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RÉSUMÉ 

Les erreurs volumétriques et géométriques des machines-outils sont dues aux imperfections dans 

le procédé de construction,  à l'usure et à des facteurs environnementaux. La compensation d'erreur 

logicielle est une alternative à la correction physique qui permet de réduire les erreurs 

systématiques et d’augmenter la précision lors de l’usinage de pièces. Une méthode de 

compensation logicielle courante consiste en l’utilisation de tables de compensation CNC 

définissables par l'utilisateur. La table de compensation des machines-outils à trois axes est 

populaire pour compenser les erreurs volumétriques de mouvement de translation de la pointe de 

l’outil où le maillage 3D utilise l'espace articulaire mécanique comme entrée et sortie. Les valeurs 

de compensation requises à chaque nœud du maillage sont optimisées sur la base des modèles de 

paramètres d'erreur géométrique de la machine. L'efficacité de la compensation est mesuré à l'aide 

d'un test de barre à billes 3D le long des méridiens d'un espace hémisphérique. Les résultats 

montrent une amélioration de plus de 82% de la non-sphéricité de la trajectoire de l'outil 

relativement à l’espace de travail. Pour les machines-outils à cinq axes, l'utilisation de tables de 

compensation complexes a été explorée. Ces tables complexes peuvent être combinés à l'aide de 

multiplication et de sommation. Dans un modèle préliminaire, 25 pseudo tables, 5 tables par axe, 

sont combinées à l’aide de sommations et remplis pour les deux modèles d'erreur. Toutes les 

fonctions de table sont simulées par des polynômes de troisième degré. Le système d'équations est 

linéarisé en générant la jacobienne des coefficients de la table. Les erreurs géométriques et 

volumétriques sont comparées avant et après compensation avec une compensation d'erreur plus 

de 63%. Un autre modèle de compensation d'erreur basé sur une table de compensation, inspiré du 

calcul de la jacobienne et de la jacobienne inverse, est proposée. Cette méthode permet de faire 

ressortir une variété de termes trigonométriques qui sont utilisés pour peupler les tables de 

compensation. Ce schéma augmente la compensation d'au moins 32% sur le modèle à base 

polynomiale. Le dernier schéma de compensation basé sur une table de compensation qui a été 

étudié utilise un modèle variationnel direct et inverse linéarisé exact représentant la relation entre 

les paramètres d'erreur et les corrections nécessaires à la compensation. Pour la machine-outil 

testée, 40 tableaux ont été créés dans le contrôleur Siemens 840D pour compenser 13 paramètres 

d'erreur. Une compensation de 79% des erreurs volumétriques est obtenue. Les normes des erreurs 
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volumétriques estimées moyennes sont réduites de 44 µm avant compensation à 9 µm après 

compensation. 
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ABSTRACT 

Machine tool volumetric and geometric errors occur during to initial construction imperfections, 

and subsequent wear and tear and environmental factors. Software error compensation is an 

alternative to physical correction to reduce systematic errors and achieve more accurate machined 

parts. A practical software compensation method is the use of CNC user definable look up tables.  

Three axis machine tools lookup table are common for the purpose of tool tip translational 

volumetric error compensation. The 3D mesh grid uses the mechanical joint space as input and 

output. The required compensation values at each mesh grid node are optimised based on one of 

two machine geometric error parameter models. The compensation effectiveness is tested using a 

3D ball-bar test along meridians of a hemispherical space. The results show an improvement over 

82% of the out-of-sphericity of the tool trajectory relative to the workpiece frame. 

For five-axis machine tools the use of complex compensation tables is studied. Such complex tables 

can be combined using multiplication and summation functionalities. In a preliminary model, 25 

pseudo tables, 5 tables per axis, are combined by summation functionality and populated for the 

two error models. All table functions are simulated by polynomials of degree three. The system of 

equations is linearized by generating the sensitive Jacobian of the table coefficients. The geometric 

and volumetric errors before and after compensation are compared showing an error compensation 

of over 63%.  

Another table-based error compensation model is proposed which is inspired by the Jacobian and 

the inverse Jacobian of command which leads to variety of trigonometric terms to populate the 

tables. This scheme increases the compensation by at least 32% over the polynomial based model.  

The last table-based compensation scheme studied implements an exact linearized forward and 

inverse variational model representing the relationship between the error parameters and the 

command corrections required for compensation. For the tested machine tool, 40 tables were 

created in the Siemens controller 840D for compensating 13 error parameters. Compensation of 

79% of the volumetric errors is achieved. The mean estimated volumetric error norms are reduced 

from 44 µm before compensation to 9 µm after compensation. 
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1 

 INTRODUCTION 

Machine tool error compensation becomes more important not only due to producing more 

complicated parts with tighter tolerances but also to automate the process of keeping a machine at 

its best accuracy potential. To maintain the maximum possible accuracy of the machine tools under 

production mechanical maintenance such as applying overhaul, repairing parts and assemblies 

might be useful especially when the errors are large. However, there are some software methods 

by which small errors of micrometers can be compensated without mechanical correction which 

are generally time and resource consuming. Since the machine is an open kinematic chain, its 

geometric errors affect the relative movement of the tool to the workpiece. Hence, by correcting 

this relative movement, the influence of the geometric errors on the tool tip can be reduced. 

Among different software methods, using lookup tables is attractive because it is more practical 

for the user to have the command correction automatically done in comparison with G-code 

compensation in which the user modifies the G-code program. However, generating the complex 

tables or modifying the control parameters requires a deep understanding of the errors, machine 

tool kinematics and joint correction. To generate complex tables, a precise model of geometric 

parameters and the optimization method is used. There is a lack of knowledge of producing such 

complex tables which can mimic the behaviour of kinematic-based error compensation in which 

the controller uses the tables to assign compensation value to every machine tool command. This 

thesis aims to propose strategies and techniques to answer the following main research questions: 

• How does table-based error compensation capability in the controller can improve 

machine tool accuracy? 

The detailed questions relative to the main one are; 

• Which criteria indicate machine tool error compensation?  

• What is the relationship between the geometric errors and the command corrections 

required for volumetric error compensation?  

• How to optimize and predict joint correction?  

• Is the number of table entries important? If yes, How to optimize them?   

• How to build compensation tables to mimic the kinematic-based error compensation?  
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• How many tables are required to fully compensate a set of errors in a machine tool?  

1.1 Objectives 

The main objective is to exploit the use of the capability of current indigenous software 

compensation tables in machine controllers and to explore solutions where shortfalls are identified. 

The specific objectives are defined as; 

1. Correct translational errors using three-dimensional error compensation with optimized 

mesh grid. 

2. Propose a simplified table-based error compensation model in which the summation 

functionality is participated to correct geometric and volumetric errors. 

3. Introduce a more complex table-based error compensation model with multiplication and 

summation functionalities with trigonometric terms as the table functions to correct 

geometric and volumetric errors.  

4. Identify a table-based error compensation model, which behaves close to kinematic-based 

error compensation to correct geometric and volumetric errors. 

1.2 Hypothesis 

A table-based error compensation model can be produced that behaves like kinematic-based error 

compensation.  

The geometric and volumetric error compensation is dependent on the numbers of mesh grids built 

on the machine tool joint space. 

The numbers of tables required for geometric and volumetric error compensation are dependent on 

the magnitude of different geometric errors. 

Multiplication and summation functionalities may be required in generating table-based error 

compensation to correct different geometric errors. 
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1.3 Assumptions 

• The machine is supposed to have rigid body behaviour resulting in neglecting error 

variation of one component while moving on the other component.  

• The machine tool controller is supposed to track all the input data. 

• Compensation algorithm is applied on repeatable errors.  

• The geometric error parameters and volumetric errors obtained using a SAMBA calibration 

process are reliable. 

• Although this project investigates the dynamic and thermal-induced deviations resulting in 

some geometrical and volumetric deviations, it does not directly involve the dynamic and 

thermal errors. 
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 THEORY AND LITERATURE REVIEW 

2.1 Machine tool deviations 

Hocken defined the error as “the difference between the actual response of a machine to a command 

issued according to the accepted protocol of that machine's operation and the response to that 

command anticipated by that protocol” (R. J. Hocken, 1980). A change in geometry of the 

components like the tool, spindle shaft, housing, frame and guideways, bearings, drives and fixtures 

leads to position and orientation error of the end-effector relative to the workpiece. The influence 

of machine imperfections on the machined part dimensions and geometry appears as the volumetric 

deviation. The overall machine imperfections may come from the interaction between several error 

sources like kinematic errors, thermal effects, machining forces, loads, contouring and servo errors. 

Hocken (R. J. Hocken, 1980) classified these discrepancies into two general classes as quasi-static 

errors and dynamic errors. By neglecting the influence of a machine’s particular operating 

conditions, the sources of quasi-static errors contain geometric deviations, the error induced by the 

forces and deadweight of the machine components and thermal errors. Those errors are almost 

constant or slowly vary in time. Dynamic error, the consequence of the machine’s dynamic 

behaviour and machining conditions during the cutting operation, is classified by Hocken into sub-

categories, namely vibration of the machine structure, spindle error motions, tool deflection and 

servo control and contouring errors (R. J. Hocken, 1980) (Figure 2.1). Some major error sources 

are discussed in the following. 

 

Figure 2.1. The overall effect of several error sources on a machine tool based on Hocken (R. J. 

Hocken, 1980). 
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2.1.1 Thermal deviation 

The heat generated in a machine tool may lead to expanding the machine base and its components. 

The expansion coefficient varies depending on the temperature and thermal conductivity, resulting 

in machine element thermal distortion (Schwenke et al., 2008). Among various sources of errors, 

the thermal deviation has almost been a 40%-70% contributing factor of workpiece errors. Thermal 

induced errors contribute to the part-dimensional deviations in precision machining and cause a 

variation in the axes' actual position. Figure 2.2 illustrates a possible thermal error classification. 

The thermal error sources can be heat produced by drive equipment or high ambient temperature. 

However, the primary thermal source is produced by the cutting process (Haitao, Jianguo, & 

Jinhua, 2007). The others are room environment, the heat created by coolant systems, hydraulic 

oil, frame stabilizing, cutting fluid and lubricating oil. Electronic systems can also participate in 

this heat generation. Besides, the effect of people and solar radiation cannot be negligible (Attia & 

Kops, 1979; Haitao et al., 2007; J., 1990).  

 

 

Figure 2.2. Thermal error classification based on (Attia & Kops, 1979; Haitao et al., 2007; J., 

1990). 

The temperature-induced deformation of components may directly impact precision machining. 

They can flow as convection, conduction or radiation depending on the thermal source. Heat can 

flow uniformly or non-uniformly in all components of the machine tool. The classifications 
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proposed by Allen (J.P. Allen, 1997) for the thermal errors are the position-independent thermal 

errors (PITE) and the position-dependent thermal errors (PDTE). In PITE, the errors can vary as a 

function of temperature and influence on the machine offsets independently from the axis positions 

and PDTE is the position and the temperature variation errors (J.P. Allen, 1997). 

2.1.2 Load induced deviation 

Because of the machine structure's limited static stiffness, components may be deformed by gravity 

or cutting load resulting from the cutting process. Gravity force is defined as a function of machine 

structural weight resulting in axis acceleration load. It mainly occurs because of the displacement 

of machine components and the workpiece's mass (Slocum, 1992). Ramesh et al. (R. Ramesh, 

2000) proposed that despite the strain caused by cutting load, it is minimal in finish machining and 

can be neglected. However, due to the existence of large forces, this assumption cannot be 

considered in machining hardened steel materials. New research has been done on the load-induced 

error to reduce total discrepancies (Ratchev, Liu, Huang, & Becker, 2006). 

2.1.3 Contouring and servo errors  

The discrepancies may be caused by numerical control wherein the necessary calculations are 

computed, such as the trajectory interpolation and tool path generation. Servo controller may be 

the other reason for such errors in which the position and the speed of each axis are controlled in 

real-time. Contouring deviation is a function of feed rate and can arise by increasing the feed rate 

(Lavernhe, Tournier, & Lartigue, 2007). 

2.1.4 Dynamic force induced errors and vibrations 

Machine tool structure is subjected to dynamic effects producing discrepancies in the nominal tool 

path trajectory. Various factors can lead to this type of distortion, including vibrations of the 

components, inertial forces caused by acceleration or deceleration of the axes and forces variation 

resulting from the sudden change in cutting forces during the process (Jingxia Yuan, 1998). 

The vibration effect is more detectable in the milling process because of the nature of periodically 

forced vibration. Schmitz et al. (Schmitz, Ziegert, Canning, & Zapata, 2008) have studied the 

impact of the spindle speed, teeth number of the tool, radial and axial depth of cut and cutter helix 
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angle on vibration in the milling process. Typically two types of vibration may be introduced 

namely forced vibration produced by external sources such as foundation, bearings or other 

components and self-excited vibration that occurs when the machine vibration is almost near the 

one or several natural frequencies of the structure (R. J. Hocken, 1980).  

2.1.5 Geometric errors 

Geometric errors may be the result of imperfect geometry and dimensions of machine components, 

its axes misalignments, errors of machine’s measuring systems, and elastic deformation of parts. 

Assembly errors of machine structural components are directly affected by the errors in angles like 

squareness, horizontal and vertical parallelism errors, or the errors in length like improper offsets 

between components, wrong component dimensions, and linkage length. The weak surface 

straightness of the machine components may also produce a negative effect. Also, having 

inappropriate bearing pre-loads is the other reason for these errors (Schwenke et al., 2008). Thermal 

errors can lead to permanent errors in the machine tool's structure or load, and load variation may 

affect the spindle, holder, and tool's material properties. 

Kinematic deviations lead to imprecise function resulting in one axis's error components being 

functions of other axes positions. In general, two classifications are proposed for the geometric 

errors, namely intra-axis errors or position-dependent geometric parameters (PDGEPs) and inter-

axis errors or position-independent geometric parameters (PIGEPs) (Schultschik, 1977). The 

surface straightness of the guideways causes the first category. In contrast, the second one is caused 

by structural component misalignments such as out of squareness, angular offset, and rotary axes 

separation errors (Y A Mir, 2002). The volumetric error contains a functional point's overall 

deviations in a machine tool caused by intra- (error motion) and inter-axis (link error) errors 

(ISO/TR16907, 2015). The concepts of the volumetric error, inter- and intra-axis errors are 

illustrated in Figure 2.3. 
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Figure 2.3. Exaggerated machine tool errors schematic. 

2.1.5.1 Intra- and inter-axis errors 

This section yields the main description of intra-axis and inter-axis errors for prismatic and rotary 

joints by which the machine tool error is modelled. Ideal prismatic joints provide straight 

movements along the linear axes. Thus, possible six motions are for linear axes, three translations 

along the X, Y, Z axes, and three rotations around them. Similarly, ideal rotary joints provide 

angular motions around the axis of rotation. Actual rotary joints are influenced by six deviations, 

including three translational error motions along the X, Y, Z axes and three angular error motions 

around them (ISO230-1, 2012). The errors are mapped in Figure 2.4 and the definitions are 

expressed in Table 2-1. The definitions are based on ISO 230-1 (ISO230-1, 2012).  

   

Figure 2.4. Linear and angular error motions of a linear and a rotary axis considering the 

movement respectively along Z- and C-axis (ISO230-1, 2012). 
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Table 2-1. Error definitions for a linear and a rotary axis(Z- and C-axis) (ISO230-1, 2012). 

Axis Error sign Error definition 
Z

-a
x
is

 
EXZ 

EYZ 

EZZ 

EAZ 

EBZ 

ECZ 

Straightness error motion in X direction 

Straightness error motion in Y direction 

Linear positioning error motion in Z direction 

Angular error motion around X-axis (Pitch) 

Angular error motion around Y-axis (Yaw) 

Angular error motion around Z-axis (Roll) 

C
-a

x
is

 

EXC 

EYC 

EZC 

EAC 

EBC 

ECC 

Radial error motion of C in X direction (after rotation) 

Radial error motion of C in Y direction (after rotation) 

Axial error motion in of C direction (after rotation) 

Tilt error motion of C around X-axis (Pitch) 

Tilt error motion of C around Y-axis (Yaw) 

Angular positioning error motion around Z-axis (Roll) 

 

Based on the inter-axis error description, which is an orientation and displacement of the actual 

axis from the nominal location for a linear or rotary joint, the relevant parameters are defined as 

the two orientation angle and one zero position error for the linear axis. The two orientation angles, 

and two position coordinates and a zero position of the axis are the parameters of the inter-axis 

errors for the rotary axis. Figure 2.5 illustrates these errors for the Z- and C-axis. The error 

definitions are also expressed in Table 2-2 (ISO230-1, 2012). 

  

Figure 2.5. Inter-axis errors for linear Z-axis and rotary C-axis (ISO230-1, 2012).  
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Table 2-2. Error definitions of inter-axis errors for linear Z-axis and rotary C-axis (ISO230-1, 

2012). 

Axis  Error sign Error definition 

Z
-a

x
is

  EZOZ 

EA(OY)Z 

EB(OX)Z 

Zero position error of Z 

Squareness error of Z related to Y 

Squareness error of Z related to X 

C
-a

x
is

 

 EXOC 

EYOC 

EA(OY)C 

EB(OX)C 

ECOC 

Position error of C in the direction of X 

Position error of C in the direction of Y 

Orientation error of C in the direction of A (squareness of C to Y) 

Orientation error of C in the direction of B (squareness of C to X) 

Zero position error of C 

 

2.1.5.2 Actual machine tools with errors 

Among various machine tools, five-axis machines are more popular because of providing the 

necessary movements and producing complicated parts. In general, five-axis machines have three 

prismatic and two rotary axes, which can be variously sequenced considering their specific 

application. Figure 2.6 illustrates the kinematic of two types of five-axis machine tools. 

 

Figure 2.6. Kinematic of two five-axis machine tools with topologies of CBXFZY, CAYFXZ.  

Everett et al. (Everett, 1988) propose a zero-order minimal model to explain the errors. They 

introduce N as the minimum essential number of properties for a kinematic chain from base to the 

end-effector frame obtained as, 
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N = 4R + 2P + 6                                                                                                                          (1) 

where, R and P refer to the number of rotary and translation axes, respectively. The coefficient of 

P becomes two in this model because the prismatic joint is as a vector without a specific origin 

where the orientation of the actual axis is adjusted to the nominal one by two angle corrections. 

The first term's coefficient in Eq. (1) becomes four because the rotary axis is defined as a vector 

with a specific origin. Hence, to bring the actual axis to the nominal one, two angle corrections and 

two displacement corrections are needed. The third term in Eq. (1) is the tool orientation and 

displacement. In 1991, Mooring et al. (Mooring, 1991) proposed another equation close to the 

former model. The only difference between the two models is the third term in Eq. (1). The latest 

minimum model expresses that depending on the type of operation of the tool in machines, five 

degrees of freedom can be considered instead of six for the tool errors. So, the tool's orientation 

around its axis can be ignored, and the third term becomes 5 instead of 6 (Freeman, 2016).  

Based on the first theory, there are 20 independent parameters for a five-axis machine. Thus, by 

considering 6 parameters for the workpiece branch and 6 parameters for the tool branch, 8 

parameters remain which can refer to the link errors. However, this number is decreased to 7 in 

latest model (Zargarbashi & Mayer, 2009).   

2.2 Error measurement  

Typically, there are two methods for measuring the geometric errors called direct and indirect 

measurement. A suitable measuring technique is selected depending on the type of errors and the 

relevant parameters to be estimated. 

Direct measurement refers to an approach resulting in analyzing the errors directly. It is an 

applicable method for measuring a single error of a specific axis in the machine tool without 

considering other axes errors. Direct measurement can be material-based and laser-based. The 

material-based method utilizes such artefacts as straightedges, line scales, step gauges, and 

multidimensional artefacts, which have been recently used (Weckenmann A, 2005). Laser-based 

measurement is a common approach to identify individual errors like positioning errors, 

straightness, and angular errors (Schwenke et al., 2008). This technique uses waves’ interference 

in the laser to calculate the distance between the reference and measurement object. The Michelson 
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interferometer principle is splitting a monochromatic light source into two beams using a half-

silvered mirror (Loughridge & Abramovitch, 2013). Li et al. (Z. Li, Yang, Fan, & Zhang, 2014) 

applied laser measurement to calculate 18 error parameters and the electronic level to measure 

three roll errors of the translational axes in a three-axis machine. Due to its high precision and long 

coherence length, it is an appropriate choice in characterizing the accuracy and the repeatability of 

the machine tools. However, the interferometer can be affected by environmental conditions like 

thermal, surrounding air, and relative humidity variation. Laser wavelength, which is considered 

as the reference, can vary by the surroundings (Castro, 2008). A precise initial setup is essential to 

avoid any misalignment between the laser beam and the measured axis. Figure 2.7 shows the 

measurement procedure by a laser with a retroreflector. 

 

 

Figure 2.7. Laser interferometer measurement. 

 

The indirect method relies on simultaneously measuring multiple positions or multiple axes in the 

machine tool's working volume. Some indirect tests are R-test (Bryan J, 1967; Hong, Ibaraki, & 

Oyama, 2012), ball-bar tests (Abbaszadeh-Mir, Mayer, Cloutier, & Fortin, 2002; Bryan, 1982a, 

1982b; Kato, Masaomi., & Sato, 2013; M. Esmaeili & Mayer, 2020; Yang & Ding, 2016) and 

calibrated or non-calibrated artefacts. The indirect method can also use the advantages of the laser 

sequential diagonal measurement techniques demonstrated by Wang (C. Wang, 2000) and Liotto 

(Liotto & C.P., 1997) to calculate volumetric errors. This technique incorporated with Laser 

Doppler Displacement Meter (LDDM) allows finding positioning volumetric errors with a single 
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beam, single aperture, and a flat mirror as the target. LaserTRACER and laser trackers are laser 

interferometry methods to indirectly calibrate the machine tool. LaserTRACER measures the 

distances between the retro-reflector target installed at the tool tip and the reference sphere in the 

LaserTRACER. A linearized set of equations obtained from multiple setups measurements are then 

solved by a Gaussian fit (Härtig et al., 2009) to calculate machine geometric errors. The error 

motions of rotary axes can be also measured by LaserTRACER (Schwenke, Schmitt, Jatzkowski, 

& Warmann, 2009). Zha et al. (Zha, Wang, Li, & Chen, 2020) validated LaserTRACER calibration 

results with a conventional laser interferometer in a three-axis machine tool. The effect of the 

ambient temperature on LaserTRACER geometric errors estimation results was studied by Groos 

et al. (Groos et al., 2020). They concluded that in comparison with straightness and rotational 

errors, linear axes’ positioning and squareness errors are more affected by the temperature 

variation. The principle of Laser trackers is using two angles and a distance resulting in measuring 

the spherical coordinate for each position. Using multiple setups during calibration increases the 

estimation results accuracy (Schwenke, Franke, & Hannaford, 2005).   

Calibrated or non-calibrated artefacts such as one, two or three-dimensional ones are the other 

indirect calibration methods composing a plate and several balls variously distributed on the plate 

(Bringmann, Küng, & Knapp, 2005; G. X. Zhang & Zang, 1991). Those artefacts are probed in 

different positions and provide sufficient information while simultaneously moving linear and 

rotary axes (Bringmann et al., 2005). Bi et al. (Bi et al., 2015) probed a cubic element to identify 

geometric errors of the rotary axes in a five-axis machine. Measuring the linear displacement 

between the tool and the workpiece is carried out by radial test (R-test). This technique uses at least 

three linear displacement sensors installed on a precision artefact. The sensors read against a 

reference sphere and measure the displacements (Bryan J, 1967). Hong et al. (Hong et al., 2012) 

used R-test to measure three-dimensional trajectories and calculate the rotary axes motion errors. 

Yang and Ding (Yang & Ding, 2016) ran a ball-bar test with different setups on a five-axis machine 

tool. Afterwards, by establishing the differential motion matrices, they estimated position-

independent geometric errors.  

René Mayer (Mayer, 2012) proposed SAMBA (scale and master ball artefact) in which several 

master balls and a scale bar were probed. The software of the method contains the homogeneous 

transformation matrix (HTM) to estimate the error parameters. HTM is a four-by-four matrix used 
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in the indirect methods to model the erroneous kinematic of a machine. A rigidity assumption 

between the axes joints (prismatic or rotary joints) is considered (Srivastava, Veldhuis, & 

Elbestawlt, 1995). Bringmann and Knapp (Bringmann & Knapp, 2006) proposed an artefact calling 

chase the ball in which one master ball was probed by a strategy to measure the machine tool errors. 

