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Development of an analytical model of automobile energy consumption 
during use-phase for parametrized life cycle assessment
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CIRAIG, Department of Chemical Engineering, Polytechnique Montreal, 2500, Chem. De Polytechnique, Montreal, Canada
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A B S T R A C T

Models for automobile energy consumption calculations often lack adaptability, granularity, and consistency, 
limiting the transparency, reproducibility, and representativeness of automobile processes in Life Cycle Assess
ment (LCA). Although developing parametrized models appears to be promising, their application to automobile 
energy consumption is constrained by the complexity of powertrain modeling and the integration of driving 
conditions. This work presents a model for gasoline and electric vehicles based on parametrized equations, 
describing physical drivers of energy demand while uncoupling the role of contributors, including the vehicle 
body, powertrain, path, and driver. An innovative method for parametrizing driving conditions is introduced, 
eliminating reliance on traditional driving cycles. Complemented by pre-set configurations to enhance usability, 
the computational tool PETRAUL built on this framework enables practitioners to perform precise and repre
sentative energy consumption calculations for vehicles. This study further demonstrates the tool’s utility for both 
foreground and background LCA processes. This includes scenario analyses emphasizing the necessity of multi- 
solution strategies, a comparison with ecoinvent and Carculator highlighting improved granularity, and an LCA 
case study on lightweighting, illustrating enhanced representativeness for assessments across diverse techno
logical and regional conditions. This streamlined LCA of a polycarbonate glazing highlights the potential burden 
shifting from the vehicle use phase to the manufacturing of lightweight materials, notably when coupled with 
electrification. Ultimately, PETRAUL provides a robust foundation for advancing LCA practices by enhancing 
adaptability and transparency in parametrized modeling, while illustrating the need for both technological and 
sobriety measures to reduce environmental impacts of the automobile industry.

1. Introduction

The vehicle industry stands as a significant anthropogenic source of 
pollution. Road transportation accounted for approximately 10 % of 
global CO2 emissions in 2019 [1]. Acknowledging the magnitude of this 
environmental challenge, the industry has made efforts to implement 
innovative technologies and sustainable practices [2]. Improvements 
aimed at mitigating emissions can reduce impacts at different stages of 
the life cycle of a vehicle. Assessing the environmental impacts of these 
changes is crucial to support the industry’s efforts and to inform stake
holders of the most promising strategies for reducing emissions. Life 
Cycle Assessment (LCA) is a relevant tool to quantify impacts along the 
life cycle of automobiles. Existing LCAs of automobiles prove that en
ergy transformation and consumption for the use phase have a major 
contribution to impacts, especially for Internal Combustion Engine Ve
hicles (ICEV) [3–7]. Therefore, manufacturers, public authorities, and 

consumers should get involved to explore and develop potential solu
tions for reducing the energy consumption of vehicles through techno
logical innovations, policy regulations, and consumer behavior changes 
[8–10]. Building LCA on accurate and consistent energy consumption 
evaluation models is crucial to precisely evaluate and adequately 
compare these solutions.

ecoinvent is a reference Life Cycle Inventory (LCI) database that 
combines data on more than 20,000 processes [11]. It contains a cate
gory of processes representative of automobile transport. These pro
cesses are built according to two distinct models in the latest version 3 of 
ecoinvent: one for ICEV [3] and one for Battery Electric Vehicles (BEV) 
[6]. The representativity (technological, temporal, and geographical) 
and the consistency of energy consumption calculation for these 
methods can be questioned. For ICEV, practitioners can select among 
three types of ICEV (gasoline vehicles (GV), diesel vehicles (DV), natural 
gas vehicles (NGV)), three sizes of car bodies (small, medium, large), 
and three levels of emissions (EURO3, EURO4, EURO5), while only one 
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scenario is available for BEV. This is insufficient to represent today’s 
market diversity. The models are outdated – they date to 2016 – and do 
not allow for an accurate representation of production specificities or 
driving behavior disparities across regions. Regarding consistency, the 
modeling of ICEV and BEV is partially based on different assumptions 
(driving cycles, passenger weight), limiting the meaningfulness of 
comparisons.

A lack of adaptability of the models may explain these limits. The 
adaptability of an inventory refers to its ability to respond flexibly to 
evolving requirements, contexts, and user needs [12]. Adaptability al
lows for speeding up data collection, both for primary and secondary 
data [7]. However, LCA practices tend to favor the production of static 
LCIs as “snapshots”, where flow interactions are implicit, complexifying 
updates within the models [13,14]. ecoinvent typically relies on the 
commercial driving simulation software TREMOVE [15] to estimate 
automobile energy consumption. However, since the software is not 
linked to the ecoinvent inventory, any adjustment requires recalcula
tions within the software. This makes it more difficult for database 
managers to update the model and for practitioners to adapt the 
aggregated process to their product systems.

The development of parametrized frameworks has yielded promising 
results for improving the adaptability and transparency of LCA datasets 
[16,17]. An LCA parametrization approach consists of structuring a 
product’s Life Cycle Inventory with relevant parameters that can be 
easily adjusted depending on the context [18]. Parametrization of LCIs 
has been applied in different fields [18–24], notably in the automotive 
industry [7,25,26]. An important question when parametrizing LCI is to 
determine the level of detail of the datasets [27,28]. Higher details mean 
capturing the underlying complexity of a system at a finer scale, by 
increasing the resolution or the granularity of the data collection. De
tailing an LCI reduces the uncertainty of the impact results but is 
time-consuming [29]. The balance between preciseness and efficiency 
depends on the scope of a study [30,31]. For example, comparing two 
automobile pieces requires a more granulated model than studying an 
automobile fleet. So far, the modeling of the automobile energy con
sumption in the parametrized LCA models lacks precision and granu
larity for refined assessments. Models aggregate and thus mask 
influences of individual aspects, such as engine components or auto
mobile design, as well as the interactions between the car and the 
driving conditions (path characteristics, driver behavior, etc.). 

Consequently, these parametrized models cannot be used to assess the 
sustainability of key industrial questions at a finer scale, like compo
nents lightweighting, engine downsizing, or eco-driving. Developing a 
parametrized and granular model, in which the LCI dataset’s level of 
detail can be adapted to the practitioner’s needs – as shown in other 
fields [30,32] – would increase the consistency of automotive LCAs.

This paper aims to build an adaptable and consistent method to es
timate the energy consumption of automobiles based on a parametrized 
approach. To reach it, we propose. 

1. To review the methods that have been developed in impact assess
ment to calculate the energy consumption of the automobile, to 
clearly identify the research gaps that limit the parametrization of 
this process, and to assess the potential benefits of such a parame
trized approach for the field.

2. To develop an original parametrized method for energy consumption 
that bridges the research gaps identified in the review.

3. To validate the model and to generate pre-set configurations based 
on existing empirical measurements.

4. To create a tool for automobile energy consumption calculation 
designed for LCA practitioners and illustrate its use on a set of 
exemplary applications.

2. Existing models for energy consumption calculation and 
limitations

A comparative study of fourteen specific models [25,33–45] devel
oped to estimate car energy consumption has been conducted. Six 
methods focus solely on ICEV [33,37,38,41,43,44], while eight others 
also adapted and applied their model to BEV [39,40,42,45–48] with one 
covering 9 types of engines, including Hybrid Engine Vehicles (HEV) 
[25]. The models are generally divided into three phases: i-external 
force analysis, ii-powertrain losses analysis, and iii-integration of dy
namic parameters.

2.1. External forces

Four main external forces are described in the models: rolling fric
tion, aerodynamic drag, automobile inertia, and wheel inertia. The road 
slope is also regularly mentioned but neglected during the integration 
phase [25,33,41,44]. Authors use widely accepted parametrized equa
tions to describe external forces. Other forces, like wind force, and road 
curvature, are sometimes mentioned but never calculated.

2.2. Powertrain losses

The powertrain comprises an engine, a drivetrain (which includes a 
transmission and a driveline), and energy storage for BEV/HEV. The 
notion of efficiency, defined as the ratio between output power and 
input power of a system, is commonly used to describe powertrain 
components. Each element of the powertrain is defined by its own ef
ficiency. Regenerative braking, which corresponds to kinetic energy 
recovery during braking, can also be characterized by an efficiency 
value. Efficiencies are dynamic variables that evolve over time based on 
driving conditions such as speed, load, and acceleration patterns. A 
distinction between four types of efficiency has been found in the 
studies. The indicated efficiency aggregates all thermodynamic and 
combustion losses; the operating efficiency computes the friction losses 
that depend on the operating point (torque and engine speed); the dif
ferential efficiency computes all losses that are invariant to the operating 
point; and the total efficiency computes the overall efficiency by multi
plying differential and operating efficiencies [33,37,38,48].

