Electromagnetic Interference Shielding in Soft, Lightweight, and Flexible Conducting Polymer-based Sponges

Biporjoy Sarkar^{1,2}, Floriane Miquet-Westphal¹, Jiaxin Fan¹, Gayaneh Petrossian¹, and Fabio Cicoira^{1,*}

²MIE-Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, 75005 Paris, France

^{*}Corresponding author: fabio.cicoira@polymtl.ca

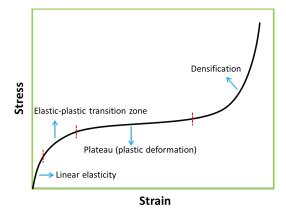
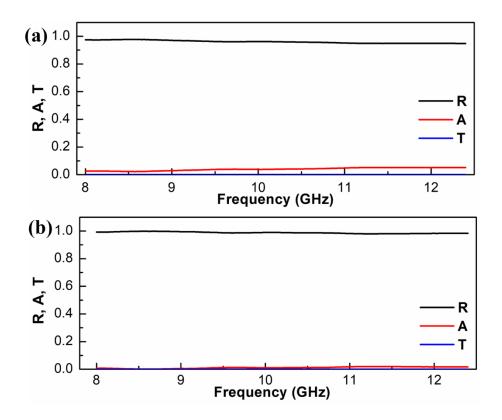
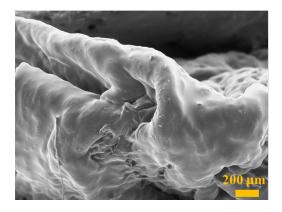




Fig. S1: Schematic representation of stress-strain behaviour of a typical sponge-like material under compression. Different arrows in the schematic indicate different regions of deformation.

¹Department of Chemical Engineering, Polytechnique Montreal, Canada, H3T 1J4

Fig. S2: Plot of variation of R, A, and T as a function of frequency for (a) type-I PEDOT:PSS sponge (b) type-II PEDOT:PSS sponge. Black, red, and blue solid lines represent data points corresponding to R, A, and T.

Fig. S3: SEM image of cross-section of a type-II PEDOT:PSS sponge [scale bar: 200 μm].