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RÉSUMÉ 

L'objectif principal de la thèse de doctorat actuelle est d'améliorer la cohérence et la précision de 

deux des méthodes de particules lagrangiennes sans maillage les plus largement utilisées, à savoir 

les modèles d'hydrodynamique des particules lissées (SPH) et les modèles semi-implicites de 

particules mobiles (MPS) pour simuler un large éventail de les écoulements multiphasiques et les 

problèmes de convection-diffusion impliquant un transfert de chaleur et de masse. À cette fin, 

quatre différents opérateurs gradient d'ordre élevé et laplaciens sont d'abord dérivés de 

l'expansion de la série de Taylor dans les contextes SPH et MPS et sont ensuite utilisés pour la 

discrétisation des termes de diffusion, l'équation de pression de Poisson (PPE) et la divergence de 

vitesse dans régir les équations. Afin de conserver la précision globale de la solution, un nouvel 

algorithme hybride de correction de prédicteur de pression est d'abord développé sur la base de la 

combinaison du schéma explicite TVD Runge-Kutta du troisième ordre et du modèle de 

projection en deux étapes, puis est utilisé pour le traitement. des termes transitoires dans les 

équations de Navier-stokes et de l'énergie et également la gestion du couplage pression-vitesse 

entre les équations de masse et de quantité de mouvement. Pour améliorer la stabilité des 

modèles, un nouveau schéma de régularisation des particules appelé Particle Shifting Technique 

(PST) est introduit dans le contexte du modèle MPS et est ensuite appliqué pour contourner le 

défaut associé au regroupement / regroupement de particules dans le cadre lagrangien. Cette 

technique est ensuite améliorée en incorporant le concept de collision de particules et la méthode 

des éléments discrets (DEM) pour traiter les écoulements violents à surface libre avec une grande 

déformation et une rupture d'interface et une coalescence. Pour améliorer encore la précision des 

modèles, quatre nouvelles fonctions de noyau sont construites par la combinaison des fonctions 

gaussiennes, polynomiales et cosinus pour les méthodologies SPH et MPS afin de créer la 

connectivité spatiale entre les particules en mouvement libre. En outre, une nouvelle technique de 

détection de surface libre est proposée basée sur la première et la deuxième dérivée de la fonction 

du noyau pour une imposition précise de la condition aux limites de pression de Dirichlet au 

niveau de la surface libre. La précision et la cohérence des modifications proposées sont vérifiées 

par rapport à une série de cas de référence difficiles, notamment: rupture de barrage avec et sans 

obstacle, rotation d'une plaque carrée de fluide, problèmes d'instabilité de Rayleigh-Taylor 

biphasés et triphasés (RTI), goutte circulaire concentrique oscillante, problème de tube de choc 
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de gazon 1D, analyse d'énergie et d'exergie du transfert de chaleur par convection naturelle dans 

la cavité chauffée différemment (DHC) et convection de Rayleigh-Bénard, transfert de chaleur 

par convection naturelle dans une cavité carrée avec obstacle chaud à l'intérieur, enceinte en 

forme de C, Boîtier en forme de L et boîtier carré contenant une paire de tuyaux horizontaux 

chauds et froids (échangeur de chaleur). Les résultats obtenus sont en excellent accord avec les 

données numériques et expérimentales disponibles sans maillage / basées sur un maillage. 
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ABSTRACT 

The main objective of the current Ph.D. thesis is to enhance consistency and accuracy of two of 

the most widely used mesh-free Lagrangian particle methods namely Smoothed Particle 

Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) models for simulating a wide 

range of multiphase flows and convection-diffusion problems involving heat and mass transfer. 

To this end, four different high-order gradient and Laplacian operators are first derived from the 

Taylor series expansion in both SPH and MPS contexts and are then employed for the 

discretization of diffusion terms, Pressure Poisson's equation (PPE), and divergence of velocity in 

governing equations. In order to retain the overall accuracy of the solution, a novel hybrid 

predictor-correction solution algorithm is first developed based on the combination of the explicit 

Third-order TVD Runge-Kutta scheme and two-step projection model and then is employed for 

the treatment of the transient terms in the Navier-stokes and energy equations and also handling 

the pressure-velocity coupling between the mass and momentum equations. To enhance the 

stability of the models, a novel particle regularization scheme so-called Particle Shifting 

Technique (PST) is introduced in the context of the MPS model and is then applied to circumvent 

the shortcoming associated with particle clustering/bunching in the Lagrangian framework. This 

technique is then further improved by incorporating the concept of the particle collision and 

Discrete Element Method (DEM) to deal with violent free-surface flows with large deformation 

and interface rupture and coalescence. To further enhance the accuracy of the models, four new 

Kernel functions are constructed by the combination of the Gaussian, polynomial, and cosine 

functions for both SPH and MPS methodologies and then are employed to create the spatial 

connectivity between freely moving particles. In addition, a novel free-surface detection 

technique is proposed based on the first and second derivatives of kernel function for the accurate 

imposition of Dirichlet pressure boundary condition at the free surface area. The accuracy and 

consistency of the proposed modifications are verified against a series of challenging benchmark 

cases including dam break with and without obstacle, rotation of a square patch of fluid, two-

phase and three-phase Rayleigh-Taylor instability problems (RTI), oscillating concentric circular 

drop, 1D Sod shock tube problem, energy, and exergy analysis of natural convection heat transfer 

in Differentially Heated Cavity (DHC) and Rayleigh-Bénard convection, natural convection heat 

transfer in a square cavity with hot obstacle inside, C-shaped enclosure, L-shaped enclosure and a 
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square enclosure containing a pair of hot and cold horizontal pipes (heat exchanger). The 

obtained results are found to be in excellent agreement with available mesh-free/mesh-based 

numerical and experimental data. 
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 INTRODUCTION Chapter 1

The study of multiphase flows with moving and deformable interfaces has received increasing 

attention because it is ubiquitous in our daily life and many industrial/engineering applications 

such as the bubble column reactors (Masterov, Baltussen, & Kuipers, 2020), petroleum 

engineering, solidification process of metals (Dou, Luo, Qi, Lian, & Hou, 2021), microfluidic 

devices (Chaves, Duarte, Coltro, & Santos, 2020), internal combustion engines (Xue et al., 2015), 

fluidized bed reactors (Liu et al., 2020) and cavitation in hydraulic power systems (Piscaglia, 

Giussani, Hèlie, Lamarque, & Aithal, 2021). However, due to limited understanding on the 

physics of gas-liquid two-phase flow there is an urgent need for more research in this area. In 

general, experimental, analytical, and numerical methods are three common approaches for the 

study of gas-liquid flow. The foundations of gas-liquid flow research can be found in many 

experimental and analytical studies (Tryggvason, Scardovelli, & Zaleski, 2011). However, it is 

not difficult to deduce that, the experimental methods are limited, due to the issues with the cost 

effectiveness, instrumental restrictions and uncontrolled environment. More importantly, in the 

case of experimental study, the laboratory model typically has a very different scale than the 

prototype, such that the results may not be generalizable to the larger scales (Ishii & Hibiki, 

2010). In addition to that, the design and construction of one-off laboratory prototypes are 

expensive, time-consuming, and require sophisticated sensors and instruments to measure and 

monitor physical quantities (i.e. temperature, velocity, pressure, etc). On the other hand, the 

theoretical study is only restricted to extremely simple conditions and cannot be extended to 

many real-life applications with complex geometries and boundary conditions. Thanks to the 

rapid evolution of computer power, the application of CFD as the flexible and relatively 

inexpensive tool for study of multiphase flows has become more widespread and important. Over 

the past decade, extensive effort has been devoted towards the development of advanced 

numerical scheme to investigate the morphology and hydrodynamic behaviour of multiphase 

flow problems. 

In general, the numerical modelling of multiphase flows can be accomplished through two 

primary frameworks, namely Eulerian and Lagrangian descriptions (Rebouillat & Liksonov, 

2010). A comprehensive literature survey conducted by Yan et al. (Yan & Che, 2010) and Gibou 

et al. (Gibou, Fedkiw, & Osher, 2018) reveals that Volume-of-Fluid (VOF) (Hirt & Nichols, 
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1981) and Level-Set (LS) (Sussman, Smereka, & Osher, 1994) are two most commonly used 

interface-tracking/capturing models in Eulerian framework which have been widely used for the 

description and analysis of free-surface flows, particularly those involving large deformation, 

fragmentation and breaking. Although, the aforesaid methods have all been implemented in 

various multiphase problems, the results of the Ha et al. (Ha & Cleary, 2000) and Wu et al. (Wu 

et al., 2017) illustrate that the Eulerian mesh-based approaches have some innate drawbacks in 

determining the exact location of the flow front in multiphase phenomena. To overcome the 

aforementioned methodological problems and avoid difficulties in interface tracking, many 

scholars have adopted a newer generation of numerical technique so-called Mesh-free Lagrangian 

Particle method (i.e. SPH and MPS) (Khayyer, Gotoh, Falahaty, & Shimizu, 2018; Samulyak, 

Wang, & Chen, 2018), where particles in Lagrangian framework take the role of the grids in 

Eulerian one. Absence of the convection term in governing equations and free from constraints of 

the grids generation, make the SPH and MPS more efficient and robust models in dealing with 

the multiphase flows and fluid-structure interaction problems (FSI). 

Historically, the Smoothed Particle Hydrodynamics (SPH) as a pure Lagrangian approach was 

introduced by Lucy (Lucy, 1977) and Gingold et al. (Gingold & Monaghan, 1977) to describe the 

evolution of planet-disk systems and became very popular in modelling of free-surface flows and 

thermal-hydraulics problems owing to its flexibility in adapting to complex geometries with 

curved boundary conditions (Hosain, Domínguez, Fdhila, & Kyprianidis, 2019). In the same 

context, the Moving Particle Semi-implicit (MPS) method was originally developed by 

Koshizuka et al. (Koshizuka & Oka, 1996) to simulate incompressible fluid flow. At the present, 

the existing SPH and MPS methods can be broadly classified into two sub-groups namely: (a) 

Weakly Compressible (WCSPH & WCMPS) and (b) truly Incompressible (ISPH & IMPS) 

models which have their own advantages and disadvantages (Daly, Grimaldi, & Bui, 2016b; 

Shakibaeinia & Jin, 2012; Tanaka, Cardoso, & Bahai, 2018a). A summary of the aforementioned 

particle methods with associated governing equations/operators is listed in tables 1-1 to 1-4. It is 

evident that, in the former approach, an algebraic thermodynamic pressure equation (Equation-

Of-State) is used to determine the pressure field within the computational domain whereas in the 

second method the pressure term in the Navier-Stokes equation is computed implicitly by 

enforcing a divergence-free velocity field. Although computer programming of WCSPH and 
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WCMPS is conceptually straightforward, these models are characterized by spurious pressure 

oscillations, which can yield numerical instability. Another drawback associated with these 

models is that, they require a very small time step to meet the stability criterion for relaxing the 

solution towards the incompressible limit in low Mach number flows. On the other hand, 

although fully incompressible SPH and MPS benefit from smoother pressure field and high level 

of accuracy in terms of spatial discretization, they require the solution of a Pressure Poisson 

Equation (PPE) which are more complex to implement compared to the standard WCSPH and 

WCMPS models.  

 

Table  1.1 The governing operators used in the classical WCSPH (X. Xu & Deng, 2016). 
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During the past decade, many researchers have been motivated to employ some positive features 

of SPH and MPS models in solving a wide range of engineering and scientific problems 

(Shadloo, Oger, & Le Touzé, 2016; Z.-B. Wang et al., 2016). Modeling of capillary rise 

dynamics and bubble rising (Deng, Liu, Wang, Ge, & Li, 2013; X. Xu & Yu, 2019), simulation 

of tsunamis water waves generated by landslides and 3D dam-break flows with breaking waves 

(Tan & Chen, 2017; Zhang, Hu, & Adams, 2017), nuclear reactor design and dynamic analysis of 

landslide dam (Hosseini, Omidvar, Kheirkhahan, & Farzin, 2019; Kurowski & Spliethoff, 2016; 
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W. Wang, Chen, Zhang, Zheng, & Zhang, 2017; W. Wang et al., 2019), analysis of liquid droplet 

and liquid jet atomization (Li, Liu, Duan, Chong, & Yan, 2016; Lind, Stansby, & Rogers, 2016) 

are just a few examples of such studies in which particle methods such as SPH and MPS were 

adopted to solve complex flow and transport problems. However, despite the proven success of 

the SPH and MPS models in handling multi-fluid/multiphase systems with large interfacial 

deformation and discontinuities, these method have some key fundamental disadvantages in 

terms of accuracy and stability which may hinder its further application as a CFD tool for solving 

non-linear multiphase/multifluid flow problems.  

 

Table  1.2 The governing operators used in the classical WCMPS (Shakibaeinia & Jin, 2012). 
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Table  1.3 The governing operators used in the classical ISPH (Chow, Rogers, Lind, & Stansby). 
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Table  1.4 The governing operators used in the classical IMPS (Tanaka, Cardoso, & Bahai, 

2018b). 
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 LITERATURE REVIEW Chapter 2

The use of mesh-free Lagrangian particle methods such as SPH and MPS as promising 

alternative approaches to conventional grid-based systems (e.g. FVM, FEM, etc) for modeling 

multi-fluid/multiphase problems has been a subject of interest in many research studies 

(Hammani, Marrone, Colagrossi, Oger, & Le Touzé, 2020; Li et al., 2020; Zheng, Sun, & Yu, 

n.d.). However, as highlighted before, these schemes face several crucial shortcomings including 

non-physical pressure oscillation (Molteni & Colagrossi, 2009), false detection of interfacial 

particles in multiphase and free-surface flows (Marrone, Colagrossi, Le Touzé, & Graziani, 

2010), tensile instability caused by particle clustering (Sun, Colagrossi, Marrone, Antuono, & 

Zhang, 2019), low-order boundary treatment (Marrone et al., 2011), uncertainty in selecting the 

appropriate kernel function (Martinsson & Rokhlin, 2005), penetration of fluid particles into the 

boundaries walls (Daly, Grimaldi, & Bui, 2016a), low-order space and time discretization 

schemes used for calculating gradient, divergence and Laplacian operators (Oger, Doring, 

Alessandrini, & Ferrant, 2007; Schwaiger, 2008), false diffusion errors and density error 

accumulation (Lee et al., 2008) which can endanger the solution stability and even lead to 

premature termination of the calculations. 

Over the past decade, substantial research efforts have been devoted to improve the precision and 

consistency of the SPH and MPS models. To address the problem of tensile instability and 

numerical inconsistency caused by particle clustering, Xu et al. (R. Xu, Stansby, & Laurence, 

2009) suggested the use of particle rearranging technique where fluid particles are forced to 

travel from their streamlines to the region with low particle concentration, resulting in a notable 

improvement in the uniformity of particle arrangement. This technique was further extended and 

optimized by Lind et al. (Lind, Xu, Stansby, & Rogers, 2012) and Khayyer et al. (Khayyer, 

Gotoh, & Shimizu, 2017) for the simulation of water wave propagation. They numerically 

showed that, the implementation of PST can considerably enhance the homogeneity of particles 

dispersion and suppress the onset of tensile instability, accordingly. Another factor that causes 

tensile instability comes from the Lagrangian formulations of the SPH and MPS. Generally, the 

governing operators in the class of both SPH and MPS are derived by the hypothesis that 

particles are uniformly distributed across the whole computational domain whereas this 

assumption is not always valid for violent free surface flows where particle bunching is likely to 
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occur. To maintain regularity of particle distributions and improve the order of accuracy of 

gradient operator, Oger et al. (Oger et al., 2007) proposed a new renormalization technique based 

on the Taylor series expansion and concluded that renormalization of density and gradient 

operator can significantly enhance the consistency of the SPH model. To further suppress 

spurious void formation and pressure fluctuation, Schwaiger (Schwaiger, 2008) extended Oger's 

model (Oger et al., 2007) and developed higher-order Laplacian operator in the context of the 

SPH formulation. For elimination of non-physical pressure fluctuations, Sun et al. (Sun, 

Colagrossi, Marrone, Antuono, & Zhang, 2018) proposed a novel switching technique so-called 

Tensile Instability Control (TIC) that was achieved by altering Navier-Stokes equations into the 

non-conservative form. More precisely, in this technique, non-conservative form of the pressure 

gradient is utilized in the specific area with truncated kernel support (free-surface area) whereas 

the conservative one is applied on the interior particles. Antuono et al. (Antuono, Colagrossi, 

Marrone, & Molteni, 2010) invented an effective remedy to suppress the density error 

accumulation associated with the Weakly Compressible version of the SPH. They proposed a 

novel system of equations by inserting the additional diffusive term into the mass equation. Their 

results showed that, this extra term can significantly decrease the pressure oscillations in both 

time and spatial domain and named it as a Delta-SPH model (𝛿-SPH). Similar findings were also 

documented by Jandaghian and Shakibaeinia (Jandaghian & Shakibaeinia, 2020) who proposed 

the Delta version of the WCMPS model (𝛿-WCMPS) by inserting an artificial diffusive term into 

the continuity equation to eliminate the spurious high-frequency pressure fluctuations from the 

fluid domain. As stated before, another major source of instability can be traced back to the 

uncertainty in selecting the appropriate kernel function. Hongbin et al. (Hongbin & Xin, 2005) 

numerically proved that, the type of the kernel or weighting function as a heart of the Lagrangian 

particle method has a significant impact on the stability of the numerical solutions. They 

conducted a comparative study on ten different types of the kernel function and concluded that 

Gaussian and Q-spline can potentially generate more precise results for a benchmark one-

dimensional shock tube problem as compared with the cubic-spline kernel function. Similar 

observation was also reported by Yang et al. (X. F. Yang, Peng, & Liu, 2014; X. Yang, Liu, & 

Peng, 2014) who constructed two different weighting functions and highlighted that, the 

smoothness and coherence of the first and second derivatives of kernel function have remarkable 
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impacts on the stability and consistency of the numerical simulations. Accurate detection of free-

surface area for the imposition of Dirichlet boundary condition for the Pressure Poisson Equation 

(zero pressure) is another major challenge faced by the particle methods. To overcome this 

shortcoming and identify the position of the free-surface area, Marrone et al. (Marrone et al., 

2010) proposed a novel scanning algorithm. In this technique, the specific scanning algorithm is 

employed to scan the local region around each target particle. If any gap is detected, the 

candidate particle will be labeled as a surface particle. However, the results of Haque et al. 

(Haque & Dilts, 2007) showed that the utilization of this technique for 3D free-surface problems 

or long-term simulations is computationally expensive. 

In light of the above literature review, the main objectives of the present PhD thesis are to 

develop a robust and reliable high performance SPH and MPS models for the simulation of the 

multiphase and free-surface flows with low and high-density contrasts through addressing the 

aforementioned shortcomings associated with mesh-free Lagrangian particle methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

 PROBLEM STATEMENT, OBJECTIVE, METHODOLOGY, Chapter 3

STRUCTURE OF THE RESEARCH PROJECT 

3.1 Problem statement 

As highlighted before, multi-fluid/multiphase flows with severe interface deformation are found 

in a large number of industrial applications and CFD as a reliable, cost-effective, and powerful 

alternative or complement tool to experimental measurements have been widely applied to 

interpret the complex physics behind such phenomena. Generally, the morphology and 

hydrodynamic behaviours of the multi-fluid/multiphase flows can be examined using a method 

developed either in Eulerian or Lagrangian framework. However, despite the proven success of 

the Eulerian methods (i.e. VOF and Level-set) in dealing with free-surface flow with large 

interface deformation and discontinuities, these models are characterized by violation of local 

mass conservation and interface smearing which can immensely jeopardise the accuracy and 

reliability of the models. On the other hand, although the SPH and MPS models as truly 

Lagrangian methods have been shown to have the best overall performance over the traditional 

mesh-based methods in handling multiphase flows with sharp interface deformation and 

topological change, they have some major drawbacks in terms of numerical instability (i.e. the 

particles clustering and non-physical pressure oscillation) which can directly degrade the order of 

accuracy of the numerical scheme and often lead to premature termination of calculations. Based 

on the above explanation, the main aims of the current work are to introduce some possible 

solutions to improve the accuracy and consistency of existing SPH and MPS models. 

3.2 Research objectives 

The global objective of the proposed research is to develop a robust and high-performance mesh-

free Lagrangian (particle) numerical method, based on the MPS and SPH formulations, for the 

simulation of multi-fluid/multiphase fluid flows with heat and mass transfer. In light of the above 

literature survey, the main objectives of the present research work may be summarized as 

follows: 

1. Presenting a novel high-order kernel function to enhance the stability and accuracy of the 

particle methods, 
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2. Presenting a robust and accurate free-surface detection technique for the treatment of the 

free-surface flows and the enforcement of the Dirichlet boundary condition for the 

Pressure Poisson Equation (zero pressure), 

3. Presenting a novel particle regularization technique to address the problems of particle 

clustering and tensile instability, 

4. Implementing a mirror velocity technique to address the problems of particle penetration, 

5. Presenting three novel high-order Laplacian, gradient and divergence operators in the 

context of the SPH and MPS for the elimination of unphysical pressure oscillation and 

void formation (tensile instability), 

6. Evaluation of the validity and versatility of the proposed modifications in handling multi-

fluid/multiphase problems through the simulations of several challenging benchmark test 

cases including dam break with and without obstacle, rotation of a square patch of fluid, 

two-phase and three-phase Rayleigh-Taylor instability problems (RTI), oscillating 

concentric circular drop, 1D Sod shock tube problem, energy, and exergy analysis of 

natural convection heat transfer in Differentially Heated Cavity (DHC) and Rayleigh-

Bénard convection. 

3.3 Methodology 

In order to achieve the aforementioned goals, the methodology of the present research is divided 

into 8 steps as follows:  

1. Implementing the explicit Third-order TVD Runge-Kutta scheme for discretization of 

transient terms in the governing equations, 

2. Implementing a mirror velocity technique for the treatment of the rigid walls to prevent 

particle penetrations, 

3. Developing a novel high-order gradient operator based on the Taylor series expansion for 

the discretization of pressure gradient and divergence of velocity for both SPH and MPS 

methods, 

4. Developing a novel high-order Laplacian operator based on the Taylor series expansion 

for the discretization of Pressure Poisson Equation (PPE), 
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5. Developing a novel high-order Particle Shifting Technique (PST) based on the Taylor 

series expansion to supress the problem of tensile instability and particle clustering,  

6. Improving the performance of the existing PST by incorporating the particle-collision 

technique into the method (i,e. Discrete Element Method) for the treatment of the free-

surface area, 

7. Developing a novel high-order smoothing operator based on the Taylor series expansion 

for the imposition of Neumann boundary conditions in both SPH and MPS frameworks, 

8. Developing a robust and accurate free-surface detection technique based on the first and 

second derivatives of kernel function for the determination of the exact position of the 

interface, 

3.4 Structure of the research project 

As heighlited earlier, (1) unphysical pressure fluctuations, (2) tensile instability caused by 

particle clustering, (3) uncertainty in the selection of appropriate kernel function, (4) non-

conservative form of pressure gradient operator, (5) false detection of interfacial particles in free-

surface flows, (6) Low-order boundary treatment, (7) penetration of fluid particles into the 

boundaries walls and (8) low-order space and time discretization schemes used for calculating 

gradient, divergence and Laplacian operators are some crucial drawbacks associated with SPH 

and MPS models which can adversely influence the accuracy of the numerical solutions or even 

lead to the unwanted termination of the calculations. The aforementioned shortcomings have 

been systematically addressed within four scientific research articles. Based on the above 

explanation, the current PhD thesis is organized as follows:  

In article 1, the Kernel Derivative-Free (KDF) version of the conventional Incompressible 

Smoothed Particle Hydrodynamics (ISPH) model is introduced for the simulation of the free-

surface flows where no kernel gradient is required for the interpolation and particle 

approximation. To resolve the second shortcoming (tensile instability) and enhance the 

robustness of KDF-ISPH model, a novel Particle Shifting Technique (PST) is developed and then 

combined with the OPS scheme for the treatment of the free-surface area. To augment the order 

of the accuracy of the proposed model, a novel high-order Laplacian operator is derived based on 

the Taylor series expansion and is then utilized for the discretization of the Pressure Poisson 
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Equation (PPE) and diffusion terms in the governing equations. Moreover, a novel high-order 

kernel function is constructed through the combination of the cosine and signal functions and is 

then applied for the simulation of 1D Sod shock tube problem. The newly developed KDF-ISPH 

model is validated and evaluated against a series of challenging benchmark cases including dam 

break, stretching water drop, rotating square patch of fluid, and natural convection in square 

cavity. The results obtained from this article can give a deep insight into the process of the 

extracting of the governing operators in the context of the ISPH model and provide a necessary 

foundation and a numerical framework for the further development of the Lagrangian particle 

methods. 

In article 2, the Kernel Derivative-Free (KDF) version of the conventional Weakly Compressible 

Smoothed Particle Hydrodynamics (WCSPH) model is introduced for the simulation of the free-

surface flows and convection heat transfer problems where an explicit equation of state is 

employed for the calculation of the pressure field. However, as stated before, unlike the KDF-

ISPH model, the traditional WCSPH method is characterized by spurious pressure fluctuation 

and density error accumulation which can immensely jeoparadise the accuracy and relaiability of 

the numerical solutions. In order to attenuate the unphysical pressure oscilation, a new additional 

diffusive term is derived and added into the continuity equation. A high-order Laplacian operator 

is also developed and then applied for the approximation of the diffusion terms (e.g., viscous 

term, thermal diffusion, and newly additional diffusion term in the continuity equation). 

Furthermore, a new high-order smoothing operator in the context of the MPS description 

(Moving Particle Semi-implicit) is also proposed and then applied for the treatment of the 

buoyancy force term in the natural convection heat transfer problems and also for the calculation 

of the pressure and temperature on the rigid walls. To further enhance the accuracy and stability 

of the model, a novel high-order kernel function is constructed and tested via simulation of the 

1D Sod shock tube problem. A series of canonical test cases such as: dam break, stretching of a 

circular water drop, rotating square patch of fluid and natural convection heat transfer in a square 

enclosure are used to verify and assess the feasibility of the proposed modifications. The results 

obtained from this article can shed further light on the numerical performance and approximation 

properties of the Weakly Compressible version of the SPH.  

In article 3, an improved version of the classical ISPH model is introduced where the Pressure 

Poisson Equation (PPE) is used for the prediction of the pressure field. To accomplish this, two 
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novel high-order gradient and Laplacian operators are derived based on the Taylor series 

expansion and are then implemented for the discretization of the Pressure Poisson Equation 

(PPE), gradient of pressure and the divergence of velocity in the governing equations. To 

enhance the regularity of the particles arrangment and circumvent the problem of tensile 

instability (particle clastering), the classical PST is combined by the Discrete Element Method 

(DEM) which results in more uniform particles distribution and stable numerical solution. 

Moreover, a roboust and efficient free-surface detection technique is developed for the accurate 

imposition of Dirichlet boundary condition (zero pressure) on the free surface area. To overcome 

the problem of density/viscousity discontinuity in the multiphase/multi-fluid flows, a novel high-

order smoothing operator is also proposed based on the Taylor series expansion. The concept of 

mirror velocity technique is also incorporated into the method for the treatment of the rigid walls 

and the enforcement of the non-slip boundary condition. The results of this investigation can 

provide a deep insight into the ISPH model where derivatives of the kernel function are employed 

for the interpolation and particle approximation. 

In article 4, an enhanced version of the classical MPS model is introduced for the modelling of 

multiphase/multi-fluid flows with high-density contrast. To this end, a set of high-order gradient 

and Laplacian operators are derived in the context of the MPS description and are then applied to 

the discretization of Navier-stokes and energy equations. Moreover, the combination of the 

explicit Third-order TVD Runge-Kutta scheme and two-step projection algorithm is employed 

for the discretization of the transient terms. A new high-order smoothing operator is also 

developed to circumvent the difficulties associated with physical discontinuities across the 

material interface. To solve the problem of uncertainty in the selection of appropriate kernel 

function, a new kernel function is constructed by merging the Gaussian and cosine functions and 

is succssesfully tested for the simulation of 1D Sod shock tube problem. The results of this study 

can provide a deep insight into the Lagrangian nature of the MPS model and its performance in 

handeling multiphase flow problems with high-density ratio.  



14 

 

3.5 Structure of the research project 
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3.6 Novelties and modifications associated with each research article 

 

 

 

 

 

 

• New kernel function 

• New Laplacian operator 

• Modified the existing gradient operator 

• New Particle Shifting Technique (PST) 

• Implementing Mirror Velocity Technique 

• Implementing MLS technique 

Article 1                       
(KDF-ISPH model) 

• New kernel function 

• New Laplacian operator 

• New smoothing operator 

• Modified the existing gradient operator 

• New additional diffusive term  

• Implementing Mirror Velocity Technique 

Article 2                      
(KDF-WCSPH model) 

• New kernel function 

• New gradient operator 

• New Laplacian operator 

• New hybrid PST+DEM 

• New free-surface detection technique 

• Implementing Mirror Velocity Technique 

Article 3               
(Improved ISPH model) 

• New kernel function 

• New gradient operator 

• New Laplacian operator 

• New smoothing operator 

• Implementing Mirror Velocity Technique 

• Implementing third-order TVD Runge-Kutta scheme  

Article 4                
(Improved MPS model) 
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    ARTICLE 1: NUMERICAL SIMULATION OF ENTROPY Chapter 4
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Abstract 

This paper develops and applies a Kernel Derivative-Free (KDF) Incompressible Smoothed 

Particle Hydrodynamics (ISPH) model for analysis of entropy generation and heat transfer in 

fluid-structure coupling problems. A modified high order Laplacian operator is applied for the 

treatment of pressure-velocity coupling (Poisson's equation), while an explicit third-order TVD 

Runge-Kutta scheme is used for time integration of the momentum, energy and displacement 

equations. To improve the consistency and stability of the model, a new particle regularization 

technique based on the particle shifting is also introduced for simulating free-surface flows. The 

developed KDF-ISPH model is validated and evaluated for a series of challenging benchmark 

cases, including, dam break, stretching water drop, rotating square patch of fluid, and natural 

convection in square cavity. Accuracy and applicability of the method are further validated by 

analyzing entropy generation due to the natural convection heat transfer in three well-known 

geometries including: square cavity with hot obstacle inside, C-shaped enclosure, and square 

enclosure containing a pair of hot and cold horizontal pipes (heat exchanger). The results are 

found to be in good agreement with available numerical and experimental data. The accuracy of 

the developed KDF-ISPH with new Laplacian operator, for use in prediction of fluid flow and 

heat transfer characteristics is also proven. Finally, by combining the cosine and signal functions, 

a new high order smoothing kernel is constructed. The evaluation of this new kernel for the 
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propagation of shock wave in 1D tube demonstrates better global stability and consistency 

properties compared to two frequently used SPH kernels (i.e. cubic and quintic spline functions). 

Keywords: KDF-ISPH, New Kernel Function, Particle Shifting Technique, Third-order TVD 

RK3, Convection Heat Transfer, Higher order Laplacian model  

4.1 Introduction 

Analysis of entropy generation and exergy efficiency due to natural convection phenomenon in 

closed enclosures (e.g., square or circular cavities) has received a great deal of research attention 

owing to its presence in the design of many heat transfer devices such as solar thermal receivers, 

cooling systems for electronic device, room ventilation, nuclear reactor design, and heat 

exchangers [1,2]. The natural convection in a semi-annulus enclosure containing several hot or 

cold obstacles is one of the fundamental and classical problems, which have been addressed by 

many researchers due to its application in heat exchangers [3–7]. Izadi et al. [8,9], Mohebbi 

[10,11] and Aghakhani et al. [12] investigated natural convection heat transfer in different 

geometries (L-shaped and C-shaped enclosures) and concluded that aspect ratio of the enclosure 

and Rayleigh number have a significant impact on the onset of the Rayleigh-Bénard convection 

and heat transfer rate within the enclosure. Similar observations were also reported by Li et al. 

[13], Biswal et al. [14,15] and Hassani et al. [16] who investigated the effects of the Rayleigh 

number and inclination angle of the enclosure on the entropy generation and pattern formation of 

the Rayleigh-Bénard convection using the Lattice Boltzmann model (LBM) and Galerkin 

weighted residual finite element method (GFEM). In the same context, Dutta et al. [17], Alnaqi et 

al. [18], Kefayati et al. [19], and Alkanhal et al. [20] implemented CVFDM, LBM and CVFEM 

methods to discretize the governing physical equations for modeling entropy generation rate 

during the natural convection heat transfer in the presence of transverse magnetic field. They 

showed that the MHD parameter reduces the flow intensity and causes average Nusselt number 

and overall entropy generation rate to attenuate accordingly. The problem of buoyancy-driven 

fluid flow with its corresponding exergy efficiency analysis inside closed enclosures has been 

investigated by several scholars utilizing various conventional CFD mesh-based approaches [21–

28]. As remarked by Zainali et al. [29] most of the established CFD analysis tools rely heavily on 

an underlying lattice structures (mesh-based models) which may be fixed, or may be allowed to 

alter with rigid boundaries. This in turn may require specialized discretization techniques and 
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enhance computational cost. Recently, in a series of pioneering works, Hopp-Hirschler et al. [30], 

Aly et al. [31], Ng et al. [32], Yang et al. [33] and Zhang et al. [34] adopted Smoothed Particle 

Hydrodynamics (SPH) method to investigate natural convection heat transfer in complex 

geometries with curved boundaries. They stated that, SPH inherently can be considered as a 

robust alternative model in handling complex fluid-solid interaction (FSI) problems. 

Historically, Smoothed Particle Hydrodynamics (SPH) was first proposed by Lucy [35] and 

Gingold et al. [36] as a fully Lagrangian particle technique to describe the evolution of planet-

disk systems. During the past years, many researchers have been motivated to employ some 

positive features of SPH method in solving a wide range of engineering and scientific problems. 

Simulation of gas-solid fluidization and free surface flows during the injection molding [37,38], 

analysis of nuclear reactor safety and fuel drop impact on heated surfaces [39,40], liquid sloshing 

in a rectangular tank and bubble rising in a viscoelastic fluid [41–45], simulation of Rayleigh-

Taylor Instability and fluid flow over the airfoil and square cylinder [46–49], analysis of free 

surface thermal flow and modeling of industrial processes involving heat transfer [50,51], 

simulation of tsunamis water waves generated by landslides and 3D dam-break flows with 

breaking waves [52,53], simulations of sediment transport and 2D dam break [54–56] are just a 

few examples of such applications which have been reported in the literature. A comprehensive 

and up-to-date review of recent applications and future prospects of the SPH method can be 

found in works of Wang et al. [57] and Shadloo et al. [58].  

However, although the SPH as a truly mesh-free particle method has been shown to have the best 

overall performance over the traditional fixed grid methods in handling highly nonlinear 

multiphase flows with a free surface but it has some major drawbacks in terms of the numerical 

instability (i.e. the particles clustering and non-physical pressure oscillation) that can directly 

degrade the order of accuracy of the numerical scheme and often lead to premature termination of 

calculations. Until now, various attempts have been made to eliminate the occurrence of tensile 

instability and attenuate spurious fluctuations in pressure time history. Hongbin et al. [59] carried 

out a comparative study between ten different types of the kernel function in simulating one 

dimensional shock tube problem and pointed out that type of the smoothing functions has a 

significant influence on the accuracy and stability of the SPH. Similar results were reported by 

Yang et al. [60,61] who constructed two different kernel functions (cosine and hyperbolic shaped 
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kernel functions) and successfully applied to simulate dam break and viscous liquid drop 

benchmark cases. Aside from the role of kernel function on the numerical stability, another 

potential source of the inconsistency in the SPH is the negative pressure in the vicinity of the 

media interfaces which in turn leads to the formation of particle clusters in those areas. To 

overcome this shortcoming, Sun et al. [62] proposed a new technique called Tensile Instability 

Control (TIC) that was achieved by changing the momentum equation into the non-conservative 

form. Since, their scheme does not entirely respect the Taylor expansion, they suggested that, this 

technique should be only applied to areas with negative pressure values. Another factor that 

causes tensile instability comes from the Lagrangian formulation of the SPH itself. Generally, 

SPH is formulated by the hypothesis that particle distribution is uniform across the whole flow 

domain while this assumption is not always valid for violent free surface flows. To get a more 

uniform particle distribution and enhance the order of accuracy of gradient operator, Oger et al. 

[63,64] proposed a new renormalization procedure based on the Taylor series expansion and 

showed that renormalization of density and pressure gradient can successfully avoid any particle 

bunching and numerical fractures. Similar findings have been reported by Schwaiger [65] who 

established a new high-order Laplace operator in the framework of SPH for the treatment of 

pressure‐Poisson equation. Another numerical scheme that can effectively redundant the 

excessive stretching and clustering of particles is through shifting the particles from higher 

concentration to the lower one. The idea of rearranging particles to prevent tensile instability 

came from Xu et al. [66] as a Particle Shifting Technique (PST) to solve the problem of 

heterogeneity in particle distributions. The PST was then extended and modified by Skillen et al. 

[67] and Sun et al. [68] based upon Fick’s law of diffusion and Taylor expansion to control the 

total magnitude of particles displacement and its direction. Recently, Khayyer et al. [69] 

optimized particle shifting technique (OPS) and showed that by calculating the surface tangential 

vector and neglecting the movement of particles in the normal direction, PST can be 

straightforwardly applied to entire particles. Since, knowledge about the interface position and its 

nearby particles are also required for solving pressure Poisson equation (PPE) and enforcement of 

the Dirichlet boundary condition along the free-surface regions, during the last decade, many 

researchers have initiated studies on the particle labeling algorithms. Generally, a number of 

effective methods which have been proposed for free-surface detection can be classified into two 

different groups: kernel-based techniques (like PND [70]) and coverage detection methods (like 
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Scan Region Technique [71]). Duan et al. [72] and Zhang et al. [73] adopted the concept of the 

Particle Number Density (PND) proposed by Koshizuka et al. [70] for free-surface detection 

where a threshold value determines whether desired particle belongs to the free surface or not.  

In light of the above literature survey, the objective of the present work is to introduce a new 

high-order Kernel Derivative-Free (KDF) incompressible smoothed particle hydrodynamic 

(ISPH) for analysis of entropy generation due to natural convection heat transfer and multiphase 

flows with free-surface. The spatial derivative approximation technique of proposed model is free 

from derivatives of kernel. In addition to increasing the SPH simplicity, this technique eliminates 

the differentiability condition from the kernel function, providing more freedom for the choice of 

kernel. For this purpose, a new high order smoothing kernel is first constructed and then applied 

for simulation of the propagation of shock wave in 1D tube. In the second step, higher order 

Laplacian operator proposed by Schwaiger [65] is reformulated according to the KDF model and 

then applied for the treatment of pressure-velocity coupling (Poisson's equation). To enhance the 

computational stability and accuracy of the method, a new Particle Shifting technique is also 

introduced for simulation of the violent flows. By conducting simulations of four different 

benchmark cases such as: dam break, stretching water drop, rotating square patch of fluid, and 

natural convection in square cavity, stability and accuracy of the proposed method (KDF-ISPH) 

have been verified. The results are presented in form of the streamlines, isotherms, velocity (u,v) 

field, local Bejan number, total entropy generation, average Nusselt number, related graph and 

chart.  

4.2 Problem statement and governing equations 

A schematic geometry of the eight different problems and their boundary conditions are shown in 

Fig. 4-1. Cases A1 to A5 are employed for validation of the proposed new model, while cases B1 

to B3 are used for analysis of the entropy generation due to natural convection heat transfer. In all 

cases, the fluid flow ( Pr 0.71 or 6.2) is considered as incompressible, Newtonian, two-

dimensional and laminar. The only exception is the case A1, where fluid is compressible and 

subsequently the equation of state is used to estimate the pressure field. For the convection heat 

transfer part of the study, the thermo-physical properties of the fluid are assumed to be constant 

except for the density, which varies in accordance with the Boussinesq approximation. In cases 

A5, B1, B2 and B3, the temperatures 304hT K and 296cT K  are uniformly imposed along 
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the hot and cold surfaces while other parts of the enclosure walls are all thermally insulated. The 

numerical simulations are performed using, an in-house CFD code written in a FORTRAN 

program. 