Accurately estimating efficiencies is challenging as it requires ac
counting for the driving conditions. A first option is to calculate an 
average value for indicated [34,44], differential [37], or total efficiency 
[25,38,43] from literature sources. Averaging efficiency simplifies 

List of abbreviations

BEV Battery Electric Vehicle
DV Diesel Vehicle
EEA European Environmental Agency
EPA United States Environmental Protection Agency
FRV Fuel Reduction Value
FTP75 Federal Test Procedure 75 (EPA)
GV Gasoline Vehicle
HEV Hybrid Electric Vehicle
HWFET EPA Highway Fuel Economy Test
ICEV Internal Combustion Engine Vehicle
JC08 Japan Cycle 08
LCA Life-Cycle Assessment
LCI Life-Cycle Inventory
MIEC Mass Influence on Energy Consumption
MIF Mass Induced Fuel
NEDC New European Driving Cycle
PIEC Parameter Influence on Energy Consumption
SC03 Supplementary Cycle 03 (EPA)
US06 United States Cycle 06 (EPA)
WLTP Worldwide harmonized Light vehicles Test Procedure

G. Magnaval and A.-M. Boulay                                                                                                                                                                                                             Renewable and Sustainable Energy Reviews 217 (2025) 115716 

2 



calculations and enhances usability, making it ideal for low-resolution 
analyses. However, it hides the influence of operating conditions and 
technological variations, making it inappropriate for context-specific 
assessment.

A second option is to perform a graphical representation of efficiency 
with empirical efficiency maps [35,36,39,42,45]. Efficiency maps are 
embedded in simulation tools to obtain the real-time total efficiency of 
the powertrain. Efficiency maps increase the study’s representativeness 
as they are based on empirical datasets. Yet, they do not make explicit 
causal links between the parameters and require the use of software or 
algorithms to integrate the measurements. Such software reduces both 
the transparency - by acting like black boxes - and the adaptability of the 
studies, as observed with the software TREMOVE.

Currently, averaging and graphical options are largely favored for 
engine modeling, but both methods are limited by their lack of adapt
ability and transparency. These limitations are made worse by incon
sistent notation and terminology describing these efficiencies. It leads to 
inconsistencies and misunderstandings in powertrain modeling. The 
choice to use indicated efficiency, total efficiency, or other is often 
insufficiently justified. The disagreement between Kim et al. and Rohde- 
Brandenburger & Koffler on the influence of mass on operating effi
ciency demonstrates the need to better characterize the dependencies in 
efficiency calculation [49,50].

To address these limitations, a third option would be to adopt a 
parametrized approach. For internal combustion engines, parametrized 
equations have been developed to describe some of the losses, including 
thermodynamic losses [33,38], mechanical frictions using the Willans 
line approximation [33,34,37,51–53], and power demand of accessories 
and auxiliaries [25,42]. However, other losses - such as pumping and 
insulation - have not been parametrized in the literature, which means a 
fully parameterized method for these engines is not yet feasible. Addi
tionally, for components like electric engines, drivetrains, and batteries, 
none of the methods reviewed proposes parametrized approaches. 
Overall, further development or completion of parametrized powertrain 
models is necessary to provide practitioners with a viable alternative to 
averaging and simulation methods.

2.3. Integration of dynamic parameters

Mathematically, the dynamic parameters should be integrated to 
calculate energy consumption from power demand. This includes the 
vehicle’s speed and acceleration, the engine’s rotation speed and torque, 
as well as environmental characteristics such as road slope and wind 
speed. These dynamic parameters depend on the driving conditions. 
This step is often referred to as the simulation in the literature, as a real- 
time calculation of energy consumption is performed with dynamic 
parameters simulated using driving cycles. A driving cycle is a stan
dardized sequence that represents the typical speed of a vehicle in a 
driving scenario. Several cycles have been created worldwide to reflect 
characteristics specific to different regions. Currently, the WLTP, the 
EPA-FTP75, and the JC08 are the reference cycles, respectively, in 
Europe, North America, and Japan [54,55]. The use of driving cycles in 
energy models has certain limits. They are non-parametrized scenarios, 
which reduces the adaptability of the models. Furthermore, their 
representativity for real-world driving conditions is questionable as 
driving cycles underestimate energy consumption and other emissions 
like NOx [56,57]. They do not include driver behavior or traffic, nor 
environmental factors such as wind or slope [54,58], which leads to 
practitioners neglecting these external forces. The relative error in en
ergy consumption between driving cycles and real-driving conditions is 
assessed to be between 13 and 76 % [59,60]. The scandal surrounding 
the Dieselgate emissions cheating software has also raised concerns 
about the integrity of vehicle emissions tests [61]. To overcome these 
limitations, VECTO model [39] proposed building path profiles based on 
empirical measurements which uncouple the “path target speed profile” 
from the driver behavior. However, these scenarios are not parametrized 

and cannot be generalized. Sciarretta et al. [45] developed parametrized 
paths for an optimization method. Yet, the model is highly detailed and 
requires a software for real-time quantification and calculation of 
dozens of dynamic parameters to finally obtain the energy consumption. 
This parametrization is not efficient enough for LCI development. 
Consequently, an innovative method should be developed to parame
trize the integration of dynamic parameters.

2.4. Research gaps and contribution of this paper

The modeling of powertrain losses and the integration of driving 
conditions were identified by the literature review as the two main 
research gaps that limit the parametrization of automobile energy 
consumption.

While previous methods modeled powertrain losses with graphical 
efficiency maps or with average efficiency values, this work aims to 
develop a finer parametrized approach for powertrain losses, which 
would enable (1) to build a consistent and adaptable methodology for 
both ICEV and BEV; (2) to standardize the definition and the expression 
of efficiencies by identifying the powertrain losses that are proportional 
to the power supplied by the powertrain from other losses. It would 
propose a solution to the disagreement between Rohde-Brandenburger 
et al. [49] and Kim et al. [50] on the influence of mass on efficiency.

Driving conditions are mainly modeled by the controversial driving 
cycles in the literature. Rather than relying on simulation, this work 
aims to develop a novel approach, referred to as parametrized integration 
of driving conditions, to obtain a parametrized equation for integrating 
dynamic parameters. This approach would make it possible to (1) 
integrate certain hitherto neglected forces, typically road slope and wind 
effects; (2) uncouple the role of the driver and the role of the driving 
environment; and (3) produce customized driving scenarios, for 
example, to represent mountainous terrain, an aggressive driving style, 
or prospective driving scenarios.

Consequently, this paper presents a fully parametrized model, which 
required formulating the powertrain operation into equations—a com
plex task due to limited literature, non-linear behaviors, and intricate 
internal dynamics. It also involved overcoming the widespread reliance 
on standard driving cycles by developing a new set of useable equations 
to represent driving conditions, despite the scarcity of existing data and 
prior work on this topic. These innovative approaches coupled with 
existing equations for external forces result in an analytical expression of 
automotive energy consumption. These equations uncouple the auto
motive body, the powertrain elements, the path characteristics, and the 
driver behavior, making it possible to independently model each of these 
contributors. Additional contributions complement this parametrized 
model. In this paper, the model is compared with empirical datasets to 
validate the equations and assess the uncertainty of the results. Pre-set 
configurations are generated to improve the granularity and the us
ability of the model. The resulting equations and pre-set configurations 
are implemented in an online tool to reinforce the usability of the model. 
The tool is tested on exemplary case studies to illustrate its benefits and 
applicability to environmental assessment.

3. Methodology

This section describes the novel approach developed to assess the 
energy consumption of automobiles. The scope of the paper is limited to 
GV and BEV, but the methodology can be adapted to other powertrains 
(e.g., HEV, DV). The methodology is divided into three parts, plus the 
literature review as a preliminary step (objective 1, in green), as illus
trated in Figure 1. Each part addresses one objective presented in the 
introduction.

