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RESUME

L'objectif principal de la thése de doctorat actuelle est d'améliorer la cohérence et la précision de
deux des méthodes de particules lagrangiennes sans maillage les plus largement utilisées, a savoir
les modéles d'hydrodynamique des particules lissées (SPH) et les modéles semi-implicites de
particules mobiles (MPS) pour simuler un large éventail de les écoulements multiphasiques et les
problémes de convection-diffusion impliquant un transfert de chaleur et de masse. A cette fin,
quatre différents opérateurs gradient d'ordre élevé et laplaciens sont d'abord dériveés de
I'expansion de la série de Taylor dans les contextes SPH et MPS et sont ensuite utilisés pour la
discrétisation des termes de diffusion, I'équation de pression de Poisson (PPE) et la divergence de
vitesse dans régir les équations. Afin de conserver la précision globale de la solution, un nouvel
algorithme hybride de correction de prédicteur de pression est d'abord développé sur la base de la
combinaison du schéma explicitte TVD Runge-Kutta du troisieme ordre et du modéle de
projection en deux étapes, puis est utilisé pour le traitement. des termes transitoires dans les
équations de Navier-stokes et de I'énergie et également la gestion du couplage pression-vitesse
entre les équations de masse et de quantité de mouvement. Pour améliorer la stabilité des
modeles, un nouveau schéma de régularisation des particules appelé Particle Shifting Technique
(PST) est introduit dans le contexte du modéle MPS et est ensuite appliqué pour contourner le
défaut associé au regroupement / regroupement de particules dans le cadre lagrangien. Cette
technique est ensuite améliorée en incorporant le concept de collision de particules et la méthode
des éléments discrets (DEM) pour traiter les écoulements violents a surface libre avec une grande
déformation et une rupture d'interface et une coalescence. Pour améliorer encore la précision des
modeles, quatre nouvelles fonctions de noyau sont construites par la combinaison des fonctions
gaussiennes, polynomiales et cosinus pour les méthodologies SPH et MPS afin de créer la
connectivité spatiale entre les particules en mouvement libre. En outre, une nouvelle technique de
détection de surface libre est proposée basée sur la premiere et la deuxieme dérivée de la fonction
du noyau pour une imposition précise de la condition aux limites de pression de Dirichlet au
niveau de la surface libre. La précision et la cohérence des modifications proposées sont vérifiées
par rapport a une série de cas de référence difficiles, notamment: rupture de barrage avec et sans
obstacle, rotation d'une plaque carrée de fluide, problemes d'instabilité de Rayleigh-Taylor
biphasés et triphasés (RTI), goutte circulaire concentrique oscillante, probleme de tube de choc
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de gazon 1D, analyse d'énergie et d'exergie du transfert de chaleur par convection naturelle dans
la cavité chauffée difféeremment (DHC) et convection de Rayleigh-Bénard, transfert de chaleur
par convection naturelle dans une cavité carrée avec obstacle chaud a l'intérieur, enceinte en
forme de C, Boitier en forme de L et boitier carré contenant une paire de tuyaux horizontaux
chauds et froids (échangeur de chaleur). Les résultats obtenus sont en excellent accord avec les

données numériques et expérimentales disponibles sans maillage / basées sur un maillage.
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ABSTRACT

The main objective of the current Ph.D. thesis is to enhance consistency and accuracy of two of
the most widely used mesh-free Lagrangian particle methods namely Smoothed Particle
Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) models for simulating a wide
range of multiphase flows and convection-diffusion problems involving heat and mass transfer.
To this end, four different high-order gradient and Laplacian operators are first derived from the
Taylor series expansion in both SPH and MPS contexts and are then employed for the
discretization of diffusion terms, Pressure Poisson's equation (PPE), and divergence of velocity in
governing equations. In order to retain the overall accuracy of the solution, a novel hybrid
predictor-correction solution algorithm is first developed based on the combination of the explicit
Third-order TVD Runge-Kutta scheme and two-step projection model and then is employed for
the treatment of the transient terms in the Navier-stokes and energy equations and also handling
the pressure-velocity coupling between the mass and momentum equations. To enhance the
stability of the models, a novel particle regularization scheme so-called Particle Shifting
Technique (PST) is introduced in the context of the MPS model and is then applied to circumvent
the shortcoming associated with particle clustering/bunching in the Lagrangian framework. This
technique is then further improved by incorporating the concept of the particle collision and
Discrete Element Method (DEM) to deal with violent free-surface flows with large deformation
and interface rupture and coalescence. To further enhance the accuracy of the models, four new
Kernel functions are constructed by the combination of the Gaussian, polynomial, and cosine
functions for both SPH and MPS methodologies and then are employed to create the spatial
connectivity between freely moving particles. In addition, a novel free-surface detection
technique is proposed based on the first and second derivatives of kernel function for the accurate
imposition of Dirichlet pressure boundary condition at the free surface area. The accuracy and
consistency of the proposed modifications are verified against a series of challenging benchmark
cases including dam break with and without obstacle, rotation of a square patch of fluid, two-
phase and three-phase Rayleigh-Taylor instability problems (RTI), oscillating concentric circular
drop, 1D Sod shock tube problem, energy, and exergy analysis of natural convection heat transfer
in Differentially Heated Cavity (DHC) and Rayleigh-Bénard convection, natural convection heat
transfer in a square cavity with hot obstacle inside, C-shaped enclosure, L-shaped enclosure and a
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square enclosure containing a pair of hot and cold horizontal pipes (heat exchanger). The
obtained results are found to be in excellent agreement with available mesh-free/mesh-based

numerical and experimental data.
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Chapter 1 INTRODUCTION

The study of multiphase flows with moving and deformable interfaces has received increasing
attention because it is ubiquitous in our daily life and many industrial/engineering applications
such as the bubble column reactors (Masterov, Baltussen, & Kuipers, 2020), petroleum
engineering, solidification process of metals (Dou, Luo, Qi, Lian, & Hou, 2021), microfluidic
devices (Chaves, Duarte, Coltro, & Santos, 2020), internal combustion engines (Xue et al., 2015),
fluidized bed reactors (Liu et al., 2020) and cavitation in hydraulic power systems (Piscaglia,
Giussani, Helie, Lamarque, & Aithal, 2021). However, due to limited understanding on the
physics of gas-liquid two-phase flow there is an urgent need for more research in this area. In
general, experimental, analytical, and numerical methods are three common approaches for the
study of gas-liquid flow. The foundations of gas-liquid flow research can be found in many
experimental and analytical studies (Tryggvason, Scardovelli, & Zaleski, 2011). However, it is
not difficult to deduce that, the experimental methods are limited, due to the issues with the cost
effectiveness, instrumental restrictions and uncontrolled environment. More importantly, in the
case of experimental study, the laboratory model typically has a very different scale than the
prototype, such that the results may not be generalizable to the larger scales (Ishii & Hibiki,
2010). In addition to that, the design and construction of one-off laboratory prototypes are
expensive, time-consuming, and require sophisticated sensors and instruments to measure and
monitor physical quantities (i.e. temperature, velocity, pressure, etc). On the other hand, the
theoretical study is only restricted to extremely simple conditions and cannot be extended to
many real-life applications with complex geometries and boundary conditions. Thanks to the
rapid evolution of computer power, the application of CFD as the flexible and relatively
inexpensive tool for study of multiphase flows has become more widespread and important. Over
the past decade, extensive effort has been devoted towards the development of advanced
numerical scheme to investigate the morphology and hydrodynamic behaviour of multiphase

flow problems.

In general, the numerical modelling of multiphase flows can be accomplished through two
primary frameworks, namely Eulerian and Lagrangian descriptions (Rebouillat & Liksonov,
2010). A comprehensive literature survey conducted by Yan et al. (Yan & Che, 2010) and Gibou
et al. (Gibou, Fedkiw, & Osher, 2018) reveals that VVolume-of-Fluid (VOF) (Hirt & Nichols,



1981) and Level-Set (LS) (Sussman, Smereka, & Osher, 1994) are two most commonly used
interface-tracking/capturing models in Eulerian framework which have been widely used for the
description and analysis of free-surface flows, particularly those involving large deformation,
fragmentation and breaking. Although, the aforesaid methods have all been implemented in
various multiphase problems, the results of the Ha et al. (Ha & Cleary, 2000) and Wu et al. (Wu
et al., 2017) illustrate that the Eulerian mesh-based approaches have some innate drawbacks in
determining the exact location of the flow front in multiphase phenomena. To overcome the
aforementioned methodological problems and avoid difficulties in interface tracking, many
scholars have adopted a newer generation of numerical technique so-called Mesh-free Lagrangian
Particle method (i.e. SPH and MPS) (Khayyer, Gotoh, Falahaty, & Shimizu, 2018; Samulyak,
Wang, & Chen, 2018), where particles in Lagrangian framework take the role of the grids in
Eulerian one. Absence of the convection term in governing equations and free from constraints of
the grids generation, make the SPH and MPS more efficient and robust models in dealing with

the multiphase flows and fluid-structure interaction problems (FSI).

Historically, the Smoothed Particle Hydrodynamics (SPH) as a pure Lagrangian approach was
introduced by Lucy (Lucy, 1977) and Gingold et al. (Gingold & Monaghan, 1977) to describe the
evolution of planet-disk systems and became very popular in modelling of free-surface flows and
thermal-hydraulics problems owing to its flexibility in adapting to complex geometries with
curved boundary conditions (Hosain, Dominguez, Fdhila, & Kyprianidis, 2019). In the same
context, the Moving Particle Semi-implicit (MPS) method was originally developed by
Koshizuka et al. (Koshizuka & Oka, 1996) to simulate incompressible fluid flow. At the present,
the existing SPH and MPS methods can be broadly classified into two sub-groups namely: (a)
Weakly Compressible (WCSPH & WCMPS) and (b) truly Incompressible (ISPH & IMPS)
models which have their own advantages and disadvantages (Daly, Grimaldi, & Bui, 2016b;
Shakibaeinia & Jin, 2012; Tanaka, Cardoso, & Bahai, 2018a). A summary of the aforementioned
particle methods with associated governing equations/operators is listed in tables 1-1 to 1-4. It is
evident that, in the former approach, an algebraic thermodynamic pressure equation (Equation-
Of-State) is used to determine the pressure field within the computational domain whereas in the
second method the pressure term in the Navier-Stokes equation is computed implicitly by

enforcing a divergence-free velocity field. Although computer programming of WCSPH and



WCMPS is conceptually straightforward, these models are characterized by spurious pressure
oscillations, which can yield numerical instability. Another drawback associated with these
models is that, they require a very small time step to meet the stability criterion for relaxing the
solution towards the incompressible limit in low Mach number flows. On the other hand,
although fully incompressible SPH and MPS benefit from smoother pressure field and high level
of accuracy in terms of spatial discretization, they require the solution of a Pressure Poisson
Equation (PPE) which are more complex to implement compared to the standard WCSPH and
WCMPS models.

Table 1.1 The governing operators used in the classical WCSPH (X. Xu & Deng, 2016).
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During the past decade, many researchers have been motivated to employ some positive features
of SPH and MPS models in solving a wide range of engineering and scientific problems
(Shadloo, Oger, & Le Touzé, 2016; Z.-B. Wang et al., 2016). Modeling of capillary rise
dynamics and bubble rising (Deng, Liu, Wang, Ge, & Li, 2013; X. Xu & Yu, 2019), simulation
of tsunamis water waves generated by landslides and 3D dam-break flows with breaking waves
(Tan & Chen, 2017; Zhang, Hu, & Adams, 2017), nuclear reactor design and dynamic analysis of
landslide dam (Hosseini, Omidvar, Kheirkhahan, & Farzin, 2019; Kurowski & Spliethoff, 2016;



W. Wang, Chen, Zhang, Zheng, & Zhang, 2017; W. Wang et al., 2019), analysis of liquid droplet
and liquid jet atomization (Li, Liu, Duan, Chong, & Yan, 2016; Lind, Stansby, & Rogers, 2016)
are just a few examples of such studies in which particle methods such as SPH and MPS were
adopted to solve complex flow and transport problems. However, despite the proven success of
the SPH and MPS models in handling multi-fluid/multiphase systems with large interfacial
deformation and discontinuities, these method have some key fundamental disadvantages in
terms of accuracy and stability which may hinder its further application as a CFD tool for solving

non-linear multiphase/multifluid flow problems.

Table 1.2 The governing operators used in the classical WCMPS (Shakibaeinia & Jin, 2012).
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Table 1.3 The governing operators used in the classical ISPH (Chow, Rogers, Lind, & Stansby).

ISPH formulations Governing operators
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Table 1.4 The governing operators used in the classical IMPS (Tanaka, Cardoso, & Bahai,

2018b).
WCMPS formulations Governing operators
1 V.u=0 Z¢J Ij
¢ = N ’” —Z m; /p;
2; bu_ 1 2 (u;—-u,)
Ft_—;VPH/V u+g, V-u=— Z(r— )eUW” m,/p,
. 2 ,DV'U p pmm
3 Vip="—r VP = —Z( L2000, — )W, m, /p;
Ui
N
Dr N Z(¢ W, mj/pj
—=Uu i 0 i

Dt

=Z(rj —n)Wym; /p, /ZWU- m; /p;




Chapter 2 LITERATURE REVIEW

The use of mesh-free Lagrangian particle methods such as SPH and MPS as promising
alternative approaches to conventional grid-based systems (e.g. FVM, FEM, etc) for modeling
multi-fluid/multiphase problems has been a subject of interest in many research studies
(Hammani, Marrone, Colagrossi, Oger, & Le Touzé, 2020; Li et al., 2020; Zheng, Sun, & Yu,
n.d.). However, as highlighted before, these schemes face several crucial shortcomings including
non-physical pressure oscillation (Molteni & Colagrossi, 2009), false detection of interfacial
particles in multiphase and free-surface flows (Marrone, Colagrossi, Le Touzé, & Graziani,
2010), tensile instability caused by particle clustering (Sun, Colagrossi, Marrone, Antuono, &
Zhang, 2019), low-order boundary treatment (Marrone et al., 2011), uncertainty in selecting the
appropriate kernel function (Martinsson & Rokhlin, 2005), penetration of fluid particles into the
boundaries walls (Daly, Grimaldi, & Bui, 2016a), low-order space and time discretization
schemes used for calculating gradient, divergence and Laplacian operators (Oger, Doring,
Alessandrini, & Ferrant, 2007; Schwaiger, 2008), false diffusion errors and density error
accumulation (Lee et al., 2008) which can endanger the solution stability and even lead to

premature termination of the calculations.

Over the past decade, substantial research efforts have been devoted to improve the precision and
consistency of the SPH and MPS models. To address the problem of tensile instability and
numerical inconsistency caused by particle clustering, Xu et al. (R. Xu, Stansby, & Laurence,
2009) suggested the use of particle rearranging technique where fluid particles are forced to
travel from their streamlines to the region with low particle concentration, resulting in a notable
improvement in the uniformity of particle arrangement. This technique was further extended and
optimized by Lind et al. (Lind, Xu, Stansby, & Rogers, 2012) and Khayyer et al. (Khayyer,
Gotoh, & Shimizu, 2017) for the simulation of water wave propagation. They numerically
showed that, the implementation of PST can considerably enhance the homogeneity of particles
dispersion and suppress the onset of tensile instability, accordingly. Another factor that causes
tensile instability comes from the Lagrangian formulations of the SPH and MPS. Generally, the
governing operators in the class of both SPH and MPS are derived by the hypothesis that
particles are uniformly distributed across the whole computational domain whereas this

assumption is not always valid for violent free surface flows where particle bunching is likely to



occur. To maintain regularity of particle distributions and improve the order of accuracy of
gradient operator, Oger et al. (Oger et al., 2007) proposed a new renormalization technique based
on the Taylor series expansion and concluded that renormalization of density and gradient
operator can significantly enhance the consistency of the SPH model. To further suppress
spurious void formation and pressure fluctuation, Schwaiger (Schwaiger, 2008) extended Oger's
model (Oger et al., 2007) and developed higher-order Laplacian operator in the context of the
SPH formulation. For elimination of non-physical pressure fluctuations, Sun et al. (Sun,
Colagrossi, Marrone, Antuono, & Zhang, 2018) proposed a novel switching technique so-called
Tensile Instability Control (TIC) that was achieved by altering Navier-Stokes equations into the
non-conservative form. More precisely, in this technique, non-conservative form of the pressure
gradient is utilized in the specific area with truncated kernel support (free-surface area) whereas
the conservative one is applied on the interior particles. Antuono et al. (Antuono, Colagrossi,
Marrone, & Molteni, 2010) invented an effective remedy to suppress the density error
accumulation associated with the Weakly Compressible version of the SPH. They proposed a
novel system of equations by inserting the additional diffusive term into the mass equation. Their
results showed that, this extra term can significantly decrease the pressure oscillations in both
time and spatial domain and named it as a Delta-SPH model (§-SPH). Similar findings were also
documented by Jandaghian and Shakibaeinia (Jandaghian & Shakibaeinia, 2020) who proposed
the Delta version of the WCMPS model (6-WCMPS) by inserting an artificial diffusive term into
the continuity equation to eliminate the spurious high-frequency pressure fluctuations from the
fluid domain. As stated before, another major source of instability can be traced back to the
uncertainty in selecting the appropriate kernel function. Hongbin et al. (Hongbin & Xin, 2005)
numerically proved that, the type of the kernel or weighting function as a heart of the Lagrangian
particle method has a significant impact on the stability of the numerical solutions. They
conducted a comparative study on ten different types of the kernel function and concluded that
Gaussian and Q-spline can potentially generate more precise results for a benchmark one-
dimensional shock tube problem as compared with the cubic-spline kernel function. Similar
observation was also reported by Yang et al. (X. F. Yang, Peng, & Liu, 2014; X. Yang, Liu, &
Peng, 2014) who constructed two different weighting functions and highlighted that, the

smoothness and coherence of the first and second derivatives of kernel function have remarkable



impacts on the stability and consistency of the numerical simulations. Accurate detection of free-
surface area for the imposition of Dirichlet boundary condition for the Pressure Poisson Equation
(zero pressure) is another major challenge faced by the particle methods. To overcome this
shortcoming and identify the position of the free-surface area, Marrone et al. (Marrone et al.,
2010) proposed a novel scanning algorithm. In this technique, the specific scanning algorithm is
employed to scan the local region around each target particle. If any gap is detected, the
candidate particle will be labeled as a surface particle. However, the results of Haque et al.
(Haque & Dilts, 2007) showed that the utilization of this technique for 3D free-surface problems

or long-term simulations is computationally expensive.

In light of the above literature review, the main objectives of the present PhD thesis are to
develop a robust and reliable high performance SPH and MPS models for the simulation of the
multiphase and free-surface flows with low and high-density contrasts through addressing the

aforementioned shortcomings associated with mesh-free Lagrangian particle methods.



Chapter 3 PROBLEM STATEMENT, OBJECTIVE, METHODOLOGY,
STRUCTURE OF THE RESEARCH PROJECT

3.1 Problem statement

As highlighted before, multi-fluid/multiphase flows with severe interface deformation are found
in a large number of industrial applications and CFD as a reliable, cost-effective, and powerful
alternative or complement tool to experimental measurements have been widely applied to
interpret the complex physics behind such phenomena. Generally, the morphology and
hydrodynamic behaviours of the multi-fluid/multiphase flows can be examined using a method
developed either in Eulerian or Lagrangian framework. However, despite the proven success of
the Eulerian methods (i.e. VOF and Level-set) in dealing with free-surface flow with large
interface deformation and discontinuities, these models are characterized by violation of local
mass conservation and interface smearing which can immensely jeopardise the accuracy and
reliability of the models. On the other hand, although the SPH and MPS models as truly
Lagrangian methods have been shown to have the best overall performance over the traditional
mesh-based methods in handling multiphase flows with sharp interface deformation and
topological change, they have some major drawbacks in terms of numerical instability (i.e. the
particles clustering and non-physical pressure oscillation) which can directly degrade the order of
accuracy of the numerical scheme and often lead to premature termination of calculations. Based
on the above explanation, the main aims of the current work are to introduce some possible

solutions to improve the accuracy and consistency of existing SPH and MPS models.

3.2 Research objectives

The global objective of the proposed research is to develop a robust and high-performance mesh-
free Lagrangian (particle) numerical method, based on the MPS and SPH formulations, for the
simulation of multi-fluid/multiphase fluid flows with heat and mass transfer. In light of the above
literature survey, the main objectives of the present research work may be summarized as

follows:

1. Presenting a novel high-order kernel function to enhance the stability and accuracy of the

particle methods,
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Presenting a robust and accurate free-surface detection technique for the treatment of the
free-surface flows and the enforcement of the Dirichlet boundary condition for the

Pressure Poisson Equation (zero pressure),

Presenting a novel particle regularization technique to address the problems of particle

clustering and tensile instability,
Implementing a mirror velocity technique to address the problems of particle penetration,

Presenting three novel high-order Laplacian, gradient and divergence operators in the
context of the SPH and MPS for the elimination of unphysical pressure oscillation and

void formation (tensile instability),

Evaluation of the validity and versatility of the proposed modifications in handling multi-
fluid/multiphase problems through the simulations of several challenging benchmark test
cases including dam break with and without obstacle, rotation of a square patch of fluid,
two-phase and three-phase Rayleigh-Taylor instability problems (RTI), oscillating
concentric circular drop, 1D Sod shock tube problem, energy, and exergy analysis of
natural convection heat transfer in Differentially Heated Cavity (DHC) and Rayleigh-

Bénard convection.

3.3 Methodology

In order to achieve the aforementioned goals, the methodology of the present research is divided

into 8 steps as follows:

1.

Implementing the explicit Third-order TVD Runge-Kutta scheme for discretization of

transient terms in the governing equations,

Implementing a mirror velocity technique for the treatment of the rigid walls to prevent

particle penetrations,

Developing a novel high-order gradient operator based on the Taylor series expansion for
the discretization of pressure gradient and divergence of velocity for both SPH and MPS

methods,

Developing a novel high-order Laplacian operator based on the Taylor series expansion

for the discretization of Pressure Poisson Equation (PPE),
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5. Developing a novel high-order Particle Shifting Technique (PST) based on the Taylor

series expansion to supress the problem of tensile instability and particle clustering,

6. Improving the performance of the existing PST by incorporating the particle-collision
technique into the method (i,e. Discrete Element Method) for the treatment of the free-

surface area,

7. Developing a novel high-order smoothing operator based on the Taylor series expansion

for the imposition of Neumann boundary conditions in both SPH and MPS frameworks,

8. Developing a robust and accurate free-surface detection technique based on the first and
second derivatives of kernel function for the determination of the exact position of the

interface,

3.4 Structure of the research project

As heighlited earlier, (1) unphysical pressure fluctuations, (2) tensile instability caused by
particle clustering, (3) uncertainty in the selection of appropriate kernel function, (4) non-
conservative form of pressure gradient operator, (5) false detection of interfacial particles in free-
surface flows, (6) Low-order boundary treatment, (7) penetration of fluid particles into the
boundaries walls and (8) low-order space and time discretization schemes used for calculating
gradient, divergence and Laplacian operators are some crucial drawbacks associated with SPH
and MPS models which can adversely influence the accuracy of the numerical solutions or even
lead to the unwanted termination of the calculations. The aforementioned shortcomings have
been systematically addressed within four scientific research articles. Based on the above

explanation, the current PhD thesis is organized as follows:

In article 1, the Kernel Derivative-Free (KDF) version of the conventional Incompressible
Smoothed Particle Hydrodynamics (ISPH) model is introduced for the simulation of the free-
surface flows where no kernel gradient is required for the interpolation and particle
approximation. To resolve the second shortcoming (tensile instability) and enhance the
robustness of KDF-ISPH model, a novel Particle Shifting Technique (PST) is developed and then
combined with the OPS scheme for the treatment of the free-surface area. To augment the order
of the accuracy of the proposed model, a novel high-order Laplacian operator is derived based on
the Taylor series expansion and is then utilized for the discretization of the Pressure Poisson
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Equation (PPE) and diffusion terms in the governing equations. Moreover, a novel high-order
kernel function is constructed through the combination of the cosine and signal functions and is
then applied for the simulation of 1D Sod shock tube problem. The newly developed KDF-ISPH
model is validated and evaluated against a series of challenging benchmark cases including dam
break, stretching water drop, rotating square patch of fluid, and natural convection in square
cavity. The results obtained from this article can give a deep insight into the process of the
extracting of the governing operators in the context of the ISPH model and provide a necessary
foundation and a numerical framework for the further development of the Lagrangian particle

methods.

In article 2, the Kernel Derivative-Free (KDF) version of the conventional Weakly Compressible
Smoothed Particle Hydrodynamics (WCSPH) model is introduced for the simulation of the free-
surface flows and convection heat transfer problems where an explicit equation of state is
employed for the calculation of the pressure field. However, as stated before, unlike the KDF-
ISPH model, the traditional WCSPH method is characterized by spurious pressure fluctuation
and density error accumulation which can immensely jeoparadise the accuracy and relaiability of
the numerical solutions. In order to attenuate the unphysical pressure oscilation, a new additional
diffusive term is derived and added into the continuity equation. A high-order Laplacian operator
is also developed and then applied for the approximation of the diffusion terms (e.g., viscous
term, thermal diffusion, and newly additional diffusion term in the continuity equation).
Furthermore, a new high-order smoothing operator in the context of the MPS description
(Moving Particle Semi-implicit) is also proposed and then applied for the treatment of the
buoyancy force term in the natural convection heat transfer problems and also for the calculation
of the pressure and temperature on the rigid walls. To further enhance the accuracy and stability
of the model, a novel high-order kernel function is constructed and tested via simulation of the
1D Sod shock tube problem. A series of canonical test cases such as: dam break, stretching of a
circular water drop, rotating square patch of fluid and natural convection heat transfer in a square
enclosure are used to verify and assess the feasibility of the proposed modifications. The results
obtained from this article can shed further light on the numerical performance and approximation

properties of the Weakly Compressible version of the SPH.

In article 3, an improved version of the classical ISPH model is introduced where the Pressure
Poisson Equation (PPE) is used for the prediction of the pressure field. To accomplish this, two
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novel high-order gradient and Laplacian operators are derived based on the Taylor series
expansion and are then implemented for the discretization of the Pressure Poisson Equation
(PPE), gradient of pressure and the divergence of velocity in the governing equations. To
enhance the regularity of the particles arrangment and circumvent the problem of tensile
instability (particle clastering), the classical PST is combined by the Discrete Element Method
(DEM) which results in more uniform particles distribution and stable numerical solution.
Moreover, a roboust and efficient free-surface detection technique is developed for the accurate
imposition of Dirichlet boundary condition (zero pressure) on the free surface area. To overcome
the problem of density/viscousity discontinuity in the multiphase/multi-fluid flows, a novel high-
order smoothing operator is also proposed based on the Taylor series expansion. The concept of
mirror velocity technique is also incorporated into the method for the treatment of the rigid walls
and the enforcement of the non-slip boundary condition. The results of this investigation can
provide a deep insight into the ISPH model where derivatives of the kernel function are employed
for the interpolation and particle approximation.

In article 4, an enhanced version of the classical MPS model is introduced for the modelling of
multiphase/multi-fluid flows with high-density contrast. To this end, a set of high-order gradient
and Laplacian operators are derived in the context of the MPS description and are then applied to
the discretization of Navier-stokes and energy equations. Moreover, the combination of the
explicit Third-order TVD Runge-Kutta scheme and two-step projection algorithm is employed
for the discretization of the transient terms. A new high-order smoothing operator is also
developed to circumvent the difficulties associated with physical discontinuities across the
material interface. To solve the problem of uncertainty in the selection of appropriate kernel
function, a new kernel function is constructed by merging the Gaussian and cosine functions and
is succssesfully tested for the simulation of 1D Sod shock tube problem. The results of this study
can provide a deep insight into the Lagrangian nature of the MPS model and its performance in

handeling multiphase flow problems with high-density ratio.
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3.6 Novelties and modifications associated with each research article
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Article 1
(KDF-ISPH model)

&
.f/ :

Article 2
(KDF-WCSPH model)

& 4

Article 3
(Improved ISPH model)

\\ /'

p

Article 4
(Improved MPS model)

A

e

New kernel function

New Laplacian operator

Modified the existing gradient operator
New Particle Shifting Technique (PST)
Implementing Mirror Velocity Technique
Implementing MLS technique

New kernel function

New Laplacian operator

New smoothing operator

Modified the existing gradient operator
New additional diffusive term
Implementing Mirror Velocity Technique

New kernel function

New gradient operator

New Laplacian operator

New hybrid PST+DEM

New free-surface detection technique
Implementing Mirror Velocity Technique

New kernel function

New gradient operator

New Laplacian operator

New smoothing operator

Implementing Mirror Velocity Technique

15

Implementing third-order TVD Runge-Kutta scheme
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convection heat transfer using a modified Weakly Compressible Smoothed Particle
Hydrodynamics (WCSPH) method." International Journal of Mechanical Sciences 188 (2020):
105940.

[3] Garoosi, Faroogh, and Ahmad Shakibaeinia. "An improved high-order ISPH method for
simulation of free-surface flows and convection heat transfer." Powder Technology 376 (2020):
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[4] Garoosi, Faroogh, and Ahmad Shakibaeinia. "Numerical simulation of Rayleigh-Bénard
convection and three-phase Rayleigh-Taylor instability using a modified MPS method.”
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Abstract

This paper develops and applies a Kernel Derivative-Free (KDF) Incompressible Smoothed
Particle Hydrodynamics (ISPH) model for analysis of entropy generation and heat transfer in
fluid-structure coupling problems. A modified high order Laplacian operator is applied for the
treatment of pressure-velocity coupling (Poisson's equation), while an explicit third-order TVD
Runge-Kutta scheme is used for time integration of the momentum, energy and displacement
equations. To improve the consistency and stability of the model, a new particle regularization
technique based on the particle shifting is also introduced for simulating free-surface flows. The
developed KDF-ISPH model is validated and evaluated for a series of challenging benchmark
cases, including, dam break, stretching water drop, rotating square patch of fluid, and natural
convection in square cavity. Accuracy and applicability of the method are further validated by
analyzing entropy generation due to the natural convection heat transfer in three well-known
geometries including: square cavity with hot obstacle inside, C-shaped enclosure, and square
enclosure containing a pair of hot and cold horizontal pipes (heat exchanger). The results are
found to be in good agreement with available numerical and experimental data. The accuracy of
the developed KDF-ISPH with new Laplacian operator, for use in prediction of fluid flow and
heat transfer characteristics is also proven. Finally, by combining the cosine and signal functions,

a new high order smoothing kernel is constructed. The evaluation of this new kernel for the
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propagation of shock wave in 1D tube demonstrates better global stability and consistency
properties compared to two frequently used SPH kernels (i.e. cubic and quintic spline functions).

Keywords: KDF-ISPH, New Kernel Function, Particle Shifting Technique, Third-order TVD

RK3, Convection Heat Transfer, Higher order Laplacian model

4.1 Introduction

Analysis of entropy generation and exergy efficiency due to natural convection phenomenon in
closed enclosures (e.g., square or circular cavities) has received a great deal of research attention
owing to its presence in the design of many heat transfer devices such as solar thermal receivers,
cooling systems for electronic device, room ventilation, nuclear reactor design, and heat
exchangers [1,2]. The natural convection in a semi-annulus enclosure containing several hot or
cold obstacles is one of the fundamental and classical problems, which have been addressed by
many researchers due to its application in heat exchangers [3-7]. Izadi et al. [8,9], Mohebbi
[10,11] and Aghakhani et al. [12] investigated natural convection heat transfer in different
geometries (L-shaped and C-shaped enclosures) and concluded that aspect ratio of the enclosure
and Rayleigh number have a significant impact on the onset of the Rayleigh-Bénard convection
and heat transfer rate within the enclosure. Similar observations were also reported by Li et al.
[13], Biswal et al. [14,15] and Hassani et al. [16] who investigated the effects of the Rayleigh
number and inclination angle of the enclosure on the entropy generation and pattern formation of
the Rayleigh-Bénard convection using the Lattice Boltzmann model (LBM) and Galerkin
weighted residual finite element method (GFEM). In the same context, Dutta et al. [17], Alnaqi et
al. [18], Kefayati et al. [19], and Alkanhal et al. [20] implemented CVFDM, LBM and CVFEM
methods to discretize the governing physical equations for modeling entropy generation rate
during the natural convection heat transfer in the presence of transverse magnetic field. They
showed that the MHD parameter reduces the flow intensity and causes average Nusselt number
and overall entropy generation rate to attenuate accordingly. The problem of buoyancy-driven
fluid flow with its corresponding exergy efficiency analysis inside closed enclosures has been
investigated by several scholars utilizing various conventional CFD mesh-based approaches [21-
28]. As remarked by Zainali et al. [29] most of the established CFD analysis tools rely heavily on
an underlying lattice structures (mesh-based models) which may be fixed, or may be allowed to

alter with rigid boundaries. This in turn may require specialized discretization techniques and
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enhance computational cost. Recently, in a series of pioneering works, Hopp-Hirschler et al. [30],
Aly et al. [31], Ng et al. [32], Yang et al. [33] and Zhang et al. [34] adopted Smoothed Particle
Hydrodynamics (SPH) method to investigate natural convection heat transfer in complex
geometries with curved boundaries. They stated that, SPH inherently can be considered as a

robust alternative model in handling complex fluid-solid interaction (FSI) problems.

Historically, Smoothed Particle Hydrodynamics (SPH) was first proposed by Lucy [35] and
Gingold et al. [36] as a fully Lagrangian particle technique to describe the evolution of planet-
disk systems. During the past years, many researchers have been motivated to employ some
positive features of SPH method in solving a wide range of engineering and scientific problems.
Simulation of gas-solid fluidization and free surface flows during the injection molding [37,38],
analysis of nuclear reactor safety and fuel drop impact on heated surfaces [39,40], liquid sloshing
in a rectangular tank and bubble rising in a viscoelastic fluid [41-45], simulation of Rayleigh-
Taylor Instability and fluid flow over the airfoil and square cylinder [46—49], analysis of free
surface thermal flow and modeling of industrial processes involving heat transfer [50,51],
simulation of tsunamis water waves generated by landslides and 3D dam-break flows with
breaking waves [52,53], simulations of sediment transport and 2D dam break [54-56] are just a
few examples of such applications which have been reported in the literature. A comprehensive
and up-to-date review of recent applications and future prospects of the SPH method can be
found in works of Wang et al. [57] and Shadloo et al. [58].

However, although the SPH as a truly mesh-free particle method has been shown to have the best
overall performance over the traditional fixed grid methods in handling highly nonlinear
multiphase flows with a free surface but it has some major drawbacks in terms of the numerical
instability (i.e. the particles clustering and non-physical pressure oscillation) that can directly
degrade the order of accuracy of the numerical scheme and often lead to premature termination of
calculations. Until now, various attempts have been made to eliminate the occurrence of tensile
instability and attenuate spurious fluctuations in pressure time history. Hongbin et al. [59] carried
out a comparative study between ten different types of the kernel function in simulating one
dimensional shock tube problem and pointed out that type of the smoothing functions has a
significant influence on the accuracy and stability of the SPH. Similar results were reported by

Yang et al. [60,61] who constructed two different kernel functions (cosine and hyperbolic shaped
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kernel functions) and successfully applied to simulate dam break and viscous liquid drop
benchmark cases. Aside from the role of kernel function on the numerical stability, another
potential source of the inconsistency in the SPH is the negative pressure in the vicinity of the
media interfaces which in turn leads to the formation of particle clusters in those areas. To
overcome this shortcoming, Sun et al. [62] proposed a new technique called Tensile Instability
Control (TIC) that was achieved by changing the momentum equation into the non-conservative
form. Since, their scheme does not entirely respect the Taylor expansion, they suggested that, this
technique should be only applied to areas with negative pressure values. Another factor that
causes tensile instability comes from the Lagrangian formulation of the SPH itself. Generally,
SPH is formulated by the hypothesis that particle distribution is uniform across the whole flow
domain while this assumption is not always valid for violent free surface flows. To get a more
uniform particle distribution and enhance the order of accuracy of gradient operator, Oger et al.
[63,64] proposed a new renormalization procedure based on the Taylor series expansion and
showed that renormalization of density and pressure gradient can successfully avoid any particle
bunching and numerical fractures. Similar findings have been reported by Schwaiger [65] who
established a new high-order Laplace operator in the framework of SPH for the treatment of
pressure-Poisson equation. Another numerical scheme that can effectively redundant the
excessive stretching and clustering of particles is through shifting the particles from higher
concentration to the lower one. The idea of rearranging particles to prevent tensile instability
came from Xu et al. [66] as a Particle Shifting Technique (PST) to solve the problem of
heterogeneity in particle distributions. The PST was then extended and modified by Skillen et al.
[67] and Sun et al. [68] based upon Fick’s law of diffusion and Taylor expansion to control the
total magnitude of particles displacement and its direction. Recently, Khayyer et al. [69]
optimized particle shifting technique (OPS) and showed that by calculating the surface tangential
vector and neglecting the movement of particles in the normal direction, PST can be
straightforwardly applied to entire particles. Since, knowledge about the interface position and its
nearby particles are also required for solving pressure Poisson equation (PPE) and enforcement of
the Dirichlet boundary condition along the free-surface regions, during the last decade, many
researchers have initiated studies on the particle labeling algorithms. Generally, a number of
effective methods which have been proposed for free-surface detection can be classified into two
different groups: kernel-based techniques (like PND [70]) and coverage detection methods (like
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Scan Region Technique [71]). Duan et al. [72] and Zhang et al. [73] adopted the concept of the
Particle Number Density (PND) proposed by Koshizuka et al. [70] for free-surface detection

where a threshold value determines whether desired particle belongs to the free surface or not.

In light of the above literature survey, the objective of the present work is to introduce a new
high-order Kernel Derivative-Free (KDF) incompressible smoothed particle hydrodynamic
(ISPH) for analysis of entropy generation due to natural convection heat transfer and multiphase
flows with free-surface. The spatial derivative approximation technique of proposed model is free
from derivatives of kernel. In addition to increasing the SPH simplicity, this technique eliminates
the differentiability condition from the kernel function, providing more freedom for the choice of
kernel. For this purpose, a new high order smoothing kernel is first constructed and then applied
for simulation of the propagation of shock wave in 1D tube. In the second step, higher order
Laplacian operator proposed by Schwaiger [65] is reformulated according to the KDF model and
then applied for the treatment of pressure-velocity coupling (Poisson's equation). To enhance the
computational stability and accuracy of the method, a new Particle Shifting technique is also
introduced for simulation of the violent flows. By conducting simulations of four different
benchmark cases such as: dam break, stretching water drop, rotating square patch of fluid, and
natural convection in square cavity, stability and accuracy of the proposed method (KDF-ISPH)
have been verified. The results are presented in form of the streamlines, isotherms, velocity (u,v)
field, local Bejan number, total entropy generation, average Nusselt number, related graph and

chart.

4.2 Problem statement and governing equations

A schematic geometry of the eight different problems and their boundary conditions are shown in
Fig. 4-1. Cases Al to A5 are employed for validation of the proposed new model, while cases B1
to B3 are used for analysis of the entropy generation due to natural convection heat transfer. In all
cases, the fluid flow (Pr=0.71lor 6.2) is considered as incompressible, Newtonian, two-
dimensional and laminar. The only exception is the case Al, where fluid is compressible and
subsequently the equation of state is used to estimate the pressure field. For the convection heat
transfer part of the study, the thermo-physical properties of the fluid are assumed to be constant
except for the density, which varies in accordance with the Boussinesq approximation. In cases

A5, B1, B2 and B3, the temperatures T, =304K and T, =296 K are uniformly imposed along
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the hot and cold surfaces while other parts of the enclosure walls are all thermally insulated. The

numerical simulations are performed using, an in-house CFD code written in a FORTRAN

program.

For laminar and incompressible viscous hydrodynamic problems with convection heat transfer,
the 2D continuity, momentum, energy and displacement equations in the Lagrangian frame are

the ones that follow [74]:
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where u: (u, v) and r: (x, y) are the velocity and position vectors. D is the material (Lagrangian)

derivative and F, is the body force, which is the gravitational (F, = g ) in the multi-phase flow or
buoyancy force (F, =—-g #(T —T.)) in natural convection heat transfer according to Boussinesq

approximation with T, being the reference fluid temperature. By combining local thermodynamic
equilibrium and linear transport theory, the rate of local entropy generation for Newtonian flow

can be expressed as [75]:
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where S;,S;, k and T, are thermal dissipation, fluid friction irreversibility caused by velocity

(4-6)

gradient, thermal conductivity of working fluid and bulk temperature, respectively. Eq. (4-6) can
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be converted to the dimensionless form by introducing the following non-dimensional

parameters:
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In Eq. (4-8), ¢is called irreversibility distribution ratio and taken as 10™* similar to work of llis et
al. [76]. The dimensionless total average entropy generation (S« ) is given by the summation of
the entropy generation due to heat transfer and fluid friction, which can be calculated through the

integration of the local entropy generation (S, ) over the computational domain, as:

§T = .[dv ST dV, §F = .[deF dV, §t0t :§T +§F (4_9)

An alternative parameter to determine the relative importance of the heat transfer irreversibility is
the Bejan number (Be) defined as [75]:
S; oa
Be=—_ Be=| Be (4-10)
S dv
Since, Bejan number ranges from 0 to 1, the condition of Be <0.5 implies that the irreversibility

tot

is dominated by fluid friction effects whereas Be > 0.5is the case, in which irreversibilities due to
the heat transfer dominate the processes. For the particular case of Be=0.5 entropy generation

due to the viscous effects and the heat transfer are comparable.
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Figure 4-1 Schematical configuration of the considered problems with coordinate system and
boundary conditions.