For laminar and incompressible viscous hydrodynamic problems with convection heat transfer, 

the 2D continuity, momentum, energy and displacement equations in the Lagrangian frame are 

the ones that follow [74]:  
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where u: (u, v) and r: (x, y) are the velocity and position vectors. D is the material (Lagrangian) 

derivative and bF  is the body force, which is the gravitational ( bF g ) in the multi-phase flow or 

buoyancy force ( ( )b cF g T T   ) in natural convection heat transfer according to Boussinesq 

approximation with Tc being the reference fluid temperature. By combining local thermodynamic 

equilibrium and linear transport theory, the rate of local entropy generation for Newtonian flow 

can be expressed as [75]:  
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where TS , FS , k and 0T are thermal dissipation, fluid friction irreversibility caused by velocity 

gradient, thermal conductivity of working fluid and bulk temperature, respectively. Eq. (4-6) can 



23 

 

be converted to the dimensionless form by introducing the following non-dimensional 

parameters: 
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In Eq. (4-8),  is called irreversibility distribution ratio and taken as 10
-4

 similar to work of Ilis et 

al. [76]. The dimensionless total average entropy generation ( totS ) is given by the summation of 

the entropy generation due to heat transfer and fluid friction, which can be calculated through the 

integration of the local entropy generation ( totS ) over the computational domain, as: 

, ,T F tot T FT F
dv dv

S S dv S S dv S S S      
(4-9) 

An alternative parameter to determine the relative importance of the heat transfer irreversibility is 

the Bejan number (Be) defined as [75]: 

T

tot

S
Be

S
  

dv
Be Be   (4-10) 

Since, Bejan number ranges from 0 to 1, the condition of 0.5Be   implies that the irreversibility 

is dominated by fluid friction effects whereas 0.5Be  is the case, in which irreversibilities due to 

the heat transfer dominate the processes. For the particular case of 0.5Be   entropy generation 

due to the viscous effects and the heat transfer are comparable. 
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Figure  4-1 Schematical configuration of the considered problems with coordinate system and 

boundary conditions. 

 

 

4.3 KDF-ISPH formulation and solution methodology 

Here, a Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamic (ISPH) 

model is employed to solve the flow and heat transfer governing equations. Similar to the 

meshfree particle methods [61], [66], [74], the governing equations are discretized using a set of 

free-to-move particles associated with physical properties of the system (e.g. density, viscosity, 

thermal conductivity and so forth). However, to approximate the spatial derivatives, the present 
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method uses the kernel function itself, instead of its derivatives. Appendix (A) explains the 

derivation of the relevant spatial operators (i.e. gradient, divergence, and Laplacian). A summary 

of operators used for approximation of the governing equations is listed in Table 4-1. 

Table  4.1 List of the equations used for calculating gradient, divergence, and Laplacian operators. 

 

The solution method uses a combination of the third-order TVD Runge-kutta time integration 

scheme (TVD RK3) with a two-step projection method (proposed by Chorin [77]) for treatment 

of the velocity-pressure coupling. At first, a temporary particle velocity field without the pressure 

gradient is computed by solving the momentum balance equation as: 

*
2

n
n

B
t




  


u u
u F  (4-11) 

where u and BF are velocity components and body force vector, respectively. By considering the 

Quasi-Compressibility (Eq. (4-B13)), pressure at time level n
1
 (first step of TVD RK3) is then 

evaluated implicitly by solving the pressure Poisson equation as: 

Operator Equation used 

Divergence (for velocity) (
' ',x yu u ) 

Gradient (for temperature) (
' ',x y  ) 

Eq. (4-A4) is applied in the present work whereas Eq. 

(4-A2) can also be used. 

Gradient (for pressure) (
' ',x yp p ) 

Modified form of the Eq. (4-A4) is applied in the 

present work where 1  and 1   are used for 

internal and surface particles, respectively. (see Eq. 

(4-12)) 

Gradient (for concentration used in the 

PST) 

Eqs. (4-A4) and (4-A5) without (
j if f ) is applied in 

the present work. 

Buoyancy force in natural convection (

i ) 
Eq. (4-A3) is applied in the present work whereas Eq. 

(4-A2) can also be used. 

Pressure on the solid walls ( ip ) 

Temperature on the insulated walls ( i ) 

Eq. (4-A2) is applied in the present work whereas Eq. 

(4-A3) can also be used. 

Laplacian  

(for pressure 
2P  and diffusion

2 2,  u  ) 

Eq. (4-A11) is applied in the present work whereas 

Eq. (4-A12) can also be used. 
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** * * ( 1) * ( 1)
2 ( 1) 0

2 *

1
( [ ])

n n
n p p

p
t t x x y y

   




 
     

    
     

u
 (4-12) 

 is constant coefficient (0 or 1) and used for stability analysis of the system (for further details 

refer to appendix B). After obtaining the pressure field and its gradient (
(1)1

p

 ), accelerations 

of the fluid particles ( D Dtu ) can be determined through Eqs. (4-2) and (4-3). To calculate p

across the whole particles (inner and surface particles), Eq. (4-A4) has been generalized 

according to Tensile Instability Control (TIC) suggested by Sun et al. [62] as follows:  
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 (4-13) 

where  is equals to1 for internal (conservative form) and 1  for surface particles (non-

conservative form). m is particle mass, Wij is the kernel function, and i and j refer to the target 

particle and its neighbors, respectively. The Laplacian and divergence operators provided in 

Appendix A (by Eqs. (4-A11) and (4-A4)) are used to solve the PPE equation and calculate 

diffusion ( 2 u ), conduction ( 2T ) and divergence (u ) terms. The temperature in the body 

force ( ( )b cF g T T    ) for convection heat transfer is treated by Shepard approximant (Eq. (4-

A3)). After solving equations (4-2) to (4-4), the velocity vector ( (1)
u ), position vector ( (1)

r ) and 

temperature ( (1) ) of the particles can be updated using the first step of the Runge-Kutta method 

as: 

( )
(1) ( )

(1) ( ) (1)

( )
(1) ( )

n
n

n

n
n

D
t

Dt

t

D
t

Dt


 

  

 

  

u
u u

r r u  (4-14) 

See also appendix C for details of TVD RK3. In the second step the above procedure is repeated 

using updated values of (1)
u , (1)

r and (1) , obtained in the first step (instead of the n
u , n

r and n ) 

to compute (2)
u , (2)

r and (2) . 



27 

 

(1)
(2) ( ) (1)

(2) ( ) (1) (2)

(1)
(2) ( ) (1)

3 1 1

4 4 4

3 1 1

4 4 4

3 1 1

4 4 4

n

n
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t

Dt


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   

   

   

u
u u u

r r r u  (4-15) 

This trend is continued for the third (last) step, where particles are displaced to the new position 

( 1)n
r with updated velocity ( 1)n

u and temperature ( 1)n  as: 

(2)
( 1) ( ) (2)

( 1) ( ) (2) ( 1)

(2)
( 1) ( ) (2)

1 2 2

3 3 3

1 2 2

3 3 3

1 2 2

3 3 3

n n

n n n

n n

D
t
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t

D
t

Dt


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

 



   

   

   

u
u u u

r r r u  (4-16) 

At the end of the process, the mean Nusselt number is determined by integrating the local Nusselt 

number over the hot and cold surfaces as: 
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 (4-17) 

On the active horizontal or vertical walls of the enclosure: 

(4-18) 

0 0

1 1
,

L H

Nu dY Nu dX
L X H Y

  
 

    

On the walls of the obstacle: 

2 2 2 2

1 1 1 1

2 1 2 12( )

L L H H

L L H H
Left Right Bottom Top

dY dY dX dX
X X Y Y

Nu
A L L H H

      
  

   


   

   
 

where A is the non-dimensional effective surface area. At this stage, by having the velocity and 

temperature at the
1 1,n n 

u , entropy generation due to the viscous effects and the heat transfer 

can be computed using Eq. (4-8) and gradient operator presented by Eq. (4-A4). 
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Finally, by considering no slip condition and zero heat flux on the insulated walls, the boundary 

conditions would be adjusted as follows: 

0
n





  

On the insulated walls of the 

enclosure 

(4-19) 

1, 0                On the hot and cold surfaces 

0,U V   On the solid-fluid interfaces 

2

2

solid fluid interface

solid fluid interface

ghost fluid

ghost fluid

U U U

V V V





 

 
 

On the ghost particles (mirror 

velocity) 

 

It should be noted that, in order to prevent the particles penetration and enforce no-slip conditions 

on the solid walls, Fixed Ghost Particles technique (dynamic boundary algorithm) proposed by 

Marrone et al. [78] is used to set up boundary conditions. More precisely, in this method solid-

fluid interfaces are used as a reference point where mirror velocity of the fluid particles close to 

the solid boundary line (in active area) is interpolated on the other side of the rigid boundary. The 

pressure of the boundary particle ( ip ) and temperature ( i ) on the adiabatic walls of the 

enclosure are computed using Eq. (4-12) [79] such that at first, ip  or i  is calculated on the 

solid-fluid interface and then the obtained values are assigned to the corresponding ghost 

particles in the same rows or columns (see Fig. 4-2 and Eq. (4-A2) in appendix A).  
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Figure  4-2Example of the Fixed Ghost Particles, free-surface detection techniques, calculation of 

pressure and temperature on the wall particles. 
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 (4-20) 

Note that above system of the equations can be solved using Gaussian elimination with partial 

pivoting. 
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4.4 New kernel function and Particle Shifting Technique (PST) 

As mentioned before, the accuracy and consistency of the SPH and other mesh-free particle 

methods rely heavily on the type of the kernel function and uniformity of the particles within the 

computational domain. Thus, in this section a new kernel function and Particle shifting technique 

are introduced and discussed in details. 

4.4.1 kernel function 

Here a new smoothing kernel is constructed by combing cosine and signal functions, as: 

3

2

1 2 32 3

cos ( 6)
0 3

25 13

0 3

12.9371393 6.6067745 3.3694114
, , ,

ij D

R
R

W R

R

h h h




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
 

 
 
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 (4-21) 

where  
ijR h r is relative distance between two particles i and j. h denotes a smoothing length 

and D is a constant number (D= 1, 2, 3 is the number of dimensions), which has been calculated 

using Simpson integration rule to satisfy the partition of unity criteria (
1

1
N

ij

j

W dV


 ). The 

efficiency and robustness of the newly proposed kernel function are demonstrated via numerical 

simulation of the shock-wave propagation in 1D tube, where two commonly used cubic (Eq. (4-

22)) and quintic (Eq. (4-23)) spline functions [80] are considered for comparison purpose.   

2 3
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
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 (4-22) 
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Figure  4-3 Comparison of the density, pressure, velocity and energy variations between present 

kernel function and  those obtained by cubic and quintic spline functions in simulation of the 

shock tube at t=0.2s. 
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 (4-23) 

The initial conditions of the shock tube (case A1) are similar to work of Gui-rong [80] i.e.: 

0, 1, 0, 2.5, 1, 0.001875, 0.001875

0, 0.25, 0, 1.795, 0.1795, 0.0075, 0.001875

x u e p x m

x u e p x m





       

       
 (4-24) 

The problem is simulated for 0.2t s with Δt=0.005, where 320 particles are evenly located in the 

left half of the tube [ 0.6,0] with high-density and pressure while 80 particles are distributed in 

low-density area [0,0.6]  (see also appendix D). The proposed new kernel function itself and its 

first derivate (in 2D space) are depicted in Fig. 4-3. As the figure shows, the presented kernel 

function is located between cubic and quintic spline functions and declines rapidly with the 

increment of the distance. Due to intrinsic feature of the cosine function (
3cos ( 6)R ), it is 

sufficiently smooth and has a finite compact support even for the second derivative (compared to 

cubic spline function), leading to more stable numerical solutions. More importantly, unlike the 

piecewise quintic spline, which consists of three parts (requiring additional computational time), 

the developed kernel has only one piece and requires less number of the particles to reach the 

same level of the accuracy. Fig. 4-3 reveals that the new kernel function can successfully capture 

the positions of the shock ( 0.3x  ) and rarefaction waves ( 0.25 0x   ) with minimal 

fluctuation in the density, pressure and velocity profiles comparing to two other kernels. For 

instance, the estimated density, pressure and internal energy at the contact surface region               

( 0.135x  ) by proposed kernel function seems to be more accurate than those of the quintic 

kernels.  

4.4.2 Particle Shifting Technique (PST) 

Since, in Lagrangian framework, particles potentially have a tendency to move along the 

streamline trajectory, particle bunching is likely to happen within the computational domain. In 

order to preserve the uniformity of particles and enhance the robustness of KDF-ISPH model, a 

new particle shifting technique (PST) is developed to maintain homogeneity in the particle 
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distributions. In fact, under the effects of PST, particles are encouraged to deviate from their 

streamlines to the region with low particle concentration, resulting in a notable improvement in 

the uniformity of particle arrangement. By eliminating the term (
j if f ) from gradient operator 

(Eq. (4-A5)) and multiplying it by diffusion controller parameter (
20.5D h ) [67], a particle 

shifting displacement vector ( ir ) can be obtained as:  
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( 1)* ( 1) ( 1)n n n

i i i   r r r  (4-26) 

The terms xC  and yC  provide normal vector (normal to the interface points outside the dense 

area towards the dilute one with low particle concentration) on the each particles. Note that, 

particle shifting displacement obtained from Eq. (4-25) should be only applied on the inner 

particles whereas for free surface particles and their vicinity, the OPS scheme is used as: 

, ( )i ii t iD I n n C      r  (4-27) 

where in  is the corrected form of the ir  near the interface which is calculated through Eq. (4-

A4). ,i tr is particle shifting displacement in tangential direction (for more details see work of 

Khayyer et al. [69]). After shifting the particles to the new position, the velocity field is modified 

accordingly by Taylor-series approximation as: 

( 1)* ( 1) ( 1) ( 1)

( 1)* ( 1) ( 1) ( 1)

n n n n

i i i i

n n n n

i i i i

   
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   

  

  

r

u u u r
 (4-28) 

where 
( 1)n

i

u is gradient of velocity components. Prior to implementing particle regularization 

technique, an efficient free surface detection scheme should be applied to identify the type of 

each particle. In the current work, the combination of the Particle Number Density (PND) [70] 

and divergence of the displacement [67] is employed to track the position of the interface. 
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In Eq. (4-29), the first and second terms are respectively PND ( 1 ) and divergence of the 

displacement ( 2  r ) which are ideally equal to unity and 2 when particle has a full kernel 

support (internal particles). Thus any deviation from these values indicates that kernel function is 

truncated and particle belongs to the interface area (see also Fig. 4-2). 

1 2( ) 3,

0 0.75 Free-surface particle

1 0.75
( ) [1 cos( )] 0.75 0.93 Vicinity particles

2 0.93 0.75

1 0.93 Internal particles

f 
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  


 (4-30) 

In Eq. (4-30), for intermediate particles ( 0.75 0.93   ), smoothing function suggested by 

Skillen et al. [67] is employed to remove the discontinuity between ( ) 1f   and ( ) 0f   . This 

equation has also been used to impose Dirichlet boundary conditions in solving Pressure Poisson 

equation in the form of the [ ] A x b as follow: 

( ) ( )ii i ij j ia p f a p f b     (4-31) 

4.5 Validation  

In this section, the accuracy and stability of developed model and the newly proposed kernel 

function, particle shifting technique and Laplacian operator are demonstrated through analysis of 

four different benchmark cases with various conditions. In all the simulations, ratio of smoothing 

length to particle spacing in kernel function (Eq. (4-21)) is taken as unity ( 1.0 ph d ), with 
pd  

being the initial particle size. Time step size ( t ) is determined by a 0.1CFL   (Courant 

number) condition based on the maximum velocity within the computational domain. 
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p

convection

d
t CFL 

u
 

(4-32) 
2

p

viscous

d
t CFL


   

min( , )convection viscoust t t     

4.5.1  Dam-break 

The first test case (case A2) is classical dam-break flow and used to access the ability of the 

model in predicting a smooth pressure field and complex free surface features such as the return 

wave break. Numerical simulation is carried out in a two-dimensional rectangular enclosure with

1.61L m  , where a column of water (
3 7 2 1 1997 , 8.9 10 , 0, 0kgm m s p u v ms          ) 

with initial depth and width of the 0.3H m and 0.6W m is installed on the right side of the 

enclosure. The time histories of the water level and pressure are monitored at three different 

points ( 1 0.3 , 1.114 ,1.362L m m m and 1 0.003 , 0.03 ,0.08h m m m ), and obtained results are 

illustrated in Figs. 4-4 and 4-5. Generally, driven by the gravity, the water column collapses and 

flows downwards along a dry bed until the wave front reaches the downstream wall. After 

impinging on the left wall, it loses part of its kinetic energy such that the stagnation point starts to 

form on the corner of the enclosure which causes the velocity to attenuate accordingly. This event 

corresponds to the pressure peak in Fig. 4-5, first for the sensors 1 ( 1 0.003h m ) and 2 (

1 0.03h m ) and later for the sensor 3 ( 1 0.08h m ). Thereafter the flow ascends upwards 

(forming a vertical jet on the wall), which is associated with continuous pressure signal recorded 

by the sensors. Under the gravity force, the vertical jet descends downwards and eventually 

collapses backward as a plunging wave leading to a second pressure jump (at around 0.63 sec. 

The new generated wave which has a less forward momentum moves to the right direction, 

forming a counterclockwise vortex in right half of the enclosure. Figs. 4-4 and 4-5 demonstrate 

that the developed KDF-ISPH model has successfully predicted a much smoother pressure field 

distribution with a well-detected free surface, particularly when the Particle Shifting is activated.  
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(a) 0.5( ) 0.5t g h   (b) 0.5( ) 2.5t g h   

  

  

  

(c) 0.5( ) 4.5t g h   (d) 0.5( ) 6.5t g h   

  

  

  

Figure  4-4Contours of the pressure field and free-surface area at different times. Np=22050. 
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Lobovský et al. [81] Zhang et al. [53] Present work 

   

   

   

   

History of Water-level recorded at L1, L2 and L3 

   

History of pressure signals recorded at h1, h2 and h3 

   

Figure  4-5 Validation of the present model against the numerical [53] and experimental results of 

Lobovský et al. [81] at different times 
* 1.58, 2.57, 3.27t  and 6.66 . 22050pN  . 

 



38 

 

It can be seen from Fig. 4-5 that the water level and pressure time history are in satisfactory 

agreement with the experiment observations of Lobovský et al. [81]. Furthermore, less pressure 

fluctuations is observed, comparing to the numerical results of Zhang et al. [53] who used a 

classical Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) with the 

assumption of inviscid flow. Another reason for such discrepancy can be attributed to 

implementation of the Particle Shifting Technique (PST) and new kernel function which in turn 

can immensely affect the solution accuracy and stability of the SPH predictions from the 

standpoint of less pressure fluctuations and particle consistency.  

4.5.2 Rotating square patch of fluid 

To demonstrate the capability of the KDF-ISPH model and PST in dealing with a negative 

pressure field, a hydrodynamic behavior of 2D square patch of fluid subjected to the clockwise 

eddy (in absence of external forces) is examined as the second benchmark case. In this problem, 

initial velocity and pressure fields are set as: 

0

0

0

( , )

( , )

( , ) 0

( , , ) 0

u x y y

v x y x

p x y

g x y t





 

 





 (4-33) 

where 1L   and
11s  are the length of the square patch and the initial angular velocity, 

respectively (see Fig. 4-1, case A3). Generally, due to centrifugal force, the corners of the square 

(with higher velocity) are elongated outward while its sides are dragged towards the center to 

satisfy the need for mass conservation as portrays in Fig. 4-6(a). It can be seen that in absence of 

PST (case of Fig. 4-6(b)), as the time goes on, the arms of the square patch began to grow and 

consequently magnitude of the negative pressure which is responsible for tensile instability 

intensifies, leading to the degradation of gradient interpolation, and occurrence of particle 

clustering ( 0.1t  ). This structure ultimately destroys the particles interaction and compact 

support of the kernel function, resulting in the formation of unphysical discontinuity (numerical 

cavitation) and premature termination of calculations, accordingly. 
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(a) PST on  and 1   (b) PST on and 0   (c) PST off and 1   

   

   

   

  

No Result 

(Simulation is terminated due 

to particle clustering) 

Figure  4-6The effects of the particle shifting technique and additional term in pressure Poisson 

equation on the evolution of rotating square patch of fluid at 0.5t  , 1, 1.5 and 2( t increases 

from top to bottom). 
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Present work (pressure field) 
Present work (free-surface 

detection) 
Oger et al. [64] 

   

   
pressure at the center of patch Zoomed view of area 1 Zoomed view of area 2 

   

Figure  4-7Validation of the present model against the numerical results of Oger et al. [64] at 

1t   and 2. 12321pN  . 

 

Similar observations were reported by Oger et al. [63], [64]. On the other hand, by eliminating 

the additional source term from the pressure Poisson equation ( 0   in Eq. (4-12)) a reverse 

trend occurs within the fluid domain. It can be seen from Fig. 4-6(c) that, due to the strong 

distortion of the fluid boundary, a thin layer of the surface particles is separated and moves 
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radially with constant velocity. This behavior can be explained by the fact that, assumption of 

incompressibility is valid only for inner particles and cannot be extended to the free-surface area 

where kernel support is truncated and particles are characterized by low density ratios (

1

0

1
Surface


   ). Thus, it may be concluded that, implementing incompressibility condition (

0  ) around the interface, can introduce an increasing error and leads to spurious 

segmentations of the interface. In other words, above discussion implies that, the hypothesis of 

the constant density and incompressible condition (
( 1) 0n u ) are not valid and particle 

motion may be influenced by the density gradient. The time history of the pressure at the center 

of the fluid patch calculated using KDF-ISPH and newly proposed PST is shown in Fig. 4-7, 

together with the numerical results of Oger et al. [64]. Again, obtained results are found to be in 

reasonable agreement with the previously published data. 

4.5.3  Stretching a circular drop  

Behavioral analysis of stretching circular drop into an elliptical shape is considered here as the 

third benchmark case (case A4). The simulations are performed for the circular water drop (

3 310 , 1000Pa s kgm    ) with radius of 1R m  subjected to the following velocity field: 

0

0

0

( , ) 100

( , ) 100

( , ) 0

( , , ) 0

u x y x

v x y y

p x y

g x y t

 

 





 (4-34) 

Unlike the previous case, the irrotational velocity field of this case generates a positive pressure 

field which encourages particle to stretch along the major axis in y-direction. Fig. 4-8 shows the 

effects of the PST on the particles position and pressure field. As mentioned before, in 

Lagrangian framework, particles typically tend to follow streamlines trajectory causing high level 

of heterogeneity in particle spacing, which in turn affects the stability of the mesh-free method. 

By comparing Figs. 4-8 (a) and (b), it is apparent that the PST has a notable impact on preserving 

particle uniformity through removing the voids between two different particles trajectory. 
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(a) Present work         

( PST on ) 

(b) Present work         

( PST off ) 

(c) Xu et al. [82] 

(WCSPH) 

(d) Xu et al. [82] 

(Improved WCSPH) 

    

    

 

No Result 

(Simulation is 

terminated due to 

particle clustering) 

  
Variations of semi-

minor axis 

Variation of pressure at 

the center of drop 
Zoomed view of area 1 Zoomed view of area 2 

    

Figure  4-8 Evolution of an initially circular water drop: the comparison of particle positions and 

pressure contours obtained by present model against the numerical results of Xu et al. [82].  
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The accuracy of the KDF-ISPH model has been further proven by comparison with the analytical 

solution and numerical results of Xu et al. [82]. As shown in Figs. 4-8 (c) and (d), the proposed 

approach outperforms both classical and improved SPH schemes in terms of the pressure and 

semi-minor axis calculations. This superiority can be justified by the fact that, standard version of 

the SPH was derived based on the weakly compressibility hypothesis without any corrective 

matrixes, while current model benefits from high level of accuracy through implementing a set of 

the enhanced schemes. Absence of the PST in work of Xu et al. [82] (improved SPH) is another 

reason for such discrepancy which has led to particle clustering and non-physical gap within the 

fluid domain (compare Fig. 4-8 (a) with 8 (c)). Finally, Fig. 4-8 demonstrates that the obtained 

results by proposed model are in excellent agreement with the analytical solutions. 

4.5.4 Natural convection heat transfer 

Natural convection heat transfer in 2D square cavity with localized heating from below (Th) is the 

last benchmark test case. As shown in Fig. 4-1 (case A5), the vertical walls of the enclosure are 

isothermally cooled at a constant low temperature (Tc), while the top wall and two unheated parts 

of the bottom wall are thermally insulated. Cavity is filled with air ( Pr 0.71 ) with constant 

thermo-physical properties, except for the density, which varies linearly with the temperature 

according to Boussinesq approximation. Generally, due to the temperature difference between the 

hot and cold walls, the fluid adjacent to the heated surface ascends from the middle portion of the 

bottom wall, forming the curved shape thermal plume inside the enclosure. As the fluid moves 

upward and interacts with the colder particles, its temperature (energy) declines and consequently 

the fluid gets denser and descends more rapidly toward the bottom wall, resulting in appreciable 

enhancement in the size of the thermal plume. During repeated temperature cycle, the flow is 

shifted toward the corresponding vertical walls and cores of the two minor CW and CCW 

rotating vortices (which are separately located in the lower part of the cavity) moves up. This 

leads to the formation of the thermal boundary layers adjacent to the cold walls. The growth of 

the thermal boundary layers on the cold walls is in turn accompanied by augmentation of the 

temperature gradient and heat transfer rate within the enclosure.  
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 Present work 

a 

   

b 

   

c 

   

 Present work  Calcagni et al. [83] 

d 

 
  

Figure  4-9 Validation of the present model against the numerical (mesh-based) and experimental 

results of Calcagni et al. [83] at
510 .Ra  (a) contour of the velocity (u) in x-direction, (b) contour 

of the velocity (v) in y-direction, (c) isotherms. 0.8L H . 18225pN  . 
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As can be seen from Fig. 4-10, the present results are in excellent agreement with experimental 

and numerical data of Calcagni et al. [83], showing the capability of the proposed method in 

handling natural convection heat transfer. Finally, it worth mentioning that, besides the case A5, 

the entropy generation due to natural convection heat transfer in another benchmark case namely: 

Differentially Heated Cavity (DHC) has also been investigated and obtained results are compared 

with numerical data of Ilis et al. [76]. 

4.6 Results and discussion 

Previous section vividly showed that the proposed models are robust and reliable for modeling a 

wide range of multiphase flows and convection heat transfer problems. In this section the 

proposed KDF-ISPH method is employed to investigate entropy generation due to natural 

convection heat transfer in three different geometries, (1) square cavity with hot obstacle inside 

(case B1), (2) C-shaped enclosure (case B2), and (3) square enclosure containing a pair of hot 

and cold horizontal pipes (case B3). Similar to traditional mesh-based methods, a particle 

independency test (grid study) at two different Rayleigh number was performed by considering 

seven sets of uniform particles size. It can be observed from table 4-2 that, a particle size of 139 

×139 ensures a particle independent solution. 

 

Table  4.2 Effect of the grid size (particle independency test) on heat transfer rate ( Nu ) for cases 

B1 to B3 at low and high Rayleigh number. 

             Number of particles (Case B1)  

Ra 39×39 59×59 79×79 99×99 119×119 139×139 159×159 

10
3
 1.1561 1.2009 1.2356 1.2423 1.2466 1.2472 1.2478 

10
6
 3.0412 3.6239 3.8374 3.9813 3.9881 3.9892 3.9897 

                                                             Number of particles (Case B2)  

Ra 39×39 59×59 79×79 99×99 119×119 139×139 159×159 

10
3
 1.1428 1.6202 1.7771 1.7884 1.7953 1.7961 1.7966 

10
6
 3.2188 3.9074 4.2903 4.6638 4.8907 4.9022 4.9029 

                                                Number of particles (Case B3) 

Ra 39×39 59×59 79×79 99×99 119×119 139×139 159×159 

10
3
 2.0081 2.2102 2.2658 2.2893 2.3005 2.3069 2.3076 

10
6
 9.4573 10.4066 10.8251 10.8834 10.9078 10.9146 10.9155 
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Figs. 4-10 and 4-11 represents the effects of the Rayleigh number ( 3 610 10Ra  ) on the 

isotherms and streamlines for cases B1 to B3 at different time instant. Generally, due to the 

temperature gradient and buoyancy induced by the hot surfaces, the fluid is heated and driven 

upward until it reaches the rigid top wall. The ascending hot fluid that gets blocked at the 

enclosure’s upper wall travels horizontally toward the cold area, as it becomes gradually 

condensed and colder. After hitting the cold surfaces, the relatively heavier fluid comes down to 

lower part and ultimately returns back to the hot area and completes the recirculation pattern. 

This thermal mixing leads to the formation of some cellular structures inside the enclosure. Fig. 

4-10 reveals that at low Rayleigh number ( 310Ra  ), the temperature field is nearly smooth and 

monotonic, which proves that the viscous force is dominant and energy transport is driven by the 

conduction. In this condition, due to weak buoyancy force, isotherms and streamlines are parallel 

to each other and basically take the shape of the enclosure.  

Table  4.3The effects of the Rayleigh number on the heat transfer rate and entropy generation for 

cases B1 to B3 (steady-state condition). 

 

 

Case B1 

Ra Nu  maxU  maxV  Be  totS  ,maxtotS  
TS  ,maxTS  

FS  ,maxFS  

10
3
 1.247 0.551 1.042 0.998 5.536 88.959 5.529 88.892 0.007 0.147 

10
4
 1.304 6.453 10.858 0.885 6.510 144.514 5.765 132.0414 0.745 16.659 

10
5
 2.281 55.726 75.954 0.218 46.456 1244.957 10.151 465.664 36.304 1094.520 

10
6
 3.989 199.952 324.550 0.027 659.249 24097.470 17.910 1144.494 641.338 23842.703 

Case B2 

Ra Nu  maxU  maxV  Be  totS  ,maxtotS  
TS  ,maxTS  

FS  ,maxFS  

10
3
 1.796 0.613 1.169 0.999 6.809 85.514 6.804 85.445 0.005 0.157 

10
4
 1.834 6.772 11.851 0.930 7.456 139.551 6.935 125.108 0.521 16.666 

10
5
 2.937 52.022 77.660 0.264 41.800 1033.863 11.072 307.698 30.727 954.152 

10
6
 4.902 199.655 292.343 0.028 650.404 26780.951 18.491 656.526 631.912 26607.464 

Case B3 

Ra Nu  maxU  maxV  Be  totS  ,maxtotS  
TS  ,maxTS  

FS  ,maxFS  

10
3
 2.307 1.114 1.378 0.995 2.436 53.922 2.424 53.827 0.011 0.222 

10
4
 2.934 9.098 11.859 0.781 3.944 99.623 3.089 91.529 0.855 17.637 

10
5
 6.267 30.891 45.196 0.297 22.851 677.567 6.798 298.047 16.052 393.814 

10
6
 10.915 85.317 1333.947 0.057 214.212 7967.239 12.275 696.920 201.937 7895.284 
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Figure  4-10 Isotherms for cases B1 to B3 at various Rayleigh numbers. 139 139 19321pN    .

0.00724pd H . 

 



48 

 

510Ra   
C

as
e 

B
1

 

    

C
as

e 
B

2
 

    

C
as

e 
B

3
 

    
610Ra   

C
as

e 
B

1
 

    

C
as

e 
B

2
 

    

C
as

e 
B

3
 

    

Figure 4-10 Isotherms for cases B1 to B3 at various Rayleigh numbers. 139 139 19321pN    .

0.00724pd H , (cont’d) 
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By increasing the Ra up to 10
4
, the strength of the recirculating vortices augments and isotherms 

get slightly distorted and compressed by the flow pattern, showing the role of the convection 

mode in the heat transport. Indeed, it can be deduced that since strength of inertia forces in this 

situation is analogous with the viscous force, transition point from conduction to convection takes 

place at this Ra. With further increase of Ra, the effects of the buoyancy force become more 

dominant and the magnitude of the velocity field (u) increases. This increases the intensity 

vortices, causing the formation of the rising-sinking thermal plumes around the heated obstacles 

(for the sake of brevity, vertical velocity contours (v) are provided as a supplementary material). 

In this stage, flow structure (numbers and shape of eddies) and thermal pattern are remarkably 

affected by geometry configuration and type of the boundary condition. For example, in case B1, 

due to the symmetrical boundary conditions with respect to mid-plane of the enclosure, flow filed 

is characterized by the pair of the CW and CCW rotating loops in the left and right halves of the 

enclosure. By increasing the Ra up to 10
6
, the cores of the vortices move upward and height of 

the thermal plume at the top portion of the annulus rises, indicating the establishment of the 

convection regime.  

However, the different scenario occurs in C-shaped enclosure (case B2). Figs. 4-10 and 4-11 

show that at low Ra, isotherms are evenly distributed and the single clockwise vortex is 

developed in the vertical part of the enclosure. By increasing Ra up to 10
5
, buoyancy force 

dominates the viscous forces. Thus, the primary eddy in the horizontal part of the cavity gets 

segregated at the core and two counter rotating vortices are formed in that area. This flow 

structure, with regular thermal convective rolls, signifies the characteristics of Rayleigh-Bénard 

cells, where isotherms exhibit chaotic behavior and become more twisted and deformed due to 

existence of the primary ascending thermal plume under the cold rib. It can also be seen that 

owning to the presence of falling thermal plume on the corner of the cold rip, vertical flow cannot 

easily enter into the horizontal portion. This results in the formation of the three distinct 

recirculation zones, once the steady-state condition is achieved. Because of high momentum 

diffusivity at Ra=10
6
, a third Bénard cell (which triggers onset of thermal instability) is formed as 

newly descending thermal plume. As time goes on, the counter-clockwise eddy which receives 

the incoming cold fluid grows in its size and pushes the clockwise eddy (ascending thermal 

plume) firmly towards the left wall of the enclosure.  
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Figure  4-11 Streamlines and velocity in x-direction (u) for cases B1 to B3 at various Rayleigh 

numbers. 
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Figure 4-11 Streamlines and velocity in x-direction (u) for cases B1 to B3 at various Rayleigh 

numbers (cont’d). 
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Due to the interaction and expansion of these vortices, rising plume moves horizontally along the 

bottom wall and eventually vanishes owing to the caustic merging with the innermost vortex 

occupying the left side of the cavity. As shown in Figs. 4-10 and 4-11, when the flow enters a 

steady state condition, due to presence of the sinking thermal plum on the corner of the gap, two 

distinct regions are created in the enclosure, (1) vertical portion of the enclosure which is 

occupied by the strong clockwise eddy and (2) anti-clockwise elliptical eddy which is elongated 

and squeezed in horizontal section. This behavior is consistent with the findings of Saidi et al. 

[84] who investigated natural convection heat transfer in L-shaped enclosure.  

Figs. 4-10 and 4-11 also display the flow structures and temperature patterns for case B3 (heat 

exchanger) where all walls of the enclosure are adiabatic and impermeable so that heat can only 

transfer from the hot pipe to the cold one. Similarly to what happens in cases B1 and B2, the 

working fluid first gets heated and rises up close to the hot pipe and flows down along the cold 

pipe, forming the pair of clockwise circulation vortexes inside the enclosure (outer recirculation 

zone which occupies about %75 of the enclosure together with an interior double-eddy which is 

elongated in y-direction). A close inspection of the magnitude of velocity component (u) in Fig. 

4-11 and temperature distribution in Fig. 4-10 clearly show that due to dramatically larger 

hydraulic resistance and weak buoyancy force at Ra=10
3
, conduction heat transfer is dominant. In 

fact, due to strong dominance of viscous force at this Ra, temperature field is practically 

unaffected by circulation pattern so that isotherms at the middle portion are smooth and vertically 

oriented. However, by increasing the Ra, flow initiates to penetrate within the enclosure which 

makes the isotherms to become parallel with the horizontal walls. In this circumstance (Ra=10
6
), 

flow intensity and deformation of isotherms are severely elevated and sharp thermal boundary 

layer with steeper gradient is established around the differentially heated pipes. The decrement in 

the thermal boundary layer thickness and isotherm gathering, in turn, cause higher swirl flow in 

the annular space which leads to the significant rise in temperature gradient and heat transfer rate 

consequently. It is interesting to observe that, due to the dominance of convection mode and 

substantial augmentation in the fluid movement in the cavity, a pair of the upwelling and 

downwelling plumes is also generated on the top and bottom of the heated pipes. This results in 

in the development of two symmetric counter-clockwise eddies on the corners of the cavity.  
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Case B1 Case B2 Case B3 

   

   

   

   

Figure  4-12 Variations of average Nusselt number as a function of the non-dimensional time for 

cases B1 to B3 at different Rayleigh numbers. Case B1 ( Pr 0.71 , 0.25L H ), case B2                

( Pr 6.2 , 1 20.6 , 0.3L H L H  ) and case B3 ( Pr 6.2 , 0.225c hL L H  ). 
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To better understand the effects of Rayleigh number on the heat transfer mechanism inside the 

enclosures, variations of average Nusselt number are elucidated in Fig. 4-12 and table 4-3. Fig. 4-

12 demonstrates that in case B1 at low Rayleigh number, average Nusselt number along the cold 

walls of the enclosure are nearly identical while by increment of Ra, the difference between them 

enhances such that lowest and highest amount of the heat are transferred from the bottom and top 

walls, respectively. Take as an illustration, in steady state condition, the ratio of average Nusselt 

number between top and left walls ( top left
Nu Nu ) at Ra=10

3
, 10

4
, 10

5
 and 10

6
 are 1.04, 1.50, 2.88 

and 2.48 while this trend is continued by 1.03, 1.39, 5.62 and 13.46 between the left and bottom 

walls ( left bottom
Nu Nu ). This behavior can be explained by the fact that in the conduction 

dominated regime (Ra=10
3
) due to comparatively low momentum and penetration effect, heat 

spreads uniformly in all directions, leading to uniform temperature gradient near the heated 

surfaces. In this situation, averaged Nusselt number is heavily affected by reduction of the gap 

space between the hot and cold areas. Such a phenomenon occurs in case B2 where because of 

the relatively small space (low thermal resistance) available between horizontal walls of the 

enclosure and cold rip, averaged Nusselt number along the top and bottom walls is higher than 

that of the vertical one. By contrast, since at high Ra fluid tends to move upward with the 

assistance of the buoyancy force, higher heat transfer rate occurs in the upper region (top and left 

walls) while the bottom wall is practically inactive and has no contribution in the cooling process. 

This event is also accompanied by the occurrence of thermal stratification in the lower half of the 

enclosure. In fact, although at high Rayleigh number flow moves faster and convection 

mechanism is dominant but due to existence of the stagnant region in the lower part of the cavity 

in case B1, flow remains nearly motionless and consequently heat is transported through the 

conduction mode. Interestingly, this course of the event also occurs in case B2 but in reverse 

manner so that because of the heat trapping in upper half of the enclosure, topNu  along the top 

wall declines and conduction mode becomes stronger as the Ra enhances. In fact, above 

discussion clearly suggests that locations of the hot and cold surfaces can be used as a control 

parameter for the heat and fluid flow. That is, maximum energy exchange can be attained when 

the hot surface is located lower than the cold one (and vice versa, for the lowest heat transfer 

rate).  Similar finding were reported by Doo et al. [85], Izadi et al. [86] and Miroshnichenko et al. 

[87]. Another interesting feature at high Ra, is the transient oscillatory behavior in the values of
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Nu  along the bottom and left walls of the C-shaped (case B2) enclosure. In fact, the first 

fluctuation of Nu which occurs on the bottom wall (
*0 0.02t  ) is related to the presence and 

movement of the rising-sinking plumes in the horizontal section while second oscillation which 

takes place simultaneously on both bottom and left walls of the enclosure (
*0.04 0.05t  ) 

originates from merging of the rising plume with the primary CW eddy at the left half of the 

enclosure. Fig. 4-12 also reveals transient variations of the average Nusselt number around the 

hot and cold pipes in case B3. The results indicate that in steady-state condition, the average 

Nusselt number increases with increasing the Ra. However at each certain Ra, since initial 

temperature is taken as 296cT K ( 0  ), hot pipeNu around the heater declines whereas cold pipeNu

increases until the thermal balance is established within the enclosure. It is worth to mention that, 

since sidewalls of the enclosure are totally adiabatic, the amount of the heat released by the hot 

pipe is entirely absorbed by the cold pipe which is another validation for the current work from 

the view point of first law of thermodynamics ( hot pipe cold pipeNu Nu ).  

