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ARTICLE INFO ABSTRACT
Keywords: Models for automobile energy consumption calculations often lack adaptability, granularity, and consistency,
Life cycle assessment limiting the transparency, reproducibility, and representativeness of automobile processes in Life Cycle Assess-

Automobile energy consumption
Parametrization
Lightweighting

ment (LCA). Although developing parametrized models appears to be promising, their application to automobile
energy consumption is constrained by the complexity of powertrain modeling and the integration of driving
conditions. This work presents a model for gasoline and electric vehicles based on parametrized equations,
describing physical drivers of energy demand while uncoupling the role of contributors, including the vehicle
body, powertrain, path, and driver. An innovative method for parametrizing driving conditions is introduced,
eliminating reliance on traditional driving cycles. Complemented by pre-set configurations to enhance usability,
the computational tool PETRAUL built on this framework enables practitioners to perform precise and repre-
sentative energy consumption calculations for vehicles. This study further demonstrates the tool’s utility for both
foreground and background LCA processes. This includes scenario analyses emphasizing the necessity of multi-
solution strategies, a comparison with ecoinvent and Carculator highlighting improved granularity, and an LCA
case study on lightweighting, illustrating enhanced representativeness for assessments across diverse techno-
logical and regional conditions. This streamlined LCA of a polycarbonate glazing highlights the potential burden
shifting from the vehicle use phase to the manufacturing of lightweight materials, notably when coupled with
electrification. Ultimately, PETRAUL provides a robust foundation for advancing LCA practices by enhancing
adaptability and transparency in parametrized modeling, while illustrating the need for both technological and
sobriety measures to reduce environmental impacts of the automobile industry.

consumers should get involved to explore and develop potential solu-
tions for reducing the energy consumption of vehicles through techno-
logical innovations, policy regulations, and consumer behavior changes
[8-10]. Building LCA on accurate and consistent energy consumption
evaluation models is crucial to precisely evaluate and adequately
compare these solutions.

ecoinvent is a reference Life Cycle Inventory (LCI) database that
combines data on more than 20,000 processes [11]. It contains a cate-
gory of processes representative of automobile transport. These pro-
cesses are built according to two distinct models in the latest version 3 of
ecoinvent: one for ICEV [3] and one for Battery Electric Vehicles (BEV)
[6]. The representativity (technological, temporal, and geographical)
and the consistency of energy consumption calculation for these
methods can be questioned. For ICEV, practitioners can select among
three types of ICEV (gasoline vehicles (GV), diesel vehicles (DV), natural
gas vehicles (NGV)), three sizes of car bodies (small, medium, large),
and three levels of emissions (EURO3, EURO4, EUROS5), while only one

1. Introduction

The vehicle industry stands as a significant anthropogenic source of
pollution. Road transportation accounted for approximately 10 % of
global CO2 emissions in 2019 [1]. Acknowledging the magnitude of this
environmental challenge, the industry has made efforts to implement
innovative technologies and sustainable practices [2]. Improvements
aimed at mitigating emissions can reduce impacts at different stages of
the life cycle of a vehicle. Assessing the environmental impacts of these
changes is crucial to support the industry’s efforts and to inform stake-
holders of the most promising strategies for reducing emissions. Life
Cycle Assessment (LCA) is a relevant tool to quantify impacts along the
life cycle of automobiles. Existing LCAs of automobiles prove that en-
ergy transformation and consumption for the use phase have a major
contribution to impacts, especially for Internal Combustion Engine Ve-
hicles (ICEV) [3-7]. Therefore, manufacturers, public authorities, and
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List of abbreviations

BEV Battery Electric Vehicle

DV Diesel Vehicle

EEA European Environmental Agency

EPA United States Environmental Protection Agency

FRV Fuel Reduction Value

FTP75  Federal Test Procedure 75 (EPA)
GV Gasoline Vehicle

HEV Hybrid Electric Vehicle

HWFET EPA Highway Fuel Economy Test

ICEV Internal Combustion Engine Vehicle
JCO8 Japan Cycle 08

LCA Life-Cycle Assessment

LCI Life-Cycle Inventory

MIEC Mass Influence on Energy Consumption
MIF Mass Induced Fuel

NEDC New European Driving Cycle

PIEC Parameter Influence on Energy Consumption

SC03 Supplementary Cycle 03 (EPA)

US06 United States Cycle 06 (EPA)

WLTP  Worldwide harmonized Light vehicles Test Procedure

scenario is available for BEV. This is insufficient to represent today’s
market diversity. The models are outdated — they date to 2016 — and do
not allow for an accurate representation of production specificities or
driving behavior disparities across regions. Regarding consistency, the
modeling of ICEV and BEV is partially based on different assumptions
(driving cycles, passenger weight), limiting the meaningfulness of
comparisons.

A lack of adaptability of the models may explain these limits. The
adaptability of an inventory refers to its ability to respond flexibly to
evolving requirements, contexts, and user needs [12]. Adaptability al-
lows for speeding up data collection, both for primary and secondary
data [7]. However, LCA practices tend to favor the production of static
LCIs as “snapshots”, where flow interactions are implicit, complexifying
updates within the models [13,14]. ecoinvent typically relies on the
commercial driving simulation software TREMOVE [15] to estimate
automobile energy consumption. However, since the software is not
linked to the ecoinvent inventory, any adjustment requires recalcula-
tions within the software. This makes it more difficult for database
managers to update the model and for practitioners to adapt the
aggregated process to their product systems.

The development of parametrized frameworks has yielded promising
results for improving the adaptability and transparency of LCA datasets
[16,17]. An LCA parametrization approach consists of structuring a
product’s Life Cycle Inventory with relevant parameters that can be
easily adjusted depending on the context [18]. Parametrization of LCIs
has been applied in different fields [18-24], notably in the automotive
industry [7,25,26]. An important question when parametrizing LCI is to
determine the level of detail of the datasets [27,28]. Higher details mean
capturing the underlying complexity of a system at a finer scale, by
increasing the resolution or the granularity of the data collection. De-
tailing an LCI reduces the uncertainty of the impact results but is
time-consuming [29]. The balance between preciseness and efficiency
depends on the scope of a study [30,31]. For example, comparing two
automobile pieces requires a more granulated model than studying an
automobile fleet. So far, the modeling of the automobile energy con-
sumption in the parametrized LCA models lacks precision and granu-
larity for refined assessments. Models aggregate and thus mask
influences of individual aspects, such as engine components or auto-
mobile design, as well as the interactions between the car and the
driving conditions (path characteristics, driver behavior, etc.).
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Consequently, these parametrized models cannot be used to assess the
sustainability of key industrial questions at a finer scale, like compo-
nents lightweighting, engine downsizing, or eco-driving. Developing a
parametrized and granular model, in which the LCI dataset’s level of
detail can be adapted to the practitioner’s needs — as shown in other
fields [30,32] — would increase the consistency of automotive LCAs.

This paper aims to build an adaptable and consistent method to es-
timate the energy consumption of automobiles based on a parametrized
approach. To reach it, we propose.

1. To review the methods that have been developed in impact assess-
ment to calculate the energy consumption of the automobile, to
clearly identify the research gaps that limit the parametrization of
this process, and to assess the potential benefits of such a parame-
trized approach for the field.

2. To develop an original parametrized method for energy consumption
that bridges the research gaps identified in the review.

3. To validate the model and to generate pre-set configurations based
on existing empirical measurements.

4. To create a tool for automobile energy consumption calculation
designed for LCA practitioners and illustrate its use on a set of
exemplary applications.

