error sources
resulted from static or quasi-static errors. The mathematical error model for the three-axis machine
tool uses shape functions and considers the machine’s non-rigid body behavior. The compensation
is implemented using a modified G-code. Khan et al. (Khan & Chen, 2010) proposed a case study
of volumetric error compensation in a five-axis machine tool using the nominal tool position from
CAD/CAM software and the actual tool position through the kinematic chain of the erroneous
machine tool. The deviations between the nominal and actual tool positions were then applied to

the tool path by modifying the NC program.

Most research for compensating machine tool error has focused on G-code modifications (Givi &
Mayer, 2014; Koliskor, 1971; R. M. Mahbubur et al., 1997). However, volumetric errors lookup
tables (LUT) have been available on CNCs, for over a decade, by which there is no need to modify
each G-code separately for compensation purposes. Published research in this area is recent (J.
Creamer et al., 2017; Jennifer Creamer et al., 2016, November 15-21, 2013, San Diego, California,
USA; M. Esmaeili & Mayer, 2020). Various LUTs are embedded in CNCs for pitch, straightness,
rotational, squareness and backlash error compensation ("Fanuc Controller," Series 30i/Model A,
"Siemens Controller,” SINUMERIK 840D/840Di/810D Extended Functions). Some controllers
offer more complex user configurable tables ("Siemens Controller,” SINUMERIK
840D/840Di/810D Extended Functions). Creamer et al. (Jennifer Creamer et al., 2016) used a laser
tracker to measure the volumetric errors of a five-axis machine tool at randomized location in the
machine workspace. Two models are then produced. One, called 6DoF, uses a homogenous
transformation matrix based approach where each geometric error matrix is modeled by Chebyshev
polynomials of each axis command. The other model, called Axis Perturbation (AP), has a form

much closer to the proposed LUT scheme. It generates, for each axis, a command correction that
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should bring the actual machine to the same position as the nominal machine. Each axis correction
is the sum of five corrections each a univariate Chebyshev polynomial of one of the five-axis
nominal command. The 6DoF model can also be used to generate the 25 Chebyshev polynomials
that are then discretized to populate the compensation LUTSs, available in the Siemens controller
(Sinumerik 840D), which operate much like the AP model. The AP model is directly discretized
to populate the tables. The models’ coefficients are optimized to correct the laser tracker indications
as pseudo-measurements obtained using the estimated models. They validated their compensation
approach by re-measuring the machine’s volumetric errors in positioning mode with the laser
tracker after compensation. Creamer et al. (J. Creamer et al., 2017) did another study to select a
limited number of compensation tables because most of the controllers are not equipped with 25
compensation tables as their previous work required. They applied an artificial intelligence based
(genetic algorithm GA) methodology to select an optimal set of tables and compared them with a
full set of compensation tables. The compensation tables achieved by GA methodology include
eleven tables, five fixed base tables of pitch error compensation plus six others selected by GA.
The GA compensation tables have a respective mean and maximum volumetric error 8 um and 11

um larger than a full set of compensation tables.

While the previous works (J. Creamer et al., 2017; Jennifer Creamer et al., 2016, November 15-21,
2013, San Diego, California, USA) in generating the LUTs are validated when the machine is in
machining mode, this paper presents a compensation LUTs generation process validated when the
machine tool is in measurement mode. Also, two alternate error models, differing only in the
number of modeled intra-axis errors, are considered. The first model uses the minimum complete
ISO axis alignment (inter-axis) error parameters and the second uses the 1SO error motion (intra-
axis) parameters. The process of generating the table and optimizing the table coefficients uses the
predicted volumetric error, as opposed to directly measured ones, calculated from the estimated
machine geometric error parameters, for the sets of commands located at a 5D mesh grid of the
five axis commands. Univariate ordinary polynomials are used as table functions. Constructing the
Jacobian of the sensitivity of the required volumetric corrections to the LUT function coefficients
in order to directly calculate the coefficients is another novelty of this paper. Finally, the criteria
for the effectiveness of the compensation are not only the remaining volumetric errors but also the
actual geometric errors before compensation and their effective values after compensation when

the machine is used in measurement mode.
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The paper is organized as follows; in section 5.3, the two error model used for calibration are
introduced. In section 5.6, the table-based volumetric error compensation is explained. In section
5.7, the error compensation verification in measurement and machining modes are presented. In
section 5.8 details the experimental validation procedure including the calibration and
compensation tests on a five-axis machine tool. The results and discussions are presented in section

5.9 followed by conclusion in section 5.10.

5.3 Machine tool modeling and error models

The target machine tool used in this work has an open serial kinematic chain made of two branches.
It is a five-axis compact-sized CNC milling machine tool with a Mitsubishi M730 CNC controller
and Mitsubishi servomotors. It has no linear encoders. The topology of the kinematic chain of the
machine tool is described as WCAYFXZSt, as illustrated in Figure 5.1, in which C and A are the
rotary axes, X, Y and Z are the linear axes and the w, S and t symbols stand for the workpiece,
spindle and tool, respectively. The machine (or foundation) frame, F, is nominally located at the

intersection of the A- and C-axis.

Eciov)x

Egox)z
D) {X} g
......... »
Ezerxnl Eacov)z
tool branch

workpiece branch

Eciova

Figure 5.1 Schematic of the machine tool kinematics with the 12-error model parameters.
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The kinematic chain of the nominal machine which generates the relative movement of the tool

relative to the workpiece is mathematically modeled as follows:
“T = (T T T, ) (T, T, ) (18)

where T stands for a 4x4 homogenous transformation matrix (HTM), embedding the translation

and the angular movement of one component relative to the previous component.

A machine tool has intra-axis and inter-axis errors. Intra-axis error, also called error motion, motion
errors or position dependent geometric error parameters, are the imperfect motion of each
mechanical axis whereas inter-axis, also called axis location error or position independent
geometric error parameters, are the imperfect relative location of the mechanical axes (Soichi
Ibaraki & Knapp, 2012). A five-axis machine tool, without considering the spindle, has five sets
of six intra-axis errors for a total of 30 intra-axis errors, and eight inter-axis errors to represent the
errors in relative location of its five axes. This yields a total of 38 errors. The intra-axis errors vary
with their respective axis position and so a number of error function coefficients are needed to
model each intra-axis error. Now considering the spindle, one could add six intra-axis errors, up to
four inter-axis errors and a Z offset for the tool attachment plane. However, in this work only the
two lateral offsets (x and y) inter-axis errors of the spindle are included due to the measurement

method limitations.

5.4 12-error model

One of the two error model studied in this paper is the 12-error model consisting of the eight
necessary and sufficient axis location errors (Abbaszadeh-Mir et al., 2002; Zhu et al., 2012), two
backlashes of the rotary axes and, since no length reference is measured, two relative gain errors

of the linear axes. These 12 errors are listed in Table 5-1 and shown in Figure 5.1.
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Table 5-1. The error parameters of the 12-error model.

Error definition Symbol*
Out-of-squareness angle of the A-axis relative to the X-axis Esox)a
Out-of-squareness angle of the A-axis relative to the Y-axis Ecova
Offset between the C and A axes Evoar
Out-of-squareness of the C-axis relative to the Y-axis Eaqvy)c
Out-of-squareness of the C-axis relative to the A-axis Eg(oa)c
Out-of-squareness of the X-axis relative to the Y-axis Ecov)x
Out-of-squareness of the Z-axis relative to the Y-axis Eaov)z
Out-of-squareness of the Z-axis relative to the X-axis Esox)z
Backlash of the A-axis Eaab
Backlash of the C-axis Ecco
Relative positioning linear errors of the X and Y axes Evyi- Exx1
Relative positioning linear errors of the X and Z axes Ezz1- Exxa

1-Euovyw Where U is the nature of the error, V is the datum axis and W is the axis which has the error.
5.5 81-error model

The 81-error model uses ordinary cubic polynomials to model intra-axis error which were found
by Slamani et al. (M. Slamani, Mayer, & Cloutier, 2011) to provide good representativity for the
machines they tested. The inter-axis errors are not added explicitly to this model because they can
be modeled by the coefficients of the polynomials of some of the intra-axis errors (Y A. Mir et al.,
2002). As an example, suppose the straightness error of the Y-axis in the X direction is modeled

as,

EXY = EXYO + EXYly + EXYZy2 + EXY3y3 + bY EXYb (19)

where Exvo, Exvi, Exv2 and Exyz are the coefficients for the zero to third degree terms of the
polynomials, respectively and E,,, is the hysteretic effect coefficient. The first degree term (and

the third degree term due to some coupling occurring in ordinary polynomials) can model the out-
of-squareness between the X- and Y-axis, which is an inter-axis error. Modeling all 30 error
parameters with a third-degree polynomial defines 120 error coefficients which are listed in Table
5-2. Adding the positioning backlashes to the model, the number of variables is increased to 125.
However, there are unnecessary and also unobservable coefficients. In order to have reliable
estimates, based on the condition number and rank of the Jacobian matrix, the number of

independent error coefficients must be reduced to 81. A procedure is applied to eliminate
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redundancies and confounded coefficients by removing some zero degree and first degree
polynomial coefficients while maintaining the rank of the estimation Jacobian (M. M. Rahman &
Mayer, 2015). Table 5-2 shows the retained error coefficients in black and the discarded ones in
red. After considering the redundancies, only two backlashes, EAAb and ECCb, can be detected
by this measurement strategy.

Table 5-2. All possible error coefficients for a five-axis machine tool. The 81-error model

variable are shown in black color.

X-axis Y-axis Z-axis
Exx Evx Ezx Eax Esx Ecx | Exyx Evywy Ezv Eay Esy Ecy | Exz Evz Ez

Exxo Evxo Ezxa Eaxo Esxo Ecxa Exvo Evvo Ezvo Eavo Esvo Ecvo Exzo Evzo Ezzo
Exxt Evyxt Ezxt Eaxt Eext Ecxa Exvi Evvi Ezvi Eavi Esvyi Ecvi Exzt Evzi Ezz
Exx2 Evxz Ezx2 Eaxa Esx2 Ecxz Exyz2 Evy2 Ezv2 Eav2 Esy2 Ecvy2 Exzz Evzz Ezz
Exxs Evxs Ezxs Eaxs Eexs Ecxs Exys Evvs Ezvs Eavs Esvs Ecvs Exzz Evzs Ezzm
Exxo Evxo Ezxo Eaxo Esxt Ecxo Exvb Evys Ezvs Eavs Esvs Ecvs Exzn Evzn  Ezz

Z-axis A-axis C-axis
Eanz Esz Ecz | Exa Eva Eza Eaan Esa Eca | Exc Evc Ezc Eac Esc Ecc

Eazo Eszo Eczo Exac Evao Ezao Eamo Esao Ecao Exco Evco Ezco Eaco Esco Ecco

Eazz Eezn Eczi Exar Evar Ezai Eaar Esar Ecar Exci Ever Ezen Eaci Esci Eccar
Eazz Eszz Eczz Exa2 Evaz Ezaz Eaa2 Eea2z Ecaz Exczc Eve2 Ezco Eacz Ec2 Eccee
Eazz Eszzs Eczz Exas Evas Ezas Eaas Esas Ecazs Excs Eves Ezcs Eacs Escz  Eccs
Eazo Eszw Eczv Exan Evan Ezan Eamn Esan Ecan Exco Even Ezev Each Esoo  Ecop

The forward kinematic model of the erroneous machine tool is given by,

A Yor Yo " ' T C Cy ' h -
W, Tta (FTY0 OTYO, ) TY YTY' Y T AOT , AO TA ATA, ATC0 OTCO' 0 TC CTC, C Twn W, Twa) 1 (2 )
X Xo T Z Zy ! "
(FTX0 OTXO, 0 TX XTX, X TZO OTZO, 0 TZ ZTZ, Z TS STtn t Tta )

where Xo, Yo, Zo, Ao, Co, stand for the nominal axis locations before movement; Xo', Yo', Zo', Ao’
and Co' stand for the actual axis locations, accounting for inter-axis errors, before movement; X,
Y, Z, A and C show axis location after nominal movement; and X', Y', Z', A’, C’, represent the

actual axis locations, accounting for intra-axis errors, after movement. S, wn and t, are the spindle
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and the nominal locations of the workpiece and tool, respectively. The actual locations of the

workpiece, and tool are wa and t,, respectively.

All error parameters and coefficients are estimated using the indirect measurement approach based
on a reconfigurable uncalibrated master ball artefact (RUMBA) (Mayer, 2012). The estimation

process, requires solving the following linearized error model:

E, =(J)(E;) (21)

where Ev is the column matrix of raw volumetric error vectors, Ep is the column matrix of unknown
error coefficients or error parameters, and some setup errors and J is the Jacobian matrix. Ep is
calculated by applying the iterative Gauss-Newton method with a combination of the forward
model of Eg. (2) and the following inverse model

E, =(I7)(&), (22)

using a suitably updated Jacobian matrix at each iteration until convergence to a pre-defined
threshold.

5.6 Table-based volumetric error compensation

Table-based compensation uses an open programming environment within the CNC with its own
commands and rules sets that the machine user can exploit to generate corrections to the machine
axes. The CNC uses these user instructions automatically. Data can be provided as lookup tables
interpolated by the CNC in real-time and as weights. The environment does not provide any
guidance as to the necessary tables, their combination, weights, entries or maximum correction
values. These functionalities are separate from the specific pre-programmed black box
compensation options that CNC manufacturers offer as paid licenses. The functions that combine
the tables’ output represent the complexity of the tables. Figure 5.2 illustrates the relationship
between the basic axis and the compensation axis when generating complex tables for the
compensation scheme used. The basic axis is the machine tool axis whose position is used as input
to the table to interpolate its entries and produce an output. The interpolated output of the
compensation table is applied to the compensation axis. The basic axis and the compensation axis
may be the same or different axes. As shown, the weights for each table outputs are W11, Was,
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W3s1... Wss. The weighted summation functions (3)) add together the weighted corrections for a

particular axis. The bounds define maximum compensation values to avoid excessive corrections.

