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RÉSUMÉ 

Les systèmes mécatroniques sont fondamentalement complexes à concevoir étant donné le besoin 

d’intégration de composantes mécaniques, électroniques ainsi que logiciel. Les dépendances entre 

ces composantes sont à la fois difficiles à modéliser et à prendre en compte tôt dans le processus 

de conception. 

L’objectif de cette thèse est de développer un outil d’aide à la conception assistée par ordinateur 

afin de supporter les concepteurs à positionner et choisir les composantes pour un produit 

mécatronique. En d’autres mots, le but est de réaliser le schéma de configuration des composantes 

d’un produit tôt dans le processus de conception.  

Le schéma de configuration suit des lignes directrices définies par l’étude et l’analyse des 

dépendances entre composantes. Une dépendance est définie comme l’impact/influence d’une 

composante sur les autres. Une dépendance positive implique qu’une composante aide une autre 

composante à accomplir des requis fonctionnels du produit. Tandis qu’une dépendance négative 

implique qu’une composante empêche une autre composante à accomplir pleinement des requis 

fonctionnels du produit. En basant l’outil d’aide à la conception sur l’étude et l’analyse des 

dépendances, il est possible de supporter l’utilisateur à énoncer son problème de positionnement 

de composantes.  

De plus, l’outil permet de traduire le problème de positionnement en un problème d’optimisation 

en termes d’objectifs et de contraintes. Cette optimisation est donc un exercice combinatoire 

considérant toutes les positions et tous les choix de composantes possibles. Afin de résoudre cette 

optimisation, les méthodes d’approximation, plus précisément, les algorithmes évolutifs sont 

utilisés et adaptés. Afin de tester l’outil d’aide à la conception développé dans cette thèse, le schéma 

de configuration d’une serre autonome a été utilisé comme étude de cas.  

Dans un premier temps, une nouvelle formulation du problème de configuration d’une serre 

autonome a été développée et traduite en une optimisation à 15 objectifs. Par la suite, ce problème 

a été résolu en utilisant un algorithme génétique ayant qu’une seule fonction objective en faisant la 

somme pondérée des 15 fonctions objectives. Ceci a donc permis de démontrer que l’outil proposé 

permettait de formuler un problème de configuration d’un produit mécatronique adéquatement. 
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Par la suite, le problème d’optimisation de la configuration de la serre autonome a été adapté afin 

de permettre l’utilisation d’un algorithme évolutif multiobjectif. En réalisant cette adaptation, nous 

avons aussi développé une nouvelle méthode de réduction d’objectifs en faisant la somme pondérée 

d’objectifs par sous-systèmes identifiés à l’aide la méthode de conception axiomatique. Ceci a 

permis de réduire le nombre d’objectifs de 15 à 5. Ce problème a, par la suite, été résolu grâce à 

l’algorithme « non-dominated sorting genetic algorithm II » (NSGA-II). Après 15 à 20 minutes de 

calcul, le processus d’optimisation a proposé 50 configurations possibles d’une serre autonome. 

Finalement, le processus de modularisation a été intégré dans l’outil d’aide au design. En effet, 

durant l’optimisation, les composantes peuvent se combiner, permettant ainsi de former des 

modules et de réduire le volume occupé par les composantes. La formation du module est faite 

grâce à la gestion des dépendances entre composantes ainsi qu’à la représentation par matrices 

utilisant des nombres complexes. Ceci combiné au NSGA-III a permis de réduire le nombre de 

modules d’une serre autonome de 9 à un minimum de 4.   
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ABSTRACT 

Mechatronic systems are inherently complex to design due to the integration of software, electronic 

and mechanical components. The dependencies between these components are both complex to 

model and difficult to consider early in the design phase.  

The objective of this Ph.D. is to develop a multi-objective layout design optimization algorithm to 

synthesize a mechatronic system, by placing its components based on the device's purpose. This 

Ph.D. mainly focuses on design support during the conceptual and preliminary design phases.  

The layout design of a mechatronic design is achieved by following guidelines defined by the 

management of the dependencies between components. A dependency is defined as the impact of 

one component on another one. A positive dependency implies that one component helps another 

to accomplish the functional requirements of the product. While a negative dependency implies 

that one component hinders another component to fully accomplish functional requirements of the 

product. Using the management of the dependencies as the core of the design support tool, it is 

possible to support the user during the problem statement of the layout design. 

Furthermore, the tool also translates the problem statement into an optimization problem in terms 

of objectives and constraints. This optimization is a combinatorial exercise considering all the 

possible positions and choices of the components. To resolve this optimization, approximation 

methods, particularly evolutionary algorithms are used and adapted to solve this problem. To test 

the developed design support tool in this thesis, the layout design of an autonomous greenhouse 

has been used as a case study.  

Firstly, a novel problem statement of the layout design of an autonomous greenhouse has been 

developed and translated into an optimization problem of 15 objectives. Then, this problem was 

solved using a single-objective genetic algorithm by doing a weighted sum of the 15 objectives. 

This demonstrated that the proposed tool is able to formulate the layout design of a mechatronic 

problem adequately.  

Then, the optimization problem of the layout design of an autonomous greenhouse has been 

adapted to allow the use of multi-objective evolutionary algorithms. During this adaptation, we 

were able to develop a novel objective reduction method by doing the weighted sum of objectives 
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by subsystems identified with the aid of the axiomatic design method. This allows reducing the 

number of objectives from 15 to 5. Then, this problem was solved with the non-dominated sorting 

genetic algorithm II (NSGA-II). After a 15 to 20 min optimization time, the result yielded 50 

possible layout designs of an autonomous greenhouse.  

Finally, the modularization process has been integrated into the computer-aided design tool. 

Indeed, during the optimization phase, the components can be combined to form a module and 

reduce the volume occupied by the components. The formation of modules is done using the 

product-related dependencies between components as well as design structure matrices using 

complex numbers. This along with the NSGA-III allowed reducing the number of modules of an 

autonomous greenhouse from 9 to a minimum of 4. 
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1 

 INTRODUCTION 

1.1 Context 

Product design and development methodologies have been developed by engineers and designers 

to improve the product design process for enterprises in terms of five criteria: product quality, 

product cost, development time, development cost, and development capability as mentioned by 

Ulrich and Eppinger [1]. These methodologies [1, 2] present a workflow of the design process 

through guidelines and directives. For example, a summary of the methodology proposed by Ulrich 

and Eppinger in Product Design and Development [1] is presented in Figure 1.1.  

 

 

Figure 1.1. Product design and development methodology from Ulrich and Eppinger 

 

In the literature, one could find many generic product design and development methodologies that 

split the design process in different ways. However, most of them can be sum up by four major 

steps as reported in Figure 1.2. The first step would be the conceptual design phase where the 

product specifications are defined based on the customers’ needs. Then, concepts of the product 

are generated and evaluated to keep those that satisfy design requirements and constraints. The 

second step is the detailed design phase. In this phase, the components and subsystems of the 

promising concepts defined during the conceptual design phase are being described in terms of 

their exact geometry and specifications. Furthermore, these concepts are also being tested using 

simulation tools. The third step is project management where the product feasibility is evaluated in 

terms of the cost and available resources. The product development timeline is also established in 
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this phase. The last step is to test and build the prototypes and evaluate their performances in terms 

of the product specifications and customers’ needs defined in the first phase. The outcome of this 

phase will be the final product to be mass-produced and sell.  

 

 

Figure 1.2. General workflow of a product design and development 

 

For every step shown in Figure 1.2, it is possible to identify computer-aided tools. Indeed, the most 

popular tools are probably computer-aided design (CAD) and computer-aided manufacturing 

(CAM) such as Catia [3]. These tools are often used for the detailed design phase where the exact 

geometry and placement of the components are defined by the user. The tool can also automatically 

optimize the shape of the components for manufacturing in terms of production time and the 

quantity of raw material needed. Furthermore, in the detailed design phase, there are many tools to 

run specific simulation tests on the design such as a thermal analysis using a specialized finite 

element modeling software [4]. The project management phase also has tools to track the general 

development of a product. For example, Microsoft Project [5] can be used to plan the to-do task 

and defined a project timeline, thus, supporting the design team through the design process. The 

prototyping and testing phase can also benefit from statistical tools. For example, JMP [6] offers a 

software solution to do the design of experiments which can be used to define how robust are the 

developed prototypes as well as the final product. Finally, the conceptual design phase can take 
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advantage of tools such as SysML[7], HyperStudy [8], or Engineering Drawing Software [9]. 

However, many engineers perceive these tools as inadequate or incomplete for the conceptual 

design for many reasons that will briefly be explained in the rest of this chapter. 

In 2000, Lipson and Shpitalni [10] reported the importance of conceptual design in which they 

qualified as the most critical phase of the design process. The conceptual design is a stage where 

the engineers and designers explore different basic concepts based on function requirements with 

little information on how to fully achieve the product. They also report that most engineers and 

designers prefer to do the conceptual design phase through sketches of the components’ geometry 

and functions done by hand instead of using the available CAD/CAM tools. The main reason is the 

lack of flexibility from the user interface of these tools to sketch concepts when the information on 

the product is incomplete. This hinders the ability to quickly sketch concepts by starting from 

scratch or by combining existing ones. 18 years later, Vuletic et al. [11] published a review on the 

challenges in computer-aided engineering design (CAED) tools for conceptual design. Some of 

these identified challenges still report that the current CAED tools are ill-adapted for the engineers 

and the designers. Their review considers most of the works published between 2000 and 2017 that 

aimed at overcoming the challenges of developing CAED tools for conceptual design. More 

precisely, this review reports four main issues of the current CAED tools. The first one is as 

mentioned above, the human-computer interface that is ill-adapted for the conceptual design, 

especially for quick sketches. The second issue is the difficulty to obtain feedback from customers 

on the product concepts. Indeed, often, the customer is involved in the product development and 

the current CAED tools do not allow the customer to indicate the desired modification. The third 

issue is that by using the current CAED tools, the user is more prone to converge prematurely 

towards a concept, hence, cutting the conceptual design phase short. The last issue is the learning 

curve associated with the use of the CAED tools. Users tend to spend an important amount of time 

learning how to use the CAED tool instead of using the CAED tool for their product development. 

This review also suggested what should be included in a CAED tool to improve the conceptual 

design of products, these suggestions are split into three main categories and are reported in Table 

1.1. 
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Table 1.1 Main suggestions to achieve a CAED tool for the conceptual design of a product 

Categories Objective Main suggestions 

#1 

Ideation process 

Handle the lack of 

information and make the 

user interface more intuitive 

• Reduce the time it takes to learn 

how to use the CAED tool 

• Improve visualization of ideas 

• Stimulate creativity 

• Tolerate ambiguity in the sketch 

#2 

Digitizing of design/ 

Translation of design  

Digitalize sketches and ease 

the transition from sketches 

to designing based on expert 

knowledge. 

• Detect redundant task for 

sketches 

• Focus more on the sketches and 

design and less on understanding 

the interface 

• Use a system that advises the user 

during the design process. 

• Allow for multiple levels of 

abstraction 

• Collaborative design 

#3 

Design review and 

evaluation 

Support the designers and 

engineers to generate 

concepts. These concepts 

need to be transferable to 

other CAED tools of the 

following design phases 

• Compatible with other CAED for 

the following design phases 

• Version control of the designs 

• Comparison between designs 

• Mixing and combining designs 

• Proper representation of the 

design 
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• Exploration of the design space 

• Support for design evaluation 

 

The rest of the review mainly focuses on comparing the different human-computer interfaces 

developed for conceptual design for computer-aided sketching. Hence, most of the reviewed papers 

cover issues related to the first and second categories. 

Now that the general portrait of the challenges regarding the conceptual design has been painted, 

this thesis will give particular attention to parts of the second and third categories. The first category 

will not be treated since it focuses on manually sketch concepts. Developing sketching tools is not 

within the scope of this thesis. This research project leans more toward generating and evaluating 

many concepts in a reasonable amount of time. 

Furthermore, it is important to mention that this research project focuses on optimizing mechatronic 

products. Mechatronic products are inherently complex systems due to the integration of 

components and subsystems from multiple disciplines such as mechanics, electronics, and 

computer science. This integration comes with several issues identified by researchers [12, 13] 

such as managing dependencies between components [14, 15], concepts evaluation of the 

mechatronic products [16], etc. Additionally, the integration issues for mechatronic products are 

related to the suggestions in Table 1.1, hence, developing a CAED tool for the conceptual design 

stage would improve the mechatronic product design process. 

For this thesis, the design of an autonomous greenhouse will be used as a case study. An 

autonomous greenhouse is considered a mechatronic design due to the presence of multiple 

engineering domains involved, namely: mechanical, electrical, software and control. Indeed, a 

greenhouse needs to use mechanical engineering methods such as thermal analysis to maintain a 

uniform temperature. Then, one needs electrical components such as sensors (e.g., heat sensor) and 

actuators (e.g., water pump) to fulfil the needs of the plants. To adequately integrate these 

components, a control system must be developed at a low level such as the control of the water 

pump, or at a high level such as a computer vision system to monitor and ensure the survival and 

growth of the plant. 
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In brief, this thesis will focus on obtaining a set of tools to advise and support the designer during 

the conceptual design phase, to explore the design space, and to compare mechatronic product 

concepts, and recombine parts of different concepts to generate new ones.  

1.2 Thesis organization 

In Chapter 2, a relevant review of literature will be carried out to position the research work of this 

thesis with respect to recent similar works that focus on developing CAED tools for conceptual 

design. Moreover, a brief comparison of the optimization tools available for the exploration of the 

design space will be laid out.  

In Chapter 3, the main research question and objective of this thesis will be defined.  

Then, in Chapter 4, the CAED tools specifications will be dressed. Furthermore, an overview of 

the theory at the core of the proposed CAED tool will be done to ease the comprehension of the 

developed tool. 

Chapter 5, Chapter 6 & Chapter 7 are composed of published/submitted articles that detail the 

proposed tool. Chapter 5 starts by reporting and analyzing research works on autonomous 

greenhouses. Then, the rest of the chapter mainly focuses on the problem statement based on the 

product-related dependencies modeling as well as the translation of these dependencies into 

objectives and constraints to formulate an optimization problem. The optimization is done with a 

single objective genetic algorithm. The objective is an aggregation of all the objectives using the 

weighted approach. Based on Chapter 5, Chapter 6 aims at solving the optimization problem with 

a multi-objective optimization algorithm. To achieve this, engineering design tools are used to 

mitigate the challenges faced when  solving a many-objective optimization problem [17]. Hence, 

an objective reduction approach based on the identification of the sub-systems of the product is 

used with a multi-objective optimization algorithm. Finally, Chapter 7 adds another layer by 

allowing modularization during the optimization process. Indeed, modules containing components 

are formed based on product-related dependencies management between components as well as 

product performances represented by multiple objective functions. Figure 1.3 summarized the 

content of Chapter 5, Chapter 6 & Chapter 7.  
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In Chapter 8, a general discussion about the achievements and limitations of this thesis will be 

presented. Finally, Chapter 9 will conclude this thesis. 

 

Figure 1.3 Summary of the work and contributions presented in Chapter 5, Chapter 6, and 

Chapter 7  
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 LITERATURE REVIEW 

2.1 Conceptual design support tools 

A relevant literature review on the trend in the conceptual design related to the design review and 

evaluation category of Table 1.1 during 2017 and 2020 will be done. From this starting point, it 

will be possible to contextualize and defined the research project of this thesis in Chapter 3. Two 

main approaches will be covered: product-specific methodology and generalized methodology.  

The first approach is product-specific which means that the design methodology is developed for 

a specific product or product family. Chen et al. [18] developed a methodology to optimize the 

energy consumption of an autonomous underwater vehicle. The energy consumption is mainly 

affected by the drag which is related to the hydrodynamics as well as the power management and 

mass distribution of the vehicle. This multidisciplinary design problem was solved using single 

objective optimization algorithms. Bidoki et al. [19] also developed a methodology to achieve the 

conceptual design of an autonomous underwater vehicle. To achieve this, a multidisciplinary 

design optimization (MDO) architecture was combined with an evolutionary algorithm. The 

chosen MDO architecture was the multidisciplinary feasible since it guarantees a feasible concept. 

For the optimization of the MDO problem, the particle swarm optimization was chosen. The 

objective functions were summarized as the target detection probability and the target detection 

time. The target detection needed to be maximized, and the target detection time needed to be 

minimized. These objectives functions were aggregated into a single objective optimization using 

the weighted sum approach. Guo et al. [20] translated the conceptual design of a commercial aero-

engine system problem into an optimization problem where the goal was to ensure the performance 

of the engine as well as environmental friendliness. Then, a comparison was done between two 

optimization approaches. The first one was a single objective optimization using the weighted sum 

approach to aggregate the objectives, a set of constraints, and the adaptive simulated annealing 

algorithm. The second approach was a multi-objective optimization where all the constraints were 

turned into objectives that were aggregated and then treated as one objective. The algorithm for 

multi-objective optimization was the non-dominated sorting genetic algorithm II (NSGA-II). Sun 

et al. [21] developed a two steps MDO method for the preliminary design of integral solid 

propellant ramjet supersonic cruise vehicles. The optimization was done in terms of the following 
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disciplines needed to design the vehicles: geometry, aerodynamics, radar cross-section, propulsion, 

mass, and trajectory. The first step was defined as the conceptual design and was done through 

optimization using a GA with a low level of fidelity. The low level of fidelity means that the 

evaluation of the disciplines is computed with poor accuracy and low computational time. As 

opposed to a high level of fidelity which evaluates the disciplines with high accuracy and high 

computational time. The second step used a compromise between a low and high level of fidelity 

which is called a medium level of fidelity MDO. This medium level of fidelity, a GA as well as the 

concepts found during the conceptual design were used to achieve the preliminary design of 

vehicles. Sgueglia et al. [22] used an adapted version of the FAST algorithm to model hybrid-

electric aircraft. The FAST algorithm is an aircraft design tool made for the conceptual design as 

well as the performance computation of aircraft. Once a model had been done using FAST, it was 

interfaced with the MDO tool OpenMDAO where the optimization was held. The objectives of the 

hybrid-electric aircraft conceptual design optimization were energy consumption and weight. The 

optimization was done using single objective optimization algorithms such as SNOPT as well as 

multi-objective algorithms such as NSGA-II. Werner et al. [23] developed a Python-based MDO 

methodology for the conceptual design of a generic b-pillar in terms of shape and size. First, the 

Latin hypercube sampling was used to create geometries, then the feasibility assessment was 

evaluated in terms of constraints of the product and its packaging. If the geometry was not feasible, 

it was penalized. If it was feasible, then, the load case analysis on the generic b-pillar was computed 

with the aid of the SFE CONCEPT. The evaluated geometry was used as the starting population 

for the NSGA-II algorithm which optimized four objectives related to the mass of the geometry.  

In this thesis, the conceptual design phase of mechatronics is covered. Considering the wide variety 

of mechatronic products, the developed tool cannot consider only one product. Indeed, the tool 

must be able to aid the conceptual design of most mechatronic products. However, the review of 

these product-specific methodologies and tools highlights the commonly used tools to generate and 

evaluate concepts. Indeed, it is possible to see that many of these tools use search and optimization 

algorithms, more precisely, evolutionary algorithms. 

The second approach offers a generalized methodology to design complex systems such as 

mechatronics.  
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Lynch et al. [24] developed an ontology-based methodology to reduce the conceptual design space 

of cyber-physical systems. Based on the semantic sensor network, they integrated the QUDT, Owl-

Time, WGS84, and SWEET ontologies to describe the system at different levels of abstraction. 

Furthermore, the TOPSIS tool was used to evaluate the performance of the concepts and to find 

the near-optimal concept. However, the methodology does not offer an algorithm to support the 

design. El Amine et al. [25] developed a methodology for the conceptual design of a product drive 

by the ability to satisfy the requirements and performance of the concept while considering the 

uncertainty of the preliminary design phase. The metrics representing the ability to satisfy the 

requirements, performance, and uncertainty were aggregated with the weighted sum approach 

using the analytical hierarchy process. For the uncertainty aspect of the design process, the fuzzy 

logic theory was used to quantify its impact on the design. The methodology has been tested with 

the design of a concentrating solar power. These two works present a methodology but does not 

proposed to automatize part of their methodology. Hence the designer must go through the whole 

methodology by hand. 

Chen and Xie [26] offered a methodology to design multidisciplinary products. First, based on the 

customer’s needs, the functional requirements were defined. Then, to achieve the functional 

requirements, functional units were used and modeled as differential equations. These differential 

equations were then transformed into a complex-number domain using the Laplace transform. 

Considering that Laplace transform is used for linear systems if the system was non-linear, it was 

linearized around an equilibrium point first. Then, the stability of the system was evaluated using 

the Routh-Hurwitz method. Finally, the connected functional units were found and regrouped into 

a functional unit chain. By finding these functional unit chains, it was possible to describe 

functional requirements and predict its output based on a specific input. The workflow of the 

methodology starts with the user transforming the customer needs into functional requirements, 

then, the above methodology algorithm [27] will automatically output the optimal objective 

functional unit chain. Yi et al. [28] proposed to use the mode pursuing sampling (MPS) method to 

solve MDO. The MPS is popular for the global optimization of the black-box problem. The MPS 

started with approximating a model based on the objective function space using experimental 

points sampled uniformly throughout the design variable space. Then, a guiding mechanism was 

implemented to converge toward an optimum. Hence, iteratively the MPS allowed finding a near-
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global optimum. This method was used to optimize a bulk carrier conceptual design by aggregating 

the objectives into a single objective optimization using the weighted sum approach. Hong et al. 