Reconfigurable uncalibrated master ball artefact (RUMBA) has been introduced by René Mayer 

(Mayer, 2012). It contains several master balls which are probed during simultaneous movement 

of the axes. The differences between the methods containing the masterballs are the models' ability 

to estimate a certain number of error parameters. The artefact containing masterballs is subject to 

have a certain number of masterballs and an optimized measurement strategy done by Mchichi and 

Mayer (McHichi & Mayer, 2019). The error model concept has been introduced and used by some 

researchers while estimating the maximum possible machine error parameters (Abbaszadeh-Mir et 

al., 2002; Mayer, 2012; McHichi & Mayer, 2014; M. M. Rahman & Mayer, 2015). The error model 

is an optimized model of all possible errors in a machine tool in which the reliability of the model 

has been considered during error estimation. The reliability is determined by applying the SVD on 

the Jacobian of the error parameters (Abbaszadeh-Mir et al., 2002).  

2.3 Concept of rigid and Non-rigid body behavior  

Rigid-body and non-rigid body behavior are common techniques considered to model a machine 

tool while estimating the errors. According to the type of machine, one of them may be appropriate. 

In general, the rigid body approach relies on the independence of the prismatic axes' angular 

deviation from the relative position of the machine's other components. Non-rigid body modeling 

is applicable especially for heavy machine tools with cross-table configuration. Due to the possible 

deformation of the guideway, the impact of the machine tool components' relative position on the 

angular error of the linear motions cannot be neglected in this approach. So, every deviation in one 

axis is affected by the other axes. Hence, offset from the measuring point to the destination point 

must be considered. In 1992, Wang (S.M. Wang, 1992) presented non-rigid modeling to 

compensate the volumetric errors in any arbitrary multi-axis machine. The method is based on 

FEM wherein; by using a linear order shape function, precise interpolated values are achieved in 

sample points(S.M. Wang, 1992). 
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2.4 Error compensation 

Compensation is an approach for eliminating errors or the effect of the errors by a virtual equal and 

opposite error. However, due to uncertainty in the mechanical chain, the errors cannot be entirely 

deleted. Error correction plays an essential role in the industry wherein to have an accurate part, 

the approximate costs significantly grow.  

Error compensation can be done mechanically or numerically. Changing and repairing the parts, 

which generate the errors are the techniques for mechanically compensating the errors. Having 

been time and money consuming on one hand and having the necessity for calibration after 

mechanical compensation, on the other hand, motivated the industry to pay attention to the 

numerical approaches. Later approaches are helpful for minor deviations and enhance machine 

accuracy.  

Nevertheless, the numerical correction may have its limitations. Due to considering the axes' 

additional movement to compensate the errors, which are nominally supposed to be fixed, the 

finished surface may not be obtained. Especially, if this movement is combined with the hysteresis, 

it may cause some discrepancies. Nonetheless, for the present generation of controllers, this can be 

neglected. In the following sub-sections, types of numerical correction are discussed. 

2.4.1 First part inspection 

It is a method whereby the first machined part is entirely inspected by an independent machine 

such as a coordinate measurement machine (CMM) and the errors are calculated. Then, the tool 

path is adjusted concerning the measured error. This approach has high reliability due to 

considering the effects of all error sources on the machined part. However, it is not very useful 

when there is flexible manufacturing (LO & HSIAO, 1998). 

2.4.2 Probing after machining  

This method is also called In-cycle inspection in some references. Predicting machine errors can 

be done after the part is machined and before moving it. After the part is machined, the process is 

stopped and the touch probe replaces the tool to measure it and the machine tool acts like a CMM 

in this case. Thus, the measuring is performed by the same set-up to increase the accuracy of the 

error prediction. The probe radius and probe pre-travel could hurt the estimation of the deviations. 
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However, by combining the HTM and the present method, the error approximation can be 

improved in vertical machining (M.-W. Cho, Seo, & Kwon, 2003; M. W. Cho & Seo, 2002).  

2.4.3 G-code correction 

“It involves modifying the original G-code offline to produce an ephemeral G-code.” (Givi & 

Mayer, 2014). Thus, the measurement is done by offline methods, then the HTM is constructed, 

and the new G-code is built concerning the corrections and finally, commands are up-to-date. It is 

a practical approach for volumetric error compensation to reduce the deviations. The 

compensability is claimed 90% (Givi & Mayer, 2014) for a five-axis machine tool under the test. 

This kind of compensation may be time-consuming while the production frequently varies.  

2.4.4 On-line compensation 

On-line or real-time compensation is a technique that deals with the actual values wherein the 

workpiece errors are measured during the actual machining process. It is then fed forward by 

writing them directly on the current position without any interruption to the process itself. Thus, 

reading and writing commands must be accessible in the NC. Although it offers an overall solution 

for absolute improvement in machining quality, it is not applicable in most machining operations, 

and due to lack of dedicated probes on the machine tool, most compensation studies are limited to 

identify thermal errors and partially cutting force-induced errors (Zhan‐Qiang, Venuvinod, & 

Ostafiev, 1998). By installing temperature sensors in particular locations during the machining 

process, the thermally induced errors are measured. This approach's accuracy highly depends on 

carefully recognizing the optimal location of the sensors, such as thermocouples. Although, some 

trial-and-error processes may be necessary (Chen, Chang, Hung, Lee, & Wang, 2016). Figure 2.8 

shows two setups for thermocouple for temperature distribution in two different machine tools. 

Due to the on-line compensation's random nature, the error model is usually approximated with the 

neural network. Generally, the neural network is an algorithm that consists of an input layer of 

neurons, hidden layers, and output layers (Prakash Vinoda, 2014). A simplified error model was 

proposed by Kang et al (Kang, Chang, Huang, Hsu, & Nieh, 2007), to optimize the process using 

the limited data.   
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             a.                                                                    b. 

Figure 2.8. Thermocouple setup for temperature distribution analysis in two different machine 

tools a. (Kang et al., 2007)  b. (Chen et al., 2016) 

2.4.5 Table-based error compensation  

Controllers are equipped with several predefined compensation tables whereby the associated 

parameters can be modified to ameliorate the machining quality towards making more precise 

parts. Also, a general compensation facility is provided in some controllers for the users for 

generating complex lookup tables that are not predefined in the controller. In the table-based error 

compensation method, the controller uses the table entries to compensate the input commands 

directly without interruption in the feedback loop resulting in saving time and increasing the 

precision.   

2.4.5.1 Standard – ISO/TR 16907 

ISO/TR 16907 (ISO/TR16907, 2015) has classified typical geometric error compensation for 

conventional machine tools with up to six axes, two or three linear axes, and up to three rotary 

axes. The classification clarifies the type of geometric errors to be compensated. Some examples 

are positioning, straightness, squareness error, and angular error motions. 



18 

 

 

Based on ISO/TR 16907 (ISO/TR16907, 2015), some of the compensation facilities are for 

compensating the translational volumetric error effects such as L-POS (compensation for 

positioning errors of linear axes along specific lines), L-STR (compensation for straightness errors 

of linear axes along specific lines), L-SQR (compensation for squareness error between axes of 

linear motion at specific lines), L-ANG (compensation for the angular error motions of linear axes 

on 3-D position of functional point in the working volume) and L-VOL ( volumetric compensation 

of linear axes) while some of the others are for compensating the angular volumetric error effects 

such as R-RAX (compensation for radial and axial error motion of the rotary axes), FOR (physical 

compensation for errors in functional orientation) and R-ANG (compensation for position and 

orientation errors of the rotary axes). Based on ISO/TR 16907 (ISO/TR16907, 2015), there are also 

some compensation types by which the volumetric error effect can be compensated, like L-VOL+ 

(volumetric compensation of linear axes including functional orientation), which includes L-VOL 

and FOR.  

The grid compensation table structure is explained in ISO/TR 16907 (ISO/TR16907, 2015), where 

the spatial grid compensation tables for the linear axes and the rotary axes are separately presented. 

The spatial compensation grid for linear axes contains the sampling points for each linear axis and 

three-dimensional positioning or angular errors or their relative compensation values. Figure 2.9 

illustrates a spatial grid structure for linear axes. Similarly, to generate the spatial grid 

compensation tables for the rotary axes, sampling points for each rotary axis and three-dimensional 

linear and angular errors or their relative compensation values are required.  
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Figure 2.9. A spatial grid structure for linear axes (ISO/TR16907, 2015). 

2.4.5.2 Control parameter modification  

Each type of controller may contain a series of compensation facilities for compensating 

positioning, backlash, straightness, and thermal errors ("Fanuc Controller," Series 30i/Model A; 

"Siemens Controller," SINUMERIK 840D/840Di/810D Extended Functions). Those facilities are 

like simple lookup tables embedded for individual error parameter compensation. However, the 

general effect of compensation will indirectly impact the relative tool tip position to the workpiece 

position. 

Another control parameter modification is three-dimensional error compensation embedded in 

Fanuc controller ("Fanuc Controller," Series 30i/Model A). Three-dimensional error compensation 

for the linear axes is a lookup table allowing the users to compensate translational volumetric 

errors. This type of compensation directly affects the tooltip linear position. It is a spatial error 

compensation wherein the table is constructed based on a mesh grid on the machine joint space. 

Three compensation values for the translational axes of X, Y, and Z are assigned to each 3D mesh 

grid node. By enabling the generated table, the controller uses the trilinear interpolation on the 

table entries when a G-code command is entered ("Fanuc Controller," Series 30i/Model A). Figure 

2.10 shows the three-dimensional error compensation screen of Fanuc controller.  

Fagor controller ("Fagor Controller, 8070 / 8065 CNC "), has a 3D error compensation table 

solution for Cartesian volumetric error compensation for CNC machine tools. Fagor controller 
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proposes an integrated calibration and compensation method called “Volumetric Compensation” 

to generate this table. Hence, a cloud of points on the Cartesian volume is defined, and the errors 

in each position are measured. The measured errors are then entered into the table.  

 

Figure 2.10. Three-dimensional error compensation screen of Fanuc controller ("Fanuc 

Controller," Series 30i/Model A).  

2.4.5.3 General compensation facilities 

The previous table-based compensation methods were limited to the tables already existed in the 

controllers, while the general compensation facility lets the users arrange the complex 

compensation tables based on their need. Those lookup tables can be also used for compensating 

volumetric errors (translational and angular errors) wherein the compensation is automatic. Hence, 

the user generates the tables based on the rules and the language of the specific controller under 

test. Summation and multiplication functionalities can be used in generating the tables. These tables 

can have different input and output axes. The input axis is an axis on which the table function is 

based, and the output axis is the one on which the table will be applied. By enabling the controllers' 

tables, the controller performs linear interpolation on the table entries while entering a G-code 

command. Figure 2.11 illustrates a table function graph, the linear interpolation concept, and the 



21 

 

 

required criteria in generating a table ("Siemens Controller," SINUMERIK 840D/840Di/810D 

Extended Functions).  

 

Figure 2.11. Linear interpolation between the interpolation points ("Siemens Controller," 

SINUMERIK 840D/840Di/810D Extended Functions). 

ISO/TR 16907 does not specifically explain the combinatory tables or the required table functions 

(ISO/TR16907, 2015). However, an industrial table-based package like VCS was developed by 

Siemens (AG, 2010) for volumetric error compensation. The laserTRCAER is used for 21 machine 

tool error measurements, followed by calculating the tool tip's volumetric error. The NC program, 

including the tables, is then provided for the controller (AG, 2010). Similarly, KinematicsComp 

provides volumetric compensation in Heidenhain Controller ("Heidenhain Controller: iTNC 530 

"), and “Extended Screw Compensation” is offered by Fidia controller ("Fidia Controller: C10 - 

C20 - C20 Vision,") to compensate for 21 machine error parameters. Fidia controller has offered 

another compensation feature calling “Volumetric Axes Compensation”. By combining VAC and 

rotary axes error compensation, maximum accuracy for all linear and rotary axes errors is achieved 

("Fidia Controller: C10 - C20 - C20 Vision,").  

Recent researches tend towards using these kinds of tables. Creamer et al. (Jennifer Creamer et al., 

2016) proposed 25 tables, five tables per axis, in producing the complex tables. Summation 

functionalities have been utilized in generating those tables. They claimed their methodology in 
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developing the tables fulfills compensating the volumetric errors in the five-axis machine tool 

under the test. Later, they studied generating the optimal set of tables for the machine tool under 

the test. Their study is beneficial where the numbers of the tables are limited (J. Creamer, Bristow, 

& Landers, 2017). The multiplication functionalities were also used to develop the LUTs in a five-

axis gantry machine. The volumetric error compensation was studied without considering inter- 

and intra-axis error parameters sources (J. Li, Mei, Shuai, Liu, & Liu, 2019). 

A complex table includes one to several simple tables. The input to each simple table is an axis 

joint command, and the output is the associated correction to the output axis. Based on ISO/TR 

16907 ("ISO/TR 16907. Technical report: Machine tools - Numerical compensation of geometric 

errors, 2015,"), identifying the nominal position, the direction to be compensated, the input, and 

the output axis must be defined while generating the lookup tables. Noted that the rules in 

developing the tables may vary from one controller to the other, which may affect the number of 

the tables required for compensating specific types of machine error parameters. For instance, the 

function that allows the users to generate these complex tables in Siemens controller is called 

Interpolatory compensation ("Siemens Controller," SINUMERIK 840D/840Di/810D Extended 

Functions). Some rules of the LUTs above are, 

1. There are one input axis and one output axis as per each table. The input and output axes 

might be any mechanical axis of the machine tool. They are defined in the NC code by the 

syntaxes of $AN_CEC_INPUT_AXIS and $AN_CEC_OUTPUT_AXIS. 

2. The table function can be anything but just one input axis-dependent. 

3. The tables can be summed up or multiplied to each other by previously defining them in 

the NC program by the syntax $AN_CEC_MULT_BY_TABLE. If the syntax is equal to 0, 

no multiplication is applied, and the table is added to the others who have the same output 

axis. If the syntax is not 0, the table is multiplied by the table whose table number is equal 

to this syntax. 

4. One table can be multiplied by several tables as long as the output axes are the same. 

5. Each table can possess one weight which is constant for that table. 
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6. The user may define a table to be applied on a specific range of stroke length of the machine 

by considering the minimum and the maximum coverage with syntax $AN_CEC_MIN and 

$AN_CEC_MAX. 

7. The tables entries' numbers are defined by the step value chosen for a range of stroke length 

with syntax $AN_CEC_STEP. 

8. The LUT may be activated in a positive or negative direction or both. This option is 

essential where there is a backlash, and so the values in the positive direction might be 

different from the negative one with syntax $AN_CEC_DIRECTION. 

9. There is an option called modulo function for compensating the rotary axes, which lets the 

user expect the table to be still applicable when the rotation is more than 360°. The 

associated syntax is $AN_CEC_IS_MODULO. 

A simple NC code is illustrated in Figure 2.12 where table 1 is multiplied by table 2. The number 

of the table entries for the first and second tables are 10 and 15, respectively. The input axes for 

the first and second tables are Z- and Y-axis, respectively, and the output axis for both of them is 

X-axis. By entering any axis joint command of X and Y, the two tables' outputs are multiplied 

together. 
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Figure 2.12. NC code for a sample of table multiplication.  
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 ORGANIZATION OF THE WORK 

This chapter presents the general organization of the work. Four main research articles have been 

proposed to achieve the project's objectives and answer the research questions. The researches 

contain table-based translational and volumetric error compensation. All the experimental tests 

have been done on five-axis machine tools. Among various types of NC facilities that existed in 

the controllers for precision enhancement, the author has focused on two types of lookup tables 

that existed in Fanuc and Siemens controllers. 

Chapter 4 includes the first article entitled “Generation of a 3D error compensation grid from ISO 

230-1 error parameters obtained by a SAMBA indirect calibration and validated by a ball-bar 

spherical test”. It was published in the International Journal of Advanced Manufacturing 

Technology. This paper answers the question “Which criteria indicate machine tool error 

compensation?”. The paper proposes generating a three-dimensional error compensation table 

wherein the mesh grid nodes' numbers have been optimized. The table can compensate translational 

volumetric errors and not the angular volumetric errors. The experiments were run on a five-axis 

machine tool called HU40 and SAMBA indirect method is used to calibrate the machine. Two error 

models were developed, each containing a certain number of machine error parameters. A ball-bar 

spherical test including several meridians and an equator movement was designed to validate the 

compensation method. Two pseudo three-dimensional compensation tables were generated based 

on the two error models' error parameters. The ball-bar test was run three times, the first of which 

there was no use of the table and the second and the third of which the pseudo tables were used to 

compensate the joint positions located on the meridians and equator. The effectiveness of the table 

for the target machine tool was over 82%. 

Chapter 5 includes the second article entitled “Five-axis machine tool volumetric and geometric 

error reduction by indirect geometric calibration and lookup tables”. It was published in the Journal 

of Manufacturing Science and Engineering. This paper proposes compensating volumetric error 

compensation using complex tables, interpolatory tables. This article focuses on using summation 

functionalities in generating such tables. The experiments were run on a five-axis machine tool 

called Kolibri. The indirect RUMBA method was used to calibrate the machine tool. 25 pseudo 

tables, five tables per axis, were developed to compensate two error models error parameters and 
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volumetric errors. Chase-the-ball was used for validation purposes. The data of chase-the-ball was 

processed two times, before and after applying for the compensation. For after compensation, the 

data were treated using generated 25 pseudo tables. The results showed a good improvement for 

the geometric and volumetric errors but not perfect. 

Because using just summation functionalities in generating the tables did not provide a perfect 

compensation, the idea of using the multiplication and summation functionalities was developed 

in the third article presented in chapter 6. This paper was entitled “Trigonometrically enriched 

weighted lookup tables - a combinatorial scheme for accuracy improvement of a five axis machine 

tool” submitted to the International Journal of Machine Tools and Manufacture. The paper proposes 

23Trigo-T consisting of the terms present in the Jacobian and the inverse Jacobian of command. 

Comparing the kinematic-based, 25 and 23 tables compensation results answers the question “How 

to optimize and predict joint correction?”. The table entries for 25 tables were calculated using 

iterative method, and for 23 tables, they were calculated using a classic optimization method. The 

results show that adding multiplication functionalities and the trigonometric terms in generating 

the tables improves the table-based compensation model while bringing the model closer to the 

kinematic-based error compensation. Also, the scheme is simulated on a non-orthogonal machine 

with excellent results supporting the potential generality of this work. 

The idea of the fourth article came from the results of the third article. It answers the questions of 

“What is the relationship between the geometric errors and the command corrections required for 

volumetric error compensation?”, “How to build compensation tables to mimic the kinematic-

based error compensation?” and “How many tables are required to fully compensate the errors?”. 

Chapter 7 includes the fourth article entitled “CNC table based compensation of inter-axis and 

linear axis scale gain errors for a five-axis machine tool from symbolic variational kinematics”. It 

was submitted to the CIRP Journal of Manufacturing Science and Technology. The forward inverse 

kinematics LUTs scheme (FIK-LUT) was developed in this paper, where the direct relationship 

between the geometric errors and the required joint corrections for the target machine tool was 

achieved. Summation and multiplication functionalities were used in generating such complex 

tables. The target machine was a non-perpendicular five-axis machine tool calling Huron. The 

results show that the exact model, consisting of 40 tables, can mimic the kinematic-based error 
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compensation and compensate the 13 error parameters in a 13-error model. FIK-LUT compensated 

over 79% of the mean estimated volumetric error. Figure 3.1 highlights the articles’ structure.  

 

 

 

Figure 3.1. Thesis organization.



28 

 

 ARTICLE 1: GENERATION OF A 3D ERROR 

COMPENSATION GRID FROM ISO 230-1 ERROR PARAMETERS 

OBTAINED BY A SAMBA INDIRECT CALIBRATION AND 

VALIDATED BY A BALL-BAR SPHERICAL TEST 

Sareh M. Esmaeili*, J.R.R. Mayer 

*Email: sareh.esmaeili-marzdashti@polymtl.ca *Tel.: +15143404711 Ext.: 2292, *Fax: (514) 

340-5170 

*Address: Department of Mechanical Engineering, École Polytechnique (Montréal), P.O. Box 6079, 

Station Downtown, H3C 3A7 Montréal, QC, Canada  

NOTE: Based on the paper published in the International Journal of Advanced Manufacturing 

Technology: volume 106, pages 4649–4662(2020) 

4.1 Abstract 

Tool path deviation reduces machined parts quality. To enhance machine tool accuracy, 

compensation tables are provided in most controllers to automatically apply small corrections to 

axis commands. A model-based approach, considering the ISO 230-1 machine geometric error 

parameters, is proposed to generate the table entries. The error parameters are estimated using 

model-based indirect calibration results from a scale and master balls artefact probing (SAMBA) 

test. Two models are used, one with primarily the axis alignment errors and scale errors and the 

other including many error motions. The 3D grid error compensation is generated with a minimal 

optimum mesh grid dimension to achieve a preset precision considering the estimated model error 

parameters. The efficiency of the table is evaluated using a 3D ball-bar test consisting of various 

circular trajectories along several meridians and the equator before and after applying the table-

based error compensation. It is shown that the volumetric errors due to out-of-squareness errors 

and linear axis linear positioning errors can be compensated using a 2x2x2, 8 nodes, grid. However, 

when including error motions the optimum grid dimension depends on the specific error values of 

the machine.  For the tested machine, a 19x19x19 for 6859 nodes grid was required, with which 

the out-of-sphericity of the tool trajectory relative to the workpiece frame is improved by over 82%. 

mailto:sareh.esmaeili-marzdashti@polymtl.ca
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Cartesian volumetric error 

4.2 Introduction  

Machine tools impart a trajectory to a cutting tool relative to a workpiece. Any error in the path 

actually followed by the tool is likely to affect the quality of the machined part. Trajectory errors 

originate from the numerical control, the servo-drives, thermal deformation and geometric errors 

to name a few. Geometric errors are the focus of this paper. Different methods have been developed 

to reduce the effect of geometric errors through compensation such as cutter location file 

compensation, G-code compensation and direct axis command compensation either through 

inverse kinematics calculation or through table-based compensation. Koliskor (Koliskor, 1971) 

proposed an early error compensation technique wherein he corrected the tool path trajectory, by 

G-code compensation, for subsequently machined parts by applying a post-machining inspection 

of previously machined parts. Cartesian volumetric error compensation was applied by Lee et al. 

(Eung-Suk, Suk-Hwan, & Jin-Wook, 1998) wherein the tool tip position was corrected using the 

homogeneous transformation matrix (HTMs) followed by the G-code modification. Mahbubur et 

al. (R. M. Mahbubur, J. Heikkala, K. Lappalainen, & J. A. Karjalainen, 1997) proposed to alter the 

CL-data to modify the tool path trajectory so that the nominal G-code generation process yields a 

corrected tool path when ran on the erroneous machine. Nojdeh et al. (Vahebi Nojedeh, Habibi, & 

Arezoo, 2011) applied laser interferometry measurements to directly measure the 21 error 

parameters for a three-axis machine tool. They estimated the volumetric error at the tool tip using 

the forward kinematics. Then, using the reverse kinematics, they developed an NC program editor 

which uses the inverse kinematics to provide axis command corrections and generate a corrected 

G-code. G-code correction for a five-axis machine tool error compensation was proposed by Givi 

and Mayer (Givi & Mayer, 2014). They calculated the volumetric error of the tool in the desired 

cutter location (DCL) frame and then used the control Jacobian to calculate the axis command 

corrections needed to compensate this volumetric error. Zhu et al. (Zhu et al., 2012) estimated 27 

machine error parameters including 21 geometric errors for the linear axes and 6 angular geometric 

error parameters for the rotary axes followed by error compensation using the inverse kinematics 

and then NC code modification. Xiang et al. (Xiang & Altintas, 2016) measured 30 intra-axis errors 

and 11 inter-axis errors of a five-axis machine using laser interferometry and ball-bar 
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measurements. The volumetric errors due to those components errors were then calculated at the 

tooltip for the erroneous machine tool and then compensated, all using screw theory. Cui et al. 

(Cui, Lu, Li, Gao, & Yao, 2012) introduced a geometric error compensation interface in which 

they used the inverse kinematics to reconstruct NC program for the purpose of error compensation. 

The G-code modification provided the compensated G-code for positioning, linear and circular 

movements.  