Enable Weighted
Basic axis LUT LUT Weights Summation  Bounds Compensation axis
’
Axis1 D‘ Wy, -1 >3 : » Axis 1
. .
AX|52A_ D- W,y =1
A r
Axis 3 \\ D‘ Wi, =1 o
I. [<]
Axis 4 e W, =1 °

i \\\ 2 -
Axis5 . Wy =1

o
© 0
.

[ N
: Wis=1 f———3(% — > Axis 5
.
'D';" Whs=1
.
i.e W
] 35=1
4
< Wiys=1

Wss=1

Figure 5.2. Schematic of the 25 tables compensation scheme showing the basic axes, LUTS,

weights, summing operators, compensation axes corrections and their bounds.

The controller automatically corrects the axis’ commands using the enabled tables’ outputs as
illustrated in Figure 5.3. The process of generating the table uses the machine calibration results
and the associated machine error model to predict the volumetric error at the nodes of a 5D mesh
grid of axis commands generated within the stroke lengths and angles of the machine tool axes.
For each set of five axis commands corresponds a mesh grid node at which the associated
volumetric error is calculated using Eq. (2). Then, the functions that will be used to populate the
LUTs are optimised so that the compensation scheme corrections closely match the volumetric

errors at the node. All weights are equal to 1 in this study.
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Figure 5.3. The procedure of generating and using the lookup table (LUT).

Figure 5.4 shows a series of possible compensation tables for the i compensation axis.
Considering the summation characteristic of the tables, the correction value for compensation axis

i is (Jennifer Creamer et al., 2016),

AG; = fi,x(qX )"’ fi,y(qY)+ fi,z (qz)"' fi,a(qA)+ fi,c (qc): Z fi,j (qj) (23)

j=X.Y.Z,AC

where i stands for the compensation axis, A; is the compensation value for the compensation

. are the table functions. Cubic

axis, Q;is the nominal position command for basic axis j and fi,J

polynomials are used here so that fi, j is denoted by,

fi,j (qj ) =& 013 ;.0; ai,j,ij2 + ai,j,3qj3 (24)

where & 0,8, ,,, & ;,, &, are the fitted function coefficients. Hence, AQ; is fitted by the sum of

five univariate polynomial functions. Note that these polynomials are likely different and serve an
entire different purpose from those used to model the geometric errors of the machine tool in the
81-error model as presented in section 5.5.
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fix fiy fiz fia fic
LUT;, for LuUT;, for LUT,, for LUT,, for LUT,. for
i-axis i-axis i-axis i-axis i-axis
Entry Input Output || Entry Input  Output || Entry Input Output || Entry Input Output || Entry Input  Output
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2 qx2 Az || 2 yz Agiy2 || 2 422 Aqiz2 || 2 a2 Aiaz || 2 qcz Aicp
3 Ax3 Aqiez || 3 qy3 Agiys || 3 A3 Agiz || 3 qa3 Agiaz || 3 e Agics
m Qx,m AQJx,m m Qy,m Aql)’m m QZ,m Aqlz,m m Qa‘m Aq[n,m m Qr,m Aql(’,m

Figure 5.4. A series of the possible compensation tables for the ith axis.

According to Givi and Mayer (Givi & Mayer, 2014), in order to bring the tool tip to the desired

location, the required tool tip volumetric error compensation in a five-axis machine tool is the

reverse of the tool tip volumetric error, assuming small volumetric errors. Again assuming small

errors, there is a linear relationship between the volumetric error compensation value at the tool

tip, corresponding to a set of nominal axis position or command set (gx, qv, gz, ga, gc), and the

required axis command corrections (Adx, AQy, AQz, Aga, AQc) as,

Eey =3, [A0, Ag, Ag, Ag, Ag.T'

(25)

where Ecv is the volumetric error compensation defined as a twist of three translational and three

rotational errors at the tool tip relative to the workpiece,

ECV :[EXCV EYCV EZCV EACV EBCV ECCV ]T

(26)
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and Jq, @ 6x5 matrix, is the control Jacobian of the machine as the set of partial derivatives of the

volumetric errors (or their required compensation value) to the axis commands (or their correction

values) as,

I aEXCV aEXCV aEXCV aEXCV aEXCV

oq o 09, 04, OQc
6 EYCV 8EYCV a EYCV aEYCV a EYCV

oq o4 04, 09y OO
aEZCV aEZCV aEZCV aEZCV aEZCV

L
aEACV aEACV aEACV aEACV aEACV

o9 o 09,  0g, OO
aEBCV aEBCV aEBCV aEBCV aEBCV

aqx  d 09, 49, OO
aECCV aECCV aECCV aECCV aECCV

| dx dg, a9, 04, 0

(27)

By substituting the command corrections with their polynomial representation given by Eqg. (13),

an extended Jacobian version of Eq. (15) can be generated using a Vandermonde expansion. Using

third degree polynomials fitness functions, the extended Jacobian with a size of (6x100) is denoted

by,

J

which is then used as follows,

ECV = ‘]q extended [aXXO a'XXl aXX 2 aXX3 XY0 '

q_extended =

8EXCV

aa‘XX 0

aECVC

Odcy

aEXCV

Odgcs

aECCV

Odgcs

[6x100]

(28)

+ 8cas Bcco Bect Becz Becs fypg @9

)
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The table function coefficient column matrix has 100 elements: four coefficients per function, five
functions per compensation axis (one for each basic axis) and five compensation axes. A solution
for the unknown fitted function coefficients is obtained by pseudo inversing the Jacobian matrix

within an iterative process to obtain convergence to a numerically precise solution

T +
[axxo Ayy1 Axxa " Gy Boco accs] =J q_extended Ecv . (30)

The tables are then generated by discretizing the table functions over the stroke lengths of the
machine axes with a pre-determined number of entries for the tables, in this case 50 entries per

table is used.

When a given axis command does not match a node of a compensation table, the table is linearly
interpolated. Suppose a basic command (; for axis j is located between q;, and (;,,; of the table
entries in LUTi;, the output of this table is,

i~ Y

q
AG, ; = (A, 1, —AG, ) —— 31
i Jil+l i 010, (31)

where A, i and Ag; i1 are the command corrections associated with the i" compensation axis

and the j" basic axis commands i, and ;,,, respectively and Aq;, j is the interpolated

compensated axis command correction.

5.7 Error compensation verification in measurement mode and

machining mode

The machine used does not have LUTSs facilities. So, offline pseudo-tables were used instead. The
correction concept is different when a machine tool is used in measurement mode, using a touch
trigger probe for example, as opposed to machining mode when using the pseudo tables. In
machining mode, the purpose of compensation is to bring the tool from its actual to its nominal
position. In measurement mode, the purpose is to calculate the actual position for a given set of
uncompensated read axis positions. Let us assume g" as the nominal G-code command, " as the

read command following a triggering of the probe and dq as the required command correction to
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compensate the effect of geometric errors. In machining mode, the error compensation is calculated

by adjusting the axis command in such a way as to bring the tooltip to the desired location as,
qcmachining mode — qn + dq (32)

where qcmachimngmodeis the corrected command in the machining mode. However, in the

measurement mode the compensated command is achieved by subtracting the command correction
from the read command. So,

d
qcmeasurement mode — qrea - dq (33)

where 0 arement moce 1S the corrected command in the measurement mode. Figure 5.5 illustrates a

simplified example wherein the geometric error of a machine tool is defined as 1 mm (Evv=1)
positioning error in the Y direction. The nominal height of the tip of the master ball to the table or
the nominal command is 5 mm. However, the machine tool reads 4 mm (q"*4=4) because of its
positioning error. The correction command required for compensation is —1 mm (dgq=-1) in the Y

direction. Hence, when the machine is used in machining mode the objective is to bring the tool at
the tip of the master ball. So, the required compensated command is 4 mm, (qcmachinmg mode =4),
obtained by Eq. (32). However, for the measurement mode, the objective is to obtain the nominal

height of the master ball which is 5 mm, (Q°auremenmose =2) . Obtained by Eg. (33). The

measurement mode is studied in this paper.
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Figure 5.5. A simplified example for the definition of the error compensation concept in the

machining mode and in the measurement mode.

The procedure for the calibration, error compensation and its validation is illustrated in Figure 5.6.

It proceeds as follows:

1. The RUMBA measurement strategy for the calibration uses four setups, named 1 to 4. The
raw probing data is then processed to estimate the machine error parameters and
coefficients for the 12- and also for the 81-error models. The estimation results are used to
generate grid node corrections from which the LUTs’ functions are optimized and then

discretized to populate the LUTSs.
2. The procedure for the error compensation validation is divided into two phases, a and b.

a. The validation measurement strategy is executed without any compensation
(“’before compensation”) and the collected raw probing data is processed to
estimate the error parameters for the 12-error model and the error coefficients for

the 81-error model.

b. The raw probing data gathered in phase a is compensated using the LUTs generated
by the 12-error model. The compensated probing data is then processed to estimate
the error parameters of the 12-error model. This process is repeated but this time

using the 81-error model to generate the LUTS.

3. Finally, the machine error parameters before and after compensation are compared.
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Figure 5.6. The procedure for the calibration (12- or 81-errror model), error compensation and its

validation in measurement mode (12-error model).

5.8 Experimental design

The target machine tool has stroke lengths of 260, 420 and 240 mm in the X, Y and Z direction,
respectively. The A-axis and C-axis have ranges of 240° and 360°, respectively. Given the
relatively small size of the Kolibri machine tool, the RUMBA indirect calibration method is used.
The ceramic master spheres’ diameter is 20 mm. In the RUMBA method, typically four master
balls are installed together while they are measured with different rotary axes indexations.
However, to avoid potential interference and collisions, a single ball at a time was mounted and
probed for the complete set of rotary axes indexations. So, four setups each with a different ball
position were used. The master ball was screwed to the table. The heights from the center of the
ceramic ball to the table were 37.5 mm for setups 1 and 2. However, an extension of 10 mm was
used to change the height of the master ball to 47.5 mm for setups 3 and 4. The setups are shown

in Figure 5.7.
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Figure 5.7. The four setups (1 to 4) for the calibration process and the one setup (S) for validating

the volumetric error compensation in measurement mode.

Each ball probing includes touches from 5 different directions including four touches around the
equator and one touch at the top of the sphere in order to calculate the center of the ball. The
probing pattern at the equator is rotated by 45 degrees relative to the machine axes to avoid collision
of the probe with the ball stem. The probing process is shown in Figure 5.8. The precise position
of the ball is neither known a priori nor necessary. The coordinates of the balls in the last workpiece

branch axis frame are estimated together with the machine geometric errors.

B |

I T {
Second ” ‘
direction | "

b 4 '
)

Fourth ” Fifth ',
direction | direction [
|

' i |

Figure 5.8. The probing process (probing starting point, first direction, second direction, third
direction, fourth direction, fifth direction).

Table 5-3 lists the measurement strategy for the four setups which is defined by the A- and C-axis
indexation pairs. The rotary A-axis is indexed between -55° and +55° while the C-axis is indexed

for its maximum possible rotation during the measurement procedure. The reason of the partial
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rotation of the A-axis during the measurement is that the master balls were not accessible for angles
of the A-axis over +55° and under -55° in different setups. The touch probe Hexagon IRP40.50
was used for the measurement. The probe tip radius was 0.5 mm and the total height of the probe
was 74 mm. The measurements for the four different setups were repeated three times for three
consecutive days while the room temperature was around 21 and 22°C in a climate-controlled
workshop. Each probing lasted 1 min 50 sec for one master ball. The 81-error model has a total of
96 unknowns including the balls and tool setup errors. The 12-error model has 27 unknowns and
so normally would require less data for a test time about three times shorter. However, in this study,

the same calibration tests were run for both error models.

The validation setup (labeled “S”) is shown in Figure 5.7. Using a single ball is a technique similar
to the “Chase the ball” approach (Bringmann & Knapp, 2006). The ceramic ball was attached to
the table with a holder of height 37.5 mm. It was probed using another measurement strategy
consisting of 60 A- and C-axis indexation pairs. The strategy is listed in Table 5-4. Each complete
measurement of the compensation validation strategy lasted 110 min and the tests were repeated
three times while the room temperature was between 21°C and 22°C. The data is then used for

estimating the 12-error model parameters.

Table 5-3. The measurement strategy with different A and C indexation for the four machine
calibration setups (1 to 4).

Calibration test (measurement strategy first to fourth setup)
Rotary axes indexations (a°, c°)

(15,60)  (30,180) (45,280)  (55,340) (40,240) (20,120) (0,0) (-20 , -100)
(-40,250) (-55,350) (-50,-310) (-25,-40) (0,180) (O, 280) (0,360) (0, 320)
(0,210)  (0,-160)  (0,-300)  (0,-220) (0,-50)  (15,0) (40, 0) (55, 0)
(45, 0) (30, 0) (-20,0) (45,0)  (-55,0)  (-35,0) (44,-30) (53, -208)

(36,-318) (30,45)  (21,326)  (9,290)  (-16,-12) (-54,-304) (-40,-10) (-17,100)
(-38,197) (-5, 345)

Table 5-4. The measurement strategy with different A and C indexation for fifth setup, used for

validation of the compensation (setup S).
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Table-based volumetric error compensation (Measurement strategy fifth setup)
Rotary axes indexations (a°, c°)

(8, 55) (16,120)  (40,180) (38,240) (55,300) (50,330) (45,270) (36,210)
(23,150)  (12,90) (4,30 (-5,-30)  (-12,-90) (-28,-150) (-31,-210) (-48,-270)
(-52,-330) (-5,-300) (-43,-240) (-34,-180) (-23,-120) (-11,-55) (8,140)  (18,190)
(12,250) (30,290) (22,310) (47,10)  (24,50)  (38,100) (41,160) (53 ,200)
(-34,-45)  (-43,-140) (-50,-170) (-20,-220) (-15,-280) (-10,-310) (-5,-70)  (-16,135)
(-50,280) (-36,94)  (-10,20)  (-26,200) (28,-40)  (50,-300) (20,-280) (37, -100)
(10,-280) (0, 0) (0, 90) (0,240)  (0,300)  (0,180) (0, 45) (0, -45)
(0,-180)  (0,-300)  (0,-240) (0, -90)

5.9 Results and discussions

5.9.1 Machine tool calibration

The raw probing data captured by the four setups (1, 2, 3 and 4) was processed using Eq. (7) in
order to estimate the error parameters and coefficients of the two error models. The column
normalized Jacobian condition number of the 12-error model and 81-error model were 200 and
3900, respectively. The Jacobian condition number of the 81-error model is larger as the numbers
of unknowns participating in the former error model are larger and it includes coefficients of
quadratic and cubic terms, unlike the 12-error model. It is also expected that some ordinary
polynomial coefficients exhibit some amount of correlation. In Appendix, the two error model
estimation results are listed in details. The pooled standard deviation for three repetitions of the

probing measurements in the X, Y and Z directions are 1.8, 2.2 and 1.5 um, respectively.