2. Existing models for energy consumption calculation and
limitations

A comparative study of fourteen specific models [25,33-45] devel-
oped to estimate car energy consumption has been conducted. Six
methods focus solely on ICEV [33,37,38,41,43,44], while eight others
also adapted and applied their model to BEV [39,40,42,45-48] with one
covering 9 types of engines, including Hybrid Engine Vehicles (HEV)
[25]. The models are generally divided into three phases: i-external
force analysis, ii-powertrain losses analysis, and iii-integration of dy-
namic parameters.

2.1. External forces

Four main external forces are described in the models: rolling fric-
tion, aerodynamic drag, automobile inertia, and wheel inertia. The road
slope is also regularly mentioned but neglected during the integration
phase [25,33,41,44]. Authors use widely accepted parametrized equa-
tions to describe external forces. Other forces, like wind force, and road
curvature, are sometimes mentioned but never calculated.

2.2. Powertrain losses

The powertrain comprises an engine, a drivetrain (which includes a
transmission and a driveline), and energy storage for BEV/HEV. The
notion of efficiency, defined as the ratio between output power and
input power of a system, is commonly used to describe powertrain
components. Each element of the powertrain is defined by its own ef-
ficiency. Regenerative braking, which corresponds to kinetic energy
recovery during braking, can also be characterized by an efficiency
value. Efficiencies are dynamic variables that evolve over time based on
driving conditions such as speed, load, and acceleration patterns. A
distinction between four types of efficiency has been found in the
studies. The indicated efficiency aggregates all thermodynamic and
combustion losses; the operating efficiency computes the friction losses
that depend on the operating point (torque and engine speed); the dif-
ferential efficiency computes all losses that are invariant to the operating
point; and the total efficiency computes the overall efficiency by multi-
plying differential and operating efficiencies [33,37,38,48].

Accurately estimating efficiencies is challenging as it requires ac-
counting for the driving conditions. A first option is to calculate an
average value for indicated [34,44], differential [37], or total efficiency
[25,38,43] from literature sources. Averaging efficiency simplifies
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calculations and enhances usability, making it ideal for low-resolution
analyses. However, it hides the influence of operating conditions and
technological variations, making it inappropriate for context-specific
assessment.

A second option is to perform a graphical representation of efficiency
with empirical efficiency maps [35,36,39,42,45]. Efficiency maps are
embedded in simulation tools to obtain the real-time total efficiency of
the powertrain. Efficiency maps increase the study’s representativeness
as they are based on empirical datasets. Yet, they do not make explicit
causal links between the parameters and require the use of software or
algorithms to integrate the measurements. Such software reduces both
the transparency - by acting like black boxes - and the adaptability of the
studies, as observed with the software TREMOVE.

Currently, averaging and graphical options are largely favored for
engine modeling, but both methods are limited by their lack of adapt-
ability and transparency. These limitations are made worse by incon-
sistent notation and terminology describing these efficiencies. It leads to
inconsistencies and misunderstandings in powertrain modeling. The
choice to use indicated efficiency, total efficiency, or other is often
insufficiently justified. The disagreement between Kim et al. and Rohde-
Brandenburger & Koffler on the influence of mass on operating effi-
ciency demonstrates the need to better characterize the dependencies in
efficiency calculation [49,50].

To address these limitations, a third option would be to adopt a
parametrized approach. For internal combustion engines, parametrized
equations have been developed to describe some of the losses, including
thermodynamic losses [33,38], mechanical frictions using the Willans
line approximation [33,34,37,51-53], and power demand of accessories
and auxiliaries [25,42]. However, other losses - such as pumping and
insulation - have not been parametrized in the literature, which means a
fully parameterized method for these engines is not yet feasible. Addi-
tionally, for components like electric engines, drivetrains, and batteries,
none of the methods reviewed proposes parametrized approaches.
Overall, further development or completion of parametrized powertrain
models is necessary to provide practitioners with a viable alternative to
averaging and simulation methods.

2.3. Integration of dynamic parameters

Mathematically, the dynamic parameters should be integrated to
calculate energy consumption from power demand. This includes the
vehicle’s speed and acceleration, the engine’s rotation speed and torque,
as well as environmental characteristics such as road slope and wind
speed. These dynamic parameters depend on the driving conditions.
This step is often referred to as the simulation in the literature, as a real-
time calculation of energy consumption is performed with dynamic
parameters simulated using driving cycles. A driving cycle is a stan-
dardized sequence that represents the typical speed of a vehicle in a
driving scenario. Several cycles have been created worldwide to reflect
characteristics specific to different regions. Currently, the WLTP, the
EPA-FTP75, and the JCO8 are the reference cycles, respectively, in
Europe, North America, and Japan [54,55]. The use of driving cycles in
energy models has certain limits. They are non-parametrized scenarios,
which reduces the adaptability of the models. Furthermore, their
representativity for real-world driving conditions is questionable as
driving cycles underestimate energy consumption and other emissions
like NOx [56,57]. They do not include driver behavior or traffic, nor
environmental factors such as wind or slope [54,58], which leads to
practitioners neglecting these external forces. The relative error in en-
ergy consumption between driving cycles and real-driving conditions is
assessed to be between 13 and 76 % [59,60]. The scandal surrounding
the Dieselgate emissions cheating software has also raised concerns
about the integrity of vehicle emissions tests [61]. To overcome these
limitations, VECTO model [39] proposed building path profiles based on
empirical measurements which uncouple the “path target speed profile”
from the driver behavior. However, these scenarios are not parametrized
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and cannot be generalized. Sciarretta et al. [45] developed parametrized
paths for an optimization method. Yet, the model is highly detailed and
requires a software for real-time quantification and calculation of
dozens of dynamic parameters to finally obtain the energy consumption.
This parametrization is not efficient enough for LCI development.
Consequently, an innovative method should be developed to parame-
trize the integration of dynamic parameters.

2.4. Research gaps and contribution of this paper

The modeling of powertrain losses and the integration of driving
conditions were identified by the literature review as the two main
research gaps that limit the parametrization of automobile energy
consumption.

While previous methods modeled powertrain losses with graphical
efficiency maps or with average efficiency values, this work aims to
develop a finer parametrized approach for powertrain losses, which
would enable (1) to build a consistent and adaptable methodology for
both ICEV and BEV; (2) to standardize the definition and the expression
of efficiencies by identifying the powertrain losses that are proportional
to the power supplied by the powertrain from other losses. It would
propose a solution to the disagreement between Rohde-Brandenburger
et al. [49] and Kim et al. [50] on the influence of mass on efficiency.

Driving conditions are mainly modeled by the controversial driving
cycles in the literature. Rather than relying on simulation, this work
aims to develop a novel approach, referred to as parametrized integration
of driving conditions, to obtain a parametrized equation for integrating
dynamic parameters. This approach would make it possible to (1)
integrate certain hitherto neglected forces, typically road slope and wind
effects; (2) uncouple the role of the driver and the role of the driving
environment; and (3) produce customized driving scenarios, for
example, to represent mountainous terrain, an aggressive driving style,
or prospective driving scenarios.