Khan et al. (Khan & Chen, 2010) proposed the error compensation algorithm using the inverse 

kinematics by which they could find the corrected joint positions in a five-axis machine tool 

followed by correcting the G-code. They validated their technique by measuring the typical 

standard machined workpieces. Lei et al. (Lei & Hsu, 2003a) developed a methodology using 3D 

probe-ball and spherical test to estimate link errors. They also proposed a real-time model-based 

volumetric error compensation method for a five-axis machine tool using the inverse kinematics 

for any tool pose. 

Machine tool controllers are equipped with compensation lookup tables. Some of the tables are 

predefined for specific purposes such as straightness errors, positioning errors, backlashes, 

squareness error compensation and so on ("Fanuc Controller," Series 30i/Model A; "Siemens 

Controller," SINUMERIK 840D/840Di/810D Extended Functions) and their values can be 

modified by the user. They are offered as simple and complex tables. The latter can be generated 

by combining the simple tables with multiplication or weighted summations. Some controllers 

provide spatial compensation grid tables which may be separately generated for linear axes and rotary 

axes (ISO/TR16907, 2015). The predefined lookup tables are mostly simple tables for correcting 

specific geometric error sources. As an example, the Sinumerik 840D controller proposes a 

volumetric compensation system (VCS) package. It provides the user the ability of error 

measurement, the error compensation data evaluation and finally the error compensation table 

generation. The tables are then transmitted to the NC program for volumetric error compensation 

(AG, 2010).  

Most previous works (Cui et al., 2012; Eung-Suk et al., 1998; Givi & Mayer, 2014; Khan & Chen, 

2010; Koliskor, 1971; R. M. Mahbubur et al., 1997; Vahebi Nojedeh et al., 2011; Xiang & Altintas, 

2016; Zhu et al., 2012) focused on compensating the errors using kinematics-based error 

compensation. However, Creamer et al. (Jennifer Creamer et al., 2016) proposed two models, a 
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kinematics-based and a table-inspired one to generate a total of 25 compensation lookup tables. 

Each axis compensation is the sum of five tables output, one table per axis. The initial data are 

coordinate readings of a tool tip, an optical target, at random locations taken by a laser tracker. The 

kinematic model has six geometric errors, modeled as Chebyshev polynomials after each nominal 

axis moves similar to Mir et al. (Y. A. Mir, Mayer, & Fortin, 2005) but using small error 

approximated matrices. The two error models are used to generate optimized compensation table 

values via Chebyshev polynomial regression. Creamer et al. (J. Creamer et al., 2017) proposed an 

artificial intelligence approach to select an optimal set of combination of compensation tables. They 

performed their approach while limiting the number of tables to six instead of 25 for a five-axis 

machine tool. 

One widely available compensation scheme in CNC to reduce Cartesian volumetric error is a 3-

dimensional (3D) grid error compensation table (ISO/TR16907, 2015). The machine user is 

responsible for generating the table but the CNC performs the compensation automatically. 3D grid 

tables contain sets of compensation values corresponding to sets of linear axes positions. The 

compensation values are added to the commanded linear axes positions, to bring the tool to the 

desired position. For commanded positions not located at the mesh grid nodes, the corrections are 

interpolated. Since the resolution of the tables may be limited in some controllers, a method to 

obtain the minimal mesh grid dimension for 3D grid table is needed in order to compensate the 

machine errors. The mesh grid dimension becomes important when the machine errors have 

nonlinear behaviour. The primary contribution of this paper is proposing a novel methodology in 

using two error modeling framework for automatically generating the table entries from indirectly 

measured ISO 230-1 inter- and intra-axis error parameters. The second contribution of the paper is 

selecting the optimal mesh grid dimension in producing the 3D grid table. The compensation-table 

generating algorithm for each error model is presented and experimental evaluation of both 

methods are obtained and compared. The paper is organized as follows; in section 4.3, the 

kinematic model of the tested machine tool is introduced. Section 4.4 describes the mathematics of 

volumetric error calculations. Section 4.5 explains the process of determining values for the table 

and identifying its input and output. In section 4.6, the experimental case study is explained 

including calibration test and error compensation validation. The results are presented and 

discussed in section 4.7. Finally, the conclusion follows in Section 4.8. 
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4.3 Machine modeling  

4.3.1 Machine configuration 

Figure 4.1 shows a five-axis machine tool with topology wCBXFZYSt including three prismatic 

axes (X, Y and Z), two rotary axes (B and C) and a spindle (S) with stroke lengths of 610, 560 and 

560 mm in the X, Y and Z directions, respectively. The workpiece branch consists of the X-, B- 

and C-axis and the tool branch consists of the Z- and Y-axis and the spindle. The foundation frame 

called F has its origin on the B-axis so that the x axis of the F frame hits the C-axis. The alignment 

of the F-frame is defined by the X- and Z-axis as primary and secondary axes respectively. The B-

, C- and spindle axes are nominally parallel to Y-, Z- and again Z-axis, respectively. The w, S and 

t letters represent the workpiece, the spindle and the tool, respectively. 

 

 

Figure 4.1. Machine tool kinematics with topology wCBXFZYSt. 
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4.3.2 Kinematic model  

A machine tool can be seen as an open kinematic chain from workpiece to tool. Under the 

assumption of rigid body behaviour, the arbitrary transformation matrix between the pose of frame 

i relative to frame j is given by, 

3 3 3 1

1 30 1

j

i

R P 



 
=  
 

T  (1) 

where 3 3R   and 3 1P   are the rotation submatrix and the translation vector, respectively. In order to 

model the relative perfect movement of the tool relative to the workpiece, a series of homogeneous 

transformation matrices are multiplied in sequence as, 
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where the first parenthesis denotes the kinematic chain of the workpiece branch showing the HTM 

of the workpiece to the foundation frame (F) and the second one denotes the HTM of the tool 

relative to the foundation frame. In the presence of geometric errors, the kinematics of the target 

machine tool is completed with HTMs containing errors as follows: 
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where X0 , Y0 , Z0 , B0 , C0 , wn , S and tn describe the nominal joint locations and X, Y, Z, B and 

C describe the nominal movement of each axis.  The actual joint locations before movement are  

X0′ , Y0′ , Z0′ , B0′ and , C0′  and  actual locations of the axes, workpiece and tool  are X ′, Y ′ , Z ′ , 

B ′, C ′ , wa , S ′  and ta .   

The geometric errors in a five-axis machine tool are classified into two groups: intra- and inter-

axis errors. In order to remove the redundancy between the two groups and provide a better 

estimation while calculating error parameters by indirect measurement methods, different error 

models are defined in which several intra- and inter-axis errors (M. M. Rahman & Mayer, 2015) 

participate. Those intra- and inter-axis errors are equivalent to the motion and link errors in ISO 
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230-1 (Zhu et al., 2012), respectively. Inter-axis (link) errors are defined as the errors of position 

and orientation between the average line of axes of movement and intra-axis (motion) errors are 

the motion imperfections of each individual mechanical axis (Schultschik, 1977). Two error 

models are studied, the first one is called the 13-error model. It requires the eight inter-axis error 

parameters of the five axes and two translation error parameters for the spindle axis apposition 

relative to the two main rotary axes of the machine. Finally, three intra-axis error modeling the  

scale gain errors of the positioning errors of the linear axes are included (Mayer, 2012). The other 

error model, called the 84-error model, includes many intra- and inter-axis errors and also the two 

angular positioning backlashes of the B- and C-axis. This model uses ordinary polynomials for 

modeling the error parameters (McHichi & Mayer, 2014). The 84-error model is made of the 

polynomials coefficients. The error coefficients and parameters relative to the two models are 

detailed in section 4.6, Table 4-2 and Table 4-3. 

To calibrate the machine tool, an indirect technique called SAMBA (Mayer, 2012) is applied. The 

SAMBA hardware is an artefact consisting of a variable number of master balls, typically four, and 

a fixed length scale bar which are probed following a specific strategy to cover the maximum 

working volume and the maximum rotation of the rotary axes in order to enable better estimation 

of the machine error parameters (McHichi & Mayer, 2014). The measurement data are then 

processed using the Newton-Gauss to estimate the best values for the unknown inter- and intra-

axis error parameters that match the measurements in a least square sense (Y. A. Mir et al., 2005). 

4.4 Volumetric error compensation 

A kinematics-based approach is used to calculate the axis command correction necessary to reduce 

the volumetric error. The volumetric errors are the relative linear and angular deviation of the tool 

to the workpiece calculated by, 

 , 1(( ( )) ( ))n a

n a

t w w w

Vt t tE twist q q−= T T  (4) 
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for command position q, where 
 ,t w

VtE   is the volumetric error twist expressed in the tool frame. 

The twist function extracts the three linear and three angular deviations from the tool relative to 

the workpiece HTM (4×4). q is, 

[ ]X Y Z B Cq q q q q q=  (5) 

where Xq , Yq , Zq , Bq  and Cq  are the components of the nominal command in X, Y, Z, B and C 

directions, respectively. As in (Givi & Mayer, 2014), assuming small angular volumetric errors, 

the necessary volumetric correction twist is given by,  

 ,t w

CV VtE E= −  (6) 

and 

 
T

CV XCV YCV ZCV ACV BCV CCVE E E E E E E=  (7) 

is the volumetric correction twist where ECVX, ECVY and ECVZ are its linear elements and, ECVA, ECVB 

and ECVC are its the angular elements. In order to calculate the axis command correction, the 

sensitivity matrix, Jq, is calculated which describes the linear relationship between differential 

changes in axis command correction and the volumetric error. Therefore, the relationship between 

CVE and the axes command correction, Compq , for each set of commands is given by,
 

†

Comp q CVq J E =  (8) 

where,   

 
T

Comp X Y Z A B Cq q q q q q q =        (9) 

†

qJ is the pseudo-inverse of Jq . A Gauss-Newton iterative method is applied for a numerically 

exact solution.  
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4.5 3D error compensation table - generation and interpolation 

4.5.1 Table generation 

The 3D table is a mesh grid, Figure 4.2, with its node coordinates corresponding to the mechanical 

axes nominal commands and each node is attributed an axis command correction vector. For 

commands not corresponding exactly to a grid node, an interpolation using surrounding nodes is 

conducted. The input values to the table are the nominal axis commands and the output are the axis 

command correction values to be added to the nominal commands to reduce the effect of machine 

tool errors. For this 3D grid table only the linear axes are considered.  

 

Figure 4.2. Schematic of a sample 3D mesh grid dimension. 

 

The 3D table mesh grid dimension may affect the compensation quality since the interpolation is 

applied linearly for the commands located in between the mesh grid nodes. This may also depend 

on the nature of the dominant error parameters, and whether their effects are proportional to axis 

commands or nonlinear. The objective is to obtain the optimal mesh grid dimension based on the 

specific machine error parameters’ values. Hence, an algorithm is used in Figure 4.4 in which the 

process of obtaining the minimal optimum mesh grid nodes is illustrated. This procedure uses, as 

inputs, the estimated machine error parameters and a set of random commands in the Cartesian 

working volume. 

The smallest mesh grid dimension is 2x2x2. A 1x1x1 mesh grid would apply the same correction 

to every nominal command set which is akin to a workpiece reference frame offset and is handled 

by other G-code functions. To generate a 3D table for a specific mesh grid dimension, the 

volumetric error at the nominal command associated with each mesh grid node is calculated by Eq. 

(4). A number is assigned to each mesh grid node which is then used as an entry in the 3D table. 
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Then, the compensated volumetric error is obtained by Eq. (6). Afterwards, the corresponded 

command correction is computed by Eq. (8). This process corresponds to the Conversion algorithm 

in Figure 4.4. Ultimately, the table is generated with the nominal mesh grid node numbers and their 

associated commands and the corresponding nominal commands corrections (Figure 4.3). 

 

Figure 4.3. The 3D mesh grid and the error compensation table. 

 

To decide on the optimality of the selected mesh grid dimension, the table is used for 2000 random 

commands ( 0 0)Xn Yn Znq q q , where the compensated command ( 0 0)XC YC ZCq q q  is 

calculated by adding the command correction ( 0 0)X Y Zq q q    achieved by applying the 

interpolation explained in section 4.5.2 to the nominal command ( 0 0Xn Yn Znq q q ), 

     0 0 0 0 0 0XC YC ZC Xn Yn Zn X Y Zq q q q q q q q q= +    . (10) 

 The remaining volumetric error, after using the 3D grid table, is recalculated by Eq. (4). Regarding 

the initial and also the optimal grid dimension, choosing this number as random commands seems 

to be reasonable. The number of mesh grid nodes are increased until the norm of the differences of 

the root mean square (RMS) of the Cartesian volumetric errors for the random commands in the 

considered working volume after numerically using the 3D grid table become less than a preset 

threshold of 10-4 mm. The preset threshold is introduced as the decision parameter for the simulated 

machine, which has no other errors than the modeled errors. So that,  

( ) ( 1) ( ( ) ( ))  VtK i VtK iif RMS E RMS E preset threshold−−  . (11) 
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where K can be substituted by X, Y and Z. ( )VtK iE is the volumetric error for step i and ( 1)VtK iE − for 

step (i − 1). The RMS of the volumetric error in the K direction ( VtKE ) is calculated by,  

2000
2

1

1
( ) ( )

2000
VtK VtKj

j

RMS E E
=

=  . (12) 

where j = 1 to 2000 for the 2000 random commands. 

 

Figure 4.4. Process of generating the table with optimal mesh grid dimension. 

 

Two simulated error models, the 84- and the 13-error models, are used for verifying the proposed 

method to generate the 3D grid table. This 84-error model uses cubic polynomials to model the 

error motion and so can model nonlinear errors while the 13-error model one contains errors having 

linear behaviour. As seen in Figure 4.5, the initial grid has a dimension 2x2x2 for 8 nodes. For a 

threshold of 10-4 mm and using a step of 1 for each grid dimension, e.g. 2x2x2, 3x3x3, 4x4x4, etc., 

the optimum 3D tables for the two simulated parameter and coefficient value sets of the 84-error 

model are shown in Figure 4.5. The dimension of the mesh grid that fulfils the preset threshold is 

different for the two simulated error sets. The optimum mesh grid dimension for the first simulated 
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84-error models error parameters’ set is 14×14×14, 2744 nodes, while for the second simulated 

error parameters’ set, the optimum mesh grid dimension is 19×19×19, 6859 nodes. Hence, 

depending on the specific error parameters values of the 84-error model, the optimum mesh grid 

dimension may vary. However, the grid dimension of 2x2x2 is appropriate for the simulated 

erroneous machine tool having 13 error parameters to reach to the predetermined threshold for 

2000 random commands. This may be due to the quasi-linear relationship between the effect of 

those errors and the nominal commands. The relevant errors are the out-of-squarenesses between 

the linear axes and the linear axes linear positioning errors.  

 

 

Figure 4.5. The norm of the Root Mean Square of the volumetric errors for the 2000 random 

commands in the stroke length of the machine while using the 3D grid table with different mesh 

grid dimension for the two simulated 13- and 84-error model parameters. 

4.5.2 Interpolation  

Because of the number of entries for the tables are limited, typically controllers interpolate for 

commands located between the mesh grid nodes. For instance, the mesh grid dimension in the 

Fanuc controller is 15625 or 25x25x25 for the X, Y and Z-axis ("Fanuc Controller," Series 

30i/Model A). Intermediate values are calculated using a multivariate trilinear interpolation 

("Fanuc Controller," Series 30i/Model A). Assuming P as the command needed to be compensated, 

the process can be simplified to perform the interpolation in an element forming a rectangular prism 

using the eight command corrections on the lattice points surrounding P (Figure 4.6).  
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Figure 4.6. Schematic of a rectangular prism for applying trilinear interpolation. 

 

Considering p1, p2, p3, p4, p5, p6, p7 and p8 as the rectangular prism corners, ratios rx, ry and rz 

are respectively calculated in the X, Y and Z directions by (Bourke, 1999),  

11 1
, ,

2 1 2 1 4 1 4 1 5 1 5 1

y yx x z z

x x x x y y y y z z z z

yx z
p p dp p p pd d

rx ry rz
p p p p p p p p p p p p

−− −
= = =

− − − − − −
= = =  (13) 

where Px, Py and Pz are the x, y and z target joint positions in the joint space. In cases where the 

joint command is located at a mesh grid node, the program returns the value of zero to the 

associated ratio. The correction values in the X direction, 𝐶𝑥  in the following equation, for position 

P is given by (Bourke, 1999),  

1 (1 )(1 )(1 ) 2 (1 )(1 ) 3 (1 ) 4 (1 ) (1 )

       5 (1 )(1 ) 6 (1 ) 7 8 (1 )

x x x x x

x x x x

C C rx ry rz C rx ry rz C rxry rz C rx ry rz

C rx ry rz C rx ry rz C rxryrz C rx ryrz

= − − − + − − + − + − −

+ − − + − + + −
 (14) 

where C1x, C2x, C3x, C4x, C5x, C6x, C7x and C8x are the scalar correction values at each rectangular 

prism corner, obtained from the 3D grid table. Similarly, the correction values in the Y and Z 

directions, Cy and Cz, are calculated by respectively substituting C1x, C2x, C3x, C4x, C5x, C6x, C7x 

and C8x  with C1y, C2y, C3y, C4y, C5y, C6y, C7y and C8y  and C1z, C2z, C3z, C4z, C5z, C6z, C7z and 

C8z in Eq. (14).  
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4.6 Experimental case study 

To study the efficiency of the generated 3D grid error compensation table, a series of experimental 

tests were conducted including machine error parameters identification test (SAMBA) followed by 

3D ball-bar validation tests. The experimental validation procedure is illustrated in Figure 4.9. In 

order to reduce thermal effect differences between the calibration and the validation tests, the tests 

were executed in the sequence 3D ball-bar, SAMBA and 3D ball-bar. Although a SAMBA test 

could be applied as validation a 3D ball-bar test was chosen instead as it provides a more 

independent validation means. Machine error parameters and error coefficients are estimated for 

both the 13- and 84-error error models from the SAMBA test data conducted “before 

compensation”. Then, “after compensation”, the SAMBA procedure is repeated just to ensure 

similar thermal states of the machine. The mean values of the radial errors (ball-bar measurements 

of the volumetric error along its sensitive direction) before compensation (e1, e2) and after 

compensation (e1c, e2c) were used for analyzing the effectiveness of the compensation. The 

calibration zone, mesh grid zone and 3D ball-bar test zone are shown in Figure 4.8. The test zone 

is entirely contained with the calibration zone in order to avoid error extrapolation. Because the 

tested machine does not have a 3D compensation table option a pseudo 3D table was produced by 

which the command compensation process was conducted offline and a compensated G-code 

produced. As shown in Figure 4.9, before comparing the two mean measured radial errors, the 

effect of ball-bar setup errors, i.e. eccentricity of the ball-bar tool ball circular trajectory relative to 

the workpiece ball, are removed using a linearized geometric error model. The resulting Jacobian 

of the first partial derivatives of the radial errors to the setup error was constructed. So that, 

1 0 0

[sin cos sin sin cos ] 0 1 0

0 0 1

setup errorsetup error

setup error setup error

EJ

u

v J E

w

     

   
   

= =
   
        

(15) 

where  setup errorJ
 
is the projected Jacobian for the setup error,  is the ball-bar reading column 

matrix,  setup errorE  is a column matrix containing the setup errors and u, v and w are the setup errors 

in the X, Y and Z directions, respectively. The   and  are respectively the polar and the azimuthal 

angles (Figure 4.7). 
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Figure 4.7. Projection of the tool tip position in the ball-bar direction. 

Because the balls of the tool and the workpiece have the same effect on the Jacobian, one set of 

setup errors is kept and the other is redundant. Therefore, the setup error is denoted by, 

1

  setup error setup errorE J 
−

=  (16) 

and the setup error compensated measurement data is then calculated by, 

 setup error

u

J v

w

 

 
  = −
 
   .

 (17) 

 

Figure 4.8. The calibration zone, mesh grid zone and 3D ball-bar test zone. 



43 

 

 

Figure 4.9. Experimental test procedure. (e1, e2): the measured radial error before compensation, 

(e1c, e2c): the measured radial error after compensation using pseudo table of the 13-error model 

or the 84-error model. 

4.6.1 Machine error parameters identification 

Figure 4.10 shows the calibration system (SAMBA) with the four 9.525 mm radius precision 

master balls and the scale bar artefact with a 304.6686 mm (U = 1.2 µm) length installed on the 

pallet of the tested machine tool. The rotary B- and C-axis are indexed within the ranges of -90º to 

90º and -360º to 360º, respectively. A Renishaw machine tool touch trigger probe (MP700) with a 

total tool length of 275.86 mm measures the x, y and z coordinate of the balls’ positions for 32 sets 

of B and C angular position pairs. The measurement strategy is designed to cover the full rotation 

of the rotary axes to have a better estimation of machine error parameters. However, depending on 

the accessibility of the probe to the target balls, the number of balls measured in different 

indexations may vary. The measurement strategy is shown in Table 4-1. As seen, the spindle (S-

axis) is also indexed at 60º, 120º, 180º, 240º and 300º which allow distinguishing the stylus tip 

offsets from the spindle position error parameters. In the conducted tests, the scale bar is also 

probed to allow the three scale gain errors to be estimated with respect to the international meter. 

The SAMBA data is processed to estimate the machine error model. The tests were repeated five 

times over five consecutive days. Each test for measuring 123 positions lasted for 3H10M (3 h and 

10 min). The room temperature was between 21°C and 22℃ during the test. 
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Table 4-1. Strategy of measurement in SAMBA technique. 

Index number 
Indexation (º) 

(S,B,C) 
Ball ID Index number 

Indexation (º) 

(S,B,C) 
Ball ID 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

(0,10,30) 

(0,30,90) 

(0,50,150) 

(0,70,210) 

(0,90,270) 

(0,60,180) 

(0,40,120) 

(0,20,60) 

(0,-10,-30) 

(0,-30,-90) 

(0,-50,-150) 

(0,-70,-210) 

(0,-90,-270) 

(0,-60,-180) 

(0,-40,-120) 

(0,-20,-60) 

3,4,5 

3,4,5 

3,4,5 

3,4,5 

3,4,5,6 

3,4,5 

3,4,6 

3,4,6 

3,4,5 

3,4,5 

3,4,5 

3,4,5 

3,4,5,6 

3,4,5 

3,4,6 

3,4,6 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

(0,0,90) 

(0,0,240) 

(0,0,300) 

(0,0,180) 

(0,0,45) 

(0,0,-45) 

(0,0,-180) 

(0,0,-300) 

(0,0,-240) 

(0,0,-90) 

(0,0,0) 

(60,0,0) 

(120,0,0) 

(180,0,0) 

(240,0,0) 

(300,0,0) 

1,2,3,4,5,6 

3,4,5 

3,4,5 

1,2,3,4,5,6 

1,2,3,4,5,6 

1,2,3,4,5,6 

1,2,3,4,5,6 

3,4,5 

3,4,5 

1,2,3,4,5,6 

1,2,3,4,5,6 

3 

3 

3 

3 

3 

 

 

Figure 4.10. SAMBA artefact (1-2: Scale bar), (3,4,5,6: Master ball) used to estimate the machine 

tool error parameters and coefficients to be used to prepare the compensation table. 

4.6.2 3D ball-bar test with single setup for compensation validation 

The telescopic magnetic ball-bar measures the distance between its two ball centers using its 

internal linear transducer and an external calibrated distance in the form of two kinematic ball seats 
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separated by a calibrated distance, on which the ball-bar can be temporarily mounted. The nominal 

ball-bar length is 150 mm with an uncertainty of ±1.4 µm on the readings and a measuring range 

of approximately ±1 mm. Figure 4.11 shows the 3D ball-bar test. Five half meridian travels form 

a hemisphere while transiting between the meridians via arcs on the equator. The first engagement 

is at the first position (position “A”), the feed in and feed out are located on the third forward 

meridional travel (position “B”) and the disengagement is at the end in front of the engagement 

point (position “C”). The G-code before compensation uses the nominal trajectories. To minimize 

error contribution from the NC linear interpolation between the programmed points an angular 

increment of 0.1 degree along the meridians was used thus ensuring a maximum distance of 

0.00014 µm between the meridians and the trajectory linear segments. As a result, 19809 positions 

are programmed with G01 commands. The number of ball-bar measurements is controlled by the 

Renishaw software. At the slower feed rate of 200 mm/min is selected for the test, the slower 

sampling rate is automatically selected by the ball-bar software yielding a total of 5990 distance 

readings. The 3D ball-bar test was run before and after compensation.  

Any compensation table present on the machine controller, such as linear axis positioning and 

angular axis positioning, were deactivated for all tests. The room temperature was between 21°C 

and 22℃ during the test but fluctuations outside this range were possible overnight between tests. 