The first part (in red, objective 2) consists of developing a parame
trized model of energy consumption calculation for automobiles by 
describing the physical drivers (e.g., aerodynamic losses or engine los
ses) related to energy consumption using physics-based equations. 
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Relevant parameters are introduced to characterize the contributors, 
meaning the most relevant determinants (e.g., the car, the powertrain, 
the driver, or the path characteristics) involved in the driving [36,42]. 
The second part (in orange, objective 3) consists of collecting and pre
paring data from the literature, manufacturers, and agencies involved in 
vehicle testing to validate the model. Moreover, pre-set configurations 
that describe reference categories of contributors were developed based 
on the data acquired. The third part (in blue, objective 4) consists of 
implementing equations in a user-friendly tool, called PETRAUL, that 
enables the computing of automobile energy consumption. LCA practi
tioners have the choice of using pre-set parameters developed in the 
second methodological part or their own specific parameters. Examples 
illustrate the use of PETRAUL for foreground and background LCA using 
scenario analyses and an application for lightweighting. They highlight 
the benefits of this paper’s approach versus ecoinvent modeling and 
inform consumers and decision-makers on the most efficient 
energy-reduction approaches for automobiles. The following sections 
detail the three methodological steps of the paper.

3.1. Parametrized model for energy consumption

As observed in existing models, the mathematical description of the 
process relies on two steps: (1) the power required to overcome external 
forces and the powertrain losses from energy conversion (tank-to- 
wheels) are expressed and summed to determine the car’s power de
mand as a function of time; (2) this power demand is integrated over 
time to calculate the energy consumed; and (3) the influence of a given 
parameter on the energy consumption can be derived from the used 
equations by calculating the Parameter Influence on Energy Consump
tion (PIEC). The following sections present the equations and assump
tions used, as well as the key contributors influencing energy 

consumption. These contributors are categorized as technological (car 
body, engine, drivetrain, and storage for BEV) and dynamic (driver 
behavior and path characteristics).

3.1.1. Power demand modeling
In this first step, physical drivers of power demand are expressed 

using analytical equations selected from existing models and specialized 
literature, based on the following criteria. 

• Each equation must be validated by at least two sources to ensure 
consistency and reliability.

• Granularity must be ensured by using raw parameters that uncouple 
individual contributors, avoiding hidden dependencies and accu
rately reflecting specific contributions. Some simplifications are 
allowed to maintain usability.

• Process-based equations are prioritized over empirical ones to better 
understand parameter relationships and enhance result transparency 
and interpretability.

Furthermore, in this model, powertrain losses are not uniformly 
represented as efficiency. While being a common practice in the auto
motive industry, representing losses as efficiency assumes that all 
powertrain losses are proportional to power consumption, coupling 
engine-characteristic parameters with engine dynamics. Instead, this 
paper uses the term loss to capture the fact that some powertrain losses 
are independent of power demand and must be treated as separate 
contributions to automobile consumption. The term efficiency is limited 
to differential efficiency, which describes losses proportional to power 
demand, as defined by Rohde-Brandenburger et al. [49,53].

Based on these criteria, a comprehensive set of equations has been 
developed to model power demand. The following paragraphs 

Figure 1. Graphical representation of the methodology. The literature review is performed to identify the limitations and challenges of existing models (objective 1, 
in green). The energy consumption of automobiles is modeled by parametrizing the process using physics-based equations (objective 2, in red). These parameters 
represent various contributors to energy consumption. The model is validated using empirical data from manufacturers and literature, which also provide pre-set 
configurations for each contributor (objective 3, in yellow). The equations are compiled into a tool that calculates energy consumption (EC) and Mass Influence 
on Energy Consumption (MIEC), allowing parameters to be quantified through either pre-set configurations or practitioner-specific inputs (objective 4, in blue). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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summarize the main losses considered and the sources used to param
etrize their influence. Detailed explanations and equations can be found 
in Supplementary Information SI-1. 

(A) External forces include rolling friction, aerodynamic drag, auto
mobile inertia, wheel inertia, and road slope using widely 
accepted expressions. Wind force is also added based on specific 
studies [42,62,63].

(B) Gasoline engine losses include thermodynamic, friction, thermal, 
injection, and pumping losses, as described by Ross (1997) [33], 
with refinements from specialized papers [64–68]. A cold-start 
energy loss is also added [69].

(C) Electric engine losses include copper loss, core loss, converter 
losses, and mechanical losses, with expressions derived from 
empirical experiments conducted by Mahmoudi et al. (2015) [70] 
and Roshandel et al. (2021) [71].

(D) Drivetrain losses include driveline losses [72] and transmission 
losses, namely friction losses [73] and synchronization losses [73,
74].

(E) Storage losses, specific to BEV, include charging losses due to AC 
to DC conversion [75–77] and discharging losses caused by in
ternal battery resistance [77–79].

(F) Regenerative braking losses, specific to BEV, include mechanical 
braking used at high deceleration rates for security reasons [80,
81].

(G) Accessory demand includes electrical power for the engine, 
heating in cold weather, and air-conditioning in warm weather as 
proposed by Sacchi et al. [25].

3.1.2. Integration of power demand
Obtaining energy consumption from power demand equations re

quires an integration of the equations’ dynamic parameters of power 
equations. This section introduces an innovative parametrized integration 
method. In this method, dynamic variables are expressed as functions of 
the distance traveled. Inspired by the VECTO model [39], the method 
distinguishes between target functions, determined solely by the path, 
and real functions, which incorporate driver behavior. The road is 
divided into segments with constant driving conditions to facilitate the 
definition of parameters characterizing these sections. Each section is 
characterized by a set distance dsect. To model the impact of the driver, 
road sections are decomposed into three phases: acceleration, cruising, 
and braking. Parameters are introduced to characterize the driver 
aggressiveness during these three phases.

The method is presented in two steps. First, the models, the as
sumptions (A1 to A7), and the parameters introduced to develop the 

Figure 2. Graphical Representation of the Integration Method for a theoretical travel of 6 km with 2 km of urban travel and 4 km of highway travel. a) represents the 
target speed (in blue) and the real speed (in orange) functions, and b) represents the real engine speed functions for ICEV and BEV. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)
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target and real functions of the dynamic variables are presented. Second, 
the method to calculate the integrals of the dynamic parameters from 
these functions is developed. 

1 Assumptions and parameters introduced

Some assumptions and parameters introduced are represented in 
Figure 2, which depicts an illustrative journey consisting of 2 km of 
urban travel and 4 km of highway travel.

First, for the target speed, a constant target cruise speed vpath is defined 
for each segment, which can be interpreted as the speed limit of the 
road. Specific incidents causing punctual speed reductions vi are also 
introduced. Acceleration and braking are neglected at that stage. This 
structure results in a rectangular function for the target speed (see the 
blue curve in Figure 2a). To convert the target speed into real speed, the 
driver behavior during cruise, braking, and acceleration is modeled 
through three assumptions A1-A3:

(A1) Cruise: A constant cruise speed of the vehicle is assumed, 
neglecting minor speed fluctuations. These fluctuations are disregarded 
as they correspond to the natural deceleration of the vehicle due to 
friction and do not significantly affect inertia computation. The real 
cruise speed (vsect) is defined in Equation (1) with the ratio μv charac
terizing the driver’s compliance with speed regulations (vpath). 

vsect = μv.vpath (Equation 1) 

(A2) Braking: It is assumed that the driver steadily slows the vehicle 
using constant brake pressure. This results in a uniform deceleration, 
denoted as B, which is a driver-specific parameter reflecting their 
braking aggressiveness.

(A3) Acceleration: A continuous increase in speed is modeled by 
assuming constant power applied to the vehicle. This power, denoted as 
Pa, is defined in Equation (2) where Pe is the maximum power available 
from the engine and μa represents the driver’s utilization rate of this 
power, reflecting aggressiveness during acceleration phases. The impact 
of the driver on the real speed functions is represented in Figure (2a)
(orange curve). 

Pa = μaPe (Equation 2) 

Second, the engine speed (N) which corresponds to the angular speed 
of the engine’s rotational motion, is expressed in the literature using 
Equation (3) as a function of the drive ratio (σt(t)) and the vehicle speed 
(v) [36]. This drive ratio is determined by the gearbox ratio (transf), the 
engaged gear ratio (transg(t)) and the radius of the wheel (rw). To 
simplify the complexity of gear shifting, which is influenced by the en
gine, transmission, and driver behavior, assumptions A4 and A5 are 
introduced. 

N=
transf *transg(t)

rw
v = σt(t)v (Equation 3) 

(A4) Engine speed for BEV powertrain: In BEV, which typically have a 
single gear, σBEV is constant. Neglecting tire slip, the engine speed of BEV 
(NBEV) becomes proportional to the vehicle speed and can be expressed 
by Equation (4). 