4.3 KDF-ISPH formulation and solution methodology

Here, a Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamic (ISPH)
model is employed to solve the flow and heat transfer governing equations. Similar to the
meshfree particle methods [61], [66], [74], the governing equations are discretized using a set of
free-to-move particles associated with physical properties of the system (e.g. density, viscosity,
thermal conductivity and so forth). However, to approximate the spatial derivatives, the present
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method uses the kernel function itself, instead of its derivatives. Appendix (A) explains the
derivation of the relevant spatial operators (i.e. gradient, divergence, and Laplacian). A summary

of operators used for approximation of the governing equations is listed in Table 4-1.

Table 4.1 List of the equations used for calculating gradient, divergence, and Laplacian operators.

Operator Equation used
Divergence (for velocity) (u,,u, ) Eq. (4-A4) is applied in the present work whereas Eq.
Gradient (for temperature) (6,6, ) (4-A2) can also be used.

Modified form of the Eq. (4-A4) is applied in the
present work where y =1and y =-1are used for

Gradient (f o P, _ . )
radient (for pressure) (P, Py) internal and surface particles, respectively. (see Eq.

(4-12))
Gradient (for concentration used inthe  Egs. (4-A4) and (4-A5) without ( f, — ) is applied in
PST) the present work.
Buoyancy force in natural convection ( Eq. (4-A3) is applied in the present work whereas Eq.
0.) (4-A2) can also be used.
Pressure on the solid walls ( p;) Eq. (4-A2) is applied in the present work whereas Eq.
Temperature on the insulated walls (6,)  (4-A3) can also be used.
Laplacian . -
(for pressure V2P and diffusion Eg Eiﬁig Iczzpaﬁlsl(f%énugzz present work whereas
V2u,V?%0 ) ' '

The solution method uses a combination of the third-order TVD Runge-kutta time integration
scheme (TVD RK3) with a two-step projection method (proposed by Chorin [77]) for treatment
of the velocity-pressure coupling. At first, a temporary particle velocity field without the pressure

gradient is computed by solving the momentum balance equation as:
u —u"

where uand F; are velocity components and body force vector, respectively. By considering the

Quasi-Compressibility (Eq. (4-B13)), pressure at time level n® (first step of TVD RK3) is then

evaluated implicitly by solving the pressure Poisson equation as:
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(4-12)
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Ais constant coefficient (0 or 1) and used for stability analysis of the system (for further details

1
refer to appendix B). After obtaining the pressure field and its gradient (—Vp(l)), accelerations
Yo,

of the fluid particles (Du/Dt) can be determined through Egs. (4-2) and (4-3). To calculate Vp

across the whole particles (inner and surface particles), Eq. (4-A4) has been generalized

according to Tensile Instability Control (TIC) suggested by Sun et al. [62] as follows:

11
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where yis equals tol for internal (conservative form) and -1 for surface particles (non-

conservative form). m is particle mass, Wj; is the kernel function, and i and j refer to the target
particle and its neighbors, respectively. The Laplacian and divergence operators provided in
Appendix A (by Egs. (4-All) and (4-A4)) are used to solve the PPE equation and calculate

diffusion (V?u), conduction (V°T ) and divergence (V-u) terms. The temperature in the body

force (F, =—g (T —T,) ) for convection heat transfer is treated by Shepard approximant (Eq. (4-

A3)). After solving equations (4-2) to (4-4), the velocity vector (u® ), position vector (r®) and

temperature (9®) of the particles can be updated using the first step of the Runge-Kutta method

as:
m

u® =u™ + At Du

r® =r™ 4 Atu® (4-14)
)

o = o0 + At 2L

See also appendix C for details of TVD RKS3. In the second step the above procedure is repeated
using updated values of u® , r'? and @™, obtained in the first step (instead of the u", r"ando")

to compute u®?, r®and9®.
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This trend is continued for the third (last) step, where particles are displaced to the new position

r™ with updated velocity u®™™ and temperature 8 as:
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At the end of the process, the mean Nusselt number is determined by integrating the local Nusselt

number over the hot and cold surfaces as:
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On the active horizontal or vertical walls of the enclosure:

No=2("%4y Nu =—j —dX
L 7o oX
On the walls of the obstacle: (4-18)
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A—Z(Lz_L1+H2_H1)
where A is the non-dimensional effective surface area. At this stage, by having the velocity and
temperature at theu™*,0", entropy generation due to the viscous effects and the heat transfer

can be computed using Eq. (4-8) and gradient operator presented by Eq. (4-A4).
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Finally, by considering no slip condition and zero heat flux on the insulated walls, the boundary

conditions would be adjusted as follows:

a0 _ 0 On the insulated walls of the

on enclosure

0=1 6=0 On the hot and cold surfaces

U=V =0, On the solid-fluid interfaces (4-19)
U gnost = 2U g fuuid intertace ™Y fuia On the ghost particles (mirror

Vinost = 2Veotid—tuid intertace ™ Y fiuia velocity)

It should be noted that, in order to prevent the particles penetration and enforce no-slip conditions
on the solid walls, Fixed Ghost Particles technique (dynamic boundary algorithm) proposed by
Marrone et al. [78] is used to set up boundary conditions. More precisely, in this method solid-
fluid interfaces are used as a reference point where mirror velocity of the fluid particles close to
the solid boundary line (in active area) is interpolated on the other side of the rigid boundary. The

pressure of the boundary particle (p,) and temperature (6,) on the adiabatic walls of the
enclosure are computed using Eq. (4-12) [79] such that at first, p, or &, is calculated on the

solid-fluid interface and then the obtained values are assigned to the corresponding ghost

particles in the same rows or columns (see Fig. 4-2 and Eq. (4-A2) in appendix A).
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Support domain
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Figure 4-2Example of the Fixed Ghost Particles, free-surface detection techniques, calculation of

pressure and temperature on the wall particles.

- - - -1
N N N N
JZ; p,W,dV lewij dv Z; X, W dV 2; y, W, dv
= j= j= j=
Pi N N N N
P [ =L 2% PWdV [ L= Y xWidv  DTxAW, v D x W av (4-20)
. =1 = = =
Piy N N N N
z Yii ijijdV Z YiW; av Z X;; YW dv Z Yi?WijdV
| J=1 i | J=1 j=1 =t |

Note that above system of the equations can be solved using Gaussian elimination with partial

pivoting.
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4.4 New kernel function and Particle Shifting Technique (PST)

As mentioned before, the accuracy and consistency of the SPH and other mesh-free particle
methods rely heavily on the type of the kernel function and uniformity of the particles within the
computational domain. Thus, in this section a new kernel function and Particle shifting technique

are introduced and discussed in details.

4.4.1 kernel function

Here a new smoothing kernel is constructed by combing cosine and signal functions, as:

cos’(zR/6)

>~ 0<R<3
W, =ay{ 25+13R
0 R>3 (4-21)
12.9371393 6.6067745 3.3694114
AT BT T e BT e

where R =‘rij‘ / his relative distance between two particles i and j. hdenotes a smoothing length

and «, is a constant number (D=1, 2, 3 is the number of dimensions), which has been calculated
N

using Simpson integration rule to satisfy the partition of unity criteria (ZV\/ijdV =1). The
j=1

efficiency and robustness of the newly proposed kernel function are demonstrated via numerical

simulation of the shock-wave propagation in 1D tube, where two commonly used cubic (Eq. (4-

22)) and quintic (Eg. (4-23)) spline functions [80] are considered for comparison purpose.

2/3-R*+R%/2 0<R<1

W, =a (2-R)*/2 1<R<2

0 R>2 (4-22)
oot 15 3
Y h P 72T T 27k
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Figure 4-3 Comparison of the density, pressure, velocity and energy variations between present

kernel function and those obtained by cubic and quintic spline functions in simulation of the
shock tube at t=0.2s.
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(3-R)°-6(2—R)*+15(1-R)* 0<R<1

g (3—=R)’-6(2—R)° 1<R<2
ij 5
(3—-R) 2<R<3 (4-23)
0 R>3
1 7 1

“T 1200 7 47802 T 120a0°
The initial conditions of the shock tube (case Al) are similar to work of Gui-rong [80] i.e.:

Xx<0, p=1 u=0, e=25 p=1 Ax=0.001875, m=0.001875

x>0, p=025 u=0, e=1795 p=0.1795 AX=00075  m=0.001875 (4-24)

The problem is simulated fort =0.2s with At=0.005, where 320 particles are evenly located in the

left half of the tube [-0.6,0]with high-density and pressure while 80 particles are distributed in
low-density area [0,0.6] (see also appendix D). The proposed new kernel function itself and its

first derivate (in 2D space) are depicted in Fig. 4-3. As the figure shows, the presented kernel

function is located between cubic and quintic spline functions and declines rapidly with the
increment of the distance. Due to intrinsic feature of the cosine function (cos®(zR/6)), it is

sufficiently smooth and has a finite compact support even for the second derivative (compared to
cubic spline function), leading to more stable numerical solutions. More importantly, unlike the
piecewise quintic spline, which consists of three parts (requiring additional computational time),
the developed kernel has only one piece and requires less number of the particles to reach the
same level of the accuracy. Fig. 4-3 reveals that the new kernel function can successfully capture
the positions of the shock (x=0.3) and rarefaction waves (—0.25<x<0) with minimal
fluctuation in the density, pressure and velocity profiles comparing to two other kernels. For
instance, the estimated density, pressure and internal energy at the contact surface region
(x=0.135) by proposed kernel function seems to be more accurate than those of the quintic

kernels.

4.4.2 Particle Shifting Technique (PST)

Since, in Lagrangian framework, particles potentially have a tendency to move along the
streamline trajectory, particle bunching is likely to happen within the computational domain. In
order to preserve the uniformity of particles and enhance the robustness of KDF-ISPH model, a
new particle shifting technique (PST) is developed to maintain homogeneity in the particle
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distributions. In fact, under the effects of PST, particles are encouraged to deviate from their

streamlines to the region with low particle concentration, resulting in a notable improvement in

the uniformity of particle arrangement. By eliminating the term ( f; —f;) from gradient operator

(Eqg. (4-A5)) and multiplying it by diffusion controller parameter (D <0.5h*) [67], a particle

shifting displacement vector (or;) can be obtained as:

N m. N m.
Z X; Wi j Z YW ;J
VC, = JNﬂ—m‘ VC, = ’N:l—m‘ Sr,=—DxVC, (4-25)
— Xi?Wij j Zl: yi?Wij —
i= j i= i
ri(n+l)* — r.i(n+1) +5ri(n+l) (4_26)

The terms VC, and VC, provide normal vector (normal to the interface points outside the dense

area towards the dilute one with low particle concentration) on the each particles. Note that,
particle shifting displacement obtained from Eq. (4-25) should be only applied on the inner

particles whereas for free surface particles and their vicinity, the OPS scheme is used as:

or, =—Dx(I —ni ®n;)-VC, (4-27)

where ni is the corrected form of the or; near the interface which is calculated through Eq. (4-
Ad). or, is particle shifting displacement in tangential direction (for more details see work of

Khayyer et al. [69]). After shifting the particles to the new position, the velocity field is modified

accordingly by Taylor-series approximation as:

(n+1)* _ 4(n+1) (n+1) (n+1)
@ =" +Vg" o

u_(n+l)* — ui(n+1) +vui(n+l) _5ri(n+l)

(4-28)

where Vui(””)is gradient of velocity components. Prior to implementing particle regularization
technique, an efficient free surface detection scheme should be applied to identify the type of
each particle. In the current work, the combination of the Particle Number Density (PND) [70]

and divergence of the displacement [67] is employed to track the position of the interface.
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N m; N m, & m;
Ki= ZW"' 4 K :injVV\/ij’X—+ZyijVWij'y— (4-29)
=P [ I Pj

i 1=

In Eq. (4-29), the first and second terms are respectively PND (K1) and divergence of the

displacement (K2 =V -r) which are ideally equal to unity and 2 when particle has a full kernel
support (internal particles). Thus any deviation from these values indicates that kernel function is

truncated and particle belongs to the interface area (see also Fig. 4-2).

K = (K1 +Kz)/3,

0 K <£0.75 Free-surface particle
_ (4-30)
F) =4 n—cos(rX=97 ) 075<K <093 Vicinity particles
2 0.93-0.75
1 K >0.93 Internal particles

In Eq. (4-30), for intermediate particles (0.75<K <0.93), smoothing function suggested by

Skillen et al. [67] is employed to remove the discontinuity between f (K)=1and f (K)=0. This

equation has also been used to impose Dirichlet boundary conditions in solving Pressure Poisson

equation in the form of the [A]x =bas follow:
a; P+, F(K)a;p; = f(K)b (4-31)

4.5 Validation

In this section, the accuracy and stability of developed model and the newly proposed kernel
function, particle shifting technique and Laplacian operator are demonstrated through analysis of
four different benchmark cases with various conditions. In all the simulations, ratio of smoothing

length to particle spacing in kernel function (Eqg. (4-21)) is taken as unity (h=1.0d ), with d

being the initial particle size. Time step size (At) is determined by a CFL=0.1 (Courant

number) condition based on the maximum velocity within the computational domain.
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d
Atconvection = CFL :
U
d 2
Atviscous = CFL_p (4-32)
|4
At= min(Atconvection ' Atviscous)

45.1 Dam-break

The first test case (case A2) is classical dam-break flow and used to access the ability of the
model in predicting a smooth pressure field and complex free surface features such as the return

wave break. Numerical simulation is carried out in a two-dimensional rectangular enclosure with
L=1.61m , where a column of water (o =997kgm=>,v=8.9x10"m*s™, p=0,u=v=0ms™)
with initial depth and width of the H =0.3mandW =0.6mis installed on the right side of the
enclosure. The time histories of the water level and pressure are monitored at three different
points (L, =0.3m, 1.114m,1.362m and h, =0.003m, 0.03m,0.08m ), and obtained results are

illustrated in Figs. 4-4 and 4-5. Generally, driven by the gravity, the water column collapses and
flows downwards along a dry bed until the wave front reaches the downstream wall. After
impinging on the left wall, it loses part of its kinetic energy such that the stagnation point starts to

form on the corner of the enclosure which causes the velocity to attenuate accordingly. This event

corresponds to the pressure peak in Fig. 4-5, first for the sensors 1 (h, =0.003m) and 2 (
h, =0.03m) and later for the sensor 3 (h =0.08m). Thereafter the flow ascends upwards

(forming a vertical jet on the wall), which is associated with continuous pressure signal recorded
by the sensors. Under the gravity force, the vertical jet descends downwards and eventually
collapses backward as a plunging wave leading to a second pressure jump (at around 0.63 sec.
The new generated wave which has a less forward momentum moves to the right direction,
forming a counterclockwise vortex in right half of the enclosure. Figs. 4-4 and 4-5 demonstrate
that the developed KDF-ISPH model has successfully predicted a much smoother pressure field
distribution with a well-detected free surface, particularly when the Particle Shifting is activated.
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Figure 4-4Contours of the pressure field and free-surface area at different times. N,=22050.
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It can be seen from Fig. 4-5 that the water level and pressure time history are in satisfactory
agreement with the experiment observations of Lobovsky et al. [81]. Furthermore, less pressure
fluctuations is observed, comparing to the numerical results of Zhang et al. [53] who used a
classical Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) with the
assumption of inviscid flow. Another reason for such discrepancy can be attributed to
implementation of the Particle Shifting Technique (PST) and new kernel function which in turn
can immensely affect the solution accuracy and stability of the SPH predictions from the

standpoint of less pressure fluctuations and particle consistency.

4.5.2 Rotating square patch of fluid

To demonstrate the capability of the KDF-ISPH model and PST in dealing with a negative
pressure field, a hydrodynamic behavior of 2D square patch of fluid subjected to the clockwise
eddy (in absence of external forces) is examined as the second benchmark case. In this problem,

initial velocity and pressure fields are set as:

Upy(X,y) =+Yyw

Vo(X,¥) =X

Po (X, y) =0 (4-33)
a(x,y,t)=0

where L=1 andw =1s"are the length of the square patch and the initial angular velocity,

respectively (see Fig. 4-1, case A3). Generally, due to centrifugal force, the corners of the square
(with higher velocity) are elongated outward while its sides are dragged towards the center to
satisfy the need for mass conservation as portrays in Fig. 4-6(a). It can be seen that in absence of
PST (case of Fig. 4-6(b)), as the time goes on, the arms of the square patch began to grow and
consequently magnitude of the negative pressure which is responsible for tensile instability
intensifies, leading to the degradation of gradient interpolation, and occurrence of particle
clustering (tw<0.1). This structure ultimately destroys the particles interaction and compact
support of the kernel function, resulting in the formation of unphysical discontinuity (numerical

cavitation) and premature termination of calculations, accordingly.
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Figure 4-6The effects of the particle shifting technique and additional term in pressure Poisson

equation on the evolution of rotating square patch of fluid at tw=0.5, 1, 1.5 and 2(tw increases

from top to bottom).
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Figure 4-7Validation of the present model against the numerical results of Oger et al. [64] at

tw=1 and 2. Np =12321.

Similar observations were reported by Oger et al. [63], [64]. On the other hand, by eliminating

the additional source term from the pressure Poisson equation (1 =0 in Eq. (4-12)) a reverse

trend occurs within the fluid domain. It can be seen from Fig. 4-6(c) that, due to the strong

distortion of the fluid boundary, a thin layer of the surface particles is separated and moves
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radially with constant velocity. This behavior can be explained by the fact that, assumption of
incompressibility is valid only for inner particles and cannot be extended to the free-surface area

where kernel support is truncated and particles are characterized by low density ratios (

P Surface

o

A=0) around the interface, can introduce an increasing error and leads to spurious

=Ki<1). Thus, it may be concluded that, implementing incompressibility condition (

segmentations of the interface. In other words, above discussion implies that, the hypothesis of

the constant density and incompressible condition (V-u“”” =0) are not valid and particle
motion may be influenced by the density gradient. The time history of the pressure at the center
of the fluid patch calculated using KDF-ISPH and newly proposed PST is shown in Fig. 4-7,
together with the numerical results of Oger et al. [64]. Again, obtained results are found to be in

reasonable agreement with the previously published data.

4.5.3 Stretching a circular drop
Behavioral analysis of stretching circular drop into an elliptical shape is considered here as the
third benchmark case (case A4). The simulations are performed for the circular water drop (

1 =107 Pas, p=1000 kgm~) with radius of R =1m subjected to the following velocity field:

Uy (X, y) =—100x
Vo(X,y)=+100y
po(X, Y) =0
g(x,y,t)=0

Unlike the previous case, the irrotational velocity field of this case generates a positive pressure

(4-34)

field which encourages particle to stretch along the major axis in y-direction. Fig. 4-8 shows the
effects of the PST on the particles position and pressure field. As mentioned before, in
Lagrangian framework, particles typically tend to follow streamlines trajectory causing high level
of heterogeneity in particle spacing, which in turn affects the stability of the mesh-free method.
By comparing Figs. 4-8 (a) and (b), it is apparent that the PST has a notable impact on preserving

particle uniformity through removing the voids between two different particles trajectory.
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Figure 4-8 Evolution of an initially circular water drop: the comparison of particle positions and

pressure contours obtained by present model against the numerical results of Xu et al. [82].
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The accuracy of the KDF-ISPH model has been further proven by comparison with the analytical
solution and numerical results of Xu et al. [82]. As shown in Figs. 4-8 (c) and (d), the proposed
approach outperforms both classical and improved SPH schemes in terms of the pressure and
semi-minor axis calculations. This superiority can be justified by the fact that, standard version of
the SPH was derived based on the weakly compressibility hypothesis without any corrective
matrixes, while current model benefits from high level of accuracy through implementing a set of
the enhanced schemes. Absence of the PST in work of Xu et al. [82] (improved SPH) is another
reason for such discrepancy which has led to particle clustering and non-physical gap within the
fluid domain (compare Fig. 4-8 (a) with 8 (c)). Finally, Fig. 4-8 demonstrates that the obtained
results by proposed model are in excellent agreement with the analytical solutions.

4.5.4 Natural convection heat transfer

Natural convection heat transfer in 2D square cavity with localized heating from below (Ty,) is the
last benchmark test case. As shown in Fig. 4-1 (case Ab), the vertical walls of the enclosure are
isothermally cooled at a constant low temperature (T;), while the top wall and two unheated parts
of the bottom wall are thermally insulated. Cavity is filled with air (Pr=0.71) with constant
thermo-physical properties, except for the density, which varies linearly with the temperature
according to Boussinesq approximation. Generally, due to the temperature difference between the
hot and cold walls, the fluid adjacent to the heated surface ascends from the middle portion of the
bottom wall, forming the curved shape thermal plume inside the enclosure. As the fluid moves
upward and interacts with the colder particles, its temperature (energy) declines and consequently
the fluid gets denser and descends more rapidly toward the bottom wall, resulting in appreciable
enhancement in the size of the thermal plume. During repeated temperature cycle, the flow is
shifted toward the corresponding vertical walls and cores of the two minor CW and CCW
rotating vortices (which are separately located in the lower part of the cavity) moves up. This
leads to the formation of the thermal boundary layers adjacent to the cold walls. The growth of
the thermal boundary layers on the cold walls is in turn accompanied by augmentation of the

temperature gradient and heat transfer rate within the enclosure.
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As can be seen from Fig. 4-10, the present results are in excellent agreement with experimental
and numerical data of Calcagni et al. [83], showing the capability of the proposed method in
handling natural convection heat transfer. Finally, it worth mentioning that, besides the case A5,
the entropy generation due to natural convection heat transfer in another benchmark case namely:
Differentially Heated Cavity (DHC) has also been investigated and obtained results are compared
with numerical data of Ilis et al. [76].

4.6 Results and discussion

Previous section vividly showed that the proposed models are robust and reliable for modeling a
wide range of multiphase flows and convection heat transfer problems. In this section the
proposed KDF-ISPH method is employed to investigate entropy generation due to natural
convection heat transfer in three different geometries, (1) square cavity with hot obstacle inside
(case B1), (2) C-shaped enclosure (case B2), and (3) square enclosure containing a pair of hot
and cold horizontal pipes (case B3). Similar to traditional mesh-based methods, a particle
independency test (grid study) at two different Rayleigh number was performed by considering
seven sets of uniform particles size. It can be observed from table 4-2 that, a particle size of 139

%139 ensures a particle independent solution.

Table 4.2 Effect of the grid size (particle independency test) on heat transfer rate (N_u) for cases

B1 to B3 at low and high Rayleigh number.

Number of particles (Case B1)

Ra 39x39 59x59 79x79 99x99 119%x119  139x139 159%159

10° 1.1561 1.2009 1.2356 1.2423 1.2466 1.2472 1.2478

10° 3.0412 3.6239 3.8374 3.9813 3.9881 3.9892 3.9897
Number of particles (Case B2)

Ra 39x39 59x59 79x79 99x99 119x119  139x139  159x159

10° 1.1428 1.6202 1.7771 1.7884 1.7953 1.7961 1.7966

10° 3.2188 3.9074 4.2903 4.6638 4.8907 4.9022 4.9029
Number of particles (Case B3)

Ra 39x39 59x59 79x79 99x99 119%x119  139x139 159%159

10° 2.0081 2.2102 2.2658 2.2893 2.3005 2.3069 2.3076

10° 9.4573 10.4066  10.8251 10.8834 10.9078 10.9146 10.9155
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Figs. 4-10 and 4-11 represents the effects of the Rayleigh number (10° <Ra<10°) on the
isotherms and streamlines for cases Bl to B3 at different time instant. Generally, due to the
temperature gradient and buoyancy induced by the hot surfaces, the fluid is heated and driven
upward until it reaches the rigid top wall. The ascending hot fluid that gets blocked at the
enclosure’s upper wall travels horizontally toward the cold area, as it becomes gradually
condensed and colder. After hitting the cold surfaces, the relatively heavier fluid comes down to
lower part and ultimately returns back to the hot area and completes the recirculation pattern.
This thermal mixing leads to the formation of some cellular structures inside the enclosure. Fig.
4-10 reveals that at low Rayleigh number ( Ra =10°), the temperature field is nearly smooth and
monotonic, which proves that the viscous force is dominant and energy transport is driven by the
conduction. In this condition, due to weak buoyancy force, isotherms and streamlines are parallel
to each other and basically take the shape of the enclosure.

Table 4.3The effects of the Rayleigh number on the heat transfer rate and entropy generation for
cases B1 to B3 (steady-state condition).

Case B1

Ra m |U max| |Vmax| ﬁ §tot Sto’[,max §-|- ST,max §|: SF,max
10 1.247 0.551 1.042 0.998 5.536 88.959 5.529 88.892 0.007 0.147
10*  1.304 6.453 10.858 0.885 6.510 144514 5.765 132.0414 0.745 16.659
10°  2.281 55.726 75.954 0.218 46.456 1244957 10.151 465.664 36.304 1094.520
10° 3.989 199.952 324550 0.027 659.249 24097.470 17.910 1144494 641.338 23842.703

Case B2

Ra N_U |U max | [\/max | B_e §tot Stot,max §T ST max g E SF .max

10°  1.796 0.613 1.169 0.999  6.809 85.514 6.804 85.445 0.005 0.157
10* 1.834 6.772 11.851 0.930  7.456 139.551 6.935  125.108 0.521 16.666
10° 2.937 52,022 77.660 0.264 41800 1033.863 11.072 307.698  30.727 954.152
10°  4.902 199.655 292.343 0.028 650.404 26780.951 18.491 656.526 631.912 26607.464

Case B3

Ra Nu |U max| [Vmax| B_e §tot StOtvmaX §T ST,max g,: SF,max

10°  2.307 1.114 1.378 0.995 2436 53.922 2.424 53.827 0.011 0.222
10*  2.934 9.098 11.859 0.781  3.944 99.623 3.089 91.529 0.855 17.637
10° 6.267  30.891 45196  0.297 22.851 677.567 6.798  298.047  16.052 393.814
10° 10915 85.317 1333.947 0.057 214.212 7967.239 12.275 696.920 201.937 7895.284
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Figure 4-10 Isotherms for cases B1 to B3 at various Rayleigh numbers. N =139x139=19321.
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By increasing the Ra up to 10% the strength of the recirculating vortices augments and isotherms
get slightly distorted and compressed by the flow pattern, showing the role of the convection
mode in the heat transport. Indeed, it can be deduced that since strength of inertia forces in this
situation is analogous with the viscous force, transition point from conduction to convection takes
place at this Ra. With further increase of Ra, the effects of the buoyancy force become more
dominant and the magnitude of the velocity field (u) increases. This increases the intensity
vortices, causing the formation of the rising-sinking thermal plumes around the heated obstacles
(for the sake of brevity, vertical velocity contours (v) are provided as a supplementary material).
In this stage, flow structure (numbers and shape of eddies) and thermal pattern are remarkably
affected by geometry configuration and type of the boundary condition. For example, in case B1,
due to the symmetrical boundary conditions with respect to mid-plane of the enclosure, flow filed
is characterized by the pair of the CW and CCW rotating loops in the left and right halves of the
enclosure. By increasing the Ra up to 10°, the cores of the vortices move upward and height of
the thermal plume at the top portion of the annulus rises, indicating the establishment of the

convection regime.

However, the different scenario occurs in C-shaped enclosure (case B2). Figs. 4-10 and 4-11
show that at low Ra, isotherms are evenly distributed and the single clockwise vortex is
developed in the vertical part of the enclosure. By increasing Ra up to 10°, buoyancy force
dominates the viscous forces. Thus, the primary eddy in the horizontal part of the cavity gets
segregated at the core and two counter rotating vortices are formed in that area. This flow
structure, with regular thermal convective rolls, signifies the characteristics of Rayleigh-Bénard
cells, where isotherms exhibit chaotic behavior and become more twisted and deformed due to
existence of the primary ascending thermal plume under the cold rib. It can also be seen that
owning to the presence of falling thermal plume on the corner of the cold rip, vertical flow cannot
easily enter into the horizontal portion. This results in the formation of the three distinct
recirculation zones, once the steady-state condition is achieved. Because of high momentum
diffusivity at Ra=10°, a third Bénard cell (which triggers onset of thermal instability) is formed as
newly descending thermal plume. As time goes on, the counter-clockwise eddy which receives
the incoming cold fluid grows in its size and pushes the clockwise eddy (ascending thermal

plume) firmly towards the left wall of the enclosure.
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Due to the interaction and expansion of these vortices, rising plume moves horizontally along the
bottom wall and eventually vanishes owing to the caustic merging with the innermost vortex
occupying the left side of the cavity. As shown in Figs. 4-10 and 4-11, when the flow enters a
steady state condition, due to presence of the sinking thermal plum on the corner of the gap, two
distinct regions are created in the enclosure, (1) vertical portion of the enclosure which is
occupied by the strong clockwise eddy and (2) anti-clockwise elliptical eddy which is elongated
and squeezed in horizontal section. This behavior is consistent with the findings of Saidi et al.

[84] who investigated natural convection heat transfer in L-shaped enclosure.

Figs. 4-10 and 4-11 also display the flow structures and temperature patterns for case B3 (heat
exchanger) where all walls of the enclosure are adiabatic and impermeable so that heat can only
transfer from the hot pipe to the cold one. Similarly to what happens in cases B1 and B2, the
working fluid first gets heated and rises up close to the hot pipe and flows down along the cold
pipe, forming the pair of clockwise circulation vortexes inside the enclosure (outer recirculation
zone which occupies about %75 of the enclosure together with an interior double-eddy which is
elongated in y-direction). A close inspection of the magnitude of velocity component (u) in Fig.
4-11 and temperature distribution in Fig. 4-10 clearly show that due to dramatically larger
hydraulic resistance and weak buoyancy force at Ra=10°%, conduction heat transfer is dominant. In
fact, due to strong dominance of viscous force at this Ra, temperature field is practically
unaffected by circulation pattern so that isotherms at the middle portion are smooth and vertically
oriented. However, by increasing the Ra, flow initiates to penetrate within the enclosure which
makes the isotherms to become parallel with the horizontal walls. In this circumstance (Ra=10°),
flow intensity and deformation of isotherms are severely elevated and sharp thermal boundary
layer with steeper gradient is established around the differentially heated pipes. The decrement in
the thermal boundary layer thickness and isotherm gathering, in turn, cause higher swirl flow in
the annular space which leads to the significant rise in temperature gradient and heat transfer rate
consequently. It is interesting to observe that, due to the dominance of convection mode and
substantial augmentation in the fluid movement in the cavity, a pair of the upwelling and
downwelling plumes is also generated on the top and bottom of the heated pipes. This results in

in the development of two symmetric counter-clockwise eddies on the corners of the cavity.
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Figure 4-12 Variations of average Nusselt number as a function of the non-dimensional time for
cases Bl to B3 at different Rayleigh numbers. Case B1 (Pr=0.71,L=0.25H ), case B2
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To better understand the effects of Rayleigh number on the heat transfer mechanism inside the
enclosures, variations of average Nusselt number are elucidated in Fig. 4-12 and table 4-3. Fig. 4-
12 demonstrates that in case B1 at low Rayleigh number, average Nusselt number along the cold
walls of the enclosure are nearly identical while by increment of Ra, the difference between them
enhances such that lowest and highest amount of the heat are transferred from the bottom and top
walls, respectively. Take as an illustration, in steady state condition, the ratio of average Nusselt

number between top and left walls ( Nuws /Nu,,, ) at Ra=10%, 10%, 10° and 10° are 1.04, 1.50, 2.88
and 2.48 while this trend is continued by 1.03, 1.39, 5.62 and 13.46 between the left and bottom

walls (N_Uleft/N_U ). This behavior can be explained by the fact that in the conduction

bottom
dominated regime (Ra=10%) due to comparatively low momentum and penetration effect, heat
spreads uniformly in all directions, leading to uniform temperature gradient near the heated
surfaces. In this situation, averaged Nusselt number is heavily affected by reduction of the gap
space between the hot and cold areas. Such a phenomenon occurs in case B2 where because of
the relatively small space (low thermal resistance) available between horizontal walls of the
enclosure and cold rip, averaged Nusselt number along the top and bottom walls is higher than
that of the vertical one. By contrast, since at high Ra fluid tends to move upward with the
assistance of the buoyancy force, higher heat transfer rate occurs in the upper region (top and left
walls) while the bottom wall is practically inactive and has no contribution in the cooling process.
This event is also accompanied by the occurrence of thermal stratification in the lower half of the
enclosure. In fact, although at high Rayleigh number flow moves faster and convection
mechanism is dominant but due to existence of the stagnant region in the lower part of the cavity
in case B1, flow remains nearly motionless and consequently heat is transported through the

conduction mode. Interestingly, this course of the event also occurs in case B2 but in reverse

manner so that because of the heat trapping in upper half of the enclosure, mmp along the top

wall declines and conduction mode becomes stronger as the Ra enhances. In fact, above
discussion clearly suggests that locations of the hot and cold surfaces can be used as a control
parameter for the heat and fluid flow. That is, maximum energy exchange can be attained when
the hot surface is located lower than the cold one (and vice versa, for the lowest heat transfer
rate). Similar finding were reported by Doo et al. [85], Izadi et al. [86] and Miroshnichenko et al.

[87]. Another interesting feature at high Ra, is the transient oscillatory behavior in the values of
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Nu along the bottom and left walls of the C-shaped (case B2) enclosure. In fact, the first

fluctuation of Nu which occurs on the bottom wall (0<t"<0.02) is related to the presence and

movement of the rising-sinking plumes in the horizontal section while second oscillation which

takes place simultaneously on both bottom and left walls of the enclosure (0.04<t” <0.05)
originates from merging of the rising plume with the primary CW eddy at the left half of the
enclosure. Fig. 4-12 also reveals transient variations of the average Nusselt number around the
hot and cold pipes in case B3. The results indicate that in steady-state condition, the average

Nusselt number increases with increasing the Ra. However at each certain Ra, since initial
temperature is taken as T, =296 K (0 =0), NUhor pipe @round the heater declines whereas NUcola pipe

increases until the thermal balance is established within the enclosure. It is worth to mention that,
since sidewalls of the enclosure are totally adiabatic, the amount of the heat released by the hot

pipe is entirely absorbed by the cold pipe which is another validation for the current work from

the view point of first law of thermodynamics (mhot pipe = NUcoig pipe )-

Figs. 4-13 and 4-14 illustrate local Bejan number and entropy generation due to heat transfer
irreversibility at different Ra for case B1 to B3. As stated earlier, entropy generation stems from
two main factors, namely, heat transfer irreversibility (temperature gradient) and viscous
dissipation (velocity gradient). It can be seen from Fig. 4-13 that at Ra=10°, the values of the
local Bejan number in all cases are very close to unity which manifests thermal irreversibility is
the major contributor of total entropy generation. This observation is compatible with maximum

values of entropy generation provided in table 4-3. For instance at Ra=10°% the maximum local

entropy generation due to thermal dissipation (S, .. ) for cases B1, B2 and B3 are respectively

h,max
equal to 88.89, 85.44 and 53.82 while the maximum values of local entropy generation due to

viscous dissipation (S, ) are approximately 0.14, 0.15 and 0.22, which indicates that at low Ra

f,max
where conduction heat transfer is dominant, fluid friction irreversibility is negligible. This

behavior is also in agreement with results of Fig. 4-15 where time history of total entropy
generation in all cases exhibits the peculiarity of heat transfer irreversibility (S, = S;). As

expected, by increasing the Ra up to 10*, convection mechanism within the enclosures is
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Figure 4-13 Contours of the local Bejan number for cases B1 to B3 at various Rayleigh numbers.



57

Case B2 Case B1 Case B3 Case B2 Case B1

Case B3

Figure 4-13 Contours of the local Bejan number for cases B1 to B3 at various Rayleigh numbers,
(cont’d).
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improved and hence temperature gradient and intensity of fluid flow increase, leading to the
enhancement in total entropy generation. However, since onset of the convection heat transfer
occurs at this Ra (transition from conduction to convection mode), buoyancy force is not

sufficiently large to overcome hydraulic resistance, and hence entropy generation due to thermal

dissipation is still more intense than that of the viscous dissipation (S; > S; ). This is reflected in

the local and average Bejan number values in Fig. 4-13 and table 4-3 where B_e>0.50IearIy
demonstrates that most of the exergy loss in all cases is still associated with the heat transfer
irreversibility. It should be noted that in this condition, the entropy generation due toS; is
confined to the small region at the vicinity of the active walls where local Bejan number has a
lower values compared with elsewhere within the computational domain (see Fig. 4-13). By
increasing the Ra up to 10°, a large temperature gradient is formed at the vicinity of the heated
walls which causes fluid moves faster and velocity gradient to amplify accordingly. Increase in
velocity and temperature gradients in turn is accompanied by concomitant loss of the available

work and significant enhancement in overall rate of the entropy production. However, since
augmentation in the entropy generation caused by viscous dissipation (§F ) is slightly higher than

that promoted by heat transfer irreversibility (§T ), average Bejan number declines and becomes

lower than half. This indicates that irreversibility due to fluid friction is coming into the picture.
Variations of the average Bejan number (0.218£§:£ 0.297) at Ra=10" in table 4-3 and Fig. 4-
13 clearly demonstrate thatStand Sr have the same order of magnitude and hence are
analogous to each other. For instance, the ratio of Sk over that of the St in case B1, B2 and B3

are respectively 3.57, 2.77 and 2.36 which implies that Srand St have a relatively equal
contribution to overall entropy generation. This assertion is further supported by Fig. 4-13 where
40% of the enclosures in cases B1 to B3 is still covered by local Bejan number higher than 0.8.

With further increment of Rayleigh number (Ra=10°), total entropy generation rises while
average Bejan number declines immensely and becomes less than Be < 0.08, indicating the
domination of fluid friction irreversibility (see also table 4-3 where St <S¢ ). In other words, it

may be concluded that simultaneous increment of Swrand attenuation of Be characterize the

dynamical nature of the frictional entropy generation at high Rayleigh number where
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convection heat transfer is dominant. However, besides the above results, some other interesting

points can be drawn in this section. Generally, Fig. 4-14 illustrates that at all Ra, the source of
entropy generation due to heat transfer (S;) is concentrated near the active boundaries where
higher temperature gradients occur within the enclosures. More precisely, it is evident from Fig.
4-15 that due to the weak convection effects at low Ra, localS; in case Bl is uniformly
distributed and maximum S; occurs on the corners of the hot obstacle in the steady-state

condition. Due to the steeper temperature gradient and compression of isotherms at high Ra,
thickness of the thermal boundary layer near the bottom portion of the heater decreases and

thereby lower-left and lower-right corners become the major sites of the maximumSs; .
Furthermore, due to impingement of the single ascending thermal plume on the top wall, upper
half of the enclosure experiences a moderate local S; while lower one doesn’t have any
contribution to the S;and acts as almost entropy free region owing to the presence of the

stagnation region. Similar qualitatively trends also take place in case B2 such that at low Ra, S;

is found to be significant at the corners of the cold rip while in the rest of the domain, S; is trivial
due to low temperature gradient. By increasing the convective force via increase in the Rayleigh

number, magnitude of S; enhances and consequently left vertical and bottom horizontal parts of

the enclosure become the prone zones of S;. It is interesting to observe that, under this
circumstance due to high level of thermal mixing and severe velocity gradients in lower half of

the enclosure, S¢ is markedly intensified and S; starts to adopt the pattern of the isotherms.