The test was repeated ten times over five consecutive days while the machine was assumed to be 

in the same environmental situation. Each test lasted 37 minutes without considering the setup 

time.  
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Figure 4.11. 3D ball-bar validation test used to evaluate the effectiveness of the compensation. 

(A: start-travel 1, B: travel 2, C: travel 3, D: travel 4, E: travel 5, F: end).      

4.7 Results and discussions 

Table 4-2 lists the error coefficients for the 84-error model obtained by SAMBA calibration.  Each 

intra-axis error is fitted with third degree ordinary polynomials. However, some of them are 

partially confounded as is expected for ordinary polynomials. The errors are presented for each 

axis separately in Table 4-2. The 84-error model is capable of providing positioning backlashes for 

the two rotary axes as well. Table 4-3 lists the error parameters and coefficients for the 13-error 

model obtained by SAMBA calibration. The maximum standard deviations of the five repeated 

measurements (SAMBA test) along X, Y and Z were 0.8, 1.2 and 1.1 µm, respectively. 

The 3D ball-bar tests data before and after compensation are compared for compensation 

validation. The setup error calculated by Eq. (16), accounted for less than 5% of the 3D ball-bar 

data before compensation. For 3D ball-bar “after compensation” test, first, the pseudo 3D grid error 

compensation table was provided for the two error models. A simulator was developed for the 

target machine tool topology which used the erroneous machine tool forward kinematics. By 
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entering the tool specification and the machine tool error parameters estimated from the SAMBA 

test for one of the two error models, the volumetric errors for each mesh grid node position are 

predicted. The optimal mesh grid was obtained for the two error models with the error parameters 

and coefficients values listed in Table 4-2 and Table 4-3 using the process explained in Figure 4.4. 

Starting the initial guess for the mesh grid dimension as 2x2x2 (resulting in eight nodes) and 

considering a step of 1 for the mesh grid dimension in the optimization process, the 2x2x2 mesh 

grid dimension was appropriate for the 13-error model but for the 84-error model, the minimal 

optimum grid dimension for the real data was 19x19x19 for 6859 nodes. Two pseudo 3D grid error 

compensation tables were then generated and the trilinear interpolation used to compensate the 

nominal G-code for the 3D ball-bar tests. No corrections exceeded 100 µm. The setup error was 

recalculated for the 3D ball-bar data after compensation by Eq. (16) showing less than 5% of the 

3D ball-bar data after compensation. The radial errors before and after G-code 3D grid error 

compensation are shown in Figure 4.12 and Figure 4.13 for 13- and 84-error parameter models, 

respectively. The machine tool exhibits scale errors before applying the compensation. The 

discrepancy between the maximum and the minimum ball-bar measurements was 33.6 µm before 

compensation. This discrepancy was reduced to 6.3 µm and 5.8 µm after compensation for the 13- 

and 84-error model, respectively. Thus, the machine tool accuracy was improved by 81.25% and 

82.74% for 13- and 84-error, respectively. The root mean square (RMS) of the Cartesian volumetric 

error was reduced from 24.5 µm before compensation down to 4.3 µm and 3.5 µm after 

compensation for the 13- and 84-error model, respectively. The two error models do not estimate 

linear axes backlashes. However, independent circular ball-bar tests showed a backlash of around 

5 µm for the linear axes. The 84-error model contains more error parameters but only performed 

marginally better than the 13 error parameter model probably because the parameters which were 

common in the two models were the dominant ones. 
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Table 4-2. Calibration results for 84-error model. It estimates 84 error coefficients. 

X-axis Y-axis Z-axis B-axis C-axis 

Name Value Name Value Name Value Name Value Name Value 

EXX1 

EXX2 

EXX3 

EYX2 

EYX3 

EZX2 

EZX3 

EAX0 

EAX1 

EAX2 

EAX3 

EBX1 

EBX2 

EBX3 

ECX0 

ECX1 

ECX2 

ECX3 

-3.13E-04 

7.53E-08 

1.35E-10 

-2.74E-09 

1.22E-10 

-1.57E-08 

-1.32E-11 

-5.99E-04 

2.86E-08 

2.97E-10 

-1.82E-13 

-7.27E-08 

-1.10E-10 

3.61E-13 

-3.62E-03 

6.46E-08 

-2.59E-11 

-1.82E-12 

 

 

EXY0 

EXY2 

EXY3 

EYY0 

EYY1 

EYY2 

EYY3 

EZY2 

EZY3 

 

-2.41E-02 

3.43E-08 

-5.12E-10 

6.10E-02 

-1.09E-04 

-2.46E-08 

3.64E-11 

3.30E-08 

-1.19E-10 

 

EXZ1 

EXZ2 

EXZ3 

EYZ2 

EYZ3 

EZZ1 

EZZ2 

EZZ3 

EAZ0 

EAZ1 

EAZ2 

EAZ3 

ECZ0 

ECZ1 

ECZ2 

ECZ3 

2.29E-04 

-6.27E-07 

5.55E-10 

5.12E-07 

-3.06E-10 

1.04E-04 

-3.76E-07 

3.26E-10 

-2.60E-04 

-1.15E-07 

4.06E-10 

-5.07E-13 

-4.28E-04 

3.47E-06 

-8.99E-09 

7.56E-12 

 

EXB0 

EXB1 

EXB2 

EXB3 

EYB1 

EYB2 

EYB3 

EZB1 

EZB2 

EZB3 

EAB0 

EAB1 

EAB2 

EAB3 

EBB0 

EBB1 

EBB2 

EBB3 

EBBb 

ECB1 

ECB2 

ECB3 

-1.08E-01 

-1.21E-02 

4.19E-02 

1.53E-02 

-1.58E-03 

-4.16E-04 

-4.16E-04 

-1.08E-02 

-4.89E-02 

1.05E-02 

3.00E-04 

-3.62E-04 

-1.30E-04 

5.03E-05 

1.95E-05 

-2.39E-05 

3.92E-06 

1.51E-05 

7.12E-06 

3.13E-04 

-1.55E-04 

-4.66E-05 

EXC1 

EXC2 

EXC3 

EYC1 

EYC2 

EYC3 

EZC1 

EZC2 

EZC3 

EAC1 

EAC2 

EAC3 

EBC1 

EBC2 

EBC3 

ECC1 

ECC2 

ECC3 

ECCb 

-5.06E-04 

2.81E-05 

3.39E-05 

2.08E-04 

-7.80E-05 

-2.51E-05 

-2.74E-04 

-4.94E-05 

1.40E-05 

5.41E-07 

-1.35E-08 

-5.51E-08 

1.89E-06 

-5.42E-08 

-1.58E-07 

1.64E-06 

9.84E-08 

-9.73E-08 

5.76E-06 

Units examples: 

R and H are the linear axes: ERH0[mm], ERH1[mm/mm], ERH2[mm/mm2], ERH3[mm/mm3], ERHb[mm] 

R is the rotary axis and H is the linear axis: ERH0[rad], ERH1[rad/mm], ERH2[rad/mm2],  ERH3[rad/mm3], 

ERHb[rad] 

R and H are the rotary axes: ERH0[rad], ERH1[rad/rad],  ERH2[rad/rad2], ERH3[rad/rad3], ERHb[rad] 

R is the linear axis and H is the rotary axis: ERH0[mm], ERH1[mm/rad], ERH2[mm/rad2], ERH3[mm/rad3], 

ERHb[mm] 
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Table 4-3. Calibration results for 13-error model. It estimates 13 error parameters. 

Error definition Symbol [unit] Value 

Out-of-squareness angle of the B-axis relative to the Z-axis 

Out-of-squareness angle of the B-axis relative to the X-axis 

Offsets between the B and C axes 

Out-of-squareness of the C-axis relative to the B-axis 

Out-of-squareness of the C-axis relative to the X-axis 

Out-of-squareness of the Z-axis relative to the X-axis 

Out-of-squareness of the Y-axis relative to the Z-axis 

Out-of-squareness of the Y-axis relative to the X-axis 

Offset of the spindle relative to the C-axis in Y 

Offset of the spindle relative to the B-axis in X 

Positioning linear error of the X-axis 

Positioning linear error of the Y-axis 

Positioning linear error of the Z-axis  

EA0B [rad]  

EC0B [rad] 

EX0C [mm] 

EA0C [rad] 

EB0C [rad] 

EB0Z [rad] 

EA0Y [rad] 

EC0Y [rad] 

EY0S [mm] 

EX0S [mm] 

EXX1 [mm/mm] 

EYY1 [mm/mm] 

EZZ1 [mm/mm] 

-0.000040 

-0.000001 

-0.095600 

-0.000012 

0.000011 

-0.000010 

-0.000038 

0.000015 

0.029300 

-0.100000 

-0.000017 

-0.000023 

-0.000032 

 

The results before and after compensation are also compared by inspecting the radial residuals of 

a least squares sphere fitted to the ball-bar data. The size error (isotropic effect) is the deviation 

between the radii of fitted sphere and that of the nominal trajectory while the form error is defined 

as the residuals. Figure 4.14 shows the errors of size and form before and after applying the 

compensation for forward and backward movements. The reference sphere is also shown. The 

results are listed in Table 4-4. The compensated machine tool has size errors larger than the form 

errors. The radius of the fitted sphere before compensation was 19.3 µm bigger than the reference 

sphere. However, after applying the error compensation technique and using the 13- and 84–error 

models, the radii of the fitted spheres respectively became 3.8 µm and 2.6 µm bigger than the 

reference sphere. The standard deviation of the residuals was changed from 4.1 before 

compensation to 1.1 and 0.7 after compensation using the 13- and 84-error model, respectively.  
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Feed=200 mm/min , ball-bar axis length=150 mm ,  test on 3D space (XYZ 

axes) Error magnitute scale=1000 

Figure 4.12. Projection of volumetric Cartesian error on the ball-bar axis direction before 

compensation (red) and after compensation through using 3D grid error compensation from the 

13-error model (blue). 



51 

 

   

   

   

   

Feed=200 mm/min , ball-bar axis length=150 mm ,  test on 3D space (XYZ 

axes)Error magnitute scale=1000 

Figure 4.13. Projection of volumetric Cartesian error on the ball-bar axis direction before 

compensation (red) and after compensation through using 3D grid error compensation from the 

84-error model (blue).   
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Figure 4.14. Projected volumetric error (radial error) before and after the error compensation for 

bi-directional travels. 
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Table 4-4. The calculations regarding the size and form errors before and after applying the error 

compensation. 

Category Calculations 
Before 

compensation 

After 

compensation 

using 13-error 

model 

After 

compensation 

using 84-

error model 

Form error max(residuals) − min(residuals) 14.1 1.7 1.3 

Form error std(residuals) 4.1 1.1 0.7 

Size error radiusfitted − radiusnominal 19.3 3.8 2.6 

 

4.8 Conclusion 

3D compensation table were generated from an indirectly estimated ISO-230-1:2012 machine tool 

error parameters, and the forward kinematic model, to compensate the Cartesian volumetric error 

of a five axis machine tool in 3-axis operation mode. The effect of the number of nodes, the 

dimension of the table was studied in order to find the minimal mesh grid dimension necessary to 

achieve a given compensation precision. Two machine error models were calibrated using the 

SAMBA method, one model includes inter-axis errors and numerous intra-axis errors as 84 error 

polynomial coefficients and the other models includes only the inter-axis errors and linear axes 

scale factors with 13 error parameters. The errors of the 13-error model, as far as the linear axes 

are concerned, could be compensated with an eight node grid which is coherent with the linear 

nature of these error parameters such as out-of-squarenesses and linear axes linear positioning 

errors. As for the 84-error model, the optimum dimension of the table depends on the actual error 

parameters values. For the tested machine a 19x19x19 for 6859 nodes tables was needed to achieve 

the preset threshold of 0.1 micrometer if the machine had no other errors than the estimated ones. 

To verify the efficiency of the generated tables, a validation test consisting in a 3D ball-bar test 

was used. The path best fit sphere radius deviation from the nominal sphere (size error) was reduced 

from 19.3 µm, before compensation, down to 3.8 and 2.6 µm after compensation for the 13- and 

84-error model, respectively. The standard deviations of the residuals (form error) were reduced 

from 4.1 µm, before error compensation, down to 1.1 and 0.7 µm after error compensation for the 

13- and 84-error models, respectively. The discrepancy between the maximum and minimum radial 

residuals (form error) were reduced from 14.1 µm before compensation, down to 1.7 and 1.3 µm 

after error compensation for the 13- and 84-error models, respectively. The machine tool showed 
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significant scale errors which were modeled by the two error models and compensated. The 

experimental average effectiveness of the 3D grid error compensation table was over 82%.  
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5.1 Abstract 

Modern CNC machine tools provide lookup tables to enhance the machine tool’s precision but the 

generation of table entries can be a demanding task. In this paper, the coefficients of the 25 cubic 

polynomial functions used to generate the LUTs entries for a five-axis machine tool are obtained 

by solving a linear system incorporating a Vandermonde expansion of the nominal control 

jacobian. The necessary volumetric errors within the working volume are predicted from machine’s 

geometric errors estimated by the indirect error identification method based on the on-machine 

touch probing measurement of a reconfigurable uncalibrated master ball artefact (RUMBA). The 

proposed scheme is applied to a small Mitsubishi M730 CNC machine. Two different error models 

are used for modeling the erroneous machine tool, one estimating mainly inter-axis errors and the 

other including numerous intra-axis errors. The table-based compensation is validated through 

additional on-machine measurements. Experimental tests demonstrate a significant reduction in 

volumetric errors and in the effective machine error parameters. The LUTs reduce most of the 

dominant machine error parameters. It is concluded that although being effective in correcting 

some geometric errors, the generated LUTs cannot compensate some axis misalignments such as 

EB(OX)A and EB(OX)Z. The Root Mean Square of the translational volumetric errors are 

mailto:sareh.esmaeili-marzdashti@polymtl.ca
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improved from 87.3, 75.4 and 71.5 µm down to 24.8, 18.8 and 22.1 µm in the X, Y and Z directions, 

respectively. 

Keywords: Lookup Table, Five-axis machine tool, Table-based error compensation, Geometric 

error, Volumetric error 

5.2 Introduction 

The need for producing geometrically complex parts meeting tight tolerances on one hand and 

increasing the productivity on the other hand brings the necessity to maintain the accuracy of the 

machine tool while limiting machine downtime for mechanical realignment of its various 

components. The tool positioning errors mostly result from inter- and intra-axis errors, thermal 

errors and force-induced errors (Srivastava et al., 1995). Considering the errors that are at least 

partly repeatable, their calibration and compensation using a table-based error compensation 

scheme is potentially cost-effective when compared to the downtime resulting from mechanical 

maintenance and overhaul operations or producing scrap parts due to out-of-tolerance part features.  

Numerical compensation, used to improve machine accuracy requires machine calibration and 

introducing the error correction in the machine controller. Machine calibration approaches have 

been categorized into direct and indirect methods (Sartori & Zhang, 1995). The direct methods use 

instruments and setups that either measure the resulting volumetric errors, i.e. the inaccurate 

position and orientation of the tool relative to the workpiece, or measure the causal geometric error 

parameters individually. The indirect methods measure the combined effects, as volumetric errors, 

of more than one causal error parameter and estimate their respective values through mathematical 

models (Schwenke et al., 2008). Indirect methods facilitate machine tool calibration (Abbaszadeh-

Mir et al., 2002; Esmaeili & Mayer, 2020; Lei & Hsu, 2003a; Montavon, Dahlem, & Schmitt, 

March 2019; Suh, Lee, & Sohn, 1999) by relaxing many instrument related constraints. Such 

models often rely on homogenous transformation matrices (HTM) which are a convenient 

mathematical tool to build the error model and have been widely used in indirect machine tool 

calibration and also for geometric error compensation (Lei & Hsu, 2003a; Suh et al., 1999). In such 

model, the geometric errors can be limited to the relative axes location (Abbaszadeh-Mir et al., 

2002) or can also incorporate general shape functions, such as polynomials as in (Y A. Mir, Mayer, 

& Fortin, 2002), to model the intra-axis errors of each axis. 
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Error compensation has been widely studied (J. G. Li, Zhao, Yao, & Liu, 2007; Ramesh, Mannan, 

& Poo, 2000b; Shih-Ming Wang, Yu, & Liao, 2005; Xi, Poo, Hong, & Huo, 2010; H. Zhang, Yang, 

Zhang, Shen, & Wang, 2010). Compensation schemes were implemented either through off-line 

modifications of NC codes (M. Rahman, Heikkala, & Lappalainen, 2000) or real-time error 

compensation (Yuan & Ni, 1998). Ji-Hun et al. (Jung, Choi, & Lee, 2006) modified G-code 

program in a three-axis machine tool to compensate linear and circular interpolation movements. 

Srivastava et al. (Srivastava et al., 1995) enriched the HTM model with time-varying terms in order 

to also model thermal errors to compensate the tool path. Wang et al. (Shih-Ming  Wang, Liu, & 

Kang, 2002) proposed an automatic volumetric error compensation wherein the error sources 

resulted from static or quasi-static errors. The mathematical error model for the three-axis machine 

tool uses shape functions and considers the machine’s non-rigid body behavior. The compensation 

is implemented using a modified G-code. Khan et al. (Khan & Chen, 2010) proposed a case study 

of volumetric error compensation in a five-axis machine tool using the nominal tool position from 

CAD/CAM software and the actual tool position through the kinematic chain of the erroneous 

machine tool. The deviations between the nominal and actual tool positions were then applied to 

the tool path by modifying the NC program. 

Most research for compensating machine tool error has focused on G-code modifications (Givi & 

Mayer, 2014; Koliskor, 1971; R. M. Mahbubur et al., 1997). However, volumetric errors lookup 

tables (LUT) have been available on CNCs, for over a decade, by which there is no need to modify 

each G-code separately for compensation purposes.  Published research in this area is recent (J. 

Creamer et al., 2017; Jennifer Creamer et al., 2016, November 15-21, 2013, San Diego, California, 

USA; M. Esmaeili & Mayer, 2020). Various LUTs are embedded in CNCs for pitch, straightness, 

rotational, squareness and backlash error compensation ("Fanuc Controller," Series 30i/Model A; 

"Siemens Controller," SINUMERIK 840D/840Di/810D Extended Functions). Some controllers 

offer more complex user configurable tables ("Siemens Controller," SINUMERIK 

840D/840Di/810D Extended Functions). Creamer et al. (Jennifer Creamer et al., 2016) used a laser 

tracker to measure the volumetric errors of a five-axis machine tool at randomized location in the 

machine workspace. Two models are then produced. One, called 6DoF, uses a homogenous 

transformation matrix based approach where each geometric error matrix is modeled by Chebyshev 

polynomials of each axis command. The other model, called Axis Perturbation (AP), has a form 

much closer to the proposed LUT scheme. It generates, for each axis, a command correction that 
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should bring the actual machine to the same position as the nominal machine. Each axis correction 

is the sum of five corrections each a univariate Chebyshev polynomial of one of the five-axis 

nominal command. The 6DoF model can also be used to generate the 25 Chebyshev polynomials 

that are then discretized to populate the compensation LUTs, available in the Siemens controller 

(Sinumerik 840D), which operate much like the AP model. The AP model is directly discretized 

to populate the tables. The models’ coefficients are optimized to correct the laser tracker indications 

as pseudo-measurements obtained using the estimated models. They validated their compensation 

approach by re-measuring the machine’s volumetric errors in positioning mode with the laser 

tracker after compensation. Creamer et al. (J. Creamer et al., 2017) did another study to select a 

limited number of compensation tables because most of the controllers are not equipped with 25 

compensation tables as their previous work required. They applied an artificial intelligence based 

(genetic algorithm GA) methodology to select an optimal set of tables and compared them with a 

full set of compensation tables. The compensation tables achieved by GA methodology include 

eleven tables, five fixed base tables of pitch error compensation plus six others selected by GA. 

The GA compensation tables have a respective mean and maximum volumetric error 8 µm and 11 

µm larger than a full set of compensation tables.  

While the previous works (J. Creamer et al., 2017; Jennifer Creamer et al., 2016, November 15-21, 

2013, San Diego, California, USA) in generating the LUTs are validated when the machine is in 

machining mode, this paper presents a compensation LUTs generation process validated when the 

machine tool is in measurement mode. Also, two alternate error models, differing only in the 

number of modeled intra-axis errors, are considered. The first model uses the minimum complete 

ISO axis alignment (inter-axis) error parameters and the second uses the ISO error motion (intra-

axis) parameters. The process of generating the table and optimizing the table coefficients uses the 

predicted volumetric error, as opposed to directly measured ones, calculated from the estimated 

machine geometric error parameters, for the sets of commands located at a 5D mesh grid of the 

five axis commands. Univariate ordinary polynomials are used as table functions. Constructing the 

Jacobian of the sensitivity of the required volumetric corrections to the LUT function coefficients 

in order to directly calculate the coefficients is another novelty of this paper. Finally, the criteria 

for the effectiveness of the compensation are not only the remaining volumetric errors but also the 

actual geometric errors before compensation and their effective values after compensation when 

the machine is used in measurement mode.  
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The paper is organized as follows; in section 5.3, the two error model used for calibration are 

introduced. In section 5.6, the table-based volumetric error compensation is explained. In section 

5.7, the error compensation verification in measurement and machining modes are presented. In 

section 5.8 details the experimental validation procedure including the calibration and 

compensation tests on a five-axis machine tool. The results and discussions are presented in section 

5.9 followed by conclusion in section 5.10.  

5.3 Machine tool modeling and error models 

The target machine tool used in this work has an open serial kinematic chain made of two branches. 

It is a five-axis compact-sized CNC milling machine tool with a Mitsubishi M730 CNC controller 

and Mitsubishi servomotors. It has no linear encoders. The topology of the kinematic chain of the 

machine tool is described as wCAYFXZSt, as illustrated in Figure 5.1, in which C and A are the 

rotary axes, X, Y and Z are the linear axes and the w, S and t symbols stand for the workpiece, 

spindle and tool, respectively. The machine (or foundation) frame, F, is nominally located at the 

intersection of the A- and C-axis. 

 

 

Figure 5.1 Schematic of the machine tool kinematics with the 12-error model parameters. 
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The kinematic chain of the nominal machine which generates the relative movement of the tool 

relative to the workpiece is mathematically modeled as follows: 

1( ) ( )n

n n n

w F Y A C F X Z S

t Y A C w X Z S t

−=T T T T T T T T T  (18) 

where T stands for a 4×4 homogenous transformation matrix (HTM), embedding the translation 

and the angular movement of one component relative to the previous component.  

A machine tool has intra-axis and inter-axis errors. Intra-axis error, also called error motion, motion 

errors or position dependent geometric error parameters, are the imperfect motion of each 

mechanical axis whereas inter-axis, also called axis location error or position independent 

geometric error parameters, are the imperfect relative location of the mechanical axes (Soichi 

Ibaraki & Knapp, 2012). A five-axis machine tool, without considering the spindle, has five sets 

of six intra-axis errors for a total of 30 intra-axis errors, and eight inter-axis errors to represent the 

errors in relative location of its five axes. This yields a total of 38 errors. The intra-axis errors vary 

with their respective axis position and so a number of error function coefficients are needed to 

model each intra-axis error. Now considering the spindle, one could add six intra-axis errors, up to 

four inter-axis errors and a Z offset for the tool attachment plane.  However, in this work only the 

two lateral offsets (x and y) inter-axis errors of the spindle are included due to the measurement 

method limitations. 

5.4 12-error model 

One of the two error model studied in this paper is the 12-error model consisting of the eight 

necessary and sufficient axis location errors (Abbaszadeh-Mir et al., 2002; Zhu et al., 2012), two 

backlashes of the rotary axes and, since no length reference is measured, two relative gain errors 

of the linear axes. These 12 errors are listed in Table 5-1 and shown in Figure 5.1.  
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Table 5-1. The error parameters of the 12-error model. 

Error definition Symbol1  

Out-of-squareness angle of the A-axis relative to the X-axis 

Out-of-squareness angle of the A-axis relative to the Y-axis 

Offset between the C and A axes 

Out-of-squareness of the C-axis relative to the Y-axis 

Out-of-squareness of the C-axis relative to the A-axis 

Out-of-squareness of the X-axis relative to the Y-axis 

Out-of-squareness of the Z-axis relative to the Y-axis 

Out-of-squareness of the Z-axis relative to the X-axis 

Backlash of the A-axis 

Backlash of the C-axis 

Relative positioning linear errors of the X and Y axes 

Relative positioning linear errors of the X and Z axes 

EB(OX)A   

EC(OY)A  

EY(OA)C  

EA(OY)C  

EB(OA)C  

EC(OY)X  

EA(OY)Z  

EB(OX)Z  

EAAb 

ECCb  

EYY1- EXX1 

EZZ1- EXX1 

1-EU(0V)W where U is the nature of the error, V is the datum axis and W is the axis which has the error. 