NBEV = σBEVvsect (Equation 4) 

(A5) Engine speed for ICEV powertrain: For ICEV, transg(t) varies based 
on the engaged gear: 

(A5a) In urban areas, gear shifts maintain a steady engine speed 
modeled by Equation (5), where Ne represents the typical urban 
engine speed recommended for the engine, adjusted by the driver 
aggressiveness factor μN.

Nu = μNNe (Equation 5) 

(A5b) In rural areas (countryside and highway), the highest gear is 

assumed to remain engaged, making the engine speed proportional to 
vehicle speed and dependent solely on the gearbox ratio σf as shown by 
Equation (6). 

Nr = σf vsect (Equation 6) 

(A5c) During acceleration, engine speed Na is considered constant. 
This parameter depends on the driver behavior.

These assumptions result in rectangular functions for the target engine 
speed functions (when neglecting acceleration, braking and driver in
fluence during cruising). The impact of the driver on the real engine speed 
depends on the type of powertrain. These real engine speed functions are 
illustrated in Figure (2b).

Third, power demand equations require integration of the squares of 
the torque T2 for core losses, and of the power demand P2

in for battery 
losses. Yet, these variables are non-linear. The torque (T) is defined as a 
function of the engine speed (N) and the power supplied by the engine 
(Pout) as shown by Equation (7) [36]. Assumption A6 provides further 
simplifications for modeling these dynamic variables. 

T=
Pout

N
(Equation 7) 

(A6) Squared Torque and Power: According to the literature, torque is 
significant during acceleration phases but negligible during cruising 
[38,79]. Equation (8) simplifies the squared torque setting it equal to the 
squared torque at acceleration (T2

a ). Moreover, power demand differ
entiates between cruising and acceleration, following Equation (9) to 
account for substantial power demands during acceleration (P2

a) 
compared to cruising (P̃cruise) which is averaged, obtaining a rectangular 
target function [38,79]. 

T2(t)=T2
a =

(
μaPmax

Na

)2

(Equation 8) 

P2(t) = P2
a + (P̃cruise)

2 (Equation 9) 

Fourth, assumption A7 simplifies the modeling of the road slope and 
wind speed as a function of the path.

(A7) Slope and Wind: The model accounts for the average road slope 
and wind speed impacting the vehicle in each section.

In summary, this model introduces specific parameters character
izing independently the path and the driver behavior. The target func
tions, which represent the impact of the path on dynamic parameters, are 
all rectangular functions. The real functions are adapted from these target 
functions to represent the driver influence during acceleration, braking 
and cruising phases. 

2 Parametrized integration of driving conditions

The integration of dynamic variables follows a two-step approach: 
first, the target functions are integrated to compute parameters char
acterizing the path. Then adjustments are made to integrate the real 
function, to characterize the influence of the driver behavior.

Since target functions are rectangular, they can be integrated 
manually by weighting the dynamic parameter values by the length of 
each segment. For real function integration, separate calculations are 
performed for cruising, acceleration, and deceleration. The proportion 
of these phases over the total distance depends on the frequency, on the 
intensity of incidents along the path, and on the driver behavior. During 
cruising, the real functions are easily integrable as they are constant and 
proportional to the target functions. For braking, significant differences 
exist between ICEVs and BEVs. In ICEVs, braking does not consume 
power supposing the clutch is always engaged, so braking phases are 
excluded from the integration bounds. In BEVs, regenerative braking 
recovers inertia power. Losses are included in the integrals to account 
for energy dissipated by external forces and unrecovered powertrain 
losses. For acceleration of all automobiles and for braking of a BEV, a 
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ratio racc is introduced, representing the ratio of average speed during 
acceleration to the final cruising speed. This ratio depends on the inci
dent along the path and adjusts the integration to account for speed 
reductions during these phases.

Energy consumption equations, derived from this methodology, are 
compiled in Supplementary Information SI-1.

3.1.3. Generalization of the PIEC and specific calculation of the MIEC
This work generalizes the concepts of Fuel Reduction Value (FRV) 

and Mass Induced Fuel (MIF) introduced by Eberle et al. (1998) [82] and 
Kim et al. (2013) [34] respectively. These parameters, used to assess 
automobile lightweighting, quantify the reduction in automobile energy 
consumption achieved per kilogram of mass reduction, typically 
expressed in l/100km/100 kg. It is proposed that for any parameter P of 
the model, the PIEC can be derived from the energy consumption 
equations for any automobile (both GV and BEV) as expressed in 
Equation (10). 

PIEC=
dEC
dP

(Eq. 10) (Equation 10) 

As an example, the Mass Influence on the Energy Consumption 
(MIEC) is derived from the parametrized model to obtain an analytical 
expression applicable to both ICEVs and BEVs, which is calculated in 
Equation (11). 

MIEC=
dEC
dM

=
10
3.6

.
1

ηi,eηi,drηi,bat

(
r0gJ1 +

(
1 − ηregen

)
K1 + gH

)

(Equation 11) 

where ηi,e, ηi,dr, ηi,bat , ηregen are the indicated efficiencies of the engine, the 
drivetrain, the battery and the regenerative braking; r0[ − ] is the rolling 
factor; g [m/s2] is the acceleration gravity; J1 [ − ],K1

[
m /s2],H [ − ] are 

the dynamic variable integrals of the speed, the inertia and the slope.
Although Kim assumed that all powertrain losses are directly 

dependent on mass, our model showed that the MIEC is only dependent 
on indicated efficiencies. However, a lower mass can induce additional 
reductions of consumption such as engine downsizing or gear ratio ad
justments. These can be included as potential secondary reductions in 
the analysis. An additional MIECSR can been calculated considering a 
gear ratio (σf

)
reduction proportional to the mass reduction (Equation 

(12)). 

MIECSR =
σf

M
.σf IEC (Equation 12) 

3.2. Data acquisition and preparation for validation and pre-set 
configurations generation

This section outlines the methodology for data acquisition and 
preparation. The collected data quantify parameters describing auto
mobile body, powertrain elements, path, and driver behavior, support
ing the validation of the physics-based models developed and the 
creation of pre-set configurations.

3.2.1. Data collection methodology to validate the physics-based model
For model validation, empirical data from manufacturers’ legal 

vehicle tests, which measure energy consumption using specific driving 
cycles, were collected. Validation involved reproducing these tests using 
the parameterized model and comparing the empirical results with 
simulations. The model’s parameters were set with data characterizing 
the specific automobile, engine, and driving cycles associated with each 
test.

Efficiency maps derived from test benches for gasoline engines, 
electric engines, and transmission were obtained from the United States 
Environmental Protection Agency (EPA) [83–86]. Optimized values of 
the parameters were determined within a realistic range guided by 
literature to minimize the relative errors between our model and the 

empirical efficiency map for the most representative operating condi
tions for automobile [36,87] (Ñ [1000 rpm–4000 rpm] and T ~ 
[0-0.5Tmax]). Details of this process are available in Supplementary 
Information SI-3A. In total, eighteen gasoline engines, five electric 
engines, and three transmission types were tested. Additionally, syn
chronization losses in gearboxes were quantified from Habermehl et al. 
[74].

Characteristics of automobiles equipped with engines with efficiency 
maps available in the EPA database were collected from manufacturer 
databases or catalogs [69,88–91]. Overall, twenty GV and eight BEV 
were modeled for validation.

Key parameters introduced in the parametrized integration method 
were quantified from driving cycles. Cruise speed, acceleration, and 
deceleration related parameters were extracted by analyzing speed 
variation as documented in Supplementary Information SI-3B. 
Average engine speeds during cycles were estimated from literature 
references [36,87], alongside data on accessories or payloads imposed 
by test regulations [60,92]. Overall, seven driving cycles were tested: 
WLTP and NEDC (Europe), JC08 (Japan), and EPA-FTP75, HWFET, 
US06, and SC03 (USA). Some cycles included sub-cycles to represent 
specific driving conditions.

Finally, the energy consumption results of these automobiles across 
various driving cycles were collected from specialized agencies. By 
quantifying the parametrized model with the collected data, simulations 
were conducted, and their results were compared to empirical tests.