Figs. 4-13 and 4-14 illustrate local Bejan number and entropy generation due to heat transfer 

irreversibility at different Ra for case B1 to B3. As stated earlier, entropy generation stems from 

two main factors, namely, heat transfer irreversibility (temperature gradient) and viscous 

dissipation (velocity gradient). It can be seen from Fig. 4-13 that at Ra=10
3
, the values of the 

local Bejan number in all cases are very close to unity which manifests thermal irreversibility is 

the major contributor of total entropy generation. This observation is compatible with maximum 

values of entropy generation provided in table 4-3. For instance at Ra=10
3
, the maximum local 

entropy generation due to thermal dissipation ( ,maxhS ) for cases B1, B2 and B3 are respectively 

equal to 88.89, 85.44 and 53.82 while the maximum values of local entropy generation due to 

viscous dissipation ( ,maxfS ) are approximately 0.14, 0.15 and 0.22, which indicates that at low Ra 

where conduction heat transfer is dominant, fluid friction irreversibility is negligible. This 

behavior is also in agreement with results of Fig. 4-15 where time history of total entropy 

generation in all cases exhibits the peculiarity of heat transfer irreversibility ( tot TS S ). As 

expected, by increasing the Ra up to 10
4
, convection mechanism within the enclosures is  
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Figure  4-13 Contours of the local Bejan number for cases B1 to B3 at various Rayleigh numbers. 
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Figure 4-13 Contours of the local Bejan number for cases B1 to B3 at various Rayleigh numbers, 

(cont’d). 
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improved and hence temperature gradient and intensity of fluid flow increase, leading to the 

enhancement in total entropy generation. However, since onset of the convection heat transfer 

occurs at this Ra (transition from conduction to convection mode), buoyancy force is not 

sufficiently large to overcome hydraulic resistance, and hence entropy generation due to thermal 

dissipation is still more intense than that of the viscous dissipation ( T FS S ). This is reflected in 

the local and average Bejan number values in Fig. 4-13 and table 4-3 where 0.5Be  clearly 

demonstrates that most of the exergy loss in all cases is still associated with the heat transfer 

irreversibility. It should be noted that in this condition, the entropy generation due to FS is 

confined to the small region at the vicinity of the active walls where local Bejan number has a 

lower values compared with elsewhere within the computational domain (see Fig. 4-13). By 

increasing the Ra up to 10
5
, a large temperature gradient is formed at the vicinity of the heated 

walls which causes fluid moves faster and velocity gradient to amplify accordingly. Increase in 

velocity and temperature gradients in turn is accompanied by concomitant loss of the available 

work and significant enhancement in overall rate of the entropy production. However, since 

augmentation in the entropy generation caused by viscous dissipation ( FS ) is slightly higher than 

that promoted by heat transfer irreversibility ( TS ), average Bejan number declines and becomes 

lower than half. This indicates that irreversibility due to fluid friction is coming into the picture. 

Variations of the average Bejan number ( 0.218 0.297Be  ) at Ra=10
5 

in table 4-3 and Fig. 4-

13 clearly demonstrate that TS and FS  have the same order of magnitude and hence are 

analogous to each other. For instance, the ratio of FS over that of the TS in case B1, B2 and B3 

are respectively 3.57, 2.77 and 2.36 which implies that FS and TS have a relatively equal 

contribution to overall entropy generation. This assertion is further supported by Fig. 4-13 where 

40% of the enclosures in cases B1 to B3 is still covered by local Bejan number higher than 0.8. 

With further increment of Rayleigh number (Ra=10
6
), total entropy generation rises while 

average Bejan number declines immensely and becomes less than 0.08Be  , indicating the 

domination of fluid friction irreversibility (see also table 4-3 where T FS S ). In other words, it 

may be concluded that simultaneous increment of totS and attenuation of Be  characterize the 

dynamical nature of the frictional entropy generation at high Rayleigh number where  
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Figure  4-14 Contours of the local entropy generation due to heat transfer for cases B1 to B3 at 

various Ra. 
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Figure 4-14 Contours of the local entropy generation due to heat transfer for cases B1 to B3 at 

various Ra, (cont’d). 
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convection heat transfer is dominant. However, besides the above results, some other interesting 

points can be drawn in this section. Generally, Fig. 4-14 illustrates that at all Ra, the source of 

entropy generation due to heat transfer ( TS ) is concentrated near the active boundaries where 

higher temperature gradients occur within the enclosures. More precisely, it is evident from Fig. 

4-15 that due to the weak convection effects at low Ra, local TS in case B1 is uniformly 

distributed and maximum TS occurs on the corners of the hot obstacle in the steady-state 

condition. Due to the steeper temperature gradient and compression of isotherms at high Ra, 

thickness of the thermal boundary layer near the bottom portion of the heater decreases and 

thereby lower-left and lower-right corners become the major sites of the maximum TS . 

Furthermore, due to impingement of the single ascending thermal plume on the top wall, upper 

half of the enclosure experiences a moderate local TS while lower one doesn’t have any 

contribution to the TS and acts as almost entropy free region owing to the presence of the 

stagnation region. Similar qualitatively trends also take place in case B2 such that at low Ra, TS

is found to be significant at the corners of the cold rip while in the rest of the domain, TS is trivial 

due to low temperature gradient. By increasing the convective force via increase in the Rayleigh 

number, magnitude of TS enhances and consequently left vertical and bottom horizontal parts of 

the enclosure become the prone zones of TS . It is interesting to observe that, under this 

circumstance due to high level of thermal mixing and severe velocity gradients in lower half of 

the enclosure, FS is markedly intensified and TS starts to adopt the pattern of the isotherms.  

Fig. 4-14 also demonstrates the local entropy generation due to heat transfer irreversibility for 

case B3. One of the interesting features related to this geometry is that, since hot and cold pipes 

are located in the same height, computational domain is completely free of the stagnation region, 

resulting in better and more efficient thermal mixing within the enclosure. It can be seen from 

Fig. 4-14 that at low Ra, maximum TS occurs on the left and right corners of the differentially 

heated obstacles which have a lower distance with respect to each other. By increasing the Ra,  
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Figure  4-15 Variations of average Bejan number (Be), total average entropy generation ( totS ), 

average entropy generation due to thermal ( TS ) and viscous ( FS ) irreversibilities as a function of 

the non-dimensional time for cases B1 to B3 at different Ra. Case B1 ( Pr 0.71 , 0.25L H ), 

case B2 ( Pr 6.2 , 1 20.6 , 0.3L H L H  ) and case B3 ( Pr 6.2 , 0.225c hL L H  ). 

 

locations of maximum TS are shifted to the bottom and top portions of the hot and cold cylinders 

respectively, where isotherms are densely packed and thermal stratification are formed in that 

areas. In fact, because of formation of thermal stratification and blockage effects of the heated 

pipes, lower and upper halves of the enclosure also experience a moderate heat transfer 
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irreversibility which is more visible in the corresponding local Bejan number (see Fig. 4-13 at 

510Ra  for case B3). In addition, by comparing Figs. 4-13 and 4-14 for case B3, one can 

conclude that, the region of low entropy generation corresponds to the middle of the enclosure 

where isotherms are horizontally oriented with lowest temperature gradients. Finally, Fig. 4-15 

illustrates the time history of dimensionless entropy generation in the transient state for cases B1 

to B3. It can be seen that although by increasing the Ra both FS and TS increase but at the certain 

value of Rayleigh number, FS and TS undergo the increasing and decreasing trends before 

reaching the steady-state condition. As mentioned before this behavior is attributed to the initial 

values which have been assigned for velocity ( 0u ) and temperature ( 0  ) fields at the 

beginning of the simulations. By virtue of this fact, zero velocity results in lower velocity 

gradients which causes FS to start from zero and increases as the time goes on. On the other 

hand, high level of the temperature gradients near the hot surfaces induces higher values of TS at 

the start of the modeling (
* 0t  ) in all cases. This observation is consistent with the results of 

Magherbi et al. [88] who numerically investigated transient natural convection and entropy 

generation in differentially heated cavity (DHC). They also stated that by increasing the Ra, a 

course of the fluctuations occurs in the total entropy generation on the basis of Prigogine's theory. 

This phenomenon is also observed in cases B1 to B3 where due to internal wave instability in the 

flow and temperature fields, instantaneous fluctuations are emerged in the FS and TS . Note that 

since the temperature gradient is the underlying cause of the convection regime, this course of the 

oscillations also takes place in the values of average Nusselt number (see Fig. 4-12). 

4.7 Conclusions  

This paper introduced the Kernel Derivative-Free (KDF) Incompressible Smoothed Particle 

Hydrodynamic (ISPH) model for simulation of the multiphase flow and convection heat transfer 

problems. A new kernel function, Particle Shifting Technique (PST) and high order Laplacian 

and divergence operators are proposed to enhance the stability and accuracy of the numerical 

method. A wide range of the two-dimensional benchmark cases with different flow 

characteristics were used to verify the performance and its improvement for practical 

applications. The model was then applied to study the entropy generation due to natural 
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convection for different configurations. Based on the obtained results, the following points can be 

concluded: 

4.7.1  KDF-ISPH method (development and evaluation, case A1 to A5) 

 It is was found, the proposed new kernel function provided more accurate predictions 

compared to the cubic and quintic spline functions in modeling propagation of shock 

wave in 1D tube. 

 The results indicated that proposed new Particle Shifting Technique (PST) has a 

significant impact on the stability of the mesh-free Lagrangian method, such that in its 

absence, particle clustering (tensile instability) is likely to happen. 

 The model with the new Laplacian and divergence operators provided more accurate and 

smoother pressure field comparing to the traditional WCSPH in modeling of dam-

breaking and rotating square patch of fluid. 

 The capability of the new Laplacian and divergence operators was further verified by 

simulating natural convection heat transfer in a square cavity (case A5).  

 It was found that, combination of the Particle Number Density (PND) and divergence of 

the displacement can successfully detect the position of the interface. 

 The results showed that, the stability of the proposed method is significantly enhanced 

when non-conservative form of the momentum equation ( 1   ) is used for free surface 

area (see Eq. (4-15)). 

 Density error compensation term in PPE (additional term in Eq. (4-12)) was found to have 

a significant impact on the regularity of the particle distribution near the free-surface area 

such that in its absence, the particle inconsistency is likely to happen on the interface. 

4.7.2  Entropy generation due to natural convection (case B1 to B3) 

 The results indicated that, by increasing the Ra both average Nussent number and total 

entropy generation increase, while a downward trend is observed in average Bejan 

number. 

 Entropy generation due to heat transfer ( TS ), was found to be significant at low Rayleigh 

number ( 410Ra  ). In contrast, at the convection dominant regime ( 510Ra  ), most of 

the exergy loss in all cases was due to the viscous dissipation ( FS ). 
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 It was found that the highest heat transfer rate is obtained when the hot surface is located 

lower than the cold one (and vice versa, for the lowest heat transfer rate). 

 At low Ra, average Nusselt number and entropy generation due to all factors ( TS and FS ) 

alter asymptotically towards a certain value while at high Ra an oscillatory behavior 

occurs in the transient heat transfer rate and entropy generation before reaching the 

steady-state condition. 

 It was found that due to low velocity gradients in the stagnation region, most of 

destruction of available work is due to the heat transfer irreversibility even at high Ra 

(corresponded to highest local Bejan number).  

In future works, the energy conservation analysis of proposed model can be accomplished. 

Furthermore, the study can be extended for turbulent forced convection flow in complex 

geometries with curved boundaries. Simulation of standing wave, lid-driven differentially heated 

square cavity, dam break flow over a stationary obstacle, tank draining phenomena, and 

Rayleigh-Taylor Instability problem are some other benchmark cases that will be investigated in 

further work using proposed model. 

4.8 Appendix A (gradient, Laplacian and divergence operators) 

We take here a practical point of the view and derive three new gradient, Laplacian and 

divergence operators based on the KDF-ISPH in a form suitable for numerical solution. Using 

two-dimensional Taylor series expansion of a function at a nearby point (xi,yi) and multiplying it 

by ijW , ij ijx W , ij ijy W and integrating both sides of Eq. (4-A1) over the computational domain, 

particle approximation for the field function can be computed as follows: 

' ' '' 2 '' 2 '' 31 1
( )

2 2
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In the equation given above, f is a general variable such as velocity, temperature or pressure.

( , )ij j iW W h r r is weight function and
j jdV m  represents the volume of particle i. '

xf and 

'

yf  denote first derivatives of function f(rj) while
ij j ix x x  and ij j iy y y  are the distance 

between i-th particle to the j-th particle at positions ri and rj in x and y-directions, respectively. L 

is the corrective matrix which guarantees first-order accuracy in calculating field function ( if ). 

Eq. (4-A2) has also been documented by Colagrossi et al. [79] and known as a Moving Least-

Squares method. However, when the kernel is fully supported by neighboring particles, the terms 

involving off-diagonal elements of the L matrix vanish (

1 1 1

0
N N N

ij ij ij ij ij ij ij

j j j

x W dV y W dV x y W dV
  

     ) such that inverse matrix L will be reduced to 

diagonal one. In this circumstance, field function can be computed through Shepard 

approximants at relatively low cost [89]. 
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Following the same argument, high-order particle approximation for the spatial derivative of the 

function can be obtained by subtracting Eq. (4-A1) from if and multiplying it by ij ijx W and ij ijy W  

as follows: 
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 (4-A4) 

Eq. (4-A4) was originally introduced by Xu et al. [82] and known as a mixed symmetric 

correction of kernel gradient. From the above equations, it can be seen that in contrast to the 

standard SPH formulation, kernel gradient ( ijW ) doesn’t appear in Eq. (4-A4) and differential 

operation is only applied on the field function. Since the divergence operator is consisted of a 

series of gradient operators, the same procedure of the particle approximation with kernel 

normalisation can be adopted to compute (f ). Take as an illustration, for calculating 
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divergence of the velocity (u ), Eq. (4-A4) should be solved two times where sum of the 

velocity gradients in x ( '

xf u x  ) and y ( '

yf v y   ) directions can produce divergence 

operator. Similar to the field function (Eq. (4-A2)), when smoothing kernel has a compact 

support, gradient and divergence operators can be simplified into: 
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 in a polar coordinate system ( cos( ), sin( )ij ij ij ijx r y r  

) in the case of the uniform particles distribution, Eq. (4-A5) can be simplified further and 

generalized into three-dimension as: 
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where f, f and D0 denote an arbitrary scalar, vector and spatial dimension. By retaining the second 

derivatives in Eq. (4-A1) (except ''

xy ij ijf x y ) and multiplying it by ijW , the discretization scheme for 

the Laplacian model can be written as follows: 
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hypothesis is only valid for regular particles arrangement and cannot be extended to free-surface 

area where kernel is truncated, but it is the only way in which 
2 f can be computed. Based on 

the above assumption, the third and fourth term in the right-hand side of Eq. (4-A9) can be 

rewritten as: 
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By substituting Eq. (4-A10) into Eq. (4-A9) a new Laplacian operator can be obtained: 
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(4-A11) 

where 
'

xf  and '

yf  are estimated by Eq. (4-A4). It is worthwhile mentioning that, the present 

model is very similar to the Schwaiger’s model [65] who proposed high-order Laplacian operator 

discretization by taking gradient of kernel into account ( ijW ). Finally, for the uniform particles 

arrangement (
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     ), Eq. (4-A10) can be reduced and 

expressed as: 
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This equation (Eq. (4-A12)) has also been derived independently by Koshizuka et al. [70] and Lei 

et al. [90] for simulation of the hydraulics problem and convection heat transfer, respectively. 

4.9 Appendix B (Artificial term in Pressure Poisson Equation) 

Generally, there are two types of the Pressure Poisson Equation which have been widely used in 

the context of the Lagrangian framework to estimate the pressure field namely: Divergence-Free 

(DF) velocity and Density Invariance (DI) models: 
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However, the results of Sun et al. [91] shown that the use of DF approach (Eq. (4-B1)) results in 

density error accumulation adjacent to free-surface area which in turn causes tensile instability 

and spurious numerical pressure vibration. On the other hand, Zheng et al. [92] reported that, 

solving Eq. (4-B2) alone leads to large density variation and particle explosion which 

subsequently attenuates stability of numerical simulation. To tackle this problem, Tanaka et al. 

[93], [94] suggested the use of hybrid model (Quasi-Compressibility) which benefits from both 

DF and DI source terms in PPE as given below: 
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where is the relaxation coefficient of incompressibility which requires calibration in the range 

of 0 1  . Based on the above brief description, along this appendix, the process of obtaining a 

new density error compensation term in Pressure Poisson Equation will be outlined and discussed 

in detail. By incorporating weak compressibility into the continuity equation (
D

Dt




), mass and 

momentum equations can be written as follows: 
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By inserting the intermediate velocity (
*

u ) into the left-hand side of Eq. (4-B5) and 

implementing two-step projection method given by Chorin [77], momentum equation can be 

splitted into two successive parts as: 
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The divergence of Eq. (4-B8) reads: 

( 1) * ( 1)( )n nt
p



 
       u u  (4-B9) 

Accordingly, by substituting equation (4-B9) into Eq. (4-B4), one obtains: 
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Taking into account that the third term can be expressed as: 
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we can establish an alternative form of the PPE as: 
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By defining parameters 1 2,  and 3 , Eq. (4-B12) can be rewritten in a general form as:  

** * * *
2 0

1 2 32 *

1
[ ]

p p
p

t t x x y y

   
  



    
    

     

u
 (4-B13) 
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Note that for 1 2 31, 0, 0     , the expression reduces to the frequently used ISPH form (Eq. 

(4-B1)) while for 1 2 30, 1, 0      it turns into Eq. (4-B2). For the particular case of the

1 2 31, 1, 0     , the hybrid DF-DI model (Eq. (4-B3)) can be obtained. The third term in Eq. 

(4-B13) is the new additional term which takes the spatial gradient of density into account. 

Finally, the values of 
*

*,
x







and

*

y




can be simultaneously obtained through gradient operator 

provided by Eq. (4-A2). Note that, the terms 
p

x




and 

p

y




 (pressure gradient) in Eq. (4-B13) can 

be considered as a source term in the discretization process. 

4.10 Appendix C (third-order TVD Runge-Kutta) 

In the current work, a three-stage TVD Runge-Kutta (RK3) scheme with third-order accuracy 

proposed by Shu et al. [95] is adopted to discretize the physical transient term as follows: 
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where 1 1  , 2 3 4  , 3 1 3  , 1 1  , 2 1 4  and 3 2 3  . 
n

u and
1n

u are the velocity at n
th

 

and ( 1n ) time step, respectively. 

4.11 Appendix D (propagation of shock wave in 1D tube) 

The Lagrangian form of the momentum, energy and continuity equations for simulation of the 

propagation of shock waves are given as [80]: 
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The symbols ,e c and ijW denotes internal energy, speed of the sound and gradient of the kernel 

function, respectively. is a constant number equals to 1.4. The typical procedure to solve above 

equations consists of two steps. First, Eqs. (4-D1) to (4-D3) are solved to calculate material 

derivatives and density ( , ,
D De

Dt Dt


u
) and then particles are advected to new positions with 

updated velocity and energy according to Eq. (4-D4). Once the density and energy are found, 

pressure and sound speed are modified by Eq. (4-D5) and process will be repeated for the next 

time step. It should be noted that, artificial viscosity proposed by Monaghan [96] is frequently 

employed to prevent non-physical pressure oscillation and particles clustering near the shock as 

follows:  
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Abstract 

A novel Kernel Derivative-Free (KDF) Weakly-Compressible Smoothed Particle Hydrodynamics 

(WCSPH) model is developed for simulation of free-surface flows and convection heat transfer. 

A high-order Laplacian operator is developed and then applied for the approximation of the 

diffusion terms (e.g., viscous term, thermal diffusion, and newly additional diffusion term in the 

continuity equation). The transient term in Navier–Stokes equation is discretized using the third-

order TVD Runge-Kutta scheme, while a stiff equation of state is employed to predict pressure 

field. To increase numerical accuracy, a new high-order smoothing operator in the context of the 

MPS description (Moving Particle Semi-implicit) is also proposed and then applied for the 

treatment of the buoyancy force term in the momentum equation. Furthermore, a new high-order 

smoothing kernel is constructed and tested via simulation of the 1D Sod shock tube problem. A 

series of numerical benchmark cases such as: dam break, stretching of a circular water drop, 

rotating square patch of fluid and natural convection heat transfer in a square enclosure are used 

to verify and evaluate the feasibility of the proposed models. It is found that all simulation results 

are in excellent agreement with the available experimental and numerical data. Capability and 

performance of KDF-WCSPH method in handling particulate flows with thermal convection are 

further demonstrated through analysis of entropy generation due to natural convection heat 

transfer in the three different well-known geometries including: Differentially Heated Cavity, L-

shaped enclosure and horizontal annuli. Comparison with the past Finite-Volume results 
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demonstrates that the present model can maintain stability and accuracy, which makes it a very 

useful tool for simulation of thermo-hydraulic problems.  

Keywords: KDF-WCSPH, Kernel Function, Smoothing operator, Laplacian operator, Entropy 

generation, Natural Convection,  

5.1 Introduction 

Natural convection heat transfer driven by buoyancy force is of a significant scientific issue 

which has attracted much attention in the recent years because of its wide range of applications in 

industrial and engineering systems such as: cooling of electronic component [1], solar collectors 

[2], heat exchangers [3], nuclear reactor cooling [4], thermal design of buildings [5] and etc. 

From an academic perspective, the problems of buoyancy-induced heat transfer in L-shaped 

enclosure and in the annulus between two horizontal concentric cylinders are of great interest and 

practical importance due to their unique application as a heat exchanger. Works of Saravanan et 

al. [6], Garoosi et al. [7], Hooshmand et al. [8] and Pordanjani et al. [9] can be mentioned as a 

few examples of such studies, in which they numerically simulated natural convection heat 

transfer in closed enclosure containing the hot obstacles. They discussed the effects of the length 

and location of the hot blocks on the heat transfer rate and found that flow field, temperature 

pattern and average Nusselt number are strongly dependent on the size and position of the hot 

pipe. Similar observations were reported by Mohebbi et al. [10], Saidi et al. [11], Elshehabey et 

al. [12] and Gawas et al. [13] who numerically investigated natural convection heat transfer in L-

shaped enclosures.  

In the last few decades, the significant effort has been devoted to optimize process parameters in 

enhancing the thermal design of the industrial and domestic systems which operate under natural 

convection mode. The concept of the entropy generation minimization was first introduced by 

Bejan [14] who mathematically demonstrated that, the generation of entropy or exergy loss leads 

to the reduction in the available work and consequently decreases the energy efficiency of the 

system [15]. During the past several years, many researchers have been motivated to apply the 

second law analysis to design thermal industrial systems with desirable characteristics [16]. 

Sivaraj et al. [17], Kefayati [18], Siavashi et al. [19] and Arun et al. [20] investigated the effects 

of the magnetic field on the heat transfer rate and entropy generation in the square enclosure with 

an inner hot obstacle. They found that, presence of the magnetic field minimizes the entropy 



85 

 

generation. Followed by the aforementioned studies, a few earlier works were also carried out by 

Liu et al. [21], Zhang et al. [22] and Astanina et al. [23] to optimize natural convection process in 

the closed cavities filled with a porous medium. They implemented EGM approach and 

demonstrated that by the increment of Rayleigh number, both heat transfer rate and 

irreversibilities of the thermal system increase. A comprehensive review of latest first and second 

law analysis of natural convection mechanism in closed enclosures with various practical 

applications can be found in works of the Biswal et al. [24] and Das et al. [25].  

Besides the analysis of entropy generation and heat transfer, simulation of the multiphase flows 

involving complex interfaces is another most challenging topic in fluid mechanics which is 

difficult to represent by CFD tools. A literature review conducted by Pan et al. [26] shows that 

Volume-of-Fluid (VOF) [27] and Level-Set (LS) [28] are two most commonly used interface-

tracking/capturing approaches in an Eulerian framework for modeling free-surface flows. 

However, although, the aforesaid methods have all been implemented in various multiphase 

problems, but the results of the Ha et al. [29] and Wu et al. [30] illustrate that the Eulerian mesh-

based approaches have some innate drawbacks in determining the exact location of the flow front 

in multiphase phenomena.  

To overcome aforementioned methodological problems and avoid difficulties in interface 

tracking, many scholars have adopted a newer generation of numerical techniques called 

Smoothed Particle Hydrodynamics (SPH), where particles in Lagrangian framework take the role 

of the grids in Eulerian one. Absence of the convection term in governing equations and free 

from constraints of the grids generation, make the SPH more efficient and robust method in 

dealing with the free-surface flow with large deformation or breaking. The SPH was initially 

introduced by Gingold and Monaghan [31] for describing the evolution of astrophysical 

phenomena. After its initial appearance, it was extensively applied in many research areas such 

as: simulation of liquid jet impinging on a flat plate and jet formation from a high pressure nozzle 

[32], [33], modeling of capillary rise dynamics and bubble rising [34], [35], simulation of 

convection heat transfer [36]–[39], simulation of droplet impact, gas-liquid two-phase flow and 

granular flow [40]–[42], respectively. The state-of-the-art review of recent applications of SPH 

and its future prospects can be found in works of Wang et al. [43] and Shadloo et al. [44].  
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However, although the above-cited studies vividly demonstrate the ability of Smoothed Particle 

Hydrodynamics (SPH) in modeling fluid-structure interaction problems (FSI) but this method has 

some key fundamental disadvantages in terms of accuracy and stability [45]. Non-physical 

pressure oscillation [46], [47], particle clustering (tensile instability) [48], low-order boundary 

treatment [49], false diffusion and density error accumulation [50], instability due to selection of 

the unsuitable kernel function to build the connection between the particles [51], penetration of 

particles into the boundaries walls [52], and low-order space and time discretization schemes for 

computing gradient, divergence and Laplacian operators [53], [54], are some major flaws related 

to this model which can endanger the solution stability and even lead to premature termination of 

the calculations. Over the last few years, substantial attempts were made to modify some of the 

shortcomings associated with the standard SPH model. For elimination of non-physical pressure 

fluctuations, Sun et al. [55], [56] proposed a new scheme called Tensile Instability Control (TIC) 

that was based on the altering the momentum equation to a non-conservative form. They 

suggested that this treatment should be only applied in some certain areas with unstable flow 

regime. Antuono et al. [57] invented an effective remedy to suppress the density error 

accumulation associated with the Weakly Compressible version of the SPH. They proposed a 

novel system of equations by inserting the additional diffusive term into the mass equation. Their 

results showed that, this extra term can significantly decrease the pressure oscillations in both 

time and spatial domain and named it as a Delta-SPH model ( SPH  ). Particle Shifting 

Technique (PST) was first introduced by Xu [58] to overcome the instability caused by particle 

clustering. This technique was further extended and implemented by Lind et al. [59] and Khayyer 

et al. [60] for modeling of water wave propagation. They concluded that PST improves the 

homogeneity of particles dispersion and prevent the onset of tensile instability and particle 

bunching. Another possible source of the tensile instability can be traced back to the classical 

formulation of the SPH model. Originally, the governing equations of the SPH were derived by 

the fact that, particles are uniformly distributed within the computational domain. Thus, it is 

obvious that any heterogeneity among the particles can jeopardise the consistency of the 

simulation through inaccurate estimation of the governing operators. In a pioneering work, Oger 

et al. [54] suggested the use of renormalization technique to enhance the consistency of the 

gradient operator. They found that, reproducing the derivatives of kernel function using the 

corrective matrix can considerably increase the accuracy of particle approximations and 
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guarantee convergence properties of the method. In a similar work, Schwaiger [53] adopted 

Oger’s technique [54] and proposed a new high-order Laplacian operator by eliminating the 

gradient terms from the Taylor-series expansion. Penetration of particles into the rigid walls is 

another major challenge faced with the SPH which causes numerical oscillations and termination 

of all computations. To prevent this phenomenon and reduce the boundary errors, Marrone et al. 

[49] suggested the use of Mirror Particles technique and concluded that this technique can 

provide significant improvement on the boundary condition and meanwhile prevent the 

unphysical particle penetration. Hongbin et al. [61] showed that kernel or weighting function as a 

heart of the SPH method plays a vital role on the stability of the numerical simulation. They 

performed a comparative study on ten different types of the kernel function and pointed out that 

Gaussian and Q-spline can potentially generate more precise results for a benchmark one-

dimensional shock tube problem over the cubic-spline kernel function. 

In light of the above discussion, the main objective of the present study is to introduce a novel 

Kernel-Derivative Free (KDF) Weakly Compressible Smoothed Particle Hydrodynamics 

(WCSPH) model for simulation of free-surface flows and convection heat transfer. Unlike the 

conventional WCSPH, in the proposed method the approximation of special derivatives has been 

accomplished based on the direct application of the kernel function (not its derivatives). A new 

kernel function is first constructed and then applied for simulation of propagation of shock wave 

in 1D tube. Moreover, a new high-order Laplace operator in the context of the MPS model 

(Moving Particle Semi-implicit method proposed by Koshizuka [62], [63]) is also formulated and 

then applied for discretization of the diffusion terms. Accuracy and performance of the proposed 

method (KDF-WCSPH) are verified against the existing results for free-surface flows and 

convection heat transfer problems such as: dam break, stretching of circular water drop, rotating 

square patch of fluid and natural convection heat transfer in square cavity heated from below. 

Finally, the verified KDF-WCSPH model is applied to study entropy generation due to natural 

convection heat transfer in three different geometries such as: Differentially Heated Cavity, L-

shaped enclosure and horizontal annuli. To the best of the authors’ knowledge and from the 

above literature survey, numerical simulation of entropy generation due to natural convection 

heat transfer using mesh-free particle method has never been reported in the literature so far. 
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5.1 Problem statement and governing equations 

The coordinate system and geometrical configuration of physical models under consideration are 

presented in Fig. 5-1. Four different benchmark cases (A1 to A4) are used for verification of the 

proposed models whereas cases B1 to B3 are employed to demonstrate the capability of the 

enhanced KDF-WCSPH model in dealing with the natural convection heat transfer with special 

emphasis on the exergy aspects of the systems. The fluid flow in all cases ( Pr 0.71 or 6.2) is 

assumed to be Newtonian, unsteady, laminar and two-dimensional with constant properties 

except for the density which varies linearly according to Boussinesq approximation in natural 

convection problems. To induce the buoyancy force in cases A4, B1, B2 and B3, the temperature 

difference is uniformly imposed on the hot ( 304hT K ) and cold ( 296cT K ) walls while the 

remaining parts of the cavity walls are thermally adiabatic. The numerical simulations are 

performed using, an in-house CFD code written in a FORTRAN program. 

Under the assumption of constant thermo-physical properties of working fluid, the Lagrangian 

form of the continuity, momentum, energy and displacement equations for unsteady laminar flow 

can be written as follows [39]:  
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where u is the velocity vector, (with u and v components in 2D space), r is the position vector 

(with x and y components in 2D space). The terms ρ, µ, T, k and Cp are respectively density, 

dynamic viscosity, temperature, heat conductivity and specific heat. BF  represents the body forces 

per unit volume which is set as bF g (gravitational force) in the multi-phase flow or 

( )b cF g T T    (buoyancy force) in natural convection heat transfer problems (with Tc being 
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the reference fluid temperature). After obtaining velocity and temperature fields, the rate of local 

entropy generation for Newtonian flow can be computed as follow [14]: 

tot T FS S S   (5-5( 
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The first term in Eq. (5-6) represents the dimensional entropy generation caused by thermal 

dissipation while the second term is fluid friction irreversibility. By using the following 

dimensionless parameters, Eq. (5-6) can be converted to the non-dimensional form as: 
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In Eq. (5-8),  is known as irreversibility distribution ratio which represents the ratio of the 

viscous dissipation to thermal entropy generation. The value of  in the current work, is constant 

and taken as 10
-4

 similar to work of Ilis et al. [64]. The total volumetric entropy generation can be 

obtained via integrating the local entropy generation as follows: 

1 1
, ,T F tot T FT FS S dV S S dV S S S

V V
      (5-9) 

Contribution of the heat transfer irreversibility to the total generated entropy can be determined 

by computing Bejan number as: 
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Since Bejan number ranges from 0 1Be  , 0.5Be   indicates the relative dominance of the 

fluid friction irreversibility whereas 0.5Be   implies that the irreversibility due to heat transfer is 

dominant. It is obvious that in case of 0.5Be  , thermal irreversibility and viscous dissipation are 

comparable. 

 

Figure  5-1 Schematical configuration of the considered problems with coordinate system and 

boundary conditions. 
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5.2 KDF-WCSPH formulation and solution methodology 

Here, a Kernel Derivative-Free (KDF) form of the Weakly Compressible Smoothed Particle 

Hydrodynamics (WSPH) method with numerical diffusion term is developed and employed to 

solve the governing equations (5-1) to (5-5). Similar to the conventional SPH method [48], [57], 

[65], the entire domain including both fluid and boundary regions are spatially discretized using a 

set of the mobile particles. The proposed model is completely free from the derivative of kernel 

and uses the kernel function itself to approximate the special derivatives. Appendix (A) presents 

the derivation procedure of relevant governing operators (i.e. gradient, divergence, and 

Laplacian) for this newly developed model. The list of equations used to approximate the spatial 

derivatives of quantities (e.g., ,p T and  ) and vectors (e.g., u) is summarized in Table 5-1.  

 

Table  5.1 List of the equations used for calculating gradient, divergence, and Laplacian operators. 

Operator Equation used 

Divergence (for velocity) (
' ',x yu u ) 

Gradient (for temperature) (
' ',x y  ) 

Gradient (for density) ( ' ',x y  ) 

Eq. (5-A2) is applied in the present work whereas Eq. (5-

A3) with 1  can also be used. 

Gradient (for pressure) (
' ',x yp p ) 

Modified form of the Eq. (5-A3) is applied in the present 

work where 1  and 1   are used for internal and 

surface particles, respectively. (see Eq. (5-15)) 

Laplacian  

(for additional δ-term, (
2 ) and 

diffusion terms (
2 2,  u  )) 

Eq. (5-A11) is applied in the present work whereas Eq. 

(5-A12) can also be used. 

Buoyancy force in natural convection 

( i ) 
Eq. (5-A6) is applied in the present work whereas Eq. (5-

A2) can also be used. 

Pressure on the solid walls ( ip ) 

Temperature on the insulated walls (

i ) 

Eq. (5-A2) is applied in the present work whereas Eq. (5-

A6) can also be used. 
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5.2.1 Discretization of governing equation 

To approximate solutions, the combination of two-step projection method given by Chorin [66] 

and third-order TVD Runge-kutta scheme is used (see also Appendix B). The first step involves 

calculation of the intermediate velocity at position x
n
 and y

n
 without the pressure term from the 

momentum balance equation as: 

*
2

n
n

B
t



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

u u
u F  (5-11) 

where u and FB are velocity components and body force vector, respectively. By considering the 

weakly compressible condition, density at time level n
1
 (first stage of TVD RK3) is calculated 

through the continuity equation as: 
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where variables 0c and 0 are artificial sound speed and reference density of particle i. The first 

term on the right-hand-side of Eq. (5-12) is the divergence of intermediate velocity (
*

u ) while 

the second term is the Laplacian of density (
2 ), known as a Delta term ( ) [57]. This term is 

related to the density diffusion and is added to compensate the false diffusion errors (see also 

Appendix C).  Here λ=0 or 1 is an on/off switch, to investigate the impact of this term. Note that 

unlike the δ-WCSPH method [57], here the newly diffusion term is totally free from the tuning 

parameter δ. Once the temporary density (
(1) ) is computed during the first stage of Runge-kutta, 

pressure and its gradient can be calculated. More precisely, allowing a slight compressibility, the 

pressure can be estimated explicitly through an equation of state (EOS) given by: 

(1) 2 (1)

0 0( )p c     (5-14) 

The pressure gradient can then be calculated as: 
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 (5-15) 

To remove the spurious high-frequency noise near the free surface area, Eq. (5-15) is modified 

and generalized by inserting control parameter (  ) according to Tensile Instability Control (TIC) 

[55], [56] where conservative form of the pressure gradient ( 1  ) is used for interior particles (

(1) (1)

j ip p ) while non-conservative one ( 1   ) is applied on the interface particles (
(1) (1)

j ip p ). 

The corrected pressure gradient (
(1)p ) is subsequently used to calculate accelerations of the 

fluid particles ( D Dtu ) through Eqs. (5-2) and (5-3). After solving equations (5-2) to (5-4), the 

velocity ( (1)
u ), position ( (1)

r ) and temperature ( (1) ) of the particles can be updated using the 

first step of the Runge-Kutta scheme as follows: 

( )
(1) ( )

(1) ( ) (1)

( )
(1) ( )

n
n

n

n
n

D
t

Dt

t

D
t

Dt


 

  

 

  

u
u u

r r u  (5-16) 

By replacing
(1)

u , 
(1) (1), r  with the corresponding variables

n
u , ,n nr and repeating the same 

procedure described above, the second step of the Runge-Kutta method can be accomplished as: 
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 (5-17) 

This procedure is continued for the last stage where particles are shifted to the new position ( 1)n
r

with updated velocity 
( 1)n

u and temperature
( 1)n 

as:  
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 (5-18) 

It should be noted that, in the above equations, Laplacian operator provided by Eq. (5-A11) have 

been used to calculate Delta ( ), diffusion (
2 u ) and conduction (

2 ) terms while Eq. (5-A3) 

is used to estimate divergence of the velocity field (
*u ). The temperature in the body force 

term ( ( )b cF g T T   ) for convection heat transfer is computed by Smoothing operator 

according to Eq. (5-A2). 
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At the end of the above process, by integrating the local Nusselt number along the hot and cold 

surfaces, the average Nusselt number can be determined as: 
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 (5-19) 

Over the heated walls of the enclosure:  

0 0

1 1
,

L H

Nu dY Nu dX
L X H Y

  
 

    

(5-20) On the walls of the hot obstacle: 

2 2 2 2
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where A is the non-dimensional effective surface area. With the knowledge of the temperature      

( ' '

, ,,i x i yx y         ) and velocity gradients (
' ' ' '

, , , ,, , ,i x i y i x i yu u v v ), entropy generation due to 

both factors ( ,T FS S ) can be determined through Eq. (5-8) with the help of Eq. (5-A3). 

5.2.2 Implementing boundary condition 

By considering no-slip condition on the structure walls and zero heat flux on the insulated 

surfaces, dimensionless boundary conditions can be expressed as: 

0
n





  On the insulated surfaces  

(5-21) 

1, 0                On the hot and cold walls 

0,U V   On the solid-fluid interfaces 

2

2

solid fluid interface

solid fluid interface

ghost fluid

ghost fluid

U U U

V V V





 

 
 

On the ghost particles (mirror 

velocity) 
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To enforce the non-slip and Neumann-boundary condition on the rigid wall, dynamic boundary 

algorithm (mirror particle) suggested by Marrone et al. [49] is employed to set up the ghost 

particles outside the fluid domain. In this technique mirrored velocity of the fluid particles in 

active zone is interpolated on the other side of the fluid-solid interface where corresponding ghost 

particle is located. The pressure ( ip ) and temperature ( i  on the insulated surfaces) of the ghost 

particle are calculated using Eq. (5-22). In this process at first, field function ( ip  or i ) is 

estimated on the solid-fluid interface and then allocated to the corresponding ghost particles in 

the same rows or columns (see Fig. 5-2 and Eq. (5-A2) in appendix A).  
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 (5-22) 

Note that the above symmetric linear system can be solved using Gaussian elimination with 

partial pivoting. 

5.2.3 Particle Shifting Technique and free surface detection 

To address the tensile instability and unphysical discontinuity within the fluid domain, Particle 

Shifting technique (PST) based on the Fick’s law proposed by Lind et al. [59] is adopted here as: 

( 1)n

shift iD C    r  (5-23) 

1

1
N

j

i ij ij

j j

m
C R W



       (5-24) 

40.2( )
( )

ij

ij

ij p

W
R

W d
  (5-25) 

( 1)* ( 1) ( 1)n n n

i i shift   r r r  (5-26) 

where D denotes a diffusion controller parameter (
20.5D h ) and the term iC  is the gradient of 

particle concentration which provide normal vector on the target particle i. Rij is the artificial 
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repulsive force described by Monaghan [67] and 
( 1)n

shift 
r is the particle shifting distance which 

triggers particles migrate from region of high concentration to the lower one. 
( 1)*n

i


r is the 

particle’s new position after applying PST. However, to avoid the problem of separating particle 

from the interface, optimized particle shifting (OPS) model suggested by Khayyer [60] is 

employed. In this procedure, for interfacial particles, normal direction of 
( 1)n

shift 
r is nullified 

whereas tangential component (
( 1)

,

n

shift t 
r ) is kept unaltered as: 

( 1)

, ( )n
i ishift t iD I n n C       r  (5-27) 

( 1)* ( 1) ( 1)

, ,

n n n

i t i shift t   r r r  (5-28) 

where in  is the corrected form of the 
( 1)n

shift 
r  near the interface (for more details see work of 

Khayyer et al. [60]). Based on the above discussion, one may find that prior to implementing 

PST, the particle labeling scheme should be applied to determine the position of the interface. In 

the current work, the combination of Particle Number Density (PND) [68] and divergence of the 

displacement [59] is used as a hybrid kernel-based technique to capture the free-surface area as: 

1
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,
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m
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       (5-30) 

1 2( ) 3,     (5-31) 

0 0.75 Free-surface particle

1 0.75
( ) [1 cos( )] 0.75 0.93 Vicinity particles

2 0.93 0.75

1 0.93 Internal particles

f 

  


 
     


  


 (5-32) 

Ideally, for a given particle, 1 (PND) and 2 (r ) would be equal to unity and 2, respectively. 

As a result, any deviation of 1 and 2 from their threshold values signifies that kernel function 

is truncated which subsequently gives an indication of the free-surface area. Finally, to identify 

the vicinity particles ( 0.75 0.93   ) and eliminate the discontinuity between interface               
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( 0.75  ) and interior region ( 0.93  ) in this process, cosine function (Eq. (5-32)) suggested 

by Skillen et al. [69] is used for smoothing purpose. 

 

 

Figure  5-2 Example of the Fixed Ghost Particles, free-surface detection techniques, calculation of 

pressure and temperature on the wall particles. 