5.5 81-error model 

The 81-error model uses ordinary cubic polynomials to model intra-axis error which were found 

by Slamani et al. (M. Slamani, Mayer, & Cloutier, 2011) to provide good representativity for the 

machines they tested. The inter-axis errors are not added explicitly to this model because they can 

be modeled by the coefficients of the polynomials of some of the intra-axis errors (Y A. Mir et al., 

2002). As an example, suppose the straightness error of the Y-axis in the X direction is modeled 

as, 

2 3

0 1 2 3XY XY XY XY XY Y XYbE E E y E y E y b E= + + + +  (19) 

where EXY0, EXY1, EXY2 and EXY3 are the coefficients for the zero to third degree terms of the 

polynomials, respectively and XYbE  is the hysteretic effect coefficient. The first degree term (and 

the third degree term due to some coupling occurring in ordinary polynomials) can model the out-

of-squareness between the X- and Y-axis, which is an inter-axis error. Modeling all 30 error 

parameters with a third-degree polynomial defines 120 error coefficients which are listed in Table 

5-2. Adding the positioning backlashes to the model, the number of variables is increased to 125. 

However, there are unnecessary and also unobservable coefficients. In order to have reliable 

estimates, based on the condition number and rank of the Jacobian matrix, the number of 

independent error coefficients must be reduced to 81. A procedure is applied to eliminate 
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redundancies and confounded coefficients by removing some zero degree and first degree 

polynomial coefficients while maintaining the rank of the estimation Jacobian (M. M. Rahman & 

Mayer, 2015). Table 5-2 shows the retained error coefficients in black and the discarded ones in 

red. After considering the redundancies, only two backlashes, EAAb and ECCb, can be detected 

by this measurement strategy. 

 

Table 5-2. All possible error coefficients for a five-axis machine tool. The 81-error model 

variable are shown in black color. 

X-axis Y-axis Z-axis 

EXX EYX EZX EAX EBX ECX EXY EYY EZY EAY EBY ECY EXZ EYZ EZZ 

EXX0 EYX0 EZX0 EAX0 EBX0 ECX0 EXY0 EYY0 EZY0 EAY0 EBY0 ECY0 EXZ0 EYZ0 EZZ0 

EXX1 EYX1 EZX1 EAX1 EBX1 ECX1 EXY1 EYY1 EZY1 EAY1 EBY1 ECY1 EXZ1 EYZ1 EZZ1 

EXX2 EYX2 EZX2 EAX2 EBX2 ECX2 EXY2 EYY2 EZY2 EAY2 EBY2 ECY2 EXZ2 EYZ2 EZZ2 

EXX3 EYX3 EZX3 EAX3 EBX3 ECX3 EXY3 EYY3 EZY3 EAY3 EBY3 ECY3 EXZ3 EYZ3 EZZ3 

EXXb EYXb EZXb EAXb EBXb ECXb EXYb EYYb EZYb EAYb EBYb ECYb EXZb EYZb EZZb 

Z-axis A-axis C-axis 

EAZ EBZ ECZ EXA EYA EZA EAA EBA ECA EXC EYC EZC EAC EBC ECC 

EAZ0 EBZ0 ECZ0 EXA0 EYA0 EZA0 EAA0 EBA0 ECA0 EXC0 EYC0 EZC0 EAC0 EBC0 ECC0 

EAZ1 EBZ1 ECZ1 EXA1 EYA1 EZA1 EAA1 EBA1 ECA1 EXC1 EYC1 EZC1 EAC1 EBC1 ECC1 

EAZ2 EBZ2 ECZ2 EXA2 EYA2 EZA2 EAA2 EBA2 ECA2 EXC2 EYC2 EZC2 EAC2 EBC2 ECC2 

EAZ3 EBZ3 ECZ3 EXA3 EYA3 EZA3 EAA3 EBA3 ECA3 EXC3 EYC3 EZC3 EAC3 EBC3 ECC3 

EAZb EBZb ECZb EXAb EYAb EZAb EAAb EBab ECAb EXCb EYCb EZCb EACb EBCb ECCb 

 

The forward kinematic model of the erroneous machine tool is given by, 

0 0 0 0 0 0

0 0 0
0 0 0

0 0 0 0

0 0
0 0

1( )

          ( )

a n

a n a

n

n a

w Y Y A A C C wF Y Y A A C C

t Y Y A A C C w wY Y A A C C

X X Z Z tF X X Z Z S

X X Z Z S t tX X Z Z

     −

     

  

   

=T T T T T T T T T T T T T T T

T T T T T T T T T T T
 (20) 

where X0, Y0, Z0, A0, C0, stand for the  nominal axis locations before movement; X0′, Y0′, Z0′, A0′ 

and C0′ stand for the actual axis locations, accounting for inter-axis errors, before movement; X, 

Y, Z, A and C show axis location after nominal movement; and X′, Y′, Z′, A′, C ′, represent the 

actual axis locations, accounting for intra-axis errors, after movement. S, wn and tn are the spindle 
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and the nominal locations of the workpiece and tool, respectively. The actual locations of the 

workpiece, and tool are wa and ta, respectively. 

All error parameters and coefficients are estimated using the indirect measurement approach based 

on a reconfigurable uncalibrated master ball artefact (RUMBA) (Mayer, 2012). The estimation 

process, requires solving the following linearized error model: 

( )( )V PE J E=  (21) 

where EV is the column matrix of raw volumetric error vectors, EP is the column matrix of unknown 

error coefficients or error parameters, and some setup errors and J is the Jacobian matrix. EP is 

calculated by applying the iterative Gauss-Newton method with a combination of the forward 

model of Eq. (2) and the following inverse model  

( )( )P VE J E+= , (22) 

using a suitably updated Jacobian matrix at each iteration until convergence to a pre-defined 

threshold.  

5.6 Table-based volumetric error compensation 

Table-based compensation uses an open programming environment within the CNC with its own 

commands and rules sets that the machine user can exploit to generate corrections to the machine 

axes. The CNC uses these user instructions automatically. Data can be provided as lookup tables 

interpolated by the CNC in real-time and as weights. The environment does not provide any 

guidance as to the necessary tables, their combination, weights, entries or maximum correction 

values. These functionalities are separate from the specific pre-programmed black box 

compensation options that CNC manufacturers offer as paid licenses. The functions that combine 

the tables’ output represent the complexity of the tables. Figure 5.2 illustrates the relationship 

between the basic axis and the compensation axis when generating complex tables for the 

compensation scheme used. The basic axis is the machine tool axis whose position is used as input 

to the table to interpolate its entries and produce an output. The interpolated output of the 

compensation table is applied to the compensation axis. The basic axis and the compensation axis 

may be the same or different axes. As shown, the weights for each table outputs are W11, W21, 
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W31… W55. The weighted summation functions (∑) add together the weighted corrections for a 

particular axis. The bounds define maximum compensation values to avoid excessive corrections.  

 

 

Figure 5.2. Schematic of the 25 tables compensation scheme showing the basic axes, LUTs, 

weights, summing operators, compensation axes corrections and their bounds. 

 

The controller automatically corrects the axis’ commands using the enabled tables’ outputs as 

illustrated in Figure 5.3. The process of generating the table uses the machine calibration results 

and the associated machine error model to predict the volumetric error at the nodes of a 5D mesh 

grid of axis commands generated within the stroke lengths and angles of the machine tool axes. 

For each set of five axis commands corresponds a mesh grid node at which the associated 

volumetric error is calculated using Eq. (2). Then, the functions that will be used to populate the 

LUTs are optimised so that the compensation scheme corrections closely match the volumetric 

errors at the node. All weights are equal to 1 in this study. 
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Figure 5.3. The procedure of generating and using the lookup table (LUT). 

 

Figure 5.4 shows a series of possible compensation tables for the ith compensation axis. 

Considering the summation characteristic of the tables, the correction value for compensation axis 

i is (Jennifer Creamer et al., 2016), 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

, , , ,

i i x i y i z i aX Y Z A Ci c i j

j X Y Z A C

jq f f f f f fq q q q q q
=

 = + + + + =   (23) 

where i stands for the compensation axis, iq  is the compensation value for the compensation 

axis, jq is the nominal position command for basic axis j and ,i jf  are the table functions. Cubic 

polynomials are used here so that ,i jf  is denoted by, 

( ) 2 3

, , ,0 , ,1 , ,2 , ,3i j j i j i j j i j j i j jf q a a q a q a q= + + +  (24) 

where , ,0i ja ,
, ,1i ja , 

, ,2i ja , 
, ,3i ja  are the fitted function coefficients. Hence, iq  is fitted by the sum of 

five univariate polynomial functions. Note that these polynomials are likely different and serve an 

entire different purpose from those used to model the geometric errors of the machine tool in the 

81-error model as presented in section 5.5.  
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Figure 5.4. A series of the possible compensation tables for the ith axis. 

 

According to Givi and Mayer (Givi & Mayer, 2014), in order to bring the tool tip to the desired 

location, the required tool tip volumetric error compensation in a five-axis machine tool is the 

reverse of the tool tip volumetric error, assuming small volumetric errors. Again assuming small 

errors, there is a linear relationship between the volumetric error compensation value at the tool 

tip, corresponding to a set of nominal axis position or command set (qX, qY, qZ, qA, qC), and the 

required axis command corrections (ΔqX, ΔqY, ΔqZ, ΔqA, ΔqC) as, 

[     ]T

CV q X Y Z A CE J q q q q q=       (25) 

where ECV is the volumetric error compensation defined as a twist of three translational and three 

rotational errors at the tool tip relative to the workpiece, 

[      ]T

CV XCV YCV ZCV ACV BCV CCVE E E E E E E=  (26) 
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and Jq, a 6×5 matrix, is the control Jacobian of the machine as the set of partial derivatives of the 

volumetric errors (or their required compensation value) to the axis commands (or their correction 

values) as, 

XCV XCV XCV XCV XCV

X Y Z A C

YCV YCV YCV YCV YCV

X Y Z A C
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 (27) 

By substituting the command corrections with their polynomial representation given by Eq. (13), 

an extended Jacobian version of Eq. (15) can be generated using a Vandermonde expansion. Using 

third degree polynomials fitness functions, the extended Jacobian with a size of (6×100) is denoted 

by, 

0 3

_

0 3 [6 100]

XCV XCV

XX CC

q extended

CVC CCV

CX CC

E E

a a

J

E E

a a


  
  
 
 =
 
  

   

 
(28) 

which is then used as follows, 

 _ 0 1 2 3 0 3 0 1 2 3 [100 1]
         

T

CV q extended XX XX XX XX XY CB CC CC CC CCE J a a a a a a a a a a


=

. 

(29

) 
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The table function coefficient column matrix has 100 elements: four coefficients per function, five 

functions per compensation axis (one for each basic axis) and five compensation axes. A solution 

for the unknown fitted function coefficients is obtained by pseudo inversing the Jacobian matrix 

within an iterative process to obtain convergence to a numerically precise solution  

 0 1 2 1 2 3 _      
T

XX XX XX CC CC CC q extended CVa a a a a a J E+= . (30) 

The tables are then generated by discretizing the table functions over the stroke lengths of the 

machine axes with a pre-determined number of entries for the tables, in this case 50 entries per 

table is used. 

When a given axis command does not match a node of a compensation table, the table is linearly 

interpolated. Suppose a basic command jq  for axis j is located between ,j lq  and , 1j lq +   of the table 

entries in LUTi,j, the output of this table is,  

,

, , , 1 , ,

, 1 ,

( )
j j l

i j i j l i j l

j l j l

q q
q q q

q q
+

+

−
 =  −

−
 (31) 

where , ,i j lq  and , , 1i j lq +   are the command corrections associated with the ith compensation axis 

and the jth basic axis commands , ,i j lq  and , , 1i j lq + , respectively and ,i jq  is the interpolated 

compensated axis command correction. 

5.7 Error compensation verification in measurement mode and 

machining mode 

The machine used does not have LUTs facilities. So, offline pseudo-tables were used instead. The 

correction concept is different when a machine tool is used in measurement mode, using a touch 

trigger probe for example, as opposed to machining mode when using the pseudo tables. In 

machining mode, the purpose of compensation is to bring the tool from its actual to its nominal 

position. In measurement mode, the purpose is to calculate the actual position for a given set of 

uncompensated read axis positions. Let us assume qn as the nominal G-code command, qread as the 

read command following a triggering of the probe and dq as the required command correction to 
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compensate the effect of geometric errors. In machining mode, the error compensation is calculated 

by adjusting the axis command in such a way as to bring the tooltip to the desired location as, 

machining mode

c nq q dq= +  (32) 

where machining mode

cq is the corrected command in the machining mode. However, in the 

measurement mode the compensated command is achieved by subtracting the command correction 

from the read command. So, 

measurement mode

c readq q dq= −  (33) 

where measurement mode

cq is the corrected command in the measurement mode. Figure 5.5 illustrates a 

simplified example wherein the geometric error of a machine tool is defined as 1 mm (EYY=1) 

positioning error in the Y direction. The nominal height of the tip of the master ball to the table or 

the nominal command is 5 mm. However, the machine tool reads 4 mm (qread=4) because of its 

positioning error. The correction command required for compensation is −1 mm (dq=−1) in the Y 

direction. Hence, when the machine is used in machining mode the objective is to bring the tool at 

the tip of the master ball. So, the required compensated command is 4 mm, (  mod 4c

machining eq = ), 

obtained by Eq. (32). However, for the measurement mode, the objective is to obtain the nominal 

height of the master ball which is 5 mm, measurement mode( 5)cq = , obtained by Eq. (33). The 

measurement mode is studied in this paper. 
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Figure 5.5. A simplified example for the definition of the error compensation concept in the 

machining mode and in the measurement mode.  

The procedure for the calibration, error compensation and its validation is illustrated in Figure 5.6. 

It proceeds as follows: 

1. The RUMBA measurement strategy for the calibration uses four setups, named 1 to 4. The 

raw probing data is then processed to estimate the machine error parameters and 

coefficients for the 12- and also for the 81-error models. The estimation results are used to 

generate grid node corrections from which the LUTs’ functions are optimized and then 

discretized to populate the LUTs.  

2. The procedure for the error compensation validation is divided into two phases, a and b. 

a. The validation measurement strategy is executed without any compensation 

(‘’before compensation'’) and the collected raw probing data is processed to 

estimate the error parameters for the 12-error model and the error coefficients for 

the 81-error model. 

b. The raw probing data gathered in phase a is compensated using the LUTs generated 

by the 12-error model. The compensated probing data is then processed to estimate 

the error parameters of the 12-error model. This process is repeated but this time 

using the 81-error model to generate the LUTs. 

3. Finally, the machine error parameters before and after compensation are compared. 
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Figure 5.6. The procedure for the calibration (12- or 81-errror model), error compensation and its 

validation in measurement mode (12-error model).  

5.8 Experimental design 

The target machine tool has stroke lengths of 260, 420 and 240 mm in the X, Y and Z direction, 

respectively. The A-axis and C-axis have ranges of 240° and 360°, respectively. Given the 

relatively small size of the Kolibri machine tool, the RUMBA indirect calibration method is used. 

The ceramic master spheres’ diameter is 20 mm. In the RUMBA method, typically four master 

balls are installed together while they are measured with different rotary axes indexations. 

However, to avoid potential interference and collisions, a single ball at a time was mounted and 

probed for the complete set of rotary axes indexations. So, four setups each with a different ball 

position were used. The master ball was screwed to the table. The heights from the center of the 

ceramic ball to the table were 37.5 mm for setups 1 and 2. However, an extension of 10 mm was 

used to change the height of the master ball to 47.5 mm for setups 3 and 4. The setups are shown 

in Figure 5.7. 
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Figure 5.7. The four setups (1 to 4) for the calibration process and the one setup (S) for validating 

the volumetric error compensation in measurement mode.  

Each ball probing includes touches from 5 different directions including four touches around the 

equator and one touch at the top of the sphere in order to calculate the center of the ball. The 

probing pattern at the equator is rotated by 45 degrees relative to the machine axes to avoid collision 

of the probe with the ball stem. The probing process is shown in Figure 5.8. The precise position 

of the ball is neither known a priori nor necessary. The coordinates of the balls in the last workpiece 

branch axis frame are estimated together with the machine geometric errors.   

 

Figure 5.8. The probing process (probing starting point, first direction, second direction, third 

direction, fourth direction, fifth direction). 

Table 5-3 lists the measurement strategy for the four setups which is defined by the A- and C-axis 

indexation pairs. The rotary A-axis is indexed between -55° and +55° while the C-axis is indexed 

for its maximum possible rotation during the measurement procedure. The reason of the partial 
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rotation of the A-axis during the measurement is that the master balls were not accessible for angles 

of the A-axis over +55° and under -55° in different setups. The touch probe Hexagon IRP40.50 

was used for the measurement. The probe tip radius was 0.5 mm and the total height of the probe 

was 74 mm. The measurements for the four different setups were repeated three times for three 

consecutive days while the room temperature was around 21 and 22℃ in a climate-controlled 

workshop.  Each probing lasted 1 min 50 sec for one master ball. The 81-error model has a total of 

96 unknowns including the balls and tool setup errors. The 12-error model has 27 unknowns and 

so normally would require less data for a test time about three times shorter. However, in this study, 

the same calibration tests were run for both error models.  

The validation setup (labeled “S”) is shown in Figure 5.7. Using a single ball is a technique similar 

to the “Chase the ball” approach (Bringmann & Knapp, 2006). The ceramic ball was attached to 

the table with a holder of height 37.5 mm. It was probed using another measurement strategy 

consisting of 60 A- and C-axis indexation pairs. The strategy is listed in Table 5-4. Each complete 

measurement of the compensation validation strategy lasted 110 min and the tests were repeated 

three times while the room temperature was between 21℃ and 22℃. The data is then used for 

estimating the 12-error model parameters. 

Table 5-3. The measurement strategy with different A and C indexation for the four machine 

calibration setups (1 to 4). 

Calibration test (measurement strategy first to fourth setup) 

Rotary axes indexations (a° , c°) 

(15 , 60) (30 , 180) (45 , 280) (55 , 340) (40 , 240) (20 , 120) (0 , 0) (-20 , -100) 

(-40 , 250) (-55 , 350) (-50 , -310) (-25 , -40) (0 , 180) (0 , 280) (0 , 360) (0 , 320) 

(0 , 210) (0 , -160) (0 , -300) (0 , -220) (0 , -50) (15 , 0) (40 , 0) (55 , 0) 

(45 , 0) (30 , 0) (-20 , 0) (-45 , 0) (-55 , 0) (-35 , 0) (44 , -30) (53 , -208) 

(36 , -318) (30 , 45) (21 , 326) (9 , 290) (-16 , -12) (-54 , -304) (-40 , -10) (-17 , 100) 

(-38 , 197) (-5 , 345)       

 

Table 5-4. The measurement strategy with different A and C indexation for fifth setup, used for 

validation of the compensation (setup S). 
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Table-based volumetric error compensation (Measurement strategy fifth setup) 

Rotary axes indexations (a° , c°)  

(8 , 55) (16,120) (40 , 180) (38 , 240) (55 , 300) (50 , 330) (45 , 270) (36 , 210) 

(23 , 150) (12 , 90) (4 , 30) (-5 , -30) (-12 , -90) (-28 , -150) (-31 , -210) (-48 , -270) 

(-52 , -330) (-5 , -300) (-43 , -240) (-34 , -180) (-23 , -120) (-11 , -55) (8 , 140) (18 , 190) 

(12 , 250) (30 , 290) (22 , 310) (47 , 10) (24 , 50) (38 , 100) (41 , 160) (53 , 200) 

(-34 , -45) (-43 , -140) (-50 , -170) (-20 , -220) (-15 , -280) (-10 , -310) (-5 , -70) (-16 , 135) 

(-50 , 280) (-36 , 94) (-10 , 20) (-26 , 200) (28 , -40) (50 , -300) (20 , -280) (37 , -100) 

(10 , -280) (0 , 0) (0 , 90) (0 , 240) (0 , 300) (0 , 180) (0 , 45) (0 , -45) 

(0 , -180) (0 , -300) (0 , -240) (0 , -90)     

5.9 Results and discussions 

5.9.1 Machine tool calibration 

The raw probing data captured by the four setups (1, 2, 3 and 4) was processed using Eq. (7) in 

order to estimate the error parameters and coefficients of the two error models. The column 

normalized Jacobian condition number of the 12-error model and 81-error model were 200 and 

3900, respectively. The Jacobian condition number of the 81-error model is larger as the numbers 

of unknowns participating in the former error model are larger and it includes coefficients of 

quadratic and cubic terms, unlike the 12-error model. It is also expected that some ordinary 

polynomial coefficients exhibit some amount of correlation. In Appendix, the two error model 

estimation results are listed in details. The pooled standard deviation for three repetitions of the 

probing measurements in the X, Y and Z directions are 1.8, 2.2 and 1.5 µm, respectively.  

5.9.2 Experimental validation of the compensation scheme 

The validation was conducted by comparing the estimated error parameters for the 12-error model 

obtained using the “S” validation setup raw probing data before and after compensation. Table 5-5 

lists the 12-error model parameters computed from the uncompensated validation strategy data. 

These parameters should be close to those obtained with the raw probing data from setups 1 to 4. 

The error parameters listed in Table 5-5 are shown in Figure 5.9 with their respective units. As 

seen, the behavior of the two graphs are similar even though different measurement strategies are 

used.  
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Table 5-5. The estimated error parameters of the 12-error model for the uncompensated 

validation strategy (S) and for the calibration setups (1 to 4).  

Symbol [unit] 
Value 

Setup (S) 

Mean volumetric 

error norm caused 

by each estimated 

model parameters 

in µm 

Value 

Setup (1,2,3,4) 

Mean volumetric 

error norm caused 

by each estimated 

model parameters 

in µm 

EB(OX)A 

EC(OY)A 

EY(OA)C 

EA(OY)C 

EB(OA)C 

EC(OY)X 

EA(OY)Z 

EB(OX)Z 

EAAb 

ECCb 

EYY1-EXX1 

EZZ1-EXX1 

1.290 mrad 

-0.984 mrad 

41.400 µm 

0.073 mrad 

0.032 mrad 

0.150 mrad 

-0.480 mrad 

0.153 mrad 

-0.015 mrad 

-0.028 mrad 

-0.642 µm/mm 

-0.253 µm/mm 

50.60 

88.80 

41.40 

6.38 

2.83 

4.96 

33.80 

10.80 

1.07 

4.18 

25.20 

36.50 

1.090 mrad 

-0.869 mrad 

42.100 µm 

0.069 mrad 

0.029 mrad 

0.143 mrad 

-0.439 mrad 

0.114 mrad 

-0.013 mrad 

-0.024 mrad 

-0.607 µm/mm 

-0.216 µm/mm 

42.40 

76.50 

42.10 

5.89 

2.46 

4.54 

32.10 

8.30 

2.66 

3.20 

22.00 

28.20 

 

 

Figure 5.9. The estimated error parameters of the 12-error model for the uncompensated 

validation strategy (S) and for the calibration setups (1 to 4) (same data as in Table 5-5). 

To generate the LUTs, first, the axis space where the compensation tables are needed to be applied 

is defined. The axis space is kept within the range of available calibration data in order to avoid 

extrapolating the model. For instance, although the A-axis stroke length is between −120° and 
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+120°, the command correction values are considered from −55° to +55° thus within the 

calibration test range.  

The 5D mesh grid was generated using 10 positions per axis for a total of 100000 sets of commands 

and corresponding grid nodes. Using the variables estimated from the calibration process from the 

12- and then for the 81-error models and Eq. (3), the volumetric errors for 100000 set of commands 

were calculated for each model separately and the table coefficients were optimized and the tables 

populated. Because the controller of the target machine tool was not able to embed these 

compensation tables, the error compensation was conducted offline using pseudo tables. The 25 

compensation table functions are shown in Figure 5.10 for the 12- and 81-error models. During the 

optimization process it was realized that offsets, or zero degree terms of the polynomials, of all 

basic axis functions for a given compensation axis correction have the same effect, and so are 

confounded. So, it was decided to only retain those terms for one basic axis per compensation axis 

i.e. for the table functions of fXX, fYZ, fZX, fAX and fCX. As expected, the table functions from the 

81-error model reveal more complexity than the table functions from the 12-error model as it is 

better able to represent machine error patterns. Each set of five table functions in each column in 

Figure 5.10 are functions of a specific basic axis command: X, Y, Z, A or C-axis, respectively. 
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Figure 5.10. The 25 compensation table functions generated from the 81- and 12-error models. 