5.9.2 Experimental validation of the compensation scheme

The validation was conducted by comparing the estimated error parameters for the 12-error model
obtained using the “S” validation setup raw probing data before and after compensation. Table 5-5
lists the 12-error model parameters computed from the uncompensated validation strategy data.
These parameters should be close to those obtained with the raw probing data from setups 1 to 4.
The error parameters listed in Table 5-5 are shown in Figure 5.9 with their respective units. As
seen, the behavior of the two graphs are similar even though different measurement strategies are

used.



76

Table 5-5. The estimated error parameters of the 12-error model for the uncompensated
validation strategy (S) and for the calibration setups (1 to 4).

Mean volumetric Mean volumetric
symbol [uni] Value ebrror nrc])rnl_cautseg Value ebrror nr(])rn’;.cautseg
mbol [uni y each estimate y each estimate
Y Setup (S) model parameters Setup (1.2,3.4) model parameters
in um in um
EB(OX)A 1.290 mrad 50.60 1.090 mrad 42.40
EC(OY)A -0.984 mrad 88.80 -0.869 mrad 76.50
EY(OA)C 41.400 pm 41.40 42.100 pm 42.10
EA(OY)C 0.073 mrad 6.38 0.069 mrad 5.89
EB(OA)C 0.032 mrad 2.83 0.029 mrad 2.46
EC(OY)X 0.150 mrad 4.96 0.143 mrad 4.54
EA(OY)Z -0.480 mrad 33.80 -0.439 mrad 32.10
EB(OX)Z 0.153 mrad 10.80 0.114 mrad 8.30
EAAD -0.015 mrad 1.07 -0.013 mrad 2.66
ECCb -0.028 mrad 4.18 -0.024 mrad 3.20
EYY1-EXX1 -0.642 um/mm 25.20  -0.607 pm/mm 22.00
EZZ1-EXX1 -0.253 um/mm 36.50  -0.216 pm/mm 28.20

Estimated error parameters and coefficients with different setups
for calibration and compensation validation purposes

12-error model (Setup'1,2,3,4")
5
41 u 12-error model (Setup''S")

Error values
=} -

=) o - (I

I

|

|
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EC(OY)X [mrad]
EA(OY)Z [mrad|
EB(OX)Z [mrad]

EYY1- EXX1 [pm/mm]
EZ7Z1- EXX1 [pm/mm]

Figure 5.9. The estimated error parameters of the 12-error model for the uncompensated

validation strategy (S) and for the calibration setups (1 to 4) (same data as in Table 5-5).

To generate the LUTS, first, the axis space where the compensation tables are needed to be applied
is defined. The axis space is kept within the range of available calibration data in order to avoid

extrapolating the model. For instance, although the A-axis stroke length is between —120° and
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+120°, the command correction values are considered from —55° to +55° thus within the

calibration test range.

The 5D mesh grid was generated using 10 positions per axis for a total of 100000 sets of commands
and corresponding grid nodes. Using the variables estimated from the calibration process from the
12- and then for the 81-error models and Eq. (3), the volumetric errors for 200000 set of commands
were calculated for each model separately and the table coefficients were optimized and the tables
populated. Because the controller of the target machine tool was not able to embed these
compensation tables, the error compensation was conducted offline using pseudo tables. The 25
compensation table functions are shown in Figure 5.10 for the 12- and 81-error models. During the
optimization process it was realized that offsets, or zero degree terms of the polynomials, of all
basic axis functions for a given compensation axis correction have the same effect, and so are
confounded. So, it was decided to only retain those terms for one basic axis per compensation axis
i.e. for the table functions of fxx, fvz, fzx, fax and fcx. As expected, the table functions from the
81-error model reveal more complexity than the table functions from the 12-error model as it is
better able to represent machine error patterns. Each set of five table functions in each column in
Figure 5.10 are functions of a specific basic axis command: X, Y, Z, A or C-axis, respectively.
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Figure 5.10. The 25 compensation table functions generated from the 81- and 12-error models.

(81-error model: red continous line, 12-error model: blue long- and short-dashed line).

The validation strategy’s probing results were processed to estimate the error models. The
comparison of the 12-error parameters before and after using the compensation tables are shown
in Figure 5.11. The compensated results for both the 12- and the 81-error model improve the
effective geometry of the machine but the performance of the two models in improving the 12
geometric errors parameters of the 12-error model are quite similar. Table 5-6 lists results for the
translational volumetric error norm. The ability of the two models to improve the measuring
accuracy of the machine is quantified by the mean estimated translational volumetric error norm.
This value is 125 pm for the 12-error model before compensation whereas the mean translational
volumetric error norm unexplained by the model is 21 pum, showing a potential of compensation
of 104 um if only the 12 error parameters could be compensated. However, after using the pseudo
tables of the 12- and 81-error models, the mean estimated volumetric error norms are reduced to

47 um and 32 um, respectively. As expected, by also modeling the intra-axis errors (81-error



79

model) the accuracy improves further although only by 12%, which suggests that axes
misalignments and relative linear positioning errors are dominant. The mean unexplained
volumetric error before compensation is 21 um for the 12-error model. This indicates that the intra-

axis error modelling and compensation using the 81-error model did not significantly improve the
machine.

As seen in Table 5-5, the dominant errors for this machine tool are EC(OY)A, EB(OX)A and
EY(OA)C as they exhibit the largest mean volumetric error norm caused by each estimated model
parameters. Table 5-7 shows the error parameters magnitude before and after table-based error
compensation and their standard deviation for setup “S” for three repetitions. Among the dominant
errors, EC(OX)A and EY(OA)C are significantly reduced, after compensation, but not EB(OX)A.
The mean volumetric error norm caused by each estimated model parameters for EB(OA)C and
EC(OY)X are less than 5 um before compensation. Since the magnitudes of the aforementioned
errors before compensation are small, the effectiveness of the compensation model in

compensating those errors is not clear.

Error parameters and coefficients before and after table-based
volumetric error compensation

u Before comp.
After comp. (81-error model)

415 u After comp. (12-error model)
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Figure 5.11. Comparison of the 12 error parameters before and after using the pseudo tables for

the 81- and 12-error model compensation tables.
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Table 5-6. The mean estimated translational volumetric error norm and mean unexplained

translational volumetric error norm before and after compensation.

Mean estimated Mean unexplained
translational translational
volumetric error volumetric error
norm [um] norm [um]
Before Comp. 125 21
After Comp.
(12-error model) 47 21
After Comp.
(81-error model) 32 19

Table 5-7. The effectiveness of two pseudo complex tables (81- and 12-error model) in terms of

reducing the magnitudes of the 10 error parameters and coefficients (Setup “S”).

Error parameters magnitude
before and after table-based Standard deviation
error compensation
Symbol After After After After
Before Comp. Comp. Before Comp. Comp.
Comp. | (12-error | (81-error | Comp. | (12-error | (8l-error
model) model) model) model)
EB(OX)A [mrad] 1.290 -0.962 -0.893 | 0.230 0.182 0.151
EC(OY)A [mrad] -0.984 -0.242 -0.173 | 0.031 0.044 0.028
EY(OA)C [pm] 41.400 -0.941 -0.551 | 0.400 0.822 0.722
EA(OY)C [mrad] 0.073 0.002 -0.013 | 0.003 0.005 0.006
EB(OA)C [mrad] 0.032 0.031 0.030 | 0.004 0.003 0.004
EC(OY)X [mrad] 0.150 0.094 -0.071 | 0.003 0.003 0.004
EA(OY)Z [mrad] -0.480 -0.047 -0.010 | 0.004 0.005 0.003
EB(OX)Z [mrad] 0.153 0.112 -0.096 | 0.003 0.002 0.004
EYY1- EXX1 [pm/mm] -0.642 0.037 0.013 | 0.009 0.009 0.007
EZZ1- EXX1 [pm/mm] -0.253 -0.047 -0.044 | 0.008 0.006 0.009

The histogram of the volumetric error vector components in the X, Y and Z directions and their

norms for the 60 probings of the validation strategy (setup S) before and after using the two

compensation models are shown in Figure 5.12. The distribution shows a clear reduction in the

volumetric errors. The norm of the volumetric errors before compensation is between 20 to 70 um

while this value is reduced to less than 30 um after using the two compensation models. The root
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mean square (RMS) of the volumetric errors in the X, Y and Z direction before compensation are
87.3, 75.4 and 71.5 um, respectively. Using the complex compensation tables generated from the
12-error model reduces the RMS of the volumetric errors to 24.8, 18.8 and 22.1 um in the X, Y
and Z directions, respectively. When using the 81-error model for compensation purposes, the RMS
of the volumetric errors in the X, Y and Z directions become 18.6, 11.9 and 21.5 pm, respectively.
Hence, the LUTSs constructed by the 12- and 81-error models are respectively efficient by 72% and

74% in decreasing the volumetric errors.

Frequency
Frequency

Frequency
Frequency

0 0.01 0.02 0.03 0.04 0.05 0.068 0.07

EV

norm

Figure 5.12. Histogram of the volumetric errors (EV) [mm] for 60 probings, before and after
applying the compensation algorithm. (Before compensation: blue; after compensation 81-error

model: green; after compensation 12-error model: red)

5.10 Conclusion

The generation, use and performance of a 25 lookup table compensation scheme, exploiting the
summation functions, is studied. The automated probing based RUMBA indirect calibration
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provides the error parameters and coefficients for two distinct error models, a 12- and an 81-error
model. These models are used to predict volumetric error twists at the nodes of a 5D grid. The table
functions are univariate ordinary cubic polynomials. An extended Jacobian matrix relating the
volumetric error twists at the node to the table function coefficients yields optimum coefficients.

These functions are discretized to populate the LUTSs.

The criteria for the effectiveness of the procedure are the volumetric errors and the apparent
machine error parameters of the 12-error model before and after compensation when the machine
is in measurement mode. The compensation reduces the volumetric errors and all geometric errors.
The 25 LUT scheme is appropriate to compensate most misalignments such as EC(OX)A,
EY(OA)C, EA(OY)C, EA(OY)Z and the relative scale errors but had limited success in correcting
EB(OX)A and EB(OX)Z. The RMS of the volumetric error vector components are reduced from
87.3, 75.4 and 71.5 pum down to 24.8, 18.8 and 22.1 um for the 12-error model and to 18.6, 11.9
and 21.5 pum for the 81-error model in X, Y and Z directions, respectively. The effectiveness of the
tables in reducing the volumetric errors is 72% and 74% respectively using the 12- and 81-error

model.
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5.13Appendix

The estimation results of the error parameters and coefficients (81-error model).

X-axis Y -axis Z-axis A-axis C-axis

Name Value Name Value Name Value Name Value Name Value

Exx2 6.09E-06  Exv: -2.85E-08  Exz 1.60E-05 Exa: 159E-02 Exc1 -8.48E-04
Exx3a 1.29E-07 Exvs -9.54E-08  Exzs -4.16E-08  Exaz 1.40E-03  Exc: 5.45E-04
Evx1 1.18E-03 Eyy1 1.16E-04 Evz -1.05E-04  Exas 2.75E-02  Excs 1.14E-04
Evx2 -1.25E-05  Evyy2 1.01E-05 Evzs 2.78E-07 Evao 1.59E-01 Evc: -9.21E-04
Evxs -3.08E-07 Eyys -2.00E-08 Ezz1 -4.00E-03  Evar -7.04E-02  Eyc 1.74E-04
Ezx2 8.84E-06 Ezv2 -5.46E-06 Ezz 3.09E-05 Eva2 -7.30E-01  Evycs 6.40E-05
Ezxs 3.65E-08  Ezvs 1.05E-07 Ezz -5.77E-08  Evas 1.53E-02 Ezc: -9.57E-04

Eaxo -1.20E-02 Eav1 4.33E-06 Eza1 -1.55E-01  Ezc2 2.83E-04
Eax1 1.71E-05 Eav2 1.05E-07 Eza2 3.24E-02  Ezcs 8.51E-05
Eax2 -1.05E-07 Eavs -2.21E-11 Ezas 2.35E-01 Eac1 2.12E-06
Eaxz -3.43E-09  Esvo 2.63E-04 Eano 1.82E-04 Eac2 2.07E-06
Esxo -1.60E-03  Eav: -2.69E-06 Eaa1 2.34E-04 Eacs 4.48E-07
Esx1 3.39E-06  Egy: -1.36E-08 Eaaz -2.45E-04  Epc: 1.45E-05
Egx2 -1.01E-07 Egys 1.63E-10 Eaaz -1.92E-05 Egc2 -6.32E-06
Eexs -1.73E-09  Eavo 1.65E-02 Eaab 3.11E-07  Egcs -1.51E-06

Eav1 1.30E-06 Egao 9.85E-04  Ecc: -3.25E-06

Eav2 6.68E-08 Ega1 -1.73E-02  Ecce -2.66E-06

Eavs -6.86E-10 Egaz -2.53E-04  Eccs -1.09E-08

Egas 2.91E-03 Ecc -2.17E-04
Eca1 -7.50E-04
Ecaz 8.21E-03
Ecas 2.04E-04

Units examples:

R and H are the linear axes: Erno[mm], Erm[mm/mm], Eruz[mm/mm?], Erns[mm/mm®], Ernp[mm]

R is the rotary axis and H is the linear axis: Erro[rad], Erni[rad/mm], Eruz[rad/mm?], Erus[rad/mm?], Ernp[rad]
R and H are the rotary axes: Erpo[rad], Erpi[rad/rad], Erpz[rad/rad?], Erms[rad/rad?], Ernp[rad]

R is the linear axis and H is the rotary axis: Erpo[mm], Erna[mm/rad], Erpz[mm/rad?], Erps[mm/rad®], Erps[mm]
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The estimation results for the error parameters and coefficients of the 12-error model obtained
using the combined data from setups 1, 2, 3 and 4 used for calibration purpose.