[29] offered a conceptual framework mainly by combining different design tools. The methodology 

is based on a combination of the main concepts of axiomatic design, function-behaviour structure, 

theory of inventive problem solving (TRIZ) and innovative design thinking. The first phase was 

the concept generation which was done by the designer. Then, the computer evaluated these 

concepts. The final phase of one iteration was the concept improvement that was done by the 

designer with the aid of a human-computer interaction. This method has been used to do the 

conceptual design of an ultra-precision grinding machine. Jelev and Keane [30] made a framework 

based on the Blackboard model for the MDO in the early stage of a product design. The Blackboard 

model started with an initial design then sets a range of values for every design parameter. From 

that point, engineers could then explore the design space by modifying the values of the design 

parameter and find the preferred design for their respective domains. During this exploration phase, 

the engineers had access to a database that contained the information related to the preferred 

designs. This was done iteratively up to a degree of satisfaction based on the design team. They 

improved the Blackboard model by including a novel local search algorithm called 

multidisciplinary pattern search to support the engineers during this process. The method has been 

used on the conceptual design of a UAV wing. Hu et al. [31] proposed a methodology for the 

product conceptual design phase while focusing on the improvement of the innovative aspect of 

this phase. The first step was the interpretation of the customer needs which was done by using the 

two first steps of the quality-function deployment. These two first steps were used to find the design 

requirements as well as the components characteristics. Based on the design requirements, the 

design team used the case-based decision theory (CBDT) model and/or the CBDT combine with 

the TRIZ model to make decisions. The CBDT model was usually used to make general decisions 

and the CBDT-TRIZ model was used to generate innovative solutions quickly. Furthermore, the 

image scale method was used as a visualization tool to support the comparison of concepts. This 

methodology was used to design a garden hand-tool product. Kontogiannis and Savill [32] 

developed a framework for MDO during the conceptual design of complex systems based on 

surrogate modeling and multi-fidelity analysis. The surrogate model was done with a modified 

Kriging model using sampled data from low-fidelity and high-fidelity analysis. This model 
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approximated the system model. During the whole optimization process, a sub-optimization was 

running in terms of multiple expected improvements which were estimators of the possible 

improvement of objective functions. This sub-optimization returned a set of Pareto points that were 

then evaluated by the error model. The sub-optimization routine was realized by their 

implementation of a multi-objective particle swarm optimization. The authors tested their 

framework on 1D and 2D test cases, on Rosenbrock function, on Sellar MDO test cases as well as 

on a typical transonic airfoil design problem. The framework was also tested in terms of single-

objective optimization and multi-objective optimization.  

These works achieve an optimization process mainly to fulfill the functional requirements. 

However, as mentioned before in Table 1.1, one of the main issues of the conceptual design is to 

generate, evaluate and visualize different concepts which are usually done through sketching. 

These concepts must fulfill the functional requirement of the system, but they also need to consider 

the dependencies between components and/or subsystems. Even though product-related 

dependencies are known to greatly influence the overall performance of a mechatronic system, 

most of the methods to synthesize a mechatronic system do not consider them at the early stage of 

the design. Indeed, these dependencies have a great impact on the success of the system as 

mentioned by [14, 15, 33]. A dependency can be positive which means the integration of 

components will help fulfill the functional requirements. As opposed to a negative dependency 

which will hinder the achievement of the functional requirements. The source of the negative 

dependencies can be associated with thermal effect, electromagnetic effect, etc [14, 15]. The 

dependencies of interest for this thesis are related to the spatial placement of the components 

considering that one of the most important aspects of the conceptual design is sketching. 

Consequently, the main subject of this Ph.D. project will be the layout design of a mechatronic 

system. The layout design is defined as the choice of components and their placements. The 

computer-aided tools developed will also offer 3D visual support for visualizing the layout 

concepts. For the rest of this thesis, the term layout design synthesis will summarize the description 

above. 

2.2 Layout design optimization 

Layout design optimization is a combinatorial optimization problem (COP) which means that there 

is a limited number of viable solutions. COPs have been sorted in the nondeterministic polynomial 
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time complete (NP-C) problem. This means that the computational time needed to solve the 

problem increases exponentially with the size of the problem [34, 35]. 

Research on NP-C problem in mechatronics and robotics as well as other fields such as facility 

layout problems and container loading problems allowed to pinpoint the popular optimization 

methods to solve COPs. A summary of the main methods is presented in the following paragraphs.  

Exact methods: exact methods use two main strategies to solve COPs: Branch & bound and cutting 

plane [34-36]. The principle of the Branch & bound is to split the main problem into multiple 

subproblems and to solve the subproblems individually. At each iteration, the unimproved and 

unrealistic are not going to be considered. For example, [37] presents a model predictive control 

method to define the configuration of multiple vehicles while using a collision avoidance algorithm 

based on branch &bound. First, an optimal configuration is calculated. Then, if a predicted collision 

is detected a subproblem is generated to avoid the collision. In [38], a branch & bound algorithm 

is used to minimize the energy consumption in a permutation flow shop scheduling problem. Each 

machine can have two states: idle or operational. The goal is to reduce the number of idled 

machines since they are consuming energy while doing nothing. The branch & bound is used to 

distribute and synchronize jobs to the machine considering the overall energy consumption. 

For the cutting plane strategy, the idea is to set several constraints to reduce the solution space. For 

example, [39] treats the cutting and packing problems more precisely as the one-dimensional 

cutting stock problem. This specific type of problem consists of cutting multiple specific pieces 

with a defined size from a minimum number of stocks (materials). Using the cutting plane 

algorithm, a set of constraints represented by inequalities were added to the standard cutting stock 

problem formulation to minimize the number of stocks. In [40], the capacitated arc routing problem 

was optimized using a cutting plane algorithm. In this paper, the capacitated arc routing problem 

is defined as “finding a set of minimum cost routes that service all the positive-demand edges of a 

given graph, subject to capacity restrictions”. An example of a capacitated arc routing problem 

could be mail delivery. This work proposes a new set of inequalities to solve the capacitated arc 

routing problem. The conclusion on these methods are reported in Table 2.1  
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Table 2.1. Advantages and inconveniences of exact methods 

Advantages Disadvantages 

Convergence towards global optimum Works for small size problems 

An optimal solution may be obtained Computation time tend to be “infinite” 

when the size of the problem gets too large 

Consider the whole solution space Viable if the main problem can be split into 

subproblems 

 

Intelligent methods: There are three main approaches: expert system, fuzzy system, and artificial 

neural networks [34-36]. Expert systems are artificial intelligence systems taught to solve a specific 

problem with the aid of a human expertise database. Fuzzy systems are often used to quantify a 

qualitative specification to choose between different alternatives. The artificial neural network uses 

many examples of a system to create a model of a problem. Once this model is done, a solution 

will be given for a set of inputs. In [41], the layout design of a space station was done with a new 

evolutionary algorithm called expert-guided evolutionary algorithm with tree-like structure 

decomposition. The algorithm starts by dividing the volume into subspaces with a tree-like 

structure. Then the layout is optimized by the evolutionary algorithm. Also, to avoid the local 

minimum an interface was developed by the author to allow a human expert to intervene. In [42], 

a layout design optimization algorithm was developed using the fuzzy constraint theory. The fuzzy 

constraint theory is used to evaluate the performance of layouts and define the best layout. The 

conclusion on these methods is reported in Table 2.2.  

Table 2.2. Advantages and inconveniences of intelligent methods 

Advantages Disadvantages 

After the training phase, the optimization 

time is low.  

Need for expert knowledge 
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Uses years of expert knowledge Need for training 

 Unpredictable reaction when faced with a 

situation unseen during the training phase 

 

Approximation methods: The most recent approximation methods are often based on 

evolutionary algorithms which in general start with a randomized initial population or a known 

good initial solution and try to converge toward the global optimal solution using different 

strategies. The strategies adopted can be a global search such as a genetic algorithm or a local 

search such as a Tabu search[34-36]. A few applications of the approximation methods are given 

in the next paragraphs.  

In [43], a multi-objective genetic algorithm was implemented to design a micro-electro-mechanical 

system. The algorithm had to define the configuration of one center of mass and four serpentine 

springs while considering a set of constraints. In [44], a driller control console layout was designed 

to improve the human-machine interface for the manipulators who controlled the driller. The 

objective function optimized by a genetic algorithm is based on the human-machine interface 

theory and mathematical model. In [45], a generic mechatronic design algorithm was developed. 

A bond graph representation is used to characterize the mechatronic system and two genetic 

algorithm loops are used to optimize it. The first loop act on minor modifications of the design 

while the second loop optimise the overall design of the system. In [46], a combination of the 

genetic algorithm and the finite element analysis is applied to the layout optimization of a 2D and 

a 3D workpiece from an aircraft body panel. In [47], a layout design of human-machine interaction 

interface of cabin methodology has been developed using the theory of cognitive psychology 

combined with Genetic and Ant Colony algorithms. This methodology has then successfully 

optimized the layout design of a driller control room on a drilling rig which is a human-machine 

interaction interface of 16 manipulators. The conclusion on these methods is reported in Table 2.3  

 

 



16 

 

 

Table 2.3. Advantages and inconveniences of approximation methods 

Advantages Disadvantages 

Obtains excellent solution  Can use a lot of resources 

Reasonable computational time Some methods need an initial solution 

Can solve highly non-linear objective 

functions 

Might be vulnerable to premature 

convergence (local extremum) 

The literature review done in this sub-section presented the most used algorithms used for layout 

optimization. The optimization of a layout of a mechatronic system is a problem with numerous 

combinations since there is a lot of different viable sensors and configurations that an engineer can 

use. The exact methods would not be an adequate choice because they cannot handle high-

dimensionality problems (more than 25 elements [35]) very well. Furthermore, exact methods tend 

to perform poorly when the space is not smooth which might be the case here. 

Methods that need an initial solution would also be impractical since an initial solution for a 

specific mechatronic system might not exist. Considering an improvised initial solution combined 

with highly non-linear objective functions, there is a high possibility that the final solution would 

be a local optimum which can be far from the global optima. For this reason, any methods needing 

an initial solution will not be considered as a sole optimization algorithm.  

The intelligent methods were not considered as a possible optimization algorithm, as they would 

not be practical because of the lack of information/data about a specific mechatronic system during 

the conceptual design phase to obtain an adequately trained intelligent model. 

Approximation methods will therefore be considered in this Ph.D. work to optimize the choice of 

sensors as well as the layout design of a mechatronic system based on the component's 

dependencies since they can optimize highly non-linear objective functions and have the potential 

to output excellent solutions within a reasonable computational time.   
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 RESEARCH QUESTION, OBJECTIVES, AND 

HYPOTHESIS 

3.1 Research question 

Based on the conclusion of the literature review carried-out in Section 2.1 of Chapter 2, the research 

question is:  

How to provide support to designers for the layout synthesis of a mechatronic system 

during the conceptual design phase? 

Figure 3.1 summarizes the goal and the implication of the main research question of the project as 

it shows the main questions that need to be answered at different stages in order to answer the main 

research question. 

 

Figure 3.1. Summary of the research project 

3.2 Objectives  

The main objective of this project is as follows: 

Develop a multi-objective design support tool based on evolutionary computing to 

synthesize the layout design of a mechatronic system. 

Sub-Objective 1. Develop the mathematical formulation for layout constraints as well as the 

functional restrictions and objective functions.  
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Sub-Objective 2. Optimize the layout design of mechatronic systems using evolutionary 

computing algorithms. 

Sub-Objective 3. Test and validate the proposed algorithm on a mechatronic system case study. 

Figure 3.2 presents a diagram to summarize the main modules of the CAED tool developed in this 

thesis that will fulfill the stated objectives in this sub-section. It also highlights the areas of 

significant contributions of this thesis. 

3.3 Hypothesis 

Based on what was covered in the literature review and the research question at hand, the 

hypothesis which will be confirmed or infirmed in this project is: 

By using a multi-objective layout design optimization algorithm based on product-related 

dependencies for the synthesis of mechatronic systems, it is possible to improve: 

1. The exploration of the layout design space of the mechatronic system. 

2. The performance of the mechatronic system. 

To validate these hypotheses, a case study will be used. Indeed, the case study is the layout design 

of an autonomous greenhouse as part of a Canadian Space Agency funded research project led by 

Professor G. Beltrame (Polytechnique Montréal). The goal is to integrate a miniature autonomous 

greenhouse into a nanosatellite. This case study is suitable for the validation of the developed tools 

for two main reasons. First, considering the volume restriction of a nanosatellite, choosing an 

optimal layout for the design is crucial as it would allow space minimization while keeping the full 

functionality of the device. Second, the closeness of mechanical and electrical components and the 

limited free space available can greatly affect the growth of the plant. Indeed, the closeness of 

electrical components can yield inaccurate measurements that would misguide the control system. 

This case study is the subject of two published scientific papers reported in Chapter 5 and Chapter 

6. 
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Figure 3.2. Area of relevance and contributions diagram of the research project 
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 TOOL SPECIFICATIONS & PRODUCT-RELATED 

DEPENDENCIES  

4.1 Computer-aided tool specifications 

The proposed computer-aided tools should allow the improvement of mechatronic systems’ design 

by optimizing the position of the components based on the components’ dependencies and the 

system’s functionalities. It should also greatly assist the synthesis of mechatronic systems since the 

components’ dependencies bring issues early in the design process that needs to be managed. It 

will be possible to see this phenomenon in the case study considered in this project. First, the 

essential and optional needs will be described.  

4.1.1 Essential needs 

The essential needs are defined as the minimum functionalities that need to be included in the 

developed computer-aided tool to obtain a layout design. Hence, the proposed tool must include 

the following list of requirements: 

- Able to acquire user’s input 

- Able to generate and evaluate layout designs 

- Able to present a layout design to the user 

4.1.2 Optional needs 

The optional needs are defined as the desired functionalities that could be included in the developed 

computer-aided tool to improve user comfort and product design process. Hence, the proposed tool 

could benefit from the following list of requirements: 

- Offers an intuitive interface 

- Interfaces the proposed tool to other tools 

- Able to output more than one layout design 
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4.1.3 Constraints 

The main constraint concerns the learning curve associated with the use of the computer-aided tool. 

Hence, the proposed tool should follow these guidelines: 

- The user should not spend more time learning how to use the proposed computer-aided tool 

than on designing systems.  

- The workflow of the tool should be similar to the workflow usually used by designers. 

4.2 Product-related dependencies modeling 

In [13], a comprehensive study was carried out on challenges faced by engineers in mechatronic 

systems design, and a comprehensive classification of product-related dependencies was proposed. 

This classification will be the basis for the dependencies modeling for this thesis. 

The challenges presented in [13] have been classified into six main categories related to 

mechatronic systems design: activity, mindset, competence, organizational, product, and other. The 

activity, mindset, competence, organizational and other categories contain challenges that concern 

the education of mechatronic engineers or how the company organizes itself for integrating the 

different engineering disciplines involved. For example, a company must adapt its communication 

systems to allow a proper knowledge transfer from one domain to another. This could also lead to 

a change in the facility's layout to encourage the collaboration of engineers from different domains 

to obtain concurrent engineering. These challenges will not be considered in this research project. 

Indeed, the issues covered by this Ph.D. thesis are only related to the design of the mechatronic 

product itself. It is important to note that product-related challenges remain the most complex to 

tackle and are known for having the most impact on the performances of the final product [12, 13]. 

These product-related dependencies stem generally from the following challenges [13]:  

1. Lack of common understanding of the overall system 

2. Difficulty in assessing the consequences of choosing between two alternatives 

3. Lack of a common language to represent a concept 

4. Modeling and controlling multiple relations in the product concept 

5. Being in control of the multiple functional states of the product 

6. Transfer of models and information between domains. 
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The work presented in [15] deepens the classification of the product-related challenges and 

developed a system to classify the product-related dependencies. This classification was developed 

as a methodology that can be used by design teams to identify and influence the dependencies 

within a mechatronic product. These dependencies have been described as appearing between 

product attributes: function, property, and structure. Based on the reviewed literature [48-53], it 

was proposed to use the terms functions, properties, and means to describe the product across the 

engineering disciplines, where: 

• Function (Fu): the task of a product. A function is defined as the task that a product must 

be able to complete. 

• Property (Pr): the property is defined as a characteristic of the product caused by the 

chosen means 

• Mean (M): the mean is defined as a sub-system or method used to accomplish a function. 

As in [15, 33], in this thesis, these terms are also used to define product-related dependencies. It is 

worth noting that a product-related dependency can exist between two or more attributes of the 

product. These dependencies are abstract and can be defined between the product attributes in terms 

of Fu-Fu, Fu-M, Pr-M, M-M, Pr-Fu, Pr-Pr, as illustrated in Figure 4.1.  

 

Figure 4.1. Representations of the product attribute dependencies 

Six dependencies can be created (shown in Figure 4.1) as a result of a purely combinatorial 

exercise: 
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1. Fu–Fu: A dependency between two functions is described by the link that is created when a 

function reacts to a stimulus created by another function. 

2. M–M: A dependency between two means in the product. 

3. Fu–M: A function is realized by a mean. This mean can then help further decompose the 

function into sub-functions, which creates the dependency between functions and means. 

4. Pr–M: Properties are the result of choosing means, thereby creating dependencies between 

means and properties. 

5. Pr–Fu: There is no direct relation between a function and a property. Both are related to means 

according to the Theory of Domains [48, 49]. A link can be established by combining the two 

relations Fu–M and the Pr–M. Therefore, the Fu-Pr relation will not be described as a separate 

relation. 

6. Pr–Pr: There is no direct relation between a property and a property, and the argumentation is 

the same as the Pr-Fu relation. 

In this thesis, Fu-Fu dependencies will not be considered since these dependencies are defined by 

the client or very early by the designer of the mechatronic system. Pr-Fu and Pr-Pr will not be 

managed either as there is no direct relation between function and property or property and property 

since they must use means to influence each other as explained above. Therefore, the considered 

dependencies are the following (as defined in [15] ): 

1. Fu-M in terms of 1) Fu-M disposition where functions transformed into means and then into 

sub-functions; 2) Cumulative Fu-M where several means can contribute to realizing a single 

function and 3) Adverse effect that occurs when finding means to realize a function, also may 

create solutions with adverse effects. 

2. Pr-M in terms of 1) Property scheme as in how the means contribute to the realization of a 

property. 

3. M-M in terms of 1) Volume allocation which is an aspect that plays a significant role when 

looking at the relations between means; and 2) Physical interface between two components (the 

link between components).  

This thesis focuses on automatically integrating the six product-related dependencies presented 

above when designing the layout of a mechatronic system.  
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 ARTICLE 1: EVOLUTIONARY LAYOUT DESIGN 

SYNTHESIS OF AN AUTONOMOUS GREENHOUSE USING 

PRODUCT-RELATED DEPENDENCIES 

The article presented by Yann-Seing Law, Yuanchao Ma, Aurelian Vadean, Giovanni Beltrame, 

and Sofiane Achiche in this chapter is published in the journal Artificial intelligence for 

Engineering Design, Analysis and Manufacturing. 

Law-Kam Cio, Y., Ma, Y., Vadean, A., Beltrame, G., & Achiche, S. (2021). Evolutionary layout 

design synthesis of an autonomous greenhouse using product-related dependencies. Artificial 

Intelligence for Engineering Design, Analysis, and Manufacturing, 35(1), 49-64. 

doi:10.1017/S0890060420000384 

5.1 Abstract 

The development of autonomous greenhouses has caught the interest of many researchers and 

industrial considering their potential of offering an optimal environment for the growth of high-

quality crops with minimum resources. Since an autonomous greenhouse is a mechatronic system, 

the consideration of its sub-systems (e.g. heating systems) and components (e.g. actuators, sensors) 

interactions early in the design phase can ease the product development process. Indeed, this 

consideration could shorten the design process, reduce the number of redesign loops, and improve 

the performance of the overall mechatronic system. In the case of a greenhouse, it would lead to a 

higher quality of the crops and better management of resources. In this work, the layout design of 

a general autonomous greenhouse is translated into an optimization problem statement while 

considering product-related dependencies. Then, a genetic algorithm is used to carry out the 

optimization of the layout design. The methodology is applied to the design of a fully autonomous 

greenhouse (45 cm X 30 cm X 30 cm) for the growth of plants in space. Although some objectives 

are conflictual, the developed algorithm proposes a compromise to obtain a near-optimal feasible 

layout design. The algorithm was also able to optimize the volume of components (occupied space) 

while considering the energy consumption and the overall mass. Their respective summed values 

are 2844.32 cm3, which represents 7% of the total volume, 5.86 W, and 655.8g. 
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5.2 Introduction  

Autonomous greenhouses have been developed as a means to grow plants in an optimal 

environment defined in terms of humidity, temperature, lighting, and gases concentration (Sabri, 

Aljunid, et al. 2011, Vera, Osorio-Comparán, et al. 2017). Such technology has many advantages 

such as better management of resources, off-season growth of high-quality crops, etc. (Rabago, de 

Santago, et al. 2013, Abas and Dahlui 2015). However, the design of such a greenhouse is not an 

easy task. One major issue is its layout design. In general, the layout design is the spatial 

management of different elements in a given space based on domain-specific objectives. In 

architecture and urban design, the ease of access from rooms to hallways could be a domain-

specific objective (Koenig and Schneider 2012). Another example closer to the design of a 

greenhouse is the design of a satellite where the domain-specific objective is to ensure that every 

element can carry out its functions (Taura and Nagasaka 1999). Furthermore, layout and domain-

specific objectives are usually conflictual. Indeed, the layout design of an autonomous greenhouse 

needs to manage two important conflictual objectives, which are to maximize the size of the pack-

soil and to minimize the amount of resources needed. On top of those objectives, the greenhouse 

must be functional and must allow an optimal environment for the growth of specific plants. Since 

an autonomous greenhouse is a mechatronic system, it is essential to consider interactions among 

the components during the design phase (Mohebbi, Baron, et al. 2014, Torry-Smith, Mortensen, et 

al. 2014) to increase its efficiency. To overcome this challenge, the layout design of a greenhouse 

consists of concurrently solving three main issues.  

The first issue is to define the size and location of the pack-soil as well as the storage of resources 

(e.g. water tank). The size of both the pack soil and storage of resources is defined by the plants 

chosen to be grown in the greenhouse. Indeed, plant seeds need a space between each other to 

properly grow, which means the size of the pack-soil depends on the number of seeds. As for the 

storage of resources, each plant needs to consume a certain amount to properly grow as well. This 

means that prior knowledge about the ideal environment of the chosen plant is needed. 

Since the greenhouse has to be autonomous, a set of sensors to acquire data of the current 

environment is required. Hence, the second issue is the need to define the size and performance of 

sensors (e.g. humidity) and actuators (e.g. water pumps), that control the greenhouse environment. 
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A set of actuators must be present to modify the environment. Depending on the model of sensors 

and actuators, the size and the performance of the system can change in terms of the volume 

allocated for both the plant growth and the assessment of the environment.  

As for the locations of these components, they depend on the third and last main issue, which is 

the interaction between all the greenhouse components. Indeed, the sensors, actuators, pack soil, 

and storage of resources must be carefully positioned to avoid the malfunction of the greenhouse. 

A malfunction can occur when one component has adverse /negative effects on other components 

as reported by Chouinard et al. (Chouinard, Achiche et al. 2017, Chouinard, Achiche, et al. 2019). 

For example, the temperature sensor cannot be placed close to the heater to avoid an erroneous 

reading of the temperature, which could lead to freezing or drying the pack-soil. It is worth 

mentioning that in this paper we will consider the same categories in terms of heat, electromagnetic 

effects (EMFs) and vibrations when present. 