(81-error model: red continous line, 12-error model: blue long- and short-dashed line). 

 

The validation strategy’s probing results were processed to estimate the error models. The 

comparison of the 12-error parameters before and after using the compensation tables are shown 

in Figure 5.11. The compensated results for both the 12- and the 81-error model improve the 

effective geometry of the machine but the performance of the two models in improving the 12 

geometric errors parameters of the 12-error model are quite similar. Table 5-6 lists results for the 

translational volumetric error norm. The ability of the two models to improve the measuring 

accuracy of the machine is quantified by the mean estimated translational volumetric error norm. 

This value is 125 µm for the 12-error model before compensation whereas the mean translational 

volumetric error norm unexplained by the model is 21 µm, showing a potential of compensation 

of 104 µm if only the 12 error parameters could be compensated. However, after using the pseudo 

tables of the 12- and 81-error models, the mean estimated volumetric error norms are reduced to 

47 µm and 32 µm, respectively. As expected, by also modeling the intra-axis errors (81-error 
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model) the accuracy improves further although only by 12%, which suggests that axes 

misalignments and relative linear positioning errors are dominant. The mean unexplained 

volumetric error before compensation is 21 µm for the 12-error model. This indicates that the intra-

axis error modelling and compensation using the 81-error model did not significantly improve the 

machine.  

As seen in Table 5-5, the dominant errors for this machine tool are EC(OY)A, EB(OX)A and 

EY(OA)C as they exhibit the largest mean volumetric error norm caused by each estimated model 

parameters. Table 5-7 shows the error parameters magnitude before and after table-based error 

compensation and their standard deviation for setup “S” for three repetitions. Among the dominant 

errors, EC(OX)A and EY(OA)C are significantly reduced, after compensation, but not EB(OX)A. 

The mean volumetric error norm caused by each estimated model parameters for EB(OA)C and 

EC(OY)X are less than 5 µm before compensation. Since the magnitudes of the aforementioned 

errors before compensation are small, the effectiveness of the compensation model in 

compensating those errors is not clear. 

 

Figure 5.11. Comparison of the 12 error parameters before and after using the pseudo tables for 

the 81- and 12-error model compensation tables. 
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Table 5-6. The mean estimated translational volumetric error norm and mean unexplained 

translational volumetric error norm before and after compensation. 

 

Mean estimated 

translational 

volumetric error 

norm [µm] 

Mean unexplained 

translational 

volumetric error 

norm [µm] 

Before Comp. 125 21 

After Comp. 

(12-error model) 
47 21 

After Comp. 

(81-error model) 
32 19 

 

Table 5-7. The effectiveness of two pseudo complex tables (81- and 12-error model) in terms of 

reducing the magnitudes of the 10 error parameters and coefficients (Setup “S”).  

Symbol 

Error parameters magnitude 

before and after table-based 

error compensation 

Standard deviation 

Before 

Comp. 

After 

Comp. 

(12-error 

model) 

After 

Comp. 

(81-error 

model) 

Before 

Comp. 

After 

Comp. 

(12-error 

model) 

After 

Comp. 

(81-error 

model) 

EB(OX)A [mrad] 

EC(OY)A [mrad] 

EY(OA)C [μm] 

EA(OY)C [mrad] 

EB(OA)C [mrad] 

EC(OY)X [mrad] 

EA(OY)Z [mrad] 

EB(OX)Z [mrad] 

EYY1- EXX1 [μm/mm] 

EZZ1- EXX1 [μm/mm] 

1.290 

-0.984 

41.400 

0.073 

0.032 

0.150 

-0.480 

0.153 

-0.642 

-0.253 

-0.962 

-0.242 

-0.941 

0.002 

0.031 

0.094 

-0.047 

0.112 

0.037 

-0.047 

-0.893 

-0.173 

-0.551 

-0.013 

0.030 

-0.071 

-0.010 

-0.096 

0.013 

-0.044 

0.230     

0.031      

0.400       

0.003     

0.004      

0.003      

0.004     

0.003            

0.009                 

0.008 

0.182     

0.044      

0.822       

0.005     

0.003      

0.003      

0.005     

0.002            

0.009                 

0.006 

0.151     

0.028      

0.722       

0.006     

0.004      

0.004      

0.003     

0.004            

0.007                 

0.009 

 

The histogram of the volumetric error vector components in the X, Y and Z directions and their 

norms for the 60 probings of the validation strategy (setup S) before and after using the two 

compensation models are shown in Figure 5.12. The distribution shows a clear reduction in the 

volumetric errors. The norm of the volumetric errors before compensation is between 20 to 70 µm 

while this value is reduced to less than 30 µm after using the two compensation models. The root 
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mean square (RMS) of the volumetric errors in the X, Y and Z direction before compensation are 

87.3, 75.4 and 71.5 µm, respectively. Using the complex compensation tables generated from the 

12-error model reduces the RMS of the volumetric errors to 24.8, 18.8 and 22.1 µm in the X, Y 

and Z directions, respectively. When using the 81-error model for compensation purposes, the RMS 

of the volumetric errors in the X, Y and Z directions become 18.6, 11.9 and 21.5 µm, respectively.  

Hence, the LUTs constructed by the 12- and 81-error models are respectively efficient by 72% and 

74% in decreasing the volumetric errors.  

 

Figure 5.12. Histogram of the volumetric errors (EV) [mm] for 60 probings, before and after 

applying the compensation algorithm. (Before compensation: blue; after compensation 81-error 

model: green;  after compensation 12-error model: red)   

5.10  Conclusion 

The generation, use and performance of a 25 lookup table compensation scheme, exploiting the 

summation functions, is studied. The automated probing based RUMBA indirect calibration 
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provides the error parameters and coefficients for two distinct error models, a 12- and an 81-error 

model. These models are used to predict volumetric error twists at the nodes of a 5D grid. The table 

functions are univariate ordinary cubic polynomials. An extended Jacobian matrix relating the 

volumetric error twists at the node to the table function coefficients yields optimum coefficients. 

These functions are discretized to populate the LUTs. 

The criteria for the effectiveness of the procedure are the volumetric errors and the apparent 

machine error parameters of the 12-error model before and after compensation when the machine 

is in measurement mode. The compensation reduces the volumetric errors and all geometric errors. 

The 25 LUT scheme is appropriate to compensate most misalignments such as EC(OX)A, 

EY(OA)C, EA(OY)C, EA(OY)Z and the relative scale errors but had limited success in correcting 

EB(OX)A and EB(OX)Z. The RMS of the volumetric error vector components are reduced from 

87.3, 75.4 and 71.5 µm down to 24.8, 18.8 and 22.1 µm for the 12-error model and to 18.6, 11.9 

and 21.5 µm for the 81-error model in X, Y and Z directions, respectively. The effectiveness of the 

tables in reducing the volumetric errors is 72% and 74% respectively using the 12- and 81-error 

model.  
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5.13 Appendix 

The estimation results of the error parameters and coefficients (81-error model). 

X-axis Y-axis Z-axis A-axis C-axis 

Name Value Name Value Name Value Name Value Name Value 

EXX2 

EXX3 

EYX1 

EYX2 

EYX3 

EZX2 

EZX3 

EAX0 

EAX1 

EAX2 

EAX3 

EBX0 

EBX1 

EBX2 

EBX3 

6.09E-06 

1.29E-07 

1.18E-03 

-1.25E-05 

-3.08E-07 

8.84E-06 

3.65E-08 

-1.20E-02 

1.71E-05 

-1.05E-07 

-3.43E-09 

-1.60E-03 

3.39E-06 

-1.01E-07 

-1.73E-09 

EXY2 

EXY3 

EYY1 

EYY2 

EYY3 

EZY2 

EZY3 

EAY1 

EAY2 

EAY3 

EBY0 

EBY1 

EBY2 

EBY3 

EAY0 

EAY1 

EAY2 

EAY3 

-2.85E-08 

-9.54E-08 

1.16E-04 

1.01E-05 

-2.00E-08 

-5.46E-06 

1.05E-07 

4.33E-06 

1.05E-07 

-2.21E-11 

2.63E-04 

-2.69E-06 

-1.36E-08 

1.63E-10 

1.65E-02 

1.30E-06 

6.68E-08 

-6.86E-10 

EXZ2 

EXZ3 

EYZ2 

EYZ3 

EZZ1 

EZZ2 

EZZ3 

1.60E-05 

-4.16E-08 

-1.05E-04 

2.78E-07 

-4.00E-03 

3.09E-05 

-5.77E-08 

EXA1 

EXA2 

EXA3 

EYA0 

EYA1 

EYA2 

EYA3 

EZA1 

EZA2 

EZA3 

EAA0 

EAA1 

EAA2 

EAA3 

EAAb 

EBA0 

EBA1 

EBA2 

EBA3 

ECA1 

ECA2 

ECA3 

1.59E-02 

1.40E-03 

2.75E-02 

1.59E-01 

-7.04E-02 

-7.30E-01 

1.53E-02 

-1.55E-01 

3.24E-02 

2.35E-01 

1.82E-04 

2.34E-04 

-2.45E-04 

-7.92E-05 

3.11E-07 

9.85E-04 

-1.73E-02 

-2.53E-04 

2.91E-03 

-7.50E-04 

8.21E-03 

2.04E-04 

EXC1 

EXC2 

EXC3 

EYC1 

EYC2 

EYC3 

EZC1 

EZC2 

EZC3 

EAC1 

EAC2 

EAC3 

EBC1 

EBC2 

EBC3 

ECC1 

ECC2 

ECC3 

ECCb 

-8.48E-04 

5.45E-04 

1.14E-04 

-9.21E-04 

1.74E-04 

6.40E-05 

-9.57E-04 

2.83E-04 

8.51E-05 

2.12E-06 

2.07E-06 

4.48E-07 

1.45E-05 

-6.32E-06 

-1.51E-06 

-3.25E-06 

-2.66E-06 

-1.09E-08 

-2.17E-04 

 

Units examples: 

R and H are the linear axes: ERH0[mm], ERH1[mm/mm],  ERH2[mm/mm2],  ERH3[mm/mm3],  ERHb[mm] 

R is the rotary axis and H is the linear axis: ERH0[rad], ERH1[rad/mm],  ERH2[rad/mm2],  ERH3[rad/mm3],  ERHb[rad] 

R and H are the rotary axes: ERH0[rad], ERH1[rad/rad],  ERH2[rad/rad2],  ERH3[rad/rad3],  ERHb[rad] 

R is the linear axis and H is the rotary axis: ERH0[mm], ERH1[mm/rad],  ERH2[mm/rad2],  ERH3[mm/rad3],  ERHb[mm] 

 



87 

 

The estimation results for the error parameters and coefficients of the 12-error model obtained 

using the combined data from setups 1, 2, 3 and 4 used for calibration purpose. 

Symbol [unit] Value 

EB(OX)A [mrad] 

EC(OY)A [mrad] 

EY(OA)C [µm] 

EA(OY)C [mrad] 

EB(OA)C [mrad] 

EC(OY)X [mrad] 

EA(OY)Z [mrad] 

EB(OX)Z [mrad] 

EAAb [mrad] 

ECCb [mrad] 

EYY1-EXX1[µm/mm] 

EZZ1-EXX1[µm/mm] 

1.090 

-0.869 

42.100 

0.069 

0.029 

0.143 

-0.439 

0.114 

-0.013 

-0.024 

-0.607 

-0.216 
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6.1 Abstract 

A CNC table-based volumetric error compensation model is proposed to enhance a five-axis 

machine tool's accuracy that uses discretized trigonometric functions to populate the lookup tables 

(LUTs). The proposed model is inspired by the terms present in the Jacobian of commands of the 

target machine tool. It results in 23 look up tables using the multiplication and summation 

functionalities of the CNC table generator. Simulations and experimental validations are used to 

evaluate the proposed model's effectiveness for compensating each geometric error parameter and 

reduce volumetric errors. An indirect measurement method estimating machine tool error 

parameters, as well as volumetric errors, is used to characterize the machine tool before and after 

compensation. The new procedure is compared with a 25 lookup table approach where cubic 

polynomials and only the summation functionality are used. The trigonometric function-based 

scheme further reduces the maximum volumetric error norm by 32%. All effective geometric errors 

are reduced by at least 87%, bringing the end result closer to the theoretically exact inverse 

kinematics approach. 
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6.2 Introduction  

Industrial demand for producing parts with tight tolerances and high productivity requires keeping 

machine tools operating at accuracies close to their repeatability with minimum downtime for 

mechanical corrections. Machine tool inaccuracies may stem from geometric imperfections 

(Majda, 2012) resulting in volumetric errors. The geometric sources of volumetric errors are 

generally modeled using rigid body kinematics, mathematically described as homogeneous 

transformation matrices (Castro & Burdekin, 2005; Lei & Sung, 2008; Schwenke et al., 2009; Zhu 

et al., 2012).  

To calibrate the machine tool and estimate the error parameters and the volumetric errors, indirect 

methods have been proposed (Soichi Ibaraki & Knapp, 2012). Some indirect methods are laser 

interferometry approaches such as the LaserTRACER and laser trackers. The LaserTRACER uses 

the quadrilateration principle for machine calibration consisting of multiple stations or setups of a 

tracking laser interferometer and a cat’s eye type retro-reflector target installed at the tool holder. 

Each station measures the distances between the target and the LaserTRACER internal reference 

sphere (Schwenke et al., 2009). All 21 errors of the linear axes are estimated. A linearized set of 

equations is solved by a Gaussian fit (Härtig et al., 2009). Groos et al. (Groos et al., 2020) used the 

LaserTRACER to map the geometric errors with the effect of the ambient temperature and 

numerically compensated them. They claimed that some errors such as positioning and squareness 

errors of the linear axes are significantly influenced by the ambient temperature whereas 

straightness and rotational errors were much less affected. Zha et al. (Zha et al., 2020) used the 

LaserTRACER to calculate the geometric error in a 3-axis machine tool. The geometric error 

values were also verified with a conventional laser interferometer. They used cubic spline 

interpolation method to obtain volumetric error at the tool tip followed by modifying the G-code 

for machining a concave semi-spheroid test piece. The machining accuracy after compensation was 

reduced by 43%. Schwenke et al. (Schwenke et al., 2009) used the LaserTRACER to measuring 

the error motions of rotary axes on a five-axis machine tool. Laser trackers use two angles and a 

distance measure to produce spherical coordinates in one setup to estimate the machine tool 

geometric errors. Relying on angular readings reduces accuracy but using multiple setups 

overcomes this issue (Schwenke et al., 2005). Creamer et al. (J. Creamer et al., 2017; Jennifer 

Creamer et al., 2016) used the laser tracker to estimate the machine tool volumetric errors and to 
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generate compensation lookup tables. Another indirect calibration approach may use 

measurements of an artefact with proximity sensors or the on-machine touch trigger probe 

(Florussen & Spaan, 2007; Mayer, 2012; McHichi & Mayer, 2014; Md Mizanur & Mayer, 2015; 

Weikert, 2004). The R-test is used to calibrate the five-axis machine tool error parameters by 

measuring the 3D Cartesian deviations between the tool mounted sphere and the table mounted 

sensor array while maintaining their nominal coincidence during five-axis motion (Weikert, 2004). 

Probing data on precision spheres or on facets was also used for indirect estimation of geometric 

error parameters of five-axis machines (S. Ibaraki, Iritani, & Matsushita, 2010; Mayer, 2012; 

McHichi & Mayer, 2014; Md Mizanur & Mayer, 2015).  

Error compensation, without mechanical corrections of the machine structure, requires modifying 

the axis commands from their nominal values. As Sartori et al. (Sartori & Zhang, 1995) explain, 

there are two phases: Error measurement and then compensation. Kinematic-based error 

compensation may be done by user (Hocken, 1993; Xiang & Altintas, 2016) or may be achieved 

by G-code modifications may be achieved by G-code modifications (Givi & Mayer, 2014, 2016). 

Donmez et al. (Donmez, Bloquist, Hocken, & Liu, 1986) presented a general kinematic-based error 

compensation method using rigid body kinematics. The online volumetric error compensation is 

performed by correction of the control command within the control loop (Ramesh, Mannan, & Poo, 

2000a; H. Zhang et al., 2010).   

Some modern CNCs have compensation tables such as pitch error, backlash, straightness error, 

thermal error, sag and angularity error compensation. The tables enable the machine to be 

compensated automatically without the need for continuously adapting G-codes as a machine 

geometry changes. Positioning, straightness, and out-of-squareness error compensation are 

commonly used on CNC controllers. Recent CNC controllers are equipped with tables to 

compensate many machine tool errors ("Siemens Controller," SINUMERIK 840D/840Di/810D 

Extended Functions). In ISO/TR 16907 (ISO/TR16907, 2015), 13 compensation schemes are 

proposed each addressing a particular combination of geometric errors with a number of limitations 

and overlaps. From the document it appears that no scheme specifically addresses the eight inter-

axis errors but scheme L-SQR addresses linear axes inter-axis errors whereas scheme R-POR 

addresses rotary axes inter-axis errors. In ISO/TR 16907 (ISO/TR16907, 2015), grid tables are 

discussed while the spatial grid compensation tables are separate for the linear and the rotary axes. 

The 3D principle in generating 3D Error Compensation is assigning the correction values to each 
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grid point in the three-axis working volume. Once an axis position command set is entered to the 

controller, a trilinear interpolation on the table data entries is computed and added to the 

corresponding correction values to the entered command. This approach is commercially available 

e.g. as Fanuc’s “3D Error Compensation” for linear axes ("Fanuc Controller," Series 30i/Model 

A). Based on the rigid body model, M. Esmaeili and Mayer generated 3D error compensation grid 

from ISO 230-1 error parameters. They used SAMBA indirect calibration method for producing 

the tables and validated the compensation by a ball-bar spherical test (Esmaeili & Mayer, 2020).  

Compensation grid structure function is also available in a Siemens controller ("Siemens 

Controller," SINUMERIK 840D/840Di/810D Extended Functions) as grid compensation 

capability. Alternatively, based on tables containing axes geometric errors, position and orientation 

errors can be compensated using a rigid body kinematic model. The aforementioned compensation 

functionality is also available in multiple machine control systems such as Fagor as “Volumetric 

Compensation” ("Fagor Controller, 8070 / 8065 CNC "), Heidenhain as “KinematicsComp” 

("Heidenhain Controller: iTNC 530 "), Fidia as “Extended Screw Compensation” ("Fidia 

Controller: C10 - C20 - C20 Vision,") and Siemens as “Volumetric Compensation System” (AG, 

2010) which compensate for the three linear axis 21 machine error parameters. Another 

compensation feature provided by Fidia controller is called “Volumetric Axes Compensation” 

(VAC) to compensate the linear axes errors. The system can reach maximum accuracy for all linear 

as well as rotary axes errors by combining VAC and rotary axes error compensation. To calculate 

the rotary axes errors, this controller offers a head measuring system (HMS) calibration system 

("Fidia Controller: C10 - C20 - C20 Vision,"). ISO/TR 16907 does not mention the capability of 

combinatory tables and their associated table functions (ISO/TR16907, 2015). However, the 

Siemens controller 840D is equipped with such complex tables enabling the users to combine tables 

with summation and multiplication functionalities ("Siemens Controller," SINUMERIK 

840D/840Di/810D Extended Functions).  Based on ISO/TR 16907 (ISO/TR16907, 2015), common 

compensation table files contain the identification of the nominal position, the direction to be 

compensated, the input and the output axis. 

Although the capability of building the complex tables has been available in some controllers for 

many years, little scientific research is done in this field. Creamer et al. (Jennifer Creamer et al., 

2016) presented a volumetric error compensation scheme using 25 lookup tables (LUTs) generated 

from either of two models, a six degree-of-freedom model and an axis perturbation model and 
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concluded that the first model provided an effectiveness of 93.1% and the second model had an 

effectiveness of 92.2%. They used summation functionalities and considered univariate 

polynomials as the table functions. Later, Creamer et al. (J. Creamer et al., 2017) presented 

complementary research results regarding selecting the limited and constrained compensation 

tables applicable for machine tools having less available compensation tables in their controllers.  

The current study investigates the limitations of 25 summation tables based on cubic polynomials 

in compensating the effect of inter-axis errors and relative linear axis positioning errors. It also 

proposes and evaluates, both theoretically and experimentally, the use of multiplication and 

summation functionalities of tables with trigonometric table functions inspired by the machine tool 

kinematics. The five-axis machine tool geometric error parameters of its kinematic model are 

obtained using probings of a reconfigurable uncalibrated master ball artefact (RUMBA) as an 

indirect method. The criteria for evaluating the compensation effectiveness are the reduction of the 

volumetric error and the effective geometric error parameters after compensation. Section 6.3 

presents the machine tool error modeling. In section 6.4, the kinematic-based error compensation 

is explained. In section 6.5, the two table-based error compensation models are presented. Section 

6.6 uses simulation to analyse the performance of the kinematic-based and two table-based 

compensation schemes. The experimental validation is explained in section 6.7 followed by the 

experimental results and the associate discussions in section 6.8. Section 6.9 presents the summary 

and conclusion.   

6.3 Volumetric and geometric error modeling and calibration 

The target machine topology is wCAYfXZSt containing two rotary axes (A- and C-axis) and three 

linear axes (X-, Y- and Z-axis). The nominal foundation frame is at the intersection of the A- and 

C-axis. S, w and t are the spindle, workpiece and tool, respectively (Figure 6.1). 
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Figure 6.1. Target five-axis Kolibri machine tool, photo and topology. 

Assuming the machine without any error, the homogeneous transformation matrix (HTM) of the 

nominal tooltip position and orientation with respect to the nominal workpiece position and 

orientation is,  

1( ) ( )n

n n n

w f f

t w t

−=T T T  (34) 

where the first parenthesis contains the HTM of the workpiece position and orientation relative to 

the foundation frame and the second one is the HTM of the tooltip position and orientation relative 

to the foundation frame. The n subscript stands for nominal. The real machine has errors 

categorized either as inter-axis (axis location) errors or as intra-axis (error motion) (Soichi Ibaraki 

& Knapp, 2012). The inter-axis errors (axis location) are the position and orientation errors between 

two adjacent axes. The intra-axis errors (error motion) are the errors within one axis (Soichi Ibaraki 

& Knapp, 2012). These two types of errors are called machine error parameters in this paper. The 

intra- and inter-axis errors lead to linear and angular displacement error of the tool tip relative to 

the workpiece namely volumetric errors. Assuming rigid body elements with six degrees of 

freedom, the kinematic model of the actual, and so erroneous, machine tool including intra-axis 

and inter-axis errors is, 

1( ) ( )a

a a a

w f f

t w t

−=T T T  (35) 
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where the a subscript stands for actual. To calibrate the machine tool with an indirect method, error 

models are used (Abbaszadeh-Mir et al., 2002; Mayer, 2012; McHichi & Mayer, 2014; Md 

Mizanur & Mayer, 2015; Mohamed Slamani et al., 2010). The error model used here is a 10-error 

model (Table 6-1) containing 8 inter-axis machine error parameters and two scale mismatches 

(relative gains only) (Mayer, 2012).  

Table 6-1. The studied machine error parameters symbol and their definitions. 