3.2.2. Data collection methodology to produce pre-set configurations
Multiple existing databases that characterize and categorize auto

mobile bodies were compiled and compared [25,36,93–96]. These da
tabases encompass various automobile technologies, typically classified 
by size. However, segmentation and/or nomenclature differ across in
ventories due to regional standards. This paper proposes a unified 
classification system with six size categories: mini, compact, medium, 
large, SUV, and pick-up. No complete datasets for specific regions or 
countries were found in the literature. Such reference inventories were 
compiled for the United States, Quebec, the European Union, and the 
United Kingdom. These inventories are based on the distribution of the 
six automobile categories within regional automobile markets, derived 
from national agency studies [97–100].

Technical papers on the efficiencies of gasoline engines [33,49,65,
101–104], electric engines [25,48,90,96,103,105,106], drivetrains [73,
74,107–111], and batteries [75–79,96] were reviewed to estimate 
average mean displacement and mean power of the powertrain for US 
[98] and EU [100]. This enabled the computation of preset configura
tions for different technologies and average automobile sizes by region.

Finally, average travel patterns were derived from regional driving 
cycles to quantify path parameters. Road slope and wind parameters 
were incorporated using literature datasets [92]. Given that driver 
aggressiveness is often underestimated in driving cycles, additional data 
from the literature was also used to model deceleration behaviors 
[112–114], acceleration aggressiveness [115], and speed compliance 
[116–118].

Following this method, pre-set configurations were built for each 
contributor: 10 car body configurations, 6 gasoline engines, 6 electric 
engines, 9 drivetrains, 9 paths, and 7 driver behaviors. The main pa
rameters introduced in the model are quantified in Table 1 for four of 
these configurations per contributor (two technical scenarios and two 
regional averages). All other parameters are available in Supplemen
tary Information SI-2.
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3.3. Energy consumption computation tool and case study selection

3.3.1. PETRAUL – the parametrized energy tool for representativeness of 
automobile in LCA

An energy consumption calculation tool that computes the final 
equations and the pre-set configurations was developed. PETRAUL1

[119] enables practitioners to generate specific energy consumption 
results using pre-set configurations, or by quantifying the model’s 

parameters with finer or more specific datasets they have compiled. This 
flexibility ensures the tool’s usability across various scenarios. The tool’s 
output includes the energy consumption for a specified scenario and a 
contribution analysis that quantifies the energy losses attributable to the 
different contributors. It also includes the calculation of the PIEC of the 
most contributive parameters of the model, for the specific scenario 
modeled by an LCA practitioner.

3.3.2. Presentation and preparation of the applications
Three case studies were developed to exemplify the tool’s function

ality. These cases demonstrate how PETRAUL operates, highlight its 
advantages compared to existing inventories such as ecoinvent, and 
showcase its wide range of potential applications. 

1 Scenario analysis

First, an analysis of the sensitivity of energy consumption to the main 
contributors was performed using PETRAUL. The European average 
scenario, representing average technology, path, and driver, was 
selected as the reference scenario. Alternative scenarios were generated 
by systematically varying the configuration of one contributor at a time. 
Four scenarios were tested for the following contributors: the car body 
(mini, compact, SUV, pick-ups), the engine (Very small, Small, Large, 
Very Large), the path (Average City, Dense City, Highway, Countryside), 
and the driver behavior (Extra Ecodriving, Ecodriving, Aggressive, Extra 
Aggressive). 

2 Comparison with ecoinvent and Carculator

Second, a comparison was performed between PETRAUL model, 
Carculator, and ecoinvent. ecoinvent defines three categories of GV based 
on mass: small (<1400 kg), medium (≈ 1600 kg) and large (>1800 kg). 
For BEV, ecoinvent offers only one average automobile category. PET
RAUL and Carculator propose several technical configurations per 
ecoinvent category. For each category, the average energy consumption 
of automobiles in this category was estimated for Carculator, while a 
distinction between US average and Europe average was performed for 
PETRAUL. Additionally, best-case and worst-case estimates with PET
RAUL and Carculator were computed for each category, capturing the 
range of possible energy consumption that actually exists within the 
defined ecoinvent categories due to variability in technology design and 
driving conditions. 

3 Application to lightweighting

Third, a streamlined LCA approach of automotive lightweighting is 
developed to demonstrate how the parametrized model enhances 
regional and technological correlation in foreground LCA modeling. 
While lightweight materials reduce energy consumption throughout the 
automobile’s use phase, they can increase production impacts 
[120–125], potentially shifting the environmental burden to 
manufacturing. This analysis calculates the maximum additional 
manufacturing costs of a lightweight component to remain advanta
geous for Climate Change depending on technological and regional 
contexts. This analysis is inspired by the method developed by Kelly 
et al. (2021) [125].

For the production phase, traditional (t) and lightweight (l) com
ponents are characterized by their carbon intensity of production per 

kilogram of material produced iprod

[
kgCO2eq. /kgprod

]
and the substitu

tion factor f [ − ] which corresponds to the mass ratio between two ma
terials required to achieve functional equivalence when replacing one 
material with another. For the use phase, inputs include the mass 
reduction induced by the shift to the lightweight material ΔM

[
kgred

]
, 

the lifetime d [km], the MIEC 
[
kWh /100km /100kgred

]
, and the carbon 

intensity of the energy source (ienergy). Moreover, the use phase also in

Table 1 
Main parameters characterizing the contributors to automobile energy con
sumption. Parameters are evaluated for various pre-set configurations.

Contributor Pre-set configurations

Technical Scenarios Regional Scenarios

Car Body Compact SUV Average 
EU

Average 
US

Mcar [kg] 1233 1877 1570 1869
r0 [− ] 0.009
Cd [− ] 0.40 0.46 0.43 0.47
A
[
m2] 2.21 2.89 2.52 2.87

Pacc [kW] 350 500 440 475
r0 [− ] rolling factor; Mcar [kg] vehicle weight (including accessories); ρ [− ] air 

density; Cd [− ] drag coefficient (including accessories); A [m2] vehicle frontal area; 
Pacc [W] average power of accessories;

Gasoline 
Engine

Small (EU) Large (EU) Average 
EU

Average 
US

D [L] 1.3 2.3 1.6 2.8
ηd,GV [–] 0.43
D [L] engine displacement; ηd,BEV [–] differential efficiency of the BEV.
Electric Engine Small Large Average 

EU
Average 
US

Pe [kW] 60 300 169 190
ηd,BEV [–] 0.98
Pe [kW] maximum power of the engine; ηd,BEV [–] differential efficiency of the BEV.
Drivetrain (GV) Manual - 

FWD
Auto - AWD Average 

EU
Average 
US

ηd,dr [–] 0.97 0.93 0.96 0.94
atr [ 10− 5 s] 2.1 4.0 2.7 3.6
Drivetrain 

(BEV)
Auto - FWD Auto - AWD Average 

EU
Average 
US

ηd,dr [–] 1 0.97 0.99 0.98
atr [ 10− 5 s] 0 1.0 0.2 0.6
ηd,dr [–] differential efficiency of the drivetrain; atr [s] drivetrain frictions 

characteristic coefficient.
Battery Worst Best Average World

ηd,bat [− ] 0.85 0.95 0,9
R [ohm] 0.4 0.3 0.35
U [V] 400 350 375
ηd,bat [ − ] differential efficiency of the battery; R [ohm] internal resistance of the 

battery; U [V] battery voltage;
Path City (Mean) Highway 

(EU)
Average 
EU

Average 
US

J 3,p
[
m2 /s2] 134 1155 616 460

K 1,p
[
m /s2] 0.20 0.01 0.14 0.13

rurban[–] 1 0 0.5 0.4
h[–] 0.002
K 1,p

[
m /s2], J 3,p

[
m2 /s2] and h [–] integrals of the dynamic parameters related resp. 

to the inertia, the drag, and the slope, along the target function (which only depends 
on the path). rurban[–] share of the journey traveled in urban area.

Driver Eco-driver Aggressive Average 
EU

Average 
US

B [m/s2] 0.55 1.06 0.72 0.72
μv [ − ] 0.90 1.10 0.98 1.08
μa [ − ] 0.05 0.10 0.08 0.05
μv [ − ] Driver speed compliance ratio; B [m/s2] mean deceleration by the driver during 

braking; μa [ − ] Driver acceleration aggressiveness.

1 PETRAUL tool can be found at https://petraul.streamlit.app/.
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cludes additional emissions proportional to automobile mass, such as 
exhaust and infrastructure. e

[
kgCO2 /

(
kgred.km

)]
represents the in

tensity of these emissions. The climate change impact score’s difference 
ΔCC between traditional and lightweight components is expressed by 
Equation (13). 