The main contribution of this paper is the development of a methodology to formulate an 

optimization problem for the automated layout design of a greenhouse considering the three issues 

mentioned above in terms of 1) size and location of pack soil and storage of resources, 2) size and 

performance of sensors and actuators and 3) location of components considering their adverse 

effects.  

First, the problem statement of the layout design of a greenhouse is carried out and translated into 

an optimization problem. Using evolutionary computing (a genetic algorithm), the size, location, 

and parameters of every component of the greenhouse are optimized. 

5.3 Background and Literature Review  

We focus on studies of autonomous greenhouse design and greenhouse layout design. The research 

trends concerning autonomous greenhouses are generally targeting climate control, wireless 

networks, and integrated design. 
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5.3.1 Autonomous Greenhouse 

This part of the literature review is carried out to identify the product specifications needed to 

design an autonomous greenhouse. It is destined to systematically formulate the problem statement 

presented in the next section. 

Researchers are interested in improving the assessment of the environment of a greenhouse in 

different situations. Castañeda-Miranda and Castaño (Castañeda-Miranda and Castaño 2017) made 

a comparison between an autoregressive algorithm (ARX) and an artificial neural network to 

predict the internal temperature of a greenhouse based on both external and internal parameters, 

such as the outside temperature, and the humidity. This study found that the artificial neural 

network provides a better prediction than ARX. The method is tested with data from a greenhouse 

and a weather station. Romantchik et al. (Romantchik, Ríos, et al. 2017) designed a cooling control 

system to prevent the temperature of the greenhouse from exceeding 25°C using fan-pad systems. 

Based on a ventilation system, an algorithm is developed to support the design of a photovoltaic 

solution, which would supply the necessary energy. Vera et al. (Vera, Osorio-Comparán, et al. 

2017) built a greenhouse with its environment controlled by monitoring the temperature, humidity, 

carbon dioxide, and illumination levels. In this greenhouse, a heat sensor and a heater controlled 

the temperature. A humidity sensor for soil controlled the humidity of the soil and a solenoid valve 

fed the water. A relative humidity sensor and a micro sprayer controlled the humidity of the air. A 

carbon dioxide sensor and a fan regulated carbon dioxide levels. Finally, a combination of a 

luminosity sensor, luminosity source, and a timer controlled the illumination. In their research 

works, Abas et al. (Abas and Dahlui 2015, Abas, Salman, et al. 2016) used the temperature, 

humidity, and irradiance acquired by sensors to control the temperature, the humidity, and the 

interval of time between the activation of an irrigation system. An intruder detector activates the 

intruder repellent, using electric fences and ultrasonic sound. The whole system is powered by a 

solar panel. Matos et al. (Matos, Gonçalves, et al. 2015) automated fodder production part of a 

hydroponic system (growing plants without soil). The system automatically placed seeds in the 

trays, managed the nutrient solution preparation and the water distribution. Paraforos and 

Griepentrog (Paraforos and Griepentrog 2013) used a multivariable control of a greenhouse in 

terms of carbon dioxide quantity, temperature, and humidity. A non-linear steady-state model is 

used to develop an input/output linear decoupled controller by linearizing and discretizing the 
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model for given operation points. Pala et al. (Pala, Mizenko, et al. 2014) proposed a control strategy 

for aeroponic systems. In their work, first, a network of sensors and actuators is implemented to 

monitor the environment through a user interface to relay the information to the user and to allow 

the user to manually control the system if needed. Second, the aeroponics system design called 

Aero Pot is presented. The Aero Pot is a nutrient distribution system composed of two nozzles, 

where the nutrients are given to a plant and a motor to move the nozzle from one plant to another. 

The optimization of the system is done using a genetic algorithm (GA). The user can define the 

number of lights and pumps and their power consumption. The GA first optimizes the power 

consumption, then provides the power schedule of components for one day. The preliminary results 

of this optimization are promising since the first experiments demonstrated that with reasonable 

power consumption, the plant was healthy. Rabago et al. (Rabago, de Santago, et al. 2013) designed 

a solar-powered automatic greenhouse. The system controlled the moisture, the temperature, and 

the irrigation schedule using information about the humidity, moisture, temperature, and soil 

mixture. The components were solar panels, batteries, valves, a relative humidity sensor for the air, 

a humidity sensor for the soil, a halogen lamp to heat, fans, and microcontrollers. In the work 

presented by Hahn (Hahn 2011) a fuzzy controller is developed to prevent tomatoes from cracking 

because of overheating. To control the temperature of the crop, a shading screen control, and 

irrigation system control are used. The solar radiation, the substrate temperature, and the canopy 

temperature were the inputs of the fuzzy controller while the output was the command sent to the 

irrigation system and the motor controlling the shading screen position. Schubert et al. (Schubert, 

Quantius, et al. 2011) proposed a greenhouse module design for extraterrestrial habitats. The 

system design started by suggesting multiple designs of the greenhouse module, which contained 

the growth system. The growth system is composed of the germination unit which starts the growth 

of the plants before transferring them in a grow pallet. The growth pallet is then placed in a growth 

channel, where the environment is controlled to satisfy the needs of a given plant for every stage 

of its growth. The growth channel unit is filled with multiple growth channels installed on a 

conveyor system. Finally, the greenhouse module is integrated with eight subsystems to control the 

environment of the plants. Xu and Li (Xu and Li 2008) developed a greenhouse control system 

using multiple agents. The intelligent control center is composed of a collecting artificial agent to 

gather data from the greenhouse, which is processed by the data processing one. The data 
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transmitting agent then stores the information in a database. The intelligent control center also has 

an agent, which controls the greenhouse environment in terms of temperature, illumination, 

humidity, and carbon dioxide concentration. Herrero et al. (Herrero, Blasco, et al. 2007) 

implemented an elitist multi-objective evolutionary algorithm to identify the parameters of a 

greenhouse model. The greenhouse model used is composed of 15 parameters to estimate the 

internal temperature and humidity. Using the implemented evolutionary algorithm and a set of data 

obtained from an operating greenhouse, a Pareto optimal set of the greenhouse model was found. 

Then, the greenhouse model from the set of criteria closer to the ideal optimality criteria was 

validated using another set of data obtained from the same operating greenhouse. 

Most of the time, researchers use wireless communication networks of components to monitor and 

control the climate of the greenhouse. Hence, the use of wireless communication adds complexity 

to the design of autonomous greenhouses. In Azaza et al. (Azaza, Tanougast, et al. 2016) a fuzzy 

logic-based controller combined with a wireless communication system based on the ZigBee 

platform controlled the climate of a greenhouse. The temperature, humidity, carbon dioxide, and 

illumination integrated a fuzzy set beside the external meteorological variables and the setpoints 

given by a user. Then, a decision scheme, which represented the observer design flow, was set up 

in terms of ventilation, heating, humidification, and dehumidification. Finally, the fuzzy logic 

controller is implemented using FPGA programming to assess the greenhouse environment in 

terms of temperature and humidity using the heating and ventilating system. In Krishna et al. 

(Krishna, Madhuri, et al. 2016) a wireless network based on ZigBee assessed the greenhouse 

environment in terms of humidity, moisture, and temperature. The sensors sent the data to an 

ARM7 microcontroller, which used a ZigBee transmitter. The data is then sent in real-time to a 

central unit combined with a Zigbee transmitter to monitor the data. Goumopoulos et al. 

(Goumopoulos 2012, Goumopoulos, O’Flynn, et al. 2014) developed an automatic irrigation 

control system using machine learning and wireless sensor network information formed of multiple 

nodes, where one node monitored a zone containing multiple plants. The control strategy had three 

main components. First, the ontology of the plant is used to define the rules for decision-making 

based on prior knowledge. Second, the Decision Support System acquired all the information from 

the data analysis of the greenhouse to make a decision for the well-being of the plant. Finally, 

machine learning is used to obtain new connections among the data acquired. Three types of 
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sensors are used: soil moisture sensors, humidity sensors, and thermistors for air temperature. In 

Sabri et al. (Sabri, Aljunid, et al. 2011) a fuzzy logic approach and a wireless network based on 

ZigBee controlled the greenhouse. The difference in temperature and humidity of the greenhouse 

are monitored and used as inputs for the fuzzy controller. The fan, heater, and humidifier command 

are the output of the controller. Ferentinos et al. (Ferentinos, Katsoulas, et al. 2017) made a 

sensitivity analysis of a wireless sensor network (WSN) reading in function of solar exposition 

level. They made experiments to evaluate which readings were more stable between the three 

expositions level. The first exposition level was labeled “exposed nodes” and was a WSN directly 

exposed to solar radiation. The second one was labeled “boxed nodes” and was fully protected 

from solar radiation by a ventilated box. The last one was labeled “shaded nodes” and used a 

metallic surface to protect the nodes from direct sunlight. The analysis showed that the most stable 

reading was from the “shaded nodes”. Hence, they used “shaded nodes” in a commercial cucumber 

greenhouse. Using this system, they studied plant conditions such as the transpiration of the crops, 

the leaf temperatures, etc. 

The climate control of a greenhouse adapted and integrated into infrastructure or uncommon 

environments is also an area of research. Nadal et al. (Nadal, Llorach-Massana, et al. 2017) 

proposed an integrated rooftop greenhouse (iRTG) at the Autonomous University of Barcelona 

campus. To grow crops successfully, the iRTG recycled many resources from the building to 

control the airflow and temperatures of a greenhouse. Indeed, the whole building adopted a mode 

of operation depending on the season to control the ventilation system of the building. For example, 

when the temperature was too high, the windows are open to cool down the greenhouse. With the 

iRTG, tomatoes and lettuce crops are produced. Poulet and Doule (Poulet and Doule 2014) made 

a preliminary design of a greenhouse for food and for a Zen garden (for crew emotional state) 

called GreenHab. The GreenHab purpose is to eventually be used as a greenhouse on Mars. At the 

moment, the growth of different lettuces in GreenHab is being studied and tested at the Mars Desert 

Research Station of the Mars Society of Utah. The study of GreenHab is carried out in terms of 

temperature, illumination, and humidity. The system is only partially automated since the crew can 

also modify the environment of the greenhouse. Giroux et al. (Giroux, Berinstain, et al. 2006) 

designed a greenhouse for Mars’s environment. The greenhouse is equipped with sensors to 

monitor humidity, temperature, and radiation. The actuators used were the heaters, the fan, and the 
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exhaust fan, which are controlled based on the temperature of the greenhouse environment. The 

greenhouse can operate all year long by changing its operation mode based on the external 

environment, such as the outdoor temperature. Furthermore, the water distribution is done 

manually. An analysis of a greenhouse environment and power consumption over a year is also 

carried out. 

From this literature review, one can conclude that the main function of an autonomous greenhouse 

is to ensure the growth of plants by controlling the climate of the greenhouse. Based on this main 

function, a list of product specifications will be listed in the next section for the layout design of 

an autonomous greenhouse. 

5.3.2 Greenhouse Layout Design 

Komasilovs et al. (Komasilovs, Stalidzans, et al. 2013) used a GA called GAMBot-Eva to optimize 

the design of a robotic system traveling through the greenhouse layout, evaluating health conditions 

of plants and spraying pesticides on them if needed. The optimization problem took into account 

the tasks of the robot, the price, and the energy consumption of the robot components. However, 

the greenhouse layout is fixed, and the optimization is done with the parameters of the robotic 

system. Eben-Chaime et al. (Eben-Chaime, Bechar, et al. 2011) optimized the overall cost of a 

greenhouse layout based on different expenses, such as seedlings and labor costs, for different 

greenhouse layouts. The layout can be changed in many ways to reduce the overall cost of the 

greenhouse. Four different layouts are presented, and the overall cost is calculated. Hence, the 

performance of the greenhouse is not taken into account to choose the layout. Ferentinos et al. 

(Ferentinos, Tsiligiridis, et al. 2005, Ferentinos and Tsiligiridis 2007) optimized the topology of 

the wireless sensor network for precise agriculture applications in terms of energy consumption 

and sensor sensitivity characteristics. The problem is also subjected to connectivity and spatial 

density constraints. This multi-objective optimization is turned into a single objective optimization 

using a weight sum approach. The optimization problem is solved with a GA using binary 

representation. A dynamic optimal design algorithm is also included in the GA for sensors with 

battery capacities. Ferentinos et al. (Ferentinos and Albright 2005) also used a GA using binary 

representation for the placement of the lighting system for a greenhouse. The optimization 

considered different lighting characteristics, such as light uniformity, as well as economical 
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aspects, such as the investment costs. They also used a penalization function to avoid shading 

effects that can happen when designing a lighting system. The problem is rewritten as a single 

objective optimization problem using a weight sum approach.  

5.4 Main objective and Contributions 

Our previous section shows that, until now, only a few works are covering the greenhouse layout 

design. Moreover, these works do not fully consider the layout in the design of the autonomous 

greenhouse. This might be caused by an incomplete problem statement of the layout design. Hence, 

the problem statement of the layout design needs to be improved to rigorously define the 

components needed and their interaction.  

To the best of our knowledge, the evolutionary layout design of greenhouses considering the 

placement of components and their interaction (dependencies) has never been done. The main 

contribution of this paper is a novel methodology to formulate a more comprehensive problem 

statement for layout design as shown in Figure 5.1. Furthermore, the methodology also considers 

the translation of a problem statement from an engineering design perspective to the formulation 

of an optimization problem. First, a problem statement is developed by identifying the components 

of an autonomous greenhouse and their interactions. The problem statement is then translated into 

an optimization problem which is solved using a GA.  

 

 

Figure 5.1 Highlights of contributions in the general methodology 
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The rest of the paper will be structured as follows: Section 5.55.5 defines the problem statement of 

the layout design of a greenhouse. Section 5.6 reviews similar problems solved using algorithmic 

approaches and describes the implementation of the GA. Section 5.7 reports the results and analysis 

of the design of an autonomous greenhouse obtained by the GA used in this paper. Based on these 

results, the main limitations and future research avenues are identified. Finally, section 5.8 

concludes this paper. 

5.5 Problem Statement 

5.5.1 Identification of Autonomous Greenhouse Components and Interactions 

Using the six product-related dependencies presented by Torry-Smith et al. (Torry-Smith, 

Mortensen, et al. 2014), we identify the components needed for the development of an autonomous 

greenhouse. The product-related dependencies are defined in terms of function (Fu), property (Pr), 

and mean (M) of the product and their interactions. The function is defined as the tasks that systems 

and/or subsystems must be able to complete. Here, property refers to a property of the system such 

as the mass. Often the property is affected by the choice of means. Finally, the mean is what is used 

to accomplish a function. The approach developed here is framed by the product-related 

dependencies methodology which offers a general framework that is generally used in multi-

domain systems design. This can be easily generalized to other complex systems design activities, 

such as for mechatronics, where designers can have a more thought-out starting point early in the 

design process. 

Fu-M can be explained by the following: a function is realized by a mean, which can be further 

decomposed into sub-functions and so on. Using this definition, some components can be 

identified: 
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Figure 5.2. Organigram representing the Fu-M decomposition 

1) Fu-M disposition & Cumulative Fu-M: Figure 5.2 presents the results of the Fu-M 

decomposition to identify the components. 

 

2) Adverse effect: as mentioned above, the adverse effects considered in this paper are 

categorized in terms of heat, vibration, and EMFs. We also add another category which is 

the obstruction of a component field of view. This will be represented by OBS in Table 5.1. 

Although it is difficult to evaluate this fourth category considering that the dimensions of 

each component are still unknown, it is possible to estimate an order of magnitude for each 

of the components. For example, generally, a water tank is bigger than a heat sensor, hence, 

the water tank has more chance to obstruct the field of view of a component such as a 

camera. A table such as Table 1 is used by Chouinard et al. (Chouinard, Achiche et al. 2017, 

Chouinard, Achiche, et al. 2019) to identify components generating adverse effect and those 

who are affected by these adverse effects. The first column is the list of components. The 

second column is a qualitative evaluation of the intensity of adverse effects generated by 
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the component. The last column is a qualitative evaluation of the negative impact of the 

component affected by adverse effects. 

Table 5.1 Relation between components and adverse effects 

Component Affecting Affected 

Heater 
Heat: High 

OBS: Low 
- 

Water tank OBS: High - 

Pack soil OBS: High - 

Heat sensor 
EMF: Low 

OBS: Low 

Heat: High 

EMF: Low 

Camera 
EMF: Low 

OBS: Medium 

EMF: Low 

OBS: High 

Fan 
EMF: Low 

OBS: Low 
OBS: Low 

LED 
Heat: High 

OBS: Low 
OBS: High 

Water pump 

Vibration: High 

EMF: Medium 

OBS: Medium 

Vibration: Medium 

Pipes OBS: Low - 
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CO2 sensor 
EMF: Low 

OBS: Low 

Heat: Low  

EMF: Low 

O2 sensor 
EMF: Low 

OBS: Low 

Heat: Low  

EMF: Low 

Humidity sensor 
EMF: Low 

OBS: Low 

Heat: Low  

EMF: Low 

Pressure sensor 
EMF: Low 

OBS: Low 

Heat: Low  

EMF: Low 

 

Considering Table 5.1, it is possible to identify the most detrimental combinations of components 

and to formulate the following guidelines to avoid these adverse effects: 

i. The heater cannot be close to heat sensor 

ii. LED cannot be close to heat sensor 

iii. The components cannot prevent the LED from lighting the pack-soil 

iv. The components cannot prevent the camera from filming the pack-soil.  

Pr-M can be explained by the following: a property is affected by the chosen means. Using this 

definition, the rest of the components can be identified: 

Property scheme:  

 

Property 1: Mass of the system. The mass is calculated by taking the sum of all the 

mass of the means. For autonomous greenhouse, a low mass can be an indicator of 

low consumption of resources and is generally favorable. 

 

Property 2: Electrical current of the system. We approximate the electrical current 

by summing all the electrical current of the means. Generally, a low electrical 

current consumption is also favorable. 

 



37 

 

 

Property 3: Electrical voltage of the system. The mean with the highest voltage will 

be the reference point of this property. Generally, a low electrical voltage is 

favorable. 

M-M can be explained as a dependency between two means: 

1) Volume allocation:  

i. The space between the LED and the pack-soil is the volume allocated to the plant 

since plants grow towards the light.  

ii. Enough space must be allocated to store water and the amount of water depends 

on the plant. 

iii. The camera must be able to film the pack-soil as much as possible. 

 

2) Physical interface:  

i. The water tank, water pump, and pack soil must be linked by pipes to ensure the 

water distribution system. 

ii. The LED must light as much as possible the pack-soil. 

iii. The fan must be close to the heater for better heat convection. 

It is possible to see that by identifying the Fu-M disposition and Cumulative Fu-M, the list of 

components needed to synthesize an autonomous greenhouse is found: 

C1. Heater: to heat the greenhouse  

C2. Water tank: to contain the water for the plants 

C3. Pack soil: to contain the seeds of the plant 

C4. Heat sensor: to acquire temperature data from the environment 

C5. Camera: to follow the growth of the plants 

C6. Fan: to ensure air circulation to stabilize the room temperature 

C7. LED: to provide the light necessary for photosynthesis 

C8. Water pump: to allow water distribution from the water tank to the pack-soil. 

C9. PCB: to monitor pressure, humidity, O2, and CO2 (sensors) 

C10. Pipes: to link the water tank, the water pump, and the pack-soil for water distribution. 
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Furthermore, the adverse effects as well as the Pr-M and M-M dependencies give guidelines to 

handle the placement of components within the system. To assign the strength of a dependency, 

the design structure matrices (DSMs) (Pimmler and Eppinger 1994, Browning 2016) are used in 

this work. DSMs have been used for modeling interactions between components and/or subsystems 

in many fields such as mechatronic design. The DSM representation and the scale value represented 

by Pimmler and Eppinger (Pimmler and Eppinger 1994) are adapted to model the layout component 

interactions. In this work, a layout component interaction is composed of three characteristics: 

Closeness, Field of View, and Physical Connection. These three matrices can model the layout 

design of most complex systems including mechatronic systems. 

1)  Closeness of two components: In this matrix, each value follows the scale shown in Table 5.2 

to evaluate the closeness of two components. 

Table 5.2 Closeness strength scale 

Closeness Really far Far Unaffected Close Really close 

Value -2 -1 0 1 2 

 

And so, the closeness matrix for the first nine components mentioned above (the pipes are excluded 

from the DSMs) is: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0 0 -2 0 2 0 0 0 

C2 0 0 1 0 0 0 0 1 0 

C3 0 1 0 0 0 0 0 1 0 

C4 -2 0 0 0 0 0 -2 0 0 

C5 0 0 0 0 0 0 0 0 0 

C6 2 0 0 0 0 0 0 0 0 

C7 0 0 0 -2 0 0 0 0 0 

C8 0 1 1 0 0 0 0 0 0 

C9 0 0 0 0 0 0 0 0 0 
 

The selection of weights for the closeness matrix is justified as follows: the assigning of the weight 

is based on the interaction of the components and the impact on the main function requirement 

which is to ensure the growth of the plant. Hence, the most detrimental interaction is related to 
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temperature regulation. The heat sensor (C4) absolutely needs to be as far as possible from any 

heat sources. In our case, the heater (C1) and the LED (C7) are the main heat sources. Therefore, 

the (C1, C4) and (C7, C4) cells have the value -2. Still considering the temperature aspect of the 

greenhouse, the environment temperature must be uniform. A local hot spot or cool spot on the 

pack-soil could prevent the growth of plants. For this reason, the heater (C1) and the fan (C6) need 

to be as close as possible to assure a proper heat flow. This explains why the value of (C1, C6) cell 

is 2. Finally, the water distribution is composed of a water pump (C8), a water tank (C2), and the 

pack-soil (C3) which are connected by the tubes. The length of the tube could be reduced if all 

three components are closed to one another. Advantages are coming along with the reduction of 

tubes such as decreasing the active time of the pump which leads to a decrease in energy 

consumption. Hence, the (C2, C3), (C2, C8), and (C3, C8) cells have a value of 1.  

2) Interaction between the field of view (FOV) of two components: In this matrix, each value 

follows the scale shown in Table 5.3 to estimate the importance of the interaction between the two 

components FOV. 