Error symbol Error definition 

EB(0X)A 

EC(0Y)A 

EY(0A)C 

EA(0Y)C 

EB(0A)C 

EC(0Y)X 

EA(0Y)Z 

EB(0X)Z 

EYY1- EXX1 

EZZ1- EXX1 

Out-of-parallelism angle around Y of the A-axis relative to the X-axis 

Out-of-squareness angle of the A-axis relative to the Y-axis 

Y offset between the C and A axes 

Out-of-squareness of the C-axis relative to the Y-axis 

Out-of-squareness of the C-axis relative to the A-axis 

Out-of-squareness of the X-axis relative to the Y-axis 

Out-of-squareness of the Z-axis relative to the Y-axis 

Out-of-squareness of the Z-axis relative to the X-axis 

Positioning error gain mismatch of the Y-axis relative to the X-axis 

Positioning error gain mismatch of the Z-axis relative to the X-axis 

 

The machine error parameters are indirectly estimated from on-machine touch trigger probings of 

a reconfigurable uncalibrated master balls artefact (RUMBA) for various angular position 

combinations of the two machine tool rotary axes (Erkan, Mayer, & Dupont, 2011). The RUMBA 

artefact is assembled on the machine table. Because the artefact contains no calibrated length, only 

relative scale gains of the linear axes are estimated. The use of a single ball in the probing procedure 

instead of multiple balls constitutes a chase-the-ball process (Bringmann & Knapp, 2006). To 

calculate the machine error parameters indirectly, a system of linear equations is obtained 

considering the simplifications of small errors, i.e. sin(error)=error and cos(error)=1 and products 

of errors are neglected. So, the raw volumetric error (
RVE ) and the machine error parameters and 

setup errors (
PE ) are related to each other by the generated Jacobian of error parameters, PJ , as 

( )( )RV P PE J E=  (36) 

Eq. (6) is solved to estimate
PE .  
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6.4 Kinematic-based (K-B) error compensation   

K-B volumetric error compensation is achieved by reverse kinematics where the errors of the 

machine are compensated by small corrections of the axis commands. Based on the work of Givi 

and Mayer (Givi & Mayer, 2014), to bring the tool tip to the desired location, the required tool tip 

volumetric error compensation is minus the tool tip volumetric error, assuming small volumetric 

errors. Knowing the required volumetric error compensation for a set of commands (qX, qY, qZ, qA, 

qC), the required axis command correction, [     ]X Y Z A Cq q q q q      , is calculated by solving 

[      ] [     ]XCV YCV ZCV ACV BCV CCV q X Y Z A CE E E E E E J q q q q q =       (37) 

where Jq, the control Jacobian, is a 6×5 matrix of the first partial derivatives of the volumetric error 

compensation to the axis command corrections. EXCV, EYCV, EZCV, EACV, EBCV and ECCV are the 

required volumetric error compensation in the X, Y, Z, A, B and C directions, respectively. Eq. 

(37) is solved iteratively to obtain a numerically accurate solution for the axis command 

corrections. The process of evaluating the compensation capability of the K-B error compensation 

is illustrated in Figure 6.2. The compensation effectiveness compares the machine error parameters 

before and after applying the compensation as, 

(  comp.) (  comp.)

(  comp.)

-
Compensability=

p Before p After

p Before

E E

E

 

(38) 

 

Figure 6.2. The process of evaluating the compensation capability of the K-B error compensation. 
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6.5 Table-based error compensation 

The LUTs are the tables generated in the controllers to improve the machine tool accuracy. In the 

following sections, two LUT models are studied in order to assess their capability in compensating 

the volumetric error and the machine error parameters. Because the target machine tool does not 

have the necessary lookup table functionalities, pseudo lookup tables are generated and used 

offline. 

6.5.1 Lookup tables preliminary model, 25 table-based error compensation 

(25Poly-T) 

In this model, 25 lookup tables, five tables per axis are combined together by summation 

functionality to correct the associated axis command. Each table function is simulated by a 

univariate cubic polynomial function of one of the five axes’ coordinate. So, each axis command 

correction is the sum of five univariate third degree polynomial functions, one for each basic axis 

(Jennifer Creamer et al., 2016).  
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 (39) 

Each command correction function is then discretized to fill one LUT. Figure 6.3 shows the LUTs 

per axis and the relationship between the basic axis commands (the initial commands) and a 

particular corrected axis. The corrected axis can be X, Y, Z, A or C. The weights are set to one in 

this model.  
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Figure 6.3. A correction axis, here represented as I, is the sum of five basic axis LUTs (25 Poly-T 

compensation scheme). 

Since the numbers of entries for the LUTs are limited, a linear interpolation is applied for 

commands located between the commands available in the LUTs. To estimate the unknown 

coefficients of the basic axes’ polynomials, Eq. (13) is developed by introducing the polynomials 

functions as, 
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The aXx0, aXx1, aXx2, …, aCc0, aCc1, aCc2, aCc3 are the unknown polynomial coefficients used for 

generating the tables and from now on called table coefficients. They have three subscripts from 

left to right, the corrected axis, the basic axis and the degree of the basic axis command value. 

Constructing the extended control Jacobian in which the compensated volumetric errors are directly 

related to the table coefficients results in, 

 _ 0 1 2 1 2 3[ ]       
TT

XCV YCV ZCV ACV BCV CCV q extended Xx Xx Xx Cc Cc CcE E E E E E J a a a a a a=  (41) 

where 
_q extendedJ  is the extended control Jacobian containing the first partial derivatives of the 

volumetric error to the lookup table coefficients.  
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6.5.2 Error compensation lookup tables enriched model, 23 table-based error 

compensation (23Trigo-T) 

The second lookup table model consists in using the summation and multiplication functionalities 

of the tables. This model is inspired by the nominal kinematics of the five-axis machine tools in 

which the control Jacobian matrix and its inverse also include some multiplications of the axes 

positions or axes positions functions. For instance, the nominal control Jacobian matrix for a five-

axis machine tool with the topology of wCAYfXZt is,  
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 (42) 

and its pseudoinverse is, 
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 (43) 

where qX, qY, qZ, qA and qC are the axis positions of the X, Y, Z, A and C axes, respectively. The 

columns in the control Jacobian associated with the rotary axes commands contain multiplication 

and trigonometric functions. Hence, it is hypothesized that the command corrections may perform 

better if it contains such terms.  
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Using the possible combinations of trigonometric terms in the compensation model, the command 

corrections functions are, 

2 2
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(44) 

where the I letter is substituted with X, Y or Z. The trigonometric terms are approximated by 

truncated Taylor series. This process is not part of table generation but part of the optimization and 

solution while using the Matlab® function Fitnlm to calculate the coefficients. In total, 69 table 

coefficients are estimated. The objective functions are the discrepancies between the axes 

corrections obtained by the 23Trigo-T model and those obtained with the K-B model. The input 

data base for the optimization is a 5D grid considering 10 nodes per axis for a total of 105 grid 

nodes (set of nominal commands). Generating the lookup tables follows the rules of the Siemens 

controller interpolatory compensation functions (Weikert, 2004) where just one weight can be 

assigned to each table and each table can have one base axis (input axis) and one compensation 

axis (output axis). Having calculated the coefficients, 23 tables (Figure 6.4) are generated. 
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Figure 6.4. Schematic of the combinations of lookup tables outputs for a five-axis machine tool 

with topology of wCAYFXZt (23Trigo-T). 

For a set of command, the linear interpolation is applied to each LUT’s entry and the command 

corrections are calculated by, 
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where LUT1 to LUT23 are the interpolated outputs of the 23 lookup tables.  

6.5.3 Evaluation of the proposed LUT schemes in compensating geometric 

machine error parameters  

The evaluation process of the proposed LUT scheme is illustrated in Figure 6.5. The estimated 

machine error parameters (Ep) from the calibration RUMBA test are used to predict the volumetric 

errors (VE) at the grid nodes of nominal joint commands using the forward kinematic model of Eq. 
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(2). The grid node nominal joint commands and their associated K-B command corrections are 

used to generate the coefficients of the 25Poly-T and the 23Trigo-T table function coefficients from 

which 25 tables for 25Poly-T and 23 tables for 23Trigo-T are generated. The number of table 

entries for each table are 10. For validating the compensation procedure, a chase-the-ball 

calibration test is run on the machine tool. The probing data is processed to estimate the machine 

error parameters before compensation. The probing data is also compensated by applying linear 

interpolation on the 25 or 23 lookup table entries. The machine error parameters after compensation 

are obtained by re-estimating the compensated probing data. The compensation effectiveness is 

calculated by Eq. (7).  

 

Figure 6.5. The process of generating the 25Poly-T and 23Trigo-T and verifying the effectiveness 

of the LUTs in correcting machine error parameters. 

6.6 Mathematical model validation 

Ten case studies are conducted, each simulating one non-zero machine error parameter as shown 

in Table 6-2. The processes shown in Figure 6.2 and Figure 6.5 are run but with simulated probing 

data without considering the RUMBA or Chase-the-ball calibration tests.  
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Table 6-2. The values of the simulated geometric error parameters for the ten case studies to 

explore the effectiveness of the table-based as well as the kinematic-based error compensation. 

Error 

 Parameter 

Case Studies (C. S.) 

C. 

S. 1 

C. S. 

2 

C. S. 

3 

C. S. 

4 

C. S. 

5 

C. S. 

6 

C. S. 

7 

C. S. 

8 

C. S. 

9 

C. S. 

10 

EB(0X)A [mrad] 

EC(0Y)A [mrad] 

EY(0A)C [µm] 

EA(0Y)C [mrad] 

EB(0A)C [mrad] 

EC(0Y)X [mrad] 

EA(0Y)Z [mrad] 

EB(0X)Z [mrad] 

EYY1- EXX1 [µm/mm] 

EZZ1- EXX1 [µm/mm] 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

10 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.04 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.04 

Figure 6.6 shows the compensation effectiveness of individual machine error parameters using the 

K-B, 25Poly-T and 23Trigo-T compensation schemes. The maximum and the mean norm of the 

estimated volumetric error vectors (VE) before and after applying the three compensation models 

are shown in Figure 6.7. The largest simulated maximum and mean VE norms before compensation 

are 38 and 35 µm, respectively where the ranges are 260, 420 and 240 mm for X, Y and Z, 

respectively. As anticipated, all error parameters and the maximum and the mean norms of VEs 

are compensated using K-B error compensation since it is kinematically correct. As seen in Figure 

6.6. 25Poly-T and 23Trigo-T error compensation models are able to compensate EA0C, EY0C, 

EA0Z, EYY1- EXX1 and EZZ1- EXX1. Their associated maximum and mean norms of VEs are 

likewise compensated (Figure 6.7). Some improvements are seen in EB0A (Figure 6.6, (C.S.1)) 

after using 25Poly-T. However, by applying 25Poly-T, the global minimizations of all simulated 

volumetric error vectors with a least square approach distributes EB0A between EB0A, EB0C and 

EY0C. Its maximum and mean norms of VEs are respectively reduced to about 23 µm and 13 µm 

(Figure 6.7). Similarly, EB0A, EC0A, EB0C, EC0X and EB0Z are partly reduced resulting in 

increasing the other errors in the model after applying the compensation, which is not desirable 

(Figure 6.6, (C.S.1), (C.S.2), (C.S.5), (C.S.6) and (C.S.8)). Values for the maximum and the mean 

norms of VEs for the aforementioned errors confirm that the compensation is partial (Figure 6.7). 

The trigonometric function based model 23Trigo-T overcomes the weaknesses of the 25Poly-T in 

correcting the EB0C, EB0A, EC0A, EC0X and EB0Z without significant increase in the other error 

parameters. The maximum and the mean norm of VE are reduced to less than 1 µm using the 

23Trigo-T (Figure 6.7). 
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Figure 6.6. Error parameters before and after kinematic-based, 25Poly-T and 23Trigo-T 

compensation schemes for case studies (C.S.) 1 to 10 as defined in Table 6-2.  
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Figure 6.7. Maximum and mean norm estimated volumetric error vectors before and after 

kinematic-based (K-B), 25Poly-T and 23Trigo-T volumetric error compensation. 

 

In order to gain some idea of the potential generality of the chosen terms and the compensation 

model, another simulation is run for a five-axis machine with the topology wCAYfXZt where the 

A rotary axis has an angle of 45˚ with the X-axis (Figure 6.8). The process shown in Figure 6.5 is 

used for generating the 23 lookup tables to compensate eight inter-axis, two spindle and three scale 

errors. The same table functions (Eq. (31)) and the same combinatory of the tables (Eq. (33)) are 

used to produce such lookup tables. The simulation results show that more than 99% of the 

maximum and the mean norm of the volumetric errors are compensated. The geometric errors are 

also significantly dropped by more than 99%. The simulation results support the efficacy of the 

proposed table-based compensation scheme (23Trigo-T) for compensating geometric and 

volumetric errors for another five-axis machine tool with nominally non-orthogonal axes.  

 

 

Figure 6.8. Schematic of the non-orthogonal five-axis machine tool (K2X8-Five, Huron) 
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6.7 Experimental test  

The experimental test involves calibration, generating the LUTs and evaluating the compensation 

effectiveness. The stroke length of the machine tool axes are 260, 420 and 240 mm for the X-, Y- 

and Z-axis, respectively. The maximum rotations of the A- and C-axis are 240° and 360°, 

respectively but the accessible probing angles for indexing the rotary axes are from −55° to +55° 

and from 0° to 330° for the A- and C-axis, respectively. The error parameters are estimated using 

probing data from a RUMBA made of four master ball positions mounted and probed sequentially, 

in four separate setups named 1 to 4, which reduces the risks of collisions and obstruction during 

probing operations. The ball positions form a quadrilateral as shown in Figure 6.9. The master balls 

installed in setups 1 and 2 have a height of 37.5 mm from the base to the center of the ceramic 

balls, and the master balls installed in setups 3 and 4 have a height of 47.5 mm. Both balls have a 

diameter of 20 mm. For each setup, the master ball is measured with the measurement strategy 

detailed in Table 6-3. The two rotary axes are indexed in such a way as to cover as much of the 

total stroke of the rotary axes. Since no reference length is measured, it is not possible to distinguish 

the scale errors with respect to the international meter as was pointed out in (Erkan et al., 2011). 

However, the relative scale gain errors are estimated.  

 

 

Figure 6.9. The setups for machine tool calibration and compensation validation.  
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The touch probe Hexagon IRP40.50 with a probe tip radius of 0.5 mm and a total length of 74 mm 

is used for both calibration and compensation effectiveness validation. The five setups and the 

touch probe are shown in Figure 6.9. Each ball is measured using five points, one at the pole in Z 

and four around the equator in an equidistant pattern that is rotated 45° relative to the machine Z 

axis to avoid potential collisions with the ball support. The measurement for one master ball is 

shown in Figure 6.10. 

 

 

Figure 6.10. The measurement of the master ball (ball approach point, first, second, third, fourth 

and fifth probings). 

The compensation validation setup, labeled “S”, constitutes a “Chase-the-ball” procedure 

(Bringmann & Knapp, 2006) with a single master ball of diameter 10 mm and a height of 37.5 mm. 

The rotary axes indexations, shown in Table 6-3, allow estimating the machine error parameters. 

The setup is shown in Figure 6.9. The measurement process for calibration and compensation 

validation was repeated three times, once for each of three consecutive days, while the average 

temperature in the laboratory was between 21 and 22℃. Each ball probing lasted 1 min 50 s. The 

calibration test lasted 77 min for 42 A and C rotary axis indexation pairs while the compensation 

validation test lasted 110 min for 60 indexation pairs. 
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Table 6-3. The A and C indexations pairs for calibration and compensation validation tests. 

Strategy for 

measurement 
 Rotary axes indexations (c° , a°) 

Calibration 

test  

(setup 1,2,3,4) 

(60, 15) (180, 30) (280, 45) (340, 50) (240, 40) (120, 20) (0, 0)  

(-100, -20) (250, -40) (350, -55) (-310, -55) (-40, -25) (180, 0) (280, 0) 

(360, 0) (320, 0) (210, 0) (-160, 0) (-300, 0) (-220, 0) (-50, 0) (0, 15)  

(0, 40) (0, 55) (0, 45) (0, 30) (0, -20) (0, -45) (0, -55) (0, -35) (-30, 44) 

 (-208, 55) (-318, 36) (45, 30) (326, 21) (290, 9) (-12, -16) (-304, -54) 

 (-10, -40) (100, -17) (197, -38) (345, -5) 

Compensation 

test  

(setup “S”) 

(55, 8) (120, 16) (180, 40) (240, 38) (300, 55) (330, 50) (270, 45)  

(210, 36) (150, 23) (90, 12) (30, 4) (-30, -5) (-90, -12) (-150, -28) 

 (-210, -31) (-270, -48) (-330, -52) (-300, -50) (-240, -43) (-180, -34)  

(-120, -23) (-55, -11) (140, 8) (190, 18) (250, 12) (290, 30) (310, 22)  

(10, 47) (50, 24) (100, 38) (160, 41) (200, 53) (-45, -34) (-140, -43)  

(-170, -50) (-220, -20) (-280, -15) (-310, -10) (-70, -5) (135, -16)  

(280, -50) (94, -36) (20, -10) (200, -26) (-40, 28) (-300, 50) (-280, 20) 

(-100, 37) (-280, 10) (0, 0) (90, 0) (240, 0) (300, 0) (180, 0) (45, 0)  

(-45, 0) (-180, 0) (-300, 0) (-240, 0) (-90, 0) 

6.8 Results and discussions 

The probing test data of the first to fourth calibration setups are used to estimate the ten machine 

tool error parameters by iteratively solving Eq. (3). The Jacobian of error parameters has a 

normalized condition number of 206. Table 6-4 lists the mean values and standard deviations of 

the estimated geometric machine error parameters of three test replicates. The mean of the 

volumetric error norms is 62.1 µm while the mean of the unexplained volumetric error norms of 

the tool tip relative to the master ball, which is the portion that the estimated parameters cannot 

predict, is 4.6 µm. EY(0A)C, EB(0X)A, EC(0Y)A, EA(0Y)Z, EY(0A)C and EYY1-EXX1 are 

amongst the largest errors. 

Table 6-4. The calibration test results (RUMBA test). 

Symbol 

Unit  

EB0A 

[mrad]    

EC0A 

[mrad]    

EY0C 

[µm]      

EA0C 

[mrad]    

EB0C 

[mrad]    

EC0X 

[mrad]    

EA0Z 

[mrad]    

EB0Z 

[mrad]  

   

EYY1-

EXX1      

[µm/mm]             

EZZ1-

EXX1 

[µm/mm]             

Mean   1.09       -0.86        42.10 0.07 0.03 0.14 -0.44 0.11 -0.61 -0.22 

 0.120 0.043 0.900 0.001 0.005 0.004 0.002 0.002 0.001 0.001 

 

Table 6-5 lists the estimated mean values for the same ten error parameters and their associated 

standard deviations using the data from setup “S”, which will be used for validation, gathered 

before table-based compensation. The condition number for the Jacobian is 216. They are close to 
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the calibration values. The estimated error parameters are similar to those obtain from the first four 

setups which suggests that the potential for calibration of the validation test is high. 

Table 6-5. The validation results before compensation (Chase-the-ball). 

Symbol 

Unit  

EB0A 

[mrad]    

EC0A 

[mrad]    

EY0C 

[µm]      

EA0C 

[mrad]    

EB0C 

[mrad]    

EC0X 

[mrad]    

EA0Z 

[mrad]    

EB0Z 

[mrad]  

   

EYY1-

EXX1      

[µm/mm]             

EZZ1-

EXX1 

[µm/mm]             

Mean   1.29       -0.98        41.40 0.07 0.03 0.15 -0.48 0.15 -0.64 -0.25 

 0.230 0.031 0.400 0.003 0.004 0.003 0.004 0.003 0.009 0.008 

A grid having ten points per axis for a total of 105 grid nodes was built as the input data structure 

for generating the LUTs. The grid area covers the calibration range of the axes to avoid 

extrapolation. The error parameters listed in Table 6-4 are used to generate the LUTs for the 

25Poly-T and 23Trigo-T models. The tables have 100 command entries with their associate 

corrections. The processes of generating the LUTs are programmed in Matlab®.  

The capability of the generated compensation tables for the validation data, setup ”S”, is also 

evaluated by processing compensated probing data to estimate the effective, or apparent, geometry 

of the machine. The four sets of estimated error parameters, before compensation, after K-B 

compensation, after 25Poly-T compensation and after 23Trigo-T compensation are shown in 

Figure 6.11. 

 

Figure 6.11. The effective geometric machine error parameters before and after pseudo 

compensation of the probing results for the validation test, “S” data, before compensation and 

after applying each of the three error compensation methods: K-B, 25Poly-T and 23Trigo-T. 

The compensation effectiveness values are listed in Table 6-6. All compensation effectiveness 

values are above 88% for the 23Trigo-T. The compensation effectiveness of dominant error EB0A 

using the 25Poly-T is 26% whereas it is 89% with the 23Trigo-T. Another significant compensation 
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effectiveness improvement, although the parameter value is quite small, is seen in EB0C where the 

effectiveness is increased from 3% using 25Poly-T to 88% using 23Trigo-T. Significant 

improvements are also seen for EB0Z and EC0X. Significant relative improvements are seen both 

for large and small error parameters. In comparison with the 25Poly-T model, the 23Trigo-T 

appears to better mimics the K-B theoretical compensation model. The mean norm of the 

volumetric errors is 62.1 µm without any compensation. Using 25Poly-T yields a mean volumetric 

error norm of 23.3 µm. However, this value is further reduced to 4.1 µm for the 23Trigo-T, close 

to the 3.2 µm achieved by the theoretically exact kinematic model, K-B. The maximum volumetric 

errors norm before and after compensation using 25Poly-T and 23Trigo-T compensations are 

respectively 102.8, 38.2 and 7.2 µm (Table 6-7), whereas, K-B achieves 5.3 µm. 

 

Table 6-6. The compensation effectiveness for all three error compensation methods: K-B, 

25Poly-T and 23Trigo-T Eq. (7). 

Error 

parameter 

 
Compensation effectiveness 

 K-B error 

compensation 

25Poly-T error 

compensation 

23Trigo-T error 

compensation 

EB0A 

EC0A 

EY0C 

EA0C 

EB0C 

EC0X 

EA0Z 

EB0Z 

EYY1- EXX1 

EZZ1- EXX1 

 89% 

98% 

99% 

98% 

90% 

93% 

98% 

87% 

94% 

93% 

26% 

76% 

98% 

98% 

3% 

38% 

90% 

27% 

94% 

81% 

89% 

98% 

98% 

98% 

88% 

89% 

94% 

87% 

94% 

91% 

 

Table 6-7. The mean and maximum norm of the volumetric error vectors before compensation 

and after K-B, 25Poly-T and 23Trigo-T error compensation.  

 

Before 

compensation 

(µm) 

K-B error 

compensation 

(µm) 

25Poly-T error 

compensation 

(µm) 

23Trigo-T 

error 

compensation 

(µm) 

Mean volumetric error norm 

(‖𝑉𝐸‖̅̅ ̅̅ ̅̅ ̅) 
Maximum volumetric error norm 

(max‖𝑉𝐸‖) 

62.1 

 

102.8 

3.2 

 

5.3 

23.3 

 

38.2 

4.1 

 

7.2 
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6.9 Conclusion 

A trigonometrically enriched scheme using multiplication and summation functions is proposed in 

this paper to compensate the volumetric errors (VE) and the geometric error parameters. The 

enriched scheme finds its inspiration in the mathematical terms of the symbolically generated 

inverse of the control Jacobian. The 25Poly-T is generated using univariate polynomial functions 

of the five basic axes. The 23Trigo-T scheme uses trigonometric terms as can be found in the 

Jacobian of commands and its inverse. The new scheme performance is compared to the 25Poly-T 

scheme as well as to the theoretically exact inverse kinematics based (K-B) error compensation 

model.  Each compensation model is used to offline correct the on-machine measurements of a 

Chase-the-ball type test for validation purposes. The test data is used, before and after correction, 

to estimate the effective machine error parameters of the machine as well as its volumetric errors. 

The compensation effectiveness of the three schemes is quantified by the reduction in the effective 

machine error parameters and also the volumetric errors. 

Error parameters EB0A, EB0C, EC0X and EB0Z which were compensated by at most 38% by the 

25Poly-T are compensated by at least 87% by the 23Trigo-T schemes, a result similar to that for 

the K-B error compensation. The maximum volumetric error norm for the non-compensated data 

and for the 25Poly-T, 23Trigo-T and K-B compensation schemes are respectively 102.8, 38.2, 7.2 

and 5.3 µm, which represents a reduction by 92% for the proposed 23Trigo-T scheme which is a 

further reduction of 32% compared to the 25Poly-T scheme and is only 2% less than the 

performance of the K-B theoretically exact compensation scheme. 
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 ARTICLE 4: CNC TABLE BASED COMPENSATION OF 

INTER-AXIS AND LINEAR AXIS SCALE GAIN ERRORS FOR A FIVE-

AXIS MACHINE TOOL FROM SYMBOLIC VARIATIONAL 

KINEMATICS 
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NOTE: Based on the paper resubmitted to the International Journal of CIRP Annals (2021) 

7.1 Abstract 

A compensation lookup tables (LUTs) scheme is programmed using a CNC’s indigenous LUTs 

capability to virtually correct geometric error parameters of a five-axis machine tool. Using 

variational kinematics, the geometric errors are forward propagated to the tool tip and the required 

axis command corrections are obtained in closed form by inverse kinematics. 40 lookup tables and 

multiplication and summation functionalities compensate ten inter-axis errors and three linear 

positioning gain errors. Validation tests on a wCAYFXZt topology machine with a 45° angle 

between the C- and A-axis show significant reductions in dominant geometric errors and a 79% 

improvement in volumetric errors.  