Fig. 4-14 also demonstrates the local entropy generation due to heat transfer irreversibility for
case B3. One of the interesting features related to this geometry is that, since hot and cold pipes
are located in the same height, computational domain is completely free of the stagnation region,
resulting in better and more efficient thermal mixing within the enclosure. It can be seen from

Fig. 4-14 that at low Ra, maximum S; occurs on the left and right corners of the differentially

heated obstacles which have a lower distance with respect to each other. By increasing the Ra,
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Figure 4-15 Variations of average Bejan number (Be), total average entropy generation (S, ),

average entropy generation due to thermal (S; ) and viscous (S; ) irreversibilities as a function of

the non-dimensional time for cases B1 to B3 at different Ra. Case B1 (Pr=0.71,L=0.25H ),
case B2 (Pr=6.2,L, =0.6H,L, =0.3H ) and case B3 (Pr=6.2,L, =L, =0.225H ).

locations of maximum S; are shifted to the bottom and top portions of the hot and cold cylinders

respectively, where isotherms are densely packed and thermal stratification are formed in that

areas. In fact, because of formation of thermal stratification and blockage effects of the heated

pipes, lower and upper halves of the enclosure also experience a moderate heat transfer
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irreversibility which is more visible in the corresponding local Bejan number (see Fig. 4-13 at

Ra >10°for case B3). In addition, by comparing Figs. 4-13 and 4-14 for case B3, one can
conclude that, the region of low entropy generation corresponds to the middle of the enclosure
where isotherms are horizontally oriented with lowest temperature gradients. Finally, Fig. 4-15

illustrates the time history of dimensionless entropy generation in the transient state for cases B1
to B3. It can be seen that although by increasing the Ra both Seand S increase but at the certain

value of Rayleigh number, Seand St undergo the increasing and decreasing trends before
reaching the steady-state condition. As mentioned before this behavior is attributed to the initial
values which have been assigned for velocity (u=0) and temperature (€ =0) fields at the

beginning of the simulations. By virtue of this fact, zero velocity results in lower velocity
gradients which causes Sk to start from zero and increases as the time goes on. On the other
hand, high level of the temperature gradients near the hot surfaces induces higher values of Stat

the start of the modeling (t"=0) in all cases. This observation is consistent with the results of
Magherbi et al. [88] who numerically investigated transient natural convection and entropy
generation in differentially heated cavity (DHC). They also stated that by increasing the Ra, a
course of the fluctuations occurs in the total entropy generation on the basis of Prigogine's theory.

This phenomenon is also observed in cases B1 to B3 where due to internal wave instability in the

flow and temperature fields, instantaneous fluctuations are emerged in the Seand St . Note that
since the temperature gradient is the underlying cause of the convection regime, this course of the
oscillations also takes place in the values of average Nusselt number (see Fig. 4-12).

4.7 Conclusions

This paper introduced the Kernel Derivative-Free (KDF) Incompressible Smoothed Particle
Hydrodynamic (ISPH) model for simulation of the multiphase flow and convection heat transfer
problems. A new kernel function, Particle Shifting Technique (PST) and high order Laplacian
and divergence operators are proposed to enhance the stability and accuracy of the numerical
method. A wide range of the two-dimensional benchmark cases with different flow
characteristics were used to verify the performance and its improvement for practical

applications. The model was then applied to study the entropy generation due to natural
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convection for different configurations. Based on the obtained results, the following points can be

concluded:

4.7.1

4.7.2

KDF-1SPH method (development and evaluation, case Al to A5)

It is was found, the proposed new kernel function provided more accurate predictions
compared to the cubic and quintic spline functions in modeling propagation of shock
wave in 1D tube.

The results indicated that proposed new Particle Shifting Technique (PST) has a
significant impact on the stability of the mesh-free Lagrangian method, such that in its
absence, particle clustering (tensile instability) is likely to happen.

The model with the new Laplacian and divergence operators provided more accurate and
smoother pressure field comparing to the traditional WCSPH in modeling of dam-
breaking and rotating square patch of fluid.

The capability of the new Laplacian and divergence operators was further verified by
simulating natural convection heat transfer in a square cavity (case Ab).

It was found that, combination of the Particle Number Density (PND) and divergence of
the displacement can successfully detect the position of the interface.

The results showed that, the stability of the proposed method is significantly enhanced
when non-conservative form of the momentum equation ( y =—1) is used for free surface
area (see Eq. (4-15)).

Density error compensation term in PPE (additional term in Eg. (4-12)) was found to have
a significant impact on the regularity of the particle distribution near the free-surface area
such that in its absence, the particle inconsistency is likely to happen on the interface.

Entropy generation due to natural convection (case B1 to B3)

The results indicated that, by increasing the Ra both average Nussent number and total
entropy generation increase, while a downward trend is observed in average Bejan

number.

Entropy generation due to heat transfer (S, ), was found to be significant at low Rayleigh

number (Ra <10*). In contrast, at the convection dominant regime (Ra >10°), most of

the exergy loss in all cases was due to the viscous dissipation (S; ).
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e It was found that the highest heat transfer rate is obtained when the hot surface is located

lower than the cold one (and vice versa, for the lowest heat transfer rate).

e At low Ra, average Nusselt number and entropy generation due to all factors (S, andS. )

alter asymptotically towards a certain value while at high Ra an oscillatory behavior
occurs in the transient heat transfer rate and entropy generation before reaching the
steady-state condition.

e It was found that due to low velocity gradients in the stagnation region, most of
destruction of available work is due to the heat transfer irreversibility even at high Ra
(corresponded to highest local Bejan number).

In future works, the energy conservation analysis of proposed model can be accomplished.
Furthermore, the study can be extended for turbulent forced convection flow in complex
geometries with curved boundaries. Simulation of standing wave, lid-driven differentially heated
square cavity, dam break flow over a stationary obstacle, tank draining phenomena, and
Rayleigh-Taylor Instability problem are some other benchmark cases that will be investigated in

further work using proposed model.

4.8 Appendix A (gradient, Laplacian and divergence operators)

We take here a practical point of the view and derive three new gradient, Laplacian and
divergence operators based on the KDF-ISPH in a form suitable for numerical solution. Using
two-dimensional Taylor series expansion of a function at a nearby point (x;,y;) and multiplying it

byW,, x;W;, y;W; and integrating both sides of Eq. (4-Al) over the computational domain,

ij 'J

particle approximation for the field function can be computed as follows:

1 1
f="f+ f X; +f, Vi + f X +2 fyyyIJ +f, A +0(h?) (4-Al)
N ] Y N Tt

Z fW,dv > w;dv Z X W, dV Z YW dv

f =t '
N
f, |=L ZXU f,W,dv L= Z X, W, dV XAW,dV qu y, W dV (4-A2)
f -
y N
Z y; W, av Z YWdV D v Wy dv Z YW, dv
= i e = [E i
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In the equation given above, f is a general variable such as velocity, temperature or pressure.
W, =W(r; —r;,h)is weight function and dV :mj/pj represents the volume of particle i. f and
fy' denote first derivatives of function f(rj) whilex; =x;—xandy; =y;—yare the distance

between i-th particle to the j-th particle at positions r; and rj in x and y-directions, respectively. L
Is the corrective matrix which guarantees first-order accuracy in calculating field function ( f,).
Eq. (4-A2) has also been documented by Colagrossi et al. [79] and known as a Moving Least-

Squares method. However, when the kernel is fully supported by neighboring particles, the terms

involving off-diagonal elements of the L matrix vanish (

Zx” w;dv ZyUWUdV ZXUyUW”dV 0) such that inverse matrix L will be reduced to

diagonal one. In this circumstance, field function can be computed through Shepard
approximants at relatively low cost [89].

N
Z f W, dv N : Wu
f =2 fi=2 fwdv - W= (4-A3)

j=1

Following the same argument, high-order particle approximation for the spatial derivative of the

function can be obtained by subtracting Eqg. (4-Al) from f;and multiplying it by x;W; and y,W;

as follows:
N N N 1
£ Z_ll X (f; = f)W;dv Z XEVVU dv Z X; YW dV
M:L . =l K (-
g ; yy (F; = fWdv Z; X; Yy W, dV Z yEVVIJ dv
- = =L

Eq. (4-A4) was originally introduced by Xu et al. [82] and known as a mixed symmetric
correction of kernel gradient. From the above equations, it can be seen that in contrast to the
standard SPH formulation, kernel gradient (VW) doesn’t appear in Eq. (4-A4) and differential
operation is only applied on the field function. Since the divergence operator is consisted of a

series of gradient operators, the same procedure of the particle approximation with kernel

normalisation can be adopted to compute (V-f). Take as an illustration, for calculating
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divergence of the velocity (V-u), Eq. (4-A4) should be solved two times where sum of the
velocity gradients in x (f, =ou/ox) and y (fy'zav/ay) directions can produce divergence

operator. Similar to the field function (Eq. (4-A2)), when smoothing kernel has a compact

support, gradient and divergence operators can be simplified into:

-1 N
ijvv”dv 0 | jz;xij(fj - fw,dv / D xw,dv
L= | i
N vi=| ' |= (4-A5)
0 Z yaWw, dv { fy} y
1 Dy, (f; = fw,dv Zij,,dv
j=1

By solving qu ;dV and Z Yi IJdV in a polar coordinate system (X; =¥, cos(6), y; =r;sin(0)

) in the case of the uniform particles distribution, Eqg. (4-A5) can be simplified further and

generalized into three-dimension as:

N N

zxu udvzzijudv__(zxu dev+zylj udv):

- - - (4-A6)
1 N N 1 N
§(ZXU ;dvV +ZyIJ AV +ZzIJ IJdV)—Ez;rijz\NijdV
j=1 =1 0 J=
N

DOZrij(fj - f)W,dv

Vf = (4-AT7)
Zr W;dV

D, Zrij (F, —f)w,dv

V-f=— (4-A8)

Zr W;dv

where f, f and Dy denote an arbitrary scalar, vector and spatial dimension. By retaining the second
derivatives in Eq. (4-Al) (except f X; Y; ) and multiplying it by W , the discretization scheme for

the Laplacian model can be written as follows:
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N N N
Z(fi — )W, dV = £ x, WdV + £, >y, W,dv
- ‘Nﬂ = (4-A9)
+= Zf XW,dV + = z f,,yaW;dVv
24

XX Nij

To drive (V2 = f_ + f,) it is assumed that ZyUW dV is equal ton W,dV . Although this

= =

hypothesis is only valid for regular particles arrangement and cannot be extended to free-surface
area where kernel is truncated, but it is the only way in which V*f can be computed. Based on
the above assumption, the third and fourth term in the right-hand side of Eq. (4-A9) can be
rewritten as:

Zf W, dV += i £,y W,dV = Z foXW,dV += Z £, % W, dV
j=1

xx Njj
=3 L+t )Z XAW, dV = (fx"x + f;/)izf(xﬁwudv +y2W,dV) (4-A10)
j=

1o 1N
ZE(fXX + fW)EZr?\NﬁdV for 2D

1
=1

By substituting Eq. (4-A10) into Eq. (4-A9) a new Laplacian operator can be obtained:

N
2D, [ (f; - f)W,av — fo,Jde nyUde sz,JWdV]
Vi = = = (4-A11)
ZrZde

where f, and fy' are estimated by Eq. (4-A4). It is worthwhile mentioning that, the present

model is very similar to the Schwaiger’s model [65] who proposed high-order Laplacian operator

discretization by taking gradient of kernel into account (VW ). Finally, for the uniform particles

arrangement (ZXUW dv = ZyUW dv = ZZ W,dV =0), Eq. (4-A10) can be reduced and

= =

expressed as:
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N
2D, Y (f, - f)w,dv
j=1
Vi = = (4-A12)
reW,dv

]

=1

This equation (Eq. (4-A12)) has also been derived independently by Koshizuka et al. [70] and Lei

et al. [90] for simulation of the hydraulics problem and convection heat transfer, respectively.

4.9 Appendix B (Artificial term in Pressure Poisson Equation)

Generally, there are two types of the Pressure Poisson Equation which have been widely used in
the context of the Lagrangian framework to estimate the pressure field namely: Divergence-Free

(DF) velocity and Density Invariance (DI) models:

VZ P(n+1) — pOv u (4'81)
At
V—(i*VP(””’) _ =P (4-B2)
P Po At

However, the results of Sun et al. [91] shown that the use of DF approach (Eq. (4-B1)) results in
density error accumulation adjacent to free-surface area which in turn causes tensile instability
and spurious numerical pressure vibration. On the other hand, Zheng et al. [92] reported that,
solving Eq. (4-B2) alone leads to large density variation and particle explosion which
subsequently attenuates stability of numerical simulation. To tackle this problem, Tanaka et al.
[93], [94] suggested the use of hybrid model (Quasi-Compressibility) which benefits from both

DF and DI source terms in PPE as given below:

V-u
Lo ta

VZ P(n+1) —
At At?

(4-B3)

where « is the relaxation coefficient of incompressibility which requires calibration in the range
of 0 <« <1. Based on the above brief description, along this appendix, the process of obtaining a

new density error compensation term in Pressure Poisson Equation will be outlined and discussed

in detail. By incorporating weak compressibility into the continuity equation (_Dpt)’ mass and
Yo

momentum equations can be written as follows:
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(n+1)
Do | v —g (4-B4)
Dt
(n+l) _ n (n+1)
L U i NS (4-B5)
At Yo,

By inserting the intermediate velocity (u’) into the left-hand side of Eq. (4-B5) and
implementing two-step projection method given by Chorin [77], momentum equation can be

splitted into two successive parts as:

u(n+1) _ u* + u* _ un Vp(n+1)

=— +oV2U" +Fy (4-B6)
At Yo,
U* —u" 2,.n
=uvVu +F 4-B7
Y. B (4-B7)
(n+1) u o Vp(n+1) (4-88)
At Yo,

The divergence of Eq. (4-B8) reads:

V.u™_v.u'=vVv. (— Vp<”+l)) (4-B9)
o,
Accordingly, by substituting equation (4-B9) into Eq. (4-B4), one obtains:

(n+1)

Dp
Dt

« At
+pV-U —pV-(—Vp")=0 (4-B10)
Y2,
Taking into account that the third term can be expressed as:

Ao o 1opdp 1 opop 1,
PV (—Vp") = Atp[-— —= = — =~ 1+ Atp(=V*p) 4-B11
, P gy p “Biy

we can establish an alternative form of the PPE as:

ar (n+1)
Vzp:pv u . Do 1[8,0 op 6p 6p] (4-B12)
At AtDt OX 8x oy oy
By defining parameters 4, 4, and 4,, Eq. (4-B12) can be rewritten in a general form as:
v-u 1 0p op Op O
Vip=4 p +4,2 ,13_ L_p o P, (4-B13)

At2 oX OX  dy oy



71

Note that for4, =1,4, =0, 4, =0, the expression reduces to the frequently used ISPH form (Eqg.
(4-B1)) while for4, =0,4,=14,=0 it turns into Eq. (4-B2). For the particular case of the
A =11,=14,=0, the hybrid DF-DI model (Eq. (4-B3)) can be obtained. The third term in Eq.

(4-B13) is the new additional term which takes the spatial gradient of density into account.

Finally, the values of p*,aaiandaican be simultaneously obtained through gradient operator
X

provided by Eq. (4-A2). Note that, the terms Z—pand %p (pressure gradient) in Eq. (4-B13) can
X

be considered as a source term in the discretization process.

4.10 Appendix C (third-order TVD Runge-Kutta)

In the current work, a three-stage TVD Runge-Kutta (RK3) scheme with third-order accuracy

proposed by Shu et al. [95] is adopted to discretize the physical transient term as follows:

du dr de

a0 =R =) (4-C1)
u® = u™ + g AtL, (u™)
r® =ao, r™ + g AtR (u®) (4-C2)

O =a, 6 + B AT, (O™)

u® =, u™ + g,u® + g, At L, (u®)
@ =, 1 + 8,1 4 B, AtR, (u®) (4-C3)
0® =, 0™ + 8,00 + B, AT, (6°)

u™ = u® + B u® + g AtL, (u?)
r™ =g, r™+ g, r® + g AR, (U") (4-C4)
0" =, 0 + 5,0 + B, ALT, (69)

where o, =1, a, =3/4, a,=1/3, f, =1, B, =1/4and B, =2/3. u"andu""are the velocity at n"

and (n+1) time step, respectively.

4.11 Appendix D (propagation of shock wave in 1D tube)

The Lagrangian form of the momentum, energy and continuity equations for simulation of the

propagation of shock waves are given as [80]:



Du(n)
u™ =u™ 4 At

r(n+1) — r(n) +Atu(n+l)

De™
™D — oM L At —

p=p(y-e, c= V—p,
o
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(4-D1)

(4-D2)

(4-D3)

(4-D4)

(4-D5)

The symbols e,cand VW denotes internal energy, speed of the sound and gradient of the kernel

function, respectively. y is a constant number equals to 1.4. The typical procedure to solve above

equations consists of two steps. First, Egs. (4-D1) to (4-D3) are solved to calculate material

derivatives and density (%,E
Dt Dt

, p) and then particles are advected to new positions with

updated velocity and energy according to Eq. (4-D4). Once the density and energy are found,

pressure and sound speed are modified by Eq. (4-D5) and process will be repeated for the next

time step. It should be noted that, artificial viscosity proposed by Monaghan [96] is frequently

employed to prevent non-physical pressure oscillation and particles clustering near the shock as

follows:
—Ot(_)i' -+ 2
Hij = Pij
0 U >0
h; (U - 1)
b=
ol +e’
- G+C —  pitp
Cij = v P T 5

2

, ¢=0.01h;, a=p=1

(4-D6)
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Abstract

A novel Kernel Derivative-Free (KDF) Weakly-Compressible Smoothed Particle Hydrodynamics
(WCSPH) model is developed for simulation of free-surface flows and convection heat transfer.
A high-order Laplacian operator is developed and then applied for the approximation of the
diffusion terms (e.g., viscous term, thermal diffusion, and newly additional diffusion term in the
continuity equation). The transient term in Navier—Stokes equation is discretized using the third-
order TVD Runge-Kutta scheme, while a stiff equation of state is employed to predict pressure
field. To increase numerical accuracy, a new high-order smoothing operator in the context of the
MPS description (Moving Particle Semi-implicit) is also proposed and then applied for the
treatment of the buoyancy force term in the momentum equation. Furthermore, a new high-order
smoothing kernel is constructed and tested via simulation of the 1D Sod shock tube problem. A
series of numerical benchmark cases such as: dam break, stretching of a circular water drop,
rotating square patch of fluid and natural convection heat transfer in a square enclosure are used
to verify and evaluate the feasibility of the proposed models. It is found that all simulation results
are in excellent agreement with the available experimental and numerical data. Capability and
performance of KDF-WCSPH method in handling particulate flows with thermal convection are
further demonstrated through analysis of entropy generation due to natural convection heat
transfer in the three different well-known geometries including: Differentially Heated Cavity, L-

shaped enclosure and horizontal annuli. Comparison with the past Finite-Volume results
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demonstrates that the present model can maintain stability and accuracy, which makes it a very
useful tool for simulation of thermo-hydraulic problems.

Keywords: KDF-WCSPH, Kernel Function, Smoothing operator, Laplacian operator, Entropy

generation, Natural Convection,

5.1 Introduction

Natural convection heat transfer driven by buoyancy force is of a significant scientific issue
which has attracted much attention in the recent years because of its wide range of applications in
industrial and engineering systems such as: cooling of electronic component [1], solar collectors
[2], heat exchangers [3], nuclear reactor cooling [4], thermal design of buildings [5] and etc.
From an academic perspective, the problems of buoyancy-induced heat transfer in L-shaped
enclosure and in the annulus between two horizontal concentric cylinders are of great interest and
practical importance due to their unique application as a heat exchanger. Works of Saravanan et
al. [6], Garoosi et al. [7], Hooshmand et al. [8] and Pordanjani et al. [9] can be mentioned as a
few examples of such studies, in which they numerically simulated natural convection heat
transfer in closed enclosure containing the hot obstacles. They discussed the effects of the length
and location of the hot blocks on the heat transfer rate and found that flow field, temperature
pattern and average Nusselt number are strongly dependent on the size and position of the hot
pipe. Similar observations were reported by Mohebbi et al. [10], Saidi et al. [11], Elshehabey et
al. [12] and Gawas et al. [13] who numerically investigated natural convection heat transfer in L-

shaped enclosures.

In the last few decades, the significant effort has been devoted to optimize process parameters in
enhancing the thermal design of the industrial and domestic systems which operate under natural
convection mode. The concept of the entropy generation minimization was first introduced by
Bejan [14] who mathematically demonstrated that, the generation of entropy or exergy loss leads
to the reduction in the available work and consequently decreases the energy efficiency of the
system [15]. During the past several years, many researchers have been motivated to apply the
second law analysis to design thermal industrial systems with desirable characteristics [16].
Sivaraj et al. [17], Kefayati [18], Siavashi et al. [19] and Arun et al. [20] investigated the effects
of the magnetic field on the heat transfer rate and entropy generation in the square enclosure with

an inner hot obstacle. They found that, presence of the magnetic field minimizes the entropy
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generation. Followed by the aforementioned studies, a few earlier works were also carried out by
Liu et al. [21], Zhang et al. [22] and Astanina et al. [23] to optimize natural convection process in
the closed cavities filled with a porous medium. They implemented EGM approach and
demonstrated that by the increment of Rayleigh number, both heat transfer rate and
irreversibilities of the thermal system increase. A comprehensive review of latest first and second
law analysis of natural convection mechanism in closed enclosures with various practical

applications can be found in works of the Biswal et al. [24] and Das et al. [25].

Besides the analysis of entropy generation and heat transfer, simulation of the multiphase flows
involving complex interfaces is another most challenging topic in fluid mechanics which is
difficult to represent by CFD tools. A literature review conducted by Pan et al. [26] shows that
Volume-of-Fluid (VOF) [27] and Level-Set (LS) [28] are two most commonly used interface-
tracking/capturing approaches in an Eulerian framework for modeling free-surface flows.
However, although, the aforesaid methods have all been implemented in various multiphase
problems, but the results of the Ha et al. [29] and Wu et al. [30] illustrate that the Eulerian mesh-
based approaches have some innate drawbacks in determining the exact location of the flow front

in multiphase phenomena.

To overcome aforementioned methodological problems and avoid difficulties in interface
tracking, many scholars have adopted a newer generation of numerical techniques called
Smoothed Particle Hydrodynamics (SPH), where particles in Lagrangian framework take the role
of the grids in Eulerian one. Absence of the convection term in governing equations and free
from constraints of the grids generation, make the SPH more efficient and robust method in
dealing with the free-surface flow with large deformation or breaking. The SPH was initially
introduced by Gingold and Monaghan [31] for describing the evolution of astrophysical
phenomena. After its initial appearance, it was extensively applied in many research areas such
as: simulation of liquid jet impinging on a flat plate and jet formation from a high pressure nozzle
[32], [33], modeling of capillary rise dynamics and bubble rising [34], [35], simulation of
convection heat transfer [36]-[39], simulation of droplet impact, gas-liquid two-phase flow and
granular flow [40]-[42], respectively. The state-of-the-art review of recent applications of SPH

and its future prospects can be found in works of Wang et al. [43] and Shadloo et al. [44].
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However, although the above-cited studies vividly demonstrate the ability of Smoothed Particle
Hydrodynamics (SPH) in modeling fluid-structure interaction problems (FSI) but this method has
some key fundamental disadvantages in terms of accuracy and stability [45]. Non-physical
pressure oscillation [46], [47], particle clustering (tensile instability) [48], low-order boundary
treatment [49], false diffusion and density error accumulation [50], instability due to selection of
the unsuitable kernel function to build the connection between the particles [51], penetration of
particles into the boundaries walls [52], and low-order space and time discretization schemes for
computing gradient, divergence and Laplacian operators [53], [54], are some major flaws related
to this model which can endanger the solution stability and even lead to premature termination of
the calculations. Over the last few years, substantial attempts were made to modify some of the
shortcomings associated with the standard SPH model. For elimination of non-physical pressure
fluctuations, Sun et al. [55], [56] proposed a new scheme called Tensile Instability Control (TIC)
that was based on the altering the momentum equation to a non-conservative form. They
suggested that this treatment should be only applied in some certain areas with unstable flow
regime. Antuono et al. [57] invented an effective remedy to suppress the density error
accumulation associated with the Weakly Compressible version of the SPH. They proposed a
novel system of equations by inserting the additional diffusive term into the mass equation. Their
results showed that, this extra term can significantly decrease the pressure oscillations in both
time and spatial domain and named it as a Delta-SPH model (6—SPH). Particle Shifting
Technique (PST) was first introduced by Xu [58] to overcome the instability caused by particle
clustering. This technique was further extended and implemented by Lind et al. [59] and Khayyer
et al. [60] for modeling of water wave propagation. They concluded that PST improves the
homogeneity of particles dispersion and prevent the onset of tensile instability and particle
bunching. Another possible source of the tensile instability can be traced back to the classical
formulation of the SPH model. Originally, the governing equations of the SPH were derived by
the fact that, particles are uniformly distributed within the computational domain. Thus, it is
obvious that any heterogeneity among the particles can jeopardise the consistency of the
simulation through inaccurate estimation of the governing operators. In a pioneering work, Oger
et al. [54] suggested the use of renormalization technique to enhance the consistency of the
gradient operator. They found that, reproducing the derivatives of kernel function using the

corrective matrix can considerably increase the accuracy of particle approximations and
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guarantee convergence properties of the method. In a similar work, Schwaiger [53] adopted
Oger’s technique [54] and proposed a new high-order Laplacian operator by eliminating the
gradient terms from the Taylor-series expansion. Penetration of particles into the rigid walls is
another major challenge faced with the SPH which causes numerical oscillations and termination
of all computations. To prevent this phenomenon and reduce the boundary errors, Marrone et al.
[49] suggested the use of Mirror Particles technique and concluded that this technique can
provide significant improvement on the boundary condition and meanwhile prevent the
unphysical particle penetration. Hongbin et al. [61] showed that kernel or weighting function as a
heart of the SPH method plays a vital role on the stability of the numerical simulation. They
performed a comparative study on ten different types of the kernel function and pointed out that
Gaussian and Q-spline can potentially generate more precise results for a benchmark one-

dimensional shock tube problem over the cubic-spline kernel function.

In light of the above discussion, the main objective of the present study is to introduce a novel
Kernel-Derivative Free (KDF) Weakly Compressible Smoothed Particle Hydrodynamics
(WCSPH) model for simulation of free-surface flows and convection heat transfer. Unlike the
conventional WCSPH, in the proposed method the approximation of special derivatives has been
accomplished based on the direct application of the kernel function (not its derivatives). A new
kernel function is first constructed and then applied for simulation of propagation of shock wave
in 1D tube. Moreover, a new high-order Laplace operator in the context of the MPS model
(Moving Particle Semi-implicit method proposed by Koshizuka [62], [63]) is also formulated and
then applied for discretization of the diffusion terms. Accuracy and performance of the proposed
method (KDF-WCSPH) are verified against the existing results for free-surface flows and
convection heat transfer problems such as: dam break, stretching of circular water drop, rotating
square patch of fluid and natural convection heat transfer in square cavity heated from below.
Finally, the verified KDF-WCSPH model is applied to study entropy generation due to natural
convection heat transfer in three different geometries such as: Differentially Heated Cavity, L-
shaped enclosure and horizontal annuli. To the best of the authors’ knowledge and from the
above literature survey, numerical simulation of entropy generation due to natural convection

heat transfer using mesh-free particle method has never been reported in the literature so far.
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5.1 Problem statement and governing equations

The coordinate system and geometrical configuration of physical models under consideration are
presented in Fig. 5-1. Four different benchmark cases (Al to A4) are used for verification of the
proposed models whereas cases B1 to B3 are employed to demonstrate the capability of the
enhanced KDF-WCSPH model in dealing with the natural convection heat transfer with special
emphasis on the exergy aspects of the systems. The fluid flow in all cases (Pr=0.71or 6.2) is
assumed to be Newtonian, unsteady, laminar and two-dimensional with constant properties
except for the density which varies linearly according to Boussinesq approximation in natural
convection problems. To induce the buoyancy force in cases A4, B1, B2 and B3, the temperature

difference is uniformly imposed on the hot (T, =304K ) and cold (T, =296 K ) walls while the

remaining parts of the cavity walls are thermally adiabatic. The numerical simulations are

performed using, an in-house CFD code written in a FORTRAN program.

Under the assumption of constant thermo-physical properties of working fluid, the Lagrangian
form of the continuity, momentum, energy and displacement equations for unsteady laminar flow

can be written as follows [39]:

Dp . v.u=0 (5-1)
pDt

%z—EVP+vV2u+i, (5-2)
Dt p p

DT 1

—=——V-(kVT), (5-3)
Dt oG,

Dr

—=u, -4
Dt (5-4)

where u is the velocity vector, (with u and v components in 2D space), r is the position vector
(with x and y components in 2D space). The terms p, W, T, k and C, are respectively density,

dynamic viscosity, temperature, heat conductivity and specific heat. F; represents the body forces
per unit volume which is set as F = pg (gravitational force) in the multi-phase flow or

F, =—-pg B (T —T.) (buoyancy force) in natural convection heat transfer problems (with T, being
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the reference fluid temperature). After obtaining velocity and temperature fields, the rate of local

entropy generation for Newtonian flow can be computed as follow [14]:

étot :éT +é|= (5'5)
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The first term in Eqg. (5-6) represents the dimensional entropy generation caused by thermal
dissipation while the second term is fluid friction irreversibility. By using the following

dimensionless parameters, Eq. (5-6) can be converted to the non-dimensional form as:

vH 2 T-T
X:i, Y:l, U:ﬂ, V:—1 P:pH ’ t*:t_a21 0= c_
H H o a paz H Th_T
(5-7)
3
Ra:gﬂa-h_Tc)H , Pr:il
av a
2 2 2 2 2
Stot =S7+SF = %j +(%J +¢|2 @j +2(ﬁj +(@+ﬁj
oX oY oX oY oY oX
(5-8)
uT,a? T, +T,
=5, T =
CCE S A

In Eq. (5-8), ¢is known as irreversibility distribution ratio which represents the ratio of the
viscous dissipation to thermal entropy generation. The value of @in the current work, is constant
and taken as 10 similar to work of Ilis et al. [64]. The total volumetric entropy generation can be

obtained via integrating the local entropy generation as follows:

St==[S,dV, Sr=2[S.dV,  Sw=5+5 (59)
Vv Vv

Contribution of the heat transfer irreversibility to the total generated entropy can be determined

by computing Bejan number as:

ST

P 1 — _1
S, +5, Be=\7jBedv (5-10)

Be =
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Since Bejan number ranges from0<Be <1, Be<0.5 indicates the relative dominance of the
fluid friction irreversibility whereas Be > 0.5 implies that the irreversibility due to heat transfer is

dominant. It is obvious that in case of Be =0.5, thermal irreversibility and viscous dissipation are
comparable.

Case Al (Dam break) Case A4 (Natural convection)
Case Bl
e L u!
- :
W— T T
" g H |7, I,
H
D < 7,
B e
A Ih L
/ e |
X - .
p——L—
Case B2
Case A2 (Rotation of a square patch of fluid)
fe L ! T
H
Case A3 (stretching of a circular drop) Case B3
.k
f——
| |
; J /4

Cold surface

Figure 5-1 Schematical configuration of the considered problems with coordinate system and
boundary conditions.
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5.2 KDF-WCSPH formulation and solution methodology

Here, a Kernel Derivative-Free (KDF) form of the Weakly Compressible Smoothed Particle
Hydrodynamics (WSPH) method with numerical diffusion term is developed and employed to
solve the governing equations (5-1) to (5-5). Similar to the conventional SPH method [48], [57],
[65], the entire domain including both fluid and boundary regions are spatially discretized using a
set of the mobile particles. The proposed model is completely free from the derivative of kernel
and uses the kernel function itself to approximate the special derivatives. Appendix (A) presents
the derivation procedure of relevant governing operators (i.e. gradient, divergence, and
Laplacian) for this newly developed model. The list of equations used to approximate the spatial

derivatives of quantities (e.g., p,T and p) and vectors (e.g., u) is summarized in Table 5-1.

Table 5.1 List of the equations used for calculating gradient, divergence, and Laplacian operators.

Operator Equation used

Divergence (for velocity) (U,, U, )

. . Eq. (5-A2) is applied in the present work whereas Eq. (5-
Gradient (for temperature) (6,,6,) A3) with 7 =1can also be used.
Gradient (for density) (o,, o)

o Modified form of the Eq. (5-A3) is applied in the present
Gradient (for pressure) ( p,, P, ) work where y =1and y =-—1are used for internal and
surface particles, respectively. (see Eq. (5-15))

Laplacian
(for additional 5-term, (V2 ) and Eq. (5-All) is applied in the present work whereas Eq.

e 2 w2 (5-A12) can also be used.
diffusion terms (V°u,V<0 ))

Buoyancy force in natural convection Eq. (5-A6) is applied in the present work whereas Eq. (5-
(¢) A2) can also be used.

Pressure on the solid walls ( p,)

Temperature on the insulated walls (
6,)

Eq. (5-A2) is applied in the present work whereas Eq. (5-
AB) can also be used.
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5.2.1 Discretization of governing equation

To approximate solutions, the combination of two-step projection method given by Chorin [66]
and third-order TVD Runge-kutta scheme is used (see also Appendix B). The first step involves
calculation of the intermediate velocity at position x" and y" without the pressure term from the

momentum balance equation as:

* n

u-u
At

where u and Fg are velocity components and body force vector, respectively. By considering the

=oVau" +F, (5-11)

weakly compressible condition, density at time level n* (first stage of TVD RK3) is calculated
through the continuity equation as:

(n)
D%t =—p"V.U"+ AALCV p (5-12)

Dp(n)
Dt

PP = p™ L At (5-13)

where variables c,and p, are artificial sound speed and reference density of particle i. The first

term on the right-hand-side of Eq. (5-12) is the divergence of intermediate velocity (u”) while
the second term is the Laplacian of density (Vp ), known as a Delta term (&) [57]. This term is

related to the density diffusion and is added to compensate the false diffusion errors (see also
Appendix C). Here A=0 or 1 is an on/off switch, to investigate the impact of this term. Note that
unlike the 3-WCSPH method [57], here the newly diffusion term is totally free from the tuning

parameter J. Once the temporary density ( ™) is computed during the first stage of Runge-Kkutta,

pressure and its gradient can be calculated. More precisely, allowing a slight compressibility, the

pressure can be estimated explicitly through an equation of state (EOS) given by:

p® =c3 (¥ - ) (5-14)

The pressure gradient can then be calculated as:
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- 1-1

K (@) @)
a (1) N (p lp| ) N X| i N X| yl WI
P ZXU ;" W”. 1 Z 8 i, Z 20 Gy
Vol - ox | L =1 i pj L= i1 j=1 rij 5.15
P =1 00 |75 ® ® - (5-19)
p z (p )(p| )W o i Xu uWu dV i yl] ij dV
8y ':l |J ! p] ] j=l j=1 rI]2 i

To remove the spurious high-frequency noise near the free surface area, Eq. (5-15) is modified

and generalized by inserting control parameter ( y ) according to Tensile Instability Control (TIC)

[55], [56] where conservative form of the pressure gradient ( y =1) is used for interior particles (

@ - : ; : : - ™, 4O
. * ) while non-conservative one (x =—1) is applied on the interface particles ( p;” + p;™ ).

Py’ —p
The corrected pressure gradient (Vp®) is subsequently used to calculate accelerations of the
fluid particles ( Du/Dt) through Eqgs. (5-2) and (5-3). After solving equations (5-2) to (5-4), the
velocity (u®), position (r®) and temperature (6“) of the particles can be updated using the

first step of the Runge-Kutta scheme as follows:

(m)
u® =y 4 At 2L
Dt
r® — ™ 4 Aty® (5-16)
Q)
o® =g At 29

By replacingu® ,

r®, 6@ with the corresponding variablesu",

rn

0" and repeating the same

procedure described above, the second step of the Runge-Kutta method can be accomplished as:



N VU +F,
@)
% = —pOV.U + AALCVp
p® :Ep(n) +1,0(1) +1At Dp%

4" 4" 47 o
p? =c5 (0 - py)

u@ =3ym Lyo 1 Du®
4 4 4 Dt
@ =3 Lo Ly
4
g2 g0 Ly, 1, 00"
4 4 4 Dt
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(5-17)

This procedure is continued for the last stage where particles are shifted to the new position r™

with updated velocity u™™ and temperature " as:

u —u?
At

Dp®

L=

1 2 2 Dp

(n+1) _ (n) (2)

=ZpM 42 50 4 S At
37 T3P T3 oy

=ce(p™ - )
2 Du®

ue Z Ly +gu(2) + At
3 3 3 Dt

1 2 2
r™ = 3 r™+=r®+ JAt u™y

=uVau®? +F,
PPV -U + AALCIV?p

yo,

(n+1)

p

(2

(5-18)

It should be noted that, in the above equations, Laplacian operator provided by Eq. (5-Al1) have

been used to calculate Delta (&), diffusion (V?u) and conduction (V?8) terms while Eq. (5-A3)

is used to estimate divergence of the velocity field (V-u”). The temperature in the body force

term (F,=-g S (T -T.)) for convection heat transfer is computed by Smoothing operator

according to Eq. (5-A2).
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At the end of the above process, by integrating the local Nusselt number along the hot and cold
surfaces, the average Nusselt number can be determined as:

[ NIy ] [N N W, Ny W T
j ij i i yi' ij
;—ﬁf dv > Wi v Yo RS
8 | ij J ij
! N x O IW, N X, W N XAW. N Xy W
O, =LY Ty | L= Y gy Y ETgy ARGy | (5a9)
) j= T R R R
" Ny 9MOW Ny WL N Xy WL N YA,
Z yll J - 1] dV Z yu > ij dV Z ij u ij dV Z yu . ij dV
| i=1 T | | i=L 7 =1 IJ i B i
Over the heated walls of the enclosure:
No=2"%%4v. Nu =—j —dX
L Jo oX
On the walls of the hot obstacle: (5-20)
Lz% Y J‘Lz 80 dY+J‘H2% X J‘Hz 89
L oX Left H Bottom

A=2(L L H, -
where A is the non-dimensional effective surface area. With the knowledge of the temperature
g, =00/, 6

' =06/oy) and velocity gradients (u ), entropy generation due to

v My i,x? |y’ |x’ |y

both factors (S;,S;) can be determined through Eq. (5-8) with the help of Eq. (5-A3).

5.2.2 Implementing boundary condition

By considering no-slip condition on the structure walls and zero heat flux on the insulated

surfaces, dimensionless boundary conditions can be expressed as:

o0 )
a_” =0 On the insulated surfaces
n
0=1 6=0 On the hot and cold walls
U=V =0, On the solid-fluid interfaces (5-21)
U grost = 2U sglig—ui intertace Y fiuia On the ghost particles (mirror
Vinost = 2Vsotia—fiuid interface™ Y fiuia velocity)
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To enforce the non-slip and Neumann-boundary condition on the rigid wall, dynamic boundary
algorithm (mirror particle) suggested by Marrone et al. [49] is employed to set up the ghost
particles outside the fluid domain. In this technique mirrored velocity of the fluid particles in

active zone is interpolated on the other side of the fluid-solid interface where corresponding ghost
particle is located. The pressure ( p;) and temperature (6, on the insulated surfaces) of the ghost
particle are calculated using Eq. (5-22). In this process at first, field function (p, or 6,) is
estimated on the solid-fluid interface and then allocated to the corresponding ghost particles in

the same rows or columns (see Fig. 5-2 and Eq. (5-A2) in appendix A).

_ _ - 11

N pW. N W N X W Ny W
ij_zudv Zr;dv 2oV v
=} rij j=1 b =1 = i'
Pi N N N N
' X XI 1 XI 1 I I I
o =135 gy | L=y AV Qv D ey (5-22)
p- j=1 r” =1 =1 T j=1
Ly N N N N
Yii PW; YW X YW y,J ]
dv dv dv dv
_; I’U | JZ;‘ IJ JZ;‘ rij2 JZ;‘ riiz |

Note that the above symmetric linear system can be solved using Gaussian elimination with
partial pivoting.
5.2.3 Particle Shifting Technique and free surface detection

To address the tensile instability and unphysical discontinuity within the fluid domain, Particle

Shifting technique (PST) based on the Fick’s law proposed by Lind et al. [59] is adopted here as:

oriit =—DxVC, (5-23)
N m.
VC =Y [1+R; [vw, —L (5-24)
j=1 Pj
Ry =02 iy (5-25)
(d )
R =r 4 o (5-26)

where D denotes a diffusion controller parameter (D < 0.5h?) and the term VC, is the gradient of

particle concentration which provide normal vector on the target particle i. Rj; is the artificial
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repulsive force described by Monaghan [67] and Sr{"+”is the particle shifting distance which

triggers particles migrate from region of high concentration to the lower one. ri("*l)*is the

particle’s new position after applying PST. However, to avoid the problem of separating particle

from the interface, optimized particle shifting (OPS) model suggested by Khayyer [60] is

employed. In this procedure, for interfacial particles, normal direction of 5rs(,:f+tl) is nullified

whereas tangential component (§rs(,?iﬁ) is kept unaltered as:

St =—Dx (1 —ni ®n;)-VC, (5-27)
1)* 1 1

R =" g (5-28)

where n; is the corrected form of the Sr{*" near the interface (for more details see work of

Khayyer et al. [60]). Based on the above discussion, one may find that prior to implementing
PST, the particle labeling scheme should be applied to determine the position of the interface. In
the current work, the combination of Particle Number Density (PND) [68] and divergence of the

displacement [59] is used as a hybrid kernel-based technique to capture the free-surface area as:

N m.
K= ZW“ _J; (5-29)
=1 Pj
N m. N m.
Ko =2 VW —+ 2y, VW, — (5-30)
j=1 P A i
K =(Ki+K2)/3, (5-31)
0 K <0.75 Free-surface particle
1 K-0.75 _ .
f(K)=9=[1-cos(x —————— 0.75<K <0.93 Vicinity particles 5-32
(K) 2[ (7 0.93—0.75)] y p (5-32)
1 K>0.93 Internal particles

Ideally, for a given particle, K1 (PND) and K. (V-r) would be equal to unity and 2, respectively.