Table 5.3 Field of view strength scale 

FOV Detrimental Undesired Unaffected Desired Required 

Value -2 -1 0 1 2 

 

And so, the FOV matrix is given by: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 0 

C3 0 0 0 0 2 0 2 0 0 

C4 0 0 0 0 0 0 0 0 0 

C5 0 0 2 0 0 0 0 0 0 

C6 0 0 0 0 0 0 0 0 0 

C7 0 0 2 0 0 0 0 0 0 

C8 0 0 0 0 0 0 0 0 0 

C9 0 0 0 0 0 0 0 0 0 
 

This matrix refers to two components which are the LED (C7) and the camera (C5) which need to 

illuminate and capture the pack-soil (C3), respectively. The values of cells (C3, C5) and (C3, C7) 
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are 2 because the fulfillment of their functional requirements is more sensitive to the relative 

position of the pack-soil. Indeed, the LED must uniformly illuminate the pack-soil as much as it 

can to allow every seed a chance to grow. As for the camera, it must capture most of the pack-soil 

to help the operator identify a malfunction or to visually assess the health of the plants. 

3) Physical connection of two components: In this matrix, each value indicates the number of links 

(wire and/or pipe) that two components need. And so, the physical connection matrix is: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 1 0 

C3 0 0 0 0 0 0 0 1 0 

C4 0 0 0 0 0 0 0 0 0 

C5 0 0 0 0 0 0 0 0 0 

C6 0 0 0 0 0 0 0 0 0 

C7 0 0 0 0 0 0 0 0 0 

C8 0 1 1 0 0 0 0 0 0 

C9 0 0 0 0 0 0 0 0 0 
 

5.5.2 Formulation of the optimization problem 

Based on the problem statement for the synthesis of an autonomous greenhouse mentioned in the 

last section. The translation of the problem statement to an optimization problem will be done in 

this section.  

First, two types of objectives included in the overall objective of the solution are developed. The 

first type is the component-specific objectives (CSOs). CSOs concern only the design of the 

component itself. The second type is the layout design objectives (LDOs). LDOs cover the layout 

design based on the placement of components of the greenhouse. 

The CSOs are: 

1. Minimizing the volume (except for the pack soil and water tank volume, which 

need to be maximized) 

2. Minimizing the mass. 

3. Minimizing the energy consumption. 

The LDOs are: 
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1. Minimize the distances between the pack-soil, the water tank, and the water pump. 

2. Minimize the distance between the heater and the fan. 

3. Minimize the distance between connection points linking two components. 

4. Maximize the distance between the LED and the heat sensor. 

5. Maximize the distance between the heater and the heat sensor. 

6. Maximize the lighting of the pack-soil by the LED. 

7. Maximize the view of the pack-soil captured by the camera. 

For LDOs, a weight is assigned to every one of them based on the DSMs mentioned before. 

Moreover, all distances and lengths use the 3D Euclidean distance. As for the 6th and 7th LDOs, 

the objectives use the 3D Euclidean distance between the line of sight (LOS) of two components 

as shown in Figure 5.3. The ideal LOS for the second component (C2) is the desired LOS presented 

in Figure 5.3. Hence, the distance between the desired LOS and C2 needs to be minimized. 

 

Figure 5.3. Objective based on the line of sight of components. 

Second, the design of an autonomous greenhouse is necessarily subjected to a set of constraints 

coming from multiple sources. All of these constraints need to be respected to obtain a feasible 

solution. In this work, we consider three sources of constraints. The first source of constraints is 

based on the limited space allowed and the physical boundary of every component. The second 

source originates from the interaction of the components. The third and last source is the 

specifications of the greenhouse which would be given by a customer. In this work, the following 

constraints are considered:  

1. The overall volume occupied by the components must be lower than the greenhouse 

volume. 
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2. The boundaries of a component must fit within the boundaries of the greenhouse. 

3. The boundaries of a component cannot overlap another component’s boundaries. 

4. The field of view of the camera must be wide enough to capture the pack-soil. 

5. The field of view of the LED must be wide enough to light the pack-soil. 

6. The overall mass must be lower than a defined mass. 

7. The overall energy consumption must be lower than a defined quantity of energy. 

8. The voltage and current of each component cannot exceed the given thresholds. 

The first three constraints come from the limited volume allowed. The fourth and fifth constraints 

are related to the interaction between components. The last three constraints are the product 

specifications that stem from customers’ needs. 

Finally, the optimization problem can be summarized as a single objective optimization problem 

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖𝑂(�⃗�)𝑖
𝑛
𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜
𝐶𝑇𝑗  𝑓𝑜𝑟 𝑗 = 1,… ,𝑚

  (1) 

where  

�⃗�  is the decision variable vector. It contains the parameters of every component as shown in 

Figure 4, 

O (�⃗�𝑖) is the ith objective of all the objectives (CSOs + LDOs), 

Wi is the weight associated with the ith objectives of all the objectives and, 

CTj is the jth constraints. 

 

The weight is 1 for all CSOs because they need to be optimized to overcome the constraints and to 

respect the product specification, but they are not the most important aspect of the optimization to 

accomplish the main function which is ensuring the growth of the plant. For LDOs, the weight can 

be found in the DSMs. For our formulation, n is the total number of objectives and m is the total 

number of constraints. In this work, n is equal to 10 and m is equal to 8. 

5.6 Genetic Algorithm Implementation 

Considering the optimization problem given in Section 5.5.2, the design of an autonomous 

greenhouse can be seen as a many-objective optimization problem (MaOP) like most real-life 
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applications in engineering (Fleming, Purshouse, et al. 2005). Even though algorithms have been 

developed since 2003 (Hisao, Noritaka, et al. 2008, Li, Li et al. 2015, Huang, Zhang, et al. 2019) 

to solve MaOPs, we will use a single objective optimization to solve the layout design of an 

autonomous greenhouse for two main reasons. First, we are not searching for a Pareto front of 

designs. The main objective of this research is to thoroughly express a problem statement and its 

optimization formulation for autonomous greenhouse. Hence, we attempt to find one near-optimal 

design to validate the formulations based on the a priori preferences of the designers. Second, 

selecting an adequate algorithm for a given problem is not a trivial task as shown by the 

comparative study of Panerati and Beltrame (Panerati and Beltrame 2014). The study consists of 

evaluating the performance of 15 multi-objective design-space exploration algorithms on the 

optimization of three real-life applications using three performance metrics such as the average 

distance from the reference set. The comparison showed that no algorithm outperforms the others, 

however, general guidelines on the simulation time and size of the design space were found. 

Another example, (Saldanha, Soares, et al. 2017) defines the best algorithm between non-

dominated sorting genetic algorithm-II, predator-prey and multi-objective particle swarm 

optimization. To achieve this, they needed to evaluate the results of each algorithm with 

performance metrics and a decision-making method called PROMETHEE. They found that the 

multi-objective particle swarm optimization was the best algorithm to design a shell-and-tube heat 

exchanger because of its robustness. Furthermore, the no-free lunch theorem (Wolpert and 

Macready 1997) informs us that a priori no algorithm outperforms another one in all optimization 

problems. Consequently, selecting an inadequate algorithm could output a poor set of Pareto front 

solutions which could erroneously lead us to believe that the formulation is inadequate. Hence, we 

decide to aggregate all the objectives using scalarizing functions (Marler and Arora 2004, Kaim, 

Cord, et al. 2018) into a single-objective optimization. Scalarizing functions can be used to 

articulate the preferences of the designers to find one solution from the Pareto front. Using this, we 

will better assess if our formulation can find a feasible and near-optimal solution.  

Evolutionary algorithms are also known to be effective when it comes to solving single objective 

combinatorial optimization problems as explained in surveys concerning facility layout problems 

(Drira, Pierreval, et al. 2007, Moslemipour, Lee, et al. 2012, Ahmadi, Pishvaee, et al. 2017). Other 

domains also use evolutionary algorithms. Yu et al. (Yu, Yang, et al. 2007) used a parallel genetic 
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implementation to optimize shopping routes of shoppers in terms of the shortest car-based route. 

The parallel genetic implementation is used to reduce the computational time by dividing the 

resources of the computer to execute the genetic algorithm operators. The implementation is tested 

on a case study in Dalian City, China. Zhao et al. (Zhao, Hsu, et al. 2016) implemented a GA to 

minimize the mental workload of human operators in a mixed-model assembly line based on many 

factors, such as the assembly complexity and operator experience. The motivation of this work is 

to reduce the errors resulting from human mental fatigue and to improve the efficiency of the 

assembly line. Ribas et al. (Ribas, Yamamoto, et al. 2013) combined hybrid micro-GA and mixed-

integer linear programming to schedule and plan an oil pipeline network. The scheduling 

considered the management of the production and the operation, the inventory management, and 

the transportation of oil to name a few. The use of micro-GAs was to lower the computational time 

and resources while keeping good solutions. The developed algorithm is tested on Brazilian 

pipeline networks. Zhang and Zhang (Zhang and Zhang 2007) developed a GA to design a network 

based on the network partition problem. This optimization problem goal was to reduce the inter-

network communication while managing the traffic distribution over sub-networks. The 

implemented GA considered the traffic matrix, the devices needed in a network as well as the 

current devices used in the industry. To validate the effectiveness of the GA, a simulation is carried 

out. Király and Abonyi (Király and Abonyi 2015) made a GA implementation to solve a multi-

Traveling Salesmen Problem (mTSP). This work was greatly inspired by an industrial case study, 

where an electric and gas energy supplier needed to transfer materials from different sources to a 

specific location. This issue is an mTSP, which is a combinatorial optimization problem. Cheng et 

al. (Cheng, Gupta, et al. 2017) combined particle swarm optimization with a multitasking 

coevolution mechanism. The novelty resides in the multitasking coevolution mechanism, where 

two or more tasks have their own objective functions to optimize for an overall problem. The tasks 

were usually influencing each other, which led to a concurrent optimization problem. To validate 

the developed algorithm, the optimization of the productivity of a composite manufacturing is 

simulated. The two tasks to be optimized were the resin transfer molding and the 

injection/compression-liquid composite molding because these processes shared a part of the 

design space. Saleh and Chelouah (Saleh and Chelouah 2004) used an algorithm based on the GA 

to locate the position of an unknown point on Earth using satellite equipment. Such problems are 
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called GPS surveying network, which is a variation of the problem from the classical survey 

network problem. The goal is to optimize the robustness of a GPS network based on the resources 

available to the network (e.g. cost, personnel, satellite, etc.). Guzmán-Cruz et al. (Guzmán-Cruz, 

Castañeda-Miranda, et al. 2009) compared five optimization algorithms to define which algorithm 

is better for the calibration of a specific greenhouse model. The five algorithms are genetic 

algorithms, evolutionary programming, evolutionary programming, least squares, and sequential 

quadratic programming. The greenhouse model is composed of 16 parameters and is used to 

estimate the internal humidity and temperature. For the calibration of the greenhouse model, 

evolutionary programming was the best choice. Elferchichi et al. (Elferchichi, Gharsallah, et al. 

2009) used a weighted sum genetic algorithm to define the optimal inflow hydrograph to provide 

water to different farmers without emptying the reservoirs available. The objective function, as 

well as the constraints, were formulated using the water level of every reservoir. The weight 

associated with an objective function was defined with a sensitivity analysis. Based on the on-

demand water quantity of the farmers, the GA was able to find an inflow hydrograph to supply the 

farmers without emptying the reservoirs for a specific period of time. Ushada and Murase (Ushada 

and Murase 2009) made the design of a customizable greening material combining three main 

tools. The first tool was the swarm modeling to set the design attributes. Then, the second tool was 

the desirability model to define the importance of design attributes based on the consumer mentality 

constraints. Finally, the third tool was the particle swarm optimization (PSO) to optimize the design 

of a greening material. The developed methodology was tested in a case study designing Sungoke 

moss. Utamina et al. (Utamima, Reiners, et al. 2019) developed a novel evolutionary algorithm 

called evolutionary hybrid neighborhood search (EHNS) which combines mutation-based 

neighborhood search and Tabu search algorithms. The first step of the EHNS loop was the 

mutation-based neighborhood search algorithm which uses the roulette wheel selection to pick 

individuals within the population. Then, mutation operators were applied to the chosen individuals. 

The second step was the replacement of the current individuals by the mutated individuals. If the 

best new individual is not better than the previous best individual, the Tabu search is chosen to 

make a local search around the best new individual. The last step is the setup of the next generation 

using the elitism and scramble principle. The EHNS was used to solve many agricultural problems 
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from the literature. Moreover, the results of the algorithm were compared to other algorithms such 

as ant colony optimization, GA, etc.  

Since the performance of different types of evolutionary algorithms greatly depends on the problem 

at hand as mentioned in (Youssef, Sait, et al. 2001, Ma, Simon, et al. 2013). We choose a GA 

considering it has a low complexity of its basic implementation. The global search effectiveness of 

the GA is also adequate for our problem since we do not consider an initial solution. There are 

seven main components in a GA: encoding/decoding, initial population, parent selection, 

crossover, mutation, survivor selection, and termination condition. 

5.6.1 Encoding/Decoding & Initial Population 

For the encoding, an individual is considered as a solution, which is represented by a vector of 

components. The vector is represented in Figure 5.4, where the CX are the components for X = 1, 

2, 3… 

 

Figure 5.4 Decision variable vector: vector representation of components within a solution and 

the parameters within a component 

Each component has a set of parameters represented by a vector as well. Two types of parameters 

can be given to a component. The first type is the common parameters that every component has. 

For example, the xyz position of the component within the greenhouse. The second type of 

parameter is specific to the component. For example, the energy consumption in terms of the 

voltage (V) and the current (A). The vector is represented in Figure 5.4, where XYZ is an example 

of common parameters and the PX are the specific parameters for X = 1,2,3… 

The common parameters of components are: 

1. The XYZ position of the component within the greenhouse. 

2. The XYZ dimensions of the component (length, width, and height). 

3. The mass of the component 
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The specific parameters considered are: 

1. Energy consumption in terms of voltage and current for all the components except for the 

pack-soil and water tank. 

2. Field of view of the component only for the camera and LED. 

3. Location of the connection of the pipes on a given component only for the water tank, 

water pump, and pack-soil. 

The initial population is randomly generated but must respect the set of constraints defined above. 

For each parameter, a random number is generated within a defined range of values. It is important 

to note that there is no code implemented to check if a solution appears more than once in the initial 

population. Since there are numerous combinations, it is less likely to find the same solution twice. 

5.6.2 Parent Selection & Crossover 

The parent selection implementation is based on the roulette wheel selection [44]. The principle of 

the roulette wheel selection is to divide a wheel considering the number of solutions and their 

overall objective function within a population. A fixed point is then randomly chosen on the 

circumference of the wheel. After spinning the wheel, the solution that stops in front of the fixed 

point is chosen as a parent. In other words, the parent selection is randomized as well. After using 

this method to choose two parents, the crossover function creates two children based on the parents’ 

solution vector. A random crossover point is selected within the parents’ solution vector. All 

components of the first parent after the crossover point are replaced by the components of the 

second parent and vice versa (see Figure 5.5). The two vectors created are considered as the 

children. 

 

Figure 5.5 Crossover operation 
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5.6.3 Mutation 

The mutation process for this implementation has two steps (Figure 5.6). The first step is a random 

selection of a component within a solution. The second step is a random selection of a parameter 

from the selected solution and a replacement of the parameter value by a random value within the 

range of values of this parameter. 

 

Figure 5.6 Mutation operation 

5.6.4 Survivor Selection 

The selection of individuals for the next generation only considers a single objective function which 

is the summation of the weighted CSOs and LDOs. Indeed, the maximum population size is fixed. 

This means that a new child, mutated or not, is compared to the rest of the population in terms of 

the single objective function when the population reaches its maximum. If the single objective 

function is better than the worst solution of the population, the child replaces this solution. 

Otherwise, the child is discarded. If the child is an infeasible solution, it is also discarded. 

5.6.5 Termination Conditions 

The terminal condition for this implementation of the GA is based on improvement through 

generations. If there is no improvement in the population after several generations, the GA is then 

stopped. However, the counter is reset to zero every time there is an improvement. The number of 

generations is defined through trials and errors. 

Figure 5.7 shows the convergence graph of the implemented GA. Figure 5.7 was generated with 

the average of the overall objective of the best solution by generation of 10 GA runs with a terminal 

condition of 500 generations without improvement in the population. Furthermore, the 95% 

confidence interval by generation was computed to evaluate de uncertainty of the average. After 
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68224 generations, the 95% confidence interval drops down to 0 because the terminal condition 

does not set a finite number of generations. In other words, one GA run can have more generations 

than another one. Knowing this, the average values after 68224 generations are the values of the 

longest GA run. The different amount of generations per run can also explain the increase in the 

values of the 95% confidence interval between 10 000 and 45 000 generations. In this interval, 

some GA runs had already been terminated with a low objective value while other runs were still 

optimizing and had higher objective value. 

 

Figure 5.7 Convergence graph of the genetic algorithm 

5.7 Results & Discussion 

The simulation parameters have been chosen by the authors to design a general autonomous 

greenhouse. The parameters related to the GA operators are fine-tuned by trials and errors of the 

algorithm. For the parameters of components, the maximum and minimum values of each 

component come from technical datasheets from different manufacturers. For example, the range 

of values for the parameters of the water pumps was chosen based on different models of the 

component in the market (Alibaba 2019, Amazon 2019, Enabler 2019, good 2019, Systems 2019). 
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The components parameters and the size of the autonomous greenhouse were chosen based on 

different work related to the field of space biology such as Kibo, a small experiment module sent 

to the ISS to conduct experiments with the Arabidopsis plant (Yano, Kasahara, et al. 2013). 

Another example can be found in (Fu, Liu, et al. 2013) where a horn-type producer is designed as 

a life-support system. The study of plants in the space environment is getting a lot of attention for 

different reasons such as providing food and managing the gas cycle for astronauts (Häuplik-

Meusburger, Peldszus, et al. 2011, Haeuplik-Meusburger, Paterson, et al. 2014). 

The parameters of the simulation and the components are respectively given in Table 5.4 and Table 

5.5. 

Table 5.4 Simulation parameters (The parameters in a dark gray shading are GA parameters and 

those in light gray shading are product specifications) 

Parameters Values 

Maximum population size 100  

Number of unimproved generations to terminate the 
algorithm 

500 

Number of crossovers (if there are crossovers) 20 

Probability of crossover 80% 

Probability of mutation 5% 

The probability of a random solution generated 80% 

Maximum voltage for one component in a solution 9 V 

Maximum current for one component in a solution 1000 mA 

Max mass of a solution 1500 g 

Maximum energy consumption of an individual 15 W 

Greenhouse dimension  450 x 300 x 300 mm3 

 

Table 5.5 Parameters of components 

Pack soil 
Dimensions range: 250 x 175 x 8 to  
450 x 300 x 20 mm3 
Mass range: 300 to 425 g 

Water tank 
Dimensions range: 50 x 50 x 50 to  
100 x 100 x 100 mm3 
Mass range:150 to 1200 g 

Heater 
Dimensions range: 30 x 30 x 5 to  
80 x 80 x 10 mm3 
Mass range: 20 to 50 g 
Voltage range: 3.3 to 12 V 

Heat sensor 
Dimensions range: 12 x 12 x 5 to  
25 x 25 x 10 mm3 
Mass range:  0.1 to 1 g 
Voltage range: 1.7 to 3.6 V 
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Current range: 400 to 7000 mA Current range: 0.01 to 0.02 mA 

Camera 
Dimensions range: 10 x10 x 2.5 to  
22 x 26 x 11 mm3 
Mass range: 0.1 to 6.4 g 
Voltage range: 1.7 to 5 V 
Current range: 50 to 160 mA 
Field of view: 60 to 90 ° 

LED 
Dimensions range: 40 x 40 x 1.84 to  
100 x 100 x 2 mm3 
Mass range:  10 to 35 g 
Voltage range: 2.9 to 3.7 V 
Current range: 700 to 1400 mA 
Field of view: 60 to 90 ° 

Fan 
Dimensions range: 40 x40 x 10 to  
80 x 80 x 25 mm3 
Mass range: 18.6 to 62.6 g 
Voltage range: 2 to 5.5 V 
Current range: 66 to 170 mA 
 

Water Pump 
Dimensions range: 32 x 32 x 23 to  
54 x54 x 46 mm3 
Mass range:  80 to 150 g 
Voltage range: 3 to 12 V 
Current range: 200 to 500 mA 

PCB 
Dimensions range: 30 x 30 x 1 to  
50 x 50 x 4 mm3 
Mass range:  5 to 10 g 
Voltage range: 3.3 to 6 V 
Current range: 5 to 50 mA 

 

 

It is important to explain the red, blue, and green lines in Figure 5.8 & Figure 5.9. The red lines are 

the line of sight of the component starting from the middle of the component. The blue and green 

lines make a cone, which represents the field of view of the component.  

Figure 5.8 and Figure 5.9 show that the algorithm applied the guidelines given by the identification 

of the components and their interactions presented in Section 5.5. It is possible to see that the 

placement of components was mainly affected by the following dependencies: adverse effect and 

physical interface.  

First, the GA avoids adverse effects by placing the heat sensor on the opposite side of the heater to 

avoid erroneous readings of the temperature. Erroneous readings of the temperature are also 

avoided because the LEDs are far from the heat sensor. Furthermore, every component does not 

prevent the LEDs and the camera to light and capture the pack-soil respectively except for the water 

tank. Indeed, the water tank is blocking a part of the field of view of the LEDs and the camera.  

However, most of the pack-soil is within these fields of view. Considering that one of the goals of 
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the GA is also to maximize the size of the water tank and the pack-soil, it is more likely that a small 

portion of the field of views will be blocked by the water tank as can be seen in Figure 5.9.   

Finally, the GA algorithm followed the guidelines from the physical interface by positioning the 

fan and heater side by side to improve the heat convection. The LEDs and the camera are positioned 

above the pack-soil, where they can maximize the lighting and the capturing of the pack-soil 

respectively. The pack-soil, water tank, and water pump are close to each other even if the pack-

soil and water tank have important volumes. Hence, the algorithm minimizes the length of the pipe 

by minimizing the distance between these components.  

Table 5.6 presents the values of the position and parameters of all components found with the GA. 

PX, PY, and PZ are the xyz position; DX, DY, and DZ are the xyz dimension; M, V, and C are 

respectively the mass, voltage, and current; the FOV is the field of view. Table 5.7 presents all 

connection points of the pipes on a given component. 