Symbol [unit] Value
EB(OX)A [mrad] 1.090
EC(OY)A [mrad] -0.869
EY(OA)C [um] 42.100
EA(OY)C [mrad] 0.069
EB(OA)C [mrad] 0.029
EC(OY)X [mrad] 0.143
EA(OY)Z [mrad] -0.439
EB(OX)Z [mrad] 0.114
Eaab [mrad] -0.013
Ecco [mrad] -0.024
EYY1-EXX1[um/mm] -0.607

EZZ1-EXX1[um/mm] -0.216
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CHAPTER 6 ARTICLE 3: TRIGONOMETRIC FUNCTIONS AND
COMBINATORIAL LOOKUP TABLE SCHEME FOR INDIGENOUS
CNC COMPENSATION OF A FIVE-AXIS MACHINE TOOL

Sareh M. Esmaeili ¢*, J.R.R. Mayer ¢, J. Philipp Dahlem », Mark P. Sanders ®

’ Department of Mechanical Q1 Engineering, Ecole Polytechnique (Montréal), P.O. Box 6079, Station
Downtown, Montréal, QC H3C3A7, Canada

’ Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen,
Germany

* Corresponding author. Email: sareh.esmaeili-marzdashti@polymtl.ca “Tel.: +15143404711 Ext.: 2292,
“Fax: (514) 340-5170

NOTE: Based on the paper resubmitted to the International Journal of Machine Tools and Manufacture
(2021)

6.1 Abstract

A CNC table-based volumetric error compensation model is proposed to enhance a five-axis
machine tool's accuracy that uses discretized trigonometric functions to populate the lookup tables
(LUTSs). The proposed model is inspired by the terms present in the Jacobian of commands of the
target machine tool. It results in 23 look up tables using the multiplication and summation
functionalities of the CNC table generator. Simulations and experimental validations are used to
evaluate the proposed model's effectiveness for compensating each geometric error parameter and
reduce volumetric errors. An indirect measurement method estimating machine tool error
parameters, as well as volumetric errors, is used to characterize the machine tool before and after
compensation. The new procedure is compared with a 25 lookup table approach where cubic
polynomials and only the summation functionality are used. The trigonometric function-based
scheme further reduces the maximum volumetric error norm by 32%. All effective geometric errors
are reduced by at least 87%, bringing the end result closer to the theoretically exact inverse

kinematics approach.
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6.2 Introduction

Industrial demand for producing parts with tight tolerances and high productivity requires keeping
machine tools operating at accuracies close to their repeatability with minimum downtime for
mechanical corrections. Machine tool inaccuracies may stem from geometric imperfections
(Majda, 2012) resulting in volumetric errors. The geometric sources of volumetric errors are
generally modeled using rigid body kinematics, mathematically described as homogeneous
transformation matrices (Castro & Burdekin, 2005; Lei & Sung, 2008; Schwenke et al., 2009; Zhu
etal., 2012).

To calibrate the machine tool and estimate the error parameters and the volumetric errors, indirect
methods have been proposed (Soichi Ibaraki & Knapp, 2012). Some indirect methods are laser
interferometry approaches such as the LaserTRACER and laser trackers. The LaserTRACER uses
the quadrilateration principle for machine calibration consisting of multiple stations or setups of a
tracking laser interferometer and a cat’s eye type retro-reflector target installed at the tool holder.
Each station measures the distances between the target and the LaserTRACER internal reference
sphere (Schwenke et al., 2009). All 21 errors of the linear axes are estimated. A linearized set of
equations is solved by a Gaussian fit (Hartig et al., 2009). Groos et al. (Groos et al., 2020) used the
LaserTRACER to map the geometric errors with the effect of the ambient temperature and
numerically compensated them. They claimed that some errors such as positioning and squareness
errors of the linear axes are significantly influenced by the ambient temperature whereas
straightness and rotational errors were much less affected. Zha et al. (Zha et al., 2020) used the
LaserTRACER to calculate the geometric error in a 3-axis machine tool. The geometric error
values were also verified with a conventional laser interferometer. They used cubic spline
interpolation method to obtain volumetric error at the tool tip followed by modifying the G-code
for machining a concave semi-spheroid test piece. The machining accuracy after compensation was
reduced by 43%. Schwenke et al. (Schwenke et al., 2009) used the LaserTRACER to measuring
the error motions of rotary axes on a five-axis machine tool. Laser trackers use two angles and a
distance measure to produce spherical coordinates in one setup to estimate the machine tool
geometric errors. Relying on angular readings reduces accuracy but using multiple setups
overcomes this issue (Schwenke et al., 2005). Creamer et al. (J. Creamer et al., 2017; Jennifer

Creamer et al., 2016) used the laser tracker to estimate the machine tool volumetric errors and to
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generate compensation lookup tables. Another indirect calibration approach may use
measurements of an artefact with proximity sensors or the on-machine touch trigger probe
(Florussen & Spaan, 2007; Mayer, 2012; McHichi & Mayer, 2014; Md Mizanur & Mayer, 2015;
Weikert, 2004). The R-test is used to calibrate the five-axis machine tool error parameters by
measuring the 3D Cartesian deviations between the tool mounted sphere and the table mounted
sensor array while maintaining their nominal coincidence during five-axis motion (Weikert, 2004).
Probing data on precision spheres or on facets was also used for indirect estimation of geometric
error parameters of five-axis machines (S. Ibaraki, Iritani, & Matsushita, 2010; Mayer, 2012;
McHichi & Mayer, 2014; Md Mizanur & Mayer, 2015).

Error compensation, without mechanical corrections of the machine structure, requires modifying
the axis commands from their nominal values. As Sartori et al. (Sartori & Zhang, 1995) explain,
there are two phases: Error measurement and then compensation. Kinematic-based error
compensation may be done by user (Hocken, 1993; Xiang & Altintas, 2016) or may be achieved
by G-code modifications may be achieved by G-code modifications (Givi & Mayer, 2014, 2016).
Donmez et al. (Donmez, Bloquist, Hocken, & Liu, 1986) presented a general kinematic-based error
compensation method using rigid body kinematics. The online volumetric error compensation is
performed by correction of the control command within the control loop (Ramesh, Mannan, & Poo,
2000a; H. Zhang et al., 2010).

Some modern CNCs have compensation tables such as pitch error, backlash, straightness error,
thermal error, sag and angularity error compensation. The tables enable the machine to be
compensated automatically without the need for continuously adapting G-codes as a machine
geometry changes. Positioning, straightness, and out-of-squareness error compensation are
commonly used on CNC controllers. Recent CNC controllers are equipped with tables to
compensate many machine tool errors ("Siemens Controller,” SINUMERIK 840D/840Di/810D
Extended Functions). In ISO/TR 16907 (ISO/TR16907, 2015), 13 compensation schemes are
proposed each addressing a particular combination of geometric errors with a number of limitations
and overlaps. From the document it appears that no scheme specifically addresses the eight inter-
axis errors but scheme L-SQR addresses linear axes inter-axis errors whereas scheme R-POR
addresses rotary axes inter-axis errors. In ISO/TR 16907 (ISO/TR16907, 2015), grid tables are
discussed while the spatial grid compensation tables are separate for the linear and the rotary axes.
The 3D principle in generating 3D Error Compensation is assigning the correction values to each
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grid point in the three-axis working volume. Once an axis position command set is entered to the
controller, a trilinear interpolation on the table data entries is computed and added to the
corresponding correction values to the entered command. This approach is commercially available
e.g. as Fanuc’s “3D Error Compensation” for linear axes (“Fanuc Controller,” Series 30i/Model
A). Based on the rigid body model, M. Esmaeili and Mayer generated 3D error compensation grid
from ISO 230-1 error parameters. They used SAMBA indirect calibration method for producing
the tables and validated the compensation by a ball-bar spherical test (Esmaeili & Mayer, 2020).
Compensation grid structure function is also available in a Siemens controller ("Siemens
Controller,” SINUMERIK 840D/840Di/810D Extended Functions) as grid compensation
capability. Alternatively, based on tables containing axes geometric errors, position and orientation
errors can be compensated using a rigid body kinematic model. The aforementioned compensation
functionality is also available in multiple machine control systems such as Fagor as “Volumetric
Compensation” ("Fagor Controller, 8070 / 8065 CNC "), Heidenhain as “KinematicsComp”
("Heidenhain Controller: iTNC 530 "), Fidia as “Extended Screw Compensation” (“Fidia
Controller: C10 - C20 - C20 Vision,") and Siemens as “Volumetric Compensation System” (AG,
2010) which compensate for the three linear axis 21 machine error parameters. Another
compensation feature provided by Fidia controller is called “Volumetric Axes Compensation”
(VAC) to compensate the linear axes errors. The system can reach maximum accuracy for all linear
as well as rotary axes errors by combining VAC and rotary axes error compensation. To calculate
the rotary axes errors, this controller offers a head measuring system (HMS) calibration system
("Fidia Controller: C10 - C20 - C20 Vision,"). ISO/TR 16907 does not mention the capability of
combinatory tables and their associated table functions (ISO/TR16907, 2015). However, the
Siemens controller 840D is equipped with such complex tables enabling the users to combine tables
with summation and multiplication functionalities ("Siemens Controller,” SINUMERIK
840D/840Di/810D Extended Functions). Based on ISO/TR 16907 (ISO/TR16907, 2015), common
compensation table files contain the identification of the nominal position, the direction to be

compensated, the input and the output axis.

Although the capability of building the complex tables has been available in some controllers for
many years, little scientific research is done in this field. Creamer et al. (Jennifer Creamer et al.,
2016) presented a volumetric error compensation scheme using 25 lookup tables (LUTSs) generated

from either of two models, a six degree-of-freedom model and an axis perturbation model and
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concluded that the first model provided an effectiveness of 93.1% and the second model had an
effectiveness of 92.2%. They used summation functionalities and considered univariate
polynomials as the table functions. Later, Creamer et al. (J. Creamer et al., 2017) presented
complementary research results regarding selecting the limited and constrained compensation

tables applicable for machine tools having less available compensation tables in their controllers.

The current study investigates the limitations of 25 summation tables based on cubic polynomials
in compensating the effect of inter-axis errors and relative linear axis positioning errors. It also
proposes and evaluates, both theoretically and experimentally, the use of multiplication and
summation functionalities of tables with trigonometric table functions inspired by the machine tool
kinematics. The five-axis machine tool geometric error parameters of its kinematic model are
obtained using probings of a reconfigurable uncalibrated master ball artefact (RUMBA) as an
indirect method. The criteria for evaluating the compensation effectiveness are the reduction of the
volumetric error and the effective geometric error parameters after compensation. Section 6.3
presents the machine tool error modeling. In section 6.4, the kinematic-based error compensation
is explained. In section 6.5, the two table-based error compensation models are presented. Section
6.6 uses simulation to analyse the performance of the kinematic-based and two table-based
compensation schemes. The experimental validation is explained in section 6.7 followed by the
experimental results and the associate discussions in section 6.8. Section 6.9 presents the summary

and conclusion.

6.3 Volumetric and geometric error modeling and calibration

The target machine topology is WCAYTXZSt containing two rotary axes (A- and C-axis) and three
linear axes (X-, Y- and Z-axis). The nominal foundation frame is at the intersection of the A- and
C-axis. S, w and t are the spindle, workpiece and tool, respectively (Figure 6.1).
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Figure 6.1. Target five-axis Kolibri machine tool, photo and topology.

Assuming the machine without any error, the homogeneous transformation matrix (HTM) of the
nominal tooltip position and orientation with respect to the nominal workpiece position and

orientation is,
wn'l'tn — ( f-I-Wn )—1( thn) (34)

where the first parenthesis contains the HTM of the workpiece position and orientation relative to
the foundation frame and the second one is the HTM of the tooltip position and orientation relative
to the foundation frame. The n subscript stands for nominal. The real machine has errors
categorized either as inter-axis (axis location) errors or as intra-axis (error motion) (Soichi Ibaraki
& Knapp, 2012). The inter-axis errors (axis location) are the position and orientation errors between
two adjacent axes. The intra-axis errors (error motion) are the errors within one axis (Soichi Ibaraki
& Knapp, 2012). These two types of errors are called machine error parameters in this paper. The
intra- and inter-axis errors lead to linear and angular displacement error of the tool tip relative to
the workpiece namely volumetric errors. Assuming rigid body elements with six degrees of
freedom, the kinematic model of the actual, and so erroneous, machine tool including intra-axis

and inter-axis errors is,

“T, =('T, )" ('T.) (35)
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where the a subscript stands for actual. To calibrate the machine tool with an indirect method, error
models are used (Abbaszadeh-Mir et al., 2002; Mayer, 2012; McHichi & Mayer, 2014; Md
Mizanur & Mayer, 2015; Mohamed Slamani et al., 2010). The error model used here is a 10-error
model (Table 6-1) containing 8 inter-axis machine error parameters and two scale mismatches

(relative gains only) (Mayer, 2012).

Table 6-1. The studied machine error parameters symbol and their definitions.