As a result, any deviation of Kiand K. from their threshold values signifies that kernel function

is truncated which subsequently gives an indication of the free-surface area. Finally, to identify

the vicinity particles (0.75<K <0.93) and eliminate the discontinuity between interface
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(K <£0.75) and interior region (K >0.93) in this process, cosine function (Eq. (5-32)) suggested
by Skillen et al. [69] is used for smoothing purpose.
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Figure 5-2 Example of the Fixed Ghost Particles, free-surface detection techniques, calculation of

pressure and temperature on the wall particles.

5.3 New kernel function

Motivated by work of Hongbin et al. [61], in order to enhance the stability and accuracy of the
particle method, a new high-order smoothing kernel is constructed by combing cosine and
polynomial functions as:
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Wo— o {cosz'zs (7R/6)(3-R)*(1+R) 0<R<3
ij — D
R>3 (5-33)
0.019505894 0.010373313 0.005612838
e

where h and R:‘rij‘ /h denote smoothing length and relative distance between two interacting

particle i and j, respectively. Since, analytical integration doesn’t exist for Eq. (5-33), Simpson's

rule is implemented to calculate constant coefficiente, and satisfy unity condition
N
(ZV\/ijdV=1). The accuracy and consistency of newly proposed kernel function are
j=1

demonstrated through numerical simulation of 1D Sod shock tube problem where two most
frequently used kernel function namely: cubic Eq. (5-34) and quintic Eq. (5-35) spline functions
are considered for comparison purpose [70].

2/3-R*+R%/2 0<R<1

W, =a3 (2-R)*/2 1<R<?2
0 R>2 (5-34)
1 15 3
0 Ty 00 " 7 0 g

(3-R)°-6(2-R)*+15(1-R)°> 0<R<1

_ |(3-R)y-6(2-R)® 1<R<?2
W=« (3-R)° 2<R<3
< (5-35)
0 R>3
1 7 1

%0 = 120n" 20 T 478207 U T 120707
The initial conditions and material parameters of Sod shock tube (case Al) are similar to work of

Gui-rong [70] where 320 particles with high pressure and density are uniformly located in the
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Figure 5-3 Comparison of the density, pressure, velocity and energy profiles between proposed

kernel function and those obtained by cubic and quintic spline functions in simulation of the 1D
Sod shock tube at t=0.2s.

left half of the tube [-0.6,0]whereas 80 particles with low-density are evenly dispersed at low

pressure region[0,0.6] (see also appendix D).
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x<0, p=1 u=0, e=25, p=1 Ax=0.001875, m=0.001875

x>0, p=025 u=0, e=1795 p=0.1795 Ax=0.0075  m=0.001875 (5-36)

Simulation runs for t =0.2s with time step of At =0.005and numerical outcomes in terms of the
velocity, pressure, density and energy profiles are plotted in Fig. 5-3. It can be seen that, the
presented smoothing kernel is very close to the quintic spline function with the relatively same
center peak value of 0.28 and lessens monotonically as the relative distance (R) augments. Unlike
the cubic spline kernel which has a piecewise linear derivative with narrower compact support (
R =2), the present kernel is sufficiently smooth and has a finite compact support of R =3even
for third derivative, resulting in more stable numerical solutions. Moreover, unlike the cubic and
quintic kernels which are comprised of two and three pieces, the proposed kernel has only one
piece which makes it more cost-effective from low computational cost and ease of use
viewpoints. The obtained results in Fig. 5-3 show that, the new kernel can successfully identify
and resolve the locations of the shock wave (x=0.3), contact discontinuity (x=0.135) and
internal energy profiles of the rarefaction wave (—0.25<x<0) with minimal oscillation. As can
be observed from Fig. 5-3 that, the proposed weight function demonstrates reasonably good
agreement with analytical solutions and provides better predictions compared to the cubic and

quintic kernel functions.

5.4 Validation

In this section, accuracy and performance of the new kernel function and Laplacian operator are
demonstrated through a set of numerical and experimental benchmark cases including, dam
break, stretching of circular water drop, rotating square patch of fluid and natural convection heat
transfer in a square cavity. In all cases, smoothing length in kernel function (Eqg. (5-33)) is taken

as h=1.0Ax where Ax=Ay is initial particle size. Time step (At) is chosen according to the

CFL =0.1 (Courant number) condition based on the maximum velocity within the computational

domain as:

= CFL%, Co =10[U | (5-37)

0

At

convection
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2
At —crLA

viscous
1%

At = min(At At

convection ! viscous )

5.4.1 Dam break

To assess the efficiency and reliability of the proposed KDF-WCSPH model in dealing with the
large deformation and fragmentation of the multiphase flows in engineering applications,
numerical modeling of the classical dam break on the dry bed has been chosen as a first

benchmark case (case Al). Simulation is conducted in a two-dimensional enclosure (H =1.0m

and L =1.61m) where the rectangular water column (D =0.3mand W =0.6m) with zero initial

velocity (u, =V, =0ms™) and pressure (p,=0) is stored on the left side of the reservoir as

sketched in Fig. 5-1. Snapshots of pressure field together with the time evolutions of the dynamic
pressure on the downstream wall and liquid levels at three different sampling points are plotted in
Figs. 5-4 and 5-5. Generally, transient flow induced by failure of a dam can be divided into three
stages. The first step involves collapsing and spreading of the water volume under the influence
of the gravity force. It is evident that as the fluid propagates along the dry horizontal bed, the
initial water level at the dam site (L, =0.3m) declines monotonically until the water front toe
reaches the right side of the reservoir with high celerity. The second step takes into account the
impact of the front flow against the end wall where a vertical run-up jet and subsequent splash-up
process are generated in that area. This stage is also accompanied by the first pressure shock as
recorded by sensors 1 (h, =0.003m) and 2 (h, =0.03m) at t" =2.43 and t" = 2.68, respectively.
As the created surface wave moves upward, due to the restoring action of the gravity force, its
velocity and kinetic energy decrease and subsequently the stagnation point is formed in the
bottom right portion of the enclosure. This phenomenon causes continuous suppression of the

dynamic pressure near the sampling points 1 and 2 (h =0.003m,h, =0.03m, 2.7 <t" <6) while
the ascending trend is observed at sensor 3 (h, =0.08m ). Under this circumstance, the strength of

the impact force gradually drops and consequently the crest of the jet becomes thicker and starts

to come down into the underlying fluid, resulting in the development of an avalanche-like motion
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Figure 5-4 A qualitative comparison of present results with the existing numerical solution and
experimental data of Zhang et al. [72] and Lobovsky [71] for the case of dam break at different

non-dimensional times (t(g/h)*® =1.58, 2.57, 3.27 and 6.66).



104

(a) Water level heights

1.0 =g 1.0 1.0
\\ [ == Present work [ = Present work
08k : 0.8 [ -+ Lobovsky etal. [71] 0.8 [ - Lobovsky etal. [71]
Tr S Zhang et al. [72] b Zhang et al. [72] (:\,*J
0.6 0.6F  L=L114 0.6F  h=1362m
h/H h/H | : " hWH Ot
GAF 4=03m 0.4 0.4 F
[ = Present work Vi :
0.2 | -+ Lobovsky etal. [71] 02 F /""’ T 02 F //’J
Zhang et al. [72] i [" r /r~/'
0.0 sl | NS FEEEE PR FEEEE S 0'0" 1 AA':I‘IIII‘IIIA‘IIAI‘IllAlA Al O.O> A 13, 1 1 1 |
01 2 3 4 5 6 7 o 1 2 3 4 5 6 7 01 2 3 4 5 6 7
1(g/d)" 1(g/H)™ 1(g/H)™*
(b) Pressure on the right wall
5 e ¥ Present work 2.0 1 = |Present work T Present work
« I Lobovsky et al. [71] [ s+ Lobovsky etal. [71] =+ Lobovsky etal. [71] , ;
4r Zhang et al. [72] 1.6 ¢ ,-?«hang etal. [72] 08 ¢ Zhang et al. [72] : |
S 2k h, =0.003m S h, =0.03m ) I A =008m ..
% 3 1 & 1.2 F 1 : éﬁ 06F ”73‘
L = 3 =
a2 Ff 08 F £ S04 F .
u ‘..'.\ (.3".‘ - .
1 M‘u—.\_‘ o 04 02 ’»l
0 ;l-‘_l-l'[\u—l 1 1 1 1 0.0 1 1 1 1 1 0.0 1 Lo i 1 1 1
0o 1 2 3 4 5 6 7 01 2 3 4 5 6 7 01 2 3 4 5 6 7
[(g/d)o; I(g/d)“'s ’(g/d)o.s

Figure 5-5 A quantitative comparison of present model with the numerical [72] and experimental
results of Lobovsky et al. [71] in terms of the (a) water level heights and pressure variations on
the right wall. (a) History of Water-level recorded at L;=0.3m, L,=1.1 and L3=1.362m
L, =1.362m . (b) History of pressure signals recorded at h;=0.003m, h,=0.03m and h3=0.08m,

Np=22050.

(plunging breaker) and second sudden bulge in pressure time history. It can be seen from Fig. 5-5
that, duration and values of second peak impact pressure at the marked points h; (
t"=6.28, p, =2640.7N/m?), h, (t"'=6.3, p, =2582.1N/m?) and ha (
t"=6.28, p, =2464.7N/m?) are in quantitative agreement with the experimental measured data

and numerical results of Lobovsky et al. [71] and Zhang et al. [72], respectively. In the last stage,
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the backward plunging jet travels toward the left part of the reservoir as a surge wave with the
second splash-up scenario where some surface particles are separated from the bulk fluid, and
freely aviated along the wet bed with moderate velocity. It is evident that both the pressure
contour and configuration of the coalescence and rolling down of the interface (water tongue) are
successfully predicted which signify the capability of the present method in handling complex
solid-fluid interactions. To better understand the roles of the above mentioned factors, a sensitive
analysis has been accomplished and obtained results are depicted in Fig. 5-6. It can be seen that
by turning particle shifting off (PST =off), particle clustering takes place within the fluid
domain (especially on the free-surface area) which ultimately leads to unexpected termination of
the simulation. On the other hand, absence of thed—term (A =0) leads to spurious staggered
pressure noise which dramatically affects the accuracy of the method. These observations are
consistent with the findings of Antuono et al. [57] and Khayyer et al. [60] who investigated the
effects of the PST and additional diffusive term on the stability of the Lagrangian particle
method.

5.4.2 Rotating square patch of fluid

To check the capability of the proposed model and performance of the PST in handling negative
pressure field, the evolution of 2D square patch of fluid subjected to the clockwise vortex is
chosen here as a second benchmark case (case A2). The initial velocity field is given as the same
manner introduced by Sun et al. [55] and Khayyer et al. [60]:

U (X, y)=+yw —L/2<y<L/2
Vo(X,¥)=—Xw —L/2<x<L/2
Po(X,y)=0
9(x,y,)=0

where » =1s™"and L =1are angular velocity and length of the fluid patch, respectively. Generally,

(5-38)

hydrodynamic behavior of the square patch under the influence of the negative pressure field is
characterized by the isotropic shrinkage of the medium sides where due to the centrifugal force,
the middle parts of the patch are dragged towards the center of the vortex. Meanwhile, its corners
gradually start to grow in the opposite direction to satisfy the continuity condition as shown in
Fig. 5-7 (a). As the time progresses, four distinct arms of the patch becomes more visible which
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Figure 5-7 The effects of the particle shifting technique (PST) and additional diffusive term (1)
on the evolution of rotating square patch of fluid at for different time instants (tw=0.5, 1, 1.5

and 2 ).(tw increases from top to bottom).
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Figure 5-8 Validation of the present model against the numerical results of Sun et al. [55] and

Khayyer et al. [60] at two different time instants (two=1 and 2). N, =12321. (a) History of non-

dimensional pressure variation at the center of the fluid patch as a function of the dimensionless

time (tw). Zoomed view of areas 1 (b) and 2 (c) depicted in the first column.

indicates that tensile instability is coming into the picture. This event is reflected in Fig. 5-7(a)

where adoption of the PST as a means of particle regularization, provides much uniform particle

distribution while in the absence of it, due to large particles deformation, the solution gets

unstable, resulting in the occurrence of the numerical cavitation and degradation of the free
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surface area (see Fig. 5-7(c)). By comparing Figs. 5-7(b) and 5-7(c), one can deduce that, the
presence of the o —term (A =1) helps to remove spurious high-frequency oscillations (which is
typical of the traditional SPH) from the density field and provide much smoother pressure
distribution, accordingly. The time history of pressure at the center of the patch and snapshots of
computed free surface area are plotted in Fig. 5-8. The comparisons reveal an excellent

agreement with analytical solution and previous numerical results [55], [60].

5.4.3 Stretching of circular water drop

Deformation of the weightless circular water drop («=107°Pas, p=1000 kgn> R=1m,

g =0ms™) into an elliptical shape is considered as the third benchmark test (case A3). In

general, due to irrotational velocity field (u =—100xi+100yj ), left and right parts of the water

drop begins to shorten in the longitudinal direction whereas bottom and top portions elongate
transversally. This process results in formation of the positive pressure field as revealed in Fig. 5-
9. Similarly to what observed in previous cases, prototypes of the flow without the PST is
unstable and characterized by undesirable effects of the tensile instability and unphysical
discontinuity. On the other hand, the occurrence of the density error accumulation is attributed to
the elimination of the &6 —term (A =0) which eventually destroys pressure field and drives the
numerical calculation to the wrong evolution. This event is confirmed by zoomed view of area 2
in Fig. 5-10 where due to the high level of the particles interaction in x-direction, particle
stratification and unphysical void regions are horizontally established within the fluid domain.
Furthermore, it is discernible from Figs. 5-9(c) and 5-9(d) that the flow patterns generated by
both conventional WCSPH [47] and present model without thed —term (A =0) suffer from
unphysical pressure oscillations (staggered noise) and particle inconsistency. This event implies
that traditional WCSPH formulations cannot sufficiently guarantee the conservation of total
mass. Time history of the horizontal semi-axis movement and pressure variations at the center of
the drop are illustrated in Fig. 5-10. Despite the small discrepancy that may come from assigning

zero initial value for pressure ( p, =0), numerical outcomes of the present work are in good

overall agreement with analytical solution [47].
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Figure 5-9 A quantitative comparison of calculated results with the numerical data of Xu et al.
[47] in terms of particles distribution and pressure contours for the case of stretching circular
water drop (case A3). (a-c) the impacts of Particle Shifting Technique (PST=0n & PST=0ff)
and additional diffusive term (1=0& 4 =1) on the particles behavior. N, =15388, R =1m.
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Figure 5-10 Zoomed view of areas 1 (a) and 2 (b) under the influences of Particle Shifting
Technique (PST) (see also first and second columns in Fig. 9). Comparison of (c) semi-minor
axis variations and time history of non-dimensional pressure at the center of drop (d) obtained

from the present model and those reported by Xu et al. [47].
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5.4.1 Natural convection heat transfer

In order to verify the model ability to handle buoyancy-driven flow, analysis of natural
convection heat transfer in the two-dimensional square cavity with localized heating from below
is considered as a last benchmark test. The schematic diagram of the enclosure along with its
boundary conditions is presented in Fig. 5-1 (case A4). As shown, the bottom wall is partially
heated with uniform high temperature (T,) whereas vertical sidewalls of the enclosure are
maintained at a constant but low temperature (T.). The remaining parts of the horizontal walls are

insulated and impermeable to mass transfer. Fig. 5-11 illustrates the streamlines, isotherms, and
contours of the velocity components (u,v) at Ra=10°,Pr =0.71. Generally, due to the thermally-

induced buoyancy effect, the heated fluid adjacent to the bottom wall ascends along the centerline
of the enclosure until it hits the isolated top wall. Then, it changes its direction and moves
horizontally towards the vertical cavity walls where, due to interaction with surrounding cold
particles, it becomes gradually denser and heavier. The relatively cold fluid which has lost a
portion of its energy descends downwards along the lateral sidewalls and ultimately enters the
thermal boundary layer of the hot surface with minimal energy. This cycle results in a formation
of the mushroom-like temperature pattern and two circulating cells within the enclosure. As the
simulation goes on, isotherms become more distorted at the core and distinct thermal boundary
layer is developed near the active walls, indicating convection dominant mode of the heat transfer

atRa=10. Again, it is evident that the thermal characteristics of the air-flow in terms of the
average Nusselt number and temperature distribution are well in accordance with the recent
experimental measurements and numerical data of Calcagni et al. [73] and Sheikholeslami et al.
[74].
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5.5 Results and discussion

Previous section clearly demonstrated that KDF-WCSPH model together with proposed new
operators are robust and reliable for modeling a wide range of particulate flows with thermal
convection and complex interface scenarios. Thus, in this section entropy generation due to

natural convection heat transfer in three different geometries is examined using KDF-WCSPH.

Figs. 5-12 and 5-13 present the streamlines and isotherms for case B1 (Pr=0.71), case B2 (
Pr=6.2,L,=L,=06H) and case B3 (Pr=0.71,L=0.3H) at different Rayleigh number

(10° <Ra<10°%) and time instants. Generally, in all cases the buoyancy force induced by the
density difference and temperature gradient within the enclosure causes the working fluid to rise
up along the hot surface and migrates toward the cold area to exchange its high level of energy.
After impinging on the cold walls, the lighter fluid becomes more and more squeezed and denser
as its internal energy alleviates. Subsequently, it gets heavier and falls down at the vicinity of the
cold wall and turns back to the hot area to complete the thermal cycle and satisfy the mass
continuity. This process is repeated until the steady-state condition is attained within the

computational domain where no improvement occurs in the macroscopic behavior of the heat

transfer rate (N_u). Based on the above mechanism, it can be seen that due to dominant
conduction mode of the heat transfer at Ra =10°, the flow field in case B1 is characterized by a
weak clockwise circulation which occupies the entire enclosure. As expected, corresponding
isotherms are smooth and undistorted, signifying poor transportation of heat from left to right
cold wall. As Ra increases to 10*, prevalent effect of buoyancy force becomes more discernible
such that isotherms gradually get shifted towards the sidewalls and strength of the flow
circulation enhances. In this circumstance, due to onset of convection, the core of the primary
vortex is found to be slightly elongated in x-direction and distinct thermal boundary layer starts to
establish near the vertical walls. With the further increase in Ra, the main vortex breaks down

diagonally into two small eddies at the core and absolute values of velocity components which

represent the intensity of the flow enhances (see also|U,,|and |V,,,|in table 5-2). It is evident

max
that, the corresponding isotherms get more condensed under twisting effects of flow pattern in

the middle portion and the thickness of the thermal boundary layer reduces.
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Figure 5-12 Transient variations of isotherms (temperature field) as a function of the non-
dimensional time for cases B1 to B3 at different Rayleigh numbers.
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Figure 5-12 Transient variations of isotherms (temperature field) as a function of the non-
dimensional time for cases B1 to B3 at different Rayleigh numbers (cont’d).
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This implies that the convection regime is dominant and viscous effects are no more in the flow.
As Ra enhances to 10°, due to high momentum diffusivity and increasing effects of convection,
velocity contours are highly stretched and isotherms become more concentrated near the
differentially heated walls, resulting in a much larger temperature gradient and thermal mixing
inside the enclosure. It is also evident that, due to strong upward and downward flow movement
in the close vicinity of the heated walls, two egg-shaped cores are dragged toward the lateral
walls and subsequently middle zone becomes broadly stagnated which is concordant with

horizontal thermal stratification in that area. However, a different scenario occurs in the L-shaped
enclosure (case 2B). It can be seen that at Ra=10a single clockwise eddy is formed in the
vertical part of the enclosure and isotherms are smooth curves and uniformly distributed

throughout the enclosure.

Table 5.2 The effects of the Rayleigh number on the heat transfer rate and entropy generation for

cases B1 to B3 (steady-state condition).

Case A
Ra N_U |U max| lvmax| B_e gtot Stot,max §T ST,max §F SF,max
10°  1.120 3.633 3.681 0.970 1.149 2.291 1.115 2.274 0.034 0.242
10* 2249 16179  19.569  0.684 3.243 25.210 2.220  12.584 1.023 16.113

10° 4548 43476 68597 0.194 22.831 590.975 4450  60.563 18.381 557.458
10° 8.957 123011 221395 0.025 335159 15877.138 8.630 320.876 326.529 15754.411

Case B
Ra N_U |U max | [Vmax | B_e §tot Stot,max §T ST ,max §|: SF ,max
10° 1.82 0.757 1.216 0.998 5.898 68.668 5.889 68.490 0.008 0.177

10* 1911 7.324 12.664 0.874 7.048 66.348 6.165  46.668 0.882 19.679
10° 41225 48.045 80.680 0.207  64.890 976.628  13.450 116.445  51.440 921.250
10°  7.302 213.197 347.404 0.022 1085.504 28548.838 24.324 536.187 1061.180 28399.721

Case C
Ra m |U max| lvmax| B_e §tot Stot,max §T ST,max §F SF,max
10°  2.193 0.676 0.990  0.998 4.978 58.721 4969 58.576 0.009 0.147
10*  2.334 6.854 10.016  0.859 6.140 101.420 5277  88.428 0.862 14.873

10° 4.116 32.885 64.247 0228 41.131 907.241 9.383 345404  31.747 679.228
10°  7.245 116523 205.969 0.034 490.809 21709.545 16.737 835.338 474.072 21567.823

One can observe that unlike the case B1 (Pr=0.71,V,, = H?), by increasing the Ra up t010*, the

flow pattern remains invariant and isotherms still tend to follow the geometry profile of the
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enclosure. These observations can be attributed to the small gap between the active walls and
high Prandtl number used in case B2 (Pr=6.2,V,, =H?—L L, =0.64H?) which leads to the
significant reduction of the flow intensity and thereby postponement of the convection initiation
to higher values of Rayleigh number ( Ra >10*). This feature can also be verified by examination

of absolute values of maximum velocities in table 5-2 where |U . |and|V,,,|in case B1 are

approximately twice as those of case B2. With subsequent increase in Rayleigh number
(Ra=10°), the role of convection in heat transfer becomes more accentuated which causes the
unicellular rotating vortex to turn slowly into a multi-cellular eddies. This trend is accompanied
by appearance of the rising thermal plume (Q-shaped plum) in horizontal section and the other
gigantic sinking thermal plume close to the convex corner of the cold rip. Traditionally, this
physical model with regular thermal convective rolls is referred to as Rayleigh-Bénard cells
which in turn can triggers the onset of thermal instability in horizontal part of the enclosure. As
expected, by increasing the Ra up to 10° fluid motion inside the enclosure is accelerated and
therefore Rayleigh-Bénard instability becomes more prominent. It can be seen that in this
condition, the third Bénard cell is established as newly falling cold plum at t'=0.015. As time
progresses, the descending plume which receives the incoming cold fluid, starts to grow and push
the rising plume unremittingly towards the vertical part of the enclosure. During the interaction
and expansion of these thermal plumes, the isotherms are distorted incessantly and thereby some
secondary rolls of less importance are developed and vanished within the enclosure. As the rising
plume moves horizontally along the bottom wall, it becomes wavy and twisted. It eventually

penetrates into the vertical side and merges with the innermost eddy occupying that area.

Flow transitions for case B3 (annulus) is also depicted in Figs. 5-12 and 5-13 where the working
fluid is confined between two-square concentric duct annuli. It can be seen that due to the
symmetric placement of the heat source and boundary conditions of the problem, the flow
undergoes a bifurcation and consequently a pair of counter rotating vortices with circular-shaped
cores is established within the enclosure. Similar to previous cases, at low Rayleigh number
(Ra=10%) isotherms are parallel to each other and symmetrically dispersed with respect to center
of the enclosure which indicates that heat transfer rate is primarily controlled by diffusion and
temperature field is totally decoupled from the flow field. Slight distortion in the trend of

isotherms at Ra=10" is consistent with a mode so-called transition regime (convection initiation)
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where heat is conveyed by simultaneous conduction and convection. This stage is also
accompanied by appearance of very weak ascending plume over the hot obstacle and formation
of the thermal boundary layer near the cold walls. By increasing the Ra to 10°, the height of the
rising plum enhances and isotherms become more confused. In fact, significant twisting of the
isotherms together with the development of the hotspot (hot stagnant fluid) adjacent to the top
wall of the heater clearly exhibit characteristics of the convection-dominated regime. With further
increase in Rayleigh number, convection mechanism is substantially improved so that the eyes of
the two counter-rotating cells move upward and meet each other at the top portion of the annulus
while streamlines in bottom half become more diverge. A close inspection of the horizontal
velocity contour (u) in Fig. 5-13 vividly demonstrates that at Ra=10°, due to increasing effects of
convection and impingement of the ascending plume on the top wall, streamlines are densely
concentrated in upper half of the annulus while a reverse trend occurs in the lower one.
Furthermore, it is interesting to observe that, thermal boundary layer thickness in close proximity
to the cold walls progressively declines from bottom to top portion.The substantial reduction of
thermal boundary layer thickness and elongation of the velocity components together with
streamlines clustering indicate that most of the heat removal rate and much of the fluid motion
take place in the upper region while the cold heavy fluid in the lower region is practically
stagnant. These observations indicate that, heat transfer in bottom of the annulus takes place
primarily as a result of diffusion even at high Rayleigh number. This behaviour is also
compatible with the streamlines diverging and smoothness of the isotherms in the lower half of
the enclosure. Similar findings were also reported by Saravanan et al. [6] and Hooshmand et al.

[8] who investigated natural convection heat transfer in the annulus.

Figs. 5-14 and 5-15 illustrate contours of the local Bejan number (Be) and entropy generation due
to heat transfer irreversibilities (St) at different Ra and time instants for cases B1 to B3. Overall
evaluation of Figs. 5-14 and 5-15 illustrate that, because of weak buoyancy force and constant
thermal gradient at low Rayleigh number (Ra =10%), local St is spaced uniformly throughout the
domain and consequently local Be in all cases approaches unity (Be=1) which indicates that

contribution of viscous dissipation (S; = 0) on total entropy generation (S, = S;) is trivial.
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Figure 5-14 Transient variations of local Bejan number as a function of the non-dimensional time

for cases B1 to B3 at various Rayleigh numbers.
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Figure 5-14 Transient variations of local Bejan number as a function of the non-dimensional time

for cases B1 to B3 at various Rayleigh numbers (cont’d).
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Since at this stage, entropy generation due to viscous dissipation is sufficiently small to be

negligible (S <« S;), contours of total entropy generation would be identical to thermal

dissipation map (see also Fig. 5-13). However, as discussed earlier, by increasing the Ra, the
conduction mechanism gradually shifts to the convection mode, leading to the greater thermal
smearing (higher temperature gradient) and flow penetration depth (higher velocity gradient)
within the enclosures. Hence, according to Eq. (5-8), total entropy generation due to both factors
(St, Sg) augments. Interestingly, table 5-2 shows that although by increasing the Ra both St and
Sk increase but the increment of Sg is remarkably higher than that of the Sy, resulting in the
deterioration of average Bejan number. However, since buoyancy force at Ra=10" has a same
order of magnitude of the hydraulic resistance (quasi-conduction regime), Be still remains higher

than 0.5 (0.68 < Be <1) which indicates that the large amount of the exergy loss in all cases is
still associated with the thermal dissipation. This assertion is well reflected in the local Bejan
number values in Fig. 5-14 where entropy generation due to fluid friction is confined only to the
small zone in close vicinity of the heated walls. This trend persists and even intensifies as the
convective transport strengthens. By increasing the Ra, fluid motion in all cases is considerably
invigorated and consequently the viscous dissipation (Sg) becomes the major contributor to the
total entropy generation rise. As stated before, since irreversibility due to fluid friction augments
much faster than that of the heat transfer, local and average Bejan number decline rapidly and
approach zero especially near the lateral walls. This finding indicates that at high Ra, only the
small amount of the available work is utilized to compensate the irreversibilities due to the heat

transfer (see also table 5-2 at Ra=10° where St < S¢ ). It can be seen that, in case B1 at Ra=10°,
due to comparatively lesser velocity gradients and weak convective flow in the middle portion,
fluid becomes nearly stagnant and thermal stratification is generated in that area. This in turn
results in the higher values of local Bejan number which subsequently manifests the relative
dominance of St. A similar configuration also occurs in the vertical and horizontal parts of the L-
shaped enclosure (case B2) especially in proximity of the upwelling and down-welling thermal
plumes. It is evident from Fig. 5-14 that, the values of the local Bejan number near the thermal
plumes are greater than 0.5 (Be>0.5,S; >S;), which indicates that the formation of thermal
plume has a negative impact on the exergy efficiency (destruction of the available work) and can
be considered as a major source of the energy consumption and thermal dissipation. Interestingly,

this physical model is more pronounced at Ra=10> where moderate thermal and flow
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perturbations occur within the enclosure. This scenario is further verified in case B3 where due to
existence of the rising plume (hotspot) and less velocity gradient in the bottom of the annulus,

insignificant Sg is observed in those areas (S; >S;) which in turn is responsible for the

enhancement of local Bejan number ( Be > 0.5). The corresponding local entropy generation due
to the heat transfer irreversibility in Fig. 5-15 also reveals that at high Rayleigh number, the
maximum values of Sy take place in close vicinity of the thermal surfaces where isotherms are
densely packed and thin thermal boundary layer is developed. Moreover, by making detailed
comparisons between Figs. 5-12 and 5-15, one can observe that entropy generation due to heat
transfer irreversibility intrinsically has a tendency to follow morphological characteristics of the
temperature field. For instance, it can be seen that compression of isotherms near the heated walls
(in case B1), formation and movement of the ascending thermal plume along the bottom wall (in
case B2), presence of the hotspot and stagnation point in the top and bottom portions of the
annulus (in case B3) are well reflected in the contour of the thermal dissipation in Fig. 5-15. In
fact, from the above discussion, one can conclude that, the results from the second-law of
thermodynamics might be superior to the isotherms and streamlines (first-law of
thermodynamics) in determining the regime of the fluid flow and heat transfer in the thermal
systems involving bifurcation, thermal plumes, hotspot, stagnation point, and thermal
stratification. For getting further insight into the influence of Rayleigh number on the heat

transfer rate and exergy destruction within the enclosures, transient variation of the average
Nusselt number (Nu), Sw, St, Srand (Be) are depicted in Fig. 5-16. It can be seen that by
increasing the Ra, the average Nusselt number, Srand Seincrease while a downward trend
occurs in the values of Be. As stated before, at low Ra due to weak fluid motion and low velocity
gradients, the significant amount of entropy generation in all cases takes place as a result of the
thermal dissipation. However, due to augmented convective motion of the working fluid at high
Ra, St enhances drastically and begins to follow the pattern of S¢ in the majority with minor
impacts of Srt. These results are to be expected at high Ra where fluidity and gradients of

velocity are considerably intensified due to stronger buoyancy-driven flow.
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Figure 5-15Transient variations of local entropy generation due to heat transfer as a function of

the non-dimensional time for cases B1 to B3 at various Rayleigh numbers.
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Figure 5-15 Transient variations of local entropy generation due to heat transfer as a function of

the non-dimensional time for cases B1 to B3 at various Rayleigh numbers (cont’d).
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Fig. 5-16 also reveals that at low Rayleigh number (Ra =10%), due to conduction dominant mode

of the heat transfer, all the above-mentioned pertinent parameters (Nu, Sw, St, Srand Be)
converge to the constant value asymptotically, while at relatively high Rayleigh numbers (
Ra >10*), an oscillatory behavior emerges within the computational domain prior to reaching
the steady-state condition. This phenomenon can be attributed to the significant movement of the
temperature perturbation generated by the buoyancy force at high Ra. For example, in case B2 at
Ra=10° the first fluctuation in the values of Nu and S« at 0<t" <0.02 is associated with the
formation of the ascending thermal plume in the horizontal part of the enclosure whereas the
second fluctuation at0.06 <t” <0.09 takes place due to the displacement of the rising plume
toward the vertical section. Similar observation were reported by Magherbi et al. [75] who
investigated entropy generation due to natural convection heat transfer within the differentially
heated cavity. Finally, it is worth mentioning that, since entropy generation during the natural
convection heat transfer has been well-documented in the literature, the results of the case B1 can
be considered as a further validation in the present work (see Figs. 3 and 4 in work of Ilis et al.

[64]).
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Figure 5-16 Variations of average Nusselt number (N_u), average Bejan number (B_e), total

entropy generation (§tot), entropy generation due to thermal (§T) and viscose (§F)

irreversibilities as a function of the non-dimensional time for cases B1 to B3 at different Rayleigh
numbers. Case B1 (Pr=0.71), case B2 (Pr=6.2,L, =L, =0.6H) and case B3 (Pr=0.71,

L=0.3H).



130

8 0.041
= Case Bl
: Case B2
6F 0.031 | = Case Bl
Yoo Case B2
. == Case B3
™ . - =~
O |54t CosnBa l»3 0.021 F
—
11
]
o 2+ 000 od e f
~— o
0 L L 0.001 o L
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
= *
1 t
9 1.5
= Case Bl = Case Bl
v Case B2 Case B2
7Y == Case B3 12 =+= Case B3
A
\
o wsp o~ 193 09
H = .
11
]
o 3 F\ 0.6 F|/
‘ i
i
1 1 1 03 1 1
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
* *
t t
19 66
= Case Bl - Case Bl
Case B2 54 Case B2
15 F == Case B3 )
== Case B3
0k
mn ~ 3 N
S v g o i\
1 R 0 kT
]
o 7t
\(‘\ 18
3 1 1 1 6 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.00 005 0.10 0.15 0.20
t t
50 2000
= Case Bl - Case Bl
41 b Case B2 Case B2
== Case B3 1500 H == Case B3
2 F
= 51000 F
et |th
1 2B ;
o] LY %
o al = 500 H\s-
LAV
1 1 1 1 0 1 1 1 1
0.00 0.05 0.10 0.15 020 0.00  0.05 0.10 0.15 020
* *
1 t

Figure 5-16 Variations of average Nusselt number (N_u), average Bejan number (B_e), total

entropy generation (§tot), entropy generation due to thermal (§T) and viscose (§F)
irreversibilities as a function of the non-dimensional time for cases B1 to B3 at different Rayleigh
numbers. Case B1 (Pr=0.71), case B2 (Pr=6.2,L, =L, =0.6H) and case B3 (Pr=0.71,

L=0.3H), (cont’d).
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5.6 Conclusions

In the current work, a new Kernel Derivative-Free (KDF) version of the Weakly Compressible
Smoothed Particle Hydrodynamics model (WCSPH) has been introduced for simulation of free-
surface flows and natural convection heat transfer problems. A wide range of the two-
dimensional benchmark cases in various fields of engineering and science has been employed to
demonstrate the capability and performance of the proposed model (KDF-WCSPH). The
outcomes of the numerical simulations drawn from this study support the following major

conclusions:

e The results showed that the proposed new kernel function significantly outperformed two
commonly used kernel functions (i.e. cubic and quintic spline functions) in modeling 1D
Sod shock tube problem.

e The results showed that the proposed Laplacian operator provides more accurate results
compared to traditional WCSPH method in modeling breaking dam flow, stretching of
circular water drop, rotating square patch of fluid and natural convection heat transfer in a
square enclosure.

e The results showed that combination of the Particle Number Density (PND) and
divergence of the displacement as the particle labeling scheme can successfully identify
the location of the free-surface and its vicinity particles.

e It was found that traditional formulations of SPH model are prone to tensile instability
whereas the proposed model (KDF-WCSPH) benefit from high level of accuracy and
consistency.

e It was found that implementing Particle Shifting Technique (PST) has a marked impact
on the stability and accuracy of the mesh-free particle methods.

e It was found that inserting additional diffusive term into the continuity equation can
considerably suppress (or remove) high-frequency oscillations noise from the pressure
field (unfavorable check-board pressure field), leading to more accurate results as
compared to conventional WCSPH.

e It was found that, the proposed smoothing operator can successfully interpolate values of
the field function (in the current work the smoothing operator has been used to calculate

the temperature values in the buoyancy force term F, =—g S (T -T,)).
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e The results showed that, with the increment of Rayleigh number, both heat transfer rate

(Nu ) and overall entropy generation rate augment whereas a reverse trend occurs in the
values of average Bejan number.

e The obtained results showed that, exergy analysis as an effective tool outperformed first-
law analysis of thermodynamics in determining regime of fluid flow and heat transfer in
the thermal systems involving bifurcation, thermal plumes, hotspot, stagnation point, and

thermal stratification.

5.7 Appendix A (Gradient, Laplacian and divergence operators)

Along this appendix three main operators including: gradient, Laplacian and divergence will be
derived based on the Taylor series expansion. By multiplying Eqg. (5-Al) with J/ i .,/ i
A / rij2 and integrating over the computational domain, particle approximation for the field

function (smoothing operator) can be computed as follows:

(5-Al)

xx Nij

. : 1.. .
fo=f+fx+fy+ 5 il 5 £ ¥ + £,% Yy +O(h°)

[ NCFW ] [ N W N x W, Ny W]
J° Y i ijo i ijr i
Z v Zr—;dv D “v D ledv
£ =T i=t T iz T j=1 i'
X N Xi'f'Wi' N N x? N x
fi:x =L Z%dv L = Z ”2” dv Z I]2Ij dv z Iylj ij dv (5-A2)
iy = ! ER R =1 IJ
’ N
Yi W Ny W X VW, N, YW
2870 gy YWV % Vi Vi Yii Vi
JZ; -l lel . dv lel = dv lel : dv

In above equation, f; is a general variable such as velocity, temperature or pressure.

W; =W(r; —r;,h)anddV =m, /,oj denote kernel function and volume of particle i, respectively.
X; =X; —xandy; =y, —y,represent the distance between i-th particle to the j-th particle at
positions r; and r;. L is the corrective matrix which allows the method to fulfill the first-order
accuracy. By subtracting fi from both sides of Eq. (5-Al) and multiplying it by x;W; / rij? and

YW / rif , the gradient operator can be derived as follow:
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N x (- f) TN AW N 1t
I S 9
y RS W,.dv N X5 YW s yIZWI
; e ;J%Jw ;;{w

Eq. (5-A3) was originally introduced by Khayyer et al. [33] and known as a corrected gradient
model of original MPS method. Note that, Eq. (5-A3) can be modified and generalized by
inserting control parameter ( y ) on the basis of the Tensile Instability Control (TIC) [55], [56] as

follows
(& x (f — 7 f - T
. Z %~ 7 ) JdV i Wi gy i X YWy v
l:fx} L= ” L -1 rijz [ rij2 (5-A4)
f, Ny (F =2 ) | n
y A i X V. \W. N VAN
;—rijz WijdV Zl: ij yru2 ij dv Zl: yurz ij dv
- - E i =t T ]

where the conservative form of the gradient operator (  =1) is used for inner particles ( f, —f;)
whereas non-conservative form (y =—1) should be applied on the interface ( f; + f;). Again, it is

worthwhile to mention that, Eqg. (5-A3) is utilized to calculate the divergence and gradient of
velocity (V-u,Vu) and temperature (V @) across the whole computational domain whereas Eqg.
(5-A4) should be implemented for calculating the pressure gradient. However, for a uniform
particle distribution, off-diagonal elements of the corrective matrix in Egs. (5-A2) to (5-A4) can

be neglected, resulting in the following approximations:

N x.W. Ny W N X

Z”JW=ZWJW Z'W”w 0

R i1 R

L X LY | Yi 1
Z%MW:ZJWW:4Z’WW'Z‘MWF%ZMW) (5-A5)
=R [EE i B i= ru 23

2 1]
3 j=1 Yjj j=1 Tjj j=1 Yjj 0 j=1

N X N
l(zrngV+Zy“WdV+Z I'WdV)— Z dV, where X} +y:=r
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Nf W
D v
f o G (5-A6)
PN W
> v
j=1 rij
N (-,
Do Zr”(;zl)w”dv (5-A7)
— ;
vf=——
> W, dv
j=1
D z IJ | I] dV
v.f= 4 (5-A8)
Zwijdv
j=1

where f, f and Dy denote an arbitrary scalar, vector and spatial dimension. Eq. (5-A6) is the MPS
form of the Shepard approximant [76] while Egs. (5-A7) and (5-A8) are gradient and divergence
operators in the classical MPS formulation that were initially introduced by Koshizuka [62], [63].