 

Figure 5.8 Layout optimization of the greenhouse (Side view) 

 

Figure 5.9 Layout optimization of the greenhouse (Top view) 
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Table 5.6 Numerical results of the simulation 

Component Colour PX PY PZ DX DY DZ M V C FOV 

Heater Red 450 138 232 35 40 5 21 3.6 783 - 

Water tank Green 132 119 300 92 96 98 207 - - - 

Pack soil Brown 405 0 52 391 244 20 307 - - - 

Heat sensor Purple 0 22 187 15 13 5 0.1 1.8 0.01 - 

Camera Yellow 120 300 133 10 16 2.6 0.4 1.7 50 73 

Fan Cyan 450 164 291 49 44 13 19.3 2.2 73 - 

LED Magenta 271 300 209 43 42 1.88 11 2.9 716 64 

Water 
pump 

Orange 0 43 272 34 38 23 85 3 233 - 

PCB Black 450 166 162 39 30 1 4.5 4.5 5 - 
 

Table 5.7 Connection points of pipes on components 

Pipes connection points PX PY PZ 

Water tank 132 156 260 

Pack soil 32 20 250 

Water pump #1 21 77 264 

Water pump #2 23 48 255 
 

It is possible to see that most of the sensors are close to their minimum values (see Table 5.5) in 

terms of volume, mass, voltage, and current. The only ones that are close to their maximum volume 

are the pack-soil and water tank, which are the ones that we wanted to maximize. The occupied 

volume is 2 844 316, 28 mm3 which is only 7% of the total volume of the autonomous greenhouse. 

The weight and energy consumption constraints are also respected since the obtained values are 

respectively 655.8 g and 5.86 W. The presented problem statement of the layout design of a 

greenhouse is flexible enough to take into consideration physics analysis. For example, gravity can 

be included in the placement of components to favor the placement of heavy items on the base of 

the greenhouse, which would make the system more stable. The minimization of the gravitational 

potential energy could be added as an objective function. Another interesting physical analysis 

would be a heat analysis, which could help place components and identify missing components in 

the heating system. For example, the heat analysis based on external and internal parameters could 

inform the designer if a cooling system is needed. The optimization problem could also include 

and optimize complexity metrics, which would help define the simplest robust solution.  
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One of the major issues in the presented algorithm is the parameters of the components are given 

in terms of the range of values hence it is, therefore, possible to get a solution for which components 

are not available in the market. Although it remains interesting to keep the parameters of 

components as a value range, a version of this algorithm could be developed to include a database 

containing different models of the same component. Furthermore, it would also be possible to 

change the shape of components from the rectangle approximation that is currently used, to a 

realistic shape of the component based on the dimensions given by the database. It would also give 

a more precise position of the line of sight of components similar to a camera. Another interesting 

future improvement would be to consider and allow combinations of certain components to 

minimize the space occupation of components. For example, instead of using a heater and a fan, a 

compact coaxial fan/heater could be used.  

If the simulation parameters presented in Table 5.4 were to be changed, the output solution is most 

likely to change. However, the degree of impact on the solution has not been thoroughly studied. 

Hence, the GA parameters should be optimized to find the ideal simulation parameters using tuning 

algorithms (Eiben and Smit 2012, Montero, Riff, et al. 2018). For example, Ooi et al. (Ooi, Lim, 

et al. 2019) proposed a self-tune linear adaptive genetic algorithm that modifies the mutation 

probability rate and the population size based on the diversity of the population. Moreover, the 

product specifications should undergo a sensitivity analysis to evaluate the robustness of the design. 

 

The optimization problem statement presents many objectives, which can be conflicting. For 

example, the optimization algorithm needs to minimize the overall volume and maximize the 

volume of the pack-soil. Currently, these conflicting objectives are implicitly considered by a 

weighted sum approach in the single-objective optimization. In future work, it is possible to 

explicitly consider them with a multi-objective optimization without assigning weights to them 

(Kalyanmoy 2001, Simon 2013). By using multi-objective optimization, a wider range of solutions 

would be available to the designer to choose from. As mentioned before, the layout design of an 

autonomous greenhouse can also be considered as a many-objective optimization problem that 

requires a more sophisticated algorithm to be solved (Hisao, Noritaka, et al. 2008, Li, Li et al. 2015, 

Huang, Zhang, et al. 2019). However, the selection process of the ideal algorithm to find the best 

range of solutions needs to be done carefully. Furthermore, the designer would still need to choose 
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one solution among a Pareto-optimal set of solutions given by the multi-objective optimization 

algorithm using a posteriori approaches (Wang, Olhofer, et al. 2017, Yu, Jin, et al. 2019) which is 

not a trivial task as reported by (Torry-Smith, Achiche, et al. 2011, Mørkeberg Torry-Smith, 

Qamar, et al. 2012). Also, the presented algorithm rejects automatically a solution that does not 

respect constraints. Although it is one way to deal with constraints, other methods based on 

penalties or the dominating concept could also be used and might yield better results (Kalyanmoy 

2001).  

Finally, the output design of the presented algorithm should be validated by prototyping an 

autonomous greenhouse. By doing so, new phenomenon or interactions between components could 

emerge or the importance of one interaction over another could be identified. The algorithm could 

be then improved, and a new design might be output. 

5.8 Conclusion 

This paper presented how a general problem statement of the layout design of an autonomous 

greenhouse based on the placement of components is defined and translated into an optimization 

problem. A GA is then used to solve the optimization problem composed of multiple functional 

and spatial objective functions and constraints aggregated into a single overall objective using a 

weight sum approach. As mentioned before, the problem statement is flexible enough to include 

physical analysis, such as heat analysis if the designer wants to consider them. Although the 

proposed methodology presents weaknesses for the modeling of real components, we deemed that 

the approximations used in this paper are adequate to give a general idea of the layout design of an 

autonomous greenhouse and therefore a starting point for a designer. Indeed, we were able to make 

the design of an autonomous greenhouse for space biology applications where the volume of all 

the components is 2844, 32 cm3, which is 7% of the total volume. The greenhouse also consumes 

5.86 W and weighs 655.8g, which respects the constraints of the problem statement. Furthermore, 

the GA can output a promising solution by compromising several spatial guidelines, such as 

keeping the heat sensor far from the LED and the heater. The GA is also able to find and evaluate 

an enormous amount of design variations in a reasonable time based on guidelines from the 

designer. Moreover, the GA can converge towards a near-optimal solution. The validation of the 
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algorithm has yet to be done by prototyping the greenhouse and evaluate its capacity to ensure 

plant growth. 
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 ARTICLE 2: OBJECTIVE REDUCTION USING 

AXIOMATIC DESIGN & PRODUCT-RELATED DEPENDENCIES: A 
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Axiomatic Design and Product-Related Dependencies: A Layout Synthesis of an Autonomous 
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6.1 Abstract 

The many-objective optimization problem (MaOP) is defined as optimization with more than 3 

objective functions. This high number of objectives makes comparing solutions more challenging. 

This holds true for design problems that are MaOPs by nature due to the inherent complexity and 

multifaceted nature of real-life applications. In the last decades, many strategies have attempted to 

overcome MaOPs such as removing objectives based on their impact on the optimization. 

However, from a design perspective, removing objectives could lead to an under optimal, 

unfeasible or unreliable design. Consequently, objective aggregation seems to be a better approach 

since objectives can be grouped based on design features controlled by the designers. The proposed 

methodology uses Axiomatic Design to decompose a system into subsystems or components, and 

Product-Related Dependencies Management to identify the dependencies between components and 

formulate the objectives. Then, these objectives are aggregated based on the subsystems found with 

the Axiomatic Design. The methodology, applied to the layout synthesis of an autonomous 

greenhouse, can trim down the number of objectives from 15 to 5. Then, using a modified non-
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dominated sorting genetic algorithm-II (NSGA-II) combined with the objective aggregation, we 

were able to increase the number of “good” concepts found from 9 to 33 out of a total of 50 obtained 

designs.  

6.2 Nomenclature 

AD  Axiomatic Design 

CA  Customer Attributes 

FR  Functional Requirements 

DP  Design Parameters 

PV  Process Variables 

PRDM  Product-Related Dependencies Management 

NSGA-II Non-dominated sorting genetic algorithm -II 

MaOP  Many-objective optimization problems 

6.3 INTRODUCTION 

Engineering design problems referred to as design hereafter, often require optimization in many 

facets related to different phases of product development. For instance, layout design or product 

architecture is a step of the product design that includes the selection and positioning of the 

system’s components or subsystems. During this phase, the designers need to evaluate all concepts 

generated from a catalog containing models of components or subsystems as well as their 

positioning. Nevertheless, designers are often overwhelmed by the number of concepts and cannot 

manually try all the possible combinations. This can often lead to a non-optimal product design. 

Fortunately, computer-aided design tools allow designers to search and optimize product concepts 

based on multiple objective functions. Among these methods, evolutionary algorithms have been 

proven to effectively solve complex engineering problems [1]. However, evolutionary computation 

still struggles to solve MaOPs [2-4], which represent most design problems [1]. MaOP is a problem 

that contains more than 3 objective functions to optimize. Furthermore, researchers in the field of 

design are faced with the additional burden to develop a proper methodology to evaluate concepts 

of complex systems [5, 6].  
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The goal of the work presented in this paper is to develop a methodology, from a design 

perspective, that can reduce the number of objective functions for a design problem to optimize 

simultaneously several concepts using evolutionary computation. In the rest of this section, a brief 

literature review about this problematic will be presented. 

Even though MaOP work is an active topic in research, a sizable effort is deployed in the 

development of methods to reduce the objective space for multi-objective optimization [7, 8]. 

Among the first to tackle the objective reduction issue in the field of the multi-objective 

evolutionary algorithm is Deb and Saxena [9]. Deb & Saxena first proposed a principal component 

analysis (PCA) to reduce the objective set by eliminating redundant objectives. Inspired by the 

idea, Brockhoff and Zitzler [10] improved the principle by investigating the effect of omitting or 

including objectives and evaluating the level of conflict between objectives. Saxena et al. [11] 

pushed further their PCA approach by proposing a framework that aims at handling linear and 

nonlinear objectives and reducing the noise of the input data as well as the number of parameters 

by adapting concepts from machine learning. 

So far, most works lean toward automatically reducing objectives by omitting redundant and/or 

non-conflicting objectives. These techniques are adequate to solve most optimization problems. 

However, for design problems, omitting a redundant or non-conflicting objective can have an 

important effect on the reliability or functionality of the system which can lead to the design of 

poor performing systems or not meeting all the defined needs. Consequently, these strategies seem 

ill-adapted for design.  

Alternatively, Bandyopadhyay and Mukherjee [12] developed a two-phase algorithm based on 

differential evolution multi-objective optimization. This strategy emphasizes dealing with 

conflicting objectives but does not reduce the number of objectives. Hence, the “curse of 

dimensionality” persists. De Freitas et al. [13, 14] use the aggregation tree method to evaluate the 

degree of conflict and harmony between objectives to find out if combining objectives would be 

advantageous. The whole strategy is adequate to find the degree of conflict between objectives; 

however, the time complexity of the aggregation tree is O (nm3) where n and m are the numbers of 

solutions and objectives respectively. Hence, it is possible to see that the aggregation tree can slow 

down the algorithm.  
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In design, the problem of reducing the number of objectives is not generally focused upon. Instead, 

the existing tools help differentiate a good concept from a bad one. Then, they attempt to propose 

the most optimal concept for a specific problem [15, 16]. To do so, different methodologies and 

performance indices have been established to assign a score to a concept. Additionally, for 

designers, it is common to try to reduce the design space. Usually, they aim at finding potential 

regions where it would be possible to locate the global optimum. For example, Wang and Shan 

[17] propose a design space reduction method using rough sets, multi-objective optimization, and 

robust design optimization. First, samples of the design space are acquired and analyzed to find an 

attractive subspace where the optimization is carried out. Also, Wang and Simpson [18] work on 

reducing the design space using a combination of a kriging model and fuzzy c-means clustering. 

Albers et al. [19] give guidelines to ease the handling of objectives during the design process. One 

of the guidelines concerns the reduction of the objectives by carefully selecting them to define a 

set of relevant objectives. Hence, they do not explicitly aim at reducing the number of objectives 

of the specific set. Chen et al. [20] evaluate the product architecture using a multi-criteria 

evaluation based on TOPSIS. It is important to note that the criteria and the weights associated 

with each criterion are problem-specific and defined by the designer. Therefore, the designer needs 

to find a way to reduce the objectives. 

There are a few relevant works in the literature on the combination of Axiomatic Design (AD) and 

multi-optimization design. Hirani and Suh [21] optimized the design of journal bearings using the 

Multi-Objective Genetic Algorithm (MOGA) and AD approaches. AD is used to analyze the 

redundancies and couplings of the original journal bearing system. Therefore, after using sensitivity 

analysis based on the results of AD analysis, the designer came up with uncoupled bearing 

objective functions for MOGA and conduct to an optimal design. Wu et al. [22] proposed a new 

approach of multi-objective optimization respecting the independent axiom of AD. They regrouped 

the important design variables into several specific objective functions representing the Design 

Parameters (DPs) to have an uncoupled design matrix between Functional Requirements (FRs) and 

Design Parameters (DPs). Then the optimization of every objective function is achieved through 

the function dependencies table and an optimal design of disc brakes has been solved to show the 

validity of this new approach.  
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In summary, the reduction of the number of objectives is used to lower the number of objectives 

of a specific set to ease the optimization. The methods that seem to be trending are either to omit 

objectives or to aggregate them. As mentioned before, the aggregation strategy will be considered 

in this paper since it seems to be more adapted for design problems. 

Considering the works of Hirani and Suh [21] as well as Wu et al. [22], it is possible to observe 

that the strength of AD is to decompose a system into a minimum set of subsystems by avoiding 

redundant information. Furthermore, AD attempts to minimize the couplings between every 

subsystem of the set. Knowing this, AD is suited to identify design parameters of different levels 

of abstraction which is the first step of the methodology presented in this paper. The second step 

consists of analyzing the dependencies between design parameters at a specific level of abstraction 

to find a specific set of objectives. This can be carried out by the Product-Related Dependencies 

Management (PRDM) [23] which is used to identify the interactions between components of a 

system. The last step will be to combine AD and PRDM to aggregate the objectives by subsystems 

which will lead to the reduction of the number of objectives. The layout synthesis of an autonomous 

greenhouse will be the case study of this paper to test the proposed methodology and denote its 

limitations. 

To the best of the authors’ knowledge, an objective reduction strategy based on Axiomatic Design 

and Product-Related Dependencies has not been done yet. Knowing the current limitations of the 

evolutionary algorithm on solving MaOPs, the proposed methodology uses design tools to 

overcome these limitations. 

The rest of this work will be divided as follows: In Section 6.4, the description of the methodology 

will be done as well as an introduction of our case study: designing an autonomous greenhouse. In 

Section 6.5, the results will be presented and discussed. Finally, we will conclude this work in 

Section 6.6. 

6.4 MATERIALS AND METHODS 

The overall methodology starts with the identification of the main subsystems and components by 

respecting both two axioms of Axiomatic Design (AD). Then the identification of components’ 

dependencies is carried out with the Product-Related Dependencies Management (PRDM) 
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developed by Torry-Smith et al. [23]. Based on these dependencies, the relations between 

components are highlighted and used to formulate objective functions that need to be optimized. 

Then, the objective aggregation is defined based on the identified subsystems. Finally, the 

aggregated objectives would be embedded in an evolutionary algorithm to find a final concept. 

Figure 6.1 illustrates the general idea of the methodology. Every step of the methodology will be 

detailed in the rest of this section. 

6.4.1 Identification of the main subsystems and components  

To get a well-defined system decomposition with an appropriate set of design components, a 

systematic design approach needs to be carefully carried out before the following design phase. 

Consequently, AD is considered in this article for the first phase of the design process because of 

its specific hierarchical mapping strategy highlighting the main subsystems and components. 

As shown in Figure 6.2, there are four domains in AD: Customer Attributes (CA), Functional 

Requirements (FR), Design Parameters (DP), and Process Variables (PV). PVs would not be 

regarded in this article since we are focusing on the conceptual design problem. The first step of 

AD is to express the CAs into the first level of FRs. Furthermore, designers could first derive fitting 

subsystems and then their pertinent components from the consecutive mapping between FRs and 

DPs, as demonstrated in Figure 6.3. By respecting both the Independence Axiom that is to maintain 

the independence of functional requirements and the Information Axiom that is to minimize the 

information content of the design, AD will guide designers to scientific concepts with less coupling 

(uncoupled or decoupled in the sense of AD). Concepts with low coupling should help identify the 

minimum number of subsystems and components needed to accomplish the task of the system.  
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Figure 6.1 Overview of the methodology 

 

Figure 6.2 Summary of the axiomatic design (1) custom attributes (CAs) (2) function 

requirements (FRs) (3) design parameters (DPs) (4) process variables (PVs) 
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Figure 6.3 Zigzagging through FRs and DPs on different levels of abstraction 

6.4.2 Identification of components’ dependencies and objective functions  

The output of the AD is several sets of concepts with low couplings between components or 

subsystems. Based on this, the goal is to establish the dependencies between these components to 

ensure that the system works properly. These dependencies are found using three generic terms to 

describe the products as well as their interactions. The first term is the function and is defined as 

the tasks that need to be accomplished by components, subsystems, or systems. Then, the second 

term is called property and refers to a property of the product such as the dimensions. The last term 

is the means referring to what is used to fulfill a function. Using this methodology, it is possible to 

identify dependencies between components, subsystems, or systems depending on the chosen level 

of abstraction [16, 23]. In this work, PRDM will be used to identify dependencies between 

components. These dependencies will then be translated into objectives from a design point of view 

since they are specific to a problem. We proposed the methodology presented in Table 6.1 to do 

the translation. 

Table 6.1 Translation from dependencies to objective functions 

 

6.4.3 Objectives aggregation and weight’s assignment 

At this point, AD has allowed the designers to identify the subsystems and components with the 

minimized couplings. Then, PRDM was used to define the dependencies between components 

which were translated into objectives by the designers. Now, the aggregation process is 

accomplished by linking the objectives with the subsystems. Every subsystem contains 

components that are mandatory to fulfill its tasks. Knowing this, all the objectives that are needed 
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to ensure the success of the subsystem’s tasks will be clustered together. Within a subsystem, the 

assignment of objectives’ weights can be done to prioritize dependencies with the most important 

influence on the functional requirements of the systems. Even though there are many ways to assign 

weights to objectives, in this work, the objectives’ weights are set based on the designers’ 

experience or by surveying experts in the field of design. Moreover, as weights tend to be problem-

specific [15] a fine-tuning through trials and errors is performed. First, the objectives’ weights are 

assigned by the designers by prioritizing the most important dependencies. Then, iteratively, the 

results of a short run of the algorithm are analyzed for fine-tuning the weights. 

6.4.4 Choosing the evolutionary algorithm 

The choice of the evolutionary algorithm depends on the problem to be optimized. In other words, 

to know which algorithm will output the best solution set, a comparison study must be made for a 

specific problem. However, such a comparison will not be made in this paper since it is not its main 

objective. Here, an adaptation of the second version of the non-sorting genetic algorithm (NSGA-

II) [24] was chosen because we believe it can show how much impact the proposed objective 

aggregation has. Indeed, if we were to choose a many-objective optimization algorithm such as 

NSGA-III or MOEA/D, the comparison between the optimization with and without the proposed 

objective aggregation would be difficult to do since these algorithms are designed to solve MaOPs. 

However, NSGA-II is not as efficient. Consequently, the proposed objective aggregations could, 

for a particular design problem, make the NSGA-II efficient again while avoiding the use of a more 

sophisticated algorithm. The adaptation of the NSGA-II is made by the authors of this paper and is 

meant to accelerate the finding of concepts that respect constraints, to better set a termination 

condition while better explore the design space. The first operator that improves searching and 

finding new concepts respecting constraints is a directed mutation operator. This operator happens 

when at least one individual in the population does not respect all the constraints. The main idea is 

to select a random individual in the population and to apply a mutation operator on one of the 

decision variables used to evaluate if the constraints are respected. The termination condition is set 

by the user who decides on a number of iterations. After an iteration of the algorithm, if an 

individual with a better score is found, the iterations done so far will be reset to zero. The last 
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operator added to the NSGA-II algorithm affects the probability of the mutation. The probability 

is affected by the termination condition. It is defined as follows: 

𝑝𝑚 = 100% − (X%+
NIWI

(MNI−NIMP)
∗ ∆%)   (1) 

with 

X%: initial probability 

NIWI: number of iterations without improvement 

MNI: maximum number of iterations 

NIMP: number of iterations at lowest probability 

∆%: maximum added probability 

By doing so, the exploration is more prominent when an improvement has been found and becomes 

less important when there is no improvement for many iterations. 

6.4.5 Case study: autonomous greenhouse 

As a case study, the layout design of an autonomous greenhouse is chosen since it is a mechatronic 

system simple enough to identify and understand its subsystems, components, and dependencies 

and complex enough to highlight the problematic of most design problems which is the presence 

of a high number of objectives.  

First, the AD of an autonomous greenhouse has been done before by the authors [25]. Table 6.2 

reports these results. To be more concise, only the design parameters to be evaluated in the next 

stage are listed in this table. The parameter FR1 responds to the task “conducting a botanic 

experience” and the parameter DP1 corresponds to the incubator system to be designed. 

Subsequently, the FR1 is decomposed into four parameters of the second hierarchy while 

respecting the necessary conditions of the experiment. The DP1 is therefore also decomposed into 

four design parameters, represented by four subsystems while satisfying the new FR1.1-FR1.4. 

The design process continues by zigzagging between the FRs and the DPs. Once the DPs can be 

chosen by a specific component product, we can stop zigzagging and start to define the related 

objective functions for layout design.  
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9 main components were found with AD. The water tank and the water pump are used to contain 

and distribute respectively the nutritious solution to the seeds located in the pack-soil. The LED is 

the source of light to ensure the growth of the plants. Furthermore, the heater, the fan, and the heat 

sensor regulate the temperature of the environment. All the mentioned components so far are 

essential components for the survival and growth of the plants. The camera and the PCB are needed 

to monitor the health of the plants and the environment gas concentrations. Indeed, the camera 

allows to follow the visual aspect of the plant and the PCB gives us data about the CO2, O2, and 

other gas concentrations. This information can then be used for different scientific purposes such 

as plant behavior modeling. 

In the author’s previous work [26], a generic formulation of the layout design optimization for an 

autonomous greenhouse is given. Here, we will only report the objectives found using PRDM. To 

these, we also add another one which will be mentioned as the last point of the list in Table 6.3. In 

Table 6.3, DX, DY, and DZ are the dimensions of the components. Then, M, V, and A are the 

mass, voltage, and current respectively. Furthermore, PX, PY, PZ are the Cartesian coordinates of 

the components in the greenhouse reference frame. However, for objectives 13 and 14, the PX, PY 

and PZ are different coordinates in the greenhouse reference frame. These coordinates are 

explained in [26].  

It is possible to see that the number of objectives (15) is too high for an evolutionary algorithm. 