Error symbol Error definition

Esox)a Out-of-parallelism angle around Y of the A-axis relative to the X-axis
Ecov)a Out-of-squareness angle of the A-axis relative to the Y-axis
Evioarc Y offset between the C and A axes
Eaov)c Out-of-squareness of the C-axis relative to the Y-axis
Ega)xc Out-of-squareness of the C-axis relative to the A-axis
Ecov)x Out-of-squareness of the X-axis relative to the Y-axis
Eaov)z Out-of-squareness of the Z-axis relative to the Y-axis
Esox)z Out-of-squareness of the Z-axis relative to the X-axis

Evvi- Exxi Positioning error gain mismatch of the Y-axis relative to the X-axis

Ezz1- Exxa Positioning error gain mismatch of the Z-axis relative to the X-axis

The machine error parameters are indirectly estimated from on-machine touch trigger probings of
a reconfigurable uncalibrated master balls artefact (RUMBA) for various angular position
combinations of the two machine tool rotary axes (Erkan, Mayer, & Dupont, 2011). The RUMBA
artefact is assembled on the machine table. Because the artefact contains no calibrated length, only
relative scale gains of the linear axes are estimated. The use of a single ball in the probing procedure
instead of multiple balls constitutes a chase-the-ball process (Bringmann & Knapp, 2006). To
calculate the machine error parameters indirectly, a system of linear equations is obtained
considering the simplifications of small errors, i.e. sin(error)=error and cos(error)=1 and products

of errors are neglected. So, the raw volumetric error ( E_,) and the machine error parameters and

setup errors () are related to each other by the generated Jacobian of error parameters, J, , as

Env = (35)(Ep) (36)

Eq. (6) is solved to estimate g, .
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6.4 Kinematic-based (K-B) error compensation

K-B volumetric error compensation is achieved by reverse kinematics where the errors of the
machine are compensated by small corrections of the axis commands. Based on the work of Givi
and Mayer (Givi & Mayer, 2014), to bring the tool tip to the desired location, the required tool tip
volumetric error compensation is minus the tool tip volumetric error, assuming small volumetric

errors. Knowing the required volumetric error compensation for a set of commands (qx, qv, gz, ga,

gc), the required axis command correction, [Ad, AG, Ad, Aq, Aq.]", is calculated by solving

[EXCV EYCV EZCV EACV EBCV ECCV]T :‘]q[AqX AqY AqZ AqA AqC]T (37)

where Jq, the control Jacobian, is a 6x5 matrix of the first partial derivatives of the volumetric error
compensation to the axis command corrections. Excv, Evcv, Ezcv, Eacv, Escv and Eccv are the
required volumetric error compensation in the X, Y, Z, A, B and C directions, respectively. Eq.
(37) is solved iteratively to obtain a numerically accurate solution for the axis command
corrections. The process of evaluating the compensation capability of the K-B error compensation
is illustrated in Figure 6.2. The compensation effectiveness compares the machine error parameters

before and after applying the compensation as,

E -E
Compensability=‘ p(Before comp.)‘ ‘ p(After comp.)‘ (38)

p(Before comp.) ‘

Run calibration test K-B compensation effectiveness

On CNC machine tool

(Chase-the-ball Test)

Compensated
Probing Data

Probing
Data

K-B compensation processor (Eq. 4)

Calibration Calibration
Processor 1 1 Processor
(Eq. 3) (Eq. 3)
E
P E
Before E, i E» . Aftper
compensation Before compensation After compensation compensation

Figure 6.2. The process of evaluating the compensation capability of the K-B error compensation.
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6.5 Table-based error compensation

The LUTSs are the tables generated in the controllers to improve the machine tool accuracy. In the
following sections, two LUT models are studied in order to assess their capability in compensating
the volumetric error and the machine error parameters. Because the target machine tool does not
have the necessary lookup table functionalities, pseudo lookup tables are generated and used

offline.

6.5.1 Lookup tables preliminary model, 25 table-based error compensation
(25Poly-T)

In this model, 25 lookup tables, five tables per axis are combined together by summation
functionality to correct the associated axis command. Each table function is simulated by a
univariate cubic polynomial function of one of the five axes’ coordinate. So, each axis command
correction is the sum of five univariate third degree polynomial functions, one for each basic axis

(Jennifer Creamer et al., 2016).

rag, ] | Po(@)* By (0)+ i (9)+ Faa () + i (@) | [LUT,, +LUT,, +LUT,, + LUT,, +LUT,]
Ag, | | fecla)+ iy (o )+ fio (0,)+ f (0a) + e () LUT, + LUT, +LUT,, + LUT, + LUT,
Ad; |=| T2 (0)+ o () )+ T2 (02)+ F2a (6)+ T2 (0) |=| LUT,+LUT,, +LUT,, +LUT,, +LUT,, (39)
Aqg, fa (G )+ Ty (qy)+ fap (G)+ oo (G0)+ oo (G LUT,, +LUT,, +LUT,, +LUT,, +LUT,
Aq LUT,, +LUT,, +LUT,, +LUT,, +LUT,
- ©- _fo(qx)+ ny(qy)+ sz(qz)+ fCa(qa)+ch(qC)_ - CX+ Cy+ CZ+ Ca+ ce

Each command correction function is then discretized to fill one LUT. Figure 6.3 shows the LUTs
per axis and the relationship between the basic axis commands (the initial commands) and a
particular corrected axis. The corrected axis can be X, Y, Z, A or C. The weights are set to one in

this model.
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Basic axis commands LUTs Weights=1 Summation Correction axis
4, —— LUT
v —— LUT, 5 Aq,
9z —— LUT,,
s — LUT,,
e —— LUT,

Figure 6.3. A correction axis, here represented as I, is the sum of five basic axis LUTs (25 Poly-T
compensation scheme).

Since the numbers of entries for the LUTs are limited, a linear interpolation is applied for
commands located between the commands available in the LUTs. To estimate the unknown
coefficients of the basic axes’ polynomials, Eq. (13) is developed by introducing the polynomials

functions as,

[Aq, | _aXXO 8Oy +8y,o0x* el + oo F By + 8yl +8yeo0,” +yeele” |
Aq, Ay T Ayaly a*(xquz + a’Yqux3 RIERR A= VA = VA M avczqc2 + aYc3q03
AGy | =] By +8p0, +800," + 8550, oo+ Byeq + 8y, + 8550, + 830, ' (40)
Ag, B0 T by + Aol F sl oo F g + Byl + 8000, + Bpeslle”

[Adc | | cxo T8t + aCXZqX2 + acxaqx3 Tt ag tacyle + a<:c2qc2 + aCCSqC3 )

The axxo, axxt, axx2, ..., acco, acel, ace2, acea are the unknown polynomial coefficients used for
generating the tables and from now on called table coefficients. They have three subscripts from
left to right, the corrected axis, the basic axis and the degree of the basic axis command value.
Constructing the extended control Jacobian in which the compensated volumetric errors are directly
related to the table coefficients results in,

T
[Excv Evcv Ezcv EAcv EBCV Eccv ]T = ‘]q_extended [aXxO Ayyq Axyp "t Bcgp ey aCc3] (41)

where 3 is the extended control Jacobian containing the first partial derivatives of the

q_ extended

volumetric error to the lookup table coefficients.
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6.5.2 Error compensation lookup tables enriched model, 23 table-based error

compensation (23Trigo-T)

The second lookup table model consists in using the summation and multiplication functionalities

of the tables. This model is inspired by the nominal kinematics of the five-axis machine tools in

which the control Jacobian matrix and its inverse also include some multiplications of the axes

positions or axes positions functions. For instance, the nominal control Jacobian matrix for a five-

axis machine tool with the topology of WCAYTXZt is,

1 0 0 O
0 -1 0 q
3 [0 0 1 q
q(WCAYFXZt) — 0 0 0 -1
0 0 0 O
0 0 0 O

and its pseudoinverse is,

1 0 0 O

0 -1 0 —q,

‘];(WCAYFXZI) =0 0 1 o
0 0 0 1

0 0 0 O

Sin(qA)qz - Cos(qA)qY ]
—€0s(q,)dx
—sin(q,)dy

0
sin(q,)
—€0s(d,)

sin(g,)(cos(q,)d, —sin(g,)d,)
sin(q,)(cos(q,)a, —sin(a,)d,)

sin®(d,)dy
0

sin(q,)

—€05(0,)(Cos(d,)ay —sin(d,)d; )
cos”(0,)dx
—c0s(0,)sin(d,)dy
0

cos(q,)

(42)

(43)

where gx, Qv, gz, ga and gc are the axis positions of the X, Y, Z, A and C axes, respectively. The

columns in the control Jacobian associated with the rotary axes commands contain multiplication

and trigonometric functions. Hence, it is hypothesized that the command corrections may perform

better if it contains such terms.



99

Using the possible combinations of trigonometric terms in the compensation model, the command

corrections functions are,

Aq, =[a,, +

ay (a,, +a,,c0s(q,) +a,,sin(q,) +a,, cos(d,)sin(q,) +a,;5in*(q,) +a,, cos*(q,)) +

0y (a,, +a,5€0S(q,) +a,, SiN(q,) + a4, c0s(q,) sin(0,) +a,,, Sin*(d,) +a,,, €0s* (q,)) +

O (813 + @134 COS(0,) + 35 SIN(d, ) + 56 C0S(G,) SIN(Q,) + 47 SIN*(G,) + 8,45 €OS” (01, )] (44)

A, =[a,, +a,,c0s(0,) +a,, Sin(g,) +a,; cos(q,)sin(g,) +a,, sinz(qA) +a,, cosz(qA))]

AQe = [aco +8c; COS(qA) +ac, Sin(qA) +ac; COS(qA)Sin(qA) +ac, sin (qA) +acs cos® (qA))]

where the | letter is substituted with X, Y or Z. The trigonometric terms are approximated by
truncated Taylor series. This process is not part of table generation but part of the optimization and
solution while using the Matlab® function Fitnlm to calculate the coefficients. In total, 69 table
coefficients are estimated. The objective functions are the discrepancies between the axes
corrections obtained by the 23Trigo-T model and those obtained with the K-B model. The input
data base for the optimization is a 5D grid considering 10 nodes per axis for a total of 10° grid
nodes (set of nominal commands). Generating the lookup tables follows the rules of the Siemens
controller interpolatory compensation functions (Weikert, 2004) where just one weight can be
assigned to each table and each table can have one base axis (input axis) and one compensation
axis (output axis). Having calculated the coefficients, 23 tables (Figure 6.4) are generated.
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Basic axis Compensation
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® Summation
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Schematic of the combinations of lookup tables outputs for a five-axis machine tool
with topology of WCAYFXZt (23Trigo-T).

For a set of command, the linear interpolation is applied to each LUT’s entry and the command

corrections are calculated by,

AQy =[LUT, + LUT,LUT, + LUT,LUT, + LUT,LUT, ]

Aq, =[LUT, + LUT,LUT,, + LUT,,LUT,, + LUT,LUT,]

Aq, =[LUT, + LUTLUT, + LUT LUT, + LUT,,LUT,,] (45)
Aq, =[LUT,]
AQ. =[LUT,]

where LUT to LUT2z are the interpolated outputs of the 23 lookup tables.

6.5.3 Evaluation of the proposed LUT schemes in compensating geometric

machine error parameters

The evaluation process of the proposed LUT scheme is illustrated in Figure 6.5. The estimated

machine error parameters (Ep) from the calibration RUMBA test are used to predict the volumetric

errors (VE) at the grid nodes of nominal joint commands using the forward kinematic model of Eq.



101

(2). The grid node nominal joint commands and their associated K-B command corrections are
used to generate the coefficients of the 25Poly-T and the 23Trigo-T table function coefficients from
which 25 tables for 25Poly-T and 23 tables for 23Trigo-T are generated. The number of table
entries for each table are 10. For validating the compensation procedure, a chase-the-ball
calibration test is run on the machine tool. The probing data is processed to estimate the machine
error parameters before compensation. The probing data is also compensated by applying linear
interpolation on the 25 or 23 lookup table entries. The machine error parameters after compensation
are obtained by re-estimating the compensated probing data. The compensation effectiveness is

calculated by Eq. (7).

Run calibration test
On CNC machine tool

(RUMBA Test)

LUT generation

Command
correction 25Poly-T/23Trigo-T Weights

Probing (;arllblatlun T N | for each of 10° compensation and 25Poly-T/23Trigo-T
(Eq. 3) processor (Eq. 4) mesh grid Processor coefficients producer

points (Eq. 8/Eq. 11)

10° mesh grid
points

25/23 LUT

Run validation test
On CNC machine tool

(Chase-the-ball Test)

r Compensated
25Poly-T/23Trigo-T | Probing Data
Linear interpolation

Probing
Data
Calibration Calibration
Processor Processor

. 3) Ep E, (Eq. 3)
E, Before ) m After . E, 1
Before compensation compensation o . A
compensation compensation 25P°",'T’2:f1r'"g°'1'

Figure 6.5. The process of generating the 25Poly-T and 23Trigo-T and verifying the effectiveness
of the LUTSs in correcting machine error parameters.

6.6 Mathematical model validation

Ten case studies are conducted, each simulating one non-zero machine error parameter as shown
in Table 6-2. The processes shown in Figure 6.2 and Figure 6.5 are run but with simulated probing

data without considering the RUMBA or Chase-the-ball calibration tests.
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Table 6-2. The values of the simulated geometric error parameters for the ten case studies to
explore the effectiveness of the table-based as well as the kinematic-based error compensation.

Case Studies (C. S.)
C.S. | C.S. | C.s.

Error
Parameter
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Figure 6.6 shows the compensation effectiveness of individual machine error parameters using the
K-B, 25Poly-T and 23Trigo-T compensation schemes. The maximum and the mean norm of the
estimated volumetric error vectors (VE) before and after applying the three compensation models
are shown in Figure 6.7. The largest simulated maximum and mean VE norms before compensation
are 38 and 35 um, respectively where the ranges are 260, 420 and 240 mm for X, Y and Z,
respectively. As anticipated, all error parameters and the maximum and the mean norms of VEs
are compensated using K-B error compensation since it is kinematically correct. As seen in Figure
6.6. 25Poly-T and 23Trigo-T error compensation models are able to compensate EAOC, EYOC,
EAOZ, EYY1- EXX1 and EZZ1- EXX1. Their associated maximum and mean norms of VEs are
likewise compensated (Figure 6.7). Some improvements are seen in EBOA (Figure 6.6, (C.S.1))
after using 25Poly-T. However, by applying 25Poly-T, the global minimizations of all simulated
volumetric error vectors with a least square approach distributes EBOA between EBOA, EBOC and
EYOC. Its maximum and mean norms of VEs are respectively reduced to about 23 um and 13 pm
(Figure 6.7). Similarly, EBOA, ECOA, EBOC, ECOX and EBOZ are partly reduced resulting in
increasing the other errors in the model after applying the compensation, which is not desirable
(Figure 6.6, (C.S.1), (C.S.2), (C.S.5), (C.S.6) and (C.S.8)). Values for the maximum and the mean
norms of VEs for the aforementioned errors confirm that the compensation is partial (Figure 6.7).
The trigonometric function based model 23Trigo-T overcomes the weaknesses of the 25Poly-T in
correcting the EBOC, EBOA, ECOA, EC0OX and EBOZ without significant increase in the other error
parameters. The maximum and the mean norm of VE are reduced to less than 1 um using the
23Trigo-T (Figure 6.7).
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Figure 6.6. Error parameters before and after kinematic-based, 25Poly-T and 23Trigo-T

compensation schemes for case studies (C.S.) 1 to 10 as defined in Table 6-2.