ΔCC=

(
iprod,t − iprod,l.f

1 − f

)

ΔM +
(
MIEC.ienergy + e

)
ΔM.d (Equation 13) 

Lightweight material performs better than traditional material for 
climate change when the increase of the manufacturing impact score 
(the first term of equation (11)) is lower than the benefits of the use 
phase (the second term of equation (11)). In other words, the breakeven 
additional manufacturing costs per kg of mass reduction (ΔIprod,breakeven), 

indicating the maximum increase of 
(

iprod,t − iprod,l .f
1− f

)

for the lightweight 

system to remain beneficial for climate change, is obtained in Equation 
(14) by setting ΔCC = 0 in Equation (13). 

ΔIprod,breakeven =
(
MIEC.Ienergy + e

)
.d (Equation 14) 

The case study of an innovative lightweight glazing for automobile 
was performed to illustrate this approach. The replacement of tradi
tional tempered glass glazing (iprod,g = 1.25 kgCO2eq./kgprod) with poly
carbonate (PC) lightweight glazing prepared by injection molding 
(iprod,PC = 7.03 kgCO2eq./kgprod) was assessed. The PC has a density of 
1200 kg/m3 and requires 4.5 mm of thickness while glass has a 2500 kg/ 
m3 density and requires 3.25 mm of thickness, leading to a substitution 
factor of f = 0.66. The lifetime of both glazings was assumed equal to 
the lifetime of the automobile: d = 150,000km. Additional details on 
production modeling can be found in Supplementary Information SI- 
4.

For the use phase, the MIEC was computed using the parametrized 
model implemented in PETRAUL for eight driving scenarios (European 
Average, American Average, European Small automobile, and European 
average city driving conditions, all assessed for both GV and BEV). 
Following Koffler et al. (2010) [37], the secondary reductions were 
excluded from the case study boundaries since the mass reduction from 
lightweight glazing is not significant enough to justify them. However, 
MIECSR was calculated to assess the sensitivity of the MIEC to secondary 
reduction.

Exhaust emissions were quantified to e =

0.061kgCO2/100km/100kgred using ecoinvent. Four regions—Swiss (CH), 
Rest of Europe (RER), United States (US), and Quebec (QC)—were 
considered for the energy source intensity during the use phase. The 
carbon intensity of petrol was assumed to be constant globally, with 
ipetrol = 362 gCO2eq./kWh. The carbon intensity of the electricity mix 
was regionalized with ecoinvent: iRER = 328 gCO2eq./kWh, iCH =

33gCO2eq./kWh, iUS = 479 gCO2eq./kWh and iQC = 14 gCO2eq./ kWh.

4. Results

4.1. Model validation

As a first step of validation, the powertrain loss models were vali
dated using efficiency maps available from the EPA [83]. Figure 3 ex
emplifies this validation process. It shows the relative error across 110 
representative operation points for a Mazda 2.5L Tier 2 gasoline engine. 
These points reflect the difference between the empirical map values 
and our model quantified with optimized parameters. The average 
relative error for the selected operation points equals 0.99 %. This 
process can be replicated for other powertrain elements using the 
Jupyter notebook provided in Supplementary Information SI-3A. The 
models proposed in this paper demonstrate strong consistency with 
empirical efficiency maps for all tested powertrain elements. The 
calculated average relative errors are 1.6 % for gasoline engines, 1.2 % 
for electric engines, and 2.1 % for transmissions.

As a second step of validation, the complete energy consumption 
model was tested following the methodology presented above and 
computed in Supplementary Information SI-3C. Figure 4 displays the 
relative error distribution between manufacturer-provided data and 
model simulations for different categories of tests. Overall, the models 
are in good agreement with the manufacturer tests, with deviations 
reaching a maximum of ±10 %. Furthermore, the distributions reveal no 
evidence of systematic errors, as relative errors for all categories are 
evenly scattered around 0 %.

4.2. Illustrative applications of PETRAUL for environmental assessment

In this section, the results obtained with PETRAUL and computed in 
Supplementary Information SI-3D, are presented and analyzed, 
illustrating the tool’s ability to provide detailed and adaptable insights 
into a large range of environmental impact assessment applications.

4.2.1. Scenario analysis: identification of potential for energy consumption 
reduction

The fuel consumption across the average European GV and twenty 
alternative scenarios were generated with PETRAUL, with results shown 
in Figure 5. The average fuel consumption for a European GV is calcu
lated at 7.16 l/100 km, closely matching the real-world average value of 
7.33 l/100 km reported by EEA [90] in 2024. The graphs reveal that 
larger automobiles, more powerful engines, and aggressive driving 
styles significantly increase energy consumption. Urban driving is 
identified as the least efficient scenario due to elevated inertia power 
demands and high engine friction losses, which are further exacerbated 
by traffic conditions. A detailed analysis reveals comparable energy 
reduction potential across improvements in the car body, the engine, 
and driving behavior. Incremental improvements within a category can 
reduce consumption by 6–14 %, while optimal configuration within a 
category achieves reductions of 16–22 %. Transmission types and 
driveline architectures are less contributive, with optimal drivetrain 
configuration reducing the consumption by around 5 %. While these 
contributions are significant enough to warrant industrial attention, 
they are insufficient as standalone solutions. These findings emphasize 
the necessity to integrate multiple solutions and to couple efforts across 
all contributors to achieve meaningful reductions in energy 
consumption.

Figure 3. Relative Error Maps between the parametrized model and the 
empirical efficiency map for a Mazda 2.5l gasoline engine. The efficiency map is 
divided into 110 representative operating points, each colored based on the 
relative error: orange nuances indicate efficiency underestimated by the model, 
and blue nuances indicate efficiency overestimated by the model. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.)
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Figure 4. Distribution of the relative error between parametrized model and manufacturer empirical energy consumption measurements. Each point (for GV) and 
cross (for BEV) represents a single simulation. Shaded regions indicate the range of relative errors for each category. Simulations are classified by: 
(a) car body weight categories; 
(b) the engine type, with the engine naming convention (e.g., M2.5T2_GV) referring to the Constructor Initial (e.g., M for Mazda)- the Engine Displacement(L) for 
gasoline engines or Engine Power(kW) for electric engines-the Emission Standards for gasoline engine (Tier2 or 3)-the fuel type (gasoline or electric); 
and (c) driving cycles (e.g., WLTP, NEDC) or portion of driving cycle (WLTP_1, WLTP_2).

Figure 5. Computation of energy consumption for twenty-one GV pre-set configurations. The average European GV is shown as the reference. Alternative scenarios, 
which vary one contributor at a time, are classified by the contributor affected: the body (red), the engine (blue), the path (green), the driver (yellow), and the 
drivetrain (purple). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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4.2.2. Improvement of aggregated car processes representativeness and 
granularity: comparison with ecoinvent and Carculator

Energy consumption results of the PETRAUL model are compared 
with ecoinvent and Carculator in Figure 6. For instance, when modeling 
in an LCA the energy consumption of a medium gasoline car as defined 
by ecoinvent (1400–1800 kg), ecoinvent considers one unique category 
(1600 kg) consuming 8.36L/100 km (green dot). Carculator proposes 
three configurations of vehicles in this category (Compact, Midsize, and 
Midsize SUV) and two driving cycles (NEDC, WLTP), ranging the energy 
consumption between 5 and 7.8 l/100 km (sky blue area), with an 
average configuration consuming 7l/100 km (blue star). PETRAUL of
fers more flexibility and adaptability by proposing hundreds of config
urations in this ‘Medium’ category. Results range from 4.8l/100 km for 
the best-case scenario (lower medium car with a small engine, driven by 
an extra eco-driver mainly in a town with low traffic) to 15.1l/100 km 
for the worst-case scenario (SUV with a powerful engine, driven by an 
extra aggressive driver in traffic). This range is represented by the gray 
area. PETRAUL also provides averages for the European context (7.2l/ 
100 km) and the American context (9.7l/100 km). This regional dif
ference is driven by vehicle and powertrain sizing as well as driving 
conditions, and is more pronounced for larger vehicles and for GV 
compared to BEV.

This figure demonstrates that while ecoinvent’s modeling is relatively 
consistent in reflecting average real-life technologies and driving con
ditions, it underestimates energy consumption for American automo
biles and overestimates it for European cars due to a lack of a finer 
regional resolution in the modeling. Moreover, the comparison between 
ecoinvent single point with PETRAUL and Carculator ranges illustrates 
the high uncertainty in ecoinvent’s model and underscores the database’s 
limited resolution in capturing diverse driving conditions. Carculator 
model shows more flexibility by introducing various technical scenarios. 