Therefore, the chances of poor convergence or divergence are high. In Figure 6.4, we show the 

objectives and their corresponding components. Using this representation along with the relation 

between subsystems and components shown in Table 6.3, it is possible to aggregate objectives by 

subsystems as illustrated in Figure 6.5. The aggregation of the old objectives is done by a simple 

weight sum approach. As mentioned before the weights are defined by the designer as well as trials 

and errors. In our case, we assign a weight of 2 to objectives 5,6,7,11,12, and 14 and a weight of 1 

to the rest of the objectives. It is also possible to see that objectives 3 & 4 are not taken into account 

during the aggregation phase. The reason is simply that they are considered as constraints defined 

by inequalities since the lowest mass and energy consumption are not necessary. We just want to 

get these values under their respective threshold. Equation 2 summarizes the optimization problem 

using the aggregation method. The Oi are the objective of Table 6.3 and the ωi represent the weights 

of corresponding objectives. It is also important to mention that the weight of the objectives that 
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need to be maximized shown in Table 3 (e.g., ω2), are negative so that Equation 2 can be considered 

a minimization problem. 

{
 
 
 
 

 
 
 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜔5𝑂5 + 𝜔6𝑂6 + 𝜔7𝑂7 + 𝜔9𝑂9 + 𝜔10𝑂10

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜔13𝑂13
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜔8𝑂8 + 𝜔11𝑂11 + 𝜔12𝑂12

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜔14𝑂14 + 𝜔15𝑂15
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜔1𝑂1 + 𝜔2𝑂2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜
No − overlapping constraints
Boundaries constraints

Field of view of LED and Camera constraints

   (2) 

Table 6.2 Axiomatic design for an autonomous greenhouse 
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Figure 6.4 Relation between components and objectives 
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Table 6.3 List of dependencies and their corresponding objectives from [26] 

 

 

 

Figure 6.5 Objective aggregation based on subsystems 

6.5 RESULTS AND DISCUSSION 

In this section, we will present the output of the solution set from running our modified version of 

NSGA-II with and without the objective aggregation presented above. The population size is 50 

and the run stop after 1500 consecutive iterations without improvements. Each solution presented 

in Figure 6.6, Figure 6.7, and Figure 6.8 were generated using the decision variables PX, PY, PZ, 

DX, DY, and DZ to position the components.  
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Table 6.4 Association color to components 

 

 

To analyze the results of Figure 6.6, Figure 6.7, and Figure 6.8, it is important to understand the 

color code associated with the different components shown in Table 6.4. Furthermore, the camera 

and LEDs have five axes. The axis in red is the line of sight of the component and the four other 

axes in green or blue represent the field of view of the component. 

From an optimization point of view, the results are shown in Figure 6.6, Figure 6.7, and Figure 6.8 

are all non-dominated solutions found from their respective run. However, from a design 

perspective, their design quality is not the same. Normally, both points of view do not see eye-to-

eye on the value of output since the current optimization algorithm cannot fully consider the 

designer’s experience and knowledge. As a result, the output of the algorithm is a collection of 

concepts that still need to be filtered by the designer. Hence, the rating of “good”, “fair” and 

“mediocre” solutions are assigned by the authors. For each figure, we will explain how we rated 

the solution. 

Figure 6.6 presents three different solutions without the objective aggregation. From a design point 

of view, it is possible to see that solution A is an example of a good solution. Indeed, the camera 

and LEDs are capturing and illuminating most of the pack-soil respectively. The heat sensor is far 

from the two different heat sources, the heater and the LEDs. The water tank, water pump, and 

pack soil are relatively close to one another which means the length of the tubes will be short. The 

pack-soil is large enough to give adequate growth space for the plants. The only downside is that 

the water tank is partially obstructing the field of view of the camera and LEDs.  



76 

 

 

Then, solution B is an example of a “fair” solution. Indeed, most of the components’ location seems 

to be well placed except for one or two that prevent the concept to be as good. Here, the water tank 

is too small and far from the pack-soil. Moreover, the water pump is also far from the pack-soil. In 

this situation, moving the water tank and pump closer to the pack-soil is a posteriori modification 

that can be done since there is an empty space right beside the pack-soil. However, the repositioning 

of components might not always be as easy considering that their repositioning can affect the rest 

of the components. Finally, solution C is an example of a “mediocre” concept. The camera and the 

LED are not fulfilling their function properly since they are respectively filming and illuminating 

the side of the pack-soil. Then, the heat sensor is close to the LEDs which means that erroneous 

reading of the temperature will happen. Then, the water tank is once again too small and far from 

the pack-soil. The presence of “good”, “fair” and “mediocre” concepts is found without using 

objective aggregation. However, there are more concepts labeled as mediocre. Out of 50 

automatically generated solutions, there were 30 mediocre concepts, 11 fair concepts, and only 9 

good concepts. Using the proposed objective aggregation, we were able to increase the number of 

good and reduce the number of mediocre concepts respectively. Indeed, Figure 7 presents three 

examples of good, fair, and mediocre concepts using objective aggregation. Using the same 

arguments mentioned above, it is possible to see that solution A is a good concept; solution B is a 

fair concept and solution C is a mediocre concept. However, out of the 50 outputted solutions, there 

are 8 mediocre concepts, 9 fair concepts, and 33 good concepts. Hence, we can find more different 

good concepts. Figure 8 shows three different good concepts. Hence, the objective aggregation 

developed in this paper allowed the reduction of the number of objectives from 15 to 5 which lead 

to an increase in the number of good concepts generated from 9 to 33. 

Considering that without the aggregation method, it was still possible to find 9 good concepts, why 

would one look for more good concepts? The answer lies in the design perspective. In the case 

study, we did the layout design of an autonomous greenhouse, however, the product design does 

not stop here. From the outputted design, the designers need to select a finite number of elite 

concepts for the following phase. These concepts will go to a detailed design phase and some of 

them might be prototyped to make sure that at least one of them is indeed feasible and performant. 

This means that the designer needs a selection of good concepts that are different enough from one 

another. Consequently, if there are 33 good concepts instead of 9, the designer has a higher chance 
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to select a concept that would respect the unexpected constraints of the next phase of the product 

development.  

 

Figure 6.6 Solutions without objective aggregation: (a) good (b) fair (c) mediocre  

 

Figure 6.7 Solutions with objective aggregation: (a) good (b) fair (c) mediocre 
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Figure 6.8 Different good solutions with objective aggregation 

One can also wonder why there are still mediocre concepts outputted when the objective 

aggregation proposed in this work is used. The reason is that even though we reduce the number 

of objectives from 15 objectives to 5 objectives, the optimization problem remains complex and 

categorized as a many-objective optimization. Accordingly, this methodology cannot guarantee to 

find a set of objectives lower or equal to 3 objectives. However, the methodology, if well applied, 

can lower the number of objectives while conserving important objectives from a design point of 

view. 

In future work, a study on the scalability of the aggregation method should be done. To achieve 

this, two steps are necessary. First, the aggregation method should be tested with a many-

optimization algorithm since the proposed method does not guarantee a number of objectives lower 

or equal to 3. Second, more complex systems with more objectives functions need to be modeled 

and tested with the aggregation method and many-optimization algorithms. Furthermore, other 

aspects of the optimization process should be studied such as the speed of convergence in terms of 

the number of iterations required with and without the aggregation method. To do this, an estimate 
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of the real Pareto front along with a more precise terminal condition is needed. Finally, the 

objectives’ weight assignment should be changed and automated since the designers could 

unconsciously favor a design that might not be the near-optimal one.  

6.6 CONCLUSIONS 

In conclusion, we developed a methodology to reduce the number of objectives using design tools 

to aggregate objectives. This is meant to ease the task of optimizing the design with evolutionary 

algorithms and to have better control over the selection of objectives instead of automatically omit 

objectives as a designer would carefully reduce them. Even though the proposed methodology 

cannot guarantee a number of objectives lower or equal to three, it can be used to significantly 

reduce the number of objectives and allow for easier automated design synthesis. We applied the 

methodology to an autonomous greenhouse layout design task, and we were able to reduce the 

number of objectives from 15 to 5. In the meantime, the procedure resulted in producing additional 

24 good concepts (total 33) instead of 9. Based on these good concepts, the AD could be used 

recursively to reduce the number of concepts during the detailed design phase by carefully adding 

information while respecting the information axiom. With the deepening of the design, more 

information about the system would be included (e.g. analysis on DPs-PVs of AD). Then, using 

our approach again, this iterative process could lead the designer to one or two concepts to be 

prototyped. 
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7.1 Abstract 

As technology progresses, more products increase in complexity such as mechatronic systems 

which in turn makes them more challenging to design. This design challenge is usually explained 

by the need for experts from different design domains as well as by the increased number and 

complexity of components integrated into the product. To alleviate the burden of designing such 

products, many industries and researchers are attracted to the concept of product modularization. 

Indeed, from an economic perspective, modularity can reduce the cost of product development by 

using the same modules throughout multiple product platforms. And, from a design perspective, 

the formation of modules shortens the product development by allowing concurrent development 

of product modules. The first step in achieving a modular product is to identify the possible parts 

of the product that can form a module. This identification can be difficult to achieve considering 

the trade-offs between modular design and design performance. Indeed, the design performance 

can be deteriorated by the formation of a module if negative product dependencies between 

components or modules are not accounted for. Hence, the product module identification must be 

carried out carefully by concurrently considering the positive and negative dependencies between 

components and the optimization of the design performance. To achieve this, the proposed 

methodology uses the product-related dependency management and the complex design structure 

matrix to model positive and negative dependencies and to compute the combination potency 

between components to create modules. This methodology is then integrated into a modified non-
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dominated sorting genetic algorithm III to concurrently optimize the design and identify the 

product modules. The methodology is exemplified through the case study of a layout design of an 

autonomous greenhouse. By applying the proposed methodology to the case study, it was possible 

to generate concepts that decreased the number of modules from 9 down to 4 while still ensuring 

the optimization of the design performance.  

7.2  Introduction  

Mechatronic product design is a complex task to achieve for many reasons such as the need for 

multidisciplinary knowledge [1, 2]. To obtain a final product design, one must go through the whole 

design process composed of conceptual design, layout design, detailed design, testing, and much 

more. In each of these phases, one of the main challenges is to find near-optimal designs 

considering the information available. The problem statement of a mechatronic product design 

presents multiple conflicting objectives which means multiple concepts with different strengths 

and weaknesses will result from product optimization. From these outputted concepts, the 

designers must choose which concepts are favored. Many researchers in the field of engineering 

design, evolutionary computation, and generative design are still working on solving the 

optimization of complex real-life product design problems such as the optimization of mechatronic 

products. Therefore, from a design perspective, there still is a crucial need for a better methodology 

to model [3] and evaluate a design [4]. On the other hand, evolutionary computation researchers 

develop new algorithms to solve an optimization problem. 

One of the trending engineering research axes is product modularity. Based on Gershenson et al. 

[5] work, the precise definition of product modularity has not been unanimously defined among 

the research community. However, most definitions share the same idea that combining or 

regrouping components into modules increases the modularity of a product. Many benefits come 

with the modularization of a product as it becomes easier to replace a part when it is broken or 

when the system needs to be upgraded. Moreover, it is also easier to redesign the layout of the 

product by changing the position of the modules or testing different modules to compare their 

performance. Additionally, modularity allows for the development of product families which 

reduces the number of parts to be dealt with by both the designer and the company. The impact of 

modularity on product and product process performances has also been evaluated up to a certain 
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degree with more empirical studies [6, 7]. Generally, product modularity improves product design 

and development. 

In this work, concepts from engineering design and evolutionary computation are combined to 

overcome issues related to product module identification during the layout design phase. Product 

module identification can be seen as combining two or more components, subsystems, or systems 

to form a module. To achieve product module identification, one must face three main issues.  

The first issue is to correctly model the product-related dependencies [8, 9]. A component’s 

dependency can be defined as how a component affects another one. The dependency between two 

components can be detrimental. For example, a heat source close to a heat sensor will be caused 

the heat sensor to capture erroneous values of the environment. The dependency can also be 

beneficial such as a heat source close to a fan that can help regulate the temperature of a room. 

The second issue is to define the combination compatibility between components. The combination 

of two components implies that they are physically integrated to form a module. Considering that 

two components can have both beneficial and detrimental dependencies at the same time, it can be 

difficult to decide whether they should be combined or not within the same module.  

The last issue is to identify product modules that do not deteriorate the design optimizer 

performances. Hence, the product module identification methods must be well integrated into the 

design optimization process. For example, evolutionary computation has operators such as 

crossover that will need to be adapted to maintain the design space exploration capabilities of the 

evolutionary algorithm.  

The main objective of this paper is to integrate product module identification during the product 

design optimization process. The contribution lies in product module identification based on 

product-related dependency management and complex number design structure matrix 

representation which are used to evaluate the combination compatibility between components. The 

product module identification also utilizes the computation power using an evolutionary algorithm 

to generate and evaluate modules. The methodology will be tested on a mechatronic product which 

is the layout design of an autonomous greenhouse.  
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7.3  Literature review  

Even though product modularity has beneficial effects on product design and development, there 

are still many research topics that need to be studied. One of the main challenges, mentioned by 

Hölttä et De Weck. [10], is evaluating when to favor a modular design or an integral design. Many 

researchers are working on overcoming this challenge. For example, AlGeddawy et al. [11] 

achieved modular product design based on the design for assembly. To do this, a combination of 

Cladistics which is a classification tool used in biology, design structure matrix (DSM), and the 

principle of product granularity level was used. This methodology allows the designer to have a 

compromise between product modularity and integration. Moreover, Höltta et al. [12], mentioned 

that there is a tradeoff between modularity and the performance of the product. If the constraints 

and performances of the product are more rigid, an integral design seems to be more adequate. 

However, if the performance requirements are flexible, a modular design can be favored for product 

variety, ease of re-design, maintenance, and repairs, etc. From this, it is possible to realize that the 

degree of modularity depends on the product specifications and purposes. To evaluate the degree 

of modularity needed for a product, many papers can be found in the literature. For an exhaustive 

literature review, it is recommended to look at Gershenson et al. [13] as well as a more recent 

review of Bonvoisin et al. [14]. This paper focuses on the product module identification based on 

product-related dependencies through product design optimization using evolutionary 

computation. 

Yu et al. [15] automatically developed modular product architectures through DSM clustering. 

DSM clustering was achieved using a specialized genetic algorithm (GA) to manage the different 

possible clusters. The minimum description length was used as the objective function, which is a 

model that approximates the system. Xiaogang et al. [16] used a GA to reorganize the DSM to 

bring the values closer to the diagonal. A coordination cost function that was computed with the 

modified DSM was used to evaluate which cluster is better. Wrigley et al. [17] optimized the layout 

of a light water modular nuclear reactor power plant. Module identification was done by translating 

the process and instrumentation diagram into a DSM. Then, a clustering algorithm reorganized the 

DSM by maximizing the measure of effectiveness which is dependent on the connection penalty. 

Then, with these modules, the layout optimization was done using a GA by minimizing the piping 
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distance between modules. Cheng et al. [18] presented a modularization method based on 

axiomatic design and design structure matrix. The axiomatic design was used to decompose the 

system in terms of functional requirements, physical solution, and process. Then, the DSMs 

presented the interaction between design parameters. Finally, a GA optimized the minimal 

description length for DSM clustering in order to achieve design parameters’ module identification. 

In these works, the product module identification is achieved by reorganizing the DSM and 

clustering components based on component-component interactions. The issue with these 

methodologies is that the effect of modularisation on the design performance is not included in the 

design optimization or even design selection. Hence, the set of modules found with DSM clustering 

is not necessarily the optimal set of possible modules in terms of design performance. 

Tseng et al. [19] designed a product for the green life cycle using a GA algorithm that optimizes 

the “liaison” intensity. If the liaison intensity between two components is high, then these two 

components are more likely to be in the same module. Consequently, the idea is to maximize the 

liaison intensity in a module and to minimize the liaison intensity between modules. Paras et al. 

[20] used a grouping GA to redesign used products in the garment industry. The product was 

divided into a manageable number of parts. Then, the grouping GA combined different parts to 

achieve the redesign requirements. The objective called design fitness is a weighted sum of four 

connection attributes. Connection attributes are related to the connection points of two parts. 

Similar connection attributes are better for the redesign. In the last two works, the modularization 

process is done mainly by considering the problem-specific variables. For mechatronic product 

design, a more generalized methodology is needed due to the multidisciplinary and complex nature 

of mechatronic products. 

Xiao et al. [21] methodology first modeled the functional and structural aspects of the system using 

the relationship constraint network model. Then, a GA combined with fuzzy pattern recognition 

was used for module decomposition. The objective function is the proximity of the pattern of a 

solution with a user-defined ideal pattern. This methodology allows the designer to find a near 

user-defined ideal pattern forming the product; therefore, the goal being reproducing expert tacit 

knowledge. However, the near-optimal pattern is not guaranteed since it is user-dependent. Meng 

et al. [22] achieved module identification for product families using a single objective GA. The 

single objective is a weighted sum aggregation of four different objectives related to a modular 
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design for product families: structural independency, functional independency, localization of 

change, and isolation of individualization. Shan et al. [23-25] used the weighted sum of four types 

of DSM for a model formulation which is functional, geometrical, physical, and auxiliary. Then, 

evolutionary computation algorithms were used to optimize an objective function based on the life 

cycle of the product and two principles of modular design. The first modular design principle is 

components within a module have high coupling. The second one is that the coupling between 

modules is low. The evolutionary computation algorithms used were particle swarm optimization, 

improved particle swarm optimization, and harmony search algorithms. Kreng and Lee [26] offered 

a four-phase methodology. The first phase is analyzing the functional and physical interactions 

between components. Phase two is finding the proper modularity metrics or modular driver which 

will guide the modularity process and defining their importance using a hierarchical analytic 

process. Also, the relationship between modular drivers and components was quantified in a 

correlation matrix. The third phase consists of modeling the modularization using a non-linear 

programming model. In this phase, the objective function was computed following the concept that 

a module will be composed of components with similar module drivers. The final phase is 

optimizing the objective function using a grouping GA that clusters components into modules. In 

these works, the optimization considers modular metrics as well as product-related metrics. 

However, they use a single objective optimization for a multi-objective optimization problem 

which means they will converge on one design based on the selection of promising designs. 

Furthermore, the design performance is not included in the optimization process. Xu et al. [27] 

used a two-step methodology for the modular design filament winding process equipment. The first 

step is to find the modules from components using a grouping GA and modular driving forces. The 

second step is to optimize the performance requirement using a non-dominated sorting genetic 

algorithm II and the modules found in the first step. Even though multi-objective optimization is 

used, the modularization process and product optimization are done separately. As mention above, 

this could lead to a set of suboptimal modules for the optimization design. Wei et al. [28] used 

three principles for modular design. The first one is internal interaction which represents the 

interaction between components within a module. The second is external interaction which is the 

interactions between modules. The last one is the overall reliability principle which dictates that 

components affecting the same functional requirements should be combined into a module. To 
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identify modules, a multi-objective optimization is done where all three principles are concurrently 

optimized using the improved strength Pareto evolutionary algorithm (ISPEA2). Hence, a Pareto 

set of solutions is found. Finally, to choose the best set from the Pareto set, a fuzzy selection 

mechanism is used to eliminate the bias from the human selection. Modular metrics are used for 

the optimization of the modular process using multi-objective optimization. However, the design 

performance is not included in the optimization process. 

As mentioned by Gershenson et al. [13], there is a need for flexibility in the modularization of a 

product to consider modules in the early design stages such as layout design. Moreover, Bonvoisin 

et al. [14] also express a lack of flexibility during the modularization process. Metrics and methods 

for modularization are often problem-specific which restrict their use. Hence, in this work, a 

flexible modularization method combining product-related dependency management, complex 

design structure matrices, and multi-objective evolutionary computation is proposed. The 

developed methodology allows the modularization process in the early design phase of a product 

design while considering its design performance. To validate it, the layout design of an autonomous 

greenhouse will be used as a case study.  

The remaining part of the paper will be structured as follows: Section 7.4 describes the proposed 

methodology. Section 7.5 presents the layout design of an autonomous greenhouse as a case study. 

Section 7.6 reports the results and analysis of the layout design of an autonomous greenhouse. 

Finally, section 7.7 concludes this paper. 

7.4  System design description 

Figure 7.1 shows the overview of the methodology as well as the contribution of this paper. The 

problem statement and optimization problem formulation have been treated in our previous work 

[29]. Part of it will be explained in Section 7.5 for completeness. However, the main focus will be 

the component combination modeling as well as its integration in the optimization algorithm.  
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Figure 7.1 Overview of the methodology. The red squares represent the contribution of this 

paper. 

7.4.1 Modeling components’ dependencies 

To model components’ dependencies, complex DSMs developed in the authors’ previous work. 

[3] are used. These DSMs use the complex number notation 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗, as shown in the component-

component matrix of Table 7.1, to differentiate negative and positive dependencies. The positive 

one is the real part of the complex value and the negative one is the imaginary part. This notation 

has the advantage of conserving and accumulating positive and negative dependencies separately 

during the aggregation of matrices. In this methodology, the chosen aggregation method is a 

weighted sum of all the DSMs.  

Table 7.1 Concept of the complex DSM 

Component A B C … 

A 𝑎11 + 𝑏11𝑗 𝑎12 + 𝑏12𝑗 𝑎13 + 𝑏13𝑗 𝑎1𝑛 + 𝑏1𝑛𝑗 

B 𝑎21 + 𝑏21𝑗 … … … 

C 𝑎31 + 𝑏31𝑗 … … …. 

D 𝑎𝑛1 + 𝑏𝑛1𝑗 … … 𝑎𝑛𝑛 + 𝑏𝑛𝑛𝑗 

7.4.2  Modeling the component combination 

For the DSM aggregation process, a matrix named expert combination matrix (ECM) is added to 

take into consideration the designer experience in combining components. ECM is introduced since 

the designers might know that two components cannot be combined into a module or that the work 

needed to combine two components consume too many resources in terms of time and cost even 
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though there are no clear adverse effects. Once the aggregation matrix is obtained, a matrix called 

combination potency matrix (CPM) can be computed. This matrix also has the number of 

components as the number of rows and columns (i.e. squared matrix). Each element of the matrix 

is a value given by 𝑓(𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗) as shown in Table 7.2. The complex number 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗 value is 

found in the aggregation matrix. The idea is to find a function 𝑓(𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗) that allow the 

quantification of the combination potency based on the complex number notation.  