W N YW .
Note that, Eq. (5-A5) can be proved by solving > —2dV and » =-2.dV in a polar coordinate

= =

system (x; =r; cos(d), y; =r;sin(d)). By ignoring the term fXy X% Y;in Eq. (5-Al) and

multiplying it by —- ” and integrating over the computational domain, the following Laplacian
IJ

operator can be obtained:

Z(f—f)

=t

NCW W.
"dV £, X ”dV+ny” —-dv
i = (5-A9)
SNET ” av s 13 g YW g
+EZ XX Z yy 2

j=1 Iy 24 f

J

) ) . N y_?V\/__ N x2\W.
To drive (V°f =+ ) it is assumed that Z"r—z”dv is equal to >_——-"-dV . Although this

i1 =t
assumption is not valid for irregular particles arrangement and free surface region where kernel is
truncated but it is the only way in which V*f can be computed. Under the aforementioned

hypothesis, the third and fourth terms in Eq. (5-A9) can be written as:
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N AW
Y v+ Zf y" gy = fox Wi gy Zf i gy
= i ij u
l " 0 N Xi' ii Ll " Xi' ij y| i 5'A10
= (1)) ‘Z'dV:E(fXX+fW)EZ( 20 gy + 20 gy (5-A10)
=1 r-ij =1 ij rij

N
= % (fo+ f);y)%z;wijdv where X +x; =r’
J:

By substituting Eq. (5-A10) into Eq. (5-A9), the new Laplacian operator can be expressed as:

(f,— f)W, Yy W
2D, [Y 1 gy — f % ”dV—f i gy Y "dV]
; rIJ ; rIJ JZ: rij JZ—; rij (5-A11)

Zwijdv

i=L

Vif =

where f and fy' are gradient of arbitrary scalar or vector function (f;) (i.e. velocity,

temperature, density or pressure, etc ) which can be computed through Egs. (5-A3) or (5-A4). It

is worthwhile mentioning that, the present model is similar to work of Schwaiger [53] who

proposed high-order Laplacian operator by taking gradient of kernel into account (VW , , VW, ).

However, since gradient of kernel doesn’t appear in Egs. (5-Al) to (5-Al1), the current model
could thus be referred to as a Kernel Derivative-Free (KDF) version of the WCSPH model (KDF-
WCSPH). Similar to gradient operators, for the uniform particles distribution (

N N y N ZW
> 2 % Wy dv =) " tdv =>-L-0dv =0), Eq. (5-A11) can be reduced to the relatively

2
=1 rij =1 i' = rij

simple expression as:

f,—fW,
2D Z( Wi gy
e I (5-Al12)
Zwijdv

It is also possible to derive the second Laplacian operator directly, without considering any

additional assumptions. This is achieved by subtracting f. from both sides of Eq. (5-Al) and

decomposing it into x and y directions as follow:
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1 5-Al13

fof= £+ fyy + fXXxU+2nyU (5-AL3)

: 5-Al4

E(fj )= xS (5-Al4)
1 1 _

E(f f)="fy,+ fyyyu (5-Al5)

By multiplying Egs. (5-A14) and (5-A15) by —- " and integrating over the computational domain,

IJ

the second derivatives of shape function ( fxx f;y) can be obtained as:

N w, v, W,
Z;(fj—f) Wigv = 1,3 % Mgy + 1,3 2 Yigy,

j=1 Ij j=1 ij j=1 Ij

41 | Wi 4 5-A16
> o (f=f)" Wigv — 3 x, (5-A16)

f " j=1 Ij j=1 ij

= N 2
Z w
2

XX
i=1 i'

N

| W, Wi i
ZE(fJ—f) —dv =1y, r2‘dV+f Z yi 2‘dV

j=1 IJ =1 ij ij

N 1 W, W, 5-A17
Z;Z(fj—f) ’dV—fz;yu v (5-AL7)
f" — = IJ = 1) ,
yy N 1yf
5L,
R

By directly summing the terms f., and fyy in above equations, the second Laplacian operator

can be written as:



N " j=1
V2= f 4 f) =

N1 W, & W
Zi(fj_fi)rizjdv_fxzxijrizjdv
ij =1
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ij

N1
25

N

j=1 ij j=1 ij

X5

> +
I W,dv

i (5-A18)

N1 W, &AW,
25 (f=f) v =13y, —3dv

Finally, it is interesting to note that,

supported kernel, Eq. (5-A18) will even

similar to previous equations for the case of the fully
tually turn into Eq. (5-A12).

5.8 Appendix B (Third-order TVD Runge-Kutta)

In the current work, transient term in Navier-Stoks and energy equations is discretized in time

using third-order total-variation-diminishing (TVD) Runge—Kutta scheme as follows [77]:

du dr do

dt

P =ay p' + B AL D, (p)
u = u™+ g AtL, (™)
r® =a, r™ 4 g AtR, (U®)
Y =a, 67 + B, ALT, (6)

p? =, p + B, p¥ + B, AL, (p?)
u? =, u™ + g, u® + g, AtL, (u®)
r®=a,r™+B,r+ g, AtR, (u?)
0? =a, 0" + B,0" + B, AtT, (6“)

P =ay p + By p? + By AL, ()
u™ =, u™ + gu? + B ALL, (U?)
r™ =g, r™ + g r® + g AtR, (u™)
0" =, 0™ + B, 6% + B, ALT, (6?)

Lo SR S2-TO Yoo 6B

dt dt

(5-B2)

(5-B3)

(5-B4)

where o, =1, @, =3/4, a,=1/3, B, =1, B, =1/4and B, =2/3.
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5.9 Appendix C (Additional Delta term (&) in continuity equation)

Generally, there are two different approaches in the context of the weakly compressible SPH for
predicting pressure domain namely: Number Density (Eq. (5-C1)) [78], [79] and mass
conservation law (Eq. (5-C2)) [80], [81] as given below:

N
p= Cg (o= p5)
Dp
=K __ V.
Dt PV (5-C2)
p= Cg (o= p)

The former estimates the density through summation over all particles in the kernel support
without the need of velocity divergence. Nevertheless, the results of Monaghan [82] shown that,
although Eq. (5-C1) requires less computational effort than Eqg. (5-C2) but due to kernel
truncation error, it causes significant density drop adjacent to the free-surface area. On the other
hand, Lee et al. [50] have questioned the accuracy of the standard WCSPH and highlighted that
on the coarser resolutions and high Reynolds number, pressure field predicted by Eq. (5-C2) is
unreliable and noisy. To deal with this shortcoming and avoid spurious high-frequency
density/pressure oscillations, Antuono et al. [57] modified the classical WCSPH by introducing
the new additional diffusive term in the continuity equation. This method which is known as
0 —WCSPH, has been widely used in the literature to solve the practical hydraulics problems
such as: 2D oscillating water chamber [83], simulation of violent impact flow [49] and flow past
a circular cylinder [55], [56]. Based on the above brief literature review, along this appendix, the
process of deriving Fully-Kernel Based version of the density diffusive term (o) will be
presented and discussed in detail. The transient governing equations of mass and momentum for
a weakly compressible fluid in Lagrangian framework are the ones that follow:

(1) 5-C3
Dp +pV-u"™ =0 ( )
Dt

(n+1) _,n (n+1) 5-C4
= u__vp +uVau" +F, (5-C4)

At Yo,
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By adding and subtracting the temporary velocity (u”) into the left-hand side of Eq. (5-C4) and
employing two-step projection algorithm for velocity-pressure coupling [66], momentum

equation can be divided into two successive parts as given below:

(n+) _ * * N (n+1) -
u u-+u —u :_Vp +uV2u“+FB (5-Ch)
At Yo,
U U _ v+ F. (5-C6)
At
lJ(n+1) —u _ Vp(n+1) (5-C7)
At yo
The divergence of Eq. (5-C7) reads:
VU vyt = v (- Agpe) (5-C8)
Yo,
By substituting equation (5-C8) into Eq. (5-C3), one obtains:
(5-C9)

(n+1)
Dp +pV-u*—pV-(§Vp(”+l))=0
Dt Yo,

Using the first-order state equation, the third term in Eq. (5-C9) can be expressed in the form of

the density as:
p=c(p—m) (5-C10)
Atc? (5-C11)

At
pv(;Vp):pV-( p Vp)=Atcs(Vip)

By substituting equation (5-C11) into Eq. (5-C9), an alternative form of the continuity equation

can be obtained as:

%:—pv-uwm c2(V?p) (5-C12)

The second term in the right-hand side of the above equation is the additional diffusive term
(AtcZ(V?p)). One of the most notable features of Eq. (5-C12) is that unlike the conventional

0 —WCSPH [57], the present model does not contain any tunable parameter to control the
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density diffusive term. Finally, it should be noted that similar to the viscous term Eq. (5-A11) or

(5-A18) can be used to calculate the Laplacian of density (VZp).

5.10 Appendix D (1D Sod shock tube)

The dimensional governing equations including momentum, energy, continuity and displacement

in a Lagrangian framework for 1D Sod shock tube problem are shown as follows:

N 4+ D.
DU Som PP yvw, (5-D1)
Dt 3= PiPj
De 1& p P 5-D2
a:_ajz_;mj(7+p_jjg)(uij.V\A/ij) ( )
N
5-D3
p=2 MW, (503
J=1
(n)
U™ =y 4 Ap 20
pD ) Apy (D) (5-D4)
e(™D — o™ 4 At De™
Dt

p=p(y-De, C=ino, (5-D5)
P

wheree and VW are internal energy and gradient of kernel function, respectively. The symbols ¢

and y =1.4denotes artificial sound speed and heat capacity ratio. The typical procedure for

solving the above equations is detailed in [70] and illustrated above. First, material derivatives

and density (%,%, p ) are computed using Egs. (5-D1) to (5-D3) and subsequently particles

are advected to the new positions with updated velocity and energy according to the forward
Euler time integration scheme (Eq. (5-D4)). Having obtained the density and energy fields,
pressure and sound speed are estimated by Eq. (5-D5) and process will be repeated for the next
time step. To stabilise the simulation and dampen non-physical fluctuations appearing near the

shock waves, artificial viscosity (IT;) proposed by Monaghan [67] is frequently added in the

momentum equation as follows:
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—aEijﬂ- + ppl
| <0

Hij = Pi

0 u;-r; >0

hy (U 1) (5-D6)
¢ =

I6f+o*

- ¢c+4C — .+
Cij:lzjapij:pl IOJ NE 001h”, _IB::I_
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Abstract

The present work introduces a modified Incompressible Smoothed Particle Hydrodynamics
(ISPH) model for simulation of free-surface flows and convection heat transfer. First, two new
gradient and Laplacian models are proposed based on the Taylor series expansion and then used
for discretization of the diffusion terms, Pressure Poisson's equation (PPE), and divergence of
velocity. To maintain overall high-order accuracy, an explicit third-order TVD Runge-Kutta
scheme is employed for discretization of the transient terms in Navier-Stokes and energy
equations. Moreover, a new Hybrid Particle Shifting Technique (HPST) is developed by
combining the classical PST and a collision model. A new kernel function is developed by
combination of the Gaussian and polynomial functions and is then applied to the simulation of
classical 1D Sod shock tube. Furthermore, a novel Hybrid Free-surface Detection (HFD)
technique is proposed for accurate imposition of Dirichlet pressure boundary condition at the free
surface area. The validity and applicability of proposed numerical schemes are verified against
the several challenging benchmark cases including: dam-break flows with/without an obstacles,
stretching water drop, rotating square patch of fluid, Rayleigh-Taylor instability, energy and
exergy analysis of natural convection heat transfer in differentially heated cavity. The results
show that, the newly constructed kernel function can successfully guarantee the stability and

convergence of the numerical solution. Furthermore, it is found that, the proposed Hybrid Particle
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Shifting Technique (HPST) can efficiently resolve the unphysical discontinuity and suppress

spurious pressure fluctuations.

Keywords: New Kernel Function; Hybrid Particle Shifting Technique; New free-surface

detection technique; New gradient operator; New Laplacian operator; Improved ISPH;

6.1 Introduction

The Smoothed Particle Hydrodynamics (SPH) approach as a truly Lagrangian particle model was
originally proposed by Gingold and Monaghan [1] to describe the evolution of astrophysical
systems and migration of giant planets. Unlike the Eulerian models (e.g. FDM, FEM, FVM) [2]-
[5], in the SPH description, the computational domain is discretized by set of the moving
particles where the specific smoothing kernel is used to establish the spatial relationships
between field variables. Free from false diffusion associated with convection terms and absence
of severe mesh distortions and element entanglement make the SPH more reliable and useful tool
for modeling multiphase flows involving severe interfacial deformation, stretching, breaking, and
splashing [6]. Due to its inherent mesh-less features and superiority over traditional Eulerian
methods in tracking the evolution of interfacial areas and moving boundaries, the SPH has been
extensively applied to various industrial and engineering applications such as: simulation of
granular material [7]-[11], natural and forced convection heat transfer in the complex geometries
[12]-[18], nuclear reactor design and dynamic analysis of landslide dam [19]-[22], simulation of
Rayleigh-Taylor instability and bubble rising [23]-[25], modeling violent free-surface flows and
droplet collision and coalescence [26]-[29], simulations of multiphase flows and fluidized beds
[30]-[35], analysis of liquid sloshing and fluid flow over the airfoil and circular cylinder [36]-
[40]. A comprehensive literature survey concerning the potential application of the SPH in many
fields of engineering and science can be found in works of Wang et al. [41] and Shadloo et al.
[42]. Despite the fact that, the SPH has been proved to be an efficient approach for analysis of
fluid-structure interaction (FSI) problems, it still faces several crucial shortcomings including the
occurrence of tensile instability caused by particle clustering [24], [43]-[45], spurious
checkerboard pressure in both time and spatial domains [46], [47], non-conservative form of
pressure gradient operator [37], [48], uncertainty in selecting the appropriate kernel function
[49]-[51], and false detection of interfacial particles in multiphase flows [52]-[57] which can

immensely jeopardize the stability and accuracy of the numerical simulation. Over the past
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decade, substantial research efforts have been devoted to enhance the precision and consistency
of the SPH. In a pioneering work, Xu et al. [43] introduced the concept of the Particle Shifting
Technique (PST) to resolve the problem of particle bunching and void formation. The PST was
then modified and implemented by Skillen et al. [44] and Shadloo et al. [24] to solve the problem
of particle clustering in modeling of circular Couette flow and Rayleigh-Taylor instability.
Recently, Khayyer et al. [45] introduced a novel improved and optimized version of the PST for
consistent and accurate treatment of the free-surface area. In another work, Lee et al. [58]
adopted the principle of Lennard-Jones molecular force [6] and introduced the idea of using
collision model to control the regularity and arrangement of moving particles. This technique was
then employed by Chen et al. [59], Xu et al. [60] and Shakibaeinia et al. [61] for simulation of
dam break, Rayleigh-Taylor and Kelvin-Helmholtz instability problems. Another potential source
of instability can be traced back quantitatively to the classical SPH operators. Ideally, the SPH
was formulated for particles with uniform distribution while this assumption is not valid in the
zones with incomplete kernel support. To overcome this shortcoming, Oger et al. [47] suggested
the use of the kernel derivative correction technique and concluded that, reproducing kernel
function and related gradient operators through renormalization technique can significantly
suppress non-physical pressure fluctuations and minimize particle perturbations. To further
eliminate unphysical void formation and pressure oscillations, Schwaiger [46] extended Oger’s
model [47] and proposed higher-order Laplacian operator based on the Taylor series expansion.
To enhance the conservation properties of classical SPH formulations and eliminate tensile
instability, Sun et al. [37], [48] proposed a new switching technique so-called Tensile Instability
Control (TIC). In this technique, non-conservative form of the pressure gradient is used in the
specific area with truncated kernel support. Recently, Hongbin et al. [49] conducted a
comparative study to investigate the effects of the type of the kernel function on the performance
of the SPH model. They stated that, type of the kernel function has a remarkable impact on the
consistency and accuracy of the mesh-free particle methods. In the same context, Yang et al. [50],
[51] constructed two different kernels and highlighted that, the smoothness and coherence of the
first and second derivatives of kernel function play a major role in the stability of the numerical
simulations. Despite the success of these efforts, selecting the reliable and efficient kernel
function is still a subject of controversy [62]-[64]. Accurate detection of boundary surface to
impose Dirichlet boundary condition for the Pressure Poisson Equation (zero pressure) is another
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major challenge faced with the ISPH model. Generally, the existing boundary recognition
algorithms can be classified into two categories: (a) coverage detection techniques [52], [53],
[56], [57] and (b) kernel-based algorithms [54], [55], [65]. In the former, the specific scanning
algorithm is utilized to scan the local region around each target particle. If any gap is found, the
candidate particle will be labeled as a surface particle. However, the results of Haque et al. [56]
revealed that the implementation of the aforementioned technique for 3D free-surface problems
or long-term simulations is not computationally affordable. The second method takes the
advantages of kernel summation (PND) [55] and its derivatives (Divergence of Particle Position)
[54], [65], [66] to determine which particles belong to interface or interior area. However, in spite
of being computationally inexpensive, this technique is sensitive to regularity and uniformity of
particles distribution such that the occurrence of particle clustering can lead to erroneous

predictions of interface position.

In light of the above literature review, the main aim of the current work is to introduce a novel
high-order Mesh-free Particle Model (MPM) in the context of the ISPH for simulation of the
free-surface flows and convection heat transfer. For this purpose, the governing operators (i.e.
gradient, divergence and Laplacian) are first reformulated based on the Taylor series expansion
and then applied for discretization of governing equations. To further enhance the stability and
accuracy of the method, a new high-order kernel function is constructed by combination of the
Gaussian and polynomial functions. Furthermore, a novel Hybrid Particle Shifting Technique
(HPST) is proposed to remove tensile instability and particle clustering. Moreover, a novel
Hybrid Free-surface Detection (HFD) technique is proposed for accurate imposition of Dirichlet
pressure boundary condition at the free surface area. Detailed description of the methodology
with associated higher-order schemes proposed in the current work can establish a wide
panorama of promising alternative treatment on the improvements of Lagrangian Particle
Models.

6.2 Problem statement and governing equations

Schematic diagram of various configurations under study together with associated boundary
conditions and coordinate system are depicted in Fig. 6-1. Six different benchmark test cases
have been simulated to demonstrate the promising potential of the proposed models in handling

wide range of free-surface flow and convection heat transfer problems. In all the simulations, the
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flow is assumed to be two-dimensional and laminar and the working fluid is considered as
incompressible and Newtonian except for the case of 1D Sod shock tube problem where density

is linked to pressure via a stiff equation of state (EOS).

The governing equations describing the 2D incompressible, Newtonian and laminar flow in the

Lagrangian framework is given by [67]:
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where u: (u, v), r: (x, y), k and T denote velocity and position vectors, thermal conductivity and

temperature. p,C_and u are density, specific heat capacity and dynamic viscosity of the fluid,
respectively. D is the substantial derivative and F, represents body force acting on the fluid
which is gravity force (F,=p9) in the free-surface flows or buoyancy force (

F,=-pg (T-T,)) in the natural convection heat transfer according to Boussinesq

approximation.
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Case Al (Dam break without obstacle) Case A3
Case A2 (Dam break with an obstacle) (Rayleigh-Taylor instability)
: D | Obstacle in case A2 K

I‘_wz_’l

Case A4 Case A5 Case A6
(Rotation of a square patch of fluid) (Stretching circular water drop) (Differentially heated cavity)

Figure 6-1 Schematic description of the physical models with associated boundary conditions and

coordinate system.

As described by Bejan [68], the total volumetric entropy generation rate (S,,) due to thermal

dissipation (S; ) and fluid friction irreversibility (S ) for 2D problems can be computed by the

following expression:

Stot = ST + SF (6'6)
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where T,=(T,+T,)/2is a bulk temperature [69]. The dimensionless form of the governing

equations for entropy generation can be obtained by introducing the following non-dimensional

parameters:

X 2 T-T
x=X y=Y, oy W\ g

H H a a pa2 T, —T

(6-9)
3

pole gl OPMTOH' v

H av a

By substituting above pertinent parameters in Eqgs. (6-6) to (6-8), one can obtain non-dimensional

form of the entropy generation as follows:
00\ (06

S;=||—| ¥ —
oX oY

2 2 2
S =9 Z(Qj +2 ﬂ) + y+ﬂ
oX oY oy oX

@is a constant parameter which represents the ratio of the viscous dissipation to the heat transfer

N

(6-10)

irreversibility, defined as [70], [71]:

T o
p=—"t% (6-11)
kH*(T, -T,)

In the current work, the value of @in case A6 is taken as 10 similar to work of Ilis et al. [72].
The total entropy generation can be computed via integrating the local entropy generation rate

with respect to X and Y coordinates:

- 1 - 1 -
ST=\7ISTdXdY SF=\7[SFdXdY Swt =St +5¢ (6-12)
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The relative dominance of thermal dissipation to total irreversibility can be mathematically
expressed by computing local and average Bejan numbers as:

S
Be: T __ 1 -
S +5. Be_vaedx dy (6-13)

According to the above definition, 0<Be <0.5 indicates the relative dominance of the viscous

dissipation (S; > S; ) while thermal irreversibility (Sz <S;) is dominant when0.5< Be <1. For

Be =0.5, the entropy generation due to the viscous dissipation and heat transfer irreversibility are
equal. Once the temperature field is obtained, the rate of the heat transfer on the active walls can
be computed through the average Nusselt numbers as follows:

hH _ 00 — 1 (106

NU=——=—— Nu=—| —dY 6-14
k on H 0 oX ( )

As shown in Fig. 6-1, no-slip and impermeable boundary conditions are imposed on the rigid
walls for cases Al, A2, A3 and A6 as follows:

U=V =0, (6-15)
For the specific case of convection heat transfer (case A6), zero heat flux condition is imposed on

the horizontal walls while left and right walls of the cavity are maintained at different constant

temperatures:

6=1 6=0 On the isothermal vertical walls

00 . 6-16
E =0 On the insulated walls ( )

6.3 Implementing boundary condition in a Lagrangian framework

In the current study, the combination of the fixed ghost particles and mirror velocity technigque
suggested by Marrone et al. [73] is used to enforce no-slip boundary conditions on the solid
walls. Fig. 6-2 vividly illustrates that in this technique, the solid-fluid interface is used as a
reference point to reflect the mirror velocity of the fluid particles (in active zone) on the
corresponding ghost particles. However, to enforce the Neumann boundary condition for pressure

( p;) and temperature (8, on the adiabatic walls), the value of the target variable is calculated



158

first on the solid boundary ling using Eq. (6-17), and then the computed results are assigned to

the corresponding ghost particles on the other side of the fluid domain.

- - o -
> pwdv D oW, dv
P, 1= 6. =
i N [ N
p, =L > p,vw, dv 6, |=L| > 6,YW, dV (6-17)
: j=1 - j=1
Py N % N
D pVYW, ,dv DO, VW, dv
i J L it J

In the above equation, L is the corrective matrix which satisfies first-order derivative

completeness condition. W, and VW are the kernel function and its derivative which will be

discussed in the next section (see also Fig. 6-2 and Eq. (6-A2) in appendix A).

6.4 New kernel function

Motivated by works of Hongbin et al. [49] and Yang et al. [50], [51], in this section a new high-
order kernel function is proposed through combination of the Gaussian and polynomial functions

as follows:

_R?

( )
W. =g et (9_R?)?® 0<R<3

i D

0 R>3 (6-18)
0.723176x107° 0.38735x107 0.210907 x1073
1D = h ) QZD:T’O%D: h? '

where h and R :‘rij‘/h represents smoothing length and support domain of the kernel function,

respectively. Since, Eq. (6-18) doesn’t have any analytical integration, Simpson's rule is

N
employed to estimate constant coefficient «, and satisfy normalization condition (ZVVijdV =1)
j=1
for all three dimensions. The accuracy and stability of the newly constructed kernel function are
verified via numerical modeling of one dimensional shock tube problem. The obtained results in

terms of the density, energy, velocity and pressure profiles together with the kernel behavior (W
) and its first derivative (VW) are also compared with two frequently used smoothing kernels

(i.e. Cubic spline function [74] and Wendland [75]) and exact solutions.
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Figure 6-2 Examples of implementing Neumann boundary condition for pressure and

temperature, mirror velocity technique and surface particle tracking and related techniques used

in the current work.

It can be seen from Fig. 6-3 that, the proposed kernel function is even (Symmetric property) and

positive (Positivity) and declines monotonically as the relative distance (R) increases.

i »Y
Furthermore, due to simultaneous presence of the Gaussian (Exp(L) and polynomial (
11257

(9-R?)*) terms, it is extremely smooth and has a compact support of R =3 even for the third
derivative (Smoothness property). The new kernel also fulfills the Dirac delta function condition

as the smoothing length gets closer to zero (Delta function property) [6].
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limw, (1, h) = 5 (6-19)
The obtained results in Fig. 6-3 illustrate that, the proposed kernel function can efficiently
delineate two distinct regions of the shock-wave system (i.e. shock (x=0.3) and contact (
0.1<x<0.15) discontinuities) and predict the correct pressure and velocity profiles of the
rarefaction wave (—0.3<x<0) with minimal fluctuations. It is also evident that, the newly
kernel function provides more accurate results than the cubic and Wendland functions in
capturing rarefaction wave region and shock position. Fig. 6-3 also reveals that, a very good
agreement exist between the calculated results and analytical solutions (for more details see
appendix B).

6.5 New Hybrid Free-surface Detection technique (HFD)

As mentioned in the introduction section, Dirichlet pressure condition ( p =0) must be applied on
the free-surface region. This highlights the need of proper identification of the interface position
and its vicinity particles. Thus, in this section a new Hybrid Free-surface Detection (HFD)
technique is proposed by introducing two additional criteria besides the ones suggested by
Koshizuka [55] and Lee et al. [66] as follows:

N m.
®,= W, 2, (6-20)
i1 P
() =V~r=ix VW. ﬂ+iy VW. M (6-21)
2 ij ij,x ij ij,y
=1 Pj =t i
N m. N m.
(D3 = VZr = lz XiJZ'VZWij XX — + EZ ijzvvu vy —1 (6'22)
273 T p 27 7 p

N m.
?,= Z Xij yijVZWij,xy p_J (6-23)
=t |

J
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Figure 6-3 The effects of the type of kernel function on the spatial evolution of density, pressure,

velocity and energy profiles for the Sod shock tube problem at t=0.2s.

The variables @, and ®, are known as a Particle Number Density (PND) [55] and divergence of

particle displacement [66] while ®,and @, are two new complementary conditions which can be

simply referred to as Laplacian of particle displacement and mixed partial derivative of kernel
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function, respectively. Ideally, in the case of fully supported kernel, the values of ®,, ®,, @,
and®, are equal to unity, 2, 2 and unity. Any deviation from the aforementioned characteristic

values indicates that the kernel function may be truncated and consequently the candidate particle

belongs to surface area. By defining the threshold values of S, =0.755andS,,, =0.947, the

fluid domain can be segregated into three distinct zones as:

Q= (D, +D, +D,+D,)/6, (6-24)
0 ®<S_  Free-surface particle

f (D) =4 ax® +bx? +cx+d S, <®<S__  Vicinity particles (6-25)
1 ®>S . Internal particles

a2 ~ —3(Spin * S

(Smin _Smax)3 T (Smin _Smax)3 ,
(6-26)
_ 6(Smin = Smax) d= Sr?win _Bsmax x Sr?win

- (Smin _Smax)3 ’ (Smin _Smax)3

It should be noted that, the cubic polynomial function in Eq. (6-25) is used to remove the

discontinuity between free-surface ( f(cI_)) =0) and internal ( f(CI_)) =1) particles (see also Fig. 6-

2).

6.6 New Hybrid Particle Shifting Technique (HPST)

Inspired by works of Skillen et al. [44], Lee et al. [58] and Shakibaeinia et al. [61], a novel hybrid
particle regularization scheme is proposed by combining Particle Shifting Technique and a
pairwise collision model. In this technique, PST is applied only to the interior particles whereas
collision model is used for treatment of the interface and its nearby particles. A more detailed
mathematical description of present model is given in appendix C. As mentioned in previous
section, prior to implementing HPST, the robust and efficient particle labeling scheme (free-
surface detection technique) is needed to determine the role of each particle (i.e. inner, vicinity or
surface particle). Given the assumption that this technique has been accomplished, the process of

implementing HPST can be summarized as follows:
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_AgN m.
ST,y pst =7ﬂjzl:xijwij p—J’
O,y pst =£i YW i
= Pj
1S ™ (6-27)
23 Pj
B=05ah?

G =0 oney
In the current work, the value of o is taken as 0.1. The variable h is the smoothing length in
kernel function (Eg. (6-18)) which is equal to the initial particle spacing (h=1.0Ax =1.0Ay). As

mentioned in appendix C, Lambda (1) is the constant coefficient which should be computed at
the initial arrangement of particles (t=0) where kernel has a fully compact support. Eq. (6-27) is
applied only to the inner particles. Therefore, the interface and vicinity particles still require a re-
arrangement technique to avoid clustering and tensile stability. In the proposed technique, this is
accomplished by applying a pairwise collision technique, adapted from the Discrete Element
Method (DEM) that displaces the interface and vicinity particles as:

5ri,x,DEM :(dt)z fi,x/mi

5ri,y,DEM :(dt)z fi,y/mi

N
fio= —JZ_; KoGyi (6-28)

N
fi,y - _Z kn5y,ij

j=1

(n+)* __ (n+D) (n+1)
Ge =0 0% ey

where ri(”*l’*is the new position of the particle after applying the HPST. &; is the corresponding
overlap of two particles. k, denotes stiffness coefficient in normal direction which is taken as

5x10* Kgms™. It should be noted that, unlike the classical DEM formulations [76], in order to

preserve the global conservation of momentum and kinetic energy, the collision force in the
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and or.

current work ( f, i,y,DEM

ix» fi.y) is directly applied to particle position (o, ) instead of

,X,DEM
particle velocity. Finally, it is worth to mention that, although in the current work, the DEM is

only applied on the free-surface area but our experience shows that, the DEM model (0T, g, )

can also be used for both interior and surface areas in conjunction with particle shifting technique

(0T, psr ). However, implementing it on the interior particles will impose the stiff/strict condition

on the motion of particles especially in the multiphase flow problems where the primary phase
should has a chance to move freely within the secondary phase (the best example is the splashing
and the falling of the water particles into the air phase generated by the breaking of a dam).

6.7 Discretization of governing equations and solution algorithm

The ISPH discretization of the governing equations over a set of mobile particles is conducted by
high-order differential gradient, divergence and Laplacian operators. The combination of the
third-order TVD Runge-Kutta scheme [77] and two-step projection model [78] is utilized to
handle transient terms and velocity-pressure coupling. The first calculation step is an explicit
prediction one where an intermediate velocity field is calculated through Navier-Stokes equations

without the pressure gradient as:

u =u"+@Va" +F,/ p)At (6-29)
The second step is an implicit correction one where pressure is computed by solving the Poisson
equation as:
T
vipt=L - 6-30
p A (6-30)

Once the PPE is solved, the material derivatives of velocity (Du/Dt) and energy (DT/Dt) can
be determined through Eqgs. (6-2) to (6-4) as follows:

n 1
Du’ __ VP oy, Fe (6-31)
Dt p P P
DT" _ K gepr (6-32)

Dt pC,



165

After solving equations (6-31) and (6-32), the velocity (u®), position (r®) and temperature

(0@) of each particle can be determined through the first step of the Runge-Kutta scheme as:

Dy™

u® =u® 4 At—

r® =r™ 4 Atu® (6-33)
DM

oY =0 + At

By repeating the above process with updated values of u® , r®ande® (instead of u", r"ando"

), the second step of the Runge-Kutta method can be written as:

o
y@_3ym, 1,0, 1,Dbu
4 4 Dt
r® :%r(“’ e +%Atu(z) (6-34)

D 9(1)
Dt

The last stage of the Runge-Kutta method can be obtained by replacing new data u®, r® and

o030 Lo Ly
4 4 4

0@ with old ones (u®, r®and @) as follows:

o — Ly 2y 2 Du®
3 3 3 Dt

r(n+1) — Er(n) +Er(2) +3Atu(n+1) (6-35)
3 3 3

gon _Loo 2 gw 2 5 DOV
3 3 3 Dt

where r™  u™and 6 are new position, velocity and temperature of the particles at (n+1)-
th time step. As mentioned before, particles in Lagrangian description have a natural tendency to
cluster along the streamline trajectory. Thus, to reduce the error generated by tensile-instability
and alleviate unfavorable effects of particle clustering, the proposed Hybrid Particle Shifting

Technique is applied to underlying position of particles as follows (see also section 6):

r._(n+1)* —

. r™ +6r5  forinner particles
(6-36)

rT =r™ 4+ 1L, forsurfaceand vicinity particles
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At the end of the process, the average Nusselt number and entropy generation due to both factors

(S;and S; ) can be calculated through Eqgs. (6-10) to (6-14) particularly for case A®6.

Table 6.1 List of the equations used for estimating gradient, divergence, and Laplacian operators.

Operator

Equation used

Divergence (for velocity) (U,, U, )
Gradient (for temperature) (6,,6,)

Gradient (for pressure) ( p,, p'y)

Hybrid Particle Shifting Technique
(HPST)

Kernel function

Hybrid Free-surface Detection
technique (HFD)

Buoyancy force in natural convection (
6;)

Density smoothing process in Rayleigh
Taylor instability ( o, ertace )

Pressure on the solid walls ( p,)
Temperature on the insulated walls (9,)
Laplacian

(for pressure V2P and diffusion
Viu,v?e )

Eg. (6-A6) is implemented in the present study
whereas Eq. (6-A3) or Eq. (6-A5) can also be used.

Revised form of the Eg. (6-A6) is applied in the
current work where y=1and y=-lare used for
inner and surface particles, respectively. (see also Eq.
(6-37))

Eq. (6-27) is applied on the inner particles while Eq.
(6-28) is used for surface and its nearby particles (see
also appendix C).

Eq. (6-18) is used for all simulations (cases Al to A6)

Egs. (6-20) to (6-26) are used for particle-labeling
process

Eq. (6-A2) is used to calculate field functions (6, and
,D interface )

Eq. (6-A2) is applied to calculate field functions on
the solid walls ( p;and 6, )

Eq. (6-A12) is applied in the present work whereas
Egs. (6-Al3), (6-A14) or (6-A15) can also be used.

Note that, the proposed high-order Laplacian operator (Eq. (6-A12)) has been used to calculate

diffusion terms (V?u,V°T) and PPE (V?p) while Eq. (6-A6) is employed to estimate

temperature gradient (VT ,V#), velocity gradient (6u/ox,dv/dy) and divergence of velocity
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components (V-u). Moreover, Eq. (6-A2) is applied as a high-order smoothing operator to
calculate temperature (T) in the buoyancy force (F,=—-pg (T -T.)) and density of the
interface ( Piemace ) 1N transient natural-convection and Rayleigh-Taylor instability problems,

respectively. However, to calculate pressure gradient (Vp), a multi-technique approach should be

adopted to handle both interior and interface particles. For this purpose, Eq. (6-A6) is modified
according to Tensile Instability Control (TIC) suggested by Sun et al. [37], [48] as follows:

_ N _ —--1
@ |3 (P, — 2P )vvv de ZN: x,lvgv” v ZN: yijV\:vijlx 4
OX -1 rij = i
=L L=|" ! : ! (6-37)
op ¥ (P - xp) N X VW, Ny VW,
- 20 2T yW. dv ij ¥ Vijy ij ¥ Vijy
T I T B PV DT N

xis an integer valued parameter which varies between 1 and -1 for internal and interface
particles, respectively. More precisely, in order to prevent the inception of the tensile-instability,

the non-conservative form (y =-1) of the momentum equation ( p; + p;) is used for the free-

surface area and its nearby particles whereas the conservative one (y =1) is applied on the
interior particles ( p; — ;). In fact, Eq. (6-37) takes the advantages of both first-order consistency

and linear momentum conservation. Hereafter, Eq. (6-37) will be referred to as a Modified
Pressure Gradient operator (MPG). The summary of equations used in the current work is

provided in table 6-1.

6.8 Results and discussion

The applicability and robustness of newly proposed kernel function, Hybrid Particle Shifting
Technique (HPST), free-surface detection technique together with high-order governing
operators are demonstrated here through simulation of wide variety of challenging benchmark
cases including: dam break with/without an obstacle (cases Al and A2), Rayleigh-Taylor
instability (cases A3), rotation of square patch of fluid (case A4), stretching circular water drop
(case A5) and entropy generation due to natural convection heat transfer. In all the simulations,
the value of smoothing length in the kernel function (Eq. (6-18)) is equal to initial particle size (

h=Ax=Ay). The time step (At) is governed based on two stability criteria (diffusion condition

and maximum velocity of fluid flow) as:



168

Atconvection = CFL ﬂ
U
2
Atviscous =CFL Ai (6'38)
2v
At = min(Atconvection ! Atviscous)

In the current work, minimum and maximum values of Courant number are taken as

CFL,;, =0.05 and CFL,, =0.15for cases Al and AG6, respectively. The simulations have been

carried out using, an in-house CFD code written in the Intel® Visual FORTRAN Compiler.

6.8.1 Dam break with and without obstacle (Cases Al and A2)

Numerical simulation of classical dam break with/without an obstacle are presented in this
subsection to demonstrate superiority of the proposed models over the conventional SPH method
in handling violent free-surface flows involving high-pressure shock wave generated by impact.
The model set-up for 2D dam break (case Al) is shown in Fig. 6-1 where a rectangular water
column (H=05m,W =0.25m, p=10°Kgm™, £ =10°Kgm™s™) is initially confined in the
left half of the square reservoir (D =1m). In general, once the virtual gate is removed, the
gravitational force causes the water column to collapse and flow out along a rigid horizontal
plane with low level of kinetic energy. Fig. 6-4 shows that as the time proceeds, the generated
surface wave propagates along the deck while its kinetic energy enhances. The velocity of water
front toe progressively enhances until the flow front reaches the vertical wall, producing a great
impact pressure and vigorous vertical water jet adjacent to the downstream wall. The impact of
the water front against the vertical wall at t =t(g/H)%° =154 is also accompanied by

irreversible destruction of kinetic energy and formation of the first pressure shock

(P" = p/pgH =2.35) as recorded by sensor 2 (h, =0.025m).
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Figure 6-4 Qualitative and quantitative comparison between calculated results and those reported

by Xu et al. [79] and Zheng et al. [80] for case Al. Time history of pressure variations on the left

(2) and right (b) walls. Time history of water front toe represented by Xsront. N, =17672.
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It can be seen that after impinging water tongue onto the right wall, due to the presence of inertia

force, the fluid deviates upward and reaches the maximum position at t(g/H)*° =3.1. However,

after 3.1<t because of restoring action of gravity force, the fluid acceleration reduces and
subsequently thickness of the ascending water jet increases, which indicates that the adverse

pressure gradient is coming into the picture.

As time goes on, the intensity of inertia force gradually weakens and motion of the upward-
moving jet slows down. Finally, the water jet overturns back as a plunging wave onto the

underlying wet bed, leading to the formation of second impact pressure and sudden rise in
pressure time history (P” =0.95,t" =4.44). It is interesting to note that during the above run

up/run down cycle, the quasi-hydrostatic pressure region is developed on the bottom-right corner
of the enclosure where flow is nearly stagnant and characterized by quasi-static and shock
loading. In contrast, the right and bottom walls experience dynamic shock pressures, due to the
development of up-going and down-going waves (for more details see animation 1 in the
supplementary material). As shown in Fig. 6-4, the proposed models provide more accurate
results in terms of the smoother pressure field (noise-free pressures) and less splashing rate
compared to the original SPH model used by Xu et al. [79] and Zheng et al. [80]. It is worth to
mention that, the experimental measurements for this canonical test case are also available in the

literature which can be used for further validation of the current work [55], [81].

To provide deeper insight into the effectiveness of proposed Hybrid Particle Shifting Technique
(HPST) and free-surface detection scheme, contours of the pressure field with associated close-up
snapshots are provided in Fig. 6-5. It can be seen from Fig. 6-5 (a) that, when the HPST is active
(HPST=0n), particles are uniformly arranged without any noticeable unphysical particle
overlapping, spurious interface fragmentation and water spray, leading to the smoother pressure
field across the whole computational domain. However, as mentioned before, in the absence of
HPST (HPST=Off), particles start to cluster along the streamline, resulting in the rapid
emergence of void space and density error accumulation. The effects of this event can be clearly
seen in Fig. 6-5(b) where destructive effects of particle clumping caused by high-pressure
gradients lead to the spurious pressure fluctuations and non-physical water spray during the flow

evolution.
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Figure 6-5 (a) and (b) the effects of the PST on the pressure field. (c) Contours of the free-surface
area for case Al.
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Figure 6-7 Qualitative comparison of the predicted results with numerical and experimental data
of Kularathna et al. [82] (MPM model), Issakhov et al. [83] (VOF model) and Koshizuka et al.
[84] for case A2. N =22155.
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Figure 6-8 Quantitative comparison of the predicted results with numerical data of Issakhov et al.
[83] (VOF model) for case A2. (a) pressure variations on the left-bottom corner of the obstacle,

(b) pressure variations on the middle-left side of the obstacle, (c) variations of water level height

at two different sections (I, =0.15m, I, =0.3m). N/ =22155 g =9.81m s?, p=997kgm,

11 =855x10° N -sm™2.