Consequently, this paper presents a fully parametrized model, which
required formulating the powertrain operation into equations—a com-
plex task due to limited literature, non-linear behaviors, and intricate
internal dynamics. It also involved overcoming the widespread reliance
on standard driving cycles by developing a new set of useable equations
to represent driving conditions, despite the scarcity of existing data and
prior work on this topic. These innovative approaches coupled with
existing equations for external forces result in an analytical expression of
automotive energy consumption. These equations uncouple the auto-
motive body, the powertrain elements, the path characteristics, and the
driver behavior, making it possible to independently model each of these
contributors. Additional contributions complement this parametrized
model. In this paper, the model is compared with empirical datasets to
validate the equations and assess the uncertainty of the results. Pre-set
configurations are generated to improve the granularity and the us-
ability of the model. The resulting equations and pre-set configurations
are implemented in an online tool to reinforce the usability of the model.
The tool is tested on exemplary case studies to illustrate its benefits and
applicability to environmental assessment.

3. Methodology

This section describes the novel approach developed to assess the
energy consumption of automobiles. The scope of the paper is limited to
GV and BEV, but the methodology can be adapted to other powertrains
(e.g., HEV, DV). The methodology is divided into three parts, plus the
literature review as a preliminary step (objective 1, in green), as illus-
trated in Figure 1. Each part addresses one objective presented in the
introduction.

The first part (in red, objective 2) consists of developing a parame-
trized model of energy consumption calculation for automobiles by
describing the physical drivers (e.g., aerodynamic losses or engine los-
ses) related to energy consumption using physics-based equations.
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Figure 1. Graphical representation of the methodology. The literature review is performed to identify the limitations and challenges of existing models (objective 1,
in green). The energy consumption of automobiles is modeled by parametrizing the process using physics-based equations (objective 2, in red). These parameters
represent various contributors to energy consumption. The model is validated using empirical data from manufacturers and literature, which also provide pre-set
configurations for each contributor (objective 3, in yellow). The equations are compiled into a tool that calculates energy consumption (EC) and Mass Influence
on Energy Consumption (MIEC), allowing parameters to be quantified through either pre-set configurations or practitioner-specific inputs (objective 4, in blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Relevant parameters are introduced to characterize the contributors,
meaning the most relevant determinants (e.g., the car, the powertrain,
the driver, or the path characteristics) involved in the driving [36,42].
The second part (in orange, objective 3) consists of collecting and pre-
paring data from the literature, manufacturers, and agencies involved in
vehicle testing to validate the model. Moreover, pre-set configurations
that describe reference categories of contributors were developed based
on the data acquired. The third part (in blue, objective 4) consists of
implementing equations in a user-friendly tool, called PETRAUL, that
enables the computing of automobile energy consumption. LCA practi-
tioners have the choice of using pre-set parameters developed in the
second methodological part or their own specific parameters. Examples
illustrate the use of PETRAUL for foreground and background LCA using
scenario analyses and an application for lightweighting. They highlight
the benefits of this paper’s approach versus ecoinvent modeling and
inform consumers and decision-makers on the most efficient
energy-reduction approaches for automobiles. The following sections
detail the three methodological steps of the paper.

3.1. Parametrized model for energy consumption

As observed in existing models, the mathematical description of the
process relies on two steps: (1) the power required to overcome external
forces and the powertrain losses from energy conversion (tank-to-
wheels) are expressed and summed to determine the car’s power de-
mand as a function of time; (2) this power demand is integrated over
time to calculate the energy consumed; and (3) the influence of a given
parameter on the energy consumption can be derived from the used
equations by calculating the Parameter Influence on Energy Consump-
tion (PIEC). The following sections present the equations and assump-
tions used, as well as the key contributors influencing energy

consumption. These contributors are categorized as technological (car
body, engine, drivetrain, and storage for BEV) and dynamic (driver
behavior and path characteristics).

3.1.1. Power demand modeling

In this first step, physical drivers of power demand are expressed
using analytical equations selected from existing models and specialized
literature, based on the following criteria.

e Each equation must be validated by at least two sources to ensure
consistency and reliability.

Granularity must be ensured by using raw parameters that uncouple
individual contributors, avoiding hidden dependencies and accu-
rately reflecting specific contributions. Some simplifications are
allowed to maintain usability.

Process-based equations are prioritized over empirical ones to better
understand parameter relationships and enhance result transparency
and interpretability.

Furthermore, in this model, powertrain losses are not uniformly
represented as efficiency. While being a common practice in the auto-
motive industry, representing losses as efficiency assumes that all
powertrain losses are proportional to power consumption, coupling
engine-characteristic parameters with engine dynamics. Instead, this
paper uses the term loss to capture the fact that some powertrain losses
are independent of power demand and must be treated as separate
contributions to automobile consumption. The term efficiency is limited
to differential efficiency, which describes losses proportional to power
demand, as defined by Rohde-Brandenburger et al. [49,53].

Based on these criteria, a comprehensive set of equations has been
developed to model power demand. The following paragraphs
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summarize the main losses considered and the sources used to param-
etrize their influence. Detailed explanations and equations can be found
in Supplementary Information SI-1.

(A) External forces include rolling friction, aerodynamic drag, auto-
mobile inertia, wheel inertia, and road slope using widely
accepted expressions. Wind force is also added based on specific
studies [42,62,63].

(B) Gasoline engine losses include thermodynamic, friction, thermal,
injection, and pumping losses, as described by Ross (1997) [33],
with refinements from specialized papers [64-68]. A cold-start
energy loss is also added [69].

(C) Electric engine losses include copper loss, core loss, converter
losses, and mechanical losses, with expressions derived from
empirical experiments conducted by Mahmoudi et al. (2015) [70]
and Roshandel et al. (2021) [71].

(D) Drivetrain losses include driveline losses [72] and transmission
losses, namely friction losses [73] and synchronization losses [73,
74].

(E) Storage losses, specific to BEV, include charging losses due to AC
to DC conversion [75-77] and discharging losses caused by in-
ternal battery resistance [77-79].

(a)

Renewable and Sustainable Energy Reviews 217 (2025) 115716

(F) Regenerative braking losses, specific to BEV, include mechanical
braking used at high deceleration rates for security reasons [80,
81].

(G) Accessory demand includes electrical power for the engine,
heating in cold weather, and air-conditioning in warm weather as
proposed by Sacchi et al. [25].

3.1.2. Integration of power demand

Obtaining energy consumption from power demand equations re-
quires an integration of the equations’ dynamic parameters of power
equations. This section introduces an innovative parametrized integration
method. In this method, dynamic variables are expressed as functions of
the distance traveled. Inspired by the VECTO model [39], the method
distinguishes between target functions, determined solely by the path,
and real functions, which incorporate driver behavior. The road is
divided into segments with constant driving conditions to facilitate the
definition of parameters characterizing these sections. Each section is
characterized by a set distance ds;. To model the impact of the driver,
road sections are decomposed into three phases: acceleration, cruising,
and braking. Parameters are introduced to characterize the driver
aggressiveness during these three phases.

The method is presented in two steps. First, the models, the as-
sumptions (Al to A7), and the parameters introduced to develop the

Section 1 : City Section 2 : Highway
30 (A1) V5o = 30.1m/s >/ \ / \
. . V
- -
20 Vpathz = 27.8m/s M
'ﬁ' i
£ (A3) P, = 30 kW d I : Target Speed
ge [ ] ‘
(§ : Real Speed
10 (A2) B =1m/s™?
s
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800 4
)
8 600 (A%) Nooe = GutocVseet : Gasoline
3 Engine Speed
&
o 4001 (AS0) N, = 350 7ad/s I : Electric
S pe 1 Engine Speed
&
200 4
(ASb) N, = o,v,m
o4 (A5a) N,, = 200 rad/s
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Figure 2. Graphical Representation of the Integration Method for a theoretical travel of 6 km with 2 km of urban travel and 4 km of highway travel. a) represents the
target speed (in blue) and the real speed (in orange) functions, and b) represents the real engine speed functions for ICEV and BEV. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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target and real functions of the dynamic variables are presented. Second,
the method to calculate the integrals of the dynamic parameters from
these functions is developed.