Yet, the modeling of driving conditions with driving cycles leads to an 
underestimation of energy consumption for all categories of vehicles. 
Additionally, Carculator does not provide regional pre-set configura
tions to distinguish American and European cars. Overall, this figure 
highlights that the finer resolution proposed by PETRAUL increases the 
technological and regional representativeness of the automobile process 
in LCA.

4.2.3. Application to foreground modeling: is a lightweight polymer glazing 
relevant?

The parametrized model was applied to calculate the MIEC, which 
ranges from 1.5 to 1.8 kWh/100km/100kgred for GV (i.e., 0.17–0.20 l/ 
100km/100kgred) and 0.4–0.45 kWh/100km/100kgred for BEV, as rep
resented in Figure 7a. These values increase to 2.4–3.4 kWh/100km/ 
100kgred (i.e., 0.27–0.38 l/100km/100kgred) and 0.45–0.55 kWh/ 
100km/100kgred, respectively, when accounting for gear ratio adjust
ment as a secondary reduction. While the MIEC remains consistent 
across automobile and engine sizes, it increases significantly for GV in 
city driving, whereas BEVs exhibit near-constant values across sce
narios. Contextualized benefits of lightweighting materials during use 
phase were derived from MIEC results (Figure 7b). For GV, the benefits 
are estimated at 10–12 kgCO2eq./kgred. The benefits for BEV show high 
sensitivity to electricity grids, with values of 1.7–1.8 kgCO2eq./kgred in 
low-carbon regions like Switzerland and Quebec, almost doubling in the 
European mix (3.3 kgCO2eq./kgred) and rising 2.5 times in the U.S. mix 
(4.1 kgCO2eq./kgred).

When considering the replacement of traditional glass glazing with 
PC glazing, the additional manufacturing cost is calculated to be 10.2 
kgCO2eq./kgred. This additional cost is compared with the contextual
ized benefits of the PC glazing during use phase (Figure 7b). Lightweight 
PC glazing negatively impacts the climate change score for BEV, as the 

Figure 6. Comparison between PETRAUL, Carculator, and ecoinvent for the four categories of automobile modeled in ecoinvent. Green dots represent ecoinvent 
data. PETRAUL and Carculator capture greater variation in technologies and driving conditions, resulting in a broader range of possible energy consumption within 
each category. This range of results obtained with Carculator is represented for each category by a sky-blue area, and the average Carculator configuration is 
highlighted by a blue star. Colored lines correspond to PETRAUL results for European (blue) and American (red) average configurations. Gray areas represent the 
range of energy consumption obtained with PETRAUL within the categories. The conversion factor from liters of fuel to kWh is the lower heating value (LHV) of 
gasoline (LHV = 8.9 kWh/l). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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production-phase emissions outweigh the use-phase benefits across all 
scenarios. For GV, the results vary based on driving conditions and the 
region studied. In the European context, traditional glazing performs 
slightly better under average driving conditions, but specific scenarios, 
such as 100 % city driving, reverse this trend. For the average American 
automobile, PC glazing is also more favorable. The results presented in 
Figure 7b can be extrapolated to obtain total climate change results. PC 
glazing achieves a weight reduction of approximately 10 kg for the 
entire automobile (SI-4). As read in Figure 7b, in the European GV 
context, PC glazing increases the carbon score of the automobile by 0.2 
kgCO2eq./kgred (manufacturing additional costs of 10.2 kgCO2eq./kgred 
minus use phase benefits of 10.0 kgCO2eq./kgred) while it reduces these 
emissions by 0.3 kgCO2eq./kgred in the American GV context. These 
results translate into an increase of 2 kgCO2eq. over the vehicle’s life
time for the European scenario and a saving of 3 kgCO2eq. in the 
American GV context.

Additionally, the two glazing systems have been compared with 
other impact categories provided by Impact World + v2.0 [126]. The 
results for the Human Health and Ecosystem Quality categories, pre
sented in Supplementary Information SI-4, are consistent with the 
carbon score for all scenarios.

Consequently, the analysis suggests that lightweight PC glazing 
should be avoided in BEV when aiming to reduce potential environ
mental impacts. For GV, given the close results between glazing options, 
and their high sensitivity to uncertain parameters like the glazing 
thickness, a complete LCA complemented by sensitivity analyses and 

Monte Carlo simulations would be necessary to determine the most 
appropriate strategy.

5. Discussion, limitations, and future work

5.1. Discussion

A parametrized model for automobile energy consumption was 
successfully developed in this study, uncoupling the contributors 
(automobile body, powertrain, path, and driver behavior). This 
approach enhances the transparency and robustness of environmental 
assessments by capturing the complex interplay between multiple var
iables. The inclusion of pre-set configurations in the tool facilitates 
model access for practitioners with varying expertise and resources by 
bridging data gaps that may hinder analysis.

The benefits of the parametrized model are illustrated through 
several applications. First, the model enables a detailed evaluation of the 
role of individual contributors in reducing energy consumption. Second, 
the high adaptability of the model significantly enhances background 
automobile process technological and regional representativeness 
compared to generic databases like ecoinvent or specific LCA models like 
Carculator. This enhanced representativeness holds significant potential 
for LCA. For instance, it can contribute to more accurate results for 
optimizing company and ride-hailing fleets, or for modeling activities 
requiring specific vehicles (e.g. pick-ups/utility vehicles for trade- 
related processes) or specific driving behavior (e.g. last-mile driving in 

Figure 7. Results of the MIEC calculation and of the streamlined LCA of the lightweight PC glazing case study for different technologies, driving conditions, and 
regions. (a) MIEC is calculated for four driving scenarios and represented with bars (light blue for GV, dark blue for BEV). Hashed areas indicating the gear ratio 
adjustment secondary reduction (excluded from the case study scope). (b) Streamlined LCA results. Colored points mark the use phase benefits of lightweight 
materials depending on the context (technology and region). For the case study (PC glazing), this manufacturing additional cost is plotted as a gray dashed line. Only 
the points above this threshold line (circled in yellow) provide a carbon benefit over the life cycle of the car when substituting glass with PC glazing. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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delivery processes). The parametrization of the process also facilitates 
the update of the datasets, and allows an easier integration of new 
technological innovations in the database. Third, the model proves 
valuable for foreground LCA modeling. The generalization of the PIEC 
enables to capture use phase benefits of any innovation influencing the 
energy consumption of a car. The streamlined LCA model for assessing 
the relevance of lightweight materials in automobiles exemplifies how 
the PIEC can be integrated into LCA, enabling the generation of context- 
specific results with greater transparency, adaptability, and reproduc
ibility. This is demonstrated through the assessment of the lightweight 
PC glazing, where LCA results provide contrary conclusions depending 
on the technology (typically GV or BEV), the driving conditions, and the 
geographical context. This adaptability ensures that the model captures 
nuanced trade-offs across varying conditions and materials, providing 
actionable insights for decision-making.

Overall, these applications support the need to move beyond purely 
techno-oriented solutions to reducing the environmental impacts of 
mobility. They highlight the need for multi-solution strategies, empha
sizing that meaningful reductions require the involvement of all stake
holders, from manufacturers to drivers. The PC glazing case study 
challenges the broadly supported lightweighting policy within the 
automotive industry. It highlights the need to carefully assess the 
environmental impacts of any lightweight material, particularly as the 
electrification of automobiles continues to expand, reducing the MIEC of 
automobiles and, consequently, the maximum additional manufacturing 
costs allowed for lightweight systems to outperform traditional systems. 
Even when lightweight material seems beneficial, the net results must be 
carefully evaluated. PC glazing achieves a weight reduction of approx
imately 10 kg for the entire automobile, translating into a carbon sav
ings of around 3 kg CO2 equivalent over the vehicle’s lifetime in the 
American GV context. This represents a mere 0.01 % reduction in the 
automobile’s total carbon footprint. Moreover, the average weight of 
automobiles sold continues to increase due to upsizing, demonstrating 
that lightweighting alone is not a silver bullet for reducing the mass of 
automobiles [98]. Given these limitations, presenting these innovations 
as sustainable improvements could constitute greenwashing. Instead, 
they should be viewed as incremental progress that should be combined 
with alternative industrial and governmental policies such as electrifi
cation, downsizing, reducing travel distances by car, and promoting 
active mobility solutions.