Furthermore, Fig. 6-5 (c) reveals that for the case of HPST=0n, the proposed free-surface
tracking scheme can correctly determine the position of the interface (blue color) and its nearby
particles (colorful particles) without any misidentification in the particle labeling process. The
transient evolution of the breaking dam in the presence of an obstacle (case A2) is plotted in Figs.
6-6 to 6-8 where a rectangular water column (H =0.5m,W =0.25m) is installed in the left part
of the square tank (D =1m). Qualitatively, short-term dynamics and morphological peculiarities
of dam break with an obstacle are very similar to the former case where conversion of potential
energy into kinetic energy takes place primarily when the virtual gate is eliminated. It can be seen
that the water column descends downward under the gravity force and travels horizontally along
the dry bed. However due to presence of the stationary obstacle in middle portion of the bottom
wall (W, =0.041m,W, =0.082m), the fluid flow changes its direction and moves vertically along
the left side of the obstacle. In fact, due to barrier effects of obstacle and abrupt change in flow
direction, the first pressure peak occurs on the left side of the block where sensors 1 (
h,=0,t"=0.70and p =2.04) and 2 (h,=0.041 t" =0.85and p =1.62) are located. The rest

of the fluid which escapes from the shock region travels slantwise in form of the water jetpack
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until it hits the downstream vertical wall where the second wave impact and splash-up scenario
occur. Despite the geometrical complexity of this physical model, it can be seen that
hydrodynamics characteristics of flying jet are well predicted by proposed models and the
obtained results are in good agreement with numerical and experimental data of Kularathna et al.
[82], Issakhov et al. [83] and Koshizuka et al. [84].

6.8.2 Rayleigh-Taylor instability (Cases A3)

The versatility and robustness of the proposed models in handling moving interface problem with
large deformation and stretching are demonstrated by simulating the Rayleigh-Taylor instability
problem where Eq. (6-A2) is employed to circumvent discontinuities in the physical parameters

at the interface.

Y [N
2 PW;av WAL
j=1 j=1
Poy |=L| D, VW, dV Hs, |=L| D VW, dV (6-39)
. j=1 , j=1
Psy N Hs y N
p;iVW; ,dv 1 VW; dv
L= ] ! ]

In the above equation, p.and u are smoothed density and viscosity, respectively. As illustrated

in Fig. 6-1, the simulation is carried out in a rectangular enclosure with dimensions of Hx2H

where two immiscible fluids ( p, =1.8, p, =1) are separated by an initial interface perturbation
located aty=1-0.15xsin(2zX). The instability is characterized by the Atwood number (

At=(p, —p)/(py +p.)) equals to 2/7 which represents the density ratio between two

different fluids. The Reynolds number is defined as Re = H/Hg /u where H =1, g=17.64, and
v, =v, =0.01 denote the characteristic length (width of the enclosure), gravity acceleration and

kinematic viscosity, respectively. The computational domain is discretized over a set of the

uniform particle (N, =250x500) and obtained results are depicted in Figs. 6-9 and 6-10 at

different time instants. In general, the evolution of RTI can be divided into three distinct stages

namely: linear, weakly non-linear and fully non-linear stages.
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Figure 6-10 Non-dimensional velocity contours in the x and y-directions (U =u/(gH)**) for

Rayleigh-Taylor instability problem at various non-dimensional time.

During the first stage of development, the buoyant force induced by density gradient across the
interface causes the denser fluid to move downward along the left wall while the relatively lighter
fluid rises up, leading to the formation of the clockwise vortex at the center of the enclosure. It is
evident from Figs. 6-9 and 6-10 that until T= 1, the amplitudes of the interface wave and velocity
components in the x and y-directions are almost symmetrical with respect to the center of the
enclosure which indicates that the Rayleigh-Taylor instability (RTI) development follows the
linear theory [85], [86]. However, as time progressed (1<T <3), intensity of recirculating flow
enhances and consequently the RTI development enters into the semi-nonlinear growth stage. In

this circumstance, the flow pattern starts to deviate from its symmetrical state and subsequently a
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pair of asymmetric mushroom-shaped structure in form of the descending spike and ascending
bubble is generated within the enclosure (T=3). This trend persists and even accelerates in the last
stage where the shear force causes the interface to roll-up/down, producing some secondary
vortexes within the enclosure (see also Fig. 6-10). Inspection of Fig. 6-9 reveals that, the
calculated results are qualitatively and quantitatively in an excellent agreement with numerical
data of Pahar et al. [87]. Finally, the smoothness of the interface and uniformity of particle
distribution in the zoomed-in views in Fig. 6-9 clearly demonstrate the robustness and potential
capability of the proposed algorithm in modeling multiphase problems involving large

deformations and physical discontinuities.

6.8.3 Rotation of a square patch of fluid and stretching circular water drop
(Cases A4 and Ab)

The effectiveness and performance of the newly proposed Hybrid Particle Shifting Technique
(HPST) are highlighted in this section through modeling of rotating square patch of fluid (case
A4) and stretching circular liquid drop (case A5) where due to unfavorable effects of concomitant
negative pressure gradient and high velocity field, particle bunching and void formation are

inevitable. As sketched in Fig. 6-1, case A4 consists of a weightless square patch of water (g=0)

subjected to the following clockwise-rotating eddy:

U (X, y)=+yw —L/2<y<L/2

Vo(X,y)=—X@w —L/2<x<L/2 (6-40)
po(xv y) =0

where w =1s™"and L =1denote angular velocity and length of the square patch, respectively. In

general, hydrodynamic behavior of rotating square patch of fluid is characterized by the
formation of the negative pressure field and severe particle migration towards the core region of
the vortex. This mechanism leads to large free boundary deformations and substantial
accumulation of particles in the vortex core which are responsible for onset and progression of
tensile instability problem. More precisely, during the earliest stages of growth, the centrifugal
force causes the middle parts to drag towards the center of the vortex while patch corners

propagate radially outward to satisfy local mass continuity.
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Figure 6-11 Comparison between the results of present work (a) and those reported by Sun et al.
[52] (c) for the case of rotating square patch of fluid (case A4). The effects of the particle shifting
technique on the particle distributions: (a) HPST=0n and (b) HPST=0ff.
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Fig. 6-11 (a) shows that as time goes on, the size of the sidewalls lessens and arms of the patch
start to grow, resulting in a formation of star-shaped structure within the fluid domain. However,
as expected, in the case of HPST=Off, particles begin to follow the pattern of streamlines while
gradually approaching the center of the circulation, resulting in simultaneous formation of
unphysical gap (branch-like structures) and numerical cavitation. Particle overlapping and non-
physical fragmentation of the fluid domain are, in turn, accompanied by concomitant density
error accumulation (iwﬁdv >1) and violation of mass and momentum conservation. These
j=1
progressive unphysical behaviors eventually jeopardize the stability and accuracy of the method,
leading to the premature failure of calculations (see Fig. 6-11 (b) and zoomed-in view of area 2).
Fig. 6-11 also portrays qualitative and quantitative comparisons between obtained results and
numerical data of Sun et al. [52]. As can be seen, a very good agreement exists between two

solutions.

To shed further light onto the HPST performance and its impacts on the particle regularization,
stretching of an initially circular water drop (case A5) is simulated where due to imposition of a
strong shear field and rapid shrinkage of the matrix, the fluid domain is prone to extreme

stratification and topological changes. As sketched in Fig. 6-1, the problem configuration consists
of a weightless circular water patch (g=0,2=10"°Pasand o =1000 kgm~) subjected to the

following irrotational velocity field:

U, (X, y) =-100x -R/2<x<R/2

Vo(X,y)=+100y  —-R/2<x<R/2 (6-41)
Po(X,y)=0

Fig. 6-12 shows that, due to large values of strain rate generated by irrotational velocity field, the
circular water drop undergoes striking morphological changes (i.e. elongation in the longitudinal
direction) during its development. Generally, extreme strain rate has a manifest tendency to keep
the drop compact, leading to the establishment of positive pressure field and high degree of
particle-particle interactions. Fig. 6-illustrates that as the drop evolves further into the oval or
ellipsoidal shape, magnitude of pressure at the core region decreases which indicates that rate of

particles bunching starts to decay as the time proceeds.
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Figure 6-12 Comparison of calculated results (a) with numerical data of Huang et al. [39] and Xu
et al. [79] (c) for the case of stretching circular drop (case A5). The effects of the HPST on the
particles distributions (a) and (b).
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Figure 6-13 (a) to (d) the snapshots of four different zoomed-in view of particles distributions
under the influence of the hybrid particle shifting technique. (e) and (f) time history of variations

of semi-minor axis and pressure at the center of the drop for case Ab.

Not surprisingly, similar to previous benchmark case, the prototype of the flow pattern in the
absence of the HPST is manifested by detrimental influence of the particle clustering and void
formation. It is evident from Figs. 6-13 (a) and 6-13 (b) that, in the presence of HPST (=On),
particles are hexagonally distributed without any unphysical gap which clearly demonstrate the
performance of the proposed HPST in handling tensile instability. However, when HPST is
turned off, the particle stratification and numerical fractures as undesirable effects of tensile
instability start to appear within the fluid domain which damages the interpolation accuracy in the
free boundary area. These progressively deteriorate the interpolation procedure and consequently
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direct the numerical simulation to a non-physical solution. The effects of this event are well
reflected in Figs. 6-13 (c) and (d) where the occurrence of particles stratification and coherent
structures ultimately lead to the unwanted termination of the calculation. By scrutinizing Figs. 6-
13 (a) and (b) one can conclude that, the PST causes particles to migrate from the area with high
concentration to the lower one, resulting in a rapid particle rearrangement within the
computational domain. The time histories of the pressure variations at the center of the drop
together with horizontal semi-axis movement are plotted in Fig. 6-13. As it is shown in this
figure, a reasonable good agreement is achieved between analytical solutions and those predicted
by present ISPH scheme. Furthermore, it can be seen from Figs. 6-12 and 6-13 that, the enhanced
ISPH model produces much smoother pressure distributions compared to previously published
conventional WCSPH results [39], [79]. The marked discrepancies between two numerical
outcomes can be attributed to the implementation of the higher-order discretization schemes and
consistent kernel function in the current work. The absence of the particle regularization
technique and employing non-conservative form of the governing operators especially in work of
Xu et al. [79] are two other major factors which can immensely affect the accuracy and reliability

of the SPH computations.

6.8.4 Entropy generation due to natural convection heat transfer (Case A6)

As a further verification, the entropy generation due to natural convection heat transfer (case A6)
is examined in this section where the smoothing operator (Eq. (6-A2)) is employed to estimate
temperature value (T ) in the buoyancy force (F, =—-pg (T —T,)) according to the Boussinesq
approximation. As depicted in Fig. 6-1, the horizontal walls of the cavity are thermally insulated
while vertical ones are maintained at different constant temperatures (T, >T.). Similar to
convectional Eulerian methods, a particle independency test (grid study) was conducted using

seven different particle distributions to ensure sustained accuracy. Table 6-2 reveals that, a

uniform particle size of 139 x139 ensures a particle-independent solution.
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Table 6.2 Effect of the grid size (particle independency test) on Nu for case A6 at low and high
Rayleigh number.

Number of particles (Case A6)

Ra 39x39 59x59 79x79 99x99 119x119  139x139  159x159
10° 1.0885 1.0964 1.1048 1.1117 1.1183 1.1201 1.1205
10° 8.4317 8.6536 8.7804 8.8605 8.9181 8.9222 8.9231

Generally, due to the presence of density gradient within the cavity, the working fluid in the
immediate vicinity of the left wall ascends upwards and gets lighter as its level of energy
enhances. Since the insulated top wall is impermeable, the expanded fluid turns its direction and
moves horizontally toward the right wall. After impinging onto the cold wall, it exchanges its
high level of energy and descends downward as it becomes gradually denser and heavier. The
condensed working fluid eventually travels horizontally outward in contact with the bottom wall
until it encounters the thermal boundary layer of hot area and completes its thermal cycle. Hence,
the clockwise vortex is developed inside the enclosure. It can be seen from Figs. 6-14 and 6-15
that at Ra= 10°, flow field is characterized by weak circulation pattern and corresponding
isotherms are almost parallel and evenly distributed, indicating that the temperature field is
totally decoupled from the flow field and conduction is the dominant mode of energy transport
within the enclosure. It is evident from Fig. 6-16 that the corresponding local Bejan number is

very close to unity ( Be =1) which signifies the strong dominance of thermal dissipation over the

viscous irreversibility (S; > S.). This observation is in accordance with the maximum and
average values of entropy generation due to heat transfer (S; ., =2.277and Sy =1.119) and

fluid friction irreversibility (S ., =0.244and Sk =0.035) provided in table 6-3. However, by

increasing the Rayleigh number up to 10%, the effect of buoyancy force gets more prominent and
consequently intensity of the recirculation inside the cavity enhances. This effect is dynamically
characterized by the horizontal elongation of main vortex core and the appearance of distinct

thermal boundary layer adjacent to the heated and cooled walls.
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Figure 6-14 Transient variations of isotherms as a function of the non-dimensional time at

different Rayleigh numbers for case A6.
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Figure 6-15 Transient variations of streamlines and velocity component in x-direction as a

function of the non-dimensional time at different Rayleigh numbers for case A6.

The enhancement in the flow intensity is also accompanied by a significant increase in velocity
and temperature gradients, resulting in a remarkable augmentation of both heat transfer rate and
total entropy generation according to Egs. (6-10) to (6-14). Note that, the slightly slanting
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isotherms and weak compression of streamlines along the vertical walls also imply that the
inception of the convection regime takes place at this Ra where viscous and buoyancy forces are

comparable. The comparison of average entropy generation due to both factors (§T >§F) in
table 6-3 reveals that the thermal dissipation is still the major source of irreversibility within the
enclosure. This observation is also compatible with Fig. 6-16 where local Bejan number with
values greater than half ( Be > 0.5) occupies the major part of the enclosure. Fig. 6-17 illustrates
that in this circumstance (Ra=10%) , the active zones of entropy generation due to thermal
dissipation are confined in the lower and upper halves of the isothermal walls where maximum
temperature gradient occurs (compatible with the characteristics of isotherms). This trend is
accentuated by increasing the Rayleigh number up to 10°. It is evident from Figs. 6-14 and 6-15
that due to strong convective motion and buoyancy force, isotherms are dragged towards the
vertical wall and streamlines become more twisted. In this condition, velocity components
undergo stretching and the clockwise circulation vortex is segregated at the core and
consequently two CW small eddies are developed within the enclosure. The horizontally oriented
isotherms in the middle portion and sudden decrement in the thickness of the thermal boundary
layer clearly confirm that heat is transferred primarily due to convection mode and viscous force
iIs no more in the flow. As displayed in table 6-3, by increasing the Ra, the contribution of Sg to

the total entropy generation augments such that average Bejan number declines rapidly and

becomes less than half (ﬁ: =0.197 <0.5). In fact, from the viewpoint of sensitivity analysis one
can deduce that, entropy generation due to viscous dissipation (Sg) is much more sensitive than
the heat transfer irreversibility (St) to any alteration in Rayleigh number and flow intensity.
However, by increasing the Ra, heat transfer irreversibility enhances marginally and becomes
more pronounced at the lower and upper portions of the left and right sidewalls with a local

maxima of S; . =60.56. As expected, for higher values of Rayleigh number (Ra=10%), the

primary source of exergy destruction (or irreversibility) in the cavity turns out to be viscous
dissipation. It is obvious from Fig. 6-16 that, the active zone of local Bejan number is restricted
to a relatively small portion of the middle zone where fluid is nearly stagnant and characterized
by an elongated uni-cellular motion and thermal stratification.
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time at different Rayleigh numbers for case A6.
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Figure 6-17 Transient variations of local entropy generation due to heat transfer (St) as a function

of the non-dimensional time at different Rayleigh numbers for case A®6.
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Table 6.3 The effects of the Rayleigh number on the maximum velocity components, average
Nusselt number and entropy generation for case A6 (steady-state condition).

Case A6

Ra Nu |U max| IVmax| Be Stot Stot,max St ST,max Sk SF,max
10° 1.130 3.620 3.692 0972 1.146 2.280 1119 2277 0.035 0.244
10 2.247 16.181 19.584 0.685 3.240 25.213 2.224 12579 1.024 16.115
10° 4.544 43473 68583 0.197 22.836 590.981 4.455 60.567 18.379 558.463
10° 8.973 123.006 221.389 0.026 335.163 15877.142 8.628 320.880 326.532 15754.417

By comparing the local Be and St in Figs. 6-16 and 6-17 one can conclude that, although the
active zones of St are concentrated adjacent to the vertical walls but they are comparatively
trivial compared to Sg, resulting in a substantial reduction in the values of local Bejan number (
Be «<0.5) in those regions. The foregoing discussion implies that at this stage, only negligible
amount of the available work is exploited to overcome the irreversibility due to heat transfer (

S; < S;). Similar findings were also documented by Basak et al. [88] and Das et al. [89], [90]

who investigated entropy generation during the natural convection in square, triangular and
trapezoidal enclosures. Comparison with previously published work in terms of streamlines,
isotherms, local Bejan number, entropy generation due to heat transfer and average Nusselt
number is depicted in Fig. 6-18. It can be seen that, there is an excellent agreement between the

present calculations and those reported by llis et al. [72]. It is necessary to note that for sake of
the brevity, transient variations of S, St,Se,Be together with the velocity contour in the y-

direction are provided as a supplementary material.

6.9 Conclusions

The present study introduced two novel gradient and Laplacian operators in the Lagrangian
framework for analysis of free-surface flows and thermal characteristics of convection heat
transfer problems. Moreover, a novel hybrid particle regularization scheme is developed to
improve the consistency and accuracy of the numerical model. In addition, a new free-surface
detection technique has been proposed for the treatment of free-surface particles and the

enforcement of the Dirichlet boundary condition for the Pressure Poisson Equation. Feasibility
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and performance of the developed models have been verified through various challenging test
cases and experiments. Based on the results obtained from the present investigation, the

following major conclusions can be drawn:

e The results show that, the newly developed smoothing kernel (W) remarkably

outperformed the existing kernel functions (i.e. Cubic and Wendland) in modeling of
shockwave propagation and multiphase flow with physical discontinuities.

e It is found that, the proposed Hybrid Free-surface Detection (HFD) technique can
successfully identify the position of interface and its nearby particles.

e It is found that, the proposed Hybrid Particle Shifting Technique (HPST) can efficiently
eliminate spurious pressure fluctuation caused by tensile instability (particle clustering)
from the computational domain.

e The results show that, particles in Lagrangian framework have a natural tendency to
cluster along the streamline, resulting in a significant void formation and density error
accumulation.

e The results show that, implementing an efficient particle regularization technique (HPST)
can significantly enhance the accuracy and stability of the numerical solution.

e The results show that, the combination of the third-order TVD Runge-Kutta scheme and
two-step projection model provides more accurate and reliable results than the classical
SPH model.

e The results show that, implementing high-order discretization schemes for gradient,
Laplacian and divergence operators can immensely enhance the accuracy and consistency
of the ISPH method.

e The results show that, the proposed high-order gradient and Laplacian operators produce a
much smoother pressure field than the conventional WCSPH formulations.

e The obtained results vividly demonstrate the broad applicability of proposed models for
simulating free-surface flows and particulate flows with thermal convection.

e The results show that, the proposed Modified Pressure Gradient operator (MPG) can
successfully resolve the problem of particle clumping on the interface while retaining the

conservation properties of momentum.
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e The results show that, the proposed smoothing operator can efficiently handle density
discontinuities in the multiphase flow problems (e.g. Rayleigh-Taylor instability).
e The results show that, by increasing the Rayleigh number, average Nusselt number and

entropy generation due to both factors (S;, Sy ) augment while a reverse trend occurs in

the values of local and average Bejan numbers.

As a future investigation, the proposed models will be extended to explore multiphase flow with
high density ratio such as bubble rising, two-phase dam break and water droplet falling in air
where undesirable particle scattering/clustering is likely to occur on the interface. It would be a
future challenge to investigate turbulent natural convection heat transfer in porous enclosure
which has many important applications ranging from electronic packaging to solar collector

technology.
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6.11 Appendix A (gradient, Laplacian and divergence operators)

Detailed description of the derivation of governing operators including gradient, divergence and
Laplacian is presented here for a general class of Lagrangian framework. Generally, for 2D

space, by multiplying both sides of Eq. (6-Al) by W, VW, ,, VW,

ix» VW, and then integrating it over

point (X;yi), the numerical approximations of a field function (f;) and its derivatives can be
obtained as follows:

. . 1 .. 1 .. \
fo=f+fx+f,y; +§ fxxxif +§ fyyyi? + X Vi +0(h?) (6-Al)
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N N N N
z fJ'Wii dv ZWijdV Z XijWijdV Z yijWijdV
fi =1 j=1 j=1 j=1
. N N N N
fo|=L| 2 fiVW;,av L=| > VW, dv X; VW, AV y; VW; dV (6-A2)
f ' =1 j=1 j=1 j=1
y N N N N
> fvw, dv DVW, AV D VW AV Dy VW, dV
=1 | | j=1 j=1 j=1 |

In above equations, W;, VW, , and VW, are kernel function and its first spatial derivatives in x
and y-directions. dV =m, /pj is the volume of the particle while x; =x;—xandy; =y, -V,

denote the distance between target particle i and its neighboring particle j, respectively. L is a
corrective matrix which satisfies the first-order completeness condition for the kernel function. It
is interesting to note that, Eq. (6-A2) is equivalent to the MLS approximation proposed by

Nayroles et al. [91]. In the present work, Eq. (6-A2) will be referred to as smoothing operator
henceforth.

By subtracting fi from both sides of Eq. (6-Al) and multiplying it by VW,  andVW, , the
gradient operator can be obtained as follows:
N N N -1
" 2 (= F)VW, av D% VW v Yy VW, dV
=] L=| ™ = (6-A3)
f N N N
y D (f - f)vw, dv D% VW, dv Ty YW, dv
=1 =1 =1

Eq. (6-A3) was initially proposed by Krongauz et al. [92] and was then successfully implemented
by Oger et al. [93] to solve the dam-break problem. However, in the case of kernel with compact

support, all off-diagonal elements of matrix L vanish, forming the symmetric diagonal matrix (

N N
DY VW, AV =D x VW, dV =0) as follows:

j=1 j=1

N -1

X; VW ,dV 0
=1

L= (6-Ad)

N
0 Y, YW, v
=1

j
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In this circumstance, gradients of the field function can be estimated with the lowest

computational cost as follows:

N N

2 (f; = F)VW, dv o 2 (= F)VW, dv
== a S e . (6-A5)
Z; X; VW, dV Z; y,; VW, ,dv
i= =

The above equation is known as a Modified Version of the Conventional SPH derivatives
pioneered by Johnson et al. [94] which has been frequently used to express the rate of
deformation. It should be noted that, Eq. (6-A5) cannot guarantee a linear exactness adjacent to

the interface where the kernel function is truncated with insufficient number of the particles.

It is also possible to derive the second gradient operator by subtracting f; from both sides of Eq.

(6-Al) and multiplying it by VW /r andVWJy/rIJ instead of VW. = and VW. . This gives:

ij,x ij,x ij,y "

_N(f—f) | (& X VW, N ™
. Z ! VWij'XdV z ij _ LY Z yu X g\
fx =L = ij L j=L rij =1 r (6 A6)
fy y (fj —f ) VW, dV | X'JV\N'J y . ylj ij.y
S, S Ay $ 0 gy
j= ij | = = |

By subtracting Eq. (6-Al) from f; and decomposing it into two separate equations in x and y

directions, the Taylor series approximation can be written as follows:

l 1
fi—f=fx+fy+ fxxX.J += fyyy” (6-A7)
Lot _fy=t f 6-A8
E( i i)_ xXij+§ XXXIJ ( - )
1 1
E(f f; )_ f le fyyyu (6'A9)

The SPH stencil for the second derivatives of f; can be calculated by multiplying Egs. (6-A8) and

(6-A9) by x; VW, .and y, VW, , and integrating it over all neighbor particles j as follows:

ijy’
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N N N
Zl (f;— )%, YW, dV = fx'z X VW, dV + fx"le XVW; dV,
a2 ' 1 ’ a2 '
N 1 ' N )
;Z(f = F)x VW, dv - fxz;xijvwijyxdv (6-A10)
f" — J= 1=

XX

-1

> X VW, AV

_ 2 1j 1j,X

=1

§N:1ff v = y2vw, dv + 13 L ysvw, d

.15( = )y YW, dv = yZ;yijvwij,y V+ yyleyijvwij,y v,
i= =

J:

N 1 N
;2”1 - )y VW ,dv — fyzll yi?VWiJ,de (6-A1l)
f =2 =
yy N 1 '
Z;z yivVW; ,dv
j=

Finally, by summing the terms f,_ and fy"y expressed in Egs. (6-A10) and (6-Al1), the Laplacian

operator can be obtained as follows:

N 1 N
Zg(f i = )% VWAV — £, > XYW dv
vif=f, 4+ f =22 =

N 1 "
Z 5 xﬁVWij’XdV
-1
5 S (6-A12)
Z;Z(fj - f) YijVWij,de - fyz; yUVWiJUVdV
j= 1=
L avw dv
ZE i VWi,
j=1

where f, and fy' are the first derivatives of the shape function (f;) which can be computed

through Eqg. (6-A3) or (6-A6). It is worth mentioning that, by comparing the Egs. (6-A5) and (6-
A12), one can conclude that, the aforementioned equations are analogous to the approximations

used in the finite difference method where partial derivative in the x-direction (x or y) is totally
independent of other directions.
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However, similar to gradient operator, in the case of uniform particle arrangements (

N
Zx VW, dV = ZijW dv = Oandz 3VV\/iJ.’XdV=Z ysVW, ,dV ) the discretization of

22

the Laplacian operator can be simplified to the following expression:

N
o 2) (f; = £) %YW, v +2Z(f f.)y, YW, ,dv
Vit =f, +f, =—"1 - (6-A13)
D XEVW, dV + Z ysVW, dV
j=1 j=1

N N
Note that, the expression of Z%xf;VWijyde=z y;VW, ,dV can be proved by solving

j=1 72

J'1 X VW LAV andj Yi VW ,dV in a polar coordinate system (x; =¥, COS¢, y; =T sing).

It is worth mentioning that, by multiplying Egs. (6-A8) and (6-A9) by X;VW, /r and

ij, X

VW, , / instead of x, VW, ,and y;VW, , the second Laplacian operator can be obtained as

ijy’

follows:
N 1 I I X IZVWI X
Zz(fl_f) ‘ J dV—fZ ) X dv
sz:fx"x+f"=J 'J +
Y 1 X; VWIJ )
Z dv
=52
v q y (6-A14)
ZE(fJ f) |Jde fz IJr uydv
j=1 I] =1 ij
Z 1 y'JVWIJ Y qV
2 r?

j=1 ij
Similar to previous approach, for regular particle distributions, Eq. (6-Al14) can be reduced to a
simpler form as follows:
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. VW,
VA= f o+ f,=2> (- f) %Y "XdV+ZZ(f —f) - =Y dv,
j=1 rl] ij
. vw
Vi =f o+ f, =2> (f-f)L15—" T YW gy

j=1 IJ

(6-A15)

Eq. (6-A15) was initially introduced by Cummins et al. [95] for discretization of PPE operator
and then modified by Lo and Shao [96] for treatment of the viscous term in Navier-Stokes

equation.

6.12 Appendix B (1D Sod shock tube)

The governing equations (momentum, energy and continuity) in a Lagrangian framework along

with the classical numerical procedure for solving 1D Sod shock tube problem is detailed here

[6].

B _ZN: i, ;) VW, (6-B1)
—=——Z —+p—)(U., VW) (6-B2)
p= ZN: m;W; (6-B3)

u™ =u®™ + At——

M) _ o) | AtDL(n) (6-B4)

r.(n+1) — r(n) +Atu(n+1)

p=p(y—De, c= s (6-B5)
P
In above equations, €, ¢, ¥ =1.4and u represent internal energy, artificial sound speed, heat

capacity ratio and velocity of the gas, respectively. Similar to work of Liu et al. [6], 320 particles

with high level of pressure and energy are uniformly spaced in the high-density area [-0.6,0]

while 80 particles are uniformly spaced at low density region [0,0.6].
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X<0, p=1 u=0, e=25  p=1 Ax=0.001875, m=0.001875

x>0, p=025 u=0, e=1795 p=0.1795 Ax=0.0075  m=0.001875 (6-86)

Axand At are particle spacing and time step, respectively. Simulation has been conducted for 40
time step with Atbeing 0.005s. The arrangement of equations given above clearly show the
solution steps for programing in which first, Egs. (6-B1) to (6-B3) are solve and then particles are
shifted to the new positions with updated velocity and internal energy using first order Euler
forward time discretization scheme (Eq. (6-B4)). In the last step, pressure and artificial sound
speed for each particle are updated using Eq. (6-B5). This procedure is repeated until t=0.2s. In
resolving the shock, the artificial viscosity (IT; ) suggested by Monaghan [97] is typically used to

prevent particle bunching and enhance the stability of the method as follows:

—Ot(_)ij¢i- +ﬂ¢|-2

LT gy <0
Hij = Pij

0 u;-r; >0

. hij (uij 'rij) (6_87)
M= oot
Nl +o

- Cc,+C, — P+ P
Cij: 2 J, pij:Tj’ gp:oolh”, a:ﬂ:l

Finally, Cubic [74] and Wendland [75] kernel functions which have been used for comparison

purposes in section 3 are provided below:

2/3-R*+R%*/2 0<R<1

W, =a{ (2-R)*/2 1<R<2
0 R>2 (6-B8)
1 15 3
Hp =1

Oyp == O3p =,
h' 2° 7zh?" % 27h°
(1-R/2)*(2R+1) 0<R<2
Wij=a
{o 2<R
8 T 2
4h’ "?°  4zh?’ TP 167zh%]

(6-B9)

Qp =
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6.13 Appendix C (Hybrid Particle Shifting Technique)

Motivated by works of Xu et al. [43] and Lee et al. [58], along this appendix a novel Hybrid
Particle Shifting Technique (HPST) is developed by the combination of the PST and collision
models. The model consists of two separate parts namely: deriving new PST through Taylor
series expansion and constructing a novel collision model based on the concept of the Discrete
Element Method (DEM) [76]. By subtracting f; from both sides of the Eq. (6-A1) and multiplying

it first by x;W; and then by y,W; the following equations can be obtained:

(f; = x5 = FoqW, + £y, W, (6-C1)
(fj - fi)yij = fou y|j\Nij + f;;yi?\Nij (6-C2)

By integrating both sides of Egs. (6-C1) and (6-C2) over the neighbor particles and imposing the

assumption of homogeneous particles distribution (Zx y;W;dV =0), the first partial derivatives
j=1

of shape function read as:

N N

' inj(fj_ fi)WijdV . Zyij(fj_fi)wijdv
f,=2"— f, =12 (6-C3)
Z X2, dV Z yaw,dv
j=1

By eliminating the term (fj-f;) from Eq. (6-C3) and defining (A ) as a constant parameter, the final

form of the PST can be written as:

| x,PST — ﬁ Z XuVVu av | y,PST — ﬂ Z qu dv (6'C4)

S =0.5ah?is a shifting coefficient which controls the magnitude of particle displacement with

0<a<1. hand N denote the smoothing length and number of neighbor particles, respectively.

-y

N N
The constant coefficient Lambda (A= ZXU LAV =) yawdv == ZrifvvijdV) should be
= = J'=1

calculated at the initial arrangement of particles (initial time step, t=0) where kernel has a fully
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compact support (inner particles). In fact, in order to keep magnitude of particle shifting constant

(or,), the parameter Lambda (A ) should remain unaltered during the simulation.

To derive the collision model, it is assumed that each fluid element is circular (in 2D space) or

spherical (in 3D space) in shape with radii R;. In the case of the physical contact (

O, =R +R, —‘Fj —Fi‘)>0), the normal collision forces ( f; and f, ) with associated particle

displacements (¥, , pey @and 1, |, ey ) €an be calculated as follows:

Sy = Ry +R =[ri=ri))ne = (x5 =x)/|ri (6-C5)

Soyy =R +R=[ri=ri)ny 0y =(y,-y))/ri (6-C6)

£y =D (kg + 7o) Sl = () T,/ 6-C7)
J;l

f, = —;(knan,yij +VaVoyi)  OF, pew = (dt) £, /m (6-C8)

where, k,, njand m. denote normal spring stiffness of linear spring, normal unit vector and mass

and o

of particle. o i

n,xij

are normal overlap distance between two contacting particles i and j with
position vector ryj = r,—r. f,and f; are sum of all contact forces from neighbor particles in x

and y-directions. y, and Vadenote the normal damping and the normal velocity components in

the x and y-directions (v

wii» Vo ) Which can be computed as follows:

Vhij = (Vij - Nij) Njj (6-C9)
However, in order to preserve liner momentum, the value of y, is taken as zero in the current

work.
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Abstract

The main objective of the current work is to enhance consistency and capabilities of Moving
Particle Semi-implicit (MPS) method for simulating a wide range of free-surface flows and
convection heat transfer. For this purpose, two novel high-order gradient and Laplacian operators
are derived from the Taylor series expansion and are applied for the discretization of governing
equations. Furthermore, the combination of the explicit Third-order TVD Runge-Kutta scheme
and two-step projection algorithm is employed to approximate transient terms in the Navier-
stokes and energy equations. To further improve the accuracy and performance of the method, a
new kernel function is constructed by a combination of the Gaussian and cosine functions and
then implemented for modeling the 1D Sod shock tube problem. Validation and verification of
the proposed model are conducted through the simulations of several canonical test cases such as:
dam break, rotation of a square patch of fluid, two-phase Rayleigh-Taylor instability, oscillating
concentric circular drop and good agreement are achieved. The proposed model is then employed
to simulate three-phase Rayleigh-Taylor instability and entropy generation due to natural
convection heat transfer (Differentially Heated Cavity and Rayleigh-Bénard convection). The
obtained results reveal that, the newly constructed kernel function provides more reliable results
in comparison with two frequently used kernel functions namely; quartic spline and Wendland.
Furthermore, it is found that, the enhanced MPS model is capable of handling multiphase flow

problems with low and high density contrast.
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7.1 Introduction

The Moving Particle Semi-implicit (MPS) method belongs to a group of truly Lagrangian mesh-
free (particle) methods for continuum modelling, which was originally pioneered in the work of
Koshizuka et al. [1] to investigate incompressible fluid flow with free surfaces. Contrary to
conventional Eulerian methods with topological constraints (mesh distortion) [2], [3], the MPS
takes the advantages of being Lagrangian and free from any mesh system, which make it fairly
natural in modeling of violent free-surface flows, particularly those involving large deformation,
fragmentation and breaking. Similar to other particle methods like Smoothed Particle
Hydrodynamics (SPH), MPS represents the continuum fluid by a finite set of “discrete particles”
where the interaction of freely-moving particles is determined by means of specific smoothing or
kernel function. In view of its flexibility and potential effectiveness in handling highly nonlinear
multi-physical interaction problem and convection-dominated transport phenomena, applications
have been extended to various engineering and science problems [4]. Simulation of wave-
structure interaction [5], analysis of natural/forced convection heat transfer and Arc welding [6],
[7], nuclear reactor design and dynamic analysis of landslide [8], [9], modeling of violent free-
surface flows [10], simulation of multiphase flows and solid-liquid phase change process [11]-
[13], analysis of liquid droplet and liquid jet atomization [14], [15] are just a few examples of
such studies in which particle methods such as MPS were adopted to solve complex flow and
transport  problems. An up-to-date comprehensive literature review concerning recent
applications and future prospects of the meshless particle methods can be found in works of
Wang et al. [16] and Shadloo et al. [17].

Despite several advantages, similar to other particle methods, MPS has several drawbacks
including unphysical pressure fluctuations and particle clustering [18]-[21], uncertainty in the
selection of appropriate kernel function, implementing discretization schemes with low order of
accuracy in space and time [22]-[26] and non-conservative form of pressure gradient operator
[27]-[29]. Over the past decade, substantial research efforts have been devoted to enhancing the
accuracy and stability of particle methods such as MPS. As pointed out in [4], one of the major

factors for the loss of accuracy in the particle methods comes from the inconsistency in governing
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operators. MPS (and SPH) are formulated based on the hypothesis that particles are distributed
evenly across the whole computational domain whereas this assumption is not valid in certain
regions characterized by truncated kernel function or unphysical particle accumulation
(depletion) [30]. To overcome this shortcoming and reduce the truncation error associated with
low order discretization schemes, Oger et al. [22] introduced the concept of Renormalization
technique based on a Taylor series expansion. This technique was then adopted by Khayyer et al.
[24] and Xu et al. [26] in the context of the MPS to establish the high-order gradient operator.
They showed that, reproducing the gradient operator through implementing corrective matrix can
significantly minimize the spurious pressure oscillations and provide more homogeneous particle
distributions, accordingly. Similar observations were reported by Liu et al. [23] and Duan et al.
[25] who developed two novel high-order Laplacian models by eliminating the first-order partial
derivatives from the Taylor-series expansion. They reported that, the corrected Laplacian model
can effectively reduce the solution fluctuations and provide more accurate results than the
classical MPS formulations. To decrease numerical discretization errors generated by solving
non-conservative form of momentum equation, Sun et al. [27], [28] presented a novel switching
technique so-called Tensile Instability Control (TIC) that was achieved by altering Navier-Stokes
equations into the non-conservative form in the specific regions characterized by numerical
cavitation and particle bunching. To fulfil the conservation law while preserving the first-order
completeness, Garoosi et al. [29] proposed a new hybrid pressure gradient operator (for a kernel-
derivative-free SPH, which mimics the characteristics of MPS) based on Renormalization
technique [26] and Tensile Instability Control (TIC) [27], [28] and showed that, the newly-hybrid
method can efficiently remove the particle clustering and undesirable pressure noise from the
free-surface area. As stated before, another major source of instability can be traced back to the
Lagrangian nature of the MPS model. Generally, particles in the Lagrangian framework have a
tendency to travel along the streamline trajectory, resulting in the occurrence of void formation or
particle stratification within the fluid domain. This inconsistency leads to a serious degradation of
interpolation procedure and loss of accuracy [31], [32]. To attenuate adverse effects of tensile
instability and maintain nearly uniform particle distribution, in a pioneering works, Xu et al. [18]
and Shadloo et al. [19] suggested the use of rearranging the particle position (artificial particle
displacement) that was achieved by slightly deflecting particles across streamlines, thereby
avoiding the substantial stretching and clumping of particles. They found that, implementing
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particle shifting/reordering scheme can help achieving more reliable, stable and noise-free
solutions even at high Reynolds numbers without sacrificing precision. However, the results of
Lind et al. [21] showed that, the PST causes particles to escape from free-surface area, resulting
in an unrealistic particle scattering (particle separation) within the computational domain. To
address this limitation, Khayyer et al. [20] proposed an optimized version of the Particle Shifting
Technique (OPS) via a careful elimination of the normal shifting from the free-surface area and
its nearby particles. Uncertainty in the selection of appropriate kernel function is another factor
which can immensely influence the performance of the particles methods [33]. Hongbin et al.
[34] conducted a comparative investigation on various types of the kernel functions and
concluded that, Gaussian and Q-spline kernels considerably outperformed the existing Cubic and
Quartic kernels in modeling one dimensional shock tube problem. Liu et al. [35] presented a
general approach for constructing an efficient kernel function and demonstrated that, the
smoothness of the first and second derivatives of kernel function has a significant impact on the
accuracy and stability of the numerical simulations. Similar findings were documented by Yang
et al. [36], [37] who constructed two new kernel functions (hyperbolic-shaped and double cosine
kernels) for modeling viscous liquid drop and water entry of a horizontal circular cylinder.
Despite the success of these attempts, choosing an efficient smoothing function is still a subject
of controversy [38]-[40].

In light of the above literature review, the primary objective of the present work is to introduce
two new higher-order gradient and Laplacian operators to enhance the accuracy and convergence
performance of the original MPS approach in modeling free-surface flows and convection heat
transfer. For this purpose, the classical governing operators are first reformulated based on the
Taylor series expansion and are then employed for discretization of diffusion terms, Pressure
Poisson's equation (PPE) and divergence of velocity. To further suppress the error caused by
irregular particle distribution, a novel high-order kernel function is constructed by combination of
the Gaussian and cosine functions. To maintain overall high-order accuracy, the combination of
the third-order TVD Runge-Kutta scheme and two-step projection method is used for the
treatment of the transient terms in the Navier-stokes and energy equations. The feasibility and
validity of the proposed models are verified via simulation of four different challenging
benchmark cases including dam break, rotation of a square patch of fluid, two-phase Rayleigh-

Taylor instability and oscillating concentric circular drop.
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Figure 7-1 Schematic diagram of eight different canonical test cases with associated boundary

conditions and coordinate system.