 

5.3 New kernel function  

Motivated by work of Hongbin et al. [61], in order to enhance the stability and accuracy of the 

particle method, a new high-order smoothing kernel is constructed by combing cosine and 

polynomial functions as: 
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where h and R h ijr  denote smoothing length and relative distance between two interacting 

particle i and j, respectively. Since, analytical integration doesn’t exist for Eq. (5-33), Simpson's 

rule is implemented to calculate constant coefficient D  and satisfy unity condition                       

(
1

1
N

ij

j

W dV


 ). The accuracy and consistency of newly proposed kernel function are 

demonstrated through numerical simulation of 1D Sod shock tube problem where two most 

frequently used kernel function namely: cubic Eq. (5-34) and quintic Eq. (5-35) spline functions 

are considered for comparison purpose [70].  
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 (5-35) 

The initial conditions and material parameters of Sod shock tube (case A1) are similar to work of 

Gui-rong  [70] where 320 particles with high pressure and density are uniformly located in the  
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Figure  5-3 Comparison of the density, pressure, velocity and energy profiles between proposed 

kernel function and those obtained by cubic and quintic spline functions in simulation of the 1D 

Sod shock tube at t=0.2s. 

 

left half of the tube [ 0.6,0] whereas 80 particles with low-density are evenly dispersed at low 

pressure region[0,0.6]  (see also appendix D). 

  

  

  



101 

 

0, 1, 0, 2.5, 1, 0.001875, 0.001875

0, 0.25, 0, 1.795, 0.1795, 0.0075, 0.001875

x u e p x m

x u e p x m





       

       
 (5-36) 

Simulation runs for 0.2t s with time step of 0.005t  and numerical outcomes in terms of the 

velocity, pressure, density and energy profiles are plotted in Fig. 5-3. It can be seen that, the 

presented smoothing kernel is very close to the quintic spline function with the relatively same 

center peak value of 0.28 and lessens monotonically as the relative distance (R) augments. Unlike 

the cubic spline kernel which has a piecewise linear derivative with narrower compact support (

2R  ), the present kernel is sufficiently smooth and has a finite compact support of 3R  even 

for third derivative, resulting in more stable numerical solutions. Moreover, unlike the cubic and 

quintic kernels which are comprised of two and three pieces, the proposed kernel has only one 

piece which makes it more cost-effective from low computational cost and ease of use 

viewpoints. The obtained results in Fig. 5-3 show that, the new kernel can successfully identify 

and resolve the locations of the shock wave ( 0.3x  ), contact discontinuity ( 0.135x  ) and 

internal energy profiles of the rarefaction wave ( 0.25 0x   ) with minimal oscillation. As can 

be observed from Fig. 5-3 that, the proposed weight function demonstrates reasonably good 

agreement with analytical solutions and provides better predictions compared to the cubic and 

quintic kernel functions.  

5.4 Validation  

In this section, accuracy and performance of the new kernel function and Laplacian operator are 

demonstrated through a set of numerical and experimental benchmark cases including, dam 

break, stretching of circular water drop, rotating square patch of fluid and natural convection heat 

transfer in a square cavity. In all cases, smoothing length in kernel function (Eq. (5-33)) is taken 

as 1.0h x   where x y    is initial particle size. Time step ( t ) is chosen according to the 

0.1CFL   (Courant number) condition based on the maximum velocity within the computational 

domain as: 

0 max

0

, 10convection

x
t CFL c

c


   u  (5-37) 
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2

viscous

x
t CFL




   

min( , )convection viscoust t t     

 

5.4.1 Dam break 

To assess the efficiency and reliability of the proposed KDF-WCSPH model in dealing with the 

large deformation and fragmentation of the multiphase flows in engineering applications, 

numerical modeling of the classical dam break on the dry bed has been chosen as a first 

benchmark case (case A1). Simulation is conducted in a two-dimensional enclosure ( 1.0H m

and 1.61L m ) where the rectangular water column ( 0.3D m and 0.6W m ) with zero initial 

velocity (
1

0 0 0u v ms  ) and pressure ( 0 0p  ) is stored on the left side of the reservoir as 

sketched in Fig. 5-1. Snapshots of pressure field together with the time evolutions of the dynamic 

pressure on the downstream wall and liquid levels at three different sampling points are plotted in 

Figs. 5-4 and 5-5. Generally, transient flow induced by failure of a dam can be divided into three 

stages. The first step involves collapsing and spreading of the water volume under the influence 

of the gravity force. It is evident that as the fluid propagates along the dry horizontal bed, the 

initial water level at the dam site ( 1 0.3L m ) declines monotonically until the water front toe 

reaches the right side of the reservoir with high celerity. The second step takes into account the 

impact of the front flow against the end wall where a vertical run-up jet and subsequent splash-up 

process are generated in that area. This stage is also accompanied by the first pressure shock as 

recorded by sensors 1 ( 1 0.003h m ) and 2 ( 2 0.03h m ) at 
* 2.43t   and 

* 2.68t  , respectively. 

As the created surface wave moves upward, due to the restoring action of the gravity force, its 

velocity and kinetic energy decrease and subsequently the stagnation point is formed in the 

bottom right portion of the enclosure. This phenomenon causes continuous suppression of the 

dynamic pressure near the sampling points 1 and 2 ( *

1 20.003 , 0.03 , 2.7 6h m h m t    ) while 

the ascending trend is observed at sensor 3 ( 3 0.08h m ). Under this circumstance, the strength of 

the impact force gradually drops and consequently the crest of the jet becomes thicker and starts 

to come down into the underlying fluid, resulting in the development of an avalanche-like motion  
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Figure  5-4 A qualitative comparison of present results with the existing numerical solution and 

experimental data of Zhang et al. [72] and Lobovský [71] for the case of dam break at different 

non-dimensional times  (
0.5( ) 1.58, 2.57, 3.27t g h  and 6.66). 
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(a) Water level heights 

   

(b) Pressure on the right wall 

   

Figure  5-5 A quantitative comparison of present model with the numerical [72] and experimental 

results of Lobovský et al. [71] in terms of the (a) water level heights and pressure variations on 

the right wall. (a) History of Water-level recorded at L1=0.3m, L2=1.1 and L3=1.362m 

3 1.362L m . (b) History of pressure signals recorded at h1=0.003m, h2=0.03m and h3=0.08m,  

Np=22050. 

 

(plunging breaker) and second sudden bulge in pressure time history. It can be seen from Fig. 5-5 

that, duration and values of second peak impact pressure at the marked points h1 (

* 2

16.28, 2640.7t p N m  ), h2 ( * 2

26.3, 2582.1t p N m  ) and h3 (

* 2

36.28, 2464.7t p N m  ) are in quantitative agreement with the experimental measured data 

and numerical results of Lobovský et al. [71] and Zhang et al. [72], respectively. In the last stage,  
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(a) 0.5( ) 0.5t g h   (b) 0.5( ) 2.5t g h   

  

  

  

(c) 0.5( ) 4.5t g h   (d) 0.5( ) 6.5t g h   

  

  

 

No Result 

(Simulation is terminated due to 

particle clustering) 

Figure  5-6 The effects of the particle shifting technique (PST) and additional diffusive term ( ) 

on the pressure field for the case of the dam break at different time intervals. 

3 7 2 1 2997 , 8.9 10 , 9.81kgm m s g ms         . 
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the backward plunging jet travels toward the left part of the reservoir as a surge wave with the 

second splash-up scenario where some surface particles are separated from the bulk fluid, and 

freely aviated along the wet bed with moderate velocity. It is evident that both the pressure 

contour and configuration of the coalescence and rolling down of the interface (water tongue) are 

successfully predicted which signify the capability of the present method in handling complex 

solid-fluid interactions. To better understand the roles of the above mentioned factors, a sensitive 

analysis has been accomplished and obtained results are depicted in Fig. 5-6. It can be seen that 

by turning particle shifting off ( PST off ), particle clustering takes place within the fluid 

domain (especially on the free-surface area) which ultimately leads to unexpected termination of 

the simulation. On the other hand, absence of the term  ( 0  ) leads to spurious staggered 

pressure noise which dramatically affects the accuracy of the method. These observations are 

consistent with the findings of Antuono et al. [57] and Khayyer et al. [60] who investigated the 

effects of the PST and additional diffusive term on the stability of the Lagrangian particle 

method. 

5.4.2 Rotating square patch of fluid 

To check the capability of the proposed model and performance of the PST in handling negative 

pressure field, the evolution of 2D square patch of fluid subjected to the clockwise vortex is 

chosen here as a second benchmark case (case A2). The initial velocity field is given as the same 

manner introduced by Sun et al. [55] and Khayyer et al. [60]: 

0

0

0

( , ) 2 2

( , ) 2 2

( , ) 0

( , , ) 0

u x y y L y L

v x y x L x L

p x y

g x y t





    

    





 (5-38) 

where
11s  and 1L  are angular velocity and length of the fluid patch, respectively. Generally, 

hydrodynamic behavior of the square patch under the influence of the negative pressure field is 

characterized by the isotropic shrinkage of the medium sides where due to the centrifugal force, 

the middle parts of the patch are dragged towards the center of the vortex. Meanwhile, its corners 

gradually start to grow in the opposite direction to satisfy the continuity condition as shown in 

Fig. 5-7 (a). As the time progresses, four distinct arms of the patch becomes more visible which  
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(a) PST on  & 1   (b) PST on & 0   (c) PST off & 1   

   

   

   

 

No Result 

(Simulation is terminated due 

to 

high pressure fluctuation) 

No Result 

(Simulation is terminated due 

to  

particle clustering) 

Figure  5-7 The effects of the particle shifting technique (PST) and additional diffusive term ( ) 

on the evolution of rotating square patch of fluid at for different time instants ( 0.5t  , 1, 1.5 

and 2 ).( t increases from top to bottom). 
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Present work (pressure 

field) 

Present work (free-surface 

detection) 

Sun et al. [55], Khayyer et al. 

[60] 

 

   

   

(a) (b) (c) 

   

Figure  5-8 Validation of the present model against the numerical results of Sun et al. [55] and 

Khayyer et al. [60] at two different time instants ( 1t   and 2). 12321pN  . (a) History of non-

dimensional pressure variation at the center of the fluid patch as a function of the dimensionless 

time ( t ). Zoomed view of areas 1 (b) and 2 (c) depicted in the first column. 

 

indicates that tensile instability is coming into the picture. This event is reflected in Fig. 5-7(a) 

where adoption of the PST as a means of particle regularization, provides much uniform particle 

distribution while in the absence of it, due to large particles deformation, the solution gets 

unstable, resulting in the occurrence of the numerical cavitation and degradation of the free 
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surface area (see Fig. 5-7(c)). By comparing Figs. 5-7(b) and 5-7(c), one can deduce that, the 

presence of the term  ( 1  ) helps to remove spurious high-frequency oscillations (which is 

typical of the traditional SPH) from the density field and provide much smoother pressure 

distribution, accordingly. The time history of pressure at the center of the patch and snapshots of 

computed free surface area are plotted in Fig. 5-8. The comparisons reveal an excellent 

agreement with analytical solution and previous numerical results [55], [60]. 

5.4.3 Stretching of circular water drop 

Deformation of the weightless circular water drop (
3 310 , 1000Pa s kgm    , 1R m ,

20g ms ) into an elliptical shape is considered as the third benchmark test (case A3). In 

general, due to irrotational velocity field ( 100 100xi y j  u ), left and right parts of the water 

drop begins to shorten in the longitudinal direction whereas bottom and top portions elongate 

transversally. This process results in formation of the positive pressure field as revealed in Fig. 5-

9. Similarly to what observed in previous cases, prototypes of the flow without the PST is 

unstable and characterized by undesirable effects of the tensile instability and unphysical 

discontinuity. On the other hand, the occurrence of the density error accumulation is attributed to 

the elimination of the term  ( 0  ) which eventually destroys pressure field and drives the 

numerical calculation to the wrong evolution. This event is confirmed by zoomed view of area 2 

in Fig. 5-10 where due to the high level of the particles interaction in x-direction, particle 

stratification and unphysical void regions are horizontally established within the fluid domain. 

Furthermore, it is discernible from Figs. 5-9(c) and 5-9(d) that the flow patterns generated by 

both conventional WCSPH [47] and present model without the term  ( 0  ) suffer from 

unphysical pressure oscillations (staggered noise) and particle inconsistency. This event implies 

that traditional WCSPH formulations cannot sufficiently guarantee the conservation of total 

mass. Time history of the horizontal semi-axis movement and pressure variations at the center of 

the drop are illustrated in Fig. 5-10. Despite the small discrepancy that may come from assigning 

zero initial value for pressure ( 0 0p  ), numerical outcomes of the present work are in good 

overall agreement with analytical solution [47]. 
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(a) Present work 

( PST=on & 1  ) 

(b) Present work 

        ( PST=off & 1 
) 

(c) Present work 

( PST=on &

0  ) 

(d) Xu et al. [47] 

(WCSPH) 

    

    

    

Figure  5-9 A quantitative comparison of calculated results with the numerical data of Xu et al. 

[47] in terms of particles distribution and pressure contours for the case of stretching circular 

water drop (case A3). (a-c) the impacts of Particle Shifting Technique ( PST=On & PST=Off ) 

and additional diffusive term ( 0  & 1  ) on the particles behavior. 15388pN  , 1R m . 
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(a) PST=On (b) PST=Off 

  

(c) (d) 

  

Figure  5-10 Zoomed view of areas 1 (a) and 2 (b) under the influences of Particle Shifting 

Technique (PST) (see also first and second columns in Fig. 9). Comparison of (c) semi-minor 

axis variations and time history of non-dimensional pressure at the center of drop (d) obtained 

from the present model and those reported by Xu et al. [47]. 
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5.4.1 Natural convection heat transfer 

In order to verify the model ability to handle buoyancy-driven flow, analysis of natural 

convection heat transfer in the two-dimensional square cavity with localized heating from below 

is considered as a last benchmark test. The schematic diagram of the enclosure along with its 

boundary conditions is presented in Fig. 5-1 (case A4). As shown, the bottom wall is partially 

heated with uniform high temperature (Th) whereas vertical sidewalls of the enclosure are 

maintained at a constant but low temperature (Tc). The remaining parts of the horizontal walls are 

insulated and impermeable to mass transfer. Fig. 5-11 illustrates the streamlines, isotherms, and 

contours of the velocity components (u,v) at
510 ,Pr 0.71Ra   . Generally, due to the thermally-

induced buoyancy effect, the heated fluid adjacent to the bottom wall ascends along the centerline 

of the enclosure until it hits the isolated top wall. Then, it changes its direction and moves 

horizontally towards the vertical cavity walls where, due to interaction with surrounding cold 

particles, it becomes gradually denser and heavier. The relatively cold fluid which has lost a 

portion of its energy descends downwards along the lateral sidewalls and ultimately enters the 

thermal boundary layer of the hot surface with minimal energy. This cycle results in a formation 

of the mushroom-like temperature pattern and two circulating cells within the enclosure. As the 

simulation goes on, isotherms become more distorted at the core and distinct thermal boundary 

layer is developed near the active walls, indicating convection dominant mode of the heat transfer 

at
510Ra  . Again, it is evident that the thermal characteristics of the air-flow in terms of the 

average Nusselt number and temperature distribution are well in accordance with the recent 

experimental measurements and numerical data of Calcagni et al. [73] and Sheikholeslami et al. 

[74]. 
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Present work 

(a) Isotherms (b) Velocity (u) (c) Velocity (v) 

   

   

   
Sheikholeslami et al. [74] Calcagni et al. [73] (d) Average Nusselt 

number 

   

Figure  5-11 Validation of the present model against the numerical (mesh-based) and 

experimental results of Sheikholeslami et al. [74] and Calcagni et al. [73] for case A4 in terms of 

the (a) isotherms, (b-c) velocity contours in the x and y-directions, and (d) average Nusselt 

number. 0.4L H . 18225pN  . Ra=10
5
 and Pr=0.71. 
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5.5 Results and discussion 

Previous section clearly demonstrated that KDF-WCSPH model together with proposed new 

operators are robust and reliable for modeling a wide range of particulate flows with thermal 

convection and complex interface scenarios. Thus, in this section entropy generation due to 

natural convection heat transfer in three different geometries is examined using KDF-WCSPH. 

Figs. 5-12 and 5-13 present the streamlines and isotherms for case B1 ( Pr 0.71 ), case B2 (

Pr 6.2 , 1 2 0.6L L H  ) and case B3 ( Pr 0.71 , 0.3L H ) at different Rayleigh number                            

(
3 610 10Ra  ) and time instants. Generally, in all cases the buoyancy force induced by the 

density difference and temperature gradient within the enclosure causes the working fluid to rise 

up along the hot surface and migrates toward the cold area to exchange its high level of energy. 

After impinging on the cold walls, the lighter fluid becomes more and more squeezed and denser 

as its internal energy alleviates. Subsequently, it gets heavier and falls down at the vicinity of the 

cold wall and turns back to the hot area to complete the thermal cycle and satisfy the mass 

continuity. This process is repeated until the steady-state condition is attained within the 

computational domain where no improvement occurs in the macroscopic behavior of the heat 

transfer rate ( Nu ). Based on the above mechanism, it can be seen that due to dominant 

conduction mode of the heat transfer at 310Ra  , the flow field in case B1 is characterized by a 

weak clockwise circulation which occupies the entire enclosure. As expected, corresponding 

isotherms are smooth and undistorted, signifying poor transportation of heat from left to right 

cold wall. As Ra increases to 10
4
, prevalent effect of buoyancy force becomes more discernible 

such that isotherms gradually get shifted towards the sidewalls and strength of the flow 

circulation enhances. In this circumstance, due to onset of convection, the core of the primary 

vortex is found to be slightly elongated in x-direction and distinct thermal boundary layer starts to 

establish near the vertical walls. With the further increase in Ra, the main vortex breaks down 

diagonally into two small eddies at the core and absolute values of velocity components which 

represent the intensity of the flow enhances (see also maxU and maxV in table 5-2). It is evident 

that, the corresponding isotherms get more condensed under twisting effects of flow pattern in 

the middle portion and the thickness of the thermal boundary layer reduces. 
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Figure  5-12 Transient variations of isotherms (temperature field) as a function of the non-

dimensional time for cases B1 to B3 at different Rayleigh numbers. 
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Figure 5-12 Transient variations of isotherms (temperature field) as a function of the non-

dimensional time for cases B1 to B3 at different Rayleigh numbers (cont’d). 
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Figure  5-13 Transient variations of streamlines and velocity in x-direction (u) as a function of the 

non-dimensional time for cases B1 to B3 at various Rayleigh numbers. 
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Figure 5-13 Transient variations of streamlines and velocity in x-direction (u) as a function of the 

non-dimensional time for cases B1 to B3 at various Rayleigh numbers (cont’d). 
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This implies that the convection regime is dominant and viscous effects are no more in the flow. 

As Ra enhances to 10
6
, due to high momentum diffusivity and increasing effects of convection, 

velocity contours are highly stretched and isotherms become more concentrated near the 

differentially heated walls, resulting in a much larger temperature gradient and thermal mixing 

inside the enclosure. It is also evident that, due to strong upward and downward flow movement 

in the close vicinity of the heated walls, two egg-shaped cores are dragged toward the lateral 

walls and subsequently middle zone becomes broadly stagnated which is concordant with 

horizontal thermal stratification in that area. However, a different scenario occurs in the L-shaped 

enclosure (case 2B). It can be seen that at 
310Ra  a single clockwise eddy is formed in the 

vertical part of the enclosure and isotherms are smooth curves and uniformly distributed 

throughout the enclosure.  

Table  5.2 The effects of the Rayleigh number on the heat transfer rate and entropy generation for 

cases B1 to B3 (steady-state condition). 

 

One can observe that unlike the case B1 ( Pr 0.71 , 2

1BV H ), by increasing the Ra up to
410 , the 

flow pattern remains invariant and isotherms still tend to follow the geometry profile of the 

Case A 

Ra Nu  maxU  
maxV  Be  totS  ,maxtotS  

TS  ,maxTS  
FS  ,maxFS  

10
3
 1.120 3.633 3.681 0.970 1.149 2.291 1.115 2.274 0.034 0.242 

10
4
 2.249 16.179 19.569 0.684 3.243 25.210 2.220 12.584 1.023 16.113 

10
5
 4.548 43.476 68.597 0.194 22.831 590.975 4.450 60.563 18.381 557.458 

10
6
 8.957 123.011 221.395 0.025 335.159 15877.138 8.630 320.876 326.529 15754.411 

Case B 

Ra Nu  maxU  
maxV  Be  totS  ,maxtotS  

TS  ,maxTS  
FS  ,maxFS  

10
3
 1.82 0.757 1.216 0.998 5.898 68.668 5.889 68.490 0.008 0.177 

10
4
 1.911 7.324 12.664 0.874 7.048 66.348 6.165 46.668 0.882 19.679 

10
5
 4.1225 48.045 80.680 0.207 64.890 976.628 13.450 116.445 51.440 921.250 

10
6
 7.302 213.197 347.404 0.022 1085.504 28548.838 24.324 536.187 1061.180 28399.721 

Case C 

Ra Nu  maxU  
maxV  Be  totS  ,maxtotS  

TS  ,maxTS  
FS  ,maxFS  

10
3
 2.193 0.676 0.990 0.998 4.978 58.721 4.969 58.576 0.009 0.147 

10
4
 2.334 6.854 10.016 0.859 6.140 101.420 5.277 88.428 0.862 14.873 

10
5
 4.116 32.885 64.247 0.228 41.131 907.241 9.383 345.404 31.747 679.228 

10
6
 7.245 116.523 205.969 0.034 490.809 21709.545 16.737 835.338 474.072 21567.823 
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enclosure. These observations can be attributed to the small gap between the active walls and 

high Prandtl number used in case B2 ( Pr 6.2 , 2 2

2 1 2 0.64BV H L L H   ) which leads to the 

significant reduction of the flow intensity and thereby postponement of the convection initiation 

to higher values of Rayleigh number (
410Ra  ). This feature can also be verified by examination 

of absolute values of maximum velocities in table 5-2 where maxU and maxV in case B1 are 

approximately twice as those of case B2. With subsequent increase in Rayleigh number 

(Ra=10
5
), the role of convection in heat transfer becomes more accentuated which causes the 

unicellular rotating vortex to turn slowly into a multi-cellular eddies. This trend is accompanied 

by appearance of the rising thermal plume (Ω-shaped plum) in horizontal section and the other 

gigantic sinking thermal plume close to the convex corner of the cold rip. Traditionally, this 

physical model with regular thermal convective rolls is referred to as Rayleigh-Bénard cells 

which in turn can triggers the onset of thermal instability in horizontal part of the enclosure. As 

expected, by increasing the Ra up to 10
6
, fluid motion inside the enclosure is accelerated and 

therefore Rayleigh-Bénard instability becomes more prominent. It can be seen that in this 

condition, the third Bénard cell is established as newly falling cold plum at t
*
=0.015. As time 

progresses, the descending plume which receives the incoming cold fluid, starts to grow and push 

the rising plume unremittingly towards the vertical part of the enclosure. During the interaction 

and expansion of these thermal plumes, the isotherms are distorted incessantly and thereby some 

secondary rolls of less importance are developed and vanished within the enclosure. As the rising 

plume moves horizontally along the bottom wall, it becomes wavy and twisted. It eventually 

penetrates into the vertical side and merges with the innermost eddy occupying that area.  

Flow transitions for case B3 (annulus) is also depicted in Figs. 5-12 and 5-13 where the working 

fluid is confined between two-square concentric duct annuli. It can be seen that due to the 

symmetric placement of the heat source and boundary conditions of the problem, the flow 

undergoes a bifurcation and consequently a pair of counter rotating vortices with circular-shaped 

cores is established within the enclosure. Similar to previous cases, at low Rayleigh number 

(Ra=10
3
) isotherms are parallel to each other and symmetrically dispersed with respect to center 

of the enclosure which indicates that heat transfer rate is primarily controlled by diffusion and 

temperature field is totally decoupled from the flow field. Slight distortion in the trend of 

isotherms at Ra=10
4
 is consistent with a mode so-called transition regime (convection initiation) 
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where heat is conveyed by simultaneous conduction and convection. This stage is also 

accompanied by appearance of very weak ascending plume over the hot obstacle and formation 

of the thermal boundary layer near the cold walls. By increasing the Ra to 10
5
, the height of the 

rising plum enhances and isotherms become more confused. In fact, significant twisting of the 

isotherms together with the development of the hotspot (hot stagnant fluid) adjacent to the top 

wall of the heater clearly exhibit characteristics of the convection-dominated regime. With further 

increase in Rayleigh number, convection mechanism is substantially improved so that the eyes of 

the two counter-rotating cells move upward and meet each other at the top portion of the annulus 

while streamlines in bottom half become more diverge. A close inspection of the horizontal 

velocity contour (u) in Fig. 5-13 vividly demonstrates that at Ra=10
6
, due to increasing effects of 

convection and impingement of the ascending plume on the top wall, streamlines are densely 

concentrated in upper half of the annulus while a reverse trend occurs in the lower one. 

Furthermore, it is interesting to observe that, thermal boundary layer thickness in close proximity 

to the cold walls progressively declines from bottom to top portion.The substantial reduction of 

thermal boundary layer thickness and elongation of the velocity components together with 

streamlines clustering indicate that most of the heat removal rate and much of the fluid motion 

take place in the upper region while the cold heavy fluid in the lower region is practically 

stagnant. These observations indicate that, heat transfer in bottom of the annulus takes place 

primarily as a result of diffusion even at high Rayleigh number. This behaviour is also 

compatible with the streamlines diverging and smoothness of the isotherms in the lower half of 

the enclosure. Similar findings were also reported by Saravanan et al. [6] and Hooshmand et al. 

[8] who investigated natural convection heat transfer in the annulus. 

Figs. 5-14 and 5-15 illustrate contours of the local Bejan number (Be) and entropy generation due 

to heat transfer irreversibilities (ST) at different Ra and time instants for cases B1 to B3. Overall 

evaluation of Figs. 5-14 and 5-15 illustrate that, because of weak buoyancy force and constant 

thermal gradient at low Rayleigh number ( 310Ra  ), local ST is spaced uniformly throughout the 

domain and consequently local Be in all cases approaches unity ( 1Be  ) which indicates that 

contribution of viscous dissipation ( 0FS  ) on total entropy generation ( tot TS S ) is trivial. 
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Figure  5-14 Transient variations of local Bejan number as a function of the non-dimensional time 

for cases B1 to B3 at various Rayleigh numbers. 

 



123 

 

510Ra   
C

as
e 

B
1

 

    

C
as

e 
B

2
 

    

 C
as

e 
B

3
 

    
610Ra   

C
as

e 
B

1
 

    

C
as

e 
B

2
 

    

C
as

e 
B

3
 

    

Figure 5-14 Transient variations of local Bejan number as a function of the non-dimensional time 

for cases B1 to B3 at various Rayleigh numbers (cont’d). 

 



124 

 

Since at this stage, entropy generation due to viscous dissipation is sufficiently small to be 

negligible ( F TS S ), contours of total entropy generation would be identical to thermal 

dissipation map (see also Fig. 5-13). However, as discussed earlier, by increasing the Ra, the 

conduction mechanism gradually shifts to the convection mode, leading to the greater thermal 

smearing (higher temperature gradient) and flow penetration depth (higher velocity gradient) 

within the enclosures. Hence, according to Eq. (5-8), total entropy generation due to both factors 

(ST, SF) augments. Interestingly, table 5-2 shows that although by increasing the Ra both ST and 

SF increase but the increment of SF is remarkably higher than that of the ST, resulting in the 

deterioration of average Bejan number. However, since buoyancy force at Ra=10
4
 has a same 

order of magnitude of the hydraulic resistance (quasi-conduction regime), Be still remains higher 

than 0.5 ( 0.68 1Be  ) which indicates that the large amount of the exergy loss in all cases is 

still associated with the thermal dissipation. This assertion is well reflected in the local Bejan 

number values in Fig. 5-14 where entropy generation due to fluid friction is confined only to the 

small zone in close vicinity of the heated walls. This trend persists and even intensifies as the 

convective transport strengthens. By increasing the Ra, fluid motion in all cases is considerably 

invigorated and consequently the viscous dissipation (SF) becomes the major contributor to the 

total entropy generation rise. As stated before, since irreversibility due to fluid friction augments 

much faster than that of the heat transfer, local and average Bejan number decline rapidly and 

approach zero especially near the lateral walls. This finding indicates that at high Ra, only the 

small amount of the available work is utilized to compensate the irreversibilities due to the heat 

transfer (see also table 5-2 at Ra=10
6
 where T FS S ). It can be seen that, in case B1 at Ra=10

6
, 

due to comparatively lesser velocity gradients and weak convective flow in the middle portion, 

fluid becomes nearly stagnant and thermal stratification is generated in that area. This in turn 

results in the higher values of local Bejan number which subsequently manifests the relative 

dominance of ST. A similar configuration also occurs in the vertical and horizontal parts of the L-

shaped enclosure (case B2) especially in proximity of the upwelling and down-welling thermal 

plumes. It is evident from Fig. 5-14 that, the values of the local Bejan number near the thermal 

plumes are greater than 0.5 ( 0.5Be  , T FS S ), which indicates that the formation of thermal 

plume has a negative impact on the exergy efficiency (destruction of the available work) and can 

be considered as a major source of the energy consumption and thermal dissipation. Interestingly, 

this physical model is more pronounced at Ra=10
5
 where moderate thermal and flow 
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perturbations occur within the enclosure. This scenario is further verified in case B3 where due to 

existence of the rising plume (hotspot) and less velocity gradient in the bottom of the annulus, 

insignificant SF is observed in those areas ( T FS S ) which in turn is responsible for the 

enhancement of local Bejan number ( 0.5Be  ). The corresponding local entropy generation due 

to the heat transfer irreversibility in Fig. 5-15 also reveals that at high Rayleigh number, the 

maximum values of ST take place in close vicinity of the thermal surfaces where isotherms are 

densely packed and thin thermal boundary layer is developed. Moreover, by making detailed 

comparisons between Figs. 5-12 and 5-15, one can observe that entropy generation due to heat 

transfer irreversibility intrinsically has a tendency to follow morphological characteristics of the 

temperature field. For instance, it can be seen that compression of isotherms near the heated walls 

(in case B1), formation and movement of the ascending thermal plume along the bottom wall (in 

case B2), presence of the hotspot and stagnation point in the top and bottom portions of the 

annulus (in case B3) are well reflected in the contour of the thermal dissipation in Fig. 5-15. In 

fact, from the above discussion, one can conclude that, the results from the second-law of 

thermodynamics might be superior to the isotherms and streamlines (first-law of 

thermodynamics) in determining the regime of the fluid flow and heat transfer in the thermal 

systems involving bifurcation, thermal plumes, hotspot, stagnation point, and thermal 

stratification. For getting further insight into the influence of Rayleigh number on the heat 

transfer rate and exergy destruction within the enclosures, transient variation of the average 

Nusselt number ( Nu ), totS , TS , FS and ( Be ) are depicted in Fig. 5-16. It can be seen that by 

increasing the Ra, the average Nusselt number, TS and FS increase while a downward trend 

occurs in the values of Be . As stated before, at low Ra due to weak fluid motion and low velocity 

gradients, the significant amount of entropy generation in all cases takes place as a result of the 

thermal dissipation. However, due to augmented convective motion of the working fluid at high 

Ra, totS enhances drastically and begins to follow the pattern of FS  in the majority with minor 

impacts of TS . These results are to be expected at high Ra where fluidity and gradients of 

velocity are considerably intensified due to stronger buoyancy-driven flow. 
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Figure  5-15Transient variations of local entropy generation due to heat transfer as a function of 

the non-dimensional time for cases B1 to B3 at various Rayleigh numbers. 
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Figure 5-15 Transient variations of local entropy generation due to heat transfer as a function of 

the non-dimensional time for cases B1 to B3 at various Rayleigh numbers (cont’d). 
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Fig. 5-16 also reveals that at low Rayleigh number ( 310Ra  ), due to conduction dominant mode 

of the heat transfer, all the above-mentioned pertinent parameters ( Nu , totS , TS , FS and Be ) 

converge to the constant value asymptotically, while at relatively high Rayleigh numbers (

410Ra  ), an oscillatory behavior emerges within the computational domain prior to reaching 

the steady-state condition. This phenomenon can be attributed to the significant movement of the 

temperature perturbation generated by the buoyancy force at high Ra. For example, in case B2 at 

Ra=10
6
,  the first fluctuation in the values of Nu  and totS  at *0 0.02t   is associated with the 

formation of the ascending thermal plume in the horizontal part of the enclosure whereas the 

second fluctuation at *0.06 0.09t   takes place due to the displacement of the rising plume 

toward the vertical section. Similar observation were reported by Magherbi et al. [75] who 

investigated entropy generation due to natural convection heat transfer within the differentially 

heated cavity. Finally, it is worth mentioning that, since entropy generation during the natural 

convection heat transfer has been well-documented in the literature, the results of the case B1 can 

be considered as a further validation in the present work (see Figs. 3 and 4 in work of Ilis et al. 

[64]). 
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Figure 5-16 Variations of average Nusselt number ( Nu ), average Bejan number ( Be ), total 

entropy generation ( totS ), entropy generation due to thermal ( TS ) and viscose ( FS ) 

irreversibilities as a function of the non-dimensional time for cases B1 to B3 at different Rayleigh 

numbers. Case B1 ( Pr 0.71 ), case B2 ( Pr 6.2 , 1 2 0.6L L H  ) and case B3 ( Pr 0.71 ,

0.3L H ). 
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Figure 5-16 Variations of average Nusselt number ( Nu ), average Bejan number ( Be ), total 

entropy generation ( totS ), entropy generation due to thermal ( TS ) and viscose ( FS ) 

irreversibilities as a function of the non-dimensional time for cases B1 to B3 at different Rayleigh 

numbers. Case B1 ( Pr 0.71 ), case B2 ( Pr 6.2 , 1 2 0.6L L H  ) and case B3 ( Pr 0.71 ,

0.3L H ), (cont’d). 
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5.6 Conclusions 

In the current work, a new Kernel Derivative-Free (KDF) version of the Weakly Compressible 

Smoothed Particle Hydrodynamics model (WCSPH) has been introduced for simulation of free-

surface flows and natural convection heat transfer problems. A wide range of the two-

dimensional benchmark cases in various fields of engineering and science has been employed to 

demonstrate the capability and performance of the proposed model (KDF-WCSPH). The 

outcomes of the numerical simulations drawn from this study support the following major 

conclusions: 

 The results showed that the proposed new kernel function significantly outperformed two 

commonly used kernel functions (i.e. cubic and quintic spline functions) in modeling 1D 

Sod shock tube problem. 

 The results showed that the proposed Laplacian operator provides more accurate results 

compared to traditional WCSPH method in modeling breaking dam flow, stretching of 

circular water drop, rotating square patch of fluid and natural convection heat transfer in a 

square enclosure. 

 The results showed that combination of the Particle Number Density (PND) and 

divergence of the displacement as the particle labeling scheme can successfully identify 

the location of the free-surface and its vicinity particles. 

 It was found that traditional formulations of SPH model are prone to tensile instability 

whereas the proposed model (KDF-WCSPH) benefit from high level of accuracy and 

consistency. 

 It was found that implementing Particle Shifting Technique (PST) has a marked impact 

on the stability and accuracy of the mesh-free particle methods.  

 It was found that inserting additional diffusive term into the continuity equation can 

considerably suppress (or remove) high-frequency oscillations noise from the pressure 

field (unfavorable check-board pressure field), leading to more accurate results as 

compared to conventional WCSPH. 

 It was found that, the proposed smoothing operator can successfully interpolate values of 

the field function (in the current work the smoothing operator has been used to calculate 

the temperature values in the buoyancy force term ( )b cF g T T   ). 
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 The results showed that, with the increment of Rayleigh number, both heat transfer rate    

( Nu ) and overall entropy generation rate augment whereas a reverse trend occurs in the 

values of average Bejan number. 

 The obtained results showed that, exergy analysis as an effective tool outperformed first-

law analysis of thermodynamics in determining regime of fluid flow and heat transfer in 

the thermal systems involving bifurcation, thermal plumes, hotspot, stagnation point, and 

thermal stratification. 

 

5.7 Appendix A (Gradient, Laplacian and divergence operators) 

Along this appendix three main operators including: gradient, Laplacian and divergence will be 

derived based on the Taylor series expansion. By multiplying Eq. (5-A1) with
2

ij ijW r ,
2

ij ij ijx W r ,

2

ij ij ijy W r and integrating over the computational domain, particle approximation for the field 

function (smoothing operator) can be computed as follows: 
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 (5-A2) 

In above equation, fi is a general variable such as velocity, temperature or pressure.

( , )ij j iW W h r r and
j jdV m   denote kernel function and volume of particle i, respectively. 

ij j ix x x  and
ij j iy y y  represent the distance between i-th particle to the j-th particle at 

positions ri and rj. L is the corrective matrix which allows the method to fulfill the first-order 

accuracy. By subtracting fi from both sides of Eq. (5-A1) and multiplying it by 2

ij ij ijx W r and

2

ij ij ijy W r , the gradient operator can be derived as follow: 
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Eq. (5-A3) was originally introduced by Khayyer et al. [33] and known as a corrected gradient 

model of original MPS method. Note that, Eq. (5-A3) can be modified and generalized by 

inserting control parameter (  ) on the basis of the Tensile Instability Control (TIC) [55], [56] as 

follows 
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(5-A4) 

where the conservative form of the gradient operator ( 1  ) is used for inner particles (
j if f ) 

whereas non-conservative form ( 1   ) should be applied on the interface (
j if f ). Again, it is 

worthwhile to mention that, Eq. (5-A3) is utilized to calculate the divergence and gradient of 

velocity (u ,u ) and temperature (  ) across the whole computational domain whereas Eq. 

(5-A4) should be implemented for calculating the pressure gradient. However, for a uniform 

particle distribution, off-diagonal elements of the corrective matrix in Eqs. (5-A2) to (5-A4) can 

be neglected, resulting in the following approximations: 
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where f, f and D0 denote an arbitrary scalar, vector and spatial dimension. Eq. (5-A6) is the MPS 

form of the Shepard approximant [76] while Eqs. (5-A7) and (5-A8) are gradient and divergence 

operators in the classical MPS formulation that were initially introduced by Koshizuka [62], [63]. 

Note that, Eq. (5-A5) can be proved by solving
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system ( cos( ), sin( )ij ij ij ijx r y r   ). By ignoring the term 
''

xy ij ijf x y in Eq. (5-A1) and 

multiplying it by
2

ij

ij

W

r
 and integrating over the computational domain, the following Laplacian 

operator can be obtained: 

' '

2 2 2
1 1 1

2 2

'' ''

2 2
1 1

( )

1 1

2 2

N N N
ij ij ij

j i x ij y ij

j j jij ij ij

N N
ij ij ij ij

xx yy

j jij ij

W W W
f f dV f x dV f y dV

r r r

x W y W
f dV f dV

r r

  

 

  

 

  

 
 

(5-A9) 

To drive (
2 '' ''

xx yyf f f   ) it is assumed that 
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 . Although this 

assumption is not valid for irregular particles arrangement and free surface region where kernel is 

truncated but it is the only way in which 
2 f can be computed. Under the aforementioned 

hypothesis, the third and fourth terms in Eq. (5-A9) can be written as: 
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By substituting Eq. (5-A10) into Eq. (5-A9), the new Laplacian operator can be expressed as: 
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where '

xf  and 
'

yf  are gradient of arbitrary scalar or vector function ( if ) (i.e. velocity, 

temperature, density or pressure, etc ) which can be computed through Eqs. (5-A3) or (5-A4). It 

is worthwhile mentioning that, the present model is similar to work of Schwaiger [53] who 

proposed high-order Laplacian operator by taking gradient of kernel into account (
,ij xW ,

,ij yW ). 

However, since gradient of kernel doesn’t appear in Eqs. (5-A1) to (5-A11), the current model 

could thus be referred to as a Kernel Derivative-Free (KDF) version of the WCSPH model (KDF-

WCSPH). Similar to gradient operators, for the uniform particles distribution (
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simple expression as: 
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(5-A12) 

It is also possible to derive the second Laplacian operator directly, without considering any 

additional assumptions. This is achieved by subtracting if from both sides of Eq. (5-A1) and 

decomposing it into x and y directions as follow: 
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By multiplying Eqs. (5-A14) and (5-A15) by
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the second derivatives of shape function (
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By directly summing the terms 
''

xxf and 
''

yyf  in above equations, the second Laplacian operator 

can be written as: 
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(5-A18) 

Finally, it is interesting to note that, similar to previous equations for the case of the fully 

supported kernel, Eq. (5-A18) will eventually turn into Eq. (5-A12). 