1 Assumptions and parameters introduced

Some assumptions and parameters introduced are represented in
Figure 2, which depicts an illustrative journey consisting of 2 km of
urban travel and 4 km of highway travel.

First, for the target speed, a constant target cruise speed vpqy is defined
for each segment, which can be interpreted as the speed limit of the
road. Specific incidents causing punctual speed reductions v; are also
introduced. Acceleration and braking are neglected at that stage. This
structure results in a rectangular function for the target speed (see the
blue curve in Figure 2a). To convert the target speed into real speed, the
driver behavior during cruise, braking, and acceleration is modeled
through three assumptions A1-A3:

(A1) Cruise: A constant cruise speed of the vehicle is assumed,
neglecting minor speed fluctuations. These fluctuations are disregarded
as they correspond to the natural deceleration of the vehicle due to
friction and do not significantly affect inertia computation. The real
cruise speed (V) is defined in Equation (1) with the ratio y, charac-
terizing the driver’s compliance with speed regulations (Vpqemn)-

Vsect = Hy ~Vpath (Equation 1)

(A2) Braking: It is assumed that the driver steadily slows the vehicle
using constant brake pressure. This results in a uniform deceleration,
denoted as B, which is a driver-specific parameter reflecting their
braking aggressiveness.

(A3) Acceleration: A continuous increase in speed is modeled by
assuming constant power applied to the vehicle. This power, denoted as
P,, is defined in Equation (2) where P, is the maximum power available
from the engine and y, represents the driver’s utilization rate of this
power, reflecting aggressiveness during acceleration phases. The impact
of the driver on the real speed functions is represented in Figure (2a)
(orange curve).

Py =u,P, (Equation 2)

Second, the engine speed (N) which corresponds to the angular speed
of the engine’s rotational motion, is expressed in the literature using
Equation (3) as a function of the drive ratio (o(t)) and the vehicle speed
(v) [36]. This drive ratio is determined by the gearbox ratio (transy), the
engaged gear ratio (transg(t)) and the radius of the wheel (r,,). To
simplify the complexity of gear shifting, which is influenced by the en-
gine, transmission, and driver behavior, assumptions A4 and A5 are
introduced.

transy *trans, (t
N= f 5 (1) v

= o¢(t)V
- 0

(Equation 3)

(A4) Engine speed for BEV powertrain: In BEV, which typically have a
single gear, opgy is constant. Neglecting tire slip, the engine speed of BEV
(Nggy) becomes proportional to the vehicle speed and can be expressed
by Equation (4).

Ngpy = 0BEvVsect (Equation 4)

(A5) Engine speed for ICEV powertrain: For ICEV, trans,(t) varies based
on the engaged gear:

(A5a) In urban areas, gear shifts maintain a steady engine speed
modeled by Equation (5), where N, represents the typical urban
engine speed recommended for the engine, adjusted by the driver

aggressiveness factor .
Ny = pyNe (Equation 5)

(A5b) In rural areas (countryside and highway), the highest gear is
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assumed to remain engaged, making the engine speed proportional to
vehicle speed and dependent solely on the gearbox ratio o as shown by
Equation (6).

N = 0fVserr (Equation 6)

(A5c) During acceleration, engine speed N, is considered constant.
This parameter depends on the driver behavior.

These assumptions result in rectangular functions for the target engine
speed functions (when neglecting acceleration, braking and driver in-
fluence during cruising). The impact of the driver on the real engine speed
depends on the type of powertrain. These real engine speed functions are
illustrated in Figure (2b).

Third, power demand equations require integration of the squares of
the torque T2 for core losses, and of the power demand P2 for battery
losses. Yet, these variables are non-linear. The torque (T) is defined as a
function of the engine speed (N) and the power supplied by the engine
(P,ut) as shown by Equation (7) [36]. Assumption A6 provides further
simplifications for modeling these dynamic variables.

Pout

T:N

(Equation 7)

(A6) Squared Torque and Power: According to the literature, torque is
significant during acceleration phases but negligible during cruising
[38,79]. Equation (8) simplifies the squared torque setting it equal to the
squared torque at acceleration (T2). Moreover, power demand differ-
entiates between cruising and acceleration, following Equation (9) to
account for substantial power demands during acceleration (P2)

compared to cruising (Pens.) which is averaged, obtaining a rectangular
target function [38,79].

P 2
T2 (t) — Ti — ( aNmax>
a

P2(t) = P~ + (Peruise)’

(Equation 8)

(Equation 9)

Fourth, assumption A7 simplifies the modeling of the road slope and
wind speed as a function of the path.

(A7) Slope and Wind: The model accounts for the average road slope
and wind speed impacting the vehicle in each section.

In summary, this model introduces specific parameters character-
izing independently the path and the driver behavior. The target func-
tions, which represent the impact of the path on dynamic parameters, are
all rectangular functions. The real functions are adapted from these target
functions to represent the driver influence during acceleration, braking
and cruising phases.

2 Parametrized integration of driving conditions

The integration of dynamic variables follows a two-step approach:
first, the target functions are integrated to compute parameters char-
acterizing the path. Then adjustments are made to integrate the real
function, to characterize the influence of the driver behavior.

Since target functions are rectangular, they can be integrated
manually by weighting the dynamic parameter values by the length of
each segment. For real function integration, separate calculations are
performed for cruising, acceleration, and deceleration. The proportion
of these phases over the total distance depends on the frequency, on the
intensity of incidents along the path, and on the driver behavior. During
cruising, the real functions are easily integrable as they are constant and
proportional to the target functions. For braking, significant differences
exist between ICEVs and BEVs. In ICEVs, braking does not consume
power supposing the clutch is always engaged, so braking phases are
excluded from the integration bounds. In BEVs, regenerative braking
recovers inertia power. Losses are included in the integrals to account
for energy dissipated by external forces and unrecovered powertrain
losses. For acceleration of all automobiles and for braking of a BEV, a
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ratio rq is introduced, representing the ratio of average speed during
acceleration to the final cruising speed. This ratio depends on the inci-
dent along the path and adjusts the integration to account for speed
reductions during these phases.

Energy consumption equations, derived from this methodology, are
compiled in Supplementary Information SI-1.

3.1.3. Generalization of the PIEC and specific calculation of the MIEC

This work generalizes the concepts of Fuel Reduction Value (FRV)
and Mass Induced Fuel (MIF) introduced by Eberle et al. (1998) [82] and
Kim et al. (2013) [34] respectively. These parameters, used to assess
automobile lightweighting, quantify the reduction in automobile energy
consumption achieved per kilogram of mass reduction, typically
expressed in 1/100km/100 kg. It is proposed that for any parameter P of
the model, the PIEC can be derived from the energy consumption
equations for any automobile (both GV and BEV) as expressed in
Equation (10).
PIEC:% (Eq. 10)

As an example, the Mass Influence on the Energy Consumption
(MIEQ) is derived from the parametrized model to obtain an analytical
expression applicable to both ICEVs and BEVs, which is calculated in
Equation (11).

dEC 10 1

MIEC=——=—. ———
M 3.6 NieMi arMlibar

(Equation 10)

(rog-]l + (1 - nregen)Kl +g7/)
(Equation 11)

Where 77; ¢, 1 grs i pars Nregen @€ the indicated efficiencies of the engine, the
drivetrain, the battery and the regenerative braking; ro[ —] is the rolling
factor; g [m/s?] is the acceleration gravity; J; [—], K} [m/s?], 7 [—] are
the dynamic variable integrals of the speed, the inertia and the slope.