7.2 Problem statement and governing equations

Schematic representation of eight different canonical test cases with associated boundary
conditions and coordinate system are sketched in Fig. 7-1. In all the simulations, the flow is
considered to be laminar, two-dimensional, Newtonian and incompressible except for the case of

1D Sod shock tube problem where the gas is compressed isentropically in accordance with a stiff
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equation of state (EOS). The thermo-physical properties of the fluid are assumed to be constant
except for the density in cases B3 and B4 which varies linearly according to the Oberbeck-

Boussinesq approximation.

Based on the aforementioned assumptions, the continuity, momentum, energy and displacement

equations in the Lagrangian description read as follows [41]:

ou ov
& + 5 = O, (7'1)
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where u: (u, v) and r: (x, y) represent fluid velocity and position vectors. p, «, kand C are

fluid density, dynamic viscosity, thermal conductivity and specific heat capacity, respectively. D
denotes the substantial derivative and t is time. The flow motion is mainly governed by the
external body force per unit mass (F,) exerted on the particle which would be gravity force (
F, =pg) in the multiphase flows or buoyancy force (F,=—-pg (T -T.)) in the natural

convection heat transfer. By introducing following non-dimensional parameters:
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Egs. (7-1) to (7-5) can be converted to the following non-dimensional forms for the case of

natural convection heat transfer:
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where Pr and Ra are Prandtl number and Rayleigh number, respectively. As described by Bejan

[42], dimensionless form of the entropy generation rate (S, ) due to heat transfer (S; ) and fluid

friction irreversibility (S ) for 2D problems can be expressed as:
2 2
s =|[99) (29 (7-12)
oX oY

2 2 2
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oX oY oy oX
@is called irreversibility factor which represents the ratio of the fluid friction to the thermal
dissipation. It is given as [43], [44]:
ut,o
(7-14)

In the present work, the value of @in cases B3 and B4 is considered as 10 similar to previous

works of Ilis et al. [45] and Biswal et al. [46]. The global average entropy generation (§tot) due

to both factors (S;,S; ) can be calculated via integrating the local entropy generation rates over

the whole domain:

- 1 - 1 - _
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The relative contribution of heat transfer irreversibility to the total entropy generation rate can be
mathematically defined by calculating local and average Bejan numbers as [47]:

S
Be=—" B 1 7-16
S +5, Be—vaedXdY (7-16)

According to the above definition, 0<Be<0.5 implies the relative dominance of the viscous

dissipation (S; ) whereas 0.5 < Be <1 indicates that heat transfer irreversibility (S; ) is dominant.

However, for the case of Be =0.5, entropy generation due to the viscous effects and heat transfer
have the same order of magnitude.

Once the temperature distribution is calculated, the net rate of heat transfer within the enclosure

can be quantified by means of the average Nusselt number as follows:

hH 00 — 1 (H 00 - _ 1ol
NU=—=——" Nu=— —_— Nu=— —dX -
<o MR ax H o v (7-17)
As shown in Fig. 7-1, no-slip boundary condition is imposed on the impermeable surfaces as
follows:
U=V =0, (7-18)

For the specific case of the convection heat transfer (cases B3 and B4), the energy equation (Eg.
(7-10)) is subjected to the following boundary conditions;

6=1 6=0 On the heated and cooled walls
00 7-19
o =0 On the adiabatic walls ( )

7.3 Implementing boundary condition in a Lagrangian framework

As highlighted before, unlike the conventional Eulerian mesh-based methods, addressing the
influence of the solid walls in the purely Lagrangian mesh-free models such as MPS and SPH is
not often as straightforward as it seemed. In the present work, the dynamic ghost particle
technique suggested by Marrone et al. [48] is employed to satisfy no-slip and no-penetration

conditions on the rigid walls. Fig. 7-2 reveals that, in this technique, both tangential and normal
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component of fluid velocity with opposite sign (no-slip) is extrapolated on the corresponding

wall particles outside of the flow domain. However, to impose the Neumann boundary condition,
the target variable (i.e. pressure ( p;) or temperature (6,) on the isolated walls) is first computed

on the solid boundary line using Eq. (7-20), and then the predicted values are assigned to the
corresponding ghost particles in the same row, column (i.e W1,W2 and W3) or corner (C1 to C9).
Note that, as schematically shown in Fig. 7-2, only the fluid particles in the support domain of the

kernel function are utilized to approximate the pressure or temperature on the fixed ghost
particles.

L pW. LOW,
z pJ [ dV z 17l dV
0 j=1 ‘rij‘ P = ‘rii‘
! N p.XW. i N G x.W
P | = L[ D 2 gy O [=L| 2V (7-20)
= ‘ﬁj‘ 0 i1 ‘ﬁj‘
P N p,yW v v, 6,y W
Z P; YWV qv Z i Yii ¥V Y
= I
In above equation, L denotes renormalized matrix defined by
IR W wo |
N \W. N W N v.\\W.
> —dv o Y v zy” Ldv
i |F i |5 i |l
N x W N AN N xy W
L= Y =—dv > FHdv ) ROk (7-21)
[ i % i |f
Ny W Noxoy W N yAN.
Zylj ij dV Z uyu ij dV Zyu 1j dV
L= |5 =1 |l R |
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Implementing the mirror velocity technique

+ Inactive area

Active zone for implementing
mirror velocity technique

- Wall area

Figure 7-2 The conceptual illustrations of implementing Neumann (dp/dn =0, 96/0n=0) and

Dirichlet (mirror velocity technique, u =0) boundary conditions in the context of the Lagrangian

particle method.

For more details see also Eq. (7-A2) in appendix A. It is worth to mention that, the enhanced

version of the imposition of the Neumann boundary condition can be found in works of

Matsunaga et al. [49] and Duan et al. [50].

7.4 New kernel function

Inspired by works of Hongbin et al. [51] and Yang et al. [36], [37], in this section, a novel high-

order smoothing kernel is constructed by merging the Gaussian and cosine functions as follows:
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_R?

R =)
cos** (T e ~ 0<R<3
Wij =0p ( 6 )
0 R>3 (7-22)
0.518442932 0.274031624 0.147708163
ot T T %o T T

In above equation, h andR:‘rij‘/h are smoothing length and support domain of the kernel

function, respectively. «, is the dimension-dependent normalization constant [35] which

N
satisfies an essential requirement of being unity (Zwﬁdv =1) in all the three dimensions. It is
j=1

evident from Fig. 7-3 that, the newly constructed kernel function is non-negative (

W;(0<R<3)>0) (Positivity), even (Symmetric property) and decays monotonically as the
relative distance (R) augments (Decay property). In addition, owing to the simultaneous presence

—R?

of the Gaussian ( Exp( "
VA

. R . - i .
)) and cosine (cos*®( 5 )) functions, it is outstandingly continuous

with the compact support of R=3 even for higher derivatives of kernel function (Va\/\/ij,

Smoothness criteria). The new kernel also fulfills the Dirac delta function condition when its

support domain approaches zero (Ihingvvij(h,R):é, Delta function property) [52]. The

performance and consistency of proposed kernel function are also demonstrated via numerical
modeling of 1D Sod shock tube problem where two following well-known kernels (i.e.
Wendland [53] and quintic spline [52]) are used for comparison purposes. The predicted results
in terms of gas velocity, density, internal energy and pressure profiles at time t=0.2s are plotted
in Fig. 7-3. The comparison with reference exact solution reveals that, the proposed kernel
function is stable and reproduces much more accurate solutions than the Wendland and quintic
spline kernels in the area of rarefaction wave (—0.3<x<0), contact discontinuities (
0.1<x<0.15) and shock wave (x=0.3). It is evident that, the variations of density, pressure
and velocity across the contact surface and expansion wave are continuous and the shock position
is captured with no smearing or overshoots while large amplitudes of oscillations take place in

the results obtained using two other kernels.
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Figure 7-3 The effects of the kernel type on the spatial variation of density, pressure, velocity and

internal energy along the shock tube at t=0.2s .
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A more detailed description of the underlying methodology and discretization process can be

found in appendix B.

7.4.1 Discretization of governing equations and solution methodology

The non-linear governing equations (7-1)-( 7-5) with associated boundary conditions (Egs. (7-18)
and (7-19)) are discretized over a set of mobile particles in the context of the Moving Particle
Semi-implicit (MPS) method where the contribution of each neighboring particle is approximated
by the use of the newly proposed smoothing kernel (Eg. (7-22)). In the current work, the
combination of the third-order TVD Runge-kutta scheme [54] and classical two-step projection
method [55] has been employed for the treatment of the velocity-pressure coupling and transient
terms. The aforementioned algorithm separates calculations into three distinct stages (i.e. explicit,
implicit and explicit) at each intermediate step of the Runge—Kutta scheme (TVD-RK3). In the
first explicit stage, an auxiliary velocity is estimated through Navier-Stokes equations without the

pressure term as follows:

u =u"+ (V" +F,/p)At (7-25)
In the implicit stage, pressure is evaluated through PPE by taking into consideration the fluid

incompressible condition (V-u* =0) as:

(7-26)
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The superscript (*) denotes the first step of the TVD-RK3. The above equation is discretized
using the proposed Laplacian and gradient operators as follows (see also Egs. (7-A10) and (7-

A15) in appendix A):
1 N N 1 N N
EZ(pj - pi)WijdV - pi,xzxijwijdv EZ(pj - pi)WijdV - pi,yz yijWijdV
j=1 j=1 n j=1 j=1

N N
JZ_;; XW,dV JZ_;; YWy dV (7-27)
&i (U —up)-r, (LW, dV

where L is the corrective matrix and p,,and p; denote pressure gradients which should be
calculated via Eqg. (7-36). In the last explicit stage, the material derivatives of velocity (Du/Dt)

and energy ( DT/Dt ) are computed through Egs. (7-2) to (7-4) as follows:

n 1
Du = _V_p + H Vau" + 5 (7-28)
Dt p P P
DT"_ K yerr (7-29)
Dt pC,

After solving equations (7-28) and (7-29), the first step of the Runge-Kutta scheme can be

accomplished as follows:

)
u® =u™ + At

r® — ™ L Aty® (7-30)

(n)
o® =g 1 At P2

n

By repeating the above procedure with updated values of u®, r®and@® (instead of the u", r

and 8"), the second step of the TVD-RK3 scheme can be fulfilled as below:
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u® =3y Lo Ly Du®
4 4 4 Dt

3o L, Ly o
4 4

0® = %9“’ +%9<1> +%At Dgt“)

This trend is continued for the third (last) step where particles are advected to the new positions (

r™™) with the modified velocity (u®™™) and temperature (@) as follows:

urn ~Lym  2y@ 2 Du®
3 3 Dt
o _Lpo  2p@ 2 o (7-32)
3 3 3
v = Low  2g0 2 5 Do
3 3 3 Dt

where Du®”/Dtand D6 /Dtare updated substantial derivatives of velocity components and

temperature field. As stated earlier, particles in Lagrangian framework have a natural tendency
to migrate along the streamline, leading to the formation of either empty space or the occurrence
of the particle clumping within the computational domain. Therefore, to preclude particle
bunching and circumvent the instability introduced by ill-distributed particles, the Optimized
Particle Shifting (OPS) technique [56] in the context of the MPS [29] is applied on the particle

positions as follows:

r™ =r™ 1565 forinner particles

. : X o _ (7-33)
r =™ +or¢) forsurfaceand vicinity particles
Sr%V and Sr5) are particle shifting displacement which can be computed as follows:
i,PS i,OPS
N m. N m. N m.
VCi =EZXuWu—’ VCiyy:EZyﬁWﬁ—‘ A= W, —
A= P A3 P =i Pj (7-34)

o1y’ =—DxVC, St —_Dx(I-m®n;)-VC, D=05ah’
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Table 7.1 List of the operators used for discretization of diffusion and gradient terms.

Operator

Equation used

Divergence (for velocity) (U,, U, )

Gradient (for temperature) (6,,6,)

Gradient (for pressure) ( p,, p'y)

Particle Shifting Technique (PST)

Kernel function

Free-surface detection technique

Buoyancy force in natural convection (
0;)

Density smoothing process in Rayleigh
Taylor instability ( o, ertace )

Pressure on the solid walls ( p;)
Temperature on the insulated walls (8,)

Laplacian
(for pressure V2P and diffusion
Vau,vo )

Eq. (7-A10) is implemented in the present study
whereas Eq. (7-A3), (7-Ab5), (7-A8), (7-A9) or (7-
Al1) can also be used.

Revised form of the Eq. (7-A10) is applied in the
current work where y =1and y=-lare used for
inner and surface particles, respectively. (see also Eq.
(7-36))

Egs. (7-33), (7-34) and (7-35) are used as a particles
regularization scheme.

Eq. (7-22) is used for all simulations (cases Al to B4)
Combination of the Particle Number Density (PND)

and divergence of the displacement is used (see also
our previous work [29])

Eq. (7-A2) is used to calculate field functions (6, and
pinterface )

Eq. (7-A2) is applied to calculate field functions on
the solid walls ( p;,andé,)

Eq. (7-A15) is applied in the present work whereas
Egs. (7-Al6) or (7-A18) can also be used.

The terms VC;, and VC,  are gradients of concentration (C) which encourage particles to travel

out from high concentration area to the lower one. The parameter A represents a normalisation

coefficient which should be computed at the initial position of particles (initial time step, t=0)

where kernel has a fully compact support (interior particles). « is the problem-dependent

parameter which controls the magnitude of the shifting displacement (D) in the interests of

retaining numerical consistency. In the present work, it is taken as «=0.08. n; denotes

corrective matrix which is given by:
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N N -1

Z XiJ?WiJ' dv Z;, X; YW )Y

=1 i

N (7-35)

N

Y
Z Xjj yijWij dv Z yi?Wij dv
=1 =1

From the above discussion, one may deduce that, prior to implementing Particle Shifting
Technique, the specific particle labeling algorithm is required to identify the role of the each
particle (inner, vicinity or surface particle) and position of the interface. In the present study, the
combination of the Particle Number Density (PND) and divergence of the displacement is used to
determine the position of the interface. For more details see our previous work [29]. At the end of
the process, two other useful quantities such as average Nusselt number (Nu) and overall
entropy generation (S« ) can be determined via Egs. (7-15) to (7-17) particularly for the case of
natural convection heat transfer. Before closing this section, it should be noted that, the proposed

higher-order Laplacian operator (Eg. (7-A15)) has been utilized for estimating diffusion terms
(V2u,V?T) and PPE (V?p) whereas Eq. (7-A10) is applied to predict temperature gradient (VT ,
V@) and divergence of velocity components (V-u). Meanwhile, Eq. (7-A2) is used as a
smoothing operator to estimate temperature (T ) in the buoyancy force (F, =—pg (T -T,)) or
density of the interface (P, ) 1N buoyancy-driven and multiphase flows problems,
respectively. However, for predicting the pressure gradient (Vp), another strategy should be

adopted to deal with topological inconsistency caused by truncated kernel error adjacent to the
free-surface area. To rectify this shortcoming, Eq. (7-A10) is revised based on Tensile Instability
Control (TIC) suggested by Sun et al. [27], [57] as follows:

6_p _ZN: (pj _Zpi)xijWij dv | i Xi?Wij qv i X yijWij dV_

ox | |7 | =l =

ap -t i (p; — 2 p;) YW qv - N X YW N YW, (70
ij Yij ' Vij d Md

oy | it ‘rij‘ i _; ‘rij‘ Y JZ—; ‘rij‘ ! ]

xis an integer variable which alters between 1 and -1 for interior and surface particles,
respectively. More precisely, in this switching technique, the conservative form ( y =-1) of the
Navier-stocks equations (p;+p;) is implemented on the free-surface area and its vicinity

particles whereas the non-conservative form ( y =1) with first-order accuracy is applied on the
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inner particles (p; —p;). In this way, Eq. (7-36) is able to take advantage of simultaneous

momentum conservation and first-order accuracy. Eq. (7-36) will henceforth be referred to as a
Revised Pressure Gradient operator. The summary of equations outlined in the present study is
tabulated in table 7-1. The detailed description of the derivation of the discrete differential

operators is also provided in appendix A.

7.5 Validation

The robustness and validity of proposed modifications in handling negative pressure field and
violent free-surface flow with wave impact are ascertained in this section through numerical
simulation of four well-known benchmark cases namely: the hydrodynamic evolution of classical
dam break over the dry bed (case Al), rotation of a square patch of fluid (case A2), two-phase
Rayleigh-Taylor instability (case A3) and oscillating concentric circular drop (case A4). For all

runs, the ratio of smoothing length over the particle spacing is taken as a unity (h/Ax=h/Ay =1)

while the time step follows the Courant number (CFL) conditions based on the acoustic and

diffusion constraints:

Atconvection = CFL A
U
2 7-37
Atviscous = CFL A ( )
1%
At = min(Atconvection ! Atviscous)

In the present work, minimum and maximum values of Courant number are chosen as

CFL,;, =0.05 and CFL,, =0.15for the cases dam break and Rayleigh-Taylor instability,

respectively. The numerical methodology was coded in the Intel® Visual FORTRAN Compiler.

7.5.1 Dam break (case Al)

Dam failure problem is a well-known benchmark test case which has been widely used to verify
the performance of different Euilerian/Lagrangian numerical methods. Probably because it
involves severe deformation and topological changes such as: water re-entry, impact pressure,
splashing and wave breaking which are crucial physical phenomena in ocean engineering. The

initial setup of the problem is similar to the numerical and experimental investigations conducted

by Zhang et al. [58] and Lobovsky et al. [59] where a rectangular water column (o =997 Kgm™
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and u=855x10"°Kgm™s™) with the initial height and width denoted as H =0.3mand
W =0.6mis stored on the LHS of a reservoir (D =1.61m,L =0.8m). As shown in Fig. 7-1, the

time histories of pressure variations and water level height are monitored at three different

sampling points (h, =0.003m, h, =0.03m, h, =0.08m) and sections (l,=0.3m, |, =1.14mand
, 1, =1.362m). Fig. 7-4 illustrates snapshots of the flow evolution together with the effects of the

Particle Shifting Technique (PST) on the particle configurations and pressure filed at different
time instants. Generally, once the virtual gate is removed, under the effects of gravity force, the

water column collapses and moves horizontally along the dry bed while its level of kinetic energy
increases. During this period 0 <t./g/H < 2.5, the pressure distribution within the fluid deviates

considerably from hydrostatic such that maximum pressure is dropped to approximately half of
its initial value, indicating rapid exchanges between potential and Kinetic energies. The surge

front eventually hits the downstream wall, producing the first impact pressure at
t =t«/g/H =2.531. This stage is accompanied by an irreversible conversion of kinetic energy

into shock pressure and rapid formation of the stagnation point on the corner of the enclosure.
Since, the right wall is rigid and impermeable, the fluid starts to deviate upwards, resulting in a
formation of ascending jet along the vertical wall. As time progresses, due to the restoring action
of gravity force, the fluid acceleration declines and consequently upward movement of the water

jet slows down. In this circumstance, the thickness of the water jet augments and its crest starts
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t(g/h)*® =0.922

05

[ PST=Off

Figure 7-4 The effects of the Particle Shifting Technique (PST) on the particle distributions and
pressure field for problem of dam failure (case Al) at four different time instants.



231

05 05
t(g/h)"® =1.58 t(g/h)*® =257
06 06
psT=on  #pert NI pst=on Pyt L 1
f 0 02 04 06 08 085 0 0306091214
o
=
=
c
[<5]
(%]
L
a
[ g}
o
)
el
>
<
w
>
o
is!
o
-
=
0
Ts)
el
T
—
(3]
(o)
c
<
N 0 X ; ar 0 20 X ; ar
t(g/h)*® =3.27 t(g/h)** =6.66
06 < X
psT=on Ppgi 10T T o PST=On P/pgH
K 02 04 08 08 1 0 02040608 1 12
S
o
=
=
c
[<5]
n
[<5]
S
o
[ g}
o
T)
el
<
w
>
o
is!
o
-
[y
©
Ts)
el
T
—
[<B]
(@]
c
<
<
N

0 c.0 X ] c.r c.0 X r

Figure 7-5 Qualitative comparison of predicted results with experimental measurements and

numerical simulations of Lobovsky [59] and Zhang et al. [58] for case Al.
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losing its kinetic energy, while the underling fluid is still moving rightwards, leading to the

creation of the rolling wave at t” =4.75. As time goes on, the magnitude of the pressure inside
the plunging wave gradually augments such that distribution of the lateral pressure becomes
nearly quasi-hydrostatic as depicted in Fig. 7-4. This phenomenon is more prominent adjacent to
the right wall where stagnation point gets extended to the middle portion of the rolling wave.

Finally, due to the oncoming flow, the plunging jet ultimately falls back onto the moving wet bed
at t" =6.33where the second splash-up scenario and sudden rise in pressure time history (

P"=0.976) occur. Close-up views of particles position during the flow evolution in Fig. 7-4
reveal that, the use of Particle Shifting Technique (PST=0n) can efficiently suppress spurious
pressure fluctuations and singular pressure impulse via enhancing the uniformity of particles
distribution. On the contrary, it can be seen that in the absence of PST, due to Lagrangian nature
of the method, particles begin to follow the pattern of streamlines such that the occurrence of the
particle clustering and its undesirable consequences (unphysical particle splashing and void
formation) are inevitable. As highlighted before, the development of the particle stratification
(line structures) and anisotropic distributions can trigger tension-instability problem which leads

to the density error accumulation and degradation of the interpolation procedure. A closer

inspection of Fig. 7-4 shows that at t” =0.922, when PST is turned off, particles are deployed
obliquely and a moderate pressure oscillation takes place near the bottom wall, presumably
because of non-physical particles distortion in that area. This behavior persists or even gets

worse, resulting in the formation of check-board pressure filed and spurious interface

fragmentation at the moment of second impact pressure (t”=6.09) induced by backward
plunging water front. Comparison of calculated pressure signals at three different probes with
experimental data is presented in Figs. 7-5 and 7-6. Satisfactory agreement with previously
published works in Figs. 7-5 and 7-6 vividly confirms the applicability of the proposed models in
handling positive pressure field involving shock waves. It is also evident that, the predicted
results using the improved MPS model in terms of pressure time histories and water level heights
are quite smooth and noise-free while there are visible differences between the experimental
measurements [59] and those obtained by original WCSPH method [58].
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Figure 7-6 Quantitative comparison of calculated results in terms of the pressure variations on the
right wall and water level height at three different sample points with experimental measurements

and numerical simulations of Lobovsky [59] and Zhang et al. [58].

The first reason for such a discrepancy can be attributed to the large truncation error associated
with traditional SPH formulations which can deteriorate the overall quality of the simulation in
terms of smoothness, consistency and precision especially in the case of irregular particle
distributions. Similar findings were reported by Quinlan et al. [60] and Oger et al. [31] who
numerically confirmed that the classical SPH operators are only valid for homogeneous particles
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distribution so that the existence of any anisotropic or coherent particle structures can seriously
jeopardize the reliability of numerical solutions. However, since the enhanced MPS model
benefits from high level of accuracy through implementing higher-order gradient, divergence and
Laplacian operators, the pressure oscillations at the time domain are totally trivial. The second
reason for such inconsistency can be traced back to the discretization of the pressure gradient
terms. Thanks to the Tensile Instability Control (TIC) proposed by Sun et al. [27], [28], the
improved MPS model in the present work takes advantages of simultaneous momentum
conservation and first-order accuracy (see Eq. (7-36)) while conventional WCSPH model [58]

used conservative form of pressure gradient operator (p;+p,) so-called Purely repulsive

pressure gradient [61] across the entire fluid domain to overcome the tensile instability problem
at the expense of losing accuracy. As mentioned earlier, type of the kernel function and
implementation of the particle regularization technique are also two other major factors which
can immensely influence the stability and accuracy of the method. In more details, Zhang et al.
[58] applied 5th-order Wendland kernel function whereas the results of the current work have
clearly shown that Wendland kernel fails to accurately predict the flow characteristics of 1D Sod
shock tube problem (see section 4). Heterogeneity in the particle distribution in the absence of an
efficient Particle Shifting Technique is another source of inaccuracy and oscillatory behaviors in
[58].

7.5.2 Rotation of a square patch of fluid (case A2)

The evolution of rotating square patch of fluid is examined in this subsection as a second
benchmark problem to demonstrate the efficiency and performance of the improved MPS model
in dealing with negative pressure field. This canonical test case was originally introduced by
Colagrossi [62] to investigate detrimental effects of tensile-instability on the particles behavior.

The initial conditions of the velocity and pressure are given by [63] as follows:

U (X, y)=+yew —L/2<y<L/2
Vo(X,y)=—Xxw -L/2<x<L/2
po(x1 y) =0
g(x,y,1)=0

(7-38)
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Figure 7-7 The effects of PST on the particle distributions and pressure field for case A2.
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where w =1s"and L =1denote angular velocity and length of the fluid patch, respectively.

Generally, unlike the previous case, due to the existence of the centrifugal force, the flow field is
characterized by negative pressure field which causes sides of the element to shrink inward
towards the center of the vortex while corners of the patch extend radially outward to satisfy
continuity requirements. This mechanism results in the formation of star-shaped structure within
the fluid domain. Fig. 7-7 reveals that, because of very high strain rates and pressure gradient
adjacent to the free-surface area, the outer layer (highlighted in red) undergoes large deformation
while the interior one (highlighted in blue) remains nearly unaltered which indicates that the
surface area is more prone to fragmentations and crack propagation. The close-up snapshots in
Fig. 7-7 illustrate that, the utilization of PST has made a significant contribution to establish
smoother surfaces and uniform particles distribution via eliminating non-physical gap and
overlapping. However, similar to previous case, when the Particle Shifting Technique is turned
off (PST=O0ff), due to rapid distortion of the boundary and excessive migration of particles

towards the central portion, the unfavorable branch-like structures and particles stratification start
to develop within the fluid domain. As expected, the growth of these line structures and
irregularities in particle arrangements eventually corrupt the quality of kernel approximations,
leading to a total failure of the calculation at T =tw=1.4. Comparison of predicted results with
existing numerical solutions in the literature [63] in terms of the pressure time histories at the
center of the patch together with free surface profile is presented in Fig. 7-8. It is evident that, the
tips of the four arms are exactly matched with the trajectories arising from straight lines reported
in work of Sun et al. [63] and good agreement is found with the reference Boundary Element
Method (Eulerian model).

7.5.3 Two-phase Rayleigh-Taylor instability (cases A3)

To further assess the performance and applicability of the proposed modifications in handling
multifluid flows, the classical Rayleigh-Taylor instability (RTI) problem enclosed in a
rectangular cavity [1m, 2m] is investigated in this subsection as a third benchmark test problem.

As schematically shown in Fig. 7-1, the computational domain initially consists of two

immiscible fluids with density ratio of p; = p, /o, =1.8where the denser fluid with physical

properties of p, =180 Kg/m3 and x,, =0.9Pa.s is located above the lighter fluid
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et al. [65] two-phase Rayleigh-Taylor instability (case A3).
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Figure 7-10 Quantitative comparison of the present MPS predictions against the numerical and
analytical results of Pahar et al. [64]; (a) and (b) zoomed-in views of material interface obtained

from the present model; (c) time history of front position of lighter fluid.

(p. =100 Kg/m® and g =0.5Pas) and the system is subject to a gravitational field (
g =4.41ms™?). The instability is characterized by the Reynolds number of Re = p, H./Hg/yH

where H =1mis width of the enclosure and ,/Hg is the characteristic velocity with g being the
gravitational acceleration. The Atwood number is defined as At = (p; —1)/(px +1) = 2/7which

represents the density contrast between two fluids. The initial position of the perturbed interface

between two fluids is defined by a sinusoidal function (y=1-0.15xsin(2zx)) and the mirror

velocity technique described in section 3 is employed to enforce no-slip boundary condition on
all rigid walls. The simulation is carried out on medium resolution of 250x500 fluid particles. It
should be noted that, in order to circumvent the physical discontinuities at the multi-fluid
interface, the proposed smoothing operator (Eq. (7-A2)) is utilized for the treatment of the
density and viscosity. The temporal evolution of interface together with the corresponding

pressure distribution at three different dimensionless times (T =t,/g/H ) are presented in Fig. 7-

9. Generally, due to buoyancy force and initial interface distortion, the denser fluid is directed
downward as a spike while the lighter fluid rises up along the right wall as a bubble to satisfy the

need for the mass conservation. Inspection of Fig. 7-9 reveals that during the early stages of the
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interface evolution (T <1), the position of the tip of the rising and falling fluids remains
symmetrical with respect to center of the enclosure which indicates that the fluid flow is
governed by the viscous force. As the heavy fluid penetrates further into the light fluid (1<T <3
), the strength of the fluid flow enhances and consequently the surface force due to the shear
stresses (shear velocity) is intensified, resulting in the appearance of the dynamic bubble-spike
structure within the enclosure. In fact, the formation of the mushroom-like structure is a strong
indication of the development of Kelvin-Helmholtz instability (KHI) which causes the heavy
fluid to roll up into two counter-rotating vortices. As the time further proceeds, more and more
secondary vortexes are appeared along the side spikes and subsequently the interface becomes
highly twisted and distorted within the container which implies that KHI is still dominant over
the RTI. Fig. 7-9 illustrates that the predicted results in terms of the particle distributions and
pressure contours are qualitatively in a satisfactory agreement with the numerical data of Pahar et
al. [64] and Meng et al. [65]. It can be seen that, the pressure field is smoothed and the interface
is free from unphysical mixing of phases which confirms the overall consistency and accuracy of
the developed model in capturing primary and secondary recirculation zones generated at the
material discontinuities. Finally, in Fig. 7-10, the time history of the front position of ascending
lighter fluid is compared with the analytical and numerical results of Pahar et al. [64] and a good

agreement is found.

7.5.4 Oscillating concentric circular drop (case A4)
The evolution of a weightless (g = 0) oscillating concentric circular drop subjected to an external
body force (F,, =—Q°rwith r=xi+yjbeing the distance from the center of the drop) is

considered in this subsection to demonstrate the capability of the proposed modifications in
handling multiphase flow problems with high density contrast. This canonical test case was
originally introduced by Monaghan and Rafiee [66] and was then successfully reproduced by
Meng et al. [65] and Lind et al. [67]. As schematically portrayed in Fig. 7-1, the computational

domain consists of two immiscible inviscid fluids (z, =, =0) with physical density ratio of

Pr = Pu /P, =1000where the heavy fluid ( o, =1000Kg/m®) with radius of R, =0.5m
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of the drop.

is surrounded by a lighter fluid (. =1Kg/m®) whose initial radius isR, =1m. The initial

pressure and velocity fields are given by:

Uy (X, y) = AX
Vo(X, y) =—Ay (7-39)
Po (X, Y) =0
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Similar to [65]-[67], the ratio A/Qis set equal to 0.5where Aand Qare taken as 0.5 and 1.0,

respectively. Fig. 7-11 illustrates a series of snapshots of particle distributions and pressure
contours at various time instants. Generally, hydrodynamic behavior of the oscillating circular
drop under the influence of the negative external force and irrotational velocity field (

u =O.5i—0.5j) is characterized by the isotropic elongation of the circular patch where top and

bottom portions of the medium starts to shrink in the longitudinal direction while left and right
sides stretch transversally. This mechanism leads to the development of the positive pressure
field. However, as time goes on, the magnitude of the external force induced by the particles

=—0?°r) augments and begins to overcome the fluid momentum. In this

position (F,, =
circumstance, the side parts of the patch start to move towards the center of the drop while upper

and lower portions elongate vertically, leading to the drop oscillations with period of
T =7Z'\/§/Qz4.44. Comparison with previously published numerical SPH results in Fig. 7-11

vividly demonstrates that, the complex interface evolutions are accurately captured by the
enhanced model with no additional unphysical behavior. To confirm the absence of any
nonphysical particle clustering and tensile instability, two zoomed-in views of the interface at
T =1.1and T =3.5are presented in Fig. 7-12. It is evident that, particles are regularly distributed
across the material interface and the corresponding pressure fields are smooth without the
remarkable unphysical noise (see also Fig. 7-11), supporting the effectiveness of the interface
treatment and density smoothing (see Eq. (7-A2)). However, there are small numerical noises in
the vertical velocity field in the close vicinity of the material discontinuity which can be
attributed to the implementation of the Particle Shifting Technique [68]. Finally, comparison of
the time histories of the major axis of outer ellipse with previously analytical and numerical
solutions [65] in Fig. 7-12 clearly proves the performance and validity of the enhanced MPS

model.

7.6 Results and discussion

Previous section vividly verified the capability and feasibility of the proposed modifications in
predicting the dynamics of free-surface and multiphase flow problems. Thus, in this section, the
improved MPS model will be employed to simulate three-phase Rayleigh-Taylor instability
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(cases B1 and B2) and entropy generation due to transient natural convection heat transfer in

square cavity (cases B3 and B4).

7.6.1 Three-phase Rayleigh-Taylor instability (cases B3 and B4)

To demonstrate the ability of the enhanced model in capturing large interface deformations in the
multi-component problems with density contrast, the development of three-phase Rayleigh-
Taylor instability (RTI) in two different systems with double-mode perturbations is examined in
this subsection. The specifications of the instability with associated initial and boundary
conditions are presented in Fig. 7-1. As portrayed in Fig. 7-1 the computations are performed in a
rectangular enclosure with dimensions of 1mx3m (widthxheight) where three immiscible

incompressible Newtonian fluids with densities of p, =4, p, =2and p_=1 are confined in
the upper, middle and lower portions of the enclosure, respectively. The dynamic viscosities are
set to g, =0.04, g, =0.02and g =0.01 which causes the fluids to have an identical
kinematic viscosity (v, =v,, =v, =0.01). It can be seen from the figure that, the lower and
middle phases are segregated by the interface located at y=1+0.1xcos(2zx) while the
interfaces between middle and upper phases are defined as y=2+0.1xcos(2xzx)and
y =2-0.1xcos(27x) in cases B1 and B2, respectively. Non-slip boundary condition is imposed
on all rigid walls using mirror particle velocity technique [48]. The instability in both cases is

governed by non-dimensional Reynolds and Atwood numbers defined as Re = H«/Hg /u=420

and At = (0, — Puin)/ Prax + Pein) = 0.6 Where  g=17.64, p... = pyand  p.., = o, represent

gravitational acceleration , maximum and minimum values of densities within the computational
domain. All parameters are defined in the International System of Units (SI). It should be noted
that, in order to avoid the excessive smearing of contact discontinuities and keep a sharp and non-
oscillatory interface, Eqg. (7-A2) has been used for treatment of the solution near the material

interfaces as follows:
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In the above equation, p,and u denote smoothing density and viscosity, respectively. The
evolution of the interfaces together with the corresponding contours of velocity in the x and y-
directions are shown in Figs. 7-13 to 7-15 at different dimensionless times (T =t(g/H)*®).
Generally, due to the existence of density gradient between two adjacent fluids, the
hydrodynamic behavior of the Rayleigh-Taylor instability is characterized by upward movement
of the lighter fluid and downward motion of the denser one, leading to the formation of the
ascending bubbles and descending spikes within the computational domain. It can be seen from
Fig. 7-13 that during the early stages (T <1.0), the growth and amplitude of bubbles and spikes
remain nearly symmetrical with respect to their initial planar interfaces defined by y=1.0mand
y=2.0m. However, starting fromT = 2.0, due to the presence of the shear force at the moving
interfaces, the spikes of heavier and medium fluids begin to roll up and consequently four
secondary counter-rotating vortices are established within the enclosure. It is evident that, as the
times goes on (2.875<T <3.890), the upper spike keeps descending downward while two main
bubbles driven by the up-moving lighter fluid ( p, =1) rise up at both sides of the domain and
ultimately outpace the primary spike at T =3.890. At this stage, the upcoming spike becomes
totally surrounded by rising bubble, leading to the appearance of a tulip-shaped structure (or
reverse arrow-shaped structure). Inspection of Fig. 7-14 also reveals that as the top fluid (p,, =4
) penetrates into the light one (p, =1), the medium phase (p,, =2) gets more and more

squeezed between them and consequently magnitude of the velocity components intensifies
steadily. In fact, the constant increase in the flow strength can be attributed to the variation of the

local Atwood number during the evolution of the three-phase Rayleigh-Taylor instability.
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Figure 7-13 Fluid interface evolution of three-phase Rayleigh-Taylor instability problem.
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More precisely, in the three-phase RTI, the Atwood number (At=(p, —0,)/(0,+ p,)) can be
defined between any arbitrary pair of working fluids namely: Heavy and Medium fluids (

Aty \, =0.33§), Medium and Lighter fluids ( At,, | =0.33§) or between Heavier and Lighter ones

(At,  =0.6). Itis apparent that as the denser fluid approaches the lighter one, the local Atwood

number and density contrast between them increase and consequently the RTI evolution begins to
deviate from the Kelvin-Helmholtz instability (KHI). Since, the deviation from the KHI is
responsible for considerable enhancement in the flow acceleration, the upper spike undergoes a
rapid displacement toward the bottom wall under the effects of the gravity force. Similar
observations were also reported by He et al. [69], Tryggvason [70] and Nabavizadeh et al. [71]
who investigated the effects of the Atwood number on the RTI. Finally, it can be seen that as
time progresses, the interfaces of spikes and bubbles are elongated along the y-axis direction and
eventually evolved into very complicated shapes where a significant amount of vertical mixing
takes place. However, Fig. 7-13 shows that by changing the direction of the upper cosinusoidal
perturbation from y=2+0.1xcos(2zx)toy=2-0.1xcos(2zx), a different scenario occurs
within the enclosure. It can be seen that in case B2, at the early start-up and transitional stages (
0<T <1.0), the heavier and lighter phases behave identically such that the distributions of
velocity components and the growth of interfaces remain symmetrical with respect to both

horizontal and vertical centerline of the enclosure ( X =0.5m,Y =1.5m). These features remain to

be the case during 1<T < 2.8where the initial perturbations near the vertical walls move towards
the central region while the medium fluid starts to propagate in the y-direction, leading to the
formation of ascending bubble and descending spike in the heavier and lighter fluids,

respectively. It is worth to mention that at this stage, owing to the small density difference across
the interfaces (At, ,, = At, = 0.333), the flow field is characterized by the appearance of Kelvin-

Helmholtz shear instability (KHI) which causes the sides of the medium phase to roll-up/fold-up
into two vortex rings. Note that, these vortex shedding process and shear instability of the rolls
are somewhat analogous to the semi-von-Karman vortex streets observed by Meng et al. [72] and
Hicks [73].
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(f) time evolution of the heavier and lighter fluid fronts in cases B1 and B2. p, =1.0, p,, =2.0,
py =4.0.

The corresponding velocity contours in Fig. 7-15 also reveal that with an increase in time (
2.8<T <3.8), the intensity of the recirculation augments and consequently some secondary
eddies are generated inside the enclosure as a consequence of extreme interfaces deformation and
stretching. However, this trend starts to weaken as the medium fluid penetrates further into to the
lower and upper portions of the enclosure (3.8<T <4.9). It can be seen that unlike the case B1,

due to blockage and deterrent effects of the ascending fluid ( p, =1), the effective momentum

transfer and flow acceleration attenuate slowly, and consequently the falling fluid gets stuck
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within the rising lighter fluid. Fig. 7-13 vividly illustrates that at this circumstance, the rising
sheet plumes begin to swallow the heavier fluid, leading to the significant deflection of the lighter
fluid in the central zone of the enclosure. In fact, the development of the stationary mushroom-
shaped structure and its rapid expansion to the sidewalls are strong indications of the flow

deceleration and its subsequent fluid trapping in that area.

Fig. 7-16 shows the spike tip and bubble front locations versus time in both cases together with
four close-up snapshots of interfaces at different time instants. The enlarged views of the domain
clearly demonstrate the applicability of the proposed smoothing operator (Eg. (7-A2)) in retaining
the sharpness of the interface without the need to use extra repulsive force [74] to suppress
spurious particle interpenetration on the two sides of the interface. In addition to the smoothness
of the interfaces, it is evident that particles are uniformly distributed across the interfaces without
unphysical void formation or cavitation which clearly highlights the effectiveness and robustness
of previously proposed Particle Regularization Technique. Finally, as expected, the lowest
vertical displacement rates of the heavier (AY =0.865m) and lighter (AY =0.646m) fluids

during the simulations (0<T <4.9) take place in case B2 which can be attributed to the
aforementioned fluids trapping phenomena in this case. Take as an illustration, in case Bl the

heavier and lighter fluids reach the same height at T =2.61(Y =1.44m) while this event occurs

at T=3.36(Y =1.43m) in case B2.