Keywords: Compensation, machine tool, lookup table 

7.2 Introduction  

Machine tool geometric error measurement and compensation help to produce good parts (Soichi 

Ibaraki & Knapp, 2012; Schwenke et al., 2008). Various compensation options are implemented 

within the CNC by original equipment manufacturers (OEMs). ISO/TR 16907 (ISO/TR16907, 

2015) lists a number of potential options. However, most published research covers user 

implementation with means independent from the OEM. Modifying the G-code axis commands on 

the basis of forward and inverse kinematic models (R. M. D. Mahbubur, J. Heikkala, K. 

Lappalainen, & J. A. Karjalainen, 1997) (Givi & Mayer, 2014) does not directly improve the 

machine and create program traceability issues as the code must be changed for different machines 

and as a particular machine errors change. Forward and inverse machine kinematic models based 



115 

 

on screw theory (Xiang & Altintas, 2016) was implemented in an open CNC, as opposed to an 

OEM CNC, to predict the volumetric error and generate axis corrections. Some CNCs allow users 

to define lookup tables input and output with the option to combine them, such as summation and 

multiplication, through a specific language, but there are no guidelines on what scheme will 

effectively compensate specific geometric errors.  A summation scheme was proposed (Jennifer 

Creamer et al., 2016), using 25 compensation lookup tables (LUTs), where each table is modelled 

as a univariate polynomial to compensate, in a least squares sense, the predicted volumetric errors 

due to estimated amalgamated inter- and intra-axis errors modelled as polynomials. Each axis 

correction is the sum of five LUTs outputs, one per axis. Alternatively, the LUT polynomials are 

directly generated to explain the measured volumetric errors. Validation is conducted using laser 

trackers on a large swivel head gantry.  Cross LUTs multiplication was also used for a five axis 

gantry for amalgamated (J. Li et al., 2019) without distinguishing between inter- and intra-axis 

geometric error sources.  

This paper proposes the concept of a variational forward inverse kinematics LUTs scheme (FIK-

LUT), implementable using a CNC’s indigenous LUT programming language, to compensate for 

the eight inter-axis errors defined in ISO 230-1 (ISO230-1, 2012), the two spindle translational 

offsets and three linear axes positioning gain errors. The CNC performs the compensation 

automatically as directed by the programmed scheme. A reduction in both the volumetric errors 

and in the effective geometric error sources is sought. In section 7.3, the linearized forward and 

inverse model is presented with its use to form the FIK-LUTs schemes using summation, 

multiplication and weights. The scheme is validated on a machine with a nominal 45 degree 

between its A- and C-axis in Section 7.4. Finally, the conclusion follows in section 7.5. 

7.3 Look up table scheme construction 

As an example, the FIK-LUTs scheme for the X-axis correction is shown in Figure 7.1. 
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Figure 7.1. The 13 FIK-LUTs scheme for X-axis correction. 

The FIK-LUTs scheme is designed for a particular machine topology and the geometric errors to 

be compensated. The target machine tool has the topology wCAYfXZt with its A-axis tilted by -

45° around Y with w, f and t as the workpiece, foundation and tool frames, respectively. 

The 13 geometric errors (Mayer, 2012) for compensation are listed in Table 7-1 and shown in 

Figure 7.2. The purpose of the compensation is to provide the CNC with the means to produce a 

set of corrected axis command, for the five mechanical axes, denoted by, 

c = + q q q  (46) 

where q and qc, are the nominal and compensated axis command sets, respectively and q is the 

axis command corrections set 

T[ ]X Y Z A C =     q . (47) 
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Table 7-1. The error parameters in 13-error model. 

Description Symbol  

Inter-axis errors 

Squareness error of the A-axis relative to the X-axis 

Squareness error of the A-axis relative to the Y-axis 

Y-offset between the C- and A-axis 

Squareness error of the C-axis relative to the Y-axis 

Squareness error of the C-axis relative to the A-axis 

Squareness error of the X-axis relative to the Y-axis 

Squareness error of the Z-axis relative to the Y-axis 

Squareness error of the Z-axis relative to the X-axis 

Offset of the spindle in X 

Offset of the spindle in Z 

Intra-axis errors 

Positioning linear errors of the X axis 

Positioning linear errors of the Y axis 

Positioning linear errors of the Y axis 

 

EBOA   

ECOA  

EYOC  

EAOC  

EBOC  

ECOX  

EAOZ  

EBOZ  

EXOS  

EZOS  

 

EXX1 

EYY1 

EZZ1 
 

 

 

Figure 7.2. Kinematic diagram of the target machine tool with the 13 geometric error parameters. 

The spindle is modelled as a B-axis (not otherwise present on this machine) 

The FIK-LUT scheme uses equations of the required q as functions of q and the geometric error 

parameters, EP, in order to compensate for the volumetric errors that they induce. EP is forward 

propagated to the tool tip to yield the complete volumetric error twist (position and orientation), 

EV, using the Jacobian of geometric errors under small error assumption,  
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V 13-error P=E J E  (48) 

where  

V XV YV ZV AV BV CV[ ]TE E E E E E=E  (49) 

and J13-error contains inter- and intra-axis parts, 

 13-error inter-axis intra-axis=J J J . (50) 

The inverse of the Jacobian of commands produces the required q for a given EV (Lei & Hsu, 

2003b) 

comman VdΔ +=q J E  
(51) 

Symbolic forms of those equations forms the basis for building the FIK-LUT. 

7.3.1 Forward kinematic model 

The nominal forward kinematics is modelled as a product of homogenous transformation matrices 

(HTMs), T, for each pair of adjacent components from the workpiece to the tool through each 

machine axes 

0 0 0

0 0 0

0 0

0 0

1[( ) ( ) ( ) ( )]

[( ) ( ) ( )]

n

n n

n

w Y A CF Y A C

t Y Y A A C C w

X ZF X Z

X X Z Z t

−



=T T T T T T T T

T T T T T
 

(52) 

where wn and tn are the nominal locations of the workpiece and tool and for example Y0 and Y are 

the nominal axis locations before motion and its nominal after motion. 

7.3.2 Jacobian of geometric error parameter 

The Jacobian matrix is obtained symbolically using transport matrices considering the frame of 

action of each inter- and intra-axis errors and its effect at the tool (Abbaszadeh-Mir et al., 2002; Y 

A. Mir et al., 2002). A transport matrix, 2C1,  is a 6×6 matrix used to propagate the effect of a small 

rotation and  translation occurring at a location 1 of a rigid body to another location 2 rigidly 
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attached to the former. The transport matrix (or velocity transformation) is obtained as (Craig, 

1974), 

1 T 1 T 1 T

2 2 3 3 2 o2, 3 1

1 1 T

3 3 2 3 3

[ ]

0

R R P
C

R

 

 

 
=  
 

 (53) 

where 
1

2 3 3R   and 
1

o2,3 1P   are the rotation matrix and the origin vector between frames 1 and 2, 

respectively. 
1

o2,3 1P    is 

1 1

o2, o2,

1 1 1

o2, 3 1 o2, o2,

1 1

o2, o2,

0

0

0

z y

z x

y x

p p

P p p

p p



 −
 

 = − 
 − 

. (54) 

The Jacobian of inter-axis geometric errors for the target machine tool is defined as, 

0 0 0 0 0

t t t

int a

t t t t

X Y Z A C t wer- xis C C C C C C C =  J

 

(55) 

where, for example, 
0

t

AC  expresses the sensitivity of the volumetric error to geometric error 

parameters occurring at A0, the reference frame of the A-axis before motion. The inter-axis errors 

correspond to columns 6, 16, 17, 23, 24, 26, 28, 29, 31 and 33 for ECOX, EAOZ, EBOZ, EBOA, 

ECOA, EYOC, EAOC, EBOC, EXOS and EZOS, respectively.  

The Jacobian of the intra-axis errors for the positioning errors of the X-, Y- and Z-axis contains 

these transport matrices projected in the tool frame,  

intra-axis

t t t t t

X Y Z A CC C C C C =  J
 

(56) 

Columns 1, 8 and 15 of the intra-axis Jacobian, J13-error, cater for EXX1, EYY1 and EZZ1, 

respectively, as 
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 

 

 

1

1

T

T

1

T

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 .

EXX

EYY

EZZ

X

Y

Z

=

= −

= −

J

J

J
 

(57) 

The complete Jacobian, J13-error, for the 13-error model is, 

13-error ECOX EAOZ EBOZ EBOA ECOA EYOC EAOC

EBOC EXOS EZOS EXX1 EYY1 EZZ1

= 



J J J J J J J J

J J J J J J
 (58) 

 

7.3.3 Jacobian of command 

The Jacobian of commands, Jcommand, propagates the effect of axis command corrections, applied 

at the nominal location of the axis after its nominal motion, to the tool location. Columns 1, 8, 15, 

22 and 36 of Jintra-error are selected for the X-, Y-, Z-, A- and C-axis command corrections 

respectively.  

Substituting the Jacobians in Eq. (3) and (6) yields a set of five axis command corrections for each 

of the 13 geometric errors as follows, where S and C stand for sin and cos functions, respectively,  
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2

ECOX

2

EAOZ

(C(2 ) 3) 2S(2 )( ) (C ( ) 1)( )
[   

4 2

(1 C(2 )) 2 S(2 ) 2
                           (C( ) 1)  C( )]

4 2

(C(2 ) 1) 2S(2 )( ) (1 C ( ))( )
[   

4 2

                        

y y

y y

Y A A Z t A t Z X
q ECOX

Y A X A
A A

Y A A t Z A X Z t
q EAOZ

− + − − − −
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− −
− −

− + − − + −
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EBOZ
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2 2
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q EAOC
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 =
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 =

 =

 =
 

. (59) 

 

7.3.4 Generation of FIK-LUTs 

The CNC FIK-LUTs scheme implements the axis command corrections by combining a minimum 

number of simple tables each having as input an axis command, the basic axis, and as output an 

associated correction to the output axis, the compensation axis.  

An NC code generates the tables, their entries and instructs the CNC on how to combine their 

interpolated outputs. A sample code is shown in Figure 7.3 where table 1 is multiplied by table 2 
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and the result added to Table 3. The number of table entries for the first, second and third tables 

are 10, 15 and 15, respectively. The input axes for the first, second and third tables are Z-, Y- and 

X-axis, respectively and their output axis is the X-axis. By entering any axis command for X, Y 

and Z, the output of the two first tables are multiplied together and are added to the third table.  

The tables’ functions explicitly include the geometric error parameters. The functions are 

discretized to produce a limited number of table entries that the controller linearly interpolates for 

the required axis commands. The proposed LUTs can be implemented by a machine user if the 

CNCs offer a compensation facility by which users can combine the compensation tables by 

summation and multiplication functionalities. 

7.4 Experimental validation 

7.4.1 Measurement before and after applying compensation 

The tables are loaded in the Siemens Sinumerik 840D controller of the K2X8-Five machine tool 

from Huron Graffenstaden. 

The machine geometric errors and volumetric accuracy, without and with compensation, is 

evaluated by probing the Scale and Master Ball Artefact (SAMBA) (Mayer, 2012) shown in Figure 

7.5. Two test strategies are used. The Calibration test, is used for the preparation of lookup tables 

and the other called Validation test is used to evaluate the compensation performance. Each ball 

probing takes 1 min 50 s. The Calibration test strategies use 26 A-, Spindle and C- axis position 

sets for a total of 28 ball probings whereas the Validation test uses 10 sets for 26 ball probings. For 

tests before compensation, all tables are off. For compensation, only the new 40 FIK-LUTs are 

activated. 
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Figure 7.3. NC code for a sample of table multiplication (Siemens 840D controller) ("Siemens 

Controller," SINUMERIK 840D/840Di/810D Extended Functions). Note: 

$AN_CEC_MULT_BY_TABLE=0 means the table is added to the other tables by default. 

 

40 LUTs are used to compensate the 13 error parameters consisting of 13, 11, 14, 1 and 1 tables 

for the X-, Y-, Z-, A- and C-axis, respectively. The A- and C-axis corrections are shown in Figure 

7.4. 

 

 

Figure 7.4.  The 2 FIK-LUTs scheme for A- and C-axis correction. 
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Figure 7.5. SAMBA artefact. All balls are 19.05 mm diameter. 

First, the Calibration test is run once and the Validation test is run twice, with tables off, to assess 

the uncompensated state of the machine. Then the FIK-LUTS are generated from the Calibration 

test results and the sequence is repeated with the compensation tables activated. This completes a 

cycle which is executed four times. The room temperature varies between 20° and 21°C.  

7.4.2 Measurement results and lookup table generation 

The Validation test results before compensation are listed in Table 7-2. The mean volumetric error 

is 44 µm and the estimated error parameters cannot explain a mean VE norm of 4.1 µm.  After 

compensation, the mean VE norm is reduced to 9.1 µm for a 79% reduction. The compensation 

ratios of the error parameters sorted from the biggest to the smallest magnitude of the mean VE 

norm caused by each error exhibit a significant reduction for the dominant errors as EZOS, EAOZ, 

EZZ1, EBOA, EAOC and ECOX, However, for small error parameters, no reliable trend can be 

observed. Figure 7.6 illustrates the mean of volumetric error norm before and after compensation 

and their relative standard deviation for the validation test.  
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Figure 7.6. top) The mean error parameters before and after compensation with +/- two pooled 

SD errors bands; bottom) The mean of volumetric error norm before and after compensation for 

the validation test. 
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Table 7-2. The estimation results for the validation test before and after generating and activating 

lookup tables. 

 
Error parameter  

( Ep U) values1 

VE  due to each Ep 

[m] 
 

Error  

parameters 

Before 

comp. 

After 

comp. 

Before 

comp. 

After 

comp. 
After/Before Ep  

Comp. ratio 

EZOS  [m] 55.66.8 -7.4 55.6 7.3 -0.13 

EAOZ  [rad] 106.014.5 -11.3 17.2 1.8 -0.11 

EZZ1   [m/m] 30.013.8 5.0 11.3 1.8 0.17 

EBOA  [rad] 39.110.6 8.1 8.6 1.7 0.21 

EAOC  [rad] 33.88.3 -20.3 7.9 4.7 -0.60 

ECOX  [rad] -32.010.8 -20.3 3.7 2.3 0.63 

EBOZ  [rad] 22.08.0 39.0 3.6 6.3 1.77 

EBOC  [rad] -14.63.3 -12.9 3.5 3.0 0.88 

EXX1  [m/m] 25.98.1 -3.2 3.0 0.3 -0.12 

EXOS  [m] -2.14.9 -11.0 2.1 11.0 5.29 

EYY1  [m/m] -14.312.8 -2.3 1.8 0.3 0.16 

ECOA  [rad] 5.513.7 -9.5 1.2 2.0 -1.72 

EYOC  [m] 1.01.4 -3.9 1.0 3.9 -3.97 

VE  [µm] 44 - 9.1 0.21  

VE unexplained by 

the model [µm] 
4.1 - 4.8 1.19 

 

                   1 U of Ep from eight runs over two non-consecutive days (Sepahi-Boroujeni, Mayer, & 

Khameneifar, 2021). 

7.5 Conclusion 

Combinatory lookup tables are generated from symbolic variational forward and inverse 

kinematics functions (FIK-LUTs) relating the required axis command corrections to the eight inter-

axis errors, two spindle lateral offsets and the three linear axis scale gain errors of a 5-axis machine 

tool. The machine geometric errors are calibrated, using one set of positions, and the FIK-LUTs 

are generated. The compensation effectiveness is evaluated using a new validation set of positions 

shows significant reduction in the dominant error parameters as well as a reduction by 79% of the 

mean volumetric error norm.  
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 GENERAL DISCUSSION 

To achieve the objective of the project, two general table-based error compensation methods have 

been studied, one for Cartesian volumetric error compensation and the other for volumetric error 

compensation. This chapter presents the general discussion of this research study. The main 

methods and important outcomes are explained in the context of machine tool table-based 

volumetric error compensation. 

A three-dimensional lookup table is a Control parameter modification capability embedded in 

Fanuc controller. For generating such a lookup table, a three-dimensional mesh grid is required to 

be built on the joint space. This thesis proposes generating an optimized 3D mesh grid to 

compensate Cartesian volumetric errors. The optimized table was obtained by the iterative method. 

The objective was to minimize the norm of the RMS of the volumetric error. Two error models, 

including 13 and 84 error parameters and coefficients, were used while indirectly calibrating the 

five-axis machine tool. The two pseudo three-dimensional error compensation tables were 

developed for the two error models with the optimized number of the 3D mesh grid elements. A 

3D ball-bar test was designed for validation purposes. Firstly, the ball-bar test was run before 

applying for any compensation. Afterwards, the positions located on the meridians and an equator 

were corrected using the trilinear interpolation applied on the two pseudo lookup tables, and the 

ball-bar tests were run with the updated values. The size and form errors show a good improvement 

in terms of error compensation. The volumetric Cartesian error projected on the ball-bar axis 

direction was compensated using the pseudo optimized lookup tables. Noted that, this kind of table 

is not useful to compensate the angular errors of the tool tip volumetric errors.  

Interpolatroy compensation lookup table is a type of complex compensation table that existed in 

some controllers such as Siemens controller, which let the users make combinatory tables based 

on their need. The controller applies linear interpolation on the table entries when the G-code is 

entered. The user can define whether the tables to be added together or to be multiplied by each 

other. Three research works have been proposed for generating such interpolatory compensation 

lookup tables.  

The straightforward combination of the tables is using the summation functionalities. Since a five-

axis machine tool has five axes, five tables per axis, 25 tables in total, are the maximum numbers 

of the tables useful for correcting five axes. In this work, the Jacobian of commands was built to 
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calculate the command correction. Then, the command corrections were simulated by univariate 

polynomials of degree three, and the Jacobian of table coefficients was made, presenting the 

relationship between the table coefficients and the command corrections. Two error models 

containing 12 and 81 error parameters and coefficients were used. Having calculated the table 

coefficients, the two-pseudo combinatory tables were generated for the two error models.  

The very fact that the tables’ configurations are dependent on Jacobian of commands and the 

inverse Jacobian of command was approved in the third work. This model was used for 

compensating the inter-axis and three gain errors. To compensate such errors combination, not only 

the summation functionalities of the tables but also the multiplication functionalities are necessary 

while table generation, and this has been proven through simulation and experimental tests by 

comparing different table-based models with the kinematic-based compensation. The kinematic-

based error compensation showed a better agreement with the model, including summation and 

multiplication functionalities rather than just summation functionalities. The enriched model 

included 23 tables (23Trigo-T). The table coefficients in the enriched model were calculated 

through classic optimization wherein the objective function was minimizing the discrepancies 

between the command corrections and the table functions.  

The enriched model was improved in the last work, in which the number of the tables increased to 

40. This model was obtained by the exact linearized kinematic equations for the target five-axis 

machine tool. The similarity of the last table-based error compensation model to the kinematic-

based error compensation is more than the former models. This model used the advantage of 

summation and multiplication functionalities while generating the tables. This model was 

evaluated for compensating 13 error parameters and volumetric errors. The real tables were built, 

enabled, and used in Siemens controller. Noted that the number of the tables depends on the 

topology of the machine and the error parameters to be compensated. 
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 CONCLUSION (AND RECOMMANDATIONS) 

9.1 Conclusion and contributions of the work 

This thesis proposed a methodology for integrating five-axis machine tools calibration, lookup 

table compensations generation as well as the whole procedure validation.   

• The 3D compensation table presented in the first work can compensate Cartesian 

volumetric errors in a five-axis machine tool working on three-axis mode operation. By 

studying the effect of different error models on the mesh grid dimension, it has been 

concluded that a minimized mesh grid dimension depends on the error parameters that 

existed in the error model or the error parameters that the machine tool under the test 

exhibits. For example, eight nodes are adequate when the machine tool has linear inter-axis 

errors in the 13-error model. However, the table's optimum dimension depends on the actual 

error parameter values for the 84-error model. For instance, for the tested machine, a 

19x19x19 for 6859 nodes was required to gain a 0.1 micrometer threshold in an 84-error 

error model.  

• A 3D ball-bar test consisting of several meridians and an equator was designed to validate 

the 3D compensation table. The path best fit sphere radius deviation from the nominal 

sphere was the criteria for the size error, and the standard deviations of the residuals were 

the criteria for the form error. Those criteria were compared before and after applying 3D 

compensation tables, which revealed that the average effectiveness of the 3D grid error 

compensation table was over 82%. 

• The second, third and fourth articles focus on volumetric error and geometric error 

compensation in a five-axis machine by generating and enabling combinatory lookup tables 

in the controller. Combinatory lookup tables consist of one to several simple tables 

combined by summation or multiplication functionalities.  

• In the second paper, the lookup tables were combined by summation functions to 

compensate volumetric error and geometric error parameters. Two error models were 

developed to calibrate the machine tool, followed by generating 5 tables per axis, 25 tables 

in total, for each error model. Comparing validation test results before and after generating 

pseudo compensation tables showed the compensation lookup tables produced by the 
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enriched error model (81-error model) could not more compensate the errors but just by 2% 

in comparison with the 12-error model. However, the two tables were incapable of 

compensating some inter-axis errors.  

• In the third paper, the compensation model functions were achieved from the trigonometric 

terms in the Jacobian and the inverse Jacobian of commands for the tested five-axis machine 

tool. 23 lookup tables were generated to compensate 10 error parameters and the volumetric 

errors. The enriched proposed compensation model (23Trigo-T) was compared with 25 

polynomial lookup tables (25Poly-T) and the kinematic-based error compensation was 

considered as the reference of comparison. 23Trigo-T model was more effective over 32% 

rather than 25 polynomial lookup tables for mean volumetric error compensation. The 

simulation results of the 23Trigo-T model for compensating the volumetric errors of two 

different five-axis machine tools reveal the potential generality of this model. 

• In the fourth paper, the exact table-based compensation model (forward inverse kinematic 

lookup table, FIK-LUT) was produced for a five-axis machine tool wherein a 13-error 

model was used to calibrate the machine tool errors. 40 tables were combined by the 

functions achieved from the symbolic equations to compensate 8 inter-axes, 2 spindle, and 

3 gain errors. The FIK-LUT was generated in Siemens controller 840D of a non-

perpendicular five-axis machine tool. The validation and calibration tests differed in the 

measurement strategy. The model was able to compensate over 79% of the mean estimated 

volumetric error norm. The dominant error was also reduced by 87%. 

9.2 Future works 

Generating complex tables for volumetric error compensation is somehow a new field of research 

recently highly demanded. The following are some subjects for future works; 

• There are three table-based compensation models provided in this thesis for volumetric 

error compensations. As a future work, it is suggested to launch all these models on some 

other five-axis machine tools to verify the effectiveness of the models for a different 

machine tool. 



133 

 

• The last model (FIK-LUT) provided in this thesis is a comprehensive compensation model 

introduced for five-axis machine tools. It is useful to do research and to expand the last 

model for six-axis machine tools.   

• Table-based volumetric error compensation can be verified for each inter- and intra-axis 

error to see the effectiveness of the tables. The research will provide numbers of the tables 

required for each error to be compensated.  

• Since not all the controllers are equipped with the same number of compensation tables, it 

is important to build such combinatory tables by which the volumetric errors of the target 

machine tool are minimized. Hence, automatically choosing the optimized number of the 

complex tables can be another subject of research. This research allows the users to have 

optimized tables based on the magnitude of the inter- and intra-axis errors of the target 

machine tool.  

• Volumetric error compensation is applicable when the machine is in machining mode. As 

a research topic, it is suggested to validate the compensation procedure by machining a part 

before and after compensation and measuring the dimensions by a CMM. 

• Proposing a general table-based compensation scheme to be practical for different five-axis 

machines can be a highly demanding research topic. In paper 3, the potential model is 

introduced. However, more experimental tests are required to validate the proposed model. 

• As thermal errors have a significant effect on the tool tip errors, a combination of thermal 

error compensation and geometric error compensation will improve the accuracy of the 

machine tools. Some controllers like Siemens allow the users to build such combinatory 

tables. It is suggested to simultaneously investigate the effect of those compensations on 

tool tip errors. 
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