Table 7.2 Concept of computing the combination potency matrix (CPM) 

Component A B C … 

A 𝑓(𝑎11 + 𝑏11𝑗) 𝑓(𝑎12 + 𝑏12𝑗) 𝑓(𝑎13 + 𝑏13𝑗) 𝑓(𝑎1𝑛 + 𝑏1𝑛𝑗) 

B 𝑓(𝑎21 + 𝑏21𝑗) … … … 

C 𝑓(𝑎31 + 𝑏31𝑗) … … …. 

D 𝑓(𝑎𝑛1 + 𝑏𝑛1𝑗) … … 𝑓(𝑎𝑛𝑛 + 𝑏𝑛𝑛𝑗) 

The concept of complex DSMs has not been widely used. Hence, there is no formulation of 

𝑓(𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗) given in the literature, therefore in this work, a simple ratio 𝑓(𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑗) =
𝑎𝑖𝑗

𝑏𝑖𝑗
 will 

be used. The chosen function is based on a simple and intuitive view of the matter. Indeed, a ratio 

of positive dependencies and negative dependencies gives a range of values from 0 to ∞. Where 0 

means that there is no combination potency between two components and ∞ means that there is a 

high combination potency. In Table 7.3, a scale of numerical and qualitative values is shown based 

on the different values of the real and imaginary parts. 

Table 7.3 Qualitative and numerical values are associated with complex number notation. 

Case number Different cases of 
𝒂𝒊𝒋 and 𝒃𝒊𝒋 

Numerical value Qualitative value 

1 𝑎𝑖𝑗>0 & 𝑏𝑖𝑗 = 0 ∞ High combination 
potency 

2 𝑎𝑖𝑗>𝑏𝑖𝑗 ]1, ∞ [ Combination 
potency 

3 𝑏𝑖𝑗 = 0 & 𝑎𝑖𝑗 = 0 1+ Independent 

4 𝑏𝑖𝑗 = 𝑎𝑖𝑗  

(𝑏𝑖𝑗≠0 & 𝑎𝑖𝑗≠0) 

1 Neutral 
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5 𝑎𝑖𝑗<𝑏𝑖𝑗 ]0,1[ Low combination 
potency 

6 𝑎𝑖𝑗 =0 & 𝑏𝑖𝑗> 0 0 No combination 
potency 

It is important to mention the difference between cases 3 and 4. The combination process of case 

3 should be easier than the one for case 4, since in case 3, the two components are independent due 

to the absence of dependencies. Moreover, in case 4 the designers need to deal with adverse effects. 

For this reason, the numerical value for case 3 is slightly higher than for case 4 which is why the 

numerical value for case 3 is represented by the “ 1+ ” symbol.  

7.4.3  Integrating the component combination in evolutionary 

computation 

 

Figure 7.2 Overview of the modified NSGA-III algorithm. The red square represents the added 

operator. 

From Figure 7.2, not only the methodology allows individuals with modules to compete with 

individuals without modules, but it allows competition between modules. Hence, it is possible to 

evaluate the effect of modularization on the design performance (i.e. objectives), thus, if a specific 
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module is beneficial, it will improve one or more objectives. Using this strategy, the algorithm will 

favor optimal modules, if they exist, based on the design performance. However, the optimization 

algorithm must be adapted to achieve this.  

The chosen evolutionary algorithm in this work is a modified version of the non-dominated sorting 

genetic algorithm -III (NSGA-III) [30]. Part of these modifications is presented in a previous work 

of the authors, Law et al. [31]. The components’ combination has also a chance of being performed 

during the reproduction phase of the NSGA-III (See Figure 7.2). There is a probability associated 

with the occurrence of the combination operator just like the mutation operator. The components’ 

combination is done on a clone of a random individual from the population. 

A combination tracker vector (CTV) is also introduced to know which initial components are now 

combined. Indeed, as the optimization progress, combinations are done stochastically, hence, two 

individuals can have different modules. The CTV is used to know which components are combined 

into a module and to adapt operators and/or mechanisms of the optimization algorithm. To better 

understand how CTV is modified throughout the optimization process, Table 7.4 represents the 

formation of a module of one individual. The first column shows the vector’s length with the initial 

number of components or the initial state of CTV. The second column shows the impact of forming 

one module on the CTV. The module is formed by integrating the 7th components in the 2nd one 

which is why the value of the 2nd column, 7th row is set to 2. The last column represents how the 

CTV will be changed if another component is added to the module. The 9th component is also 

integrated with the 2nd component which is why the value of the 3rd column, 9th row is 2. The 

module is now formed of the 2nd, 7th, and 9th components.  

Table 7.4 Example of the use of CTV 

Initial Comp2and7 combined Comp9and7 combined 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 
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7 2 2 

8 8 8 

9 9 2 

The CTV also offers another advantage. As mentioned earlier, some evolutionary operators will be 

affected by the combination of components. For this implementation, the crossover operator is the 

only one that has a conflict with the combination of components. Indeed, applying a crossover 

operator between two solutions with different combinations is most likely to output an implausible 

individual as shown in Figure 7.3. In this work, an implausible individual is defined as an individual 

with too many or too few components. This is where the CTV can be useful. To avoid implausible 

individuals, a crossover between two individuals can happen if their CTVs are identical. In other 

words, the crossover operation can happen when two individuals have identical modules. However, 

if their CTVs are not identical, but share an identical module at the crossover point, an exchange 

between these identical modules will be done. Otherwise, no crossover operator is done between 

the two individuals. This modification of the crossover operation is done to ensure the exploration 

of the design space. 

 

Figure 7.3 Comparison of crossover operations on individuals with and without modules 
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7.5  Case study: Autonomous greenhouse layout design 

In [29, 31], the authors proposed a case study based on components’ placement and dependencies 

for the layout design of an autonomous greenhouse. This case study is chosen because it can greatly 

benefit from modularity. Indeed, by integrating components into modules, it is possible to reduce 

the volume occupied by components which will increase the volume allocated for the growth of 

the plants. Hence, the autonomous greenhouse will better fulfill its main function which is to ensure 

the growth and survival of plants. The formulation will briefly be presented here. 

The main components are presented in Table 7.5 and the new DSMs are presented in Figure 7.4. 

The DSMs have been modified using the scale for complex notation presented in Table 7.6.  

Table 7.5 Main components of an autonomous greenhouse 

Component’s number Component’s name 

1 Heater 

2 Water tank 

3 Pack-soil (contains seeds and soil) 

4 Heat sensor 

5 Camera 

6 Fan 

7 LED (lights) 

8 Water pump 

9 PCB (sensors such as O2, CO2, etc.) 

 

Using the formulation, the layout design of most systems can be modeled by three matrices. The 

first one is the closeness matrix and represents how far or close a component should be from another 

one. The second matrix is the field of view (FOV) matrix which indicates that a component needs 

to be within or outside of the FOV of another one. The last one is the physical connection matrix 

and defines the number of connections between two components. The aggregation of these three 

matrices is computed using the weighted sum approach. Using the aggregated matrix, the CPM is 
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calculated and shown in Figure 7.5. These matrices were adapted to the complex scale presented 

in Ugo et al. [3]: 

Table 7.6 Scale for complex number notation from Ugo et al. [3] 

Qualitative value Detrimental Undesirable Neutral Desirable Necessary 

Complex value 0 + 2j 0 + 1j 0 + 0 1+0j 2+0j 

 

 

Figure 7.4 DSMs of the layout design of an autonomous greenhouse. DSM of closeness (a) DSM 

of the field of view (b) DSM of physical connections (c) Aggregated DSM (d) 

 

Figure 7.5 CPM of the layout design of an autonomous greenhouse 

C C C C C C C C C 

C 0 1 1 0 1  1 1 1 

C 1 0  1 1 1 1  1 

C 1  0 1  1   1 

C 0 1 1 0 1 1 0 1 1 

C 1 1  1 0 1 1 1 1 

C  1 1 1 1 0 1 1 1 

C 1 1  0 1 1 0 1 1 

C 1   1 1 1 1 0 1 

C 1 1 1 1 1 1 1 1 0
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In this case study, it is important to note that there is a difference between the closeness and the 

combination of two components. To illustrate this, the water tank will be taken as an example. The 

water tank could be close to the LEDs without any consequences. However, combining the water 

tank and the LEDs is not favored for reasons such as water and electronics are not compatible, and 

their combination can be troublesome, but possible.  

To input this sort of information, the ECM is used since its purpose is to include expert knowledge 

about the physical integration between components as mentioned above. Hence, the water tank and 

electric components have a value of 1j since such a combination is not favored since it would make 

the product design and development more complex. Furthermore, a value of 1 is given to the ECM 

element of the LED and the camera to avoid lens flare since the light could prevent the camera 

from achieving its functional requirement. Including the ECM in the aggregation process, the new 

aggregated matrix and CPM are given in Figure 7.6. It is possible to see that the input of the 

designer on the combination of components has an important impact on the CPM. For example, 

the LED and camera have high combination potency as opposed to their potency being neutral 

before. 

 

Figure 7.6 Integrating the ECM. ECM (a) New aggregated matrix (b) New CPM (c) 

C C C C C C C C C 

C 0 1 0 0 0 0 0 0 0

C 1 0 0 1 1 1 1 1 1 

C 0 0 0 0 0 0 0 0 0

C 0 1 0 0 0 0 0 0 0

C 0 1 0 0 0 0 1 0 0

C 0 1 0 0 0 0 0 0 0

C 0 1 0 0 1 0 0 0 0

C 0 1 0 0 0 0 0 0 0

C 0 1 0 0 0 0 0 0 0

  )

C C C C C C C C C 

C 0 1 0   0  0 0 0

C 1 0 1 1 1 1 1    1 

C 0 1 0 0  0   1 

C   1 0 0 0 0   0 0

C 0 1  0 0 0 1 0 0

C  1 0 0 0 0 0 0 0

C 0 1    1 0 0 0 0

C 0     0 0 0 0 0 0

C 0 1 1 0 0 0 0 0 0

  )

C C C C C C C C C 
C 0 0 1 0 1  1 1 1 

C 0 0  0 0 0 0  0
C 1  0 1  1   1 

C 0 0 1 0 1 1 0 1 1 

C 1 0  1 0 1  1 1 

C  0 1 1 1 0 1 1 1 

C 1 0  0  1 0 1 1 

C 1   1 1 1 1 0 1 

C 1 0 1 1 1 1 1 1 0
  )
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In this paper, the objective function from the authors’ previous work has been used and reported in 

Table 7.7 to obtain layout designs of an autonomous greenhouse. This table shows the relationship 

between the dependencies found using product-related dependency management and the objective 

functions. These objectives treat information about the placement and size of components to ensure 

the survival and growth of the plants. DX, DY, and DZ represent the dimensions of a component, 

and PX, PY, and PZ its position within the greenhouse. Finally, M, V, and A are the mass, voltage, 

and current of a component respectively.  

Furthermore, the strategy for the aggregation of objectives is illustrated in Figure 7.7. The 

methodology used to aggregate these objectives uses axiomatic design to identify the sub-systems 

and components of the greenhouse. Then based on the dependencies and objective functions of the 

layout design (Table 7.7) and the axiomatic design, the objective functions are aggregated by 

associating them to subsystems. More details of this methodology can be found in the author’s 

previous work [31]. 

Table 7.7 Dependencies and objective functions of the layout design of an autonomous 

greenhouse 
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Figure 7.7 Objectives aggregation of the layout design of an autonomous greenhouse. 

7.6  Results & Discussion 

The simulation parameters are presented in Table 7.8. The parameters in dark gray are the 

algorithm parameters of the modified NSGA-III. The reference vector size and population size 

have been chosen based on the recommendation of Deb and Jain [30]. The rest of the parameters 

were fine-tuned by trials and errors. The probabilities of combination and mutation were defined 

so that the modularity process would not be done too quickly to allow the comparison of different 

levels of modularity within a simulation run. The design parameters in light gray are from the 

authors’ previous work [29]. For completeness, the components’ parameters from [29] are also 

reported in Table 7.9. It is important to mention that the modularization process starts only when 

the entire population is constraints-free. By doing so, it is possible to compare the feasible non-

modular designs to feasible modular designs. If the modularization process is better, the non-

modular design should completely disappear after a while. 

Table 7.8 Simulation parameters. Parameters in dark gray are algorithm parameters and those in 

light gray are design parameters 

Parameters Values 

Population size 212 

Reference vector size 210 

Number of unimproved generations to terminate the algorithm 1000 
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Probability of combination 80% 

Initial probability of mutation 40% 

Final probability of mutation 10% 

Maximum voltage for one component in a solution 9 V 

Maximum current for one component in a solution 1000 mA 

Max mass of a solution 1500 g 

Maximum energy consumption of an individual 15 W 

Greenhouse dimension  450 x 300 x 300 mm3 

 

Table 7.9 Components' parameters 

Pack-soil 

Dimensions range: 250 x 175 x 8 to  

450 x 300 x 20 mm3 

Mass range: 300 to 425 g 

Water tank 

Dimensions range: 50 x 50 x 50 to  

100 x 100 x 100 mm3 

Mass range:150 to 1200 g 

Heater 

Dimensions range: 30 x 30 x 5 to  

80 x 80 x 10 mm3 

Mass range: 20 to 50 g 

Voltage range: 3.3 to 12 V 

Current range: 400 to 7000 mA 

Heat sensor 

Dimensions range: 12 x 12 x 5 to  

25 x 25 x 10 mm3 

Mass range:  0.1 to 1 g 

Voltage range: 1.7 to 3.6 V 

Current range: 0.01 to 0.02 mA 

Camera 

Dimensions range: 10 x10 x 2.5 to  

22 x 26 x 11 mm3 

Mass range: 0.1 to 6.4 g 

Voltage range: 1.7 to 5 V 

Current range: 50 to 160 mA 

Field of view: 60 to 90 ° 

LED 

Dimensions range: 40 x 40 x 1.84 to  

100 x 100 x 2 mm3 

Mass range:  10 to 35 g 

Voltage range: 2.9 to 3.7 V 

Current range: 700 to 1400 mA 

Field of view: 60 to 90 ° 
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Fan 

Dimensions range: 40 x40 x 10 to  

80 x 80 x 25 mm3 

Mass range: 18.6 to 62.6 g 

Voltage range: 2 to 5.5 V 

Current range: 66 to 170 mA 

 

Water Pump 

Dimensions range: 32 x 32 x 23 to  

54 x54 x 46 mm3 

Mass range:  80 to 150 g 

Voltage range: 3 to 12 V 

Current range: 200 to 500 mA 

PCB 

Dimensions range: 30 x 30 x 1 to  

50 x 50 x 4 mm3 

Mass range:  5 to 10 g 

Voltage range: 3.3 to 6 V 

Current range: 5 to 50 mA 

 

 

To show the applicability of the methodology presented above, a comparison of simulation runs 

done with and without the modularization process is carried out. Figure 7.8 shows different 

examples of layouts of 10 simulation runs without modularization. 10 simulation runs were done 

for reproducibility purposes. Hence, there were many duplicated layouts and similar layouts that 

were outputted from these simulation runs. Therefore, the presented layouts in Figure 7.8 are the 

most common and near-optimal ones. By analyzing the layouts of this study case, it is possible to 

notice that the optimization of the layout unveils clusters of components. Indeed, all the examples 

show physical proximity between the pack soil, water tank, and water pump. The same conclusion 

can be made for the heater and the fan as well as the camera and the LED. As for the heat sensor 

and the PCB, only layout A of Figure 7.8 shows a possible combination. The red, blue, and green 

lines in each figure are for the line of sight and field of view of the components. The red lines are 

the line of sight of the component starting from the center of the component. The blue and green 

lines are the field of view of the components in the form of a cone. 

Figure 7.9, Figure 7.10, and Figure 7.11 show the results of 10 simulation runs. The layouts were 

chosen to show the different levels of modularization while achieving the functional requirements.  
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Figure 7.9 shows four examples of highly modular layouts of an autonomous greenhouse. These 

layouts have 4 modules. As expected from the CPM of as well as the modules identified in Figure 

7.8, the water tank and pack soil are combined due to their high combination potency for each 

layout. For the same reason, it is possible to see that the camera and LED are also combined. For 

layout D, the heat sensor and the PCB are combined. The CPM shows that this combination can 

happen without impacting the system performance and layout A of Figure 7.8 shows that their 

combination can be expected. Looking at the CPM, the combination of the heater and fan is most 

likely to happen. This is confirmed as it is possible to see all the layouts of Figure 7.9 except C has 

the heater and fan combined. For layout C, the heater is the only component of its module, and the 

fan is combined with the camera, LED, and PCB. Furthermore, layout A and B include the PCB 

with the module composed of the camera and LED. These combinations were expected since the 

PCB has an independent dependency with all the components except the water tank. Finally, the 

water pump is combined with the water tank and pack soil even though the designer's suggestion 

was to avoid combining these two components in the ECM. This goes to show that their 

combination would greatly benefit the design performances even if it can also be difficult to 

achieve by the designer. 

Figure 7.9 shows four examples of highly modular layouts of an autonomous greenhouse. These 

layouts have 4 modules. As expected from the CPM of as well as the modules identified in Figure 

7.8, the water tank and pack soil are combined due to their high combination potency for each 

layout. For the same reason, it is possible to see that the camera and LED are also combined. For 

layout D, the heat sensor and the PCB are combined. The CPM shows that this combination can 

happen without impacting the system performance and layout A of Figure 7.8 shows that their 

combination can be expected. Looking at the CPM, the combination of the heater and fan is most 

Figure 7.10 shows four examples of moderate modular layouts. The number of modules for these 

layouts is 5. It is possible to see that the water tank, water pump, and pack soil still form a module 

for every layout. The heater and fan module have only been present in layout A. For the other 

layouts, the fan is either combined with the camera and LED module (layout C) or is a module of 

its own (layout B and D). The separation of the heater and fan was not expected, considering that 

the CPM shows an infinite combination potency between these components.  
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Figure 7.8 Examples of layouts are generated without modularization. Highlighting the possible 

modules. 
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Figure 7.9 Examples of highly modular layouts 
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However, it seems that the combination of these two simply did not happen due to the stochastic 

nature of the optimization because layouts B and D show that the heater and fan are really close to 

one another similar to the layouts of Figure 7.8.As for layout C, the fan simply got combine with 

the camera and LED first. Then, the combination of the heater with this module was not optimal 

since the heater would be closer to the heat sensor. 

Figure 7.11 shows four examples of low modular layouts. This shows more than 5 modules. These 

layouts are similar to the layout of Figure 7.8. Indeed, it is still possible to see a tendency of 

combining the water tank, water pump, and pack soil into a module. The same goes for the heater 

and fan as well as the camera and LED. Hence, in the layouts of Figure 7.11, some of these modules 

have been made or partially made. 

In all the examples of Figure 7.9, Figure 7.10, and Figure 7.11, the water tank and water pump 

have been combined even though the designer indicated that this combination is not suggested in 

the ECM. The reason why this combination is preferred can be explained by the fact that objectives 

1, 7, and 9 of Table 7.7 greatly benefit from this combination. Indeed, combining the water tank 

and water pump uses less volume and tubes. Hence, the optimization shows the designer that this 

combination is more advantageous for the design of a greenhouse even if it has to overcome 

negative dependencies. 

It is possible to observe the benefits of modularity on the layout design of an autonomous 

greenhouse by analyzing the results of Figure 7.9, Figure 7.10, and Figure 7.11. The more modular 

is the layout, the more available space there is for the growth of the plants. Furthermore, the module 

containing the pack soil and the water tank usually has a bigger volume that implies more seeds 

and/or more water can be used to grow plants. Finally, the field of view of the camera and LED 

projecting on the pack soil are less obstructed by other components. This is mainly due to the 

combination of the pack soil, water tank, and water pump since the water tank and water pump 

contributed the most to the obstruction of fields of view as shown in Figure 7.8. 
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Figure 7.10 Examples of moderate modular layouts 
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Figure 7.11 Examples of low modular layouts 
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It is important to mention that some of the outputted layouts were poor. Layout A from Figure 7.12 

cannot be used to ensure the growth and survival of the plants due to the undesired direction of the 

camera and LED module. The filming and illumination of the plant cannot be fulfilled adequately 

with this configuration. Layout B also shows this problem as well as the heater and fan module 

being blocked by the pack soil, water tank, and water pump module. This can cause a suboptimal 

performance of the fan which can lead to a local heat point or cold point. Layout C also shows this 

problem.  

 

Figure 7.12 Examples of inadequate layouts 

The presented results showed that the proposed methodology achieved product module 

identification while ensuring the functional requirements of the product. However, the 

methodology could be improved by overcoming one of the issues which is the absence of an 

exploratory mechanism (e.g. niching techniques) among the set of modules integrated into the 
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optimization algorithm. Indeed, the formation of one module can prevent the formation of another 

one. Hence, it is possible to obtain a local optimal set of modules if it takes over the population. A 

local optimal can also mislead the designer and cause the final product to be less optimal or to not 

fulfill the customers’ needs. To overcome this issue, a niching mechanism such as an adapted 

version of the crowding distance based on the CTV might be a solution in future works. 

Another issue is that the CPM has static values that depend on the designers’ weight assignments 

and the chosen computation method. Hence, the probability of combining two components is 

greatly impacted by the designers. In the case where the designer input is inaccurate, two 

mechanisms could be explored to rectify this. The first one is the exploration and study of the 

computation method other than the ratio between positive and negative dependencies. The second 

one is to make the CPM values dynamic and learn through trials using reinforcement learning 

algorithms.  

7.7  Conclusions 

This paper presents a methodology to concurrently optimize a product design while identifying 

product modules. The methodology uses complex DSM to evaluate the combination potency 

between components based on their positive and negative dependencies. The combination potency 

is then summarized into a matrix called a combination potency matrix (CPM). The CPM is then 

integrated into a modified version of the NSGA-III to simultaneously accomplish the product 

module identification and layout design optimization of an autonomous greenhouse. The proposed 

methodology allowed us to find concepts of the layout of an autonomous greenhouse with different 

levels of modularization. The modularization process was able to reduce the number of physical 

components from 9 down to a minimum of 4 modules. The benefits of modularization for the 

autonomous greenhouse are more space for the growth of the plants, lower obstruction of the 

filming and illuminating of the camera and LED respectively, and larger pack-soil and water tank 

which means more seeds can be planted. The proposed methodology was able to obtain these 

benefits while ensuring the fulfillment of the functional requirements of the autonomous 

greenhouse. However, poor concepts were still found due to the conflict between modules and 

objectives functions as well as the definition of the dominance in the non-dominated sorting. To 
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improve the proposed methodology some modifications as been suggested such as a dynamic CPM 

as well as including diversity among the set of modules. 
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 GENERAL DISCUSSION 

The developed design tool presented in this thesis showed the potential of integrating product-

related dependencies and evolutionary algorithms for the conceptual design phase. This tool 

explored the possible placements and choices of components for a mechatronic product and yielded 

near-optimal layout designs. Indeed, 50 near-optimal layout designs of an autonomous greenhouse 

were obtained in 15-20 minutes. The developed design tool has, however, many limitations. The 

most important one is the suitable adaptation of the optimization process to the problem, the 

preferences of the user, and the compatibility with other tools. 