7.6.2 Entropy generation due to natural convection heat transfer (cases B3
and B4)

The analysis of transient entropy generation due to natural convection heat transfer in two well-
known benchmark cases namely: Differentially Heated Cavity (cases B3) and Rayleigh-Bénard
convection (case B4) containing an adiabatic obstacle (L =0.3H) is adopted here to verify the
reliability and performance of the improved MPS model in handling particulate flows with
thermal convection. The schematic diagrams of two considered configurations with associated
boundary conditions are presented in Fig. 7-1. In case B3, the vertical walls are maintained at two

different temperatures (T, <T,) while horizontal walls are thermally adiabatic. However, contrary

to case B3, the Rayleigh-Bénard convection in case B4 is induced by differentially heated

horizontal walls and insulated vertical walls. The enclosures are filled with air (Pr=0.71) and
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Boussinesq approximation is used to estimate density variations. It is worth noting that, in order
to eliminate the unphysical temperature fluctuations from the computational domain, the
proposed smoothing operator (Eq. (7-A2)) is employed to calculate the temperature value (T) in

the buoyancy force term (F, =—pg S (T —T,)) as follows:

- - - -1
iTJW” dv ZN:Vﬁdv i Ay ZN: Vil gy
. =l =i = =
T, |=L ZN:TJ Wy qv L= i X W qv i XV qv i X; YW dv (7-41)
T it f = |5 =[N iz |5
iy
iTJ yiJ'WiJ' dv i yijWij dv i Xij yijWij dv i yUZ'Wij dv
it [ ] R izt N i |l |

Figs. 7-17 to 7-20 illustrate transient variations of streamlines, isotherms, local Bejan number and
entropy generation due to heat transfer irreversibility at different Rayleigh number in case B3. It
should be mentioned that for the sake of brevity, the contour of velocity in the y-direction (v) is

provided as a supplementary material.

Generally, the hydrodynamic and thermal behaviors of natural convection heat transfer in
differentially heated cavity are characterized by upward movement of the heated fluid in close
proximity of hot surfaces and downward motion of the denser fluid near the cold surfaces,
leading to the establishment of mono- and/or multi-cellular flow pattern inside the enclosure. It
can be seen from Figs. 7-17 and 7-18 that the overall features of the flow structures and
temperature distributions in case B3 are very similar to those observed in the classical buoyancy-
driven cavity [45] where due to thermally-induced buoyant force, the clockwise circulating cell is
established and occupies the entire enclosure. Visual examination of the velocity magnitude in
Fig. 7-18 reveals that, owing to the weak buoyancy force at Ra=10°, there is no disturbance and
significant perturbation in the flow structure, signifying the predominance of heat conduction.
The corresponding isotherms in Fig. 7-17 demonstrate the benchmark temperature pattern for the

given Rayleigh number since they are nearly parallel to each other and evenly scattered.
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Figure 7-17 Transient variations of temperature field (isotherms) as a function of the non-
dimensional time at different Rayleigh numbers for case B3.
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Figure 7-18 Transient variations of velocity field in the x-direction with associated streamlines as

a function of the non-dimensional time at different Rayleigh numbers for case B3.
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Figure 7-19 Transient variations of the local Bejan number (Be) as a function of the non-

dimensional time at different Rayleigh numbers for case B3.
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Figure 7-20 Transient variations of the local entropy generation due to heat transfer irreversibility
(St) as a function of the non-dimensional time at different Rayleigh numbers for case B3.



257

By increasing Rayleigh number up to 10*, the vortex strength enhances and isotherms begin to
follow the patterns of the streamlines. It should be noted that, the deviation of isotherms from
their parallel state vividly implies that the transition point from conduction to convection mode
takes place at this stage (quasi-conduction regime). With further increase in the value of Rayleigh
number (Ra=10°), the strength of the convective flow enhances and two secondary circulation
cells are developed in the left and right sides of the inner block, reflecting the flow separation in
those regions. These flow separation and significant twisting of the isotherms are completely
consistent with numerical findings reported by Mahapatra et al. [75] who investigated the effects
of the aspect ratio of adiabatic block on the entropy generation and hydrodynamic characteristics
of the Differentially Heated Cavity (DHC). Note that, their work at L =0.3H can be regarded as
an extra validation for the current work. However, it can be seen that due to enhanced effects of
natural convection at Ra=10°, the intensity of fluid motion and thermal mixing increases and
consequently velocity contour and streamlines are stretched dramatically which support the
dominance of the convective mode. Figs. 7-19 and 7-20 show corresponding variations of
transient local Bejan number and entropy generation due to heat transfer irreversibility in case
B3. As expected, at low Rayleigh number (Ra=10% due to domination of conduction mode of
heat transfer and weak buoyancy force, the local Bejan number values approach unity which

indicates that most of the exergy destruction occurs as a results of the thermal dissipation. Table
7-2 reveals that as the Ra intensifies, the average Nusselt number (Nu ) and maximum absolute

values of velocity components (|U,,|,V,|) increase. Since, according to Egs. (7-12) and (7-13),

the enhancement in the heat transfer rate and flow intensity causes temperature and velocity

gradients to increase, the entropy generation due to both factors (St , S¢ ) augments dramatically.
However, since the increment in the viscous dissipation (Sg) is significantly higher than that of
the heat transfer irreversibility (St), the local and average Bejan number decline. This assertion is
well reflected in the contours of the local Bejan number in Fig. 7-19 where entropy generation
due to thermal dissipation is only restricted to certain regions between inner cylinder and outer
enclosure. As it can be seen in Fig. 7-20 the maximum entropy generation due to heat transfer
irreversibility (St) is concentrated in the lower-left and upper-right corners of the enclosure,

where the contour plots of isotherms are congested and temperature gradients are more intense.



258

Table 7.2 The effects of the Rayleigh number on the maximum velocity components, average

Nusselt number and entropy generation for case B3 and B4 (steady-state condition).

Case B3 (Differentially Heated Cavity)

Ra

m |U max| |Vmax| B_e gtot §T §|:
10°  0.93560 2.9814 2.9311 0.9566 1.0869 1.0519 0.03496
10° 2.2424 14.9702 17.4082 0.5809 3.6110 2.4641 1.1468
10° 4.6517 39.9061 68.1099 0.2373 25.3720 5.0348 20.3372
10° 9.0540 118.2826  220.4287 0.1148 365.8094 9.6360 356.1734

Case B4 (Rayleigh-Bénard convection)

R& Nu Ul Nl  Be S S St
10° 0.8130 0.0670 0.05425 0.9907 0.9207 0.9206 3.72x10°°
10° 2.3169 19.4668 19.1151 0.5415 3.9731 2.5373 1.4358
10° 3.8763 78.0790 90.4418 0.1999 33.5765 4.1557 29.4208
10° 6.6802 276.804  322.0081  0.02462  535.9981 6.7532 529.2449

As Ra increases to 10°, the buoyancy force becomes more prominent and the thickness of the

thermal boundary layer decreases. However, as expected, due to small increase in St compared to

Sk, the magnitude of local and average Bejan number decrease which indicates that entropy

generation due to viscous dissipation is coming in to the picture. This trend is maintained or even

accentuated as the convective transport strengthens. It can be seen from table 7-2 and Fig. 7-19

that at Ra=10°, due to faster rotation of clockwise vortex in the enclosure and higher velocity

gradients, the average Bejan number decreases and becomes less than half ( Be =0.114 ) which

implies that contribution of thermal dissipation on total entropy generation (S; = S,,,) is trivial at

this stage. The time-evolution of Rayleigh-Bénard (RB) convection in the square enclosure with

heating from below and cooled from above (case B4) is presented in Figs. 7-21 to 7-24 at

different Rayleigh number.
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Figure 7-21 Transient variations of temperature field (isotherms) as a function of the non-

dimensional time at different Rayleigh numbers for case B4.
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Figure 7-22 Transient variations of velocity field in the x-direction with associated streamlines as

a function of the non-dimensional time at different Rayleigh numbers for case B4.
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Generally, according to linear stability theory [76], [77], the hydrodynamic development of the
RB convection can be divided into two distinct stages: (a) conduction dominant regime where at

low Rayleigh number (Ra < Ra_, =1708) due to weak buoyancy force, the fluid flow is almost

stagnant in the bulk of the enclosure and isotherms are horizontally oriented and (b) convection

dominant regime (Ra, =1708 < Ra) where the flow field is dynamically characterized by the

formation of the clockwise Bénard cell. As visualized by low magnitude of velocity field in Fig.
7-22 at Ra=10° one can infer that because of high hydraulic resistance and viscous effects, the
fluid motion inside the enclosure is weak and has a negligible influence on the temperature field.
In this circumstance, isotherms are horizontally stratified and four symmetric rotating eddies of
almost same size are established within the enclosure which indicates that heat transfer occurs

primarily as the result of conduction mode. As expected, Fig. 7-23 and table 7-2 show that the

corresponding local and average Bejan numbers are very close to unity (Be=0.99) which

indicates that a significant contribution on the total entropy generation comes from thermal
dissipation (Swt =St, Sk ~0). It can be seen from Fig. 7-24 that, the local entropy generation

due to heat transfer irreversibility is completely symmetric with respect to vertical centerline at
X=0.5 and maximum St is found to occur on the corners of the adiabatic obstacle similar to work
of Pandit [78]. A close inspection of table 7-2 and Fig. 7-22 reveal that when Rayleigh number

exceeds the critical value (Ra, =1708 < Ra=10"), convective motion of the fluid (U,.,|+[Vyu|)

increases dramatically and thermal stratification becomes unstable which is an indication of the
onset of the Bénard instability. It can be seen from Figs. 7-21 and 7-22 that, with the passage of
time, the axial symmetry feature starts to vanish gradually and the clockwise recirculation roll is
ultimately emerged within the enclosure. As a consequence of stronger thermal mixing, distinct
thermal boundary layers are developed near the top-left and bottom-right parts of the horizontal
walls which results in active sites of St in those regions where due to immediate contact of
working fluid with isothermal walls, the higher temperature gradient exists. It is interesting to
note that, the formation of the Bénard cell is also accompanied by substantial increase in the
intensity of fluid flow which in turn leads to the higher velocity gradient and entropy generation

due to fluid friction irreversibility.
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Figure 7-23 Transient variations of the local Bejan number (Be) as a function of the non-

dimensional time at different Rayleigh numbers for case B4.

As discussed before, since the increase in velocity gradient at Ra=10" is remarkably greater than

that of the temperature gradient, the average Bejan number declines rapidly and becomes equal to
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Be =0.54which indicates that both Sg and St have a same contribution to overall entropy
generation. With further increase in the Rayleigh number (Ra=10°), the strength of the Bénard
cell evidently augments and consequently isotherms in the fluid region get more oriented towards
the flow direction and thickness of thermal boundary layer decreases, indicating the
establishment of the convective mode. The corresponding local Bejan number in Fig. 7-23
reveals that, owning to intense fluid flow and as a consequence of implementation of no-slip
boundary conditions, all walls of the enclosure act as strong active zones of Sg where steeper
velocity gradients occur. Finally, it can be seen from table 7-2 and Fig. 7-23 that at Ra=10°, due
to remarkable enhancement in the convection effects, the magnitude of Sg increases considerably
and subsequently the average Bejan number becomes less than 0.024. This observation signifies
that in the convection dominant region (Ra >10°), the considerable amount of available work
might be exploited to overcome the irreversibility due to viscous dissipation. Finally, it can be
seen from Fig. 7-22 that, when the system reaches the steady-state condition, the primary
clockwise eddy together with a pair of secondary CCW vortices are appeared within the
enclosure. These flow structure and temperature pattern together with their associated numbers of

vortices are in accordance with numerical observations of Ouertatani et al. [79].

To get more insights into the performance of thermal systems in cases B3 and B4, the transient
variations of average Nusselt number (N_u) on the isothermal walls, total entropy generation (gtot
) due to thermal (§T ) and viscous dissipations (§F ) and average Bejan number (ﬁ) at different

Rayleigh number (10° < Ra <10°) are plotted in Fig. 7-25. The general trend of results shows that
as the Rayleigh number intensifies, the heat transfer rate and entropy generation due to both

factors (§T Sk ) augment whereas a downward trend is observed in the values of average Bejan
number. Again, as it was previously described, the rapid decreasing trend of Be can be attributed
to the significant enhancement in the values of Se compared to St with the augmentation of Ra.
As expected, due to static condition and weak fluid flow at Ra=10° the values of Se s

significantly lower than that of the St (especially in case B4).
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Figure 7-24 Transient variations of the local entropy generation due to heat transfer irreversibility

(ST) as a function of the non-dimensional time at different Rayleigh numbers for case B4.

This observation again verifies the earlier assertion that, at conduction-dominated regime only a

small amount of available work is used to overcome irreversibilities due to viscous dissipation.
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Thus, it is not surprising that the overall behavior of total entropy generation becomes very
similar to the thermal dissipation profile (Sw ~S7) at low Ra. Furthermore, the smooth time

variations of Nu, Swt, St,S¢ and Be vividly demonstrates that since at low Rayleigh number (

Ra =10°), the thermal system in both cases is very close to the equilibrium state [80], the
aforementioned pertinent parameters reach the steady state condition asymptotically without
passing through the fluctuation period. However, by increasing the Ra up to 10, deviation from
equilibrium state increases and consequently oscillatory behavior starts to appear within the
computational domain especially in case B4 where flow and temperature fields are inherently
more prone to instability. Note that, such a behavior can readily be seen in Fig. 7-22 where due to
drastic changes in the flow patterns including the merging of rolls or exchange of mass between

them, the streamlines undergo complex structural changes over a period range of 0<t” <0.402.
For example, the detailed analysis of time-variations of heat transfer rate in case B4 illustrates
that at Ra=10", the mean Nusselt number on the top wall decreases rapidly to reach minimum

value (mmin=0.88) at t =0.322and then increases and attains a maximum value (

NUmax = 2.69) at t" =0.46. This extreme oscillating behavior may be ascribed to the formation
and destruction of the first bifurcation phenomena which occurred at the onset of the instability.

It can be also seen that due to quasi-conduction dominant regime, this course of the event also

occurs in the time-histories of Swrand St but with different values. With further increase in the
values of Ra, intensity of buoyancy force is invigorated and subsequently the frequency and
amplitude of the oscillations increase [81]. From a thermodynamics view point, the oscillatory
behavior of the entropy generation at high Rayleigh numbers can be attributed to the irreversible
generation of internal waves and thermal jump in the velocity and temperature fields [82].

Moreover, from the viewpoint of optimization theory and energy efficiency, it is evident that case
B3 exhibits higher heat transfer rate and lower Swr. Take as an illustration, in case B3 the ratios
of average Nusselt number to total entropy generation (N_u/ Swt ) at Ra=10% 10* 10° and 10° are

approximately 0.86, 0.615, 0.183 and 0.024 while these values are respectively equal to 0.88,
0.583, 0.115 and 0.012 in case B4.
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Figure 7-25 Transient variations of average Nusselt number (m ), average Bejan number (B_e ),

total entropy generation ( Sw ), average entropy generation due to thermal (St ) and viscous (S )

dissipations as a function of the non-dimensional time for cases B3 and B4 at different Rayleigh
number. Pr=0.71, L=0.3H.
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Figure 7-26 Transient variations of average Nusselt number (m ), average Bejan number (ﬁ: ),

total entropy generation ( Sw ), average entropy generation due to thermal (St ) and viscous (S¢ )

dissipations as a function of the non-dimensional time for cases B3 and B4 at different Rayleigh
number. Pr=0.71, L=0.3H. (cont’d).
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Based on the above analysis, it can be concluded that the Differentially Heated Cavity (case B3)
appears to be an energy-efficient compared to the Rayleigh-Benard convection especially at the
onset of the convection. Similar findings were also documented by Anandalakshmi et al. [83]
who investigated the entropy generation due to natural convection in rhombic enclosures with
isothermally heated walls. Finally, similar to previous benchmark test cases, it is apparent that,
particles in case B3 and B4 are regularly distributed throughout the simulations without any
unphysical gap and void formation which in turn demonstrate the robustness and applicability of

proposed models in handling particulate flows with thermal convection.

7.7 Conclusions

This paper introduced a new kernel function and two novel high-order gradient and Laplacian
operators in the context of the Lagrangian mesh-free particle method (particularly MPS) for
simulation of free-surface flows and exergy analysis of convection heat transfer problems. The
numerical examples vividly confirm the effectiveness and applicability of currently enhanced
MPS model in solving real-life and academic problems ranging from free-surface flows to
convection heat transfer. The important findings of this study can be highlighted as follows:

e The results shown that, the newly constructed kernel function remarkably outperformed
the existing smoothing kernels (i.e. quintic spline and Wendland) in capturing/resolving
shocks discontinuities and rarefaction wave region.

e It was also found that, the proposed kernel function produces more reliable and stable
results than the quintic spline and Wendland functions in modeling of free-surface
problems and multiphase flows.

e It was found that, the proposed Revised Pressure Gradient operator (switching model)
can efficiently eliminate tensile instability problem from the free-surface area and
subsequently provide more accurate and smoother pressure field than the traditional
conservative form of the MPS operator.

e The results show that, particles in Lagrangian framework have a natural tendency to
migrate along the streamline, leading to the formation of empty space and the particles
clumping/stratification within the computational domain.

e The results show that, Particle Shifting Technique (PST) has a notable impact on the

accuracy and efficiency of the Lagrangian particle methods.
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e The results reveal that, the proposed smoothing operator (Eq. (7-A2)) can efficiently
handle sharp density discontinuities adjacent to the material interfaces.

e The results illustrate that, the proposed novel higher-order gradient and Laplacian
operators for discretization of Pressure-Poisson equation and divergence of velocity can
effectively eliminate spurious pressure fluctuation and density error accumulation from

the fluid domain.

7.8 Appendix A (gradient, Laplacian and divergence operators)

Along this appendix two new gradient and Laplacian operators are systematically derived based

on Taylor series expansion. Generally, for 2D space, by multiplying both sides of Eq. (7-Al) first
Wi, % “/‘ ‘ yijV\/ij/‘rij‘and then summing it over every detected neighbor particle j, the

shape function for any arbitrarily variable (f;) can be obtained as follows:

fo=f+ 0+ L,y + f, Xxxu+1 fi Yo+ f %Yy +O(h°) (7-Al)
r — r -1
S W gy IR VIR SLOLTPIVERES SR ALY
¢ j=1 ‘ru‘ j= rij‘ i |G it |l
ALY B D TPV oL APV L. YL VA s
’ R = ‘ﬁj‘ =R R
R Nofy. W, Ny W Nxcy W Ny
]2 dV ij i) dV ij Jij " ij dV ij " Vij dV
2R B E WY X

In above equations, W; and dV = mj/,oj denote kernel function and volume of the particle while

X; =X; —xand y; =y, —y;represent the distance between candidate particle i and its neighboring

particle j, respectively. L is a corrective matrix which guarantees first-order completeness in
kernel approximations. It is worth to mention that, Eq. (7-A2) is analogous to the MLS

approximation pioneered by Nayroles et al. [84].

By subtracting fi from both sides of Eq. (7-Al) and multiplying it by Xij\/\/ij/ri and Y; ,J/ i

first derivatives of field function (gradient operator) can be obtained as follow:
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& (= Wy NxAW Nxy W T
H D S A gy 5 RN gy
i,x —L| I = T = u -
L= (7-A3)
f NC(F - £ )y W )
iy i YT gy X Y W YW,
2y Z;,”’dV Zl‘erdV
- - ]= ]= ij i

Eq. (7-A3) was originally introduced by Khayyer et al. [24] and then was extended and utilized
by [25], [85] for simulation of multiphase flow problems. However, when the kernel function has

a compact support, all off-diagonal entries of L matrix vanish, thereby producing the symmetric

N N
diagonal corrective matrix (> x;y,W; /67 dV =>"x, y,W; /r? dV =0) as follows:
= =1

- %W
> v 0
iz T
L= (7-Ad)
%Y
0 > tdv
i = b

In this condition, the corrective matrix L acts like a normalization factor in the traditional MPS

approximations such that gradient operator can be calculated with less computational cost as:

N(f - N o(f —f)y.W.
Z( j r )Xu ij dV Z( j r|2) le 1) dV
ngzﬂN % , nﬁﬂcﬁlNu (7-Ab)
X Z le , ij dV 8y Z le ij dV
j=1 [ j=l rIJ

]
Based on the above formulations, divergence operator for the regular particle distribution can be

calculated as follows:

imf)“ww

& u (7-A6)

3oy

j=1 rIJ

where x;is spatial distance in x (x; =X; —x) or y-direction (y; =y, —V;). However, as stated

previously, in the case of irregular particles distribution, Eq. (7-A3) should be used to calculate
divergence of field function. For instance, for calculating divergence of the velocity in two-
dimensional system, Eq. (7-A3) must be solved twice, where sum of the velocity gradients in x (

ou/ox)andy (ov/oy) directions can provideV-u.
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N XA
It should be note that, Eq. (7-A5) can be further simplified by solvingZ”—z”dV and

=

N
> i dV in a polar coordinate system ( x; =r; cos(8), y; =t sin(6)) as follows:

il
s Xijg X 5 IJ ylj
;FW”dv le o W, dV :—(Z_ll —W,dv +Z_£ Tw dV)_—(ZW”dV)
=L ) , 1= ) ij ij (7-A7)
1.8 Xij . Yij N i'
SO AWV + ) Swdv +z—gwijdV)— ZWUdV where x;+yi =1/
3 =t fij i=1 Tij = Y Do =t
r. (f
D ij |
i
Vi = L (7-A8)
ZWijdv
W,
D Z fy - (7 ~TOW, dv
V.f = " (7-A9)
Zwijdv
j=1

where Dy is spatial dimension. Egs. (7-A8) and (7-A9) were initially proposed by Koshizuka et
al. [86] in the context of the MPS description and then employed by Tanaka et al. [4] and Liang
et al. [87] to calculate the gradient and divergence of arbitrary scalar or vector functions.

However, It is also possible to derive the second gradient operator by subtracting f; from both

sides of Eq. (7-Al) and multiplying it by x; U/‘ ‘ and yijV\/ij/‘rij‘ instead of xijV\/ij/l‘ij2 and

y,W, /r2 . This gives:

ES (f; = fOxW, | [N XA N Xy W T
av i Vi ij Yij" Vij
PX}L JZl: : L ’Z; d N ’2 5l " (7-A10)
fi = (F; = )W, B VW )
Y zl : r S iR j dV i X'J yIJVVIJ V i ylj ij dV
] ij | B ‘I’”‘ i=1 ‘I’u‘ |

By comparing Egs. (7-A3) and (7-A10), one can deduce that, the power of r in Eq. (7-A3) is

reduced from n=2ton=1 in Eq. (7-A10). At this stage, it is worth to mention that, although
Egs. (7-A3) and (7-Al10) are very similar to each other, but they have different stability
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characteristics in dealing with the tensile stability and particle clustering. With further reduction

in the power of the variabler;' from n=1ton=0, the third form of gradient operator with first-

order of accuracy can be obtained as:

N N -1

N
f 2 (F; = f)xWav D %WV X YWy dV
{ f} =L ’N:l L= N‘=l ‘=1N (7-A11)
" 2 (F; = f)yWdv D% YWydV o D yiwgav
j=L j=1 j=1

Eqg. (7-Al1l) is known as a mixed symmetric correction of kernel gradient which was initially

proposed by Xu et al. [26] in the context of the MPS description.

By ignoring the term f,, X;y; in Eq. (7-Al) and subtracting fi from both sides of the equation,

and multiplying it by W, , the MPS stencil for the Laplacian operator can be achieved as:

N N N
Do(F = WAV = £, D> xWdV + f Dy W dv
= = = (7-A12)

i,XX ij" ] i j
j=1

N1 N1
+f ZEX?.\N.dV+f.’WZ;§y§\Ni.dV,
j=

Similar to work of Schwaiger et al. [30], in order to derive V*f = f, +f, , one can assume that

iyy!

N N
Z%x?.vv.dVis equal to Z yiMijdeor uniform particles distribution. Under the

1
j=1 v 12

j=

aforementioned hypothesis, the Laplacian operator can be obtained as follows:

N N N

2 (F = WAV =, > xWydV — £ >y, W,dV

Vi =f o+ 1, =1 . 11_12\/\/ 2 (7-A13)
—X:W,dV

22

ijoij
j=1

By decomposing the first term in the right-hand side of the Eq. (7-A13) into two separate parts (

N N N
D (f; = f)W,dV =0.5x D (f, — f)W,dV +0.5x D (f, — f,)W,dV ), the above equation may be
i1 i1

j=1

rewritten as:



273

13 13 N
2 2 (= WV 2 D (= f)W,dv - f,XZXW dv - £, > y.w,dv

ij ") 4
Vif =15 = = (7-Al4)
Z X2W..dV

ey
j :1

Finally, the above equation can be rearranged into two separate and distinct terms as follows:

ISt - fywdv — f dov
2_:1 i,x

ij Vi

Vif=f +f =

i,Xx i,yy

N
> x.fvv.,dv
j:l
1 N N
EZ;(fj — f)W,dv - fi'yZ; y, W dV
J=

N

Z yaw, dv

IJ Il
j —1

(7-A15)

N N
where the term Z : IJdV is replaced byz y2W.dV in the second term of the above
j=1

i v
=2

equation. However, similar to gradient operator, by eliminating the first derivative of the field
function from the Eq. (7-A15) (qu W,;dV = Zyu ;dV =0), the Laplacian operator for uniform

particles distribution can be expressed in a relatively simpler form as follows:

N N
Zl(fj—fi)wijdv Zl(fj—fi)wijdv
2 j=1 2 j=1 2
Vif =t +f, = +— (7-A16)
Z XsW, dV Z yiW, dv

i |J ij
i =2 j 52

By solvmgj i IJdV andj Vi IJdV in a polar coordinate system (x; =; COSg, Y; =F; Sing),

Eq. (7-A16) can be re-written in the general form as follows:

1 N1
> =X, ;dV = Zzy, ”dV=—(Z X; ”dV+Z yi IJdV)——>< (z ;dV)

i1

= 2
N N 1 1 N 5
Zl W, dV +22yIJ ;v +Z z; "dV)ZE W, dV, where X +yi=r

ij
j=1 0 j=L

(7-A17)

OOII—‘ :MZ
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N
2 2DOZ:;(fj - f)W,dv (7-A18)
Vi = f  + f, =—

NeA
In the above equation, the terms ngy, Do and A signify the Particle Number Density (PND), the

number of space dimensions and coefficient in the Laplacian model which are defined as:

N
Ny = > W, dV
j=1
) ) (7-A19)
A=Y rAWdv /> Wdv
j=1 j=1

Eqg. (7-A18) was originally proposed by Koshizuka et al. [1] for discretization of Pressure
Poisson Equation (PPE) and then was used by Sub et al. [10], Sasaki et al. [88], Liu et al. [23]

and Sun et al. [89] for simulation of violent free-surface flows.

7.9 Appendix B (1D shock tube problem)

The discretization procedure with associated classical governing equations for analysis of 1D Sod

shock tube problem in a Lagrangian particle description are presented along this appendix [52].

Du N P + P;
B oo
Z O
De 1 N i p
E:_E;mj(%+p_;)(uij 'V\Nij) (7-B2)
Z ) i
N
p =2 mW, (7-B3)
I-1
Du(n)

u™ =u™ 4 At

e = oM 4 At De™ (7-B4)

r.(n+1) — r(n) +Atu(n+1)

p=p(y-De, C=\/§, (7-B5)
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In above equations, € , p, pand u are internal energy, pressure, density and velocity of the gas,
respectively. ¢ denotes the speed of sound in lattice particle and y =1.4is heat capacity ratio.
Similar to work of Liu et al. [52], simulation has been performed for 40 time step (At =0.005s)
where 320 particles with high level of pressure and density are located in the driven section of the
tube [-0.6,0]while 80 particles with low level of energy are uniformly deployed in the working

section [0,0.6].

X<0, p=1 u=0, e=25, p=1 Ax=0.001875, m=0.001875

x>0, p=025 u=0, e=1.795 p=0.1795 Ax=0.0075, m=0.001875 7-B6)
As is clear from Egs. (7-B1) to (7-B5), sequence and solution structure of shock tube problem
consists of three stages: (a) first material derivatives of velocity ( Du/Dt) and energy ( De/Dt) as

well as density ( o) are calculated through Egs. (7-B1) to (7-B3). In the second stage particles are

shifted to the new position (r™?) with updated velocity (u™") and internal energy (e™™)
according to first-order explicit (forward time) Euler scheme. In the last stage, pressure and
sound speed for each particle will be updated based on the equation of state (EOS) and isentropic
condition (Eq. (7-B5)). To suppress unphysical pressure oscillation near the shock region, the

artificial viscosity (IT;;) suggested by Monaghan [90] is frequently employed as follows:

—0(6u¢%-+,3¢i,~2
LR <o
i~ Pij
0 u; -1 >0
_ h; (U - 1) (7-B7)
W=
nl +o
_ c.+C. — 4+ D,
Cij = |2 L, pij=%, (ﬂZO.Olhij, a=p=1

where o and / are constant parameters which control the strength of the artificial viscosity.
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Chapter 8 SUMMARY AND GENERAL DISCUSSION

In this chapter, the main findings from the current thesis is summarized and discussed in details.
As outlined before, the global objectives of the present research study were to introduce some
possible modifications to increase the accuracy and efficiency of the existing SPH and MPS
models in handling multiphase and free-surface flows through addressing eight common
drawbacks namely: (1) uncertainty in the selection of appropriate kernel function, (2) low-order
space and time discretization schemes used for calculating gradient, divergence and Laplacian
operators, (3) non-conservative form of pressure gradient operator, (4) unphysical pressure
fluctuations associated with Weakly Compressible version of the SPH, (5) false detection of
interfacial particles in free-surface flows, (6) Low-order boundary treatment, (7) penetration of
fluid particles into the boundaries walls and (8) tensile instability caused by particle clustering. In
order to accomplish this, a number of modifications have been proposed and applied on SPH and
MPS models as follows:

8.1 Kernel function

As illustrated in table 8-1, in order to address the first issue, four new kernel functions were
constructed and successfully applied to the simulation of 1D Sod shock tube problem. The
comparison of obtained results with the analytical solution in Fig. 8-1 clearly demonstrates that,
the newly developed kernel functions can efficiently identify and resolve the locations of the
shock wave (x=0.3), contact discontinuity (x=0.135) and internal energy profiles of the
rarefaction wave (—0.25<x<0) with minimal oscillation and consequently outperformed the
existing kernel functions (i.e. Cubic, quintic spline and Wendland) in handeling shock wave with
physical discontinuities. In addition to that, it can be seen that the cubic kernel function
considerably failed to capture density discontinuity whereas the results of Wendland and quintic
kernels in terms of density, energy, pressure and velocity profiles are more compatible with
predicted results from kernels A to D. Finally, it should be noted that, although the obtained
results in Fig. 8-1 clearly prove the superiority of the newly developed kernels over the exsiting
kernel functions, the comparison of the developed kernels A to D shows similar results in
capturing shock area and material discountinuety which indicates that they can be used

interchangeably and consequently one cannot recommend one kernel over the others.
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Table 8.1 The summary of the four newly developed kernel functions used for the interpolation

and particle approximation.

Kernel A (see article 1)
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Figure 8-1 Comparison between calculated results from the four newly constructed kernel

function with the analytical solution and existing kernels in modelling of shock tube problem.

8.2 Gradient, Laplacian and smoothing operators

To tackle the shortcoming of non-conservative form of pressure gradient operator and to solve

the problems of low-order spatial discretization schemes used for calculating gradient, divergence

and Laplacian operators in the governing equations, a set of high-order discretization

formulations were proposed based on the Taylor series expantion. More precisely, in order to

circumvent the problem of density/viscosity discontinuity in the multiphase flows or to

approximate the values of field function (i.e. pressure, temperature) on the rigid walls, the

following smoothing operators have been proposed and implemented (Egs (8-1 to 8-4)):
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In the above equations, the model A is known as Moving Least Squares (MLS) method which
was originally proposed by Colagrossi et al. (Colagrossi and Landrini, 2003) for the simulation of
bubble rising and dam break problems. The second model (Eq. (8-2)) is the MPS version of the
MLS model which has been proposed in the current study to calculate the temperature field in
buoyancy term in natural convection heat transfer problem (see also article 2). The third model
(Eq. (8-3)) is known as MLSPH model which is the SPH version of the MLS technique. This
model was initially pioneered by Nayroles et al. (Nayroles, Touzot, (1992)) and was then
successfully employed by Huang et al. (Huang, Lei, and Peng, 2016) for modelling the lid-driven
cavity flow. Motivated by work of Ng et al. (Ng, Hwang, and Sheu, 2014), the second version of
the MLS in the context of the MPS model was proposed in the current study through decreasing
the power of r (r") in Egs. (8-2) from n=2 to n=1 in Eq. (8-4). At this stage, it worthwhile to
mention that, the presence of corrective matrix L, can efficiently guarantee the first-order
completeness condition for the kernel function as mathematically showed by Belytschko et al.
(Belytschko, Ted, Krongauz, 1998). The calculated results revealed that, the proposed smoothing

operators can efficiently handle sharp density discontinuities adjacent to the material interfaces.

To enhance the order of accuracy of the gradient operator, the similar procedure has been adopted
in the current. The summary of proposed gradient operators used in the current study is given by
Egs. (8-5 to 8-9):

Gradient operator (Model A)
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Gradient operator (Model C)
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In the above equation, the model A (Eq. (8-5)) was initially introduced by Xu et al. (Xu, & Deng,
(2016)) in the context of MLS model for the simulation of the 2D dam break problem. Model B
was originally introduced by Khayyer et al. (Khayyer and Gotoh, 2011) and known as a corrected
gradient model of original MPS method. Model C as the one of the classical gradient operators in
the context of the SPH description was orginally proposed by Krongauz et al. (Y. Krongauz,
Belytschko, 1997) and was then successfully implemented by Oger et al. (Oger, Doring,
Alessandrini, Ferrant, 2007) to solve the problem of free-surface flow. Following the idea of
Khayyer et al. (Khayyer and Gotoh, 2011) and Xu et al. (Xu, & Deng, (2016)), the terms x.W.

ij" ij

and y,W; in Eq. (8-6) were replaced by VW, and VW in Eq. (8-7) and subsequently the model

J,X 1,y

D was developed in the current work (see also article 3). This operator (Eg. (8-8)) was then
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utilized to simulate the problems of free-surface flow, natural convection heat transfer and two-
phase Rayleigh-Taylor Instability. The second version of the gradient operator in the context of
the MPS model was also proposed through decreasing the power of r (r") in Egs. (8-6) from n=2
to n=1 in Eq. (8-9). This model has been employed to simulate the three-phase Rayleigh-Taylor
Instability, dam break flow, natural convection heat transfer in differentially heated cavity,
Rayleigh-Bénard convection and oscillating concentric circular drop with high density ratio. The
proposed gradient operators have been utilized to calculate the divergence of velocity, gradient of
temperature and pressure in Navier-Stokes and energy equations. Finally, it should be noted that,
similar to the smoothing operator, the presence of the corrective matrix L in the above equations
can ensure the first order completeness of the gradient models in the discretization process (for
more details see works of Oger et al. (Oger, Doring, Alessandrini, Ferrant, 2007) and Khayyer et
al. (Khayyer and Gotoh, 2011) and Yun, Sang-Moon, Park, Khayyer, and Jeong, 2018).

Following the idea of Schwaiger (Schwaiger, (2008)), in order to further improve the accuracy of
the numerical simulations, a set of high-order Laplacian operators were derived based on the
Taylor series expansion and were applied for the discretization of Pressure Poisson Equation
(PPE) and diffusion terms in Navier-Stokes and energy equations. The summary of proposed

Laplacian operators used in the current study is given by Egs. (8-10 to 8-13):

Laplacian operator (Model A)

N N N
2D, [Z(fj — f)W,dV — fxz X; W;dV — fyz y; W;dV]
Vi = = -1 =1
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Laplacian operator (Model B)
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Laplacian operator (Model C)
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As expected, the models A, B, C and D are respectively, MLS, MPS, SPH and FDM-MPS
versions of the Laplacian operator which have been derived in the Lagrangian framework. Due to

the presence of the first derivatives of the field function ( f;,and f; ), it is not difficult to deduce

that, the proposed models are very analogous to the orginal high-order Laplacian operator

introduced by Schwaiger (Schwaiger, (2008)) as:

(rl)avvl a N -
~ile e gy —2f, - (O W, V) (8-14)
j=1

F

r2| &

Vif =_# ZZ(fj —f)
n =)

where n is the number of dimensions and 7" is a tensor which is defined as;

(AX)aWij,a -
r, = i W(Ax) (%) dx (8-15)
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As highlighted by Schwaiger (Schwaiger, (2008)), the existence of the second term on the RHS
of Eq. (8-14) is the correction which can provide a modest improvement over just the first term.
Moreover, he found that, for regularly spaced arrays, the second-order convergence can be

achieaved via the implementation of Eq. (8-14).

Finally, the results obtained from the modeling of dam break problem, two-phase and three-phase
Rayleigh-Taylor instability (RTI) in the present work clearly demonstrated that, implementing
high-order discretization schemes can immensely improve the stability and performance of the
classical ISPH and IMPS models. Furthermore, it was found that, the implementation of the high-
order discretization scheme for the treatment of the Laplacian and gradient operators can
efficiently remove an unphysical pressure fluctuations from the computational domain which is a

common problem in Lagrangian particle methods.

8.3 Particle Shifting Technique (PST)

As heighlited in the previous section, the order of accuracy of the proposed operators is strongly
dependent on the regularity of the particles distribution such that the occurrence of tensile
instability caused by particle clustering can significantly damage the interpolation accuracy or
even lead to the unwanted termination of the calculations. To address the issue of particle
clustering and prevent the inception of the tensile-instability, in a pioneering work, Xu et al. (Xu,
Stansby, Laurence, (2009)) introduced the concept of the Particle Shifting Technique (PST) in
which particles are encouraged to migrate from region of high concentration to the lower one,
leading to the more uniform particle arrangement within the computational domain. Following
the idea of Xu et al. (Xu, Stansby, Laurence, (2009)), a novel MLS version of the PST has been

proposed in the current work as follows:

8-16
|XPST = ﬁZXUV\/IJdV IyPST = ﬂzy,JW dV ( )

where B =0.5a h’is a shifting coefficient which controls the magnitude of particle displacement

with 0<a <1 (for more details see articles 1 to 3). The obtained results clearly demonstrated
that, the newly developed PST could efficiently remove the tensile instability from the

computational domain, leading to a more uniform particle distribution. However, this technique
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was then further improved by incorporating the concept of the particle collision (Discrete
Element Method (DEM)) for the treatment of the free-surface flows as:

S = (Ry+R—[F 1 =)A= (- x)/Jry] (8-17)

nylj _(R +R _‘rl_r")ny ﬁy:(yj_gi)/‘ai‘ (8'18)
— ()2

= —Z:(kn ol VoVnxii) Oy pew = (A1) f;, /m, (8-19)

= —Z (KaGhyis + 7aVaryis) Oh,y.pem = (dt)® fi,y/mi (8-20)

In this technique, the previous PST model was applied only to the interior particles whereas the

collision model was used for treatment of the interface and its nearby particles as:

r™ =™ o5y forinner particles

(8-21)

rt =r™ 4+ 1L, forsurfaceand vicinity particles

The validity and applicability of the proposed scheme were demonstrated against the several
challenging benchmark cases including: dam-break flows with/without an obstacle, stretching
water drop and rotating square patch of fluid. It was found that, implementing an efficient particle
regularization technique (HPST) can considerably increase the accuracy and stability of the

numerical solution.

8.4 Free-surface detection technique

As mentioned in the introduction section, Dirichlet pressure condition (p=0) must be applied on
the free-surface region when single-phase model is employed for simulation of the free-surface
flows such dam break problem. This highlights the need of proper identification of the interface
position and its vicinity particles. Thus, a novel Hybrid Free-surface Detection (HFD) technique

was developed based on the first and second derivatives of kernel function as:
N .

o, =>W, m (8-22)
it P

m m
D, Vr_ZxVW —'+Zyuvw (8-23)
Yo,

=t i i= j
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D, Vr_—z XVW, L+ = Zijzw (8-24)

ij,xx

'OJ pj

@ Z XIJ yIJ p (8'25)

iy~
]

The variables @, and @, in the above equations are known as a Particle Number Density (PND)

(Koshizuka, & Oka, (1996)) and divergence of particle displacement (Lee, Moulinec, Xu,

Violeau, Laurence, & Stansby, (2008)) while @, and ®,are two new complementary conditions

which can be simply referred to as Laplacian of particle displacement and mixed partial
derivative of kernel function, respectively. The results showed that, the newly developed scheme

can efficiently identify the position of interface and its nearby particles.

8.5 Density error accumulation

Motivated by work of Antuono et al. (Antuono, M., Colagrossi, A., Marrone, S., & Molteni, D.
(2010)), in order to tackle the problems of unphysical pressure oscillation and density error
accumulation associated with the standard WCSPH model, a novel high-order artificial diffusion
term was derived based on the Taylor series expansion and then added into the continuity
equation as:

D™ . }
I§t Ol NT (8-26)

The second term (y = AAtc2V?p) in the right-hand side of the above equation is the additional

diffusive term. One of the most notable features of Eq. (8-26) is that unlike the conventional 6-
WCSPH (