Although Kim assumed that all powertrain losses are directly
dependent on mass, our model showed that the MIEC is only dependent
on indicated efficiencies. However, a lower mass can induce additional
reductions of consumption such as engine downsizing or gear ratio ad-
justments. These can be included as potential secondary reductions in
the analysis. An additional MIECsg can been calculated considering a
gear ratio (o) reduction proportional to the mass reduction (Equation
(12)).

MIECs; = %.afIEC (Equation 12)

3.2. Data acquisition and preparation for validation and pre-set
configurations generation

This section outlines the methodology for data acquisition and
preparation. The collected data quantify parameters describing auto-
mobile body, powertrain elements, path, and driver behavior, support-
ing the validation of the physics-based models developed and the
creation of pre-set configurations.

3.2.1. Data collection methodology to validate the physics-based model

For model validation, empirical data from manufacturers’ legal
vehicle tests, which measure energy consumption using specific driving
cycles, were collected. Validation involved reproducing these tests using
the parameterized model and comparing the empirical results with
simulations. The model’s parameters were set with data characterizing
the specific automobile, engine, and driving cycles associated with each
test.

Efficiency maps derived from test benches for gasoline engines,
electric engines, and transmission were obtained from the United States
Environmental Protection Agency (EPA) [83-86]. Optimized values of
the parameters were determined within a realistic range guided by
literature to minimize the relative errors between our model and the
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empirical efficiency map for the most representative operating condi-
tions for automobile [36,87] (N [1000 rpm-4000 rpm] and T ~
[0-0.5Tmax]). Details of this process are available in Supplementary
Information SI-3A. In total, eighteen gasoline engines, five electric
engines, and three transmission types were tested. Additionally, syn-
chronization losses in gearboxes were quantified from Habermehl et al.
[74].

Characteristics of automobiles equipped with engines with efficiency
maps available in the EPA database were collected from manufacturer
databases or catalogs [69,88-91]. Overall, twenty GV and eight BEV
were modeled for validation.

Key parameters introduced in the parametrized integration method
were quantified from driving cycles. Cruise speed, acceleration, and
deceleration related parameters were extracted by analyzing speed
variation as documented in Supplementary Information SI-3B.
Average engine speeds during cycles were estimated from literature
references [36,87], alongside data on accessories or payloads imposed
by test regulations [60,92]. Overall, seven driving cycles were tested:
WLTP and NEDC (Europe), JCO8 (Japan), and EPA-FTP75, HWFET,
US06, and SCO3 (USA). Some cycles included sub-cycles to represent
specific driving conditions.

Finally, the energy consumption results of these automobiles across
various driving cycles were collected from specialized agencies. By
quantifying the parametrized model with the collected data, simulations
were conducted, and their results were compared to empirical tests.

3.2.2. Data collection methodology to produce pre-set configurations

Multiple existing databases that characterize and categorize auto-
mobile bodies were compiled and compared [25,36,93-96]. These da-
tabases encompass various automobile technologies, typically classified
by size. However, segmentation and/or nomenclature differ across in-
ventories due to regional standards. This paper proposes a unified
classification system with six size categories: mini, compact, medium,
large, SUV, and pick-up. No complete datasets for specific regions or
countries were found in the literature. Such reference inventories were
compiled for the United States, Quebec, the European Union, and the
United Kingdom. These inventories are based on the distribution of the
six automobile categories within regional automobile markets, derived
from national agency studies [97-100].

Technical papers on the efficiencies of gasoline engines [33,49,65,
101-1041], electric engines [25,48,90,96,103,105,106], drivetrains [73,
74,107-111], and batteries [75-79,96] were reviewed to estimate
average mean displacement and mean power of the powertrain for US
[98] and EU [100]. This enabled the computation of preset configura-
tions for different technologies and average automobile sizes by region.

Finally, average travel patterns were derived from regional driving
cycles to quantify path parameters. Road slope and wind parameters
were incorporated using literature datasets [92]. Given that driver
aggressiveness is often underestimated in driving cycles, additional data
from the literature was also used to model deceleration behaviors
[112-114], acceleration aggressiveness [115], and speed compliance
[116-118].

Following this method, pre-set configurations were built for each
contributor: 10 car body configurations, 6 gasoline engines, 6 electric
engines, 9 drivetrains, 9 paths, and 7 driver behaviors. The main pa-
rameters introduced in the model are quantified in Table 1 for four of
these configurations per contributor (two technical scenarios and two
regional averages). All other parameters are available in Supplemen-
tary Information SI-2.
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Table 1
Main parameters characterizing the contributors to automobile energy con-
sumption. Parameters are evaluated for various pre-set configurations.

Contributor Pre-set configurations
Technical Scenarios Regional Scenarios
Car Body Compact Suv Average Average
EU us
M.qr [kg] 1233 1877 1570 1869
ro [-1] 0.009
Cq [-] 0.40 0.46 0.43 0.47
A [m?] 2.21 2.89 2.52 2.87
Pecc [kW] 350 500 440 475

ro [—] rolling factor; Mcar [kg] vehicle weight (including accessories); p [—] air
density; C4 [—] drag coefficient (including accessories); A [m?] vehicle frontal area;
Py [W] average power of accessories;

Gasoline Small (EU) Large (EU) Average Average
Engine EU us

D[] 1.3 2.3 1.6 2.8

Nagvl-] 0.43

D [L] engine displacement; 74 ggy [-] differential efficiency of the BEV.

Electric Engine Small Large Average Average

EU us
P, kW] 60 300 169 190
Napev [-] 0.98

P, [kW] maximum power of the engine; 14 zpy [-] differential efficiency of the BEV.

Drivetrain (GV) Manual - Auto - AWD Average Average
FWD EU us
Naar -] 0.97 0.93 0.96 0.94
ay [107° 5] 2.1 4.0 2.7 3.6
Drivetrain Auto - FWD Auto - AWD Average Average
(BEV) EU Us
Naar [ 1 0.97 0.99 0.98
ar [ 107° 5] 0 1.0 0.2 0.6

nq4- |-] differential efficiency of the drivetrain; a, [s] drivetrain frictions
characteristic coefficient.

Battery Worst Best Average World
Napar [—] 0.85 0.95 0,9

R [ohm] 0.4 0.3 0.35

U [V] 400 350 375

Napae [ —] differential efficiency of the battery; R [ohm] internal resistance of the
battery; U [V] battery voltage;

Path City (Mean) Highway Average Average
(EU) EU us
Japlm? /2] 134 1155 616 460
Fp [m/s?] 0.20 0.01 0.14 0.13
Turban[-] 1 0 0.5 0.4
h[-] 0.002

H1p [m/s?],73p[m? /s?] and h [-] integrals of the dynamic parameters related resp.
to the inertia, the drag, and the slope, along the target function (which only depends
on the path). ryrpaen[-] share of the journey traveled in urban area.

Driver Eco-driver Aggressive Average Average
EU us

B [m/s?] 0.55 1.06 0.72 0.72

=] 0.90 1.10 0.98 1.08

ua =1 0.05 0.10 0.08 0.05

, [~ Driver speed compliance ratio; B [m/s?] mean deceleration by the driver during
braking; p, [—] Driver acceleration aggressiveness.