103



104

Maximum norm estimated volumetric error Mean norm estimated volumetric error
vectors Correct the plot title as well. vectors Correct the plot title as well.
45 40
40 35
35 4 30
g 30 - g
i 25 u Before compensation _; 25 1 m Before compensation
E' 20 - u25 T-B compensation E i: 1 25 T-B compensation
= 13 : B K-B compensation = 1;] 1 EK-B compensation
5 23 T-B compensation 5 I 23 T-B compensation
0 - ]
rE LI FDS oL < CHIPT O 0L
OF O O O 0V 0807 3 4V O O O o7 O VTS 4V
FEFFTTFITEE I I T T T e de

Figure 6.7. Maximum and mean norm estimated volumetric error vectors before and after
kinematic-based (K-B), 25Poly-T and 23Trigo-T volumetric error compensation.

In order to gain some idea of the potential generality of the chosen terms and the compensation
model, another simulation is run for a five-axis machine with the topology wCAYfXZt where the
A rotary axis has an angle of 45° with the X-axis (Figure 6.8). The process shown in Figure 6.5 is
used for generating the 23 lookup tables to compensate eight inter-axis, two spindle and three scale
errors. The same table functions (Eg. (31)) and the same combinatory of the tables (Eq. (33)) are
used to produce such lookup tables. The simulation results show that more than 99% of the
maximum and the mean norm of the volumetric errors are compensated. The geometric errors are
also significantly dropped by more than 99%. The simulation results support the efficacy of the
proposed table-based compensation scheme (23Trigo-T) for compensating geometric and

volumetric errors for another five-axis machine tool with nominally non-orthogonal axes.
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Figure 6.8. Schematic of the non-orthogonal five-axis machine tool (K2X8-Five, Huron)
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6.7 Experimental test

The experimental test involves calibration, generating the LUTs and evaluating the compensation
effectiveness. The stroke length of the machine tool axes are 260, 420 and 240 mm for the X-, Y-
and Z-axis, respectively. The maximum rotations of the A- and C-axis are 240° and 360°,
respectively but the accessible probing angles for indexing the rotary axes are from —55° to +55°
and from 0° to 330° for the A- and C-axis, respectively. The error parameters are estimated using
probing data from a RUMBA made of four master ball positions mounted and probed sequentially,
in four separate setups named 1 to 4, which reduces the risks of collisions and obstruction during
probing operations. The ball positions form a quadrilateral as shown in Figure 6.9. The master balls
installed in setups 1 and 2 have a height of 37.5 mm from the base to the center of the ceramic
balls, and the master balls installed in setups 3 and 4 have a height of 47.5 mm. Both balls have a
diameter of 20 mm. For each setup, the master ball is measured with the measurement strategy
detailed in Table 6-3. The two rotary axes are indexed in such a way as to cover as much of the
total stroke of the rotary axes. Since no reference length is measured, it is not possible to distinguish
the scale errors with respect to the international meter as was pointed out in (Erkan et al., 2011).

However, the relative scale gain errors are estimated.

r

¥ 2 | ﬁ"-vhJ!‘

@ 7 i \\ [ﬂ // -:
Second setup

Thlrdsetup
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‘_?l
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positions

Fourth setup | Comp. setup

Figure 6.9. The setups for machine tool calibration and compensation validation.
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The touch probe Hexagon IRP40.50 with a probe tip radius of 0.5 mm and a total length of 74 mm
is used for both calibration and compensation effectiveness validation. The five setups and the
touch probe are shown in Figure 6.9. Each ball is measured using five points, one at the pole in Z
and four around the equator in an equidistant pattern that is rotated 45° relative to the machine Z
axis to avoid potential collisions with the ball support. The measurement for one master ball is

shown in Figure 6.10.

Master ball

Figure 6.10. The measurement of the master ball (ball approach point, first, second, third, fourth
and fifth probings).

The compensation validation setup, labeled “S”, constitutes a “Chase-the-ball” procedure
(Bringmann & Knapp, 2006) with a single master ball of diameter 10 mm and a height of 37.5 mm.
The rotary axes indexations, shown in Table 6-3, allow estimating the machine error parameters.
The setup is shown in Figure 6.9. The measurement process for calibration and compensation
validation was repeated three times, once for each of three consecutive days, while the average
temperature in the laboratory was between 21 and 22°C. Each ball probing lasted 1 min 50 s. The
calibration test lasted 77 min for 42 A and C rotary axis indexation pairs while the compensation
validation test lasted 110 min for 60 indexation pairs.
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Table 6-3. The A and C indexations pairs for calibration and compensation validation tests.

rﬁ;;zbefeﬂ;:t Rotary axes indexations (c° , a°)
(60, 15) (180, 30) (280, 45) (340, 50) (240, 40) (120, 20) (0, 0)
Calibration (-100, -20) (250, -40) (350, -55) (-310, -55) (-40, -25) (180, 0) (280, 0)
test (360, 0) (320, 0) (210, 0) (-160, 0) (-300, 0) (-220, 0) (-50, 0) (0, 15)

(0, 40) (0, 55) (0, 45) (0, 30) (0, -20) (0, -45) (0, -55) (0, -35) (-30, 44)
(-208, 55) (-318, 36) (45, 30) (326, 21) (290, 9) (-12, -16) (-304, -54)
(-10, -40) (100, -17) (197, -38) (345, -5)
(55, 8) (120, 16) (180, 40) (240, 38) (300, 55) (330, 50) (270, 45)
(210, 36) (150, 23) (90, 12) (30, 4) (-30, -5) (-90, -12) (-150, -28)
(-210, -31) (-270, -48) (-330, -52) (-300, -50) (-240, -43) (-180, -34)
Compensation | (-120, -23) (-55, -11) (140, 8) (190, 18) (250, 12) (290, 30) (310, 22)
test (10, 47) (50, 24) (100, 38) (160, 41) (200, 53) (-45, -34) (-140, -43)
(setup “S”) | (-170, -50) (-220, -20) (-280, -15) (-310, -10) (-70, -5) (135, -16)
(280, -50) (94, -36) (20, -10) (200, -26) (-40, 28) (-300, 50) (-280, 20)
(-100, 37) (-280, 10) (0, 0) (90, 0) (240, 0) (300, 0) (180, 0) (45, 0)
(-45, 0) (-180, 0) (-300, 0) (-240, 0) (-90, 0)

(setup 1,2,3,4)

6.8 Results and discussions

The probing test data of the first to fourth calibration setups are used to estimate the ten machine
tool error parameters by iteratively solving Eq. (3). The Jacobian of error parameters has a
normalized condition number of 206. Table 6-4 lists the mean values and standard deviations of
the estimated geometric machine error parameters of three test replicates. The mean of the
volumetric error norms is 62.1 pm while the mean of the unexplained volumetric error norms of
the tool tip relative to the master ball, which is the portion that the estimated parameters cannot
predict, is 4.6 um. EY(0A)C, EB(0X)A, EC(0Y)A, EA(0Y)Z, EY(0A)C and EYY1-EXX1 are

amongst the largest errors.

Table 6-4. The calibration test results (RUMBA test).

Symbol | EBOA | ECOA | EYOC | EAOC | EBOC | ECOX | EA0OZ | EBOZ | EYY1- EZZ1-
Unit [mrad] | [mrad] | [um] [mrad] | [mrad] | [mrad] | [mrad] | [mrad] | EXX1 EXX1
[um/mm] | [um/mm]
Mean 1.09 | -0.86 42.10 | 0.07 0.03 0.14 -0.44 0.11 -0.61 -0.22

c 0.120 | 0.043 | 0.900 | 0.001 | 0.005 | 0.004 |0.002 |0.002 |0.001 0.001

Table 6-5 lists the estimated mean values for the same ten error parameters and their associated
standard deviations using the data from setup “S”, which will be used for validation, gathered

before table-based compensation. The condition number for the Jacobian is 216. They are close to
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the calibration values. The estimated error parameters are similar to those obtain from the first four

setups which suggests that the potential for calibration of the validation test is high.

Table 6-5. The validation results before compensation (Chase-the-ball).

Symbol | EBOA | ECOA | EYOC | EAOC | EBOC | ECOX | EAOZ | EBOZ | EYY1- Ezz1-
Unit [mrad] | [mrad] | [um] [mrad] | [mrad] | [mrad] | [mrad] | [mrad] | EXX1 EXX1
[um/mm] | [pm/mm]
Mean 1.29 |-0.98 41.40 | 0.07 0.03 0.15 -0.48 0.15 -0.64 -0.25

c 0.230 | 0.031 | 0.400 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.009 0.008

A grid having ten points per axis for a total of 10° grid nodes was built as the input data structure
for generating the LUTs. The grid area covers the calibration range of the axes to avoid
extrapolation. The error parameters listed in Table 6-4 are used to generate the LUTs for the
25Poly-T and 23Trigo-T models. The tables have 100 command entries with their associate

corrections. The processes of generating the LUTSs are programmed in Matlab®.

The capability of the generated compensation tables for the validation data, setup ”’S”, is also
evaluated by processing compensated probing data to estimate the effective, or apparent, geometry
of the machine. The four sets of estimated error parameters, before compensation, after K-B

compensation, after 25Poly-T compensation and after 23Trigo-T compensation are shown in

Error parameter before and after comp.  ®Before comp.
41.50 WK-B comp.
25Poly-Tcomp.
41.00 @23Trigo-T comp.
g o

N 40.:0—;

S

E L00

s 0.50

=

2 g00 S A ae Ao A B

o l

5 _0.50 '

EB(OX)A [mrad]|
EC(OY)A [mrad|
EY(OA)C [pm]
EA(OY)C [mrad|
EB(OA)C [mrad]
EC(OY)X [mrad]
EA(OY)Z [mrad]
EB(OX)Z [mrad]
EYY1- EXXI [pm/mm]
EZZ1- EXX1 [pm/mm]

Figure 6.11. The effective geometric machine error parameters before and after pseudo
compensation of the probing results for the validation test, “S” data, before compensation and
after applying each of the three error compensation methods: K-B, 25Poly-T and 23Trigo-T.

The compensation effectiveness values are listed in Table 6-6. All compensation effectiveness
values are above 88% for the 23Trigo-T. The compensation effectiveness of dominant error EBOA

using the 25Poly-T is 26% whereas it is 89% with the 23Trigo-T. Another significant compensation
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effectiveness improvement, although the parameter value is quite small, is seen in EBOC where the
effectiveness is increased from 3% using 25Poly-T to 88% using 23Trigo-T. Significant
improvements are also seen for EBOZ and ECOX. Significant relative improvements are seen both
for large and small error parameters. In comparison with the 25Poly-T model, the 23Trigo-T
appears to better mimics the K-B theoretical compensation model. The mean norm of the
volumetric errors is 62.1 um without any compensation. Using 25Poly-T yields a mean volumetric
error norm of 23.3 um. However, this value is further reduced to 4.1 um for the 23Trigo-T, close
to the 3.2 um achieved by the theoretically exact kinematic model, K-B. The maximum volumetric
errors norm before and after compensation using 25Poly-T and 23Trigo-T compensations are
respectively 102.8, 38.2 and 7.2 um (Table 6-7), whereas, K-B achieves 5.3 um.

Table 6-6. The compensation effectiveness for all three error compensation methods: K-B,
25Poly-T and 23Trigo-T Eq. (7).

Compensation effectiveness

Error
parameter K-B error 25Poly-T error 23Trigo-T error
compensation compensation compensation

EBOA 89% 26% 89%
ECOA 98% 76% 98%
EY0OC 99% 98% 98%
EAOC 98% 98% 98%
EBOC 90% 3% 88%
ECOX 93% 38% 89%
EA0Z 98% 90% 94%
EB0Z 87% 27% 87%

EYY1l- EXX1 94% 94% 94%

EZZ1- EXX1 93% 81% 91%

Table 6-7. The mean and maximum norm of the volumetric error vectors before compensation
and after K-B, 25Poly-T and 23Trigo-T error compensation.

Before K-B error 25Poly-T error 23Trigo-T
. compensation - error
compensation compensation .
(um) (Um) (um) compensation
(um)
Mean volumetric error norm
. 62.1 3.2 23.3 4.1
_ (IVET)

Maximum volumetric error norm 1028 53 38.2 79

(max||[VE])




110

6.9 Conclusion

A trigonometrically enriched scheme using multiplication and summation functions is proposed in
this paper to compensate the volumetric errors (VE) and the geometric error parameters. The
enriched scheme finds its inspiration in the mathematical terms of the symbolically generated
inverse of the control Jacobian. The 25Poly-T is generated using univariate polynomial functions
of the five basic axes. The 23Trigo-T scheme uses trigonometric terms as can be found in the
Jacobian of commands and its inverse. The new scheme performance is compared to the 25Poly-T
scheme as well as to the theoretically exact inverse kinematics based (K-B) error compensation
model. Each compensation model is used to offline correct the on-machine measurements of a
Chase-the-ball type test for validation purposes. The test data is used, before and after correction,
to estimate the effective machine error parameters of the machine as well as its volumetric errors.
The compensation effectiveness of the three schemes is quantified by the reduction in the effective

machine error parameters and also the volumetric errors.