5.2. Limitations and future works

However, the study also reveals some inherent limitations in the 
modeling approach. Developing a parametrized model demands a deep 
understanding of both the system under study and the mathematical 
frameworks used to accurately represent the physical process. For 
instance, the parametrization of powertrain-related energy losses in
volves complex nonlinear relationships, which are challenging to model 
precisely without extensive computational resources. To ensure usabil
ity and computational feasibility, certain simplifications were necessary 
for this study, such as omitting dependencies on variables like temper
ature, material aging, and instantaneous state-of-charge (SoC) for bat
teries. While these simplifications support model usability, they may 
compromise accuracy by not capturing specific factors that can influ
ence energy consumption under real-world conditions. Given these 
challenges, future research should prioritize refining specific analytical 
relationships, particularly those pertaining to the powertrain, to further 
improve model accuracy.

The balance between model fidelity and usability is further compli
cated by the need for robust validation data. Although the model has 
been tested using mainly empirical datasets (efficiency maps, automo
bile characteristics, and driving cycles), these were supplemented by 
processed data from literature where specific values were not available 
in the test descriptions (typically for engine speed or equipment in
fluences). Furthermore, the aggressiveness factors introduced in the 

parametrized integration model were also quantified based on litera
ture, since testing agencies do not provide real-world measurements for 
such parameters. While all these assumptions and processed datasets 
have been carefully documented to limit bias and support a transparent 
uncertainty evaluation, the model would benefit from calibration using 
fully empirical measurements. Such efforts, however, require significant 
computational resources and access to detailed performance data, which 
is often restricted due to industrial confidentiality. Future research 
should focus on developing new methods to empirically assess the en
ergy consumption of vehicles based on independent and precise mea
surements of car body and powertrain parameters, along with a 
systematic assessment of driving aggressiveness factors to better capture 
real-world variability in vehicle performance.

The first version of PETRAUL is exclusively dedicated to calculating 
the energy consumption of GV and BEV, limiting the scope of the tool. As 
the methodology is reproducible, future work can focus on adapting the 
physical equations and preparing new pre-set configurations to expand 
the tool’s scope to alternative scenarios. The analysis can be extended to 
new powertrains like diesel, hybrid, and alternative fuels by replicating 
the approach taken for GV and BEV, requiring a detailed physical 
description of the powertrain components to determine specific losses 
and differential efficiencies. Expanding this methodology to other 
modes of transportation, such as trucks, buses, and motorcycles, is 
feasible, but it may require adjustments to both the physical equations 
and the modeling of driving conditions, particularly to account for the 
technical limitations of trucks. Emerging technologies such as autono
mous driving can be modeled by generating new pre-set configurations 
for modeling driver behavior, while further research is needed to model 
the broader impacts of autonomous driving, such as changes in traffic 
patterns. Finally, future developments of the tool could aim to param
etrize the entire life cycle of the automobile process, extending beyond 
the use phase to include vehicle production and end-of-life stages.

Additionally, there is significant potential to generalize parametrized 
practices in the LCA field. The methodology developed in this study, 
based on physical process description, uncoupling of contributors, and 
inclusion of pre-set configurations, could serve as a framework for 
building these parametrized models. While developing such models re
quires substantial resources, the long-term gains in terms of adapt
ability, precision, and collaborative potential justify this investment.
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[108] Irimescu A, Mihon L, Pãdure G. Automotive transmission efficiency measurement 
using a chassis dynamometer. Int J Automot Technol 2011;12:555–9. https://doi. 
org/10.1007/s12239-011-0065-1.

[109] Vantsevich VV. Power losses and energy efficiency of multi-wheel drive vehicles: 
a method for evaluation. J Terramechanics 2008;45:89–101. https://doi.org/ 
10.1016/j.jterra.2008.08.001.

G. Magnaval and A.-M. Boulay                                                                                                                                                                                                             Renewable and Sustainable Energy Reviews 217 (2025) 115716 

15 

https://doi.org/10.1007/s11367-019-01585-y
https://doi.org/10.1007/s11367-019-01585-y
https://doi.org/10.1007/s11367-019-01584-z
https://doi.org/10.1007/978-3-642-10775-7
https://doi.org/10.4271/690182
https://doi.org/10.4271/690182
https://doi.org/10.1007/978-3-658-04451-0_7
https://doi.org/10.1007/978-3-658-04451-0_7
https://doi.org/10.3390/futuretransp1030033
https://doi.org/10.1016/j.trd.2015.07.011
https://doi.org/10.1016/j.atmosenv.2012.08.056
https://doi.org/10.1016/j.trd.2014.07.008
https://doi.org/10.1109/TVT.2016.2582079
https://doi.org/10.1109/TVT.2016.2582079
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref58
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref58
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref58
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref58
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref58
https://doi.org/10.1016/j.trpro.2017.05.333
https://doi.org/10.1016/j.jbusres.2016.11.002
https://doi.org/10.1109/MOST57249.2023.00020
https://doi.org/10.1016/0167-6105(91)90071-4
https://doi.org/10.1016/0167-6105(91)90071-4
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref63
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref63
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref64
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref64
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref65
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref65
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref66
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref66
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref67
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref67
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref68
https://doi.org/10.1109/ECCE.2015.7310051
https://doi.org/10.3390/en14227805
https://doi.org/10.1080/10402004.2015.1110862
https://doi.org/10.1080/10402004.2015.1110862
https://doi.org/10.30939/ijastech..945675
https://doi.org/10.30939/ijastech..945675
https://doi.org/10.1016/j.mechmachtheory.2020.103996
https://doi.org/10.1016/j.egyr.2019.12.008
https://doi.org/10.1016/j.egyr.2019.12.008
https://doi.org/10.3390/vehicles3040043
https://doi.org/10.1109/TTE.2016.2571783
https://doi.org/10.4271/2014-01-1809
https://doi.org/10.4271/2014-01-1809
https://doi.org/10.1016/j.apenergy.2016.09.057
https://doi.org/10.1016/j.apenergy.2016.09.057
https://doi.org/10.1177/0954407014535918
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref81
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref81
https://doi.org/10.4271/2018-01-1412
https://doi.org/10.4271/2016-01-0662
https://doi.org/10.4271/2020-01-1286
https://doi.org/10.1016/j.apenergy.2016.07.091
https://doi.org/10.1016/j.apenergy.2016.07.091
https://ev-database.org/.EV-database
http://CarfueldataVehicle-Certification-AgencyGovUk/
http://CarfueldataVehicle-Certification-AgencyGovUk/
http://Co2carsAppsEeaEuropaEu/
https://www.automobile-catalog.com.AutomobilCatalogDatabase
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref91
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref91
https://doi.org/10.3390/ijerph17051648
https://doi.org/10.3390/ijerph17051648
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref93
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref93
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref93
https://doi.org/10.1016/j.apenergy.2014.02.019
https://doi.org/10.1016/j.apenergy.2020.115021
https://doi.org/10.1016/j.apenergy.2020.115021
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref96
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref97
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref97
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref99
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref99
https://doi.org/10.4271/2004-01-1456
https://doi.org/10.4271/2004-01-1456
https://doi.org/10.22616/ERDev2019.18.N300
https://doi.org/10.22616/ERDev2019.18.N300
https://doi.org/10.1016/j.apenergy.2020.115463
https://doi.org/10.15282/ijame.9.2013.19.0141
https://doi.org/10.1111/j.1530-9290.2012.00532.x
https://doi.org/10.1016/j.enpol.2021.112746
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref106
http://refhub.elsevier.com/S1364-0321(25)00389-2/sref106
https://doi.org/10.1007/s12239-011-0065-1
https://doi.org/10.1007/s12239-011-0065-1
https://doi.org/10.1016/j.jterra.2008.08.001
https://doi.org/10.1016/j.jterra.2008.08.001


[110] Schwertner M, Weidmann U. Comparison of well-to-wheel efficiencies for 
different drivetrain configurations of transit buses. Transp Res Rec: J Transport 
Res Board 2016;2539:55–64. https://doi.org/10.3141/2539-07.

[111] Da Silva Gomes Pereira Correia MJ. Power loss modelling of a rear axle 
transmission with experimental study of No-load losses. 2017.

[112] Stańczyk TL, Prochowski L, Cegłowski D, Szumska EM, Ziubiński M. Assessment 
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