5.8 Appendix B (Third-order TVD Runge-Kutta) 

In the current work, transient term in Navier-Stoks and energy equations is discretized in time 

using third-order total-variation-diminishing (TVD) Runge–Kutta scheme as follows [77]: 

( )h

du
L u

dt
  ( )h

dr
R u

dt
  ( )h

d
T

dt


  ( )h

d

dt


   (5-B1) 

(1) ( ) ( )

1 1

(1) ( ) ( )

1 1

(1) ( ) (1)

1 1

(1) ( ) ( )

1 1

( )

( )

( )

( )

n n

h

n n

h

n

h

n n

h

t

u u t L u

r r t R u

t T

    

 

 

    

   

  

  

  

 

 

(5-B2) 

(2) ( ) (1) (1)

2 2 2

(2) ( ) (1) (1)

2 2 2

(2) ( ) (1) (2)

2 2 2

(2) ( ) (1) (1)

2 2 2

( )

( )

( )

( )

n

h

n

h

n

h

n

h

t

u u u t L u

r r r t R u

t T

      

  

  

      

    

   

   

   

 

 

(5-B3) 

( 1) ( ) (2) (2)

3 3 3

( 1) ( ) (2) (2)

3 3 3

( 1) ( ) (2) ( 1)

3 3 3

( 1) ( ) (2) (2)

3 3 3

( )

( )

( )

( )

n n

h

n n

h

n n n

h

n n

h

t

u u u t L u

r r r t R u

t T

      

  

  

      





 



    

   

   

   

 

 

(5-B4) 

where 1 1  , 2 3 4  , 3 1 3  , 1 1  , 2 1 4  and 3 2 3  .  
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5.9 Appendix C (Additional Delta term ( ) in continuity equation) 

Generally, there are two different approaches in the context of the weakly compressible SPH for 

predicting pressure domain namely: Number Density (Eq. (5-C1)) [78], [79] and mass 

conservation law (Eq. (5-C2)) [80], [81] as given below: 
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The former estimates the density through summation over all particles in the kernel support 

without the need of velocity divergence. Nevertheless, the results of Monaghan [82] shown that, 

although Eq. (5-C1) requires less computational effort than Eq. (5-C2) but due to kernel 

truncation error, it causes significant density drop adjacent to the free-surface area. On the other 

hand, Lee et al. [50] have questioned the accuracy of the standard WCSPH and highlighted that 

on the coarser resolutions and high Reynolds number, pressure field predicted by Eq. (5-C2) is 

unreliable and noisy. To deal with this shortcoming and avoid spurious high-frequency 

density/pressure oscillations, Antuono et al. [57] modified the classical WCSPH by introducing 

the new additional diffusive term in the continuity equation. This method which is known as

WCSPH  , has been widely used in the literature to solve the practical hydraulics problems 

such as: 2D oscillating water chamber [83], simulation of violent impact flow [49] and flow past 

a circular cylinder [55], [56]. Based on the above brief literature review, along this appendix, the 

process of deriving Fully-Kernel Based version of the density diffusive term ( ) will be 

presented and discussed in detail. The transient governing equations of mass and momentum for 

a weakly compressible fluid in Lagrangian framework are the ones that follow: 
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By adding and subtracting the temporary velocity (
*

u ) into the left-hand side of Eq. (5-C4) and 

employing two-step projection algorithm for velocity-pressure coupling [66], momentum 

equation can be divided into two successive parts as given below: 
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The divergence of Eq. (5-C7) reads: 
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By substituting equation (5-C8) into Eq. (5-C3), one obtains: 
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Using the first-order state equation, the third term in Eq. (5-C9) can be expressed in the form of 

the density as: 
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By substituting equation (5-C11) into Eq. (5-C9), an alternative form of the continuity equation 

can be obtained as: 

* 2 2
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The second term in the right-hand side of the above equation is the additional diffusive term         

( 2 2

0 ( )t c   ). One of the most notable features of Eq. (5-C12) is that unlike the conventional

WCSPH  [57], the present model does not contain any tunable parameter to control the 
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density diffusive term. Finally, it should be noted that similar to the viscous term Eq. (5-A11) or 

(5-A18) can be used to calculate the Laplacian of density (
2 ). 

5.10 Appendix D (1D Sod shock tube) 

The dimensional governing equations including momentum, energy, continuity and displacement 

in a Lagrangian framework for 1D Sod shock tube problem are shown as follows: 
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where e and
ijW are internal energy and gradient of kernel function, respectively. The symbols c 

and 1.4  denotes artificial sound speed and heat capacity ratio. The typical procedure for 

solving the above equations is detailed in [70] and illustrated above. First, material derivatives 

and density ( , ,
D De

Dt Dt


u
) are computed using Eqs. (5-D1) to (5-D3) and subsequently particles 

are advected to the new positions with updated velocity and energy according to the forward 

Euler time integration scheme (Eq. (5-D4)). Having obtained the density and energy fields, 

pressure and sound speed are estimated by Eq. (5-D5) and process will be repeated for the next 

time step. To stabilise the simulation and dampen non-physical fluctuations appearing near the 

shock waves, artificial viscosity (
ij ) proposed by Monaghan [67] is frequently added in the 

momentum equation as follows:  
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Abstract     

The present work introduces a modified Incompressible Smoothed Particle Hydrodynamics 

(ISPH) model for simulation of free-surface flows and convection heat transfer. First, two new 

gradient and Laplacian models are proposed based on the Taylor series expansion and then used 

for discretization of the diffusion terms, Pressure Poisson's equation (PPE), and divergence of 

velocity. To maintain overall high-order accuracy, an explicit third-order TVD Runge-Kutta 

scheme is employed for discretization of the transient terms in Navier-Stokes and energy 

equations. Moreover, a new Hybrid Particle Shifting Technique (HPST) is developed by 

combining the classical PST and a collision model.  A new kernel function is developed by 

combination of the Gaussian and polynomial functions and is then applied to the simulation of 

classical 1D Sod shock tube. Furthermore, a novel Hybrid Free-surface Detection (HFD) 

technique is proposed for accurate imposition of Dirichlet pressure boundary condition at the free 

surface area. The validity and applicability of proposed numerical schemes are verified against 

the several challenging benchmark cases including: dam-break flows with/without an obstacles, 

stretching water drop, rotating square patch of fluid, Rayleigh-Taylor instability, energy and 

exergy analysis of natural convection heat transfer in differentially heated cavity. The results 

show that, the newly constructed kernel function can successfully guarantee the stability and 

convergence of the numerical solution. Furthermore, it is found that, the proposed Hybrid Particle 
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Shifting Technique (HPST) can efficiently resolve the unphysical discontinuity and suppress 

spurious pressure fluctuations.  

Keywords: New Kernel Function; Hybrid Particle Shifting Technique; New free-surface 

detection technique; New gradient operator; New Laplacian operator; Improved ISPH;  

6.1 Introduction 

The Smoothed Particle Hydrodynamics (SPH) approach as a truly Lagrangian particle model was 

originally proposed by Gingold and Monaghan [1] to describe the evolution of astrophysical 

systems and migration of giant planets. Unlike the Eulerian models (e.g. FDM, FEM, FVM) [2]–

[5], in the SPH description, the computational domain is discretized by set of the moving 

particles where the specific smoothing kernel is used to establish the spatial relationships 

between field variables. Free from false diffusion associated with convection terms and absence 

of severe mesh distortions and element entanglement make the SPH more reliable and useful tool 

for modeling multiphase flows involving severe interfacial deformation, stretching, breaking, and 

splashing [6]. Due to its inherent mesh-less features and superiority over traditional Eulerian 

methods in tracking the evolution of interfacial areas and moving boundaries, the SPH has been 

extensively applied to various industrial and engineering applications such as: simulation of 

granular material [7]–[11], natural and forced convection heat transfer in the complex geometries 

[12]–[18], nuclear reactor design and dynamic analysis of landslide dam [19]–[22], simulation of 

Rayleigh-Taylor instability and bubble rising [23]–[25], modeling violent free-surface flows and 

droplet collision and coalescence [26]–[29], simulations of multiphase flows and fluidized beds 

[30]–[35], analysis of liquid sloshing and fluid flow over the airfoil and circular cylinder [36]–

[40]. A comprehensive literature survey concerning the potential application of the SPH in many 

fields of engineering and science can be found in works of Wang et al. [41] and Shadloo et al. 

[42].  Despite the fact that, the SPH has been proved to be an efficient approach for analysis of 

fluid-structure interaction (FSI) problems, it still faces several crucial shortcomings including the 

occurrence of tensile instability caused by particle clustering [24], [43]–[45], spurious 

checkerboard pressure in both time and spatial domains [46], [47], non-conservative form of 

pressure gradient operator [37], [48], uncertainty in selecting the appropriate kernel function 

[49]–[51], and false detection of interfacial particles in multiphase flows [52]–[57] which can 

immensely jeopardize the stability and accuracy of the numerical simulation. Over the past 
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decade, substantial research efforts have been devoted to enhance the precision and consistency 

of the SPH. In a pioneering work, Xu et al. [43] introduced the concept of the Particle Shifting 

Technique (PST) to resolve the problem of particle bunching and void formation. The PST was 

then modified and implemented by Skillen et al. [44] and Shadloo et al. [24] to solve the problem 

of particle clustering in modeling of circular Couette flow and Rayleigh-Taylor instability. 

Recently, Khayyer et al. [45] introduced a novel improved and optimized version of the PST for 

consistent and accurate treatment of the free-surface area. In another work, Lee et al. [58] 

adopted the principle of Lennard-Jones molecular force [6] and introduced the idea of using 

collision model to control the regularity and arrangement of moving particles. This technique was 

then employed by Chen et al. [59], Xu et al. [60] and Shakibaeinia et al. [61] for simulation of 

dam break, Rayleigh-Taylor and Kelvin-Helmholtz instability problems. Another potential source 

of instability can be traced back quantitatively to the classical SPH operators. Ideally, the SPH 

was formulated for particles with uniform distribution while this assumption is not valid in the 

zones with incomplete kernel support. To overcome this shortcoming, Oger et al. [47] suggested 

the use of the kernel derivative correction technique and concluded that, reproducing kernel 

function and related gradient operators through renormalization technique can significantly 

suppress non-physical pressure fluctuations and minimize particle perturbations. To further 

eliminate unphysical void formation and pressure oscillations, Schwaiger [46] extended Oger’s 

model [47] and proposed higher-order Laplacian operator based on the Taylor series expansion. 

To enhance the conservation properties of classical SPH formulations and eliminate tensile 

instability, Sun et al. [37], [48] proposed a new switching technique so-called Tensile Instability 

Control (TIC). In this technique, non-conservative form of the pressure gradient is used in the 

specific area with truncated kernel support. Recently, Hongbin et al. [49] conducted a 

comparative study to investigate the effects of the type of the kernel function on the performance 

of the SPH model. They stated that, type of the kernel function has a remarkable impact on the 

consistency and accuracy of the mesh-free particle methods. In the same context, Yang et al. [50], 

[51] constructed two different kernels and highlighted that, the smoothness and coherence of the 

first and second derivatives of kernel function play a major role in the stability of the numerical 

simulations. Despite the success of these efforts, selecting the reliable and efficient kernel 

function is still a subject of controversy [62]–[64]. Accurate detection of boundary surface to 

impose Dirichlet boundary condition for the Pressure Poisson Equation (zero pressure) is another 
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major challenge faced with the ISPH model. Generally, the existing boundary recognition 

algorithms can be classified into two categories: (a) coverage detection techniques [52], [53], 

[56], [57] and (b) kernel-based algorithms [54], [55], [65]. In the former, the specific scanning 

algorithm is utilized to scan the local region around each target particle. If any gap is found, the 

candidate particle will be labeled as a surface particle. However, the results of Haque et al. [56] 

revealed that the implementation of the aforementioned technique for 3D free-surface problems 

or long-term simulations is not computationally affordable. The second method takes the 

advantages of kernel summation (PND) [55] and its derivatives (Divergence of Particle Position) 

[54], [65], [66] to determine which particles belong to interface or interior area. However, in spite 

of being computationally inexpensive, this technique is sensitive to regularity and uniformity of 

particles distribution such that the occurrence of particle clustering can lead to erroneous 

predictions of interface position. 

In light of the above literature review, the main aim of the current work is to introduce a novel 

high-order Mesh-free Particle Model (MPM) in the context of the ISPH for simulation of the 

free-surface flows and convection heat transfer. For this purpose, the governing operators (i.e. 

gradient, divergence and Laplacian) are first reformulated based on the Taylor series expansion 

and then applied for discretization of governing equations. To further enhance the stability and 

accuracy of the method, a new high-order kernel function is constructed by combination of the 

Gaussian and polynomial functions. Furthermore, a novel Hybrid Particle Shifting Technique 

(HPST) is proposed to remove tensile instability and particle clustering. Moreover, a novel 

Hybrid Free-surface Detection (HFD) technique is proposed for accurate imposition of Dirichlet 

pressure boundary condition at the free surface area. Detailed description of the methodology 

with associated higher-order schemes proposed in the current work can establish a wide 

panorama of promising alternative treatment on the improvements of Lagrangian Particle 

Models. 

6.2 Problem statement and governing equations 

Schematic diagram of various configurations under study together with associated boundary 

conditions and coordinate system are depicted in Fig. 6-1. Six different benchmark test cases 

have been simulated to demonstrate the promising potential of the proposed models in handling 

wide range of free-surface flow and convection heat transfer problems. In all the simulations, the 
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flow is assumed to be two-dimensional and laminar and the working fluid is considered as 

incompressible and Newtonian except for the case of 1D Sod shock tube problem where density 

is linked to pressure via a stiff equation of state (EOS).  

The governing equations describing the 2D incompressible, Newtonian and laminar flow in the 

Lagrangian framework is given by [67]:  
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u v

x y

 
 

 
 

(6-1) 

2 2

2 2
( ),

D u p u u

Dt x x y




  
   

  
 (6-2) 

2 2

2 2
( ) ,b

D v p v v
F

Dt y x y




  
    

  
 (6-3) 

2 2

2 2
( ),

pD C T T T
k

Dt x y

  
 

 
 

 

(6-4) 

,
D

Dt


r
u  (6-5) 

where u: (u, v), r: (x, y), k and T denote velocity and position vectors, thermal conductivity and 

temperature.  ,
pC and  are density, specific heat capacity and dynamic viscosity of the fluid, 

respectively. D is the substantial derivative and bF  represents body force acting on the fluid 

which is gravity force ( bF g ) in the free-surface flows or buoyancy force (

( )b cF g T T    ) in the natural convection heat transfer according to Boussinesq 

approximation.  
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Figure  6-1 Schematic description of the physical models with associated boundary conditions and 

coordinate system. 

 

As described by Bejan [68], the total volumetric entropy generation rate ( totS ) due to thermal 

dissipation ( TS ) and fluid friction irreversibility ( FS ) for 2D problems can be computed by the 

following expression: 

tot T FS S S   (6-6) 
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where 0 ( ) 2h cT T T  is a bulk temperature [69]. The dimensionless form of the governing 

equations for entropy generation can be obtained by introducing the following non-dimensional 

parameters: 
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By substituting above pertinent parameters in Eqs. (6-6) to (6-8), one can obtain non-dimensional 

form of the entropy generation as follows: 
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 is a constant parameter which represents the ratio of the viscous dissipation to the heat transfer 

irreversibility, defined as [70], [71]: 
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In the current work, the value of  in case A6 is taken as 10
-4

 similar to work of Ilis et al. [72]. 

The total entropy generation can be computed via integrating the local entropy generation rate 

with respect to X and Y coordinates: 

1
T TS S dX dY

V
   

1
F FS S dX dY

V
   tot T FS S S   (6-12) 
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The relative dominance of thermal dissipation to total irreversibility can be mathematically 

expressed by computing local and average Bejan numbers as: 

T

T F

S
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   (6-13) 

According to the above definition, 0 0.5Be   indicates the relative dominance of the viscous 

dissipation ( F TS S ) while thermal irreversibility ( F TS S ) is dominant when 0.5 1Be  . For 

0.5Be  , the entropy generation due to the viscous dissipation and heat transfer irreversibility are 

equal. Once the temperature field is obtained, the rate of the heat transfer on the active walls can 

be computed through the average Nusselt numbers as follows: 
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As shown in Fig. 6-1, no-slip and impermeable boundary conditions are imposed on the rigid 

walls for cases A1, A2, A3 and A6 as follows: 

0,U V   (6-15) 

For the specific case of convection heat transfer (case A6), zero heat flux condition is imposed on 

the horizontal walls while left and right walls of the cavity are maintained at different constant 

temperatures: 

1, 0    On the isothermal vertical walls 

(6-16) 
0

n
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
 On the insulated walls 

6.3 Implementing boundary condition in a Lagrangian framework 

In the current study, the combination of the fixed ghost particles and mirror velocity technique 

suggested by Marrone et al. [73] is used to enforce no-slip boundary conditions on the solid 

walls. Fig. 6-2 vividly illustrates that in this technique, the solid-fluid interface is used as a 

reference point to reflect the mirror velocity of the fluid particles (in active zone) on the 

corresponding ghost particles. However, to enforce the Neumann boundary condition for pressure 

( ip ) and temperature ( i  on the adiabatic walls), the value of the target variable is calculated 
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first on the solid boundary ling using Eq. (6-17), and then the computed results are assigned to 

the corresponding ghost particles on the other side of the fluid domain. 
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In the above equation, L is the corrective matrix which satisfies first-order derivative 

completeness condition. 
ijW  and 

ijW are the kernel function and its derivative which will be 

discussed in the next section (see also Fig. 6-2 and Eq. (6-A2) in appendix A). 

6.4 New kernel function 

Motivated by works of Hongbin et al. [49] and Yang et al. [50], [51], in this section a new high-

order kernel function is proposed through combination of the Gaussian and polynomial functions 

as follows: 
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where h and R h ijr  represents smoothing length and support domain of the kernel function, 

respectively. Since, Eq. (6-18) doesn’t have any analytical integration, Simpson's rule is 

employed to estimate constant coefficient D  and satisfy normalization condition (
1

1
N

ij

j

W dV


 ) 

for all three dimensions. The accuracy and stability of the newly constructed kernel function are 

verified via numerical modeling of one dimensional shock tube problem. The obtained results in 

terms of the density, energy, velocity and pressure profiles together with the kernel behavior (
ijW

) and its first derivative (
ijW ) are also compared with two frequently used smoothing kernels 

(i.e. Cubic spline function [74] and Wendland [75]) and exact solutions. 
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Figure  6-2 Examples of implementing Neumann boundary condition for pressure and 

temperature, mirror velocity technique and surface particle tracking and related techniques used 

in the current work. 

 

It can be seen from Fig. 6-3 that, the proposed kernel function is even (Symmetric property) and 

positive (Positivity) and declines monotonically as the relative distance (R) increases. 

Furthermore, due to simultaneous presence of the Gaussian (
2

( )
1.125

R
Exp




 and polynomial (

2 3(9 )R ) terms, it is extremely smooth and has a compact support of 3R   even for the third 

derivative (Smoothness property). The new kernel also fulfills the Dirac delta function condition 

as the smoothing length gets closer to zero (Delta function property) [6]. 
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The obtained results in Fig. 6-3 illustrate that, the proposed kernel function can efficiently 

delineate two distinct regions of the shock-wave system (i.e. shock ( 0.3x  ) and contact (

0.1 0.15x  ) discontinuities) and predict the correct pressure and velocity profiles of the 

rarefaction wave ( 0.3 0x   ) with minimal fluctuations. It is also evident that, the newly 

kernel function provides more accurate results than the cubic and Wendland functions in 

capturing rarefaction wave region and shock position. Fig. 6-3 also reveals that, a very good 

agreement exist between the calculated results and analytical solutions (for more details see 

appendix B). 

6.5 New Hybrid Free-surface Detection technique (HFD) 

As mentioned in the introduction section, Dirichlet pressure condition ( 0p  ) must be applied on 

the free-surface region. This highlights the need of proper identification of the interface position 

and its vicinity particles. Thus, in this section a new Hybrid Free-surface Detection (HFD) 

technique is proposed by introducing two additional criteria besides the ones suggested by 

Koshizuka [55] and Lee et al. [66] as follows: 
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Figure  6-3 The effects of the type of kernel function on the spatial evolution of density, pressure, 

velocity and energy profiles for the Sod shock tube problem at t=0.2s. 

 

The variables 1 and 2  are known as a Particle Number Density (PND) [55] and divergence of 

particle displacement [66] while 3 and 4 are two new complementary conditions which can be 

simply referred to as Laplacian of particle displacement and mixed partial derivative of kernel 
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function, respectively. Ideally, in the case of fully supported kernel, the values of 1 , 2 , 3

and 4  are equal to unity, 2, 2 and unity. Any deviation from the aforementioned characteristic 

values indicates that the kernel function may be truncated and consequently the candidate particle 

belongs to surface area. By defining the threshold values of min 0.755S  and max 0.947S  , the 

fluid domain can be segregated into three distinct zones as: 

1 2 3 4( ) 6,      (6-24) 

min

3 2

min max
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0 Free-surface particle
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  
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       


 

 (6-25) 
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c d

S S S S

 
 

 

  
 

 

 (6-26) 

It should be noted that, the cubic polynomial function in Eq. (6-25) is used to remove the 

discontinuity between free-surface ( ( ) 0f   ) and internal ( ( ) 1f   ) particles (see also Fig. 6-

2). 

6.6 New Hybrid Particle Shifting Technique (HPST) 

Inspired by works of Skillen et al. [44], Lee et al. [58] and Shakibaeinia et al. [61], a novel hybrid 

particle regularization scheme is proposed by combining Particle Shifting Technique and a 

pairwise collision model. In this technique, PST is applied only to the interior particles whereas 

collision model is used for treatment of the interface and its nearby particles. A more detailed 

mathematical description of present model is given in appendix C. As mentioned in previous 

section, prior to implementing HPST, the robust and efficient particle labeling scheme (free-

surface detection technique) is needed to determine the role of each particle (i.e. inner, vicinity or 

surface particle). Given the assumption that this technique has been accomplished, the process of 

implementing HPST can be summarized as follows: 
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( 1)* ( 1) ( 1)

,

n n n

i i i PST   r r r  

In the current work, the value of   is taken as 0.1. The variable h is the smoothing length in 

kernel function (Eq. (6-18)) which is equal to the initial particle spacing ( 1.0 1.0h x y    ). As 

mentioned in appendix C, Lambda ( ) is the constant coefficient which should be computed at 

the initial arrangement of particles (t=0) where kernel has a fully compact support. Eq. (6-27) is 

applied only to the inner particles. Therefore, the interface and vicinity particles still require a re-

arrangement technique to avoid clustering and tensile stability. In the proposed technique, this is 

accomplished by applying a pairwise collision technique, adapted from the Discrete Element 

Method (DEM) that displaces the interface and vicinity particles as: 

2

, , ,( )i x DEM i x ir dt f m   

(6-28) 

2

, , ,( )i y DEM i y ir dt f m   
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i y n y ij

j
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   

( 1)* ( 1) ( 1)

, ,

n n n

i t i i DEM   r r r  

where
( 1)*n

i


r is the new position of the particle after applying the HPST. 

ij is the corresponding 

overlap of two particles. kn denotes stiffness coefficient in normal direction which is taken as 

4 25 10 Kg ms . It should be noted that, unlike the classical DEM formulations [76], in order to 

preserve the global conservation of momentum and kinetic energy, the collision force in the 
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current work (
,i xf ,

,i yf ) is directly applied to particle position (
, ,i x DEMr and 

, ,i y DEMr ) instead of 

particle velocity. Finally, it is worth to mention that, although in the current work, the DEM is 

only applied on the free-surface area but our experience shows that, the DEM model (
,i DEMr ) 

can also be used for both interior and surface areas in conjunction with particle shifting technique 

(
,i PSTr ). However, implementing it on the interior particles will impose the stiff/strict condition 

on the motion of particles especially in the multiphase flow problems where the primary phase 

should has a chance to move freely within the secondary phase (the best example is the splashing 

and the falling of the water particles into the air phase generated by the breaking of a dam). 

6.7 Discretization of governing equations and solution algorithm 

The ISPH discretization of the governing equations over a set of mobile particles is conducted by 

high-order differential gradient, divergence and Laplacian operators. The combination of the 

third-order TVD Runge-Kutta scheme [77] and two-step projection model [78] is utilized to 

handle transient terms and velocity-pressure coupling. The first calculation step is an explicit 

prediction one where an intermediate velocity field is calculated through Navier-Stokes equations 

without the pressure gradient as: 

* 2( )n n

B t     u u u F  (6-29) 

The second step is an implicit correction one where pressure is computed by solving the Poisson 

equation as: 

* *
2 1p

t

  
 



u
 (6-30) 

Once the PPE is solved, the material derivatives of velocity ( D Dtu ) and energy ( DT Dt ) can 

be determined through Eqs. (6-2) to (6-4) as follows: 

1
2

n
n BD p

Dt



  


    

Fu
u  (6-31) 

2
n

n

p

DT k
T

Dt C
   (6-32) 
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After solving equations (6-31) and (6-32), the velocity ( (1)
u ), position ( (1)

r ) and temperature        

( (1) ) of each particle can be determined through the first step of the Runge-Kutta scheme as: 

( )
(1) ( )

(1) ( ) (1)

( )
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  

 

  

u
u u

r r u  (6-33) 

By repeating the above process with updated values of (1)
u , (1)

r and (1) (instead of n
u , n

r and n

), the second step of the Runge-Kutta method can be written as: 
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u
u u u

r r r u  (6-34) 

The last stage of the Runge-Kutta method can be obtained by replacing new data (2)
u , (2)

r and

(2) with old ones ( (1)
u , (1)

r and (1) ) as follows: 

(2)
( 1) ( ) (2)

( 1) ( ) (2) ( 1)

(2)
( 1) ( ) (2)

1 2 2

3 3 3

1 2 2

3 3 3

1 2 2

3 3 3

n n

n n n

n n

D
t

Dt

t

D
t

Dt


  



 



   

   

   

u
u u u

r r r u  (6-35) 

where ( 1)n
r , ( 1)n

u and ( 1)n  are new position, velocity and temperature of the particles at (n+1)-

th time step. As mentioned before, particles in Lagrangian description have a natural tendency to 

cluster along the streamline trajectory. Thus, to reduce the error generated by tensile-instability 

and alleviate unfavorable effects of particle clustering, the proposed Hybrid Particle Shifting 

Technique is applied to underlying position of particles as follows (see also section 6): 

( 1)* ( 1) ( 1)

, for inner particlesn n n

i i i PST   r r r  

(6-36) 
( 1)* ( 1) ( 1)

, , forsurfaceandvicinityparticlesn n n

i t i i DEM   r r r  
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At the end of the process, the average Nusselt number and entropy generation due to both factors 

( TS and FS ) can be calculated through Eqs. (6-10) to (6-14) particularly for case A6.  

 

Table  6.1 List of the equations used for estimating gradient, divergence, and Laplacian operators. 

 

Note that, the proposed high-order Laplacian operator (Eq. (6-A12)) has been used to calculate 

diffusion terms ( 2 u ,
2T ) and PPE ( 2 p ) while Eq. (6-A6) is employed to estimate 

temperature gradient ( T ,  ), velocity gradient ( u x  , v y  ) and divergence of velocity 

Operator Equation used 

Divergence (for velocity) (
' ',x yu u ) 

Gradient (for temperature) (
' ',x y  ) 

Eq. (6-A6) is implemented in the present study 

whereas Eq. (6-A3) or Eq. (6-A5) can also be used. 

Gradient (for pressure) (
' ',x yp p ) 

Revised form of the Eq. (6-A6) is applied in the 

current work where 1  and 1   are used for 

inner and surface particles, respectively. (see also Eq. 

(6-37)) 

Hybrid Particle Shifting Technique 

(HPST) 

Eq. (6-27) is applied on the inner particles while Eq. 

(6-28) is used for surface and its nearby particles (see 

also appendix C).  

Kernel function Eq. (6-18) is used for all simulations (cases A1 to A6) 

Hybrid Free-surface Detection 

technique (HFD) 

Eqs. (6-20) to (6-26) are used for particle-labeling 

process 

Buoyancy force in natural convection (

i ) 

Density smoothing process in  Rayleigh 

Taylor instability ( interface ) 

 

Eq. (6-A2) is used to calculate field functions ( i and 

interface ).  

Pressure on the solid walls ( ip ) 

Temperature on the insulated walls ( i ) 

Eq. (6-A2) is applied to calculate field functions on 

the solid walls ( ip and i ) 

Laplacian  

(for pressure 
2P  and diffusion

2 2,  u  ) 

Eq. (6-A12) is applied in the present work whereas 

Eqs. (6-A13), (6-A14) or (6-A15) can also be used. 
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components (u ). Moreover, Eq. (6-A2) is applied as a high-order smoothing operator to 

calculate temperature (T ) in the buoyancy force ( ( )b cF g T T    ) and density of the 

interface ( interface ) in transient natural-convection and Rayleigh-Taylor instability problems, 

respectively. However, to calculate pressure gradient ( p ), a multi-technique approach should be 

adopted to handle both interior and interface particles. For this purpose, Eq. (6-A6) is modified 

according to Tensile Instability Control (TIC) suggested by Sun et al. [37], [48] as follows: 
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 (6-37) 

 is an integer valued parameter which varies between 1 and -1 for internal and interface 

particles, respectively. More precisely, in order to prevent the inception of the tensile-instability, 

the non-conservative form ( 1   ) of the momentum equation (
j ip p ) is used for the free-

surface area and its nearby particles whereas the conservative one ( 1  ) is applied on the 

interior particles (
j ip p ). In fact, Eq. (6-37) takes the advantages of both first-order consistency 

and linear momentum conservation. Hereafter, Eq. (6-37) will be referred to as a Modified 

Pressure Gradient operator (MPG). The summary of equations used in the current work is 

provided in table 6-1. 

6.8 Results and discussion 

The applicability and robustness of newly proposed kernel function, Hybrid Particle Shifting 

Technique (HPST), free-surface detection technique together with high-order governing 

operators are demonstrated here through simulation of wide variety of challenging benchmark 

cases including: dam break with/without an obstacle (cases A1 and A2), Rayleigh-Taylor 

instability (cases A3), rotation of square patch of fluid (case A4), stretching circular water drop 

(case A5) and entropy generation due to natural convection heat transfer. In all the simulations, 

the value of smoothing length in the kernel function (Eq. (6-18)) is equal to initial particle size (

h x y    ). The time step ( t ) is governed based on two stability criteria (diffusion condition 

and maximum velocity of fluid flow) as: 
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max

convection

x
t CFL


 

u
 

(6-38) 
2

2
viscous

x
t CFL




   

min( , )convection viscoust t t     

In the current work, minimum and maximum values of Courant number are taken as 

minCFL 0.05  and maxCFL 0.15 for cases A1 and A6, respectively. The simulations have been 

carried out using, an in-house CFD code written in the Intel® Visual FORTRAN Compiler. 

6.8.1  Dam break with and without obstacle (Cases A1 and A2) 

Numerical simulation of classical dam break with/without an obstacle are presented in this 

subsection to demonstrate superiority of the proposed models over the conventional SPH method 

in handling violent free-surface flows involving high-pressure shock wave generated by impact. 

The model set-up for 2D dam break (case A1) is shown in Fig. 6-1 where a rectangular water 

column ( 0.5H m , 0.25W m ,
3 3 3 1 110 , 10Kg m Kg m s      ) is initially confined in the 

left half of the square reservoir ( 1D m ). In general, once the virtual gate is removed, the 

gravitational force causes the water column to collapse and flow out along a rigid horizontal 

plane with low level of kinetic energy. Fig. 6-4 shows that as the time proceeds, the generated 

surface wave propagates along the deck while its kinetic energy enhances. The velocity of water 

front toe progressively enhances until the flow front reaches the vertical wall, producing a great 

impact pressure and vigorous vertical water jet adjacent to the downstream wall. The impact of 

the water front against the vertical wall at 
* 0.5( ) 1.54t t g H   is also accompanied by 

irreversible destruction of kinetic energy and formation of the first pressure shock                         

(
* 2.35P p gH  ) as recorded by sensor 2 ( 2 0.025h m ).  
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Present work 

   

Traditional WCSPH [79] 

   

(a) (b) (c) 

   

Figure  6-4 Qualitative and quantitative comparison between calculated results and those reported 

by Xu et al. [79] and Zheng et al. [80] for case A1. Time history of pressure variations on the left 

(a) and right (b) walls. Time history of water front toe represented by Xfront. 17672pN  . 
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It can be seen that after impinging water tongue onto the right wall, due to the presence of inertia 

force, the fluid deviates upward and reaches the maximum position at 
0.5( ) 3.1t g H  . However, 

after 
*3.1 t because of restoring action of gravity force, the fluid acceleration reduces and 

subsequently thickness of the ascending water jet increases, which indicates that the adverse 

pressure gradient is coming into the picture. 

As time goes on, the intensity of inertia force gradually weakens and motion of the upward-

moving jet slows down. Finally, the water jet overturns back as a plunging wave onto the 

underlying wet bed, leading to the formation of second impact pressure and sudden rise in 

pressure time history (
* *0.95, 4.44P t  ). It is interesting to note that during the above run 

up/run down cycle, the quasi-hydrostatic pressure region is developed on the bottom-right corner 

of the enclosure where flow is nearly stagnant and characterized by quasi-static and shock 

loading. In contrast, the right and bottom walls experience dynamic shock pressures, due to the 

development of up-going and down-going waves (for more details see animation 1 in the 

supplementary material). As shown in Fig. 6-4, the proposed models provide more accurate 

results in terms of the smoother pressure field (noise-free pressures) and less splashing rate 

compared to the original SPH model used by Xu et al. [79] and Zheng et al. [80]. It is worth to 

mention that, the experimental measurements for this canonical test case are also available in the 

literature which can be used for further validation of the current work [55], [81]. 

To provide deeper insight into the effectiveness of proposed Hybrid Particle Shifting Technique 

(HPST) and free-surface detection scheme, contours of the pressure field with associated close-up 

snapshots are provided in Fig. 6-5. It can be seen from Fig. 6-5 (a) that, when the HPST is active 

(HPST=On), particles are uniformly arranged without any noticeable unphysical particle 

overlapping, spurious interface fragmentation and water spray, leading to the smoother pressure 

field across the whole computational domain. However, as mentioned before, in the absence of 

HPST (HPST=Off), particles start to cluster along the streamline, resulting in the rapid 

emergence of void space and density error accumulation. The effects of this event can be clearly 

seen in Fig. 6-5(b) where destructive effects of particle clumping caused by high-pressure 

gradients lead to the spurious pressure fluctuations and non-physical water spray during the flow 

evolution.  
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(a) HPST=On (b) HPST=Off (c) Free-surface detection 

   

   

   

   

Figure  6-5 (a) and (b) the effects of the PST on the pressure field. (c) Contours of the free-surface 

area for case A1. 
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Figure  6-6 Contour maps of pressure field and surface particles detection for case A2 at different 

time instants. 
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Figure  6-7 Qualitative comparison of the predicted results with numerical and experimental data 

of Kularathna et al. [82] (MPM model), Issakhov et al. [83] (VOF model) and Koshizuka et al. 

[84] for case A2. 22155pN  . 
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(a)  (b)  (c)  

   

Figure  6-8 Quantitative comparison of the predicted results with numerical data of Issakhov et al. 

[83] (VOF model) for case A2. (a) pressure variations on the left-bottom corner of the obstacle, 

(b)  pressure variations on the middle-left side of the obstacle, (c) variations of water level height 

at two different sections ( 1 20.15 , 0.3l m l m  ). 22155pN 
2 39.81 , 997 ,m s kg m  g

6 2855 10 N sm     . 

 

Furthermore, Fig. 6-5 (c) reveals that for the case of HPST=On, the proposed free-surface 

tracking scheme can correctly determine the position of the interface (blue color) and its nearby 

particles (colorful particles) without any misidentification in the particle labeling process. The 

transient evolution of the breaking dam in the presence of an obstacle (case A2) is plotted in Figs. 

6-6 to 6-8 where a rectangular water column ( 0.5H m , 0.25W m ) is installed in the left part 

of the square tank ( 1D m ). Qualitatively, short-term dynamics and morphological peculiarities 

of dam break with an obstacle are very similar to the former case where conversion of potential 

energy into kinetic energy takes place primarily when the virtual gate is eliminated. It can be seen 

that the water column descends downward under the gravity force and travels horizontally along 

the dry bed. However due to presence of the stationary obstacle in middle portion of the bottom 

wall ( 2 30.041 , 0.082W m W m  ), the fluid flow changes its direction and moves vertically along 

the left side of the obstacle. In fact, due to barrier effects of obstacle and abrupt change in flow 

direction, the first pressure peak occurs on the left side of the block where sensors 1 (

*

3 0, 0.70h t  and 
* 2.04p  ) and 2 ( *

3 0.041, 0.85h t  and 
* 1.62p  ) are located. The rest 

of the fluid which escapes from the shock region travels slantwise in form of the water jetpack 
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until it hits the downstream vertical wall where the second wave impact and splash-up scenario 

occur. Despite the geometrical complexity of this physical model, it can be seen that 

hydrodynamics characteristics of flying jet are well predicted by proposed models and the 

obtained results are in good agreement with numerical and experimental data of Kularathna et al. 

[82], Issakhov et al. [83] and Koshizuka et al. [84]. 

6.8.2 Rayleigh-Taylor instability (Cases A3) 

The versatility and robustness of the proposed models in handling moving interface problem with 

large deformation and stretching are demonstrated by simulating the Rayleigh-Taylor instability 

problem where Eq. (6-A2) is employed to circumvent discontinuities in the physical parameters 

at the interface. 
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In the above equation, s and s are smoothed density and viscosity, respectively. As illustrated 

in Fig. 6-1, the simulation is carried out in a rectangular enclosure with dimensions of 2H H

where two immiscible fluids ( 1.8, 1H L   ) are separated by an initial interface perturbation 

located at 1 0.15 sin(2 )y x   . The instability is characterized by the Atwood number (

( ) ( )H L H LAt       ) equals to 2 7  which represents the density ratio between two 

different fluids. The Reynolds number is defined as Re H Hg   where 1H  , 17.64g , and 

0.01H L    denote the characteristic length (width of the enclosure), gravity acceleration and 

kinematic viscosity, respectively. The computational domain is discretized over a set of the 

uniform particle ( 250 500pN   ) and obtained results are depicted in Figs. 6-9 and 6-10 at 

different time instants. In general, the evolution of RTI can be divided into three distinct stages 

namely: linear, weakly non-linear and fully non-linear stages.  
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Present work 

    
Pahar et al. [87] 

    
A zoomed-in view of interface (1) A zoomed-in view of interface 

(2) 

Location of lighter fluid 

front 

   

Figure  6-9 Comparisons of the predicted results with numerical data of Pahar et al. [87] for 

Rayleigh–Taylor instability problem (case A3). 
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(a) Contours of velocity in x-direction (u) 

    
(b) Contours of velocity in y-direction (v) 

    

Figure  6-10 Non-dimensional velocity contours in the x and y-directions (
0.5( )HU u g ) for 

Rayleigh-Taylor instability problem at various non-dimensional time. 

 

During the first stage of development, the buoyant force induced by density gradient across the 

interface causes the denser fluid to move downward along the left wall while the relatively lighter 

fluid rises up, leading to the formation of the clockwise vortex at the center of the enclosure. It is 

evident from Figs. 6-9 and 6-10 that until T= 1, the amplitudes of the interface wave and velocity 

components in the x and y-directions are almost symmetrical with respect to the center of the 

enclosure which indicates that the Rayleigh-Taylor instability (RTI) development follows the 

linear theory [85], [86]. However, as time progressed (1 3T  ), intensity of recirculating flow 

enhances and consequently the RTI development enters into the semi-nonlinear growth stage. In 

this circumstance, the flow pattern starts to deviate from its symmetrical state and subsequently a 
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pair of asymmetric mushroom-shaped structure in form of the descending spike and ascending 

bubble is generated within the enclosure (T=3). This trend persists and even accelerates in the last 

stage where the shear force causes the interface to roll-up/down, producing some secondary 

vortexes within the enclosure (see also Fig. 6-10). Inspection of Fig. 6-9 reveals that, the 

calculated results are qualitatively and quantitatively in an excellent agreement with numerical 

data of Pahar et al. [87]. Finally, the smoothness of the interface and uniformity of particle 

distribution in the zoomed-in views in Fig. 6-9 clearly demonstrate the robustness and potential 

capability of the proposed algorithm in modeling multiphase problems involving large 

deformations and physical discontinuities. 