3.3. Energy consumption computation tool and case study selection

3.3.1. PETRAUL - the parametrized energy tool for representativeness of
automobile in LCA

An energy consumption calculation tool that computes the final
equations and the pre-set configurations was developed. PETRAUL'
[119] enables practitioners to generate specific energy consumption
results using pre-set configurations, or by quantifying the model’s

! PETRAUL tool can be found at https://petraul.streamlit.app/.
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parameters with finer or more specific datasets they have compiled. This
flexibility ensures the tool’s usability across various scenarios. The tool’s
output includes the energy consumption for a specified scenario and a
contribution analysis that quantifies the energy losses attributable to the
different contributors. It also includes the calculation of the PIEC of the
most contributive parameters of the model, for the specific scenario
modeled by an LCA practitioner.

3.3.2. Presentation and preparation of the applications

Three case studies were developed to exemplify the tool’s function-
ality. These cases demonstrate how PETRAUL operates, highlight its
advantages compared to existing inventories such as ecoinvent, and
showcase its wide range of potential applications.

1 Scenario analysis

First, an analysis of the sensitivity of energy consumption to the main
contributors was performed using PETRAUL. The European average
scenario, representing average technology, path, and driver, was
selected as the reference scenario. Alternative scenarios were generated
by systematically varying the configuration of one contributor at a time.
Four scenarios were tested for the following contributors: the car body
(mini, compact, SUV, pick-ups), the engine (Very small, Small, Large,
Very Large), the path (Average City, Dense City, Highway, Countryside),
and the driver behavior (Extra Ecodriving, Ecodriving, Aggressive, Extra
Aggressive).

2 Comparison with ecoinvent and Carculator

Second, a comparison was performed between PETRAUL model,
Carculator, and ecoinvent. ecoinvent defines three categories of GV based
on mass: small (<1400 kg), medium (~ 1600 kg) and large (>1800 kg).
For BEV, ecoinvent offers only one average automobile category. PET-
RAUL and Carculator propose several technical configurations per
ecoinvent category. For each category, the average energy consumption
of automobiles in this category was estimated for Carculator, while a
distinction between US average and Europe average was performed for
PETRAUL. Additionally, best-case and worst-case estimates with PET-
RAUL and Carculator were computed for each category, capturing the
range of possible energy consumption that actually exists within the
defined ecoinvent categories due to variability in technology design and
driving conditions.

3 Application to lightweighting

Third, a streamlined LCA approach of automotive lightweighting is
developed to demonstrate how the parametrized model enhances
regional and technological correlation in foreground LCA modeling.
While lightweight materials reduce energy consumption throughout the
automobile’s use phase, they can increase production impacts
[120-125], potentially shifting the environmental burden to
manufacturing. This analysis calculates the maximum additional
manufacturing costs of a lightweight component to remain advanta-
geous for Climate Change depending on technological and regional
contexts. This analysis is inspired by the method developed by Kelly
et al. (2021) [125].

For the production phase, traditional (t) and lightweight (1) com-
ponents are characterized by their carbon intensity of production per
kilogram of material produced i,oq [kgCOzeq. /kgpmd] and the substitu-
tion factor f [ —] which corresponds to the mass ratio between two ma-
terials required to achieve functional equivalence when replacing one
material with another. For the use phase, inputs include the mass
reduction induced by the shift to the lightweight material AM [kgrd],
the lifetime d [km], the MIEC [kWh /100km /100kg:.q], and the carbon
intensity of the energy source (ienergy). Moreover, the use phase also in-
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cludes additional emissions proportional to automobile mass, such as
exhaust and infrastructure. e [kgCO2 /(kgreq-km)] represents the in-
tensity of these emissions. The climate change impact score’s difference
ACC between traditional and lightweight components is expressed by
Equation (13).

ACC= <M> AM + (MIEC.ipporgy +€)AM.d  (Equation 13)

1-f
Lightweight material performs better than traditional material for
climate change when the increase of the manufacturing impact score
(the first term of equation (11)) is lower than the benefits of the use
phase (the second term of equation (11)). In other words, the breakeven
additional manufacturing costs per kg of mass reduction (Alprod preakeven),

indicating the maximum increase of (W) for the lightweight

system to remain beneficial for climate change, is obtained in Equation
(14) by setting ACC = 0 in Equation (13).

AIprod.breakeven = (MIEC-Ienergy + e) d (Equation 14)

The case study of an innovative lightweight glazing for automobile
was performed to illustrate this approach. The replacement of tradi-
tional tempered glass glazing (iproay = 1.25 kgCO2eq./kgyroa) With poly-
carbonate (PC) lightweight glazing prepared by injection molding
(iproapc = 7.03 kgCO2eq./kgyroa) Was assessed. The PC has a density of
1200 kg/m® and requires 4.5 mm of thickness while glass has a 2500 kg/
m? density and requires 3.25 mm of thickness, leading to a substitution
factor of f = 0.66. The lifetime of both glazings was assumed equal to
the lifetime of the automobile: d = 150,000km. Additional details on
production modeling can be found in Supplementary Information SI-
4.

For the use phase, the MIEC was computed using the parametrized
model implemented in PETRAUL for eight driving scenarios (European
Average, American Average, European Small automobile, and European
average city driving conditions, all assessed for both GV and BEV).
Following Koffler et al. (2010) [37], the secondary reductions were
excluded from the case study boundaries since the mass reduction from
lightweight glazing is not significant enough to justify them. However,
MIECsg was calculated to assess the sensitivity of the MIEC to secondary
reduction.

Exhaust emissions were quantified to e=
0.061kgC0O2/100km/100kg.q using ecoinvent. Four regions—Swiss (CH),
Rest of Europe (RER), United States (US), and Quebec (QC)—were
considered for the energy source intensity during the use phase. The
carbon intensity of petrol was assumed to be constant globally, with
ipetrot = 362 gC0O2eq./kWh. The carbon intensity of the electricity mix
was regionalized with ecoinvent: irgr = 328 gCOzeq./kWh, icy =
33gC0zeq./kWh,iys = 479 gCO2eq./kWh and igc = 14 gCOzeq./ kWh.

4. Results
4.1. Model validation

As a first step of validation, the powertrain loss models were vali-
dated using efficiency maps available from the EPA [83]. Figure 3 ex-
emplifies this validation process. It shows the relative error across 110
representative operation points for a Mazda 2.5L Tier 2 gasoline engine.
These points reflect the difference between the empirical map values
and our model quantified with optimized parameters. The average
relative error for the selected operation points equals 0.99 %. This
process can be replicated for other powertrain elements using the
Jupyter notebook provided in Supplementary Information SI-3A. The
models proposed in this paper demonstrate strong consistency with
empirical efficiency maps for all tested powertrain elements. The
calculated average relative errors are 1.6 % for gasoline engines, 1.2 %
for electric engines, and 2.1 % for transmissions.
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Figure 3. Relative Error Maps between the parametrized model and the
empirical efficiency map for a Mazda 2.51 gasoline engine. The efficiency map is
divided into 110 representative operating points, each colored based on the
relative error: orange nuances indicate efficiency underestimated by the model,
and blue nuances indicate efficiency overestimated by the model. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

As a second step of validation, the complete energy consumption
model was tested following the methodology presented above and
computed in Supplementary Information SI-3C. Figure 4 displays the
relative error distribution between manufacturer-provided data and
model simulations for different categories of tests. Overall, the models
are in good agreement with the manufacturer tests, with deviations
reaching a maximum of +10 %. Furthermore, the distributions reveal no
evidence of systematic errors, as relative errors for all categories are
evenly scattered around 0 %.