Error parameters EBOA, EBOC, ECOX and EBOZ which were compensated by at most 38% by the
25Poly-T are compensated by at least 87% by the 23Trigo-T schemes, a result similar to that for
the K-B error compensation. The maximum volumetric error norm for the non-compensated data
and for the 25Poly-T, 23Trigo-T and K-B compensation schemes are respectively 102.8, 38.2, 7.2
and 5.3 pum, which represents a reduction by 92% for the proposed 23Trigo-T scheme which is a
further reduction of 32% compared to the 25Poly-T scheme and is only 2% less than the

performance of the K-B theoretically exact compensation scheme.
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CHAPTER 7 ARTICLE 4: CNC TABLE BASED COMPENSATION OF
INTER-AXIS AND LINEAR AXIS SCALE GAIN ERRORS FOR A FIVE-
AXIS MACHINE TOOL FROM SYMBOLIC VARIATIONAL
KINEMATICS
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NOTE: Based on the paper resubmitted to the International Journal of CIRP Annals (2021)

7.1 Abstract

A compensation lookup tables (LUTs) scheme is programmed using a CNC’s indigenous LUTs
capability to virtually correct geometric error parameters of a five-axis machine tool. Using
variational kinematics, the geometric errors are forward propagated to the tool tip and the required
axis command corrections are obtained in closed form by inverse kinematics. 40 lookup tables and
multiplication and summation functionalities compensate ten inter-axis errors and three linear
positioning gain errors. Validation tests on a WCAYFXZt topology machine with a 45° angle
between the C- and A-axis show significant reductions in dominant geometric errors and a 79%

improvement in volumetric errors.

Keywords: Compensation, machine tool, lookup table

7.2 Introduction

Machine tool geometric error measurement and compensation help to produce good parts (Soichi
Ibaraki & Knapp, 2012; Schwenke et al., 2008). Various compensation options are implemented
within the CNC by original equipment manufacturers (OEMs). ISO/TR 16907 (ISO/TR16907,
2015) lists a number of potential options. However, most published research covers user
implementation with means independent from the OEM. Modifying the G-code axis commands on
the basis of forward and inverse kinematic models (R. M. D. Mahbubur, J. Heikkala, K.
Lappalainen, & J. A. Karjalainen, 1997) (Givi & Mayer, 2014) does not directly improve the
machine and create program traceability issues as the code must be changed for different machines

and as a particular machine errors change. Forward and inverse machine kinematic models based
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on screw theory (Xiang & Altintas, 2016) was implemented in an open CNC, as opposed to an
OEM CNC, to predict the volumetric error and generate axis corrections. Some CNCs allow users
to define lookup tables input and output with the option to combine them, such as summation and
multiplication, through a specific language, but there are no guidelines on what scheme will
effectively compensate specific geometric errors. A summation scheme was proposed (Jennifer
Creamer et al., 2016), using 25 compensation lookup tables (LUTSs), where each table is modelled
as a univariate polynomial to compensate, in a least squares sense, the predicted volumetric errors
due to estimated amalgamated inter- and intra-axis errors modelled as polynomials. Each axis
correction is the sum of five LUTSs outputs, one per axis. Alternatively, the LUT polynomials are
directly generated to explain the measured volumetric errors. Validation is conducted using laser
trackers on a large swivel head gantry. Cross LUTs multiplication was also used for a five axis
gantry for amalgamated (J. Li et al., 2019) without distinguishing between inter- and intra-axis

geometric error sources.

This paper proposes the concept of a variational forward inverse kinematics LUTs scheme (FIK-
LUT), implementable using a CNC’s indigenous LUT programming language, to compensate for
the eight inter-axis errors defined in 1SO 230-1 (1SO230-1, 2012), the two spindle translational
offsets and three linear axes positioning gain errors. The CNC performs the compensation
automatically as directed by the programmed scheme. A reduction in both the volumetric errors
and in the effective geometric error sources is sought. In section 7.3, the linearized forward and
inverse model is presented with its use to form the FIK-LUTs schemes using summation,
multiplication and weights. The scheme is validated on a machine with a nominal 45 degree
between its A- and C-axis in Section 7.4. Finally, the conclusion follows in section 7.5.

7.3 Look up table scheme construction

As an example, the FIK-LUTSs scheme for the X-axis correction is shown in Figure 7.1.
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The FIK-LUTs scheme is designed for a particular machine topology and the geometric errors to

be compensated. The target machine tool has the topology wCAYfXZt with its A-axis tilted by -

45° around Y with w, f and t as the workpiece, foundation and tool frames, respectively.

The 13 geometric errors (Mayer, 2012) for compensation are listed in Table 7-1 and shown in

Figure 7.2. The purpose of the compensation is to provide the CNC with the means to produce a

set of corrected axis command, for the five mechanical axes, denoted by,

0" =q+Aq

(46)

where g and g°, are the nominal and compensated axis command sets, respectively and Aq is the

axis command corrections set

AqQ=[AX AY AZ AA AC]".

(47)
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Table 7-1. The error parameters in 13-error model.

Description

Symbol

Inter-axis errors

Squareness error of the A-axis relative to the X-axis
Squareness error of the A-axis relative to the Y-axis
Y-offset between the C- and A-axis

Squareness error of the C-axis relative to the Y-axis
Squareness error of the C-axis relative to the A-axis
Squareness error of the X-axis relative to the Y-axis
Squareness error of the Z-axis relative to the Y-axis
Squareness error of the Z-axis relative to the X-axis
Offset of the spindle in X

Offset of the spindle in Z

Intra-axis errors

Positioning linear errors of the X axis

Positioning linear errors of the Y axis

Positioning linear errors of the Y axis

EBOA
ECOA
EYOC
EAOC
EBOC
ECOX
EAOZ
EBOZ
EXOS
EZOS

EXX1
EYY1l
EZZ1

ECOX EBOZ

Tool branch s

ECOA
Workpiece
branch

EBOA( -

EXX1 |/f'\

EZ71 NEA0Z

Figure 7.2. Kinematic diagram of the target machine tool with the 13 geometric error parameters.

The spindle is modelled as a B-axis (not otherwise present on this machine)

The FIK-LUT scheme uses equations of the required Aq as functions of q and the geometric error

parameters, Ep, in order to compensate for the volumetric errors that they induce. Ep is forward

propagated to the tool tip to yield the complete volumetric error twist (position and orientation),

Ev, using the Jacobian of geometric errors under small error assumption,
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EV = ‘]13-error EP (48)
where
Ev = [Exv EYV Ezv EAV EBV Ecv]T (49)

and Jiz-error CONtains inter- and intra-axis parts,
‘J13—error = [‘]inter—axis ‘]intra—axis] . (50)

The inverse of the Jacobian of commands produces the required Aq for a given Ev (Lei & Hsu,
2003b)

Ag=J! E (51)

command =V

Symbolic forms of those equations forms the basis for building the FIK-LUT.

7.3.1 Forward kinematic model

The nominal forward kinematics is modelled as a product of homogenous transformation matrices
(HTMs), T, for each pair of adjacent components from the workpiece to the tool through each

machine axes

“T, =[CT, “T) (T, T (T, *Te) CT, )1
[T, T (T, *T) CT )

(52)

where wy, and tn are the nominal locations of the workpiece and tool and for example Yo and Y are

the nominal axis locations before motion and its nominal after motion.

7.3.2 Jacobian of geometric error parameter

The Jacobian matrix is obtained symbolically using transport matrices considering the frame of
action of each inter- and intra-axis errors and its effect at the tool (Abbaszadeh-Mir et al., 2002; Y
A. Mir et al., 2002). A transport matrix, 2C1, is a 6x6 matrix used to propagate the effect of a small
rotation and translation occurring at a location 1 of a rigid body to another location 2 rigidly
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attached to the former. The transport matrix (or velocity transformation) is obtained as (Craig,
1974),

2Cl _ [ 21R3x3T 21RT[1P02,3x1X]T} (53)

- 1 T
O3><3 2 R3><3

1 . . -
where 21 R,.; and P02,3X1 are the rotation matrix and the origin vector between frames 1 and 2,

: 1 -
respectively. ‘P, 54X is

0 _1p02,z lpoz,y
1P02,3><1><: 1poz,z 0 - poz,x . (54)
_1p02,y lp02,x 0

The Jacobian of inter-axis geometric errors for the target machine tool is defined as,
‘]inter—axis = |:ICX0 tCYO tCZ0 tCA0 tCC0 tCt th:| (55)

t S . . .
where, for example, Ca, expresses the sensitivity of the volumetric error to geometric error

parameters occurring at Ao, the reference frame of the A-axis before motion. The inter-axis errors
correspond to columns 6, 16, 17, 23, 24, 26, 28, 29, 31 and 33 for ECOX, EAOZ, EBOZ, EBOA,
ECOA, EYOC, EAOC, EBOC, EXOS and EZOS, respectively.

The Jacobian of the intra-axis errors for the positioning errors of the X-, Y- and Z-axis contains

these transport matrices projected in the tool frame,

‘]intra—axis = |:tCX tCY tCZ tCA tcc:' (56)

Columns 1, 8 and 15 of the intra-axis Jacobian, Jiz-eror, Cater for EXX1, EYY1 and EZZ1,

respectively, as
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Jow=[X 0 0 0 0 0]
Jo=[0 0 =Y 0 0 0] (57)
Jom=[0 -z 0 0 0 0.

The complete Jacobian, Jiz-error, for the 13-error model is,

J 13-error [‘] ECOX ‘] EAOZ J EBOZ ‘] EBOA ‘] ECOA J EYOC ‘] EAOC (5 8)

J EBOC 'J EXOS ‘J EZOS ‘J EXX1 J EYY1 ‘] EZZl]

7.3.3 Jacobian of command

The Jacobian of commands, Jcommand, Propagates the effect of axis command corrections, applied
at the nominal location of the axis after its nominal motion, to the tool location. Columns 1, 8, 15,
22 and 36 of Jinraerror are selected for the X-, Y-, Z-, A- and C-axis command corrections

respectively.

Substituting the Jacobians in Eqg. (3) and (6) yields a set of five axis command corrections for each

of the 13 geometric errors as follows, where S and C stand for sin and cos functions, respectively,
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A, = ECOX [Y (C(2A)-3)+ fS(ZA)(Z ~-t,) (CX(A) -1)(2ty ~Z-X)
Y(L- (:2A4 J2XS(2A) g(C(A)_l) ]
Y(C(2A)-1)+4252A)(t, -Z) (L-C*(A)(X +Z-t)
4 2
Y(3+C(2A) +V2XS2A) V2
4 2
)-2YS(A) S(2A)t, - X -Z)
4 2
JES(A)O(C(A; V2SCA) g asoa
AqEBOA=EBOA[C(A) 2 )=2YS(A))  V2S(2A)( i(+z t)
C(A)2XC(A 2 ) —\2YS(A) S(A) - VES(A)
A - ECOA[—JEY(C(zA) )4 +25(2A)(t —J2S¥(A 2x +Z-t)
J2YCH(A 2+ XS(2A) e )
V2 V2

Mgyor =EYOCI"S(A) C(A) —-S(A) 0 0]

AqEAOZ = EAOZ[

(C(A)+1) C(A]

Alggo;, = EBOZ[

. (59)

Ao =EAOC[0 0 0 2 1]
2 2

AQggoc = EBOC[C(A)(, - )_TYS(A) TS(A)(X +Z-t) XC(A) 0 0]

Ay =EXOS[L 0 0 0 0]
Aleyos =EZOS[0 -1 0 0 0]
Ay =EXXIX 0 0 0 0]
Al =EYYL0 Y 0 0 0]
Al =EZZI0 0 Z 0 0]

7.3.4 Generation of FIK-LUTSs

The CNC FIK-LUTSs scheme implements the axis command corrections by combining a minimum
number of simple tables each having as input an axis command, the basic axis, and as output an

associated correction to the output axis, the compensation axis.

An NC code generates the tables, their entries and instructs the CNC on how to combine their
interpolated outputs. A sample code is shown in Figure 7.3 where table 1 is multiplied by table 2
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and the result added to Table 3. The number of table entries for the first, second and third tables
are 10, 15 and 15, respectively. The input axes for the first, second and third tables are Z-, Y- and
X-axis, respectively and their output axis is the X-axis. By entering any axis command for X, Y

and Z, the output of the two first tables are multiplied together and are added to the third table.

The tables’ functions explicitly include the geometric error parameters. The functions are
discretized to produce a limited number of table entries that the controller linearly interpolates for
the required axis commands. The proposed LUTs can be implemented by a machine user if the
CNCs offer a compensation facility by which users can combine the compensation tables by

summation and multiplication functionalities.
7.4 Experimental validation

7.4.1 Measurement before and after applying compensation

The tables are loaded in the Siemens Sinumerik 840D controller of the K2X8-Five machine tool

from Huron Graffenstaden.