6.8.3 Rotation of a square patch of fluid and stretching circular water drop 

(Cases A4 and A5) 

The effectiveness and performance of the newly proposed Hybrid Particle Shifting Technique 

(HPST) are highlighted in this section through modeling of rotating square patch of fluid (case 

A4) and stretching circular liquid drop (case A5) where due to unfavorable effects of concomitant 

negative pressure gradient and high velocity field, particle bunching and void formation are 

inevitable. As sketched in Fig. 6-1, case A4 consists of a weightless square patch of water ( 0g ) 

subjected to the following clockwise-rotating eddy: 

0

0

0

( , ) 2 2

( , ) 2 2

( , ) 0

u x y y L y L

v x y x L x L

p x y





    

    



 (6-40) 

where
11s  and 1L  denote angular velocity and length of the square patch, respectively. In 

general, hydrodynamic behavior of rotating square patch of fluid is characterized by the 

formation of the negative pressure field and severe particle migration towards the core region of 

the vortex. This mechanism leads to large free boundary deformations and substantial 

accumulation of particles in the vortex core which are responsible for onset and progression of 

tensile instability problem. More precisely, during the earliest stages of growth, the centrifugal 

force causes the middle parts to drag towards the center of the vortex while patch corners 

propagate radially outward to satisfy local mass continuity.  
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(a) Present work (HPST=On) (b) Present work (HPST=Off) (c) Sun et al. [52] 

   

   

   
Time history of pressure 

variations at the center of the 

patch 

A zoomed-in view of area 1 

(HPST=On) 

A zoomed-in view of area 2 

(HPST=Off) 

   

Figure  6-11 Comparison between the results of present work (a) and those reported by Sun et al. 

[52] (c) for the case of rotating square patch of fluid (case A4). The effects of the particle shifting 

technique on the particle distributions: (a) HPST=On and (b) HPST=Off. 
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Fig. 6-11 (a) shows that as time goes on, the size of the sidewalls lessens and arms of the patch 

start to grow, resulting in a formation of star-shaped structure within the fluid domain. However, 

as expected, in the case of HPST=Off, particles begin to follow the pattern of streamlines while 

gradually approaching the center of the circulation, resulting in simultaneous formation of 

unphysical gap (branch-like structures) and numerical cavitation. Particle overlapping and non-

physical fragmentation of the fluid domain are, in turn, accompanied by concomitant density 

error accumulation (
1

1
N

ij

j

W dV


 ) and violation of mass and momentum conservation. These 

progressive unphysical behaviors eventually jeopardize the stability and accuracy of the method, 

leading to the premature failure of calculations (see Fig. 6-11 (b) and zoomed-in view of area 2). 

Fig. 6-11 also portrays qualitative and quantitative comparisons between obtained results and 

numerical data of Sun et al. [52]. As can be seen, a very good agreement exists between two 

solutions. 

To shed further light onto the HPST performance and its impacts on the particle regularization, 

stretching of an initially circular water drop (case A5) is simulated where due to imposition of a 

strong shear field and rapid shrinkage of the matrix, the fluid domain is prone to extreme 

stratification and topological changes. As sketched in Fig. 6-1, the problem configuration consists 

of a weightless circular water patch (
30, 10 Pa s  g and

31000 kgm  ) subjected to the 

following irrotational velocity field:  

0

0

0

( , ) 100 2 2

( , ) 100 2 2

( , ) 0

u x y x R x R

v x y y R x R

p x y

    

    



 (6-41) 

Fig. 6-12 shows that, due to large values of strain rate generated by irrotational velocity field, the 

circular water drop undergoes striking morphological changes (i.e. elongation in the longitudinal 

direction) during its development. Generally, extreme strain rate has a manifest tendency to keep 

the drop compact, leading to the establishment of positive pressure field and high degree of 

particle-particle interactions. Fig. 6-illustrates that as the drop evolves further into the oval or 

ellipsoidal shape, magnitude of pressure at the core region decreases which indicates that rate of 

particles bunching starts to decay as the time proceeds.  
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(a) Present work 

(HPST=On) 

(b) Present work 

(HPST=Off) 

(c) Huang et al. [39] & Xu et 

al. [79] 

   

   

   

Figure  6-12 Comparison of calculated results (a) with numerical data of Huang et al. [39] and Xu 

et al. [79] (c) for the case of stretching circular drop (case A5). The effects of the HPST on the 

particles distributions (a) and (b).  
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(a) A zoomed-in view of 

area 1 (HPST=On) 

(b) A zoomed-in view of 

area 2 (HPST=On) 

(c) A zoomed-in view of 

area 3 (HPST=Off) 

   

(d) A zoomed-in view of 

area 4 (HPST=Off) 

(e) Time history of pressure 

variations at the center 

of the drop 

(f) Time history of 

variations of semi-

minor axis 

   

Figure  6-13 (a) to (d) the snapshots of four different zoomed-in view of particles distributions 

under the influence of the hybrid particle shifting technique. (e) and (f) time history of variations 

of semi-minor axis and pressure at the center of the drop for case A5. 

 

Not surprisingly, similar to previous benchmark case, the prototype of the flow pattern in the 

absence of the HPST is manifested by detrimental influence of the particle clustering and void 

formation. It is evident from Figs. 6-13 (a) and 6-13 (b) that, in the presence of HPST (=On), 

particles are hexagonally distributed without any unphysical gap which clearly demonstrate the 

performance of the proposed HPST in handling tensile instability. However, when HPST is 

turned off, the particle stratification and numerical fractures as undesirable effects of tensile 

instability start to appear within the fluid domain which damages the interpolation accuracy in the 

free boundary area. These progressively deteriorate the interpolation procedure and consequently 
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direct the numerical simulation to a non-physical solution. The effects of this event are well 

reflected in Figs. 6-13 (c) and (d) where the occurrence of particles stratification and coherent 

structures ultimately lead to the unwanted termination of the calculation. By scrutinizing Figs. 6-

13 (a) and (b) one can conclude that, the PST causes particles to migrate from the area with high 

concentration to the lower one, resulting in a rapid particle rearrangement within the 

computational domain. The time histories of the pressure variations at the center of the drop 

together with horizontal semi-axis movement are plotted in Fig. 6-13. As it is shown in this 

figure, a reasonable good agreement is achieved between analytical solutions and those predicted 

by present ISPH scheme. Furthermore, it can be seen from Figs. 6-12 and 6-13 that, the enhanced 

ISPH model produces much smoother pressure distributions compared to previously published 

conventional WCSPH results [39], [79]. The marked discrepancies between two numerical 

outcomes can be attributed to the implementation of the higher-order discretization schemes and 

consistent kernel function in the current work. The absence of the particle regularization 

technique and employing non-conservative form of the governing operators especially in work of 

Xu et al. [79] are two other major factors which can immensely affect the accuracy and reliability 

of the SPH computations. 

6.8.4  Entropy generation due to natural convection heat transfer (Case A6) 

As a further verification, the entropy generation due to natural convection heat transfer (case A6) 

is examined in this section where the smoothing operator (Eq. (6-A2)) is employed to estimate 

temperature value (T ) in the buoyancy force ( ( )b cF g T T    ) according to the Boussinesq 

approximation. As depicted in Fig. 6-1, the horizontal walls of the cavity are thermally insulated 

while vertical ones are maintained at different constant temperatures ( h cT T ). Similar to 

convectional Eulerian methods, a particle independency test (grid study) was conducted using 

seven different particle distributions to ensure sustained accuracy. Table 6-2 reveals that, a 

uniform particle size of 139 ×139 ensures a particle-independent solution.  
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Table  6.2 Effect of the grid size (particle independency test) on Nu  for case A6 at low and high 

Rayleigh number. 

 

Generally, due to the presence of density gradient within the cavity, the working fluid in the 

immediate vicinity of the left wall ascends upwards and gets lighter as its level of energy 

enhances. Since the insulated top wall is impermeable, the expanded fluid turns its direction and 

moves horizontally toward the right wall. After impinging onto the cold wall, it exchanges its 

high level of energy and descends downward as it becomes gradually denser and heavier. The 

condensed working fluid eventually travels horizontally outward in contact with the bottom wall 

until it encounters the thermal boundary layer of hot area and completes its thermal cycle. Hence, 

the clockwise vortex is developed inside the enclosure. It can be seen from Figs. 6-14 and 6-15 

that at Ra= 10
3
, flow field is characterized by weak circulation pattern and corresponding 

isotherms are almost parallel and evenly distributed, indicating that the temperature field is 

totally decoupled from the flow field and conduction is the dominant mode of energy transport 

within the enclosure. It is evident from Fig. 6-16 that the corresponding local Bejan number is 

very close to unity ( 1Be  ) which signifies the strong dominance of thermal dissipation over the 

viscous irreversibility ( T FS S ). This observation is in accordance with the maximum and 

average values of entropy generation due to heat transfer (
,max 2.277TS  and 1.119TS  ) and 

fluid friction irreversibility (
,max 0.244FS  and 0.035FS  ) provided in table 6-3. However, by 

increasing the Rayleigh number up to 10
4
, the effect of buoyancy force gets more prominent and 

consequently intensity of the recirculation inside the cavity enhances. This effect is dynamically 

characterized by the horizontal elongation of main vortex core and the appearance of distinct 

thermal boundary layer adjacent to the heated and cooled walls. 

 

Number of particles (Case A6)  

Ra 39×39 59×59 79×79 99×99 119×119 139×139 159×159 

10
3
 1.0885 1.0964 1.1048 1.1117 1.1183 1.1201 1.1205 

10
6
 8.4317 8.6536 8.7804 8.8605 8.9181 8.9222 8.9231 
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Figure  6-14 Transient variations of isotherms as a function of the non-dimensional time at 

different Rayleigh numbers for case A6. 
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Figure  6-15 Transient variations of streamlines and velocity component in x-direction as a 

function of the non-dimensional time at different Rayleigh numbers for case A6. 

 

The enhancement in the flow intensity is also accompanied by a significant increase in velocity 

and temperature gradients, resulting in a remarkable augmentation of both heat transfer rate and 

total entropy generation according to Eqs. (6-10) to (6-14). Note that, the slightly slanting 
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isotherms and weak compression of streamlines along the vertical walls also imply that the 

inception of the convection regime takes place at this Ra where viscous and buoyancy forces are 

comparable. The comparison of average entropy generation due to both factors ( T FS S ) in 

table 6-3 reveals that the thermal dissipation is still the major source of irreversibility within the 

enclosure. This observation is also compatible with Fig. 6-16 where local Bejan number with 

values greater than half ( 0.5Be  ) occupies the major part of the enclosure. Fig. 6-17 illustrates 

that in this circumstance (Ra=10
4
) , the active zones of entropy generation due to thermal 

dissipation are confined in the lower and upper halves of the isothermal walls where maximum 

temperature gradient occurs (compatible with the characteristics of isotherms). This trend is 

accentuated by increasing the Rayleigh number up to 10
5
. It is evident from Figs. 6-14 and 6-15 

that due to strong convective motion and buoyancy force, isotherms are dragged towards the 

vertical wall and streamlines become more twisted. In this condition, velocity components 

undergo stretching and the clockwise circulation vortex is segregated at the core and 

consequently two CW small eddies are developed within the enclosure. The horizontally oriented 

isotherms in the middle portion and sudden decrement in the thickness of the thermal boundary 

layer clearly confirm that heat is transferred primarily due to convection mode and viscous force 

is no more in the flow. As displayed in table 6-3, by increasing the Ra, the contribution of SF to 

the total entropy generation augments such that average Bejan number declines rapidly and 

becomes less than half ( 0.197 0.5Be   ). In fact, from the viewpoint of sensitivity analysis one 

can deduce that, entropy generation due to viscous dissipation (SF) is much more sensitive than 

the heat transfer irreversibility (ST) to any alteration in Rayleigh number and flow intensity. 

However, by increasing the Ra, heat transfer irreversibility enhances marginally and becomes 

more pronounced at the lower and upper portions of the left and right sidewalls with a local 

maxima of 
,max 60.56TS  . As expected, for higher values of Rayleigh number (Ra=10

6
), the 

primary source of exergy destruction (or irreversibility) in the cavity turns out to be viscous 

dissipation. It is obvious from Fig. 6-16 that, the active zone of local Bejan number is restricted 

to a relatively small portion of the middle zone where fluid is nearly stagnant and characterized 

by an elongated uni-cellular motion and thermal stratification. 
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Figure  6-16 Transient variations of local Bejan number (Be) as a function of the non-dimensional 

time at different Rayleigh numbers for case A6. 
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Figure  6-17 Transient variations of local entropy generation due to heat transfer (ST) as a function 

of the non-dimensional time at different Rayleigh numbers for case A6. 
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Figure  6-18Comparison of isotherms, streamlines, local Bejan number (Be) and local entropy 

generation due to heat transfer (ST) contours obtained from the present work (b) with those 

reported by Ilis et al. [72] (a) in steady-state condition at Ra=10
5
 for case A6.  
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Table  6.3 The effects of the Rayleigh number on the maximum velocity components, average 

Nusselt number and entropy generation for case A6 (steady-state condition). 

 

By comparing the local Be and ST in Figs. 6-16 and 6-17 one can conclude that, although the 

active zones of ST are concentrated adjacent to the vertical walls but they are comparatively 

trivial compared to SF, resulting in a substantial reduction in the values of local Bejan number (

0.5Be ) in those regions. The foregoing discussion implies that at this stage, only negligible 

amount of the available work is exploited to overcome the irreversibility due to heat transfer (

T FS S ). Similar findings were also documented by Basak et al. [88] and Das et al. [89], [90] 

who investigated entropy generation during the natural convection in square, triangular and 

trapezoidal enclosures. Comparison with previously published work in terms of streamlines, 

isotherms, local Bejan number, entropy generation due to heat transfer and average Nusselt 

number is depicted in Fig. 6-18. It can be seen that, there is an excellent agreement between the 

present calculations and those reported by Ilis et al. [72]. It is necessary to note that for sake of 

the brevity, transient variations of , , ,tot T FS S S Be  together with the velocity contour in the y-

direction are provided as a supplementary material. 

6.9 Conclusions 

The present study introduced two novel gradient and Laplacian operators in the Lagrangian 

framework for analysis of free-surface flows and thermal characteristics of convection heat 

transfer problems. Moreover, a novel hybrid particle regularization scheme is developed to 

improve the consistency and accuracy of the numerical model. In addition, a new free-surface 

detection technique has been proposed for the treatment of free-surface particles and the 

enforcement of the Dirichlet boundary condition for the Pressure Poisson Equation. Feasibility 

Case A6 

Ra Nu  maxU  
maxV  Be  totS  ,maxtotS  

TS  ,maxTS  
FS  ,maxFS  

10
3
 1.130 3.620 3.692 0.972 1.146 2.280 1.119 2.277 0.035 0.244 

10
4
 2.247 16.181 19.584 0.685 3.240 25.213 2.224 12.579 1.024 16.115 

10
5
 4.544 43.473 68.583 0.197 22.836 590.981 4.455 60.567 18.379 558.463 

10
6
 8.973 123.006 221.389 0.026 335.163 15877.142 8.628 320.880 326.532 15754.417 
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and performance of the developed models have been verified through various challenging test 

cases and experiments. Based on the results obtained from the present investigation, the 

following major conclusions can be drawn: 

 The results show that, the newly developed smoothing kernel (
ijW ) remarkably 

outperformed the existing kernel functions (i.e. Cubic and Wendland) in modeling of 

shockwave propagation and multiphase flow with physical discontinuities. 

 It is found that, the proposed Hybrid Free-surface Detection (HFD) technique can 

successfully identify the position of interface and its nearby particles.  

 It is found that, the proposed Hybrid Particle Shifting Technique (HPST) can efficiently 

eliminate spurious pressure fluctuation caused by tensile instability (particle clustering) 

from the computational domain. 

 The results show that, particles in Lagrangian framework have a natural tendency to 

cluster along the streamline, resulting in a significant void formation and density error 

accumulation. 

 The results show that, implementing an efficient particle regularization technique (HPST) 

can significantly enhance the accuracy and stability of the numerical solution.  

 The results show that, the combination of the third-order TVD Runge-Kutta scheme and 

two-step projection model provides more accurate and reliable results than the classical 

SPH model. 

 The results show that, implementing high-order discretization schemes for gradient, 

Laplacian and divergence operators can immensely enhance the accuracy and consistency 

of the ISPH method. 

 The results show that, the proposed high-order gradient and Laplacian operators produce a 

much smoother pressure field than the conventional WCSPH formulations. 

 The obtained results vividly demonstrate the broad applicability of proposed models for 

simulating free-surface flows and particulate flows with thermal convection. 

 The results show that, the proposed Modified Pressure Gradient operator (MPG) can 

successfully resolve the problem of particle clumping on the interface while retaining the 

conservation properties of momentum. 
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 The results show that, the proposed smoothing operator can efficiently handle density 

discontinuities in the multiphase flow problems (e.g. Rayleigh-Taylor instability). 

 The results show that, by increasing the Rayleigh number, average Nusselt number and 

entropy generation due to both factors ( ,T FS S ) augment while a reverse trend occurs in 

the values of local and average Bejan numbers.  

 

As a future investigation, the proposed models will be extended to explore multiphase flow with 

high density ratio such as bubble rising, two-phase dam break and water droplet falling in air 

where undesirable particle scattering/clustering is likely to occur on the interface. It would be a 

future challenge to investigate turbulent natural convection heat transfer in porous enclosure 

which has many important applications ranging from electronic packaging to solar collector 

technology. 
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6.11 Appendix A (gradient, Laplacian and divergence operators) 

Detailed description of the derivation of governing operators including gradient, divergence and 

Laplacian is presented here for a general class of Lagrangian framework. Generally, for 2D 

space, by multiplying both sides of Eq. (6-A1) by ijW , ,ij xW , ,ij yW and then integrating it over 

point (xi,yi), the numerical approximations of a field function (fi) and its derivatives can be 

obtained as follows: 

' ' '' 2 '' 2 '' 31 1
( )

2 2
j i x ij y ij xx ij yy ij xy ij ijf f f x f y f x f y f x y O h        (6-A1) 
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 (6-A2) 

In above equations, 
ijW ,

,ij xW  and
,ij yW are kernel function and its first spatial derivatives in x 

and y-directions. 
j jdV m  is the volume of the particle while 

ij j ix x x  and ij j iy y y 

denote the distance between target particle i and its neighboring particle j, respectively. L is a 

corrective matrix which satisfies the first-order completeness condition for the kernel function. It 

is interesting to note that, Eq. (6-A2) is equivalent to the MLS approximation proposed by 

Nayroles et al. [91]. In the present work, Eq. (6-A2) will be referred to as smoothing operator 

henceforth. 

By subtracting fi from both sides of Eq. (6-A1) and multiplying it by ,ij xW  and ,ij yW , the 

gradient operator can be obtained as follows: 
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 (6-A3) 

Eq. (6-A3) was initially proposed by Krongauz et al. [92] and was then successfully implemented 

by Oger et al. [93] to solve the dam-break problem.  However, in the case of kernel with compact 

support, all off-diagonal elements of matrix L vanish, forming the symmetric diagonal matrix (

, ,

1 1

0
N N

ij ij x ij ij y

j j

y W dV x W dV
 
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In this circumstance, gradients of the field function can be estimated with the lowest 

computational cost as follows: 
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
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


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 (6-A5) 

The above equation is known as a Modified Version of the Conventional SPH derivatives 

pioneered by Johnson et al. [94] which has been frequently used to express the rate of 

deformation. It should be noted that, Eq. (6-A5) cannot guarantee a linear exactness adjacent to 

the interface where the kernel function is truncated with insufficient number of the particles. 

It is also possible to derive the second gradient operator by subtracting fi from both sides of Eq. 

(6-A1) and multiplying it by 
2

,ij x ijW r  and
2

,ij y ijW r  instead of ,ij xW  and ,ij yW . This gives: 

,2'
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, ,

2 2
1 1

, ,

2 2
1 1

N N
ij ij x ij ij x
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ij ij y ij ij y

j jij ij

x W y W
dV dV

r r
L
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r r



 
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  
 
  

 

 

 (6-A6) 

By subtracting Eq. (6-A1) from fi and decomposing it into two separate equations in x and y 

directions, the Taylor series approximation can be written as follows:  

' ' '' 2 '' 21 1

2 2
j i x ij y ij xx ij yy ijf f f x f y f x f y      (6-A7) 

' '' 21 1
( )

2 2
j i x ij xx ijf f f x f x    (6-A8) 

' '' 21 1
( )

2 2
j i y ij yy ijf f f y f y    (6-A9) 

The SPH stencil for the second derivatives of fi can be calculated by multiplying Eqs. (6-A8) and 

(6-A9) by ,ij ij xx W and ,ij ij yy W , and integrating it over all neighbor particles j as follows:  
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' 2 '' 3

, , ,

1 1 1

' 2

, ,

1 1''

3

,

1

1 1
( ) ,

2 2

1
( )

2
,

1

2

N N N

j i ij ij y y ij ij y yy ij ij y

j j j

N N

j i ij ij y y ij ij y

j j

yy N

ij ij y

j

f f y W dV f y W dV f y W dV

f f y W dV f y W dV

f

y W dV

  

 



     

   





  

 



 (6-A11) 

Finally, by summing the terms ''

xxf and 
''

yyf  expressed in Eqs. (6-A10) and (6-A11), the Laplacian 

operator can be obtained as follows: 

' 2

, ,

1 12 '' ''

3

,

1

' 2
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1 1

3
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1
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 



 
(6-A12) 

where 
'

xf  and 
'

yf  are the first derivatives of the shape function (fi) which can be computed 

through Eq. (6-A3) or (6-A6). It is worth mentioning that, by comparing the Eqs. (6-A5) and (6-

A12), one can conclude that, the aforementioned equations are analogous to the approximations 

used in the finite difference method where partial derivative in the x-direction (x or y) is totally 

independent of other directions.  
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However, similar to gradient operator, in the case of uniform particle arrangements (

2 2

, ,

1 1

0
N N

ij ij x ij ij y

j j

x W dV y W dV
 

     and 3 3

, ,

1 1

1 1

2 2

N N

ij ij x ij ij y

j j

x W dV y W dV
 

    ) the discretization of 

the Laplacian operator can be simplified to the following expression: 

, ,
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3 3
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j i ij ij x j i ij ij y
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 (6-A13) 

Note that, the expression of 3 3

, ,

1 1

1 1

2 2

N N

ij ij x ij ij y

j j

x W dV y W dV
 

     can be proved by solving

3

,

1

2
ij ij xx W dV and

3

,

1

2
ij ij yy W dV in a polar coordinate system ( cos , sinij ij ij ijx r y r   ). 

It is worth mentioning that, by multiplying Eqs. (6-A8) and (6-A9) by 
2

,ij ij x ijx W r and

2

,ij ij y ijy W r instead of 
,ij ij xx W and

,ij ij yy W , the second Laplacian operator can be obtained as 

follows: 
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(6-A14) 

Similar to previous approach, for regular particle distributions, Eq. (6-A14) can be reduced to a 

simpler form as follows: 
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 (6-A15) 

Eq. (6-A15) was initially introduced by Cummins et al. [95] for discretization of PPE operator 

and then modified by Lo and Shao [96] for treatment of the viscous term in Navier-Stokes 

equation. 

6.12 Appendix B (1D Sod shock tube) 

The governing equations (momentum, energy and continuity) in a Lagrangian framework along 

with the classical numerical procedure for solving 1D Sod shock tube problem is detailed here 

[6].  

1
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J i j

p pD
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Dt  


   

u
 (6-B1) 
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(6-B4) 

( 1) , ,
p

p e c


 


    (6-B5) 

In above equations, e , c, 1.4  and u represent internal energy, artificial sound speed, heat 

capacity ratio and velocity of the gas, respectively. Similar to work of Liu et al. [6], 320 particles 

with high level of pressure and energy are uniformly spaced in the high-density area [ 0.6,0]

while 80 particles are uniformly spaced at low density region [0,0.6] . 
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0, 1, 0, 2.5, 1, 0.001875, 0.001875

0, 0.25, 0, 1.795, 0.1795, 0.0075, 0.001875

x u e p x m

x u e p x m





       

       
 (6-B6) 

x and t  are particle spacing and time step, respectively. Simulation has been conducted for 40 

time step with t being 0.005s. The arrangement of equations given above clearly show the 

solution steps for programing in which first, Eqs. (6-B1) to (6-B3) are solve and then particles are 

shifted to the new positions with updated velocity and internal energy using first order Euler 

forward time discretization scheme (Eq. (6-B4)). In the last step, pressure and artificial sound 

speed for each particle are updated using Eq. (6-B5). This procedure is repeated until 0.2t s . In 

resolving the shock, the artificial viscosity (
ij ) suggested by Monaghan [97] is typically used to 

prevent particle bunching and enhance the stability of the method as follows: 
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(6-B7) 

Finally, Cubic [74] and Wendland [75] kernel functions which have been used for comparison 

purposes in section 3 are provided below: 
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6.13 Appendix C (Hybrid Particle Shifting Technique) 

Motivated by works of Xu et al. [43] and Lee et al. [58], along this appendix a novel Hybrid 

Particle Shifting Technique (HPST) is developed by the combination of the PST and collision 

models. The model consists of two separate parts namely: deriving new PST through Taylor 

series expansion and constructing a novel collision model based on the concept of the Discrete 

Element Method (DEM) [76]. By subtracting fi from both sides of the Eq. (6-A1) and multiplying 

it first by 
ij ijx W  and then by

ij ijy W  the following equations can be obtained: 

' 2 '( )j i ij ij x ij ij y ij ij ijf f x W f x W f y x W    (6-C1) 

' ' 2( )j i ij ij x ij ij ij y ij ijf f y W f x y W f y W    (6-C2) 

By integrating both sides of Eqs. (6-C1) and (6-C2) over the neighbor particles and imposing the 

assumption of homogeneous particles distribution (
1

0
N

ij ij ij

j

x y W dV


 ), the first partial derivatives 

of shape function read as: 
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By eliminating the term (fj-fi) from Eq. (6-C3) and defining ( ) as a constant parameter, the final 

form of the PST can be written as: 
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
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
   (6-C4) 

20.5 h  is a shifting coefficient which controls the magnitude of particle displacement with 

0 1  . h and N denote the smoothing length and number of neighbor particles, respectively. 

The constant coefficient Lambda ( 2 2 2

1 1 1

1

2

N N N

ij ij ij ij ij ij

j j j

x W dV y W dV r W dV
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     ) should be 

calculated at the initial arrangement of particles (initial time step, t=0) where kernel has a fully 
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compact support (inner particles). In fact, in order to keep magnitude of particle shifting constant 

( ir ), the parameter Lambda ( ) should remain unaltered during the simulation. 

To derive the collision model, it is assumed that each fluid element is circular (in 2D space) or 

spherical (in 3D space) in shape with radii Ri. In the case of the physical contact (

, ( ) 0j in ij j iR R r r      ), the normal collision forces (
,i xf and

,i yf ) with associated particle 

displacements (
, ,i x DEMr and

, ,i y DEMr ) can be calculated as follows: 

, ( )j i xn xij j iR R r r n      ( ) ijx j in x x r   (6-C5) 

, ( )j i yn yij j iR R r r n      ( ) ijy j in y y r   (6-C6) 
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    
2

, , ,( )i x DEM i x ir dt f m   (6-C7) 

, , ,

1

( )
N

i y n n yij n n yij

j

f k v 


    2

, , ,( )i y DEM i y ir dt f m   (6-C8) 

where, kn, ijn and im  denote normal spring stiffness of linear spring, normal unit vector and mass 

of particle. ,n xij and
,n yij are normal overlap distance between two contacting particles i and j with 

position vector ij j ir r r  .
,i xf and

,i yf are sum of all contact forces from neighbor particles in x 

and y-directions. n and nv denote the normal damping and the normal velocity components in 

the x and y-directions (
, ,,n xij n yijv v ) which can be computed as follows: 

, ( )n ij ij ij ijv v n n   (6-C9) 

However, in order to preserve liner momentum, the value of n is taken as zero in the current 

work. 
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Abstract 

The main objective of the current work is to enhance consistency and capabilities of Moving 

Particle Semi-implicit (MPS) method for simulating a wide range of free-surface flows and 

convection heat transfer. For this purpose, two novel high-order gradient and Laplacian operators 

are derived from the Taylor series expansion and are applied for the discretization of governing 

equations. Furthermore, the combination of the explicit Third-order TVD Runge-Kutta scheme 

and two-step projection algorithm is employed to approximate transient terms in the Navier-

stokes and energy equations. To further improve the accuracy and performance of the method, a 

new kernel function is constructed by a combination of the Gaussian and cosine functions and 

then implemented for modeling the 1D Sod shock tube problem. Validation and verification of 

the proposed model are conducted through the simulations of several canonical test cases such as: 

dam break, rotation of a square patch of fluid, two-phase Rayleigh-Taylor instability, oscillating 

concentric circular drop and good agreement are achieved. The proposed model is then employed 

to simulate three-phase Rayleigh-Taylor instability and entropy generation due to natural 

convection heat transfer (Differentially Heated Cavity and Rayleigh-Bénard convection). The 

obtained results reveal that, the newly constructed kernel function provides more reliable results 

in comparison with two frequently used kernel functions namely; quartic spline and Wendland. 

Furthermore, it is found that, the enhanced MPS model is capable of handling multiphase flow 

problems with low and high density contrast. 
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7.1 Introduction 

The Moving Particle Semi-implicit (MPS) method belongs to a group of truly Lagrangian mesh-

free (particle) methods for continuum modelling, which was originally pioneered in the work of 

Koshizuka et al. [1] to investigate incompressible fluid flow with free surfaces. Contrary to 

conventional Eulerian methods with topological constraints (mesh distortion) [2], [3], the MPS 

takes the advantages of being Lagrangian and free from any mesh system, which make it fairly 

natural in modeling of violent free-surface flows, particularly those involving large deformation, 

fragmentation and breaking. Similar to other particle methods like Smoothed Particle 

Hydrodynamics (SPH), MPS represents the continuum fluid by a finite set of “discrete particles” 

where the interaction of freely-moving particles is determined by means of specific smoothing or 

kernel function. In view of its flexibility and potential effectiveness in handling highly nonlinear 

multi-physical interaction problem and convection-dominated transport phenomena, applications 

have been extended to various engineering and science problems [4]. Simulation of wave-

structure interaction [5], analysis of natural/forced convection heat transfer and Arc welding [6], 

[7], nuclear reactor design and dynamic analysis of landslide [8], [9], modeling of violent free-

surface flows [10], simulation of multiphase flows and solid-liquid phase change process [11]–

[13], analysis of liquid droplet and liquid jet atomization [14], [15] are just a few examples of 

such studies in which particle methods such as MPS were adopted to solve complex flow and 

transport  problems. An up-to-date comprehensive literature review concerning recent 

applications and future prospects of the meshless particle methods can be found in works of 

Wang et al. [16] and Shadloo et al. [17]. 

Despite several advantages, similar to other particle methods, MPS has several drawbacks 

including unphysical pressure fluctuations and particle clustering [18]–[21], uncertainty in the 

selection of  appropriate kernel function, implementing discretization schemes with low order of 

accuracy in space and time [22]–[26] and non-conservative form of pressure gradient operator 

[27]–[29]. Over the past decade, substantial research efforts have been devoted to enhancing the 

accuracy and stability of particle methods such as MPS. As pointed out in [4], one of the major 

factors for the loss of accuracy in the particle methods comes from the inconsistency in governing 
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operators. MPS (and SPH) are formulated based on the hypothesis that particles are distributed 

evenly across the whole computational domain whereas this assumption is not valid in certain 

regions characterized by truncated kernel function or unphysical particle accumulation 

(depletion) [30]. To overcome this shortcoming and reduce the truncation error associated with 

low order discretization schemes, Oger et al. [22] introduced the concept of Renormalization 

technique based on a Taylor series expansion. This technique was then adopted by Khayyer et al. 

[24] and Xu et al. [26] in the context of the MPS to establish the high-order gradient operator. 

They showed that, reproducing the gradient operator through implementing corrective matrix can 

significantly minimize the spurious pressure oscillations and provide more homogeneous particle 

distributions, accordingly. Similar observations were reported by Liu et al. [23] and Duan et al. 

[25] who developed two novel high-order Laplacian models by eliminating the first-order partial 

derivatives from the Taylor-series expansion. They reported that, the corrected Laplacian model 

can effectively reduce the solution fluctuations and provide more accurate results than the 

classical MPS formulations. To decrease numerical discretization errors generated by solving 

non-conservative form of momentum equation, Sun et al. [27], [28] presented a novel switching 

technique so-called Tensile Instability Control (TIC) that was achieved by altering Navier-Stokes 

equations into the non-conservative form in the specific regions characterized by numerical 

cavitation and particle bunching. To fulfil the conservation law while preserving the first-order 

completeness, Garoosi et al. [29] proposed a new hybrid pressure gradient operator (for a kernel-

derivative-free SPH, which mimics the characteristics of MPS) based on Renormalization 

technique [26] and Tensile Instability Control (TIC) [27], [28] and showed that, the newly-hybrid 

method can efficiently remove the particle clustering and undesirable pressure noise from the 

free-surface area. As stated before, another major source of instability can be traced back to the 

Lagrangian nature of the MPS model. Generally, particles in the Lagrangian framework have a 

tendency to travel along the streamline trajectory, resulting in the occurrence of void formation or 

particle stratification within the fluid domain. This inconsistency leads to a serious degradation of 

interpolation procedure and loss of accuracy [31], [32]. To attenuate adverse effects of tensile 

instability and maintain nearly uniform particle distribution, in a pioneering works, Xu et al. [18] 

and Shadloo et al. [19] suggested the use of rearranging the particle position (artificial particle 

displacement) that was achieved by slightly deflecting particles across streamlines, thereby 

avoiding the substantial stretching and clumping of particles. They found that, implementing 
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particle shifting/reordering scheme can help achieving more reliable, stable and noise-free 

solutions even at high Reynolds numbers without sacrificing precision. However, the results of 

Lind et al. [21] showed that, the PST causes particles to escape from free-surface area, resulting 

in an unrealistic particle scattering (particle separation) within the computational domain. To 

address this limitation, Khayyer et al. [20] proposed an optimized version of the Particle Shifting 

Technique (OPS) via a careful elimination of the normal shifting from the free-surface area and 

its nearby particles. Uncertainty in the selection of appropriate kernel function is another factor 

which can immensely influence the performance of the particles methods [33]. Hongbin et al. 

[34] conducted a comparative investigation on various types of the kernel functions and 

concluded that, Gaussian and Q-spline kernels considerably outperformed the existing Cubic and 

Quartic kernels in modeling one dimensional shock tube problem. Liu et al. [35] presented a 

general approach for constructing an efficient kernel function and demonstrated that, the 

smoothness of the first and second derivatives of kernel function has a significant impact on the 

accuracy and stability of the numerical simulations. Similar findings were documented by Yang 

et al. [36], [37] who constructed two new kernel functions (hyperbolic-shaped and double cosine 

kernels) for modeling viscous liquid drop and water entry of a horizontal circular cylinder. 

Despite the success of these attempts, choosing an efficient smoothing function is still a subject 

of controversy [38]–[40]. 

In light of the above literature review, the primary objective of the present work is to introduce 

two new higher-order gradient and Laplacian operators to enhance the accuracy and convergence 

performance of the original MPS approach in modeling free-surface flows and convection heat 

transfer. For this purpose, the classical governing operators are first reformulated based on the 

Taylor series expansion and are then employed for discretization of diffusion terms, Pressure 

Poisson's equation (PPE) and divergence of velocity. To further suppress the error caused by 

irregular particle distribution, a novel high-order kernel function is constructed by combination of 

the Gaussian and cosine functions. To maintain overall high-order accuracy, the combination of 

the third-order TVD Runge-Kutta scheme and two-step projection method is used for the 

treatment of the transient terms in the Navier-stokes and energy equations. The feasibility and 

validity of the proposed models are verified via simulation of four different challenging 

benchmark cases including dam break, rotation of a square patch of fluid, two-phase Rayleigh-

Taylor instability and oscillating concentric circular drop. 
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Figure  7-1 Schematic diagram of eight different canonical test cases with associated boundary 

conditions and coordinate system.  

7.2 Problem statement and governing equations 

Schematic representation of eight different canonical test cases with associated boundary 

conditions and coordinate system are sketched in Fig. 7-1. In all the simulations, the flow is 

considered to be laminar, two-dimensional, Newtonian and incompressible except for the case of 

1D Sod shock tube problem where the gas is compressed isentropically in accordance with a stiff 
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equation of state (EOS). The thermo-physical properties of the fluid are assumed to be constant 

except for the density in cases B3 and B4 which varies linearly according to the Oberbeck-

Boussinesq approximation.  

Based on the aforementioned assumptions, the continuity, momentum, energy and displacement 

equations in the Lagrangian description read as follows [41]:  

0,
u v

x y

 
 

 
 (7-1) 

2 2

2 2
( ),

D u p u u

Dt x x y




  
   

  
 (7-2) 

2 2

2 2
( ) ,b

D v p v v
F

Dt y x y




  
    

  
 (7-3) 

2 2

2 2
( ),

pD C T T T
k

Dt x y

  
 

 
 

 

(7-4) 

,
D

Dt


r
u  (7-5) 

where u: (u, v) and r: (x, y) represent fluid velocity and position vectors.  ,  , k and 
pC are 

fluid density, dynamic viscosity, thermal conductivity and specific heat capacity, respectively. D 

denotes the substantial derivative and t is time. The flow motion is mainly governed by the 

external body force per unit mass ( bF ) exerted on the particle which would be gravity force (

bF g ) in the multiphase flows or buoyancy force ( ( )b cF g T T    ) in the natural 

convection heat transfer. By introducing following non-dimensional parameters: 

,
x

X
H

  ,
H

y
Y   ,

uH
U


  ,

vH
V


  

2

2
,

pH
P


  .

ch

c

TT

TT




  

(7-6) 

2
,

t
t

H

   
3( )

,h cg T T H
Ra






  Pr .




   

Eqs. (7-1) to (7-5) can be converted to the following non-dimensional forms for the case of 

natural convection heat transfer: 
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0,
U V

X Y

 
 

 
 

(7-7) 

2 2

* 2 2
Pr ( ),

DU P U U

Dt X X Y

  
   

  
 (7-8) 

2 2

* 2 2
Pr ( ) Pr ,

DV P V V
Ra

Dt Y X Y


  
    

  
 (7-9) 

2 2

* 2 2
( ),

D

Dt X Y

   
 
 

 

 

(7-10) 

*
,

D

Dt


r
U  

(7-11) 

where Pr and Ra are Prandtl number and Rayleigh number, respectively. As described by Bejan 

[42], dimensionless form of the entropy generation rate ( totS ) due to heat transfer ( TS ) and fluid 

friction irreversibility ( FS ) for 2D problems can be expressed as: 

2 2

TS
X Y

      
     

      

 (7-12) 

22 2

2 2F

U V U V
S

X Y y X

        

        
         

 (7-13) 

 is called irreversibility factor which represents the ratio of the fluid friction to the thermal 

dissipation. It is given as [43], [44]: 

2

0

2 2
,

( )h c

T

kH T T

 
 


 (7-14) 

In the present work, the value of  in cases B3 and B4 is considered as 10
-4

 similar to previous 

works of Ilis et al. [45] and Biswal et al. [46]. The global average entropy generation ( totS ) due 

to both factors ( TS , FS ) can be calculated via integrating the local entropy generation rates over 

the whole domain: 

1
T TS S dX dY

V
   

1
F FS S dX dY

V
   

tot T FS S S   (7-15) 
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The relative contribution of heat transfer irreversibility to the total entropy generation rate can be 

mathematically defined by calculating local and average Bejan numbers as [47]: 

T

T F

S
Be

S S



 1

Be Be dX dY
V

   (7-16) 

According to the above definition, 0 0.5Be   implies the relative dominance of the viscous 

dissipation ( FS ) whereas 0.5 1Be   indicates that heat transfer irreversibility ( TS ) is dominant. 

However, for the case of 0.5Be  , entropy generation due to the viscous effects and heat transfer 

have the same order of magnitude.  

Once the temperature distribution is calculated, the net rate of heat transfer within the enclosure 

can be quantified by means of the average Nusselt number as follows: 

hH
Nu

k n


  


 

0

1 H

Nu dY
H X




  
0

1 H

Nu dX
H Y




  (7-17) 

As shown in Fig. 7-1, no-slip boundary condition is imposed on the impermeable surfaces as 

follows: 

0,U V   (7-18) 

For the specific case of the convection heat transfer (cases B3 and B4), the energy equation (Eq. 

(7-10)) is subjected to the following boundary conditions; 

1, 0    On the heated and cooled walls 

(7-19) 
0

n





 On the adiabatic walls 

 

7.3 Implementing boundary condition in a Lagrangian framework 

As highlighted before, unlike the conventional Eulerian mesh-based methods, addressing the 

influence of the solid walls in the purely Lagrangian mesh-free models such as MPS and SPH is 

not often as straightforward as it seemed. In the present work, the dynamic ghost particle 

technique suggested by Marrone et al. [48] is employed to satisfy no-slip and no-penetration 

conditions on the rigid walls. Fig. 7-2 reveals that, in this technique, both tangential and normal 
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component of fluid velocity with opposite sign (no-slip) is extrapolated on the corresponding 

wall particles outside of the flow domain. However, to impose the Neumann boundary condition, 

the target variable (i.e. pressure ( ip ) or temperature ( i ) on the isolated walls) is first computed 

on the solid boundary line using Eq. (7-20), and then the predicted values are assigned to the 

corresponding ghost particles in the same row, column (i.e W1,W2 and W3) or corner (C1 to C9). 