Considering that the performance of the algorithm depends on the problem at hand [54], a first 

recommendation would be to include more evolutionary algorithms [55]. At the moment, the tool 

has an implementation of GA, NSGA-II, and NSGA-III [56].  

Second, the adaptation of the optimization process needs to be improved considering that 

optimization formulation can vary depending on the mechatronic system studied. For example, 

other mechatronic systems can be defined as a high-dimensional optimization problem where the 

challenges lie in managing the huge number of design parameters (i.e. “the curse of 

dimensionality”). Once again, some algorithms focus on solving these problems such as 

cooperative co-evolutionary algorithms [57]. A computer-aided design tool should be able to 

provide at least one optimization algorithm to solve at least one kind of optimization problem to 

ensure the design of a variety of mechatronic systems. 

Third, the preferences of the user are defined before the optimization process. However, the number 

of optimal layout designs can be large enough for the user to struggle with the comparison and 

selection of designs. Hence, a post-optimization process [58, 59] can be used by the user to pinpoint 

the desired region of the Pareto front. Another possible complementary mechanism could be the 

relaxation of the dominance definition in algorithms using the non-dominated sorting algorithm 

[60]. The principle of the relaxation of the dominance is to classify some good solutions, but not 

optimal, as the best solutions of the generation. Hence, giving them a chance to improve through 

the follow-up generation. 

Fourth, a deeper investigation of the modularization process based on product-related dependency 

management would be suggested. More precisely, the numerical value computation of the 
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combination potency must be reviewed. At the moment, a simple ratio between positive and 

negative dependencies is used. However, it might not be the most adequate method to compute the 

combination potency. One might start this investigation by comparing complexity metrics []. 

Complexity metrics are used in engineering design to quantify the complexity of concepts to 

compare them. 

Fifth, the design tool could be improved by interfacing it with other computer-aided design tools 

for the next phases of the product design process. Usually, the following step of the conceptual 

design is the detailed design. This phase starts with a better assessment of the shapes and 

dimensions of the components using computer-aided tools such as Catia [3]. Then, one could also 

run simulations on the concept.  

By considering the computer-aided tool specification defined in section 4.1, it is possible to notice 

that the developed computer-aided tool fulfills the essential need. Indeed, the user can input the 

information necessary for the generation and evaluation of layout designs. Then, the computer-

aided tool can generate at least one near-optimal layout design. The user can also visualize the 

layout design concept in 3D. As for the optional needs, the tool can achieve only one of these needs. 

It is possible to view more than one layout design. However, it is not possible to see two layout 

designs simultaneously through some sort of comparison interface. The other two optional needs 

that are under development concern the user interface and the knowledge transfer from this tool to 

another one. Indeed, the current user interface of the tool consists of the user writing directly in the 

code and defined the components, parameters, etc. Hence, the user interface cannot be easily used. 

Finally, the tool has not been interfaced with other tools. Indeed, the proposed layout designs are 

not saved into a standard format (e.g. .stl) which means that other tools cannot upload the files 

easily. 

The learning curve associated with the use of the developed computer-aided tool is the main 

constraint of this research project. Ideally, the tool needs to be easy to learn and use. This constraint 

is mainly not respected considering that a proper user interface has not been implemented yet. 

However, the methodology can be learned with ease to a certain degree. Indeed, the learning curve 

of the methodology would not be too steep for someone who has experience in designing 

mechatronic systems. Even though the proposed methodology differentiates itself from others in 

many points, it is still based on common guidelines of engineering design.  
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Overall, the objectives set in Chapter 2 are achieved through the developed tools in this thesis. 

Indeed, the computer-aided tool is built along with a methodology to establish the problem 

statement and translate it into an optimization problem. Then, an evolutionary computing algorithm 

is used to solve the optimization and output a set of near-optimal layout designs within a reasonable 

amount of time (e.g. 15-20 min for 50 layout designs of an autonomous greenhouse). The only 

objective that is incomplete is the test and validation of the computer-aided tool. This objective is 

considered incomplete since that it is possible to confirm that the outputted layout design makes 

sense through a designer’s expert knowledge. However, to truly define the impact and validity of 

the tool during the conceptual design, the product must be physically built and tested. Due to the 

lack of time and resources, the prototypes of the case study are unfinished and could not validate 

the computer-aided tools within this thesis. The validation of the tool could start by adapting our 

recent work [61] on prototyping an autonomous greenhouse for space biology uses of cheap off-

the-shelf components. These components and experimental setup can be used to validate the layout 

designs obtained by the proposed tool. Then, a comparison between the different layout designs 

could be done in terms of the growth and health of the plants. 
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 CONCLUSION AND RECOMMANDATIONS 

In this thesis, a computer-aided tool is made during the conceptual design phase. The tool focuses 

on the identification and exploitation of the product-related dependencies to choose and place the 

components within a product, in other words, to achieve the layout design of the product. This aims 

at helping the user generate and evaluate layout designs. The generating aspect of this process is 

automated with the aid of evolutionary computing to reduce the time-consuming and resource-

consuming burden of the designer and engineers. For example, after a 15–20 minutes simulation, 

the user was able to obtain 50 layout designs of an autonomous greenhouse. However, the 

developed tools still have many challenges to overcome in order to improve the combination of the 

engineering design and the evolutionary computing domains. Considering that not all engineers 

and designers are experts in evolutionary computing, an effort must be done to adapt the 

evolutionary computing algorithm in solving different types of product design. On the other hand, 

the engineering design methodology must be developed while considering the optimization 

methods to obtain a high-quality product in a reasonable amount of time. Furthermore, the 

engineering design methodology must profit from the computer power, hence, part of these 

methodologies must be put into an intuitive software to improve the design experience and remote 

collaborative design. 

In future works, the computer-aided tool must offer a more intuitive user interface with guidelines 

on the workflow of the methodology developed in this thesis. Furthermore, the tool must be able 

to handle and solve different types of product design problems. To achieve this, adding and 

adapting evolutionary computing algorithms is recommended. Complementary engineering design 

tools can also help in solving many types of problems. The computer-aided tool should also ensure 

the proper transfer of knowledge to other detailed design tools to improve the design process 

workflow. Finally, the impact and usefulness of the developed computer-aided tool must be 

evaluated in two ways. First by comparing the performance and development time using with and 

without the computer-aided tool. Second, by evaluating the performances of many mechatronic 

products developed with the aid of the tool. 

 



118 

 

REFERENCES 

[1] S. Eppinger and K. Ulrich, Product design and development. McGraw-Hill Higher 

Education, 2015. 

[2] G. Pahl and W. Beitz, Engineering design: a systematic approach. Springer Science & 

Business Media, 2013. 

[3] D. systemes. "Catia." https://www.3ds.com/products-services/catia/products/ (accessed 

2021). 

[4] Siemens. "NX." https://www.plm.automation.siemens.com/global/en/products/nx/ 

(accessed 2021). 

[5] Microsoft. "Microsoft Project." https://www.microsoft.com/en-ca/microsoft-

365/project/project-management-software (accessed 2021). 

[6] SAS. "JMP." https://www.jmp.com/en_us/software/data-analysis-software.html (accessed 

2021). 

[7] SysML. "SysML  Open Source Project - What is SysML? Who created SysML?" 

https://sysml.org/ (accessed 2021). 

[8] Altair. "Altair HyperStudy." https://www.altair.com/hyperstudy/ (accessed 2021). 

[9] smartdraw. "Engineering Drawing Software." 

https://www.smartdraw.com/cad/engineering-drawing-software.htm (accessed 2021). 

[10] H. Lipson and M. Shpitalni, "Conceptual design and analysis by sketching," AI EDAM, vol. 

14, no. 5, pp. 391-401, 2000. 

[11] T. Vuletic, A. Duffy, L. Hay, C. McTeague, L. Pidgeon, and M. Grealy, "The challenges in 

computer supported conceptual engineering design," Computers in Industry, vol. 95, pp. 

22-37, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.compind.2017.11.003. 

[12]  A. Mohebbi, L. Baron, S. Achiche, and L. Birglen, "Trends in concurrent, multi-criteria 

and optimal design of mechatronic systems: A review," in Innovative Design and 

Manufacturing (ICIDM), Proceedings of the 2014 International Conference on, 2014: 

IEEE, pp. 88-93.  

[13] J. M. Torry-Smith, A. Qamar, S. Achiche, J. Wikander, N. H. Mortensen, and C. During, 

"Challenges in designing mechatronic systems," Journal of Mechanical Design, vol. 135, 

no. 1, p. 011005, 2013. 

[14] U. Chouinard, S. Achiche, and L. Baron, "Integrating negative dependencies assessment 

during mechatronics conceptual design using fuzzy logic and quantitative graph theory," 

Mechatronics, vol. 59, pp. 140-153, 2019/05/01/ 2019, doi: 

https://doi.org/10.1016/j.mechatronics.2019.03.009. 

[15] J. M. Torry-Smith, N. H. Mortensen, and S. Achiche, "A proposal for a classification of 

product-related dependencies in development of mechatronic products," Research in 

Engineering Design, vol. 25, no. 1, pp. 53-74, 2014. 

https://www.3ds.com/products-services/catia/products/
https://www.plm.automation.siemens.com/global/en/products/nx/
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://www.jmp.com/en_us/software/data-analysis-software.html
https://sysml.org/
https://www.altair.com/hyperstudy/
https://www.smartdraw.com/cad/engineering-drawing-software.htm
https://doi.org/10.1016/j.compind.2017.11.003
https://doi.org/10.1016/j.mechatronics.2019.03.009


119 

 

[16] A. Mohebbi, S. Achiche, and L. Baron, "Multi-criteria fuzzy decision support for 

conceptual evaluation in design of mechatronic systems: a quadrotor design case study," 

Research in Engineering Design, vol. 29, no. 3, pp. 329-349, 2018/07/01 2018, doi: 

10.1007/s00163-018-0287-6. 

[17] S. Chand and M. Wagner, "Evolutionary many-objective optimization: A quick-start 

guide," Surveys in Operations Research and Management Science, vol. 20, no. 2, pp. 35-

42, 2015/12/01/ 2015, doi: https://doi.org/10.1016/j.sorms.2015.08.001. 

[18] X. Chen, P. Wang, D. Zhang, and H. Dong, "Gradient-based multidisciplinary design 

optimization of an autonomous underwater vehicle," Applied Ocean Research, vol. 80, pp. 

101-111, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.apor.2018.08.006. 

[19] M. Bidoki, M. Mortazavi, and M. Sabzehparvar, "A new approach in system and tactic 

design optimization of an autonomous underwater vehicle by using Multidisciplinary 

Design Optimization," Ocean Engineering, vol. 147, pp. 517-530, 2018/01/01/ 2018, doi: 

https://doi.org/10.1016/j.oceaneng.2017.10.050. 

[20] F. Guo, S. Zhao, X. Zhou, J. Fan, and D. Mi, "Conceptual Multidisciplinary Design 

Optimization of Commercial Aero-engine System," IOP Conference Series: Materials 

Science and Engineering, vol. 685, p. 012021, 2019/11/22 2019, doi: 10.1088/1757-

899x/685/1/012021. 

[21] X. Sun, J. Ge, T. Yang, Q. Xu, and B. Zhang, "Multifidelity Multidisciplinary Design 

Optimization of Integral Solid Propellant Ramjet Supersonic Cruise Vehicles," 

International Journal of Aerospace Engineering, vol. 2019, p. 5192424, 2019/04/28 2019, 

doi: 10.1155/2019/5192424. 

[22] A. Sgueglia et al., "Multidisciplinary Design Optimization Framework with Coupled 

Derivative Computation for Hybrid Aircraft," Journal of Aircraft, vol. 57, no. 4, pp. 715-

729, 2020/07/01 2020, doi: 10.2514/1.C035509. 

[23] Y. Werner, T. Vietor, M. Weinert, and T. Erber, "Multidisciplinary design optimization of 

a generic b-pillar under package and design constraints," Engineering Optimization, pp. 1-

18, 2020, doi: 10.1080/0305215X.2020.1837791. 

[24]  K. Lynch, R. Ramsey, G. Ball, M. Schmit, and K. Collins, "Conceptual design acceleration 

for cyber-physical systems," in 2017 Annual IEEE International Systems Conference 

(SysCon), 24-27 April 2017 2017, pp. 1-6, doi: 10.1109/SYSCON.2017.7934771.  

[25] M. E. Amine, N. Perry, and J. Pailhès, "A risk-based approach to drive conceptual design 

taking into account low-maturity products," International Journal on Interactive Design 

and Manufacturing (IJIDeM), vol. 11, no. 3, pp. 677-688, 2017/08/01 2017, doi: 

10.1007/s12008-016-0354-z. 

[26] B. Chen and Y.-B. Xie, "A complex-number-domain-based conceptual design synthesis for 

multidisciplinary products," Proceedings of the Institution of Mechanical Engineers, Part 

C: Journal of Mechanical Engineering Science, vol. 231, no. 7, pp. 1292-1307, 2017, doi: 

10.1177/0954406216668207. 

[27] B. Chen and Y. Xie, "A computational approach for the optimal conceptual design synthesis 

based on the distributed resource environment," International Journal of Production 

https://doi.org/10.1016/j.sorms.2015.08.001
https://doi.org/10.1016/j.apor.2018.08.006
https://doi.org/10.1016/j.oceaneng.2017.10.050


120 

 

Research, vol. 55, no. 20, pp. 5881-5901, 2017/10/18 2017, doi: 

10.1080/00207543.2017.1302619. 

[28]  Y. Yi, W. Li, and M. Xiao, "Mode Pursuing Sampling Method for Multidisciplinary 

Deisgn Optimization in Ship Conceptual Design," in 2018 IEEE 22nd International 

Conference on Computer Supported Cooperative Work in Design ((CSCWD)), 9-11 May 

2018 2018, pp. 559-563, doi: 10.1109/CSCWD.2018.8465215.  

[29] H. Hong, Z. Jiang, and Y. Yin, "An intelligent conceptual design framework for complex 

machines," Procedia CIRP, vol. 72, pp. 586-591, 2018/01/01/ 2018, doi: 

https://doi.org/10.1016/j.procir.2018.03.041. 

[30] N. Jelev, A. Keane, and C. Holden, "Pattern Search Algorithm for Blackboard-Based 

Multidisciplinary Design Optimization Frameworks," Journal of Aircraft, vol. 56, no. 1, 

pp. 121-136, 2019/01/01 2018, doi: 10.2514/1.C034897. 

[31] Z. Hu, C. Rao, C. Tao, P. R. N. Childs, and Y. Zhao, "A case-based decision theory based 

process model to aid product conceptual design," Cluster Computing, vol. 22, no. 4, pp. 

10145-10162, 2019/07/01 2019, doi: 10.1007/s10586-017-1190-z. 

[32] S. G. Kontogiannis and M. A. Savill, "A generalized methodology for multidisciplinary 

design optimization using surrogate modelling and multifidelity analysis," 

OPTIMIZATION AND ENGINEERING, 2020. 

[33]  U. Chouinard, S. Achiche, C. Leblond-Ménard, and L. Baron, "Assessment of 

dependencies in mechatronics conceptual design of a quadcopter drone using linguistic 

fuzzy variables," in DS 87-4 Proceedings of the 21st International Conference on 

Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-

25.08. 2017, 2017.  

[34] A. Drira, H. Pierreval, and S. Hajri-Gabouj, "Facility layout problems: A survey," Annual 

Reviews in Control, vol. 31, no. 2, pp. 255-267, 2007, doi: 10.1016/j.arcontrol.2007.04.001. 

[35] G. Moslemipour, T. S. Lee, and D. Rilling, "A review of intelligent approaches for 

designing dynamic and robust layouts in flexible manufacturing systems," The 

International Journal of Advanced Manufacturing Technology, vol. 60, no. 1-4, pp. 11-27, 

2012. 

[36] A. Ahmadi, M. S. Pishvaee, and M. R. Akbari Jokar, "A survey on multi-floor facility 

layout problems," Computers & Industrial Engineering, vol. 107, pp. 158-170, 2017, doi: 

10.1016/j.cie.2017.03.015. 

[37] H. Fukushima, K. Kon, and F. Matsuno, "Model predictive formation control using branch-

and-bound compatible with collision avoidance problems," IEEE Transactions on 

Robotics, vol. 29, no. 5, pp. 1308-1317, 2013. 

[38] G.-S. Liu, B.-X. Zhang, H.-D. Yang, X. Chen, and G. Q. Huang, "A branch-and-bound 

algorithm for minimizing the energy consumption in the PFS problem," Mathematical 

Problems in Engineering, vol. 2013, 2013. 

[39] G. Belov and G. Scheithauer, "A cutting plane algorithm for the one-dimensional cutting 

stock problem with multiple stock lengths," European Journal of Operational Research, 

vol. 141, no. 2, pp. 274-294, 2002. 

https://doi.org/10.1016/j.procir.2018.03.041


121 

 

[40] J. M. Belenguer and E. Benavent, "A cutting plane algorithm for the capacitated arc routing 

problem," Computers & Operations Research, vol. 30, no. 5, pp. 705-728, 2003. 

[41] Z. Qian et al., "Expert-guided evolutionary algorithm for layout design of complex space 

stations," Enterprise Information Systems, vol. 11, no. 7, pp. 1078-1093, 2017. 

[42] Q.-L. Lin, H.-C. Liu, D.-J. Wang, and L. Liu, "Integrating systematic layout planning with 

fuzzy constraint theory to design and optimize the facility layout for operating theatre in 

hospitals," Journal of Intelligent Manufacturing, vol. 26, no. 1, pp. 87-95, 2013, doi: 

10.1007/s10845-013-0764-8. 

[43]  N. Zhou, A. Agogino, and K. S. Pister, "Automated design synthesis for micro-electro-

mechanical systems (MEMS)," in ASME 2002 International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference, 2002: American 

Society of Mechanical Engineers, pp. 267-273.  

[44] B. Chen and L. Deng, "The Application of Genetic Algorithm in Layout Design of Oil Rig 

Driller Console," Advanced Materials Research, vol. 216, pp. 171-175, 2011, doi: 

10.4028/www.scientific.net/AMR.216.171. 

[45] S. Behbahani and C. W. de Silva, "Mechatronic Design Evolution Using Bond Graphs and 

Hybrid Genetic Algorithm With Genetic Programming," IEEE/ASME Transactions on 

Mechatronics, vol. 18, no. 1, pp. 190-199, 2013, doi: 10.1109/tmech.2011.2165958. 

[46] L. Xiong, R. Molfino, and M. Zoppi, "Fixture layout optimization for flexible aerospace 

parts based on self-reconfigurable swarm intelligent fixture system," The International 

Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1305-1313, 2013. 

[47] L. Deng, G. Wang, and S. Yu, "Layout Design of Human-Machine Interaction Interface of 

Cabin Based on Cognitive Ergonomics and GA-ACA," Comput Intell Neurosci, vol. 2016, 

p. 1032139, 2016, doi: 10.1155/2016/1032139. 

[48] M. M. Andreasen, "Machine design methods based on a systematic approach–Contribution 

to a design theory," Diss. Lund Institute of Technology, 1980. 

[49]  M. M. Andreasen and T. C. McAloone, "" Joining three heads"-experiences from 

mechatronic projects," in DFX 2001: Proceedings of the 12th Symposium on Design for X, 

Neukirchen/Erlangen, Germany, 11.-12.10. 2001, 2001.  

[50] M. Danilovic and T. R. Browning, "Managing complex product development projects with 

design structure matrices and domain mapping matrices," International journal of project 

management, vol. 25, no. 3, pp. 300-314, 2007. 

[51] U. Lindemann, M. Maurer, and T. Braun, Structural complexity management: an approach 

for the field of product design. Springer Science & Business Media, 2008. 

[52] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl, "Specification technique for the 

description of self-optimizing mechatronic systems," Research in Engineering Design, 

journal article vol. 20, no. 4, p. 201, February 05 2009, doi: 10.1007/s00163-008-0058-x. 

[53] D. Tang, G. Zhang, and S. Dai, "Design as integration of axiomatic design and design 

structure matrix," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 3, pp. 

610-619, 2009. 

file:///C:/Users/lawka/Dropbox/DOC/These/www.scientific.net/AMR.216.171


122 

 

[54] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE 

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997. 

[55] W. Huang, Y. Zhang, and L. Li, "Survey on Multi-Objective Evolutionary Algorithms," 

Journal of Physics: Conference Series, vol. 1288, p. 012057, 2019/08 2019, doi: 

10.1088/1742-6596/1288/1/012057. 

[56] K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using 

Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With 

Box Constraints," IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-

601, 2014, doi: 10.1109/TEVC.2013.2281535. 

[57] X. Ma et al., "A Survey on Cooperative Co-Evolutionary Algorithms," IEEE Transactions 

on Evolutionary Computation, vol. 23, no. 3, pp. 421-441, 2019, doi: 

10.1109/TEVC.2018.2868770. 

[58] H. Wang, M. Olhofer, and Y. Jin, "A mini-review on preference modeling and articulation 

in multi-objective optimization: current status and challenges," Complex & Intelligent 

Systems, vol. 3, no. 4, pp. 233-245, 2017/12/01 2017, doi: 10.1007/s40747-017-0053-9. 

[59]  G. Yu, Y. Jin, and M. Olhofer, "References or Preferences – Rethinking Many-objective 

Evolutionary Optimization," in 2019 IEEE Congress on Evolutionary Computation (CEC), 

10-13 June 2019 2019, pp. 2410-2417, doi: 10.1109/CEC.2019.8790106.  

[60]  L. S. Batista, F. Campelo, F. G. Guimarães, and J. A. Ramírez, "A comparison of 

dominance criteria in many-objective optimization problems," in 2011 IEEE Congress of 

Evolutionary Computation (CEC), 5-8 June 2011 2011, pp. 2359-2366, doi: 

10.1109/CEC.2011.5949909.  

[61] C. M. Trouillefou et al., "An autonomous plant growing miniaturized incubator for a 

Cubesat," Acta Astronautica, vol. 179, pp. 439-449, 2021/02/01/ 2021, doi: 

https://doi.org/10.1016/j.actaastro.2020.11.009. 

 

https://doi.org/10.1016/j.actaastro.2020.11.009