The machine geometric errors and volumetric accuracy, without and with compensation, is
evaluated by probing the Scale and Master Ball Artefact (SAMBA) (Mayer, 2012) shown in Figure
7.5. Two test strategies are used. The Calibration test, is used for the preparation of lookup tables
and the other called Validation test is used to evaluate the compensation performance. Each ball
probing takes 1 min 50 s. The Calibration test strategies use 26 A-, Spindle and C- axis position
sets for a total of 28 ball probings whereas the Validation test uses 10 sets for 26 ball probings. For
tests before compensation, all tables are off. For compensation, only the new 40 FIK-LUTs are

activated.
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%_N_NC_CEC_INI ~| $AN_CEC_Is_MODULO[0]=0  +] SAN_CEC_MULT_BY_TABLE[1]=1
SAN_CEC_DIRECTION[0]=0 SAN_CEC[2,0]=0.032

METRIC SAN_CEC_MULT_BY_TABLE[0]=0]  SAN_CEC[2,1]=0.053
SAN_CEC[1,0]=0.0055 SAN_CEC[2,2]=0.031

CHANDATA(1) $AN_CEC[1,1]=0.0047

SAN_CEC[0,0]=0.0048 $AN_CEC[1,2]=0.0040 SAN_CEC[2,13]=-0.021

SAN_CEC[0,1]=0.0037 SAN_CEC[2,14]=-0.034

SAN_CEC[0,2]=0.0026 SAN_CEC[1,13]=-0.0041 SAN_CEC_INPUT_AXIS[2]=AX1

SAN_CEC[1,14]=-0.0048 SAN_CEC_OUTPUT_AXIS[2]=AX1

SAN_CEC[0,8]=-0.0039 SAN_CEC_INPUT_AXIS[1]=AX2 SAN_CEC_STEP[2]=50

SAN_CEC[0,9]=-0.0050 SAN_CEC_OUTPUT_AXIS[1]=AX1|  SAN_CEC_MIN[2]=-650

SAN_CEC_INPUT_AXIS[0]=AX3 SAN_CEC_STEP[1]=50 SAN_CEC_MAX[2]=0

SAN_CEC_OUTPUT_AXIS[0]=AX1|  $AN_CEC_MIN[1]=-700 SAN_CEC_IS_MODULO[2]=0

SAN_CEC_STEP[0]=50 SAN_CEC_MAX[1]=0 SAN_CEC_DIRECTION[2]=0

SAN_CEC_MIN[0]=-450 SAN_CEC_IS_MODULO[1]=0 SAN_CEC_MULT_BY_TABLE[2]=0

$AN_CEC_MAX[0]=0 ————  $AN_CEC_DIRECTION[1]=0 }— M17

Basic axis LUT
commands S Weights
Z —> LuTi-LuTo) 1 F C Compensation axis
—> - AX
Y LUT2-LUT[1] > >

X — Lurs-Lurp

Figure 7.3. NC code for a sample of table multiplication (Siemens 840D controller) ("Siemens
Controller,” SINUMERIK 840D/840Di/810D Extended Functions). Note:
$AN_CEC_MULT_BY_TABLE=0 means the table is added to the other tables by default.

40 LUTs are used to compensate the 13 error parameters consisting of 13, 11, 14, 1 and 1 tables
for the X-, Y-, Z-, A- and C-axis, respectively. The A- and C-axis corrections are shown in Figure
7.4.

_\Z(cos(4)
2

-1) _ VZ(cos(A)+1) _
A LUTal ECOX — EAOZ - N @_»AA

sin(A)EBOZ + sin(A)EBOA — cos(A)ECOA +\2EAOC

A LUTal=cos(A)ECOX — cos(A)EAOZ — Zsin(A)EBOZ — @—» AC

V2sin(A)EBOA + \2Zcos(A)ECOA — EAOC

Figure 7.4. The 2 FIK-LUTs scheme for A- and C-axis correction.
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Figure 7.5. SAMBA artefact. All balls are 19.05 mm diameter.

First, the Calibration test is run once and the Validation test is run twice, with tables off, to assess
the uncompensated state of the machine. Then the FIK-LUTS are generated from the Calibration
test results and the sequence is repeated with the compensation tables activated. This completes a

cycle which is executed four times. The room temperature varies between 20° and 21°C.

7.4.2 Measurement results and lookup table generation

The Validation test results before compensation are listed in Table 7-2. The mean volumetric error
is 44 um and the estimated error parameters cannot explain a mean VE norm of 4.1 um. After
compensation, the mean VE norm is reduced to 9.1 pum for a 79% reduction. The compensation
ratios of the error parameters sorted from the biggest to the smallest magnitude of the mean VE
norm caused by each error exhibit a significant reduction for the dominant errors as EZOS, EAOZ,
EZZ1, EBOA, EAOC and ECOX, However, for small error parameters, no reliable trend can be
observed. Figure 7.6 illustrates the mean of volumetric error norm before and after compensation

and their relative standard deviation for the validation test.
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Figure 7.6. top) The mean error parameters before and after compensation with +/- two pooled

SD errors bands; bottom) The mean of volumetric error norm before and after compensation for

the validation test.
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Table 7-2. The estimation results for the validation test before and after generating and activating
lookup tables.

Error parameter [Ve] due to each E,

(Ep £U) values! [um]
Error Before After Before  After |After/Before Ep
parameters comp. comp. | comp.  comp. Comp. ratio
EZOS [um] 55.6+6.8 -7.4 55.6 7.3 -0.13
EAOZ [urad] 106.0+14.5 -11.3 17.2 1.8 -0.11
EZZ1 [um/m] 30.0+13.8 5.0 11.3 1.8 0.17
EBOA [urad] 39.1+10.6 8.1 8.6 1.7 0.21
EAOC [urad] 33.848.3 -20.3 7.9 4.7 -0.60
ECOX [urad] -32.0+10.8 -20.3 3.7 2.3 0.63
EBOZ [urad] 22.048.0 39.0 3.6 6.3 1.77
EBOC [urad] -14.6+3.3 -12.9 3.5 3.0 0.88
EXX1 [um/m] 25.9+8.1 -3.2 3.0 0.3 -0.12
EXOS [um] -2.1+4.9 -11.0 2.1 11.0 5.29
EYY1 [um/m] -14.3+12.8 -2.3 1.8 0.3 0.16
ECOA [urad] 5.5+13.7 -9.5 1.2 2.0 -1.72
EYOC [um] 1.0+1.4 -3.9 1.0 3.9 -3.97
[VE] [um] a4 - 91 021
IVE|unexplained by 41 i 48 119

the model [um]

1 U of Ep from eight runs over two non-consecutive days (Sepahi-Boroujeni, Mayer, &
Khameneifar, 2021).

7.5 Conclusion

Combinatory lookup tables are generated from symbolic variational forward and inverse
kinematics functions (FIK-LUTS) relating the required axis command corrections to the eight inter-
axis errors, two spindle lateral offsets and the three linear axis scale gain errors of a 5-axis machine
tool. The machine geometric errors are calibrated, using one set of positions, and the FIK-LUTs
are generated. The compensation effectiveness is evaluated using a new validation set of positions
shows significant reduction in the dominant error parameters as well as a reduction by 79% of the

mean volumetric error norm.
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CHAPTER 8 GENERAL DISCUSSION

To achieve the objective of the project, two general table-based error compensation methods have
been studied, one for Cartesian volumetric error compensation and the other for volumetric error
compensation. This chapter presents the general discussion of this research study. The main
methods and important outcomes are explained in the context of machine tool table-based

volumetric error compensation.

A three-dimensional lookup table is a Control parameter modification capability embedded in
Fanuc controller. For generating such a lookup table, a three-dimensional mesh grid is required to
be built on the joint space. This thesis proposes generating an optimized 3D mesh grid to
compensate Cartesian volumetric errors. The optimized table was obtained by the iterative method.
The objective was to minimize the norm of the RMS of the volumetric error. Two error models,
including 13 and 84 error parameters and coefficients, were used while indirectly calibrating the
five-axis machine tool. The two pseudo three-dimensional error compensation tables were
developed for the two error models with the optimized number of the 3D mesh grid elements. A
3D ball-bar test was designed for validation purposes. Firstly, the ball-bar test was run before
applying for any compensation. Afterwards, the positions located on the meridians and an equator
were corrected using the trilinear interpolation applied on the two pseudo lookup tables, and the
ball-bar tests were run with the updated values. The size and form errors show a good improvement
in terms of error compensation. The volumetric Cartesian error projected on the ball-bar axis
direction was compensated using the pseudo optimized lookup tables. Noted that, this kind of table

is not useful to compensate the angular errors of the tool tip volumetric errors.

Interpolatroy compensation lookup table is a type of complex compensation table that existed in
some controllers such as Siemens controller, which let the users make combinatory tables based
on their need. The controller applies linear interpolation on the table entries when the G-code is
entered. The user can define whether the tables to be added together or to be multiplied by each
other. Three research works have been proposed for generating such interpolatory compensation

lookup tables.

The straightforward combination of the tables is using the summation functionalities. Since a five-
axis machine tool has five axes, five tables per axis, 25 tables in total, are the maximum numbers

of the tables useful for correcting five axes. In this work, the Jacobian of commands was built to
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calculate the command correction. Then, the command corrections were simulated by univariate
polynomials of degree three, and the Jacobian of table coefficients was made, presenting the
relationship between the table coefficients and the command corrections. Two error models
containing 12 and 81 error parameters and coefficients were used. Having calculated the table

coefficients, the two-pseudo combinatory tables were generated for the two error models.

The very fact that the tables’ configurations are dependent on Jacobian of commands and the
inverse Jacobian of command was approved in the third work. This model was used for
compensating the inter-axis and three gain errors. To compensate such errors combination, not only
the summation functionalities of the tables but also the multiplication functionalities are necessary
while table generation, and this has been proven through simulation and experimental tests by
comparing different table-based models with the kinematic-based compensation. The kinematic-
based error compensation showed a better agreement with the model, including summation and
multiplication functionalities rather than just summation functionalities. The enriched model
included 23 tables (23Trigo-T). The table coefficients in the enriched model were calculated
through classic optimization wherein the objective function was minimizing the discrepancies

between the command corrections and the table functions.

The enriched model was improved in the last work, in which the number of the tables increased to
40. This model was obtained by the exact linearized kinematic equations for the target five-axis
machine tool. The similarity of the last table-based error compensation model to the kinematic-
based error compensation is more than the former models. This model used the advantage of
summation and multiplication functionalities while generating the tables. This model was
evaluated for compensating 13 error parameters and volumetric errors. The real tables were built,
enabled, and used in Siemens controller. Noted that the number of the tables depends on the

topology of the machine and the error parameters to be compensated.
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CHAPTER 9 CONCLUSION (AND RECOMMANDATIONS)

9.1 Conclusion and contributions of the work

This thesis proposed a methodology for integrating five-axis machine tools calibration, lookup

table compensations generation as well as the whole procedure validation.

The 3D compensation table presented in the first work can compensate Cartesian
volumetric errors in a five-axis machine tool working on three-axis mode operation. By
studying the effect of different error models on the mesh grid dimension, it has been
concluded that a minimized mesh grid dimension depends on the error parameters that
existed in the error model or the error parameters that the machine tool under the test
exhibits. For example, eight nodes are adequate when the machine tool has linear inter-axis
errors in the 13-error model. However, the table's optimum dimension depends on the actual
error parameter values for the 84-error model. For instance, for the tested machine, a
19x19x19 for 6859 nodes was required to gain a 0.1 micrometer threshold in an 84-error

error model.

A 3D ball-bar test consisting of several meridians and an equator was designed to validate
the 3D compensation table. The path best fit sphere radius deviation from the nominal
sphere was the criteria for the size error, and the standard deviations of the residuals were
the criteria for the form error. Those criteria were compared before and after applying 3D
compensation tables, which revealed that the average effectiveness of the 3D grid error

compensation table was over 82%.

The second, third and fourth articles focus on volumetric error and geometric error
compensation in a five-axis machine by generating and enabling combinatory lookup tables
in the controller. Combinatory lookup tables consist of one to several simple tables

combined by summation or multiplication functionalities.

In the second paper, the lookup tables were combined by summation functions to
compensate volumetric error and geometric error parameters. Two error models were
developed to calibrate the machine tool, followed by generating 5 tables per axis, 25 tables
in total, for each error model. Comparing validation test results before and after generating
pseudo compensation tables showed the compensation lookup tables produced by the
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enriched error model (81-error model) could not more compensate the errors but just by 2%
in comparison with the 12-error model. However, the two tables were incapable of

compensating some inter-axis errors.

In the third paper, the compensation model functions were achieved from the trigonometric
terms in the Jacobian and the inverse Jacobian of commands for the tested five-axis machine
tool. 23 lookup tables were generated to compensate 10 error parameters and the volumetric
errors. The enriched proposed compensation model (23Trigo-T) was compared with 25
polynomial lookup tables (25Poly-T) and the kinematic-based error compensation was
considered as the reference of comparison. 23Trigo-T model was more effective over 32%
rather than 25 polynomial lookup tables for mean volumetric error compensation. The
simulation results of the 23Trigo-T model for compensating the volumetric errors of two
different five-axis machine tools reveal the potential generality of this model.

In the fourth paper, the exact table-based compensation model (forward inverse kinematic
lookup table, FIK-LUT) was produced for a five-axis machine tool wherein a 13-error
model was used to calibrate the machine tool errors. 40 tables were combined by the
functions achieved from the symbolic equations to compensate 8 inter-axes, 2 spindle, and
3 gain errors. The FIK-LUT was generated in Siemens controller 840D of a non-
perpendicular five-axis machine tool. The validation and calibration tests differed in the
measurement strategy. The model was able to compensate over 79% of the mean estimated

volumetric error norm. The dominant error was also reduced by 87%.

9.2 Future works

Generating complex tables for volumetric error compensation is somehow a new field of research

recently highly demanded. The following are some subjects for future works;

There are three table-based compensation models provided in this thesis for volumetric
error compensations. As a future work, it is suggested to launch all these models on some
other five-axis machine tools to verify the effectiveness of the models for a different

machine tool.



133

The last model (FIK-LUT) provided in this thesis is a comprehensive compensation model
introduced for five-axis machine tools. It is useful to do research and to expand the last

model for six-axis machine tools.

Table-based volumetric error compensation can be verified for each inter- and intra-axis
error to see the effectiveness of the tables. The research will provide numbers of the tables

required for each error to be compensated.

Since not all the controllers are equipped with the same number of compensation tables, it
is important to build such combinatory tables by which the volumetric errors of the target
machine tool are minimized. Hence, automatically choosing the optimized number of the
complex tables can be another subject of research. This research allows the users to have
optimized tables based on the magnitude of the inter- and intra-axis errors of the target

machine tool.

Volumetric error compensation is applicable when the machine is in machining mode. As
a research topic, it is suggested to validate the compensation procedure by machining a part

before and after compensation and measuring the dimensions by a CMM.

Proposing a general table-based compensation scheme to be practical for different five-axis
machines can be a highly demanding research topic. In paper 3, the potential model is

introduced. However, more experimental tests are required to validate the proposed model.

As thermal errors have a significant effect on the tool tip errors, a combination of thermal
error compensation and geometric error compensation will improve the accuracy of the
machine tools. Some controllers like Siemens allow the users to build such combinatory
tables. It is suggested to simultaneously investigate the effect of those compensations on

tool tip errors.
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