Note that, as schematically shown in Fig. 7-2, only the fluid particles in the support domain of the 

kernel function are utilized to approximate the pressure or temperature on the fixed ghost 

particles.  
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In above equation, L denotes renormalized matrix defined by 
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Figure  7-2 The conceptual illustrations of implementing Neumann ( 0, 0p n n      ) and 

Dirichlet (mirror velocity technique, 0u ) boundary conditions in the context of the Lagrangian 

particle method. 

 

For more details see also Eq. (7-A2) in appendix A. It is worth to mention that, the enhanced 

version of the imposition of the Neumann boundary condition can be found in works of 

Matsunaga et al. [49] and Duan et al. [50]. 

7.4 New kernel function 

Inspired by works of Hongbin et al. [51] and Yang et al. [36], [37], in this section, a novel high-

order smoothing kernel is constructed by merging the Gaussian and cosine functions as follows: 
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 (7-22) 

In above equation, h and R h ijr  are smoothing length and support domain of the kernel 

function, respectively. D  is the dimension-dependent normalization constant [35] which 

satisfies an essential requirement of being unity (
1

1
N

ij

j

W dV


 ) in all the three dimensions. It is 

evident from Fig. 7-3 that, the newly constructed kernel function is non-negative (

(0 3) 0ijW R   ) (Positivity), even (Symmetric property) and decays monotonically as the 

relative distance (R) augments (Decay property). In addition, owing to the simultaneous presence 

of the Gaussian (
2

( )
R

Exp



) and cosine (

3.5cos ( )
6

R
) functions, it is outstandingly continuous 

with the compact support of 3R   even for higher derivatives of kernel function ( 3

ijW , 

Smoothness criteria). The new kernel also fulfills the Dirac delta function condition when its 

support domain approaches zero (
0

lim ( , )ij
h

W h R 


 , Delta function property) [52]. The 

performance and consistency of proposed kernel function are also demonstrated via numerical 

modeling of 1D Sod shock tube problem where two following well-known kernels (i.e. 

Wendland [53] and quintic spline [52]) are used for comparison purposes. The predicted results 

in terms of gas velocity, density, internal energy and pressure profiles at  time  t=0.2s  are  plotted  

in  Fig. 7-3. The comparison with reference exact solution reveals that, the proposed kernel 

function is stable and reproduces much more accurate solutions than the Wendland and quintic 

spline kernels in the area of rarefaction wave ( 0.3 0x   ), contact discontinuities (

0.1 0.15x  ) and shock wave ( 0.3x  ). It is evident that, the variations of density, pressure 

and velocity across the contact surface and expansion wave are continuous and the shock position 

is captured with no smearing or overshoots while large amplitudes of oscillations take place in 

the results obtained using two other kernels. 
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Figure  7-3 The effects of the kernel type on the spatial variation of density, pressure, velocity and 

internal energy along the shock tube at t=0.2s . 
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A more detailed description of the underlying methodology and discretization process can be 

found in appendix B. 

7.4.1 Discretization of governing equations and solution methodology 

The non-linear governing equations (7-1)-( 7-5) with associated boundary conditions (Eqs. (7-18) 

and (7-19)) are discretized over a set of mobile particles in the context of the Moving Particle 

Semi-implicit (MPS) method where the contribution of each neighboring particle is approximated 

by the use of the newly proposed smoothing kernel (Eq. (7-22)). In the current work, the 

combination of the third-order TVD Runge-kutta scheme [54] and classical two-step projection 

method [55] has been employed for the treatment of the velocity-pressure coupling and transient 

terms. The aforementioned algorithm separates calculations into three distinct stages (i.e. explicit, 

implicit and explicit) at each intermediate step of the Runge–Kutta scheme (TVD-RK3). In the 

first explicit stage, an auxiliary velocity is estimated through Navier-Stokes equations without the 

pressure term as follows: 

* 2( )n n

B t     u u u F  (7-25) 

In the implicit stage, pressure is evaluated through PPE by taking into consideration the fluid 

incompressible condition (
1 0u  ) as: 

*
2 1p

t

 
 



u
 (7-26) 
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The superscript (
1
) denotes the first step of the TVD-RK3. The above equation is discretized 

using the proposed Laplacian and gradient operators as follows (see also Eqs. (7-A10) and (7-

A15) in appendix A):  

, ,
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where L is the corrective matrix and 
,i xp and 

,i yp denote pressure gradients which should be 

calculated via Eq. (7-36). In the last explicit stage, the material derivatives of velocity ( D Dtu ) 

and energy ( DT Dt ) are computed through Eqs. (7-2) to (7-4) as follows: 

1
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u  (7-28) 

2
n

n

p

DT k
T

Dt C
   (7-29) 

After solving equations (7-28) and (7-29), the first step of the Runge-Kutta scheme can be 

accomplished as follows:  
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By repeating the above procedure with updated values of (1)
u , (1)

r and (1) (instead of the n
u , n

r

and n ), the second step of the TVD-RK3 scheme can be fulfilled as below: 
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This trend is continued for the third (last) step where particles are advected to the new positions (

( 1)n
r ) with the modified velocity ( ( 1)n

u ) and temperature ( ( 1)n  ) as follows: 
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where 
(2)D Dtu and 

(2)D Dt are updated substantial derivatives of velocity components and 

temperature field.  As stated earlier, particles in Lagrangian framework have a natural tendency 

to migrate along the streamline, leading to the formation of either empty space or the occurrence 

of the particle clumping within the computational domain. Therefore, to preclude particle 

bunching and circumvent the instability introduced by ill-distributed particles, the Optimized 

Particle Shifting (OPS) technique [56] in the context of the MPS [29] is applied on the particle 

positions as follows: 

( 1)* ( 1) ( 1)
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r are particle shifting displacement which can be computed as follows: 
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Table  7.1 List of the operators used for discretization of diffusion and gradient terms. 

 

The terms ,i xC  and ,i yC  are gradients of concentration (C) which encourage particles to travel 

out from high concentration area to the lower one. The parameter represents a normalisation 

coefficient which should be computed at the initial position of particles (initial time step, t=0) 

where kernel has a fully compact support (interior particles).  is the problem-dependent 

parameter which controls the magnitude of the shifting displacement (D) in the interests of 

retaining numerical consistency. In the present work, it is taken as 0.08  . in  denotes 

corrective matrix which is given by: 

Operator Equation used 

Divergence (for velocity) (
' ',x yu u ) 

Gradient (for temperature) (
' ',x y  ) 

Eq. (7-A10) is implemented in the present study 

whereas Eq. (7-A3), (7-A5), (7-A8), (7-A9) or (7-

A11) can also be used. 

Gradient (for pressure) (
' ',x yp p ) 

Revised form of the Eq. (7-A10) is applied in the 

current work where 1  and 1   are used for 

inner and surface particles, respectively. (see also Eq. 

(7-36)) 

Particle Shifting Technique (PST) 
Eqs. (7-33), (7-34) and (7-35) are used as a particles 

regularization scheme.  

Kernel function Eq. (7-22) is used for all simulations (cases A1 to B4) 

Free-surface detection technique 

Combination of the Particle Number Density (PND) 

and divergence of the displacement is used (see also 

our previous work [29]) 

Buoyancy force in natural convection (

i ) 

Density smoothing process in  Rayleigh 

Taylor instability ( interface ) 

 

Eq. (7-A2) is used to calculate field functions ( i and 

interface ).  

Pressure on the solid walls ( ip ) 

Temperature on the insulated walls ( i ) 

Eq. (7-A2) is applied to calculate field functions on 

the solid walls ( ip and i ) 

Laplacian  

(for pressure 
2P  and diffusion

2 2,  u  ) 

Eq. (7-A15) is applied in the present work whereas 

Eqs. (7-A16) or (7-A18) can also be used. 
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From the above discussion, one may deduce that, prior to implementing Particle Shifting 

Technique, the specific particle labeling algorithm is required to identify the role of the each 

particle (inner, vicinity or surface particle) and position of the interface. In the present study, the 

combination of the Particle Number Density (PND) and divergence of the displacement is used to 

determine the position of the interface. For more details see our previous work [29]. At the end of 

the process, two other useful quantities such as average Nusselt number ( Nu ) and overall 

entropy generation ( totS ) can be determined via Eqs. (7-15) to (7-17) particularly for the case of 

natural convection heat transfer. Before closing this section, it should be noted that, the proposed 

higher-order Laplacian operator (Eq. (7-A15)) has been utilized for estimating diffusion terms          

( 2 u ,
2T ) and PPE ( 2 p ) whereas Eq. (7-A10) is applied to predict temperature gradient ( T ,

 ) and divergence of velocity components (u ). Meanwhile, Eq. (7-A2) is used as a 

smoothing operator to estimate temperature (T ) in the buoyancy force ( ( )b cF g T T    ) or 

density of the interface ( interface ) in buoyancy-driven and multiphase flows problems, 

respectively. However, for predicting the pressure gradient ( p ), another strategy should be 

adopted to deal with topological inconsistency caused by truncated kernel error adjacent to the 

free-surface area. To rectify this shortcoming, Eq. (7-A10) is revised based on Tensile Instability 

Control (TIC) suggested by Sun et al. [27], [57] as follows: 
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 is an integer variable which alters between 1 and -1 for interior and surface particles, 

respectively. More precisely, in this switching technique, the conservative form ( 1   ) of the 

Navier-stocks equations (
j ip p ) is implemented on the free-surface area and its vicinity 

particles whereas the non-conservative form ( 1  ) with first-order accuracy is applied on the 
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inner particles (
j ip p ). In this way, Eq. (7-36) is able to take advantage of simultaneous 

momentum conservation and first-order accuracy. Eq. (7-36) will henceforth be referred to as a 

Revised Pressure Gradient operator. The summary of equations outlined in the present study is 

tabulated in table 7-1. The detailed description of the derivation of the discrete differential 

operators is also provided in appendix A.   

7.5 Validation 

The robustness and validity of proposed modifications in handling negative pressure field and 

violent free-surface flow with wave impact are ascertained in this section through numerical 

simulation of four well-known benchmark cases namely: the hydrodynamic evolution of classical 

dam break over the dry bed (case A1), rotation of a square patch of fluid (case A2), two-phase 

Rayleigh-Taylor instability (case A3) and oscillating concentric circular drop (case A4). For all 

runs, the ratio of smoothing length over the particle spacing is taken as a unity ( 1h x h y    ) 

while the time step follows the Courant number (CFL) conditions based on the acoustic and 

diffusion constraints: 

max

convection

x
t CFL


 

u
 

(7-37) 2

viscous

x
t CFL




   

min( , )convection viscoust t t     

In the present work, minimum and maximum values of Courant number are chosen as 

minCFL 0.05  and maxCFL 0.15 for the cases dam break and Rayleigh-Taylor instability, 

respectively. The numerical methodology was coded in the Intel® Visual FORTRAN Compiler. 

7.5.1  Dam break (case A1) 

Dam failure problem is a well-known benchmark test case which has been widely used to verify 

the performance of different Euilerian/Lagrangian numerical methods. Probably because it 

involves severe deformation and topological changes such as: water re-entry, impact pressure, 

splashing and wave breaking which are crucial physical phenomena in ocean engineering. The 

initial setup of the problem is similar to the numerical and experimental investigations conducted 

by Zhang et al. [58] and Lobovský et al. [59] where a rectangular water column (
3997 Kgm 



229 

 

and 
6 1 1855 10 Kgm s     ) with the initial height and width denoted as 0.3H m and 

0.6W m is stored on the LHS of a reservoir ( 1.61 , 0.8D m L m  ). As shown in Fig. 7-1, the 

time histories of pressure variations and water level height are monitored at three different 

sampling points ( 1 2 30.003 , 0.03 , 0.08h m h m h m   ) and sections ( 1 20.3 , 1.14l m l m  and 

3, 1.362l m ). Fig. 7-4 illustrates snapshots of the flow evolution together with the effects of the 

Particle Shifting Technique (PST) on the particle configurations and pressure filed at different 

time instants. Generally, once the virtual gate is removed, under the effects of gravity force, the 

water column collapses and moves horizontally along the dry bed while its level of kinetic energy 

increases. During this period 0 2.5t g H  , the pressure distribution within the fluid deviates 

considerably from hydrostatic such that maximum pressure is dropped to approximately half of 

its initial value, indicating rapid exchanges between potential and kinetic energies. The surge 

front eventually hits the downstream wall, producing the first impact pressure at

* 2.531t t g H  . This stage is accompanied by an irreversible conversion of kinetic energy 

into shock pressure and rapid formation of the stagnation point on the corner of the enclosure. 

Since, the right wall is rigid and impermeable, the fluid starts to deviate upwards, resulting in a 

formation of ascending jet along the vertical wall. As time progresses, due to the restoring action 

of gravity force, the fluid acceleration declines and consequently upward movement of the water 

jet slows down. In this circumstance, the thickness of the water jet augments and its crest starts  
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0.5( ) 0.922t g h   
0.5( ) 3.04t g h   

  

  
0.5( ) 5.45t g h   

0.5( ) 6.09t g h   

  

  

Figure  7-4 The effects of the Particle Shifting Technique (PST) on the particle distributions and 

pressure field for problem of dam failure (case A1) at four different time instants. 
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Figure  7-5 Qualitative comparison of predicted results with experimental measurements and 

numerical simulations of Lobovský  [59] and Zhang et al. [58] for case A1. 
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losing its kinetic energy, while the underling fluid is still moving rightwards, leading to the 

creation of the rolling wave at 
* 4.75t  . As time goes on, the magnitude of the pressure inside 

the plunging wave gradually augments such that distribution of the lateral pressure becomes 

nearly quasi-hydrostatic as depicted in Fig. 7-4. This phenomenon is more prominent adjacent to 

the right wall where stagnation point gets extended to the middle portion of the rolling wave. 

Finally, due to the oncoming flow, the plunging jet ultimately falls back onto the moving wet bed 

at 
* 6.33t  where the second splash-up scenario and sudden rise in pressure time history (

* 0.976P  ) occur. Close-up views of particles position during the flow evolution in Fig. 7-4 

reveal that, the use of Particle Shifting Technique (PST=On) can efficiently suppress spurious 

pressure fluctuations and singular pressure impulse via enhancing the uniformity of particles 

distribution. On the contrary, it can be seen that in the absence of PST, due to Lagrangian nature 

of the method, particles begin to follow the pattern of streamlines such that the occurrence of the 

particle clustering and its undesirable consequences (unphysical particle splashing and void 

formation) are inevitable. As highlighted before, the development of the particle stratification 

(line structures) and anisotropic distributions can trigger tension-instability problem which leads 

to the density error accumulation and degradation of the interpolation procedure. A closer 

inspection of Fig. 7-4 shows that at 
* 0.922t  , when PST is turned off, particles are deployed 

obliquely and a moderate pressure oscillation takes place near the bottom wall, presumably 

because of non-physical particles distortion in that area. This behavior persists or even gets 

worse, resulting in the formation of check-board pressure filed and spurious interface 

fragmentation at the moment of second impact pressure (
* 6.09t  ) induced by backward 

plunging water front. Comparison of calculated pressure signals at three different probes with 

experimental data is presented in Figs. 7-5 and 7-6. Satisfactory agreement with previously 

published works in Figs. 7-5 and 7-6 vividly confirms the applicability of the proposed models in 

handling positive pressure field involving shock waves. It is also evident that, the predicted 

results using the improved MPS model in terms of pressure time histories and water level heights 

are quite smooth and noise-free while there are visible differences between the experimental 

measurements [59] and those obtained by original WCSPH method [58].  
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(a) Time history of pressure variations (b) Time history of water level height 

  

  

  

Figure  7-6 Quantitative comparison of calculated results in terms of the pressure variations on the 

right wall and water level height at three different sample points with experimental measurements 

and numerical simulations of Lobovský  [59] and Zhang et al. [58]. 

 

The first reason for such a discrepancy can be attributed to the large truncation error associated 

with traditional SPH formulations which can deteriorate the overall quality of the simulation in 

terms of smoothness, consistency and precision especially in the case of irregular particle 

distributions. Similar findings were reported by Quinlan et al. [60] and Oger et al. [31] who 

numerically confirmed that the classical SPH operators are only valid for homogeneous particles 
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distribution so that the existence of any anisotropic or coherent particle structures can seriously 

jeopardize the reliability of numerical solutions. However, since the enhanced MPS model 

benefits from high level of accuracy through implementing higher-order gradient, divergence and 

Laplacian operators, the pressure oscillations at the time domain are totally trivial. The second 

reason for such inconsistency can be traced back to the discretization of the pressure gradient 

terms. Thanks to the Tensile Instability Control (TIC) proposed by Sun et al. [27], [28], the 

improved MPS model in the present work takes advantages of simultaneous momentum 

conservation and first-order accuracy (see Eq. (7-36)) while conventional WCSPH model [58] 

used conservative form of pressure gradient operator (
j ip p ) so-called Purely repulsive 

pressure gradient [61] across the entire fluid domain to overcome the tensile instability problem 

at the expense of losing accuracy. As mentioned earlier, type of the kernel function and 

implementation of the particle regularization technique are also two other major factors which 

can immensely influence the stability and accuracy of the method. In more details, Zhang et al. 

[58] applied 5th-order Wendland kernel function whereas the results of the current work have 

clearly shown that Wendland kernel fails to accurately predict the flow characteristics of 1D Sod 

shock tube problem (see section 4). Heterogeneity in the particle distribution in the absence of an 

efficient Particle Shifting Technique is another source of inaccuracy and oscillatory behaviors in 

[58].  

7.5.2  Rotation of a square patch of fluid (case A2) 

The evolution of rotating square patch of fluid is examined in this subsection as a second 

benchmark problem to demonstrate the efficiency and performance of the improved MPS model 

in dealing with negative pressure field. This canonical test case was originally introduced by 

Colagrossi [62] to investigate detrimental effects of tensile-instability on the particles behavior. 

The initial conditions of the velocity and pressure are given by [63] as follows: 

0

0

0

( , ) 2 2

( , ) 2 2

( , ) 0

( , , ) 0

u x y y L y L

v x y x L x L

p x y

g x y t





    
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



 (7-38) 
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Figure  7-7 The effects of PST on the particle distributions and pressure field for case A2.  

Pressure field (PST=On) Three different layers of the 

fluid 

Pressure field (PST=Off) 

   

   

   
A zoomed-in view of pressure 

field 

A zoomed-in view of fluid 

layers 

A zoomed-in view of pressure 

field 
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(a) Present work 

(PST=On), pressure 

field 

(a) Present work 

(PST=On), three 

different layers of 

fluid patch 

(b) Sun et al. [63] 

   

   

A zoomed-in view of pressure 

field (PST=On) 

A zoomed-in view of fluid 

layers (PST=On) 

Time history of pressure 

variations 

at the center of the fluid patch 

   

Figure  7-8 Qualitative and quantitative comparison of simulated results with numerical work of 

Sun et al. [63] for the case of rotating square patch of fluid (case A2, 310  Kgm
-3

).   
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where
11s  and 1L  denote angular velocity and length of the fluid patch, respectively. 

Generally, unlike the previous case, due to the existence of the centrifugal force, the flow field is 

characterized by negative pressure field which causes sides of the element to shrink inward 

towards the center of the vortex while corners of the patch extend radially outward to satisfy 

continuity requirements. This mechanism results in the formation of star-shaped structure within 

the fluid domain. Fig. 7-7 reveals that, because of very high strain rates and pressure gradient 

adjacent to the free-surface area, the outer layer (highlighted in red) undergoes large deformation 

while the interior one (highlighted in blue) remains nearly unaltered which indicates that the 

surface area is more prone to fragmentations and crack propagation. The close-up snapshots in 

Fig. 7-7 illustrate that, the utilization of PST has made a significant contribution to establish 

smoother surfaces and uniform particles distribution via eliminating non-physical gap and 

overlapping. However, similar to previous case, when the Particle Shifting Technique is turned 

off (PST=Off), due to rapid distortion of the boundary and excessive migration of particles 

towards the central portion, the unfavorable branch-like structures and particles stratification start 

to develop within the fluid domain. As expected, the growth of these line structures and 

irregularities in particle arrangements eventually corrupt the quality of kernel approximations, 

leading to a total failure of the calculation at 1.4T t  . Comparison of predicted results with 

existing numerical solutions in the literature [63] in terms of the pressure time histories at the 

center of the patch together with free surface profile is presented in Fig. 7-8. It is evident that, the 

tips of the four arms are exactly matched with the trajectories arising from straight lines reported 

in work of Sun et al. [63] and good agreement is found with the reference Boundary Element 

Method (Eulerian model). 

7.5.3  Two-phase Rayleigh-Taylor instability (cases A3) 

To further assess the performance and applicability of the proposed modifications in handling 

multifluid flows, the classical Rayleigh-Taylor instability (RTI) problem enclosed in a 

rectangular cavity [1m, 2m] is investigated in this subsection as a third benchmark test problem. 

As schematically shown in Fig. 7-1, the computational domain initially consists of two 

immiscible fluids with density ratio of 1.8R H L    where the denser fluid with physical 

properties of 3180H Kg m   and 0.9 .H Pa s   is located above the lighter fluid  
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Present work Pahar et al. [64] Present work Meng et al. [65] 

    

    

    

Figure  7-9 Comparison of the obtained results with numerical data of Pahar et al. [64] and Meng 

et al. [65] two-phase Rayleigh-Taylor instability (case A3). 
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(a) Zoomed view of 

interface at T=3.0 

(b) Zoomed view of 

interface at T=5.0 

(c) Front position of 

lighter fluid 

   

Figure  7-10 Quantitative comparison of the present MPS predictions against the numerical and 

analytical results of Pahar et al. [64]; (a) and (b) zoomed-in views of material interface obtained 

from the present model; (c) time history of front position of lighter fluid. 

 

( 3100L Kg m   and 0.5 .L Pa s  ) and the system is subject to a gravitational field (

24.41msg ). The instability is characterized by the Reynolds number of Re H HH H  g

where 1H m is width of the enclosure and Hg is the characteristic velocity with g being the 

gravitational acceleration. The Atwood number is defined as ( 1) ( 1) 2 7R RAt      which 

represents the density contrast between two fluids. The initial position of the perturbed interface 

between two fluids is defined by a sinusoidal function ( 1 0.15 sin(2 )y x   ) and the mirror 

velocity technique described in section 3 is employed to enforce no-slip boundary condition on 

all rigid walls. The simulation is carried out on medium resolution of 250 500 fluid particles. It 

should be noted that, in order to circumvent the physical discontinuities at the multi-fluid 

interface, the proposed smoothing operator (Eq. (7-A2)) is utilized for the treatment of the 

density and viscosity. The temporal evolution of interface together with the corresponding 

pressure distribution at three different dimensionless times (T t H g ) are presented in Fig. 7-

9. Generally, due to buoyancy force and initial interface distortion, the denser fluid is directed 

downward as a spike while the lighter fluid rises up along the right wall as a bubble to satisfy the 

need for the mass conservation. Inspection of  Fig. 7-9 reveals that during the early stages of the 
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interface evolution ( 1T  ), the position of the tip of the rising and falling fluids remains 

symmetrical with respect to center of the enclosure which indicates that the fluid flow is 

governed by the viscous force. As the heavy fluid penetrates further into the light fluid (1 3T 

), the strength of the fluid flow enhances and consequently the surface force due to the shear 

stresses (shear velocity) is intensified, resulting in the appearance of the dynamic bubble-spike 

structure within the enclosure. In fact, the formation of the mushroom-like structure is a strong 

indication of the development of Kelvin-Helmholtz instability (KHI) which causes the heavy 

fluid to roll up into two counter-rotating vortices. As the time further proceeds, more and more 

secondary vortexes are appeared along the side spikes and subsequently the interface becomes 

highly twisted and distorted within the container which implies that KHI is still dominant over 

the RTI. Fig. 7-9 illustrates that the predicted results in terms of the particle distributions and 

pressure contours are qualitatively in a satisfactory agreement with the numerical data of Pahar et 

al. [64] and Meng et al. [65]. It can be seen that, the pressure field is smoothed and the interface 

is free from unphysical mixing of phases which confirms the overall consistency and accuracy of 

the developed model in capturing primary and secondary recirculation zones generated at the 

material discontinuities. Finally, in Fig. 7-10, the time history of the front position of ascending 

lighter fluid is compared with the analytical and numerical results of Pahar et al. [64] and a good 

agreement is found.  

7.5.4  Oscillating concentric circular drop (case A4) 

The evolution of a weightless ( 0g ) oscillating concentric circular drop subjected to an external 

body force ( 2

extF   r with xi yj r being the distance from the center of the drop) is 

considered in this subsection to demonstrate the capability of the proposed modifications in 

handling multiphase flow problems with high density contrast. This canonical test case was 

originally introduced by Monaghan and Rafiee [66] and was then successfully reproduced by 

Meng et al. [65] and Lind et al. [67]. As schematically portrayed in Fig. 7-1, the computational 

domain consists of two immiscible inviscid fluids ( 0H L   ) with physical density ratio of 

1000R H L    where the heavy fluid ( 31000H Kg m  ) with radius of 1 0.5R m   
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Present work (fluid particles) 

   
Present work (pressure field) 

   

Lind et al. [67] (fluid particles) 

   

Meng et al. [65] (pressure field) 

 
 

 

Figure  7-11 Qualitative comparison of the predicted results from the current work with numerical 

data of Lind et al. [67] and Meng et al. [65] in terms of the phase distribution and pressure field 

for case A4. 
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(a) Present work (vertical 

velocity field at T=2.2) 

(b) Lind et al. [67] 

(vertical velocity field) 

(c) Time histories of the 

major axis 

  
 

(d) A zoomed-in view of 

the interface at T=1.1 

(e) A zoomed-in view of 

the interface at T=3.5 

(f) Time historie of the 

pressure variations at 

the center of the drop 

   

Figure  7-12 Quantitative comparison of the present MPS predictions against the numerical and 

analytical results of Meng et al. [65] and Lind et al. [67] for case A4 (oscillating concentric 

circular drop with density ratio of 1000R H L    ); (a) and (b) vertical velocity contours, (c) 

time history of variation of the outer major axis; (d) and (e) zoomed-in views of material 

interface obtained from the proposed model; (c) time history of pressure variations at the center 

of the drop. 

 

is surrounded by a lighter fluid ( 31L Kg m  ) whose initial radius is 2 1R m . The initial 

pressure and velocity fields are given by: 

0

0

0

( , )

( , )

( , ) 0

u x y Ax

v x y Ay

p x y



 



 (7-39) 
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Similar to [65]–[67], the ratio A  is set equal to 0.5where A and  are taken as 0.5 and 1.0, 

respectively. Fig. 7-11 illustrates a series of snapshots of particle distributions and pressure 

contours at various time instants. Generally, hydrodynamic behavior of the oscillating circular 

drop under the influence of the negative external force and irrotational velocity field (

0.5 0.5i j u ) is characterized by the isotropic elongation of the circular patch where top and 

bottom portions of the medium starts to shrink in the longitudinal direction while left and right 

sides stretch transversally. This mechanism leads to the development of the positive pressure 

field. However, as time goes on, the magnitude of the external force induced by the particles 

position ( 2

extF   r ) augments and begins to overcome the fluid momentum. In this 

circumstance, the side parts of the patch start to move towards the center of the drop while upper 

and lower portions elongate vertically, leading to the drop oscillations with period of 

2 4.44T   . Comparison with previously published numerical SPH results in Fig. 7-11 

vividly demonstrates that, the complex interface evolutions are accurately captured by the 

enhanced model with no additional unphysical behavior. To confirm the absence of any 

nonphysical particle clustering and tensile instability, two zoomed-in views of the interface at 

1.1T  and 3.5T  are presented in Fig. 7-12. It is evident that, particles are regularly distributed 

across the material interface and the corresponding pressure fields are smooth without the 

remarkable unphysical noise (see also Fig. 7-11), supporting the effectiveness of the interface 

treatment and density smoothing (see Eq. (7-A2)). However, there are small numerical noises in 

the vertical velocity field in the close vicinity of the material discontinuity which can be 

attributed to the implementation of the Particle Shifting Technique [68]. Finally, comparison of 

the time histories of the major axis of outer ellipse with previously analytical and numerical 

solutions [65] in Fig. 7-12 clearly proves the performance and validity of the enhanced MPS 

model. 

7.6 Results and discussion 

Previous section vividly verified the capability and feasibility of the proposed modifications in 

predicting the dynamics of free-surface and multiphase flow problems. Thus, in this section, the 

improved MPS model will be employed to simulate three-phase Rayleigh-Taylor instability 
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(cases B1 and B2) and entropy generation due to transient natural convection heat transfer in 

square cavity (cases B3 and B4).  

7.6.1 Three-phase Rayleigh-Taylor instability (cases B3 and B4) 

To demonstrate the ability of the enhanced model in capturing large interface deformations in the 

multi-component problems with density contrast, the development of three-phase Rayleigh-

Taylor instability (RTI) in two different systems with double-mode perturbations is examined in 

this subsection. The specifications of the instability with associated initial and boundary 

conditions are presented in Fig. 7-1. As portrayed in Fig. 7-1 the computations are performed in a 

rectangular enclosure with dimensions of 1m×3m (width×height) where three immiscible 

incompressible Newtonian fluids with densities of 4H  , 2M  and 1L   are confined in 

the upper, middle and lower portions of the enclosure, respectively. The dynamic viscosities are 

set to 0.04H  , 0.02M  and 0.01L   which causes the fluids to have an identical 

kinematic viscosity ( 0.01H M L     ). It can be seen from the figure that, the lower and 

middle phases are segregated by the interface located at 1 0.1 cos(2 )y x    while the 

interfaces between middle and upper phases are defined as 2 0.1 cos(2 )y x   and

2 0.1 cos(2 )y x   in cases B1 and B2, respectively. Non-slip boundary condition is imposed 

on all rigid walls using mirror particle velocity technique [48]. The instability in both cases is 

governed by non-dimensional Reynolds and Atwood numbers defined as Re 420H Hg  

and max min max min( ) ( ) 0.6At        where 17.64g , max H  and min L  represent 

gravitational acceleration , maximum and minimum values of densities within the computational 

domain. All parameters are defined in the International System of Units (SI). It should be noted 

that, in order to avoid the excessive smearing of contact discontinuities and keep a sharp and non-

oscillatory interface, Eq. (7-A2) has been used for treatment of the solution near the material 

interfaces as follows: 
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In the above equation, s and s denote smoothing density and viscosity, respectively. The 

evolution of the interfaces together with the corresponding contours of velocity in the x and y-

directions are shown in Figs. 7-13 to 7-15 at different dimensionless times (
0.5( )T t g H ). 

Generally, due to the existence of density gradient between two adjacent fluids, the 

hydrodynamic behavior of the Rayleigh-Taylor instability is characterized by upward movement 

of the lighter fluid and downward motion of the denser one, leading to the formation of the 

ascending bubbles and descending spikes within the computational domain. It can be seen from 

Fig. 7-13 that during the early stages ( 1.0T  ), the growth and amplitude of bubbles and spikes 

remain nearly symmetrical with respect to their initial planar interfaces defined by 1.0y m and 

2.0y m . However, starting from 2.0T  , due to the presence of the shear force at the moving 

interfaces, the spikes of heavier and medium fluids begin to roll up and consequently four 

secondary counter-rotating vortices are established within the enclosure. It is evident that, as the 

times goes on ( 2.875 3.890T  ), the upper spike keeps descending downward while two main 

bubbles driven by the up-moving lighter fluid ( 1L  ) rise up at both sides of the domain and 

ultimately outpace the primary spike at 3.890T  . At this stage, the upcoming spike becomes 

totally surrounded by rising bubble, leading to the appearance of a tulip-shaped structure (or 

reverse arrow-shaped structure). Inspection of Fig. 7-14 also reveals that as the top fluid ( 4H 

) penetrates into the light one ( 1L  ), the medium phase ( 2M  ) gets more and more 

squeezed between them and consequently magnitude of the velocity components intensifies 

steadily. In fact, the constant increase in the flow strength can be attributed to the variation of the 

local Atwood number during the evolution of the three-phase Rayleigh-Taylor instability. 
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Case B1 (Perturbed interfaces in the same directions) 

    

Case B2 (Perturbed interfaces in the opposite directions) 

    

Figure  7-13 Fluid interface evolution of three-phase Rayleigh-Taylor instability problem. 
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More precisely, in the three-phase RTI, the Atwood number ( 2 1 2 1( ) ( )At       ) can be 

defined between any arbitrary pair of working fluids namely: Heavy and Medium fluids (

, 0.333H MAt  ), Medium and Lighter fluids ( , 0.333M LAt  ) or between Heavier and Lighter ones 

(
, 0.6H LAt  ). It is apparent that as the denser fluid approaches the lighter one, the local Atwood 

number and density contrast between them increase and consequently the RTI evolution begins to 

deviate from the Kelvin-Helmholtz instability (KHI). Since, the deviation from the KHI is 

responsible for considerable enhancement in the flow acceleration, the upper spike undergoes a 

rapid displacement toward the bottom wall under the effects of the gravity force. Similar 

observations were also reported by He et al. [69], Tryggvason [70] and Nabavizadeh et al. [71] 

who investigated the effects of the Atwood number on the RTI. Finally, it can be seen that as 

time progresses, the interfaces of spikes and bubbles are elongated along the y-axis direction and 

eventually evolved into very complicated shapes where a significant amount of vertical mixing 

takes place. However, Fig. 7-13 shows that by changing the direction of the upper cosinusoidal 

perturbation from 2 0.1 cos(2 )y x   to 2 0.1 cos(2 )y x   , a different scenario occurs 

within the enclosure. It can be seen that in case B2, at the early start-up and transitional stages (

0 1.0T  ), the heavier and lighter phases behave identically such that the distributions of 

velocity components and the growth of interfaces remain symmetrical with respect to both 

horizontal and vertical centerline of the enclosure ( 0.5 , 1.5X m Y m  ). These features remain to 

be the case during 1 2.8T  where the initial perturbations near the vertical walls move towards 

the central region while the medium fluid starts to propagate in the y-direction, leading to the 

formation of ascending bubble and descending spike in the heavier and lighter fluids, 

respectively. It is worth to mention that at this stage, owing to the small density difference across 

the interfaces ( , , 0.333H M M LAt At  ), the flow field is characterized by the appearance of Kelvin-

Helmholtz shear instability (KHI) which causes the sides of the medium phase to roll-up/fold-up 

into two vortex rings. Note that, these vortex shedding process and shear instability of the rolls 

are somewhat analogous to the semi-von-Karman vortex streets observed by Meng et al. [72] and 

Hicks [73]. 
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Contours of velocity in x-direction (u) 

    

Contours of velocity in y-direction (v) 

    

Figure  7-14 Contours of velocity in the x and y-directions (u,v) for three-phase Rayleigh-Taylor 

instability problem. Case B1 (perturbed interfaces in the same directions). 250 750pN   . 
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Contours of velocity in x-direction (u) 

    

Contours of velocity in y-direction (v) 

    

Figure  7-15 Contours of velocity in the x and y-directions (u,v) for three-phase Rayleigh-Taylor 

instability problem. Case B2 (perturbed interfaces in the opposite directions). 250 750pN   . 
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(a) Zoomed view of 

interface at T=2.875 

(case B1) 

(b) Zoomed view of 

interface at T=3.890 

(case B1) 

(c) Zoomed view of 

interface at T=2.875 

(case B2) 

   

(d) Zoomed view of 

interface at T=3.890 

(case B2) 

(e) Position of the heavier 

and lighter fluid fronts 

in case B1 

(f) Position of the heavier 

and lighter fluid fronts 

in case B2 

   

Figure  7-16 (a)-(d) four different zoomed-in view of fluid interfaces in cases B1 and B2. (e) and 

(f) time evolution of the heavier and lighter fluid fronts in cases B1 and B2. 1.0, 2.0,L M  

4.0H  . 

 

The corresponding velocity contours in Fig. 7-15 also reveal that with an increase in time (

2.8 3.8T  ), the intensity of the recirculation augments and consequently some secondary 

eddies are generated inside the enclosure as a consequence of extreme interfaces deformation and 

stretching. However, this trend starts to weaken as the medium fluid penetrates further into to the 

lower and upper portions of the enclosure ( 3.8 4.9T  ). It can be seen that unlike the case B1, 

due to blockage and deterrent effects of the ascending fluid ( 1L  ), the effective momentum 

transfer and flow acceleration attenuate slowly, and consequently the falling fluid gets stuck 
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within the rising lighter fluid. Fig. 7-13 vividly illustrates that at this circumstance, the rising 

sheet plumes begin to swallow the heavier fluid, leading to the significant deflection of the lighter 

fluid in the central zone of the enclosure. In fact, the development of the stationary mushroom-

shaped structure and its rapid expansion to the sidewalls are strong indications of the flow 

deceleration and its subsequent fluid trapping in that area.  

Fig. 7-16 shows the spike tip and bubble front locations versus time in both cases together with 

four close-up snapshots of interfaces at different time instants. The enlarged views of the domain 

clearly demonstrate the applicability of the proposed smoothing operator (Eq. (7-A2)) in retaining 

the sharpness of the interface without the need to use extra repulsive force [74] to suppress 

spurious particle interpenetration on the two sides of the interface. In addition to the smoothness 

of the interfaces, it is evident that particles are uniformly distributed across the interfaces without 

unphysical void formation or cavitation which clearly highlights the effectiveness and robustness 

of previously proposed Particle Regularization Technique. Finally, as expected, the lowest 

vertical displacement rates of the heavier ( 0.865Y m  ) and lighter ( 0.646Y m  ) fluids 

during the simulations ( 0 4.9T  ) take place in case B2 which can be attributed to the 

aforementioned fluids trapping phenomena in this case. Take as an illustration, in case B1 the 

heavier and lighter fluids reach the same height at 2.61T  ( 1.44Y m ) while this event occurs 

at 3.36T  ( 1.43Y m ) in case B2. 

7.6.2  Entropy generation due to natural convection heat transfer (cases B3 

and B4) 

The analysis of transient entropy generation due to natural convection heat transfer in two well-

known benchmark cases namely: Differentially Heated Cavity (cases B3) and Rayleigh-Bénard 

convection (case B4) containing an adiabatic obstacle ( 0.3L H ) is adopted here to verify the 

reliability and performance of the improved MPS model in handling particulate flows with 

thermal convection. The schematic diagrams of two considered configurations with associated 

boundary conditions are presented in Fig. 7-1. In case B3, the vertical walls are maintained at two 

different temperatures ( c hT T ) while horizontal walls are thermally adiabatic. However, contrary 

to case B3, the Rayleigh-Bénard convection in case B4 is induced by differentially heated 

horizontal walls and insulated vertical walls. The enclosures are filled with air ( Pr 0.71 ) and 
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Boussinesq approximation is used to estimate density variations. It is worth noting that, in order 

to eliminate the unphysical temperature fluctuations from the computational domain, the 

proposed smoothing operator (Eq. (7-A2)) is employed to calculate the temperature value (T ) in 

the buoyancy force term ( ( )b cF g T T    ) as follows:  
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Figs. 7-17 to 7-20 illustrate transient variations of streamlines, isotherms, local Bejan number and 

entropy generation due to heat transfer irreversibility at different Rayleigh number in case B3. It 

should be mentioned that for the sake of brevity, the contour of velocity in the y-direction (v) is 

provided as a supplementary material. 

Generally, the hydrodynamic and thermal behaviors of natural convection heat transfer in 

differentially heated cavity are characterized by upward movement of the heated fluid in close 

proximity of hot surfaces and downward motion of the denser fluid near the cold surfaces, 

leading to the establishment of mono- and/or multi-cellular flow pattern inside the enclosure. It 

can be seen from Figs. 7-17 and 7-18 that the overall features of the flow structures and 

temperature distributions in case B3 are very similar to those observed in the classical buoyancy-

driven cavity [45] where due to thermally-induced buoyant force, the clockwise circulating cell is 

established and occupies the entire enclosure. Visual examination of the velocity magnitude in 

Fig. 7-18 reveals that, owing to the weak buoyancy force at Ra=10
3
, there is no disturbance and 

significant perturbation in the flow structure, signifying the predominance of heat conduction. 