4.2. Illustrative applications of PETRAUL for environmental assessment

In this section, the results obtained with PETRAUL and computed in
Supplementary Information SI-3D, are presented and analyzed,
illustrating the tool’s ability to provide detailed and adaptable insights
into a large range of environmental impact assessment applications.

4.2.1. Scenario analysis: identification of potential for energy consumption
reduction

The fuel consumption across the average European GV and twenty
alternative scenarios were generated with PETRAUL, with results shown
in Figure 5. The average fuel consumption for a European GV is calcu-
lated at 7.16 1/100 km, closely matching the real-world average value of
7.33 1/100 km reported by EEA [90] in 2024. The graphs reveal that
larger automobiles, more powerful engines, and aggressive driving
styles significantly increase energy consumption. Urban driving is
identified as the least efficient scenario due to elevated inertia power
demands and high engine friction losses, which are further exacerbated
by traffic conditions. A detailed analysis reveals comparable energy
reduction potential across improvements in the car body, the engine,
and driving behavior. Incremental improvements within a category can
reduce consumption by 6-14 %, while optimal configuration within a
category achieves reductions of 16-22 %. Transmission types and
driveline architectures are less contributive, with optimal drivetrain
configuration reducing the consumption by around 5 %. While these
contributions are significant enough to warrant industrial attention,
they are insufficient as standalone solutions. These findings emphasize
the necessity to integrate multiple solutions and to couple efforts across
all contributors to achieve meaningful reductions in energy
consumption.
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Figure 4. Distribution of the relative error between parametrized model and manufacturer empirical energy consumption measurements. Each point (for GV) and
cross (for BEV) represents a single simulation. Shaded regions indicate the range of relative errors for each category. Simulations are classified by:

(a) car body weight categories;
(b) the engine type, with the engine naming convention (e.g., M2.5T2_GV) referring to the Constructor Initial (e.g., M for Mazda)- the Engine Displacement(L) for
gasoline engines or Engine Power(kW) for electric engines-the Emission Standards for gasoline engine (Tier2 or 3)-the fuel type (gasoline or electric);

and (c) driving cycles (e.g., WLTP, NEDC) or portion of driving cycle (WLTP_1, WLTP_2).
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Figure 5. Computation of energy consumption for twenty-one GV pre-set configurations. The average European GV is shown as the reference. Alternative scenarios,
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4.2.2. Improvement of aggregated car processes representativeness and
granularity: comparison with ecoinvent and Carculator

Energy consumption results of the PETRAUL model are compared
with ecoinvent and Carculator in Figure 6. For instance, when modeling
in an LCA the energy consumption of a medium gasoline car as defined
by ecoinvent (1400-1800 kg), ecoinvent considers one unique category
(1600 kg) consuming 8.36L/100 km (green dot). Carculator proposes
three configurations of vehicles in this category (Compact, Midsize, and
Midsize SUV) and two driving cycles (NEDC, WLTP), ranging the energy
consumption between 5 and 7.8 1/100 km (sky blue area), with an
average configuration consuming 71/100 km (blue star). PETRAUL of-
fers more flexibility and adaptability by proposing hundreds of config-
urations in this ‘Medium’ category. Results range from 4.81/100 km for
the best-case scenario (lower medium car with a small engine, driven by
an extra eco-driver mainly in a town with low traffic) to 15.11/100 km
for the worst-case scenario (SUV with a powerful engine, driven by an
extra aggressive driver in traffic). This range is represented by the gray
area. PETRAUL also provides averages for the European context (7.21/
100 km) and the American context (9.71/100 km). This regional dif-
ference is driven by vehicle and powertrain sizing as well as driving
conditions, and is more pronounced for larger vehicles and for GV
compared to BEV.

This figure demonstrates that while ecoinvent’s modeling is relatively
consistent in reflecting average real-life technologies and driving con-
ditions, it underestimates energy consumption for American automo-
biles and overestimates it for European cars due to a lack of a finer
regional resolution in the modeling. Moreover, the comparison between
ecoinvent single point with PETRAUL and Carculator ranges illustrates
the high uncertainty in ecoinvent’s model and underscores the database’s
limited resolution in capturing diverse driving conditions. Carculator
model shows more flexibility by introducing various technical scenarios.

- PETRAUL EU Average
- PETRAUL US Average

[ PETRAUL Best-Worst Case Range
[0 Carculator Best-Worst Case Range
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Yet, the modeling of driving conditions with driving cycles leads to an
underestimation of energy consumption for all categories of vehicles.
Additionally, Carculator does not provide regional pre-set configura-
tions to distinguish American and European cars. Overall, this figure
highlights that the finer resolution proposed by PETRAUL increases the
technological and regional representativeness of the automobile process
in LCA.

4.2.3. Application to foreground modeling: is a lightweight polymer glazing
relevant?

The parametrized model was applied to calculate the MIEC, which
ranges from 1.5 to 1.8 kWh/100km/100kg;eq for GV (i.e., 0.17-0.20 1/
100km/100kgeq) and 0.4-0.45 kWh/100km/100kg;eq for BEV, as rep-
resented in Figure 7a. These values increase to 2.4-3.4 kWh/100km/
100kgreqd (i.e., 0.27-0.38 1/100km/100kgreq) and 0.45-0.55 kWh/
100km/100kg;eq, respectively, when accounting for gear ratio adjust-
ment as a secondary reduction. While the MIEC remains consistent
across automobile and engine sizes, it increases significantly for GV in
city driving, whereas BEVs exhibit near-constant values across sce-
narios. Contextualized benefits of lightweighting materials during use
phase were derived from MIEC results (Figure 7b). For GV, the benefits
are estimated at 10-12 kgCO2eq./kgreq. The benefits for BEV show high
sensitivity to electricity grids, with values of 1.7-1.8 kgCO2zeq./Kkgreq in
low-carbon regions like Switzerland and Quebec, almost doubling in the
European mix (3.3 kgCO2eq./kgreq) and rising 2.5 times in the U.S. mix
(4.1 kgCO2eq./kgred).

When considering the replacement of traditional glass glazing with
PC glazing, the additional manufacturing cost is calculated to be 10.2
kgCO2eq./Kkgreq. This additional cost is compared with the contextual-
ized benefits of the PC glazing during use phase (Figure 7b). Lightweight
PC glazing negatively impacts the climate change score for BEV, as the
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Figure 6. Comparison between PETRAUL, Carculator, and ecoinvent for the four categories of automobile modeled in ecoinvent. Green dots represent ecoinvent
data. PETRAUL and Carculator capture greater variation in technologies and driving conditions, resulting in a broader range of possible energy consumption within
each category. This range of results obtained with Carculator is represented for each category by a sky-blue area, and the average Carculator configuration is
highlighted by a blue star. Colored lines correspond to PETRAUL results for European (blue) and American (red) average configurations. Gray areas represent the
range of energy consumption obtained with PETRAUL within the categories. The conversion factor from liters of fuel to kWh is the lower heating value (LHV) of
gasoline (LHV = 8.9 kWh/1). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Figure 7. Results of the MIEC calculation and of the streamlined LCA of the lightweight PC glazing case study for different technologies, driving conditions, and
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production-phase emissions outweigh the use-phase benefits across all
scenarios. For GV, the results vary based on driving conditions and the
region studied. In the European context, traditional glazing performs
slightly better under average driving conditions, but specific scenarios,
such as 100 % city driving, reverse this trend. For the average American
automobile, PC glazing is also more favorable. The results presented in
Figure 7b can be extrapolated to obtain total climate change results. PC
glazing achieves a weight reduction of approximately 10 kg for the
entire automobile (SI-4). As read in Figure 7b, in the European GV
context, PC glazing increases the carbon score of the automobile by 0.2
kgCO2eq./kgred (manufacturing additional costs of 10.2 kgCO2eq./Kgred
minus use phase benefits of 10.0 kgCOzeq./kgreq) while it reduces these
emissions by 0.3 kgCOseq./kgreq in the American GV context. These
results translate into an increase of 2 kgCOqeq. over the vehicle’s life-
time for the European scenario and a saving of 3 kgCOgeq. in the
American GV context.