The corresponding isotherms in Fig. 7-17 demonstrate the benchmark temperature pattern for the 

given Rayleigh number since they are nearly parallel to each other and evenly scattered.  
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Figure  7-17 Transient variations of temperature field (isotherms) as a function of the non-

dimensional time at different Rayleigh numbers for case B3. 
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Case B3 
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Figure  7-18 Transient variations of velocity field in the x-direction with associated streamlines as 

a function of the non-dimensional time at different Rayleigh numbers for case B3. 
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Case B3 
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Figure  7-19 Transient variations of the local Bejan number (Be) as a function of the non-

dimensional time at different Rayleigh numbers for case B3. 
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Case B3 
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Figure  7-20 Transient variations of the local entropy generation due to heat transfer irreversibility 

(ST) as a function of the non-dimensional time at different Rayleigh numbers for case B3. 
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By increasing Rayleigh number up to 10
4
, the vortex strength enhances and isotherms begin to 

follow the patterns of the streamlines. It should be noted that, the deviation of isotherms from 

their parallel state vividly implies that the transition point from conduction to convection mode 

takes place at this stage (quasi-conduction regime). With further increase in the value of Rayleigh 

number (Ra=10
5
), the strength of the convective flow enhances and two secondary circulation 

cells are developed in the left and right sides of the inner block, reflecting the flow separation in 

those regions. These flow separation and significant twisting of the isotherms are completely 

consistent with numerical findings reported by Mahapatra et al. [75] who investigated the effects 

of the aspect ratio of adiabatic block on the entropy generation and hydrodynamic characteristics 

of the Differentially Heated Cavity (DHC). Note that, their work at 0.3L H can be regarded as 

an extra validation for the current work. However, it can be seen that due to enhanced effects of 

natural convection at Ra=10
6
, the intensity of fluid motion and thermal mixing increases and 

consequently velocity contour and streamlines are stretched dramatically which support the 

dominance of the convective mode. Figs. 7-19 and 7-20 show corresponding variations of 

transient local Bejan number and entropy generation due to heat transfer irreversibility in case 

B3. As expected, at low Rayleigh number (Ra=10
3
) due to domination of conduction mode of 

heat transfer and weak buoyancy force, the local Bejan number values approach unity which 

indicates that most of the exergy destruction occurs as a results of the thermal dissipation. Table 

7-2 reveals that as the Ra intensifies, the average Nusselt number ( Nu ) and maximum absolute 

values of velocity components (
maxU ,

maxV ) increase. Since, according to Eqs. (7-12) and (7-13), 

the enhancement in the heat transfer rate and flow intensity causes temperature and velocity 

gradients to increase, the entropy generation due to both factors ( TS , FS ) augments dramatically. 

However, since the increment in the viscous dissipation (SF) is significantly higher than that of 

the heat transfer irreversibility (ST), the local and average Bejan number decline. This assertion is 

well reflected in the contours of the local Bejan number in Fig. 7-19 where entropy generation 

due to thermal dissipation is only restricted to certain regions between inner cylinder and outer 

enclosure. As it can be seen in Fig. 7-20 the maximum entropy generation due to heat transfer 

irreversibility (ST) is concentrated in the lower-left and upper-right corners of the enclosure, 

where the contour plots of isotherms are congested and temperature gradients are more intense.  
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Table  7.2 The effects of the Rayleigh number on the maximum velocity components, average 

Nusselt number and entropy generation for case B3 and B4 (steady-state condition). 

 

As Ra increases to 10
5
, the buoyancy force becomes more prominent and the thickness of the 

thermal boundary layer decreases. However, as expected, due to small increase in ST compared to 

SF, the magnitude of local and average Bejan number decrease which indicates that entropy 

generation due to viscous dissipation is coming in to the picture. This trend is maintained or even 

accentuated as the convective transport strengthens. It can be seen from table 7-2 and Fig. 7-19 

that at Ra=10
6
, due to faster rotation of clockwise vortex in the enclosure and higher velocity 

gradients, the average Bejan number decreases and becomes less than half ( 0.114Be  ) which 

implies that contribution of thermal dissipation on total entropy generation ( F totS S ) is trivial at 

this stage.  The time-evolution of Rayleigh-Bénard (RB) convection in the square enclosure with 

heating from below and cooled from above (case B4) is presented in Figs. 7-21 to 7-24 at 

different Rayleigh number. 

 

 

Case B3 (Differentially Heated Cavity) 

Ra Nu  maxU  
maxV  Be  totS  TS  FS  

10
3
 0.93560 2.9814 2.9311 0.9566 1.0869 1.0519 0.03496 

10
4
 2.2424 14.9702 17.4082 0.5809 3.6110 2.4641 1.1468 

10
5
 4.6517 39.9061 68.1099 0.2373 25.3720 5.0348 20.3372 

10
6
 9.0540 118.2826 220.4287 0.1148 365.8094 9.6360 356.1734 

Case B4 (Rayleigh-Bénard convection) 

Ra Nu  maxU  
maxV  Be  totS  TS  FS  

10
3
 0.8130 0.0670 0.05425 0.9907 0.9207 0.9206 53.72 10

 10
4
 2.3169 19.4668 19.1151 0.5415 3.9731 2.5373 1.4358 

10
5
 3.8763 78.0790 90.4418 0.1999 33.5765 4.1557 29.4208 

10
6
 6.6802 276.804 322.0081 0.02462 535.9981 6.7532 529.2449 
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Case B4 
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Figure  7-21 Transient variations of temperature field (isotherms) as a function of the non-

dimensional time at different Rayleigh numbers for case B4. 
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Case B4 
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Figure  7-22 Transient variations of velocity field in the x-direction with associated streamlines as 

a function of the non-dimensional time at different Rayleigh numbers for case B4. 
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Generally, according to linear stability theory [76], [77], the hydrodynamic development of the 

RB convection can be divided into two distinct stages: (a) conduction dominant regime where at 

low Rayleigh number ( 1708cRa Ra  ) due to weak buoyancy force, the fluid flow is almost 

stagnant in the bulk of the enclosure and isotherms are horizontally oriented and (b) convection 

dominant regime ( 1708cRa Ra  ) where the flow field is dynamically characterized by the 

formation of the clockwise Bénard cell. As visualized by low magnitude of velocity field in Fig. 

7-22 at Ra=10
3
, one can infer that because of high hydraulic resistance and viscous effects, the 

fluid motion inside the enclosure is weak and has a negligible influence on the temperature field. 

In this circumstance, isotherms are horizontally stratified and four symmetric rotating eddies of 

almost same size are established within the enclosure which indicates that heat transfer occurs 

primarily as the result of conduction mode. As expected, Fig. 7-23 and table 7-2 show that the 

corresponding  local and average Bejan numbers are very close to unity ( 0.99Be  ) which 

indicates that a significant contribution on the total entropy generation comes from thermal 

dissipation ( , 0tot T FS S S  ). It can be seen from Fig. 7-24 that, the local entropy generation 

due to heat transfer irreversibility is completely symmetric with respect to vertical centerline at 

X=0.5 and maximum ST is found to occur on the corners of the adiabatic obstacle similar to work 

of Pandit [78]. A close inspection of table 7-2 and Fig. 7-22 reveal that when Rayleigh number 

exceeds the critical value ( 41708 10cRa Ra   ), convective motion of the fluid (
maxU ,

maxV ) 

increases dramatically and thermal stratification becomes unstable which is an indication of the 

onset of the Bénard instability. It can be seen from Figs. 7-21 and 7-22 that, with the passage of 

time, the axial symmetry feature starts to vanish gradually and the clockwise recirculation roll is 

ultimately emerged within the enclosure. As a consequence of stronger thermal mixing, distinct 

thermal boundary layers are developed near the top-left and bottom-right parts of the horizontal 

walls which results in active sites of ST in those regions where due to immediate contact of 

working fluid with isothermal walls, the higher temperature gradient exists. It is interesting to 

note that, the formation of the Bénard cell is also accompanied by substantial increase in the 

intensity of fluid flow which in turn leads to the higher velocity gradient and entropy generation 

due to fluid friction irreversibility.  

 



262 

 

Case B4 
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Figure  7-23 Transient variations of the local Bejan number (Be) as a function of the non-

dimensional time at different Rayleigh numbers for case B4. 

 

As discussed before, since the increase in velocity gradient at Ra=10
4
 is remarkably greater than 

that of the temperature gradient, the average Bejan number declines rapidly and becomes equal to 
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0.54Be  which indicates that both SF and ST have a same contribution to overall entropy 

generation. With further increase in the Rayleigh number (Ra=10
5
), the strength of the Bénard 

cell evidently augments and consequently isotherms in the fluid region get more oriented towards 

the flow direction and thickness of thermal boundary layer decreases, indicating the 

establishment of the convective mode. The corresponding local Bejan number in Fig. 7-23 

reveals that, owning to intense fluid flow and as a consequence of implementation of no-slip 

boundary conditions, all walls of the enclosure act as strong active zones of SF where steeper 

velocity gradients occur. Finally, it can be seen from table 7-2 and Fig. 7-23 that at Ra=10
6
, due 

to remarkable enhancement in the convection effects, the magnitude of SF increases considerably 

and subsequently the average Bejan number becomes less than 0.024. This observation signifies 

that in the convection dominant region ( 610Ra  ), the considerable amount of available work 

might be exploited to overcome the irreversibility due to viscous dissipation. Finally, it can be 

seen from Fig. 7-22 that, when the system reaches the steady-state condition, the primary 

clockwise eddy together with a pair of secondary CCW vortices are appeared within the 

enclosure. These flow structure and temperature pattern together with their associated numbers of 

vortices are in accordance with numerical observations of Ouertatani et al. [79].  

To get more insights into the performance of thermal systems in cases B3 and B4, the transient 

variations of average Nusselt number ( Nu ) on the isothermal walls, total entropy generation ( totS

) due to thermal ( TS ) and viscous dissipations ( FS ) and average Bejan number ( Be ) at different 

Rayleigh number (
3 610 10Ra  ) are plotted in Fig. 7-25. The general trend of results shows that 

as the Rayleigh number intensifies, the heat transfer rate and entropy generation due to both 

factors ( TS , FS ) augment whereas a downward trend is observed in the values of average Bejan 

number. Again, as it was previously described, the rapid decreasing trend of Be  can be attributed 

to the significant enhancement in the values of FS compared to TS with the augmentation of Ra. 

As expected, due to static condition and weak fluid flow at Ra=10
3
, the values of FS  is 

significantly lower than that of the TS (especially in case B4).  
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Figure  7-24 Transient variations of the local entropy generation due to heat transfer irreversibility 

(ST) as a function of the non-dimensional time at different Rayleigh numbers for case B4. 

 

This observation again verifies the earlier assertion that, at conduction-dominated regime only a 

small amount of available work is used to overcome irreversibilities due to viscous dissipation. 
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Thus, it is not surprising that the overall behavior of total entropy generation becomes very 

similar to the thermal dissipation profile ( tot TS S ) at low Ra. Furthermore, the smooth time 

variations of Nu , totS , TS , FS  and Be  vividly demonstrates that since at low Rayleigh number (

310Ra  ), the thermal system in both cases is very close to the equilibrium state [80], the 

aforementioned pertinent parameters reach the steady state condition asymptotically without 

passing through the fluctuation period. However, by increasing the Ra up to 10
4
, deviation from 

equilibrium state increases and consequently oscillatory behavior starts to appear within the 

computational domain especially in case B4 where flow and temperature fields are inherently 

more prone to instability. Note that, such a behavior can readily be seen in Fig. 7-22 where due to 

drastic changes in the flow patterns including the merging of rolls or exchange of mass between 

them, the streamlines undergo complex structural changes over a period range of 
*0 0.402t  . 

For example, the detailed analysis of time-variations of heat transfer rate in case B4 illustrates 

that at Ra=10
4
, the mean Nusselt number on the top wall decreases rapidly to reach minimum 

value ( min 0.88Nu  ) at 
* 0.322t  and then increases and attains a maximum value (

max 2.69Nu  ) at 
* 0.46t  . This extreme oscillating behavior may be ascribed to the formation 

and destruction of the first bifurcation phenomena which occurred at the onset of the instability. 

It can be also seen that due to quasi-conduction dominant regime, this course of the event also 

occurs in the time-histories of totS and TS but with different values. With further increase in the 

values of Ra, intensity of buoyancy force is invigorated and subsequently the frequency and 

amplitude of the oscillations increase [81]. From a thermodynamics view point, the oscillatory 

behavior of the entropy generation at high Rayleigh numbers can be attributed to the irreversible 

generation of internal waves and thermal jump in the velocity and temperature fields [82]. 

Moreover, from the viewpoint of optimization theory and energy efficiency, it is evident that case 

B3 exhibits higher heat transfer rate and lower totS . Take as an illustration, in case B3 the ratios 

of average Nusselt number to total entropy generation ( totNu S ) at Ra=10
3
, 10

4
, 10

5
 and 10

6
 are 

approximately 0.86, 0.615, 0.183 and 0.024 while these values are respectively equal to 0.88, 

0.583, 0.115 and 0.012 in case B4.  
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Figure  7-25 Transient variations of average Nusselt number ( Nu ), average Bejan number ( Be ), 

total entropy generation ( totS ), average entropy generation due to thermal ( TS ) and viscous ( FS ) 

dissipations as a function of the non-dimensional time for cases B3 and B4 at different Rayleigh 

number. Pr=0.71, L=0.3H.  
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Figure  7-26 Transient variations of average Nusselt number ( Nu ), average Bejan number ( Be ), 

total entropy generation ( totS ), average entropy generation due to thermal ( TS ) and viscous ( FS ) 

dissipations as a function of the non-dimensional time for cases B3 and B4 at different Rayleigh 

number. Pr=0.71, L=0.3H. (cont’d). 
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Based on the above analysis, it can be concluded that the Differentially Heated Cavity (case B3) 

appears to be an energy-efficient compared to the Rayleigh-Benard convection especially at the 

onset of the convection. Similar findings were also documented by Anandalakshmi et al. [83] 

who investigated the entropy generation due to natural convection in rhombic enclosures with 

isothermally heated walls. Finally, similar to previous benchmark test cases, it is apparent that, 

particles in case B3 and B4 are regularly distributed throughout the simulations without any 

unphysical gap and void formation which in turn demonstrate the robustness and applicability of 

proposed models in handling particulate flows with thermal convection. 

7.7 Conclusions 

This paper introduced a new kernel function and two novel high-order gradient and Laplacian 

operators in the context of the Lagrangian mesh-free particle method (particularly MPS) for 

simulation of free-surface flows and exergy analysis of convection heat transfer problems. The 

numerical examples vividly confirm the effectiveness and applicability of currently enhanced 

MPS model in solving real-life and academic problems ranging from free-surface flows to 

convection heat transfer. The important findings of this study can be highlighted as follows: 

 The results shown that, the newly constructed kernel function remarkably outperformed 

the existing smoothing kernels (i.e. quintic spline and Wendland) in capturing/resolving 

shocks discontinuities and rarefaction wave region. 

 It was also found that, the proposed kernel function produces more reliable and stable 

results than the quintic spline and Wendland functions in modeling of free-surface 

problems and multiphase flows. 

 It was found that, the proposed Revised Pressure Gradient operator (switching model) 

can efficiently eliminate tensile instability problem from the free-surface area and 

subsequently provide more accurate and smoother pressure field than the traditional 

conservative form of the MPS operator. 

 The results show that, particles in Lagrangian framework have a natural tendency to 

migrate along the streamline, leading to the formation of empty space and the particles 

clumping/stratification within the computational domain. 

 The results show that, Particle Shifting Technique (PST) has a notable impact on the 

accuracy and efficiency of the Lagrangian particle methods.  
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 The results reveal that, the proposed smoothing operator (Eq. (7-A2)) can efficiently 

handle sharp density discontinuities adjacent to the material interfaces. 

 The results illustrate that, the proposed novel higher-order gradient and Laplacian 

operators for discretization of Pressure-Poisson equation and divergence of velocity can 

effectively eliminate spurious pressure fluctuation and density error accumulation from 

the fluid domain. 

7.8 Appendix A (gradient, Laplacian and divergence operators) 

Along this appendix two new gradient and Laplacian operators are systematically derived based 

on Taylor series expansion. Generally, for 2D space, by multiplying both sides of Eq. (7-A1) first 

by ijW , ij ij ijx W r , ij ij ijy W r and then summing it over every detected neighbor particle j, the 

shape function for any arbitrarily variable (fi) can be obtained as follows: 
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 (7-A2) 

In above equations, ijW  and j jdV m  denote kernel function and volume of the particle while 

ij j ix x x  and ij j iy y y  represent the distance between candidate particle i and its neighboring 

particle j, respectively. L is a corrective matrix which guarantees first-order completeness in 

kernel approximations. It is worth to mention that, Eq. (7-A2) is analogous to the MLS 

approximation pioneered by Nayroles et al. [84]. 

By subtracting fi from both sides of Eq. (7-A1) and multiplying it by 
2

ij ij ijx W r  and 
2

ij ij ijy W r , the 

first derivatives of field function (gradient operator) can be obtained as follow: 
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Eq. (7-A3) was originally introduced by Khayyer et al. [24] and then was extended and utilized 

by [25], [85] for simulation of multiphase flow problems. However, when the kernel function has 

a compact support, all off-diagonal entries of L matrix vanish, thereby producing the symmetric 

diagonal corrective matrix ( 2 2
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0
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In this condition, the corrective matrix L acts like a normalization factor in the traditional MPS 

approximations such that gradient operator can be calculated with less computational cost as: 
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Based on the above formulations, divergence operator for the regular particle distribution can be 

calculated as follows: 
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 (7-A6) 

where 
ijx is spatial distance in x (

ij j ix x x  ) or y-direction (
ij j iy y y  ). However, as stated 

previously, in the case of irregular particles distribution, Eq. (7-A3) should be used to calculate 

divergence of field function. For instance, for calculating divergence of the velocity in two-

dimensional system, Eq. (7-A3) must be solved twice, where sum of the velocity gradients in x (

u x  ) and y ( v y  ) directions can provideu . 
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It should be note that, Eq. (7-A5) can be further simplified by solving

2

2
1

N
ij ij

j ij

x W
dV

r

 and

2

2
1

N
ij ij

j ij

y W
dV

r

 in a polar coordinate system ( cos( ), sin( )ij ij ij ijx r y r   ) as follows: 

2 2 2 2

2 2 2 2
1 1 1 1 1

2 2 2

2 2 2

2 2 2
1 1 1 10

1 1
( ) ( )

2 2

1 1
( ) , where

3

N N N N N
ij ij ij ij

ij ij ij ij ij

j j j j jij ij ij ij

N N N N
ij ij ij

ij ij ij ij ij ij ij

j j j jij ij ij

x y x y
W dV W dV W dV W dV W dV

r r r r

x y z
W dV W dV W dV W dV x y r

r r r D

    

   

   

    

    

   

 (7-A7) 

0 2
1

1

( )N
ij j i

ij

j ij

N

ij

j

f f
D W dV

r
f

W dV







 





r

 (7-A8) 

0 2
1

1

( )N
ij j i ij

j ij

N

ij

j

W
D dV

r

W dV





 

  





r f f

f  (7-A9) 

where D0 is spatial dimension.  Eqs. (7-A8) and (7-A9) were initially proposed by Koshizuka et 

al. [86] in the context of the MPS description and then employed by Tanaka et al. [4] and Liang 

et al. [87] to calculate the gradient and divergence of arbitrary scalar or vector functions. 

However, It is also possible to derive the second gradient operator by subtracting fi from both 

sides of Eq. (7-A1) and multiplying it by ij ij ijx W r  and ij ij ijy W r  instead of 
2

ij ij ijx W r  and 

2

ij ij ijy W r . This gives: 
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By comparing Eqs. (7-A3) and (7-A10), one can deduce that, the power of n

ijr  in Eq. (7-A3) is 

reduced from 2n  to 1n   in Eq. (7-A10). At this stage, it is worth to mention that, although 

Eqs. (7-A3) and (7-A10) are very similar to each other, but they have different stability 
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characteristics in dealing with the tensile stability and particle clustering. With further reduction 

in the power of the variable n

ijr  from 1n  to 0n  , the third form of gradient operator with first-

order of accuracy can be obtained as: 
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Eq. (7-A11) is known as a mixed symmetric correction of kernel gradient which was initially 

proposed by Xu et al. [26] in the context of the MPS description.  

By ignoring the term 
,i xy ij ijf x y  in Eq. (7-A1) and subtracting fi from both sides of the equation, 

and multiplying it by ijW , the MPS stencil for the Laplacian operator can be achieved as: 
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Similar to work of Schwaiger et al. [30], in order to derive 2

, ,i xx i yyf f f   , one can assume that 

2

1

1

2

N

ij ij

j

x W dV


 is equal to 2

1

1

2

N

ij ij

j

y W dV


 for uniform particles distribution. Under the 

aforementioned hypothesis, the Laplacian operator can be obtained as follows: 
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By decomposing the first term in the right-hand side of the Eq. (7-A13) into two separate parts (

1 1 1

( ) 0.5 ( ) 0.5 ( )
N N N

j i ij j i ij j i ij

j j j

f f W dV f f W dV f f W dV
  

         ), the above equation may be 

rewritten as: 
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Finally, the above equation can be rearranged into two separate and distinct terms as follows: 
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equation. However, similar to gradient operator, by eliminating the first derivative of the field 
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By solving
21

2
ij ijx W dV and

21

2
ij ijy W dV in a polar coordinate system ( cos , sinij ij ij ijx r y r   ), 

Eq. (7-A16) can be re-written in the general form as follows: 
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(7-A18) 

In the above equation, the terms 
0n , D0 and   signify the Particle Number Density (PND), the 

number of space dimensions and coefficient in the Laplacian model which are defined as: 
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Eq. (7-A18) was originally proposed by Koshizuka et al. [1] for discretization of Pressure 

Poisson Equation (PPE) and then was used by Sub et al. [10], Sasaki et al. [88], Liu et al. [23] 

and Sun et al. [89] for simulation of violent free-surface flows. 

7.9 Appendix B (1D shock tube problem) 

The discretization procedure with associated classical governing equations for analysis of 1D Sod 

shock tube problem in a Lagrangian particle description are presented along this appendix [52].  
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In above equations, e , p ,  and u are internal energy, pressure, density and velocity of the gas, 

respectively. c denotes the speed of sound in lattice particle and 1.4  is heat capacity ratio. 

Similar to work of Liu et al. [52], simulation has been performed for 40 time step ( 0.005t s  ) 

where 320 particles with high level of pressure and density are located in the driven section of the 

tube [ 0.6,0] while 80 particles with low level of energy are uniformly deployed in the working 

section [0,0.6] . 
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As is clear from Eqs. (7-B1) to (7-B5), sequence and solution structure of shock tube problem 

consists of three stages: (a) first material derivatives of velocity ( D Dtu ) and energy ( De Dt ) as 

well as density (  ) are calculated through Eqs. (7-B1) to (7-B3). In the second stage particles are 

shifted to the new position ( ( 1)n
r ) with updated velocity (

( 1)n
u ) and internal energy (

( 1)ne 
) 

according to first-order explicit (forward time) Euler scheme. In the last stage, pressure and 

sound speed for each particle will be updated based on the equation of state (EOS) and isentropic 

condition (Eq. (7-B5)). To suppress unphysical pressure oscillation near the shock region, the 

artificial viscosity (
ij ) suggested by Monaghan [90] is frequently employed as follows:   
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(7-B7) 

where and  are constant parameters which control the strength of the artificial viscosity.  
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 SUMMARY AND GENERAL DISCUSSION Chapter 8

In this chapter, the main findings from the current thesis is summarized and discussed in details. 

As outlined before, the global objectives of the present research study were to introduce some 

possible modifications to increase the accuracy and efficiency of the existing SPH and MPS 

models in handling multiphase and free-surface flows through addressing eight common 

drawbacks namely: (1) uncertainty in the selection of appropriate kernel function, (2) low-order 

space and time discretization schemes used for calculating gradient, divergence and Laplacian 

operators, (3) non-conservative form of pressure gradient operator, (4) unphysical pressure 

fluctuations associated with Weakly Compressible version of the SPH, (5) false detection of 

interfacial particles in free-surface flows, (6) Low-order boundary treatment, (7) penetration of 

fluid particles into the boundaries walls and (8) tensile instability caused by particle clustering. In 

order to accomplish this, a number of modifications have been proposed and applied on SPH and 

MPS models as follows:  

8.1 Kernel function 

As illustrated in table 8-1, in order to address the first issue, four new kernel functions were 

constructed and successfully applied to the simulation of 1D Sod shock tube problem. The 

comparison of obtained results with the analytical solution in Fig. 8-1 clearly demonstrates that, 

the newly developed kernel functions can efficiently identify and resolve the locations of the 

shock wave ( 0.3x  ), contact discontinuity ( 0.135x  ) and internal energy profiles of the 

rarefaction wave ( 0.25 0x   ) with minimal oscillation and consequently outperformed the 

existing kernel functions (i.e. Cubic, quintic spline and Wendland) in handeling shock wave with 

physical discontinuities. In addition to that, it can be seen that the cubic kernel function 

considerably failed to capture density discontinuity whereas the results of Wendland and quintic 

kernels in terms of density, energy, pressure and velocity profiles are more compatible with 

predicted results from kernels A to D. Finally, it should be noted that, although the obtained 

results in Fig. 8-1 clearly prove the superiority of the newly developed kernels over the exsiting 

kernel functions, the comparison of the developed kernels A to D shows similar results in 

capturing shock area and material discountinuety which indicates that they can be used 

interchangeably and consequently one cannot recommend one kernel over the others. 
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 Table  8.1 The summary of the four newly developed kernel functions used for the interpolation 

and particle approximation. 

Kernel A (see article 1) 
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Figure  8-1 Comparison between calculated results from the four newly constructed kernel 

function with the analytical solution and existing kernels in modelling of shock tube problem. 

 

8.2 Gradient, Laplacian and smoothing operators 

To tackle the shortcoming of non-conservative form of pressure gradient operator and to solve 

the problems of low-order spatial discretization schemes used for calculating gradient, divergence 

and Laplacian operators in the governing equations, a set of high-order discretization 

formulations were proposed based on the Taylor series expantion. More precisely, in order to 

circumvent the problem of density/viscosity discontinuity in the multiphase flows or to 

approximate the values of field function (i.e. pressure, temperature) on the rigid walls, the 

following smoothing operators have been proposed and implemented (Eqs (8-1 to 8-4)): 
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Smoothing operator (model B) 
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Smoothing operator (model C) 
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Smoothing operator (model D) 
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In the above equations, the model A is known as Moving Least Squares (MLS) method which 

was originally proposed by Colagrossi et al. (Colagrossi and Landrini, 2003) for the simulation of 

bubble rising and dam break problems. The second model (Eq. (8-2)) is the MPS version of the 

MLS model which has been proposed in the current study to calculate the temperature field in 

buoyancy term in natural convection heat transfer problem (see also article 2). The third model 

(Eq. (8-3)) is known as MLSPH model which is the SPH version of the MLS technique. This 

model was initially pioneered by Nayroles et al. (Nayroles, Touzot, (1992)) and was then 

successfully employed by Huang et al. (Huang, Lei, and Peng, 2016) for modelling the lid-driven 

cavity flow. Motivated by work of Ng et al. (Ng, Hwang, and Sheu, 2014), the second version of 

the MLS in the context of the MPS model was proposed in the current study through decreasing 

the power of r (r
n
) in Eqs. (8-2) from n=2 to n=1 in Eq. (8-4). At this stage, it worthwhile to 

mention that, the presence of corrective matrix L, can efficiently guarantee the first-order 

completeness condition for the kernel function as mathematically showed by Belytschko et al. 

(Belytschko, Ted, Krongauz, 1998). The calculated results revealed that, the proposed smoothing 

operators can efficiently handle sharp density discontinuities adjacent to the material interfaces. 

To enhance the order of accuracy of the gradient operator, the similar procedure has been adopted 

in the current. The summary of proposed gradient operators used in the current study is given by 

Eqs. (8-5 to 8-9): 
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Gradient operator (Model B) 
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In the above equation, the model A (Eq. (8-5)) was initially introduced by Xu et al. (Xu, & Deng, 

(2016)) in the context of MLS model for the simulation of the 2D dam break problem. Model B 

was originally introduced by Khayyer et al. (Khayyer and Gotoh, 2011) and known as a corrected 

gradient model of original MPS method. Model C as the one of the classical gradient operators in 

the context of the SPH description was orginally proposed by Krongauz et al. (Y. Krongauz, 

Belytschko, 1997) and was then successfully implemented by Oger et al. (Oger, Doring, 

Alessandrini, Ferrant, 2007) to solve the problem of free-surface flow. Following the idea of 

Khayyer et al. (Khayyer and Gotoh, 2011) and Xu et al. (Xu, & Deng, (2016)), the terms 
ij ijx W

and 
ij ijy W in Eq. (8-6) were replaced by 

,ij xW and 
,ij yW in Eq. (8-7) and subsequently the model 

D was developed in the current work (see also article 3). This operator (Eq. (8-8)) was then 

Gradient operator (Model C) 
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Gradient operator (Model D) 
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Gradient operator (Model E) 
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utilized to simulate the problems of free-surface flow, natural convection heat transfer and two-

phase Rayleigh-Taylor Instability. The second version of the gradient operator in the context of 

the MPS model was also proposed through decreasing the power of r (r
n
) in Eqs. (8-6) from n=2 

to n=1 in Eq. (8-9). This model has been employed to simulate the three-phase Rayleigh-Taylor 

Instability, dam break flow, natural convection heat transfer in differentially heated cavity, 

Rayleigh-Bénard convection and oscillating concentric circular drop with high density ratio. The 

proposed gradient operators have been utilized to calculate the divergence of velocity, gradient of 

temperature and pressure in Navier-Stokes and energy equations. Finally, it should be noted that, 

similar to the smoothing operator, the presence of the corrective matrix L in the above equations 

can ensure the first order completeness of the gradient models in the discretization process (for 

more details see works of Oger et al. (Oger, Doring, Alessandrini, Ferrant, 2007) and Khayyer et 

al. (Khayyer and Gotoh, 2011) and Yun, Sang-Moon, Park, Khayyer, and Jeong, 2018). 

Following the idea of Schwaiger (Schwaiger, (2008)), in order to further improve the accuracy of 

the numerical simulations, a set of high-order Laplacian operators were derived based on the 

Taylor series expansion and were applied for the discretization of Pressure Poisson Equation 

(PPE) and diffusion terms in Navier-Stokes and energy equations. The summary of proposed 

Laplacian operators used in the current study is given by Eqs. (8-10 to 8-13): 
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Laplacian operator (Model B) 
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Laplacian operator (Model C) 
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Laplacian operator (Model D) 
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As expected, the models A, B, C and D are respectively, MLS, MPS, SPH and FDM-MPS 

versions of the Laplacian operator which have been derived in the Lagrangian framework. Due to 

the presence of the first derivatives of the field function (
,i xf and 

,i yf ), it is not difficult to deduce 

that, the proposed models are very analogous to the orginal high-order Laplacian operator 

introduced by Schwaiger (Schwaiger, (2008)) as: 
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where n is the number of dimensions and Γ is a tensor which is defined as; 
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As highlighted by Schwaiger (Schwaiger, (2008)), the existence of the second term on the RHS 

of Eq. (8-14) is the correction which can provide a modest improvement over just the first term. 

Moreover, he found that, for regularly spaced arrays, the second-order convergence can be 

achieaved via the implementation of Eq. (8-14). 

Finally, the results obtained from the modeling of dam break problem, two-phase and three-phase 

Rayleigh-Taylor instability (RTI) in the present work clearly demonstrated that, implementing 

high-order discretization schemes can immensely improve the stability and performance of the 

classical ISPH and IMPS models. Furthermore, it was found that, the implementation of the high-

order discretization scheme for the treatment of the Laplacian and gradient operators can 

efficiently remove an unphysical pressure fluctuations from the computational domain which is a 

common problem in Lagrangian particle methods. 

8.3 Particle Shifting Technique (PST) 

As heighlited in the previous section, the order of accuracy of the proposed operators is strongly 

dependent on the regularity of the particles distribution such that the occurrence of tensile 

instability caused by particle clustering can significantly damage the interpolation accuracy or 

even lead to the unwanted termination of the calculations. To address the issue of particle 

clustering and prevent the inception of the tensile-instability, in a pioneering work, Xu et al. (Xu, 

Stansby, Laurence, (2009)) introduced the concept of the Particle Shifting Technique (PST) in 

which particles are encouraged to migrate from region of high concentration to the lower one, 

leading to the more uniform particle arrangement within the computational domain. Following 

the idea of Xu et al. (Xu, Stansby, Laurence, (2009)), a novel MLS version of the PST has been 

proposed in the current work as follows: 
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where 
20.5 h  is a shifting coefficient which controls the magnitude of particle displacement 

with 0 1   (for more details see articles 1 to 3). The obtained results clearly demonstrated 

that, the newly developed PST could efficiently remove the tensile instability from the 

computational domain, leading to a more uniform particle distribution. However, this technique 
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was then further improved by incorporating the concept of the particle collision (Discrete 

Element Method (DEM)) for the treatment of the free-surface flows as: 

, ( )j i xn xij j iR R r r n      ( ) ijx j in x x r   (8-17) 

, ( )j i yn yij j iR R r r n      ( ) ijy j in y y r   (8-18) 

, , ,

1

( )
N

i x n n xij n n xij

j

f k v 


    
2

, , ,( )i x DEM i x ir dt f m   (8-19) 

, , ,

1

( )
N

i y n n yij n n yij

j

f k v 


    
2

, , ,( )i y DEM i y ir dt f m   (8-20) 

In this technique, the previous PST model was applied only to the interior particles whereas the 

collision model was used for treatment of the interface and its nearby particles as: 

( 1)* ( 1) ( 1)

, for inner particlesn n n

i i i PST   r r r  
(8-21) 

( 1)* ( 1) ( 1)

, , forsurfaceandvicinityparticlesn n n

i t i i DEM   r r r  

The validity and applicability of the proposed scheme were demonstrated against the several 

challenging benchmark cases including: dam-break flows with/without an obstacle, stretching 

water drop and rotating square patch of fluid. It was found that, implementing an efficient particle 

regularization technique (HPST) can considerably increase the accuracy and stability of the 

numerical solution.  

8.4 Free-surface detection technique 

As mentioned in the introduction section, Dirichlet pressure condition (p=0) must be applied on 

the free-surface region when single-phase model is employed for simulation of the free-surface 

flows such dam break problem. This highlights the need of proper identification of the interface 

position and its vicinity particles. Thus, a novel Hybrid Free-surface Detection (HFD) technique 

was developed based on the first and second derivatives of kernel function as: 
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The variables 1 and 2  in the above equations are known as a Particle Number Density (PND) 

(Koshizuka, & Oka, (1996)) and divergence of particle displacement (Lee, Moulinec, Xu, 

Violeau, Laurence, & Stansby, (2008)) while 3 and 4 are two new complementary conditions 

which can be simply referred to as Laplacian of particle displacement and mixed partial 

derivative of kernel function, respectively. The results showed that, the newly developed scheme 

can efficiently identify the position of interface and its nearby particles. 

8.5 Density error accumulation 

Motivated by work of Antuono et al. (Antuono, M., Colagrossi, A., Marrone, S., & Molteni, D. 

(2010)), in order to tackle the problems of unphysical pressure oscillation and density error 

accumulation associated with the standard WCSPH model, a novel high-order artificial diffusion 

term was derived based on the Taylor series expansion and then added into the continuity 

equation as: 

( )
( ) *

n
nD

Dt


    u  

(8-26) 

The second term ( 2 2

0t c     ) in the right-hand side of the above equation is the additional 

diffusive term. One of the most notable features of Eq. (8-26) is that unlike the conventional 𝛿- 

WCSPH (Antuono, Colagrossi, Marrone, & Molteni, (2010)), the present model does not contain 

any tunable parameter to control the density diffusive term ( ). The performance and robustness 

of the proposed modification was verified against a series of challenging benchmark cases such 

as dam break, stretching of a circular water drop, rotating square patch of fluid and natural 

convection heat transfer in a square enclosure. The obtained results showed that, inserting 

additional diffusive term into the continuity equation can efficiently remove high-frequency 

oscillations noise from the pressure field (unfavorable check-board pressure field), leading to a 

more accurate and stable results as compared to conventional WCSPH (for more details see 

article 2). 
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8.6 Treatment of the boundary conditions 

As highlighted before, unlike the conventional Eulerian mesh-based methods, addressing the 

influence of the solid walls in the purely Lagrangian mesh-free models such as MPS and SPH is 

not often as straightforward as it seemed. To overcome this shortcoming, the dynamic ghost 

particle technique suggested by Marrone et al. (Marrone, Antuono, Colagrossi, Colicchio, Le 

Touzé, & Graziani, (2011)) is adopted in the current work to enforce no-slip and no-penetration 

conditions on the rigid walls. As portrayed in Fig. 8-2, in this technique, both tangential and 

normal component of fluid velocity with opposite sign (no-slip) is extrapolated on the 

corresponding wall particles outside of the flow domain. However, to impose the Neumann 

boundary condition, the target variable (i.e. pressure ( ip ) or temperature ( i ) on the isolated 

walls) is first computed on the solid boundary line using one of the smoothing operators 

presented in section 8-2 (Eqs. (8-1) to (8-4)), and then the predicted values are assigned to the 

corresponding ghost particles in the same row, column or corner. Note that, as schematically 

shown in Fig. 8-2, only the fluid particles in the support domain of the kernel function are used to 

approximate the pressure or temperature on the fixed ghost particles. The obtained results showed 

that, the implementing the mirror velocity technique can successfully mitigate the undesirable 

problem of penetration of fluid particles into the boundaries walls. 
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Figure  8-2 The conceptual illustrations of implementing Neumannand and Dirichlet (mirror 

velocity technique) boundary conditions in the context of the Lagrangian particle method. 
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 CONCLUSION AND RECOMMENDATIONS Chapter 9

9.1 Conclusions 

Based on the results obtained from the present thesis, the following major conclusions may be 

drawn: 

1. The results showed that, the type of the kernel function has a remarkable impact on the 

accuracy and stability of the particle methods, 

2. The results show that, four newly developed smoothing kernel (Wij) considerably 

outperformed the existing kernel functions (i.e. Cubic, Wendland, quintic spline) in 

modeling of shockwave propagation and multiphase flow with physical discontinuities. 

3. It was found that, the order of accuracy of governing operators (i.e. gradient, Laplacian 

and divergence of velocity) has a significant impact on the regularity of particle 

distributions and stability of the numerical solution 

4. The results showed that the newly proposed Laplacian operators could provide more 

accurate, stable and reliable results compared to the traditional operators used in WCSPH, 

ISPH and MPS methods, in modeling breaking dam flow, stretching of circular water 

drop, rotating square patch of fluid and natural convection heat transfer in a square 

enclosure. 

5. The results showed that the newly proposed high-order gradient operators could 

successfully eliminate the non-physical pressure fluctuations from the computational 

domain, leading to a more stable and robust numerical model, 

6. The results showed that the newly proposed free-surface detection technique could 

accurately identify the position of the free-surface and its vicinity particles, 

7. The results show that, particles in Lagrangian framework have a natural tendency to 

cluster along the streamline, leading to the significant void formation and density error 

accumulation. 

8. It was found that the implementation of the Particle Shifting Technique (PST) has a 

notable impact on the stability and accuracy of the mesh-free particle methods, 
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9. It was found that, the proposed Hybrid Particle Shifting Technique (HPST) could 

efficiently eliminate spurious pressure fluctuation caused by tensile instability (particle 

clustering) from the computational domain, 

10. The obtained results vividly confirmed the broad applicability of proposed modifications 

in handling free-surface flows and particulate flows with thermal convection. 

11. The results showed that, the proposed Modified Pressure Gradient operator (MPG) could 

effectively resolve the problem of particle clumping on the interface while retaining the 

conservation properties of momentum, 

12. It was found that inserting additional diffusive term into the continuity equation can 

successfully remove high-frequency oscillations noise from the pressure field (undesirable 

check-board pressure field), leading to more accurate results as compared to conventional 

WCSPH model.  

13. It was found that, the newly proposed smoothing operators can accurately interpolate 

values of the field function and circumvent the problem of density discontinuity in the 

multiphase flows, 

14. It was found that traditional formulations of SPH model are prone to tensile instability 

and characterized by noisy pressure field whereas the proposed KDF-WCSPH model 

benefit from high level of accuracy and consistency, 

9.2 Recommendations for Future Works 

As a future investigation, the proposed models can be employed to explore multiphase flows with 

high-density ratio such as bubble rising and water droplet falling in air where undesirable particle 

scattering/clustering is likely to occur on the interface. It would be a future challenge to 

investigate turbulent natural convection heat transfer in porous enclosure, which has many 

important applications ranging from electronic packaging to solar collector technology. 

Moreover, although the sensitivity of the models to the particle size was eventuated for a few 

benchmark cases (natural convection heat transfer), a detailed particle convergence study is re- 

commented for the future work to (1) determine the particle size which ensures the 

interdependency of results to the particle size, and (2) qualify the order of spatial convergence. 
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To further enhance the capability and robustness of the proposed models in solving real-life 

large-scale moving interface problems involving breaking and spray formation, the existing 

mesh-free Lagrangian particle methods can be combined with the classical grid-based Eulerian 

models. In this technique, the mesh-free particle method can be employed to capture details of the 

free-surface area whereas the mesh-based model can be applied to resolve the bulk flow. 

To further improve the versatility and consistency of the newly developed SPH and MPS models 

in handling multiphase flows with high-density contrast, the particle refinement scheme (Multi-

resolution technique) introduced by Tanaka et al. (Tanaka et al., 2018b) will be incorporated into 

the models.  
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