Additionally, the two glazing systems have been compared with
other impact categories provided by Impact World + v2.0 [126]. The
results for the Human Health and Ecosystem Quality categories, pre-
sented in Supplementary Information SI-4, are consistent with the
carbon score for all scenarios.

Consequently, the analysis suggests that lightweight PC glazing
should be avoided in BEV when aiming to reduce potential environ-
mental impacts. For GV, given the close results between glazing options,
and their high sensitivity to uncertain parameters like the glazing
thickness, a complete LCA complemented by sensitivity analyses and
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Monte Carlo simulations would be necessary to determine the most
appropriate strategy.

5. Discussion, limitations, and future work
5.1. Discussion

A parametrized model for automobile energy consumption was
successfully developed in this study, uncoupling the contributors
(automobile body, powertrain, path, and driver behavior). This
approach enhances the transparency and robustness of environmental
assessments by capturing the complex interplay between multiple var-
iables. The inclusion of pre-set configurations in the tool facilitates
model access for practitioners with varying expertise and resources by
bridging data gaps that may hinder analysis.

The benefits of the parametrized model are illustrated through
several applications. First, the model enables a detailed evaluation of the
role of individual contributors in reducing energy consumption. Second,
the high adaptability of the model significantly enhances background
automobile process technological and regional representativeness
compared to generic databases like ecoinvent or specific LCA models like
Carculator. This enhanced representativeness holds significant potential
for LCA. For instance, it can contribute to more accurate results for
optimizing company and ride-hailing fleets, or for modeling activities
requiring specific vehicles (e.g. pick-ups/utility vehicles for trade-
related processes) or specific driving behavior (e.g. last-mile driving in
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delivery processes). The parametrization of the process also facilitates
the update of the datasets, and allows an easier integration of new
technological innovations in the database. Third, the model proves
valuable for foreground LCA modeling. The generalization of the PIEC
enables to capture use phase benefits of any innovation influencing the
energy consumption of a car. The streamlined LCA model for assessing
the relevance of lightweight materials in automobiles exemplifies how
the PIEC can be integrated into LCA, enabling the generation of context-
specific results with greater transparency, adaptability, and reproduc-
ibility. This is demonstrated through the assessment of the lightweight
PC glazing, where LCA results provide contrary conclusions depending
on the technology (typically GV or BEV), the driving conditions, and the
geographical context. This adaptability ensures that the model captures
nuanced trade-offs across varying conditions and materials, providing
actionable insights for decision-making.

Overall, these applications support the need to move beyond purely
techno-oriented solutions to reducing the environmental impacts of
mobility. They highlight the need for multi-solution strategies, empha-
sizing that meaningful reductions require the involvement of all stake-
holders, from manufacturers to drivers. The PC glazing case study
challenges the broadly supported lightweighting policy within the
automotive industry. It highlights the need to carefully assess the
environmental impacts of any lightweight material, particularly as the
electrification of automobiles continues to expand, reducing the MIEC of
automobiles and, consequently, the maximum additional manufacturing
costs allowed for lightweight systems to outperform traditional systems.
Even when lightweight material seems beneficial, the net results must be
carefully evaluated. PC glazing achieves a weight reduction of approx-
imately 10 kg for the entire automobile, translating into a carbon sav-
ings of around 3 kg CO, equivalent over the vehicle’s lifetime in the
American GV context. This represents a mere 0.01 % reduction in the
automobile’s total carbon footprint. Moreover, the average weight of
automobiles sold continues to increase due to upsizing, demonstrating
that lightweighting alone is not a silver bullet for reducing the mass of
automobiles [98]. Given these limitations, presenting these innovations
as sustainable improvements could constitute greenwashing. Instead,
they should be viewed as incremental progress that should be combined
with alternative industrial and governmental policies such as electrifi-
cation, downsizing, reducing travel distances by car, and promoting
active mobility solutions.

5.2. Limitations and future works

However, the study also reveals some inherent limitations in the
modeling approach. Developing a parametrized model demands a deep
understanding of both the system under study and the mathematical
frameworks used to accurately represent the physical process. For
instance, the parametrization of powertrain-related energy losses in-
volves complex nonlinear relationships, which are challenging to model
precisely without extensive computational resources. To ensure usabil-
ity and computational feasibility, certain simplifications were necessary
for this study, such as omitting dependencies on variables like temper-
ature, material aging, and instantaneous state-of-charge (SoC) for bat-
teries. While these simplifications support model usability, they may
compromise accuracy by not capturing specific factors that can influ-
ence energy consumption under real-world conditions. Given these
challenges, future research should prioritize refining specific analytical
relationships, particularly those pertaining to the powertrain, to further
improve model accuracy.

The balance between model fidelity and usability is further compli-
cated by the need for robust validation data. Although the model has
been tested using mainly empirical datasets (efficiency maps, automo-
bile characteristics, and driving cycles), these were supplemented by
processed data from literature where specific values were not available
in the test descriptions (typically for engine speed or equipment in-
fluences). Furthermore, the aggressiveness factors introduced in the
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parametrized integration model were also quantified based on litera-
ture, since testing agencies do not provide real-world measurements for
such parameters. While all these assumptions and processed datasets
have been carefully documented to limit bias and support a transparent
uncertainty evaluation, the model would benefit from calibration using
fully empirical measurements. Such efforts, however, require significant
computational resources and access to detailed performance data, which
is often restricted due to industrial confidentiality. Future research
should focus on developing new methods to empirically assess the en-
ergy consumption of vehicles based on independent and precise mea-
surements of car body and powertrain parameters, along with a
systematic assessment of driving aggressiveness factors to better capture
real-world variability in vehicle performance.

The first version of PETRAUL is exclusively dedicated to calculating
the energy consumption of GV and BEV, limiting the scope of the tool. As
the methodology is reproducible, future work can focus on adapting the
physical equations and preparing new pre-set configurations to expand
the tool’s scope to alternative scenarios. The analysis can be extended to
new powertrains like diesel, hybrid, and alternative fuels by replicating
the approach taken for GV and BEV, requiring a detailed physical
description of the powertrain components to determine specific losses
and differential efficiencies. Expanding this methodology to other
modes of transportation, such as trucks, buses, and motorcycles, is
feasible, but it may require adjustments to both the physical equations
and the modeling of driving conditions, particularly to account for the
technical limitations of trucks. Emerging technologies such as autono-
mous driving can be modeled by generating new pre-set configurations
for modeling driver behavior, while further research is needed to model
the broader impacts of autonomous driving, such as changes in traffic
patterns. Finally, future developments of the tool could aim to param-
etrize the entire life cycle of the automobile process, extending beyond
the use phase to include vehicle production and end-of-life stages.

Additionally, there is significant potential to generalize parametrized
practices in the LCA field. The methodology developed in this study,
based on physical process description, uncoupling of contributors, and
inclusion of pre-set configurations, could serve as a framework for
building these parametrized models. While developing such models re-
quires substantial resources, the long-term gains in terms of adapt-
ability, precision, and collaborative potential justify this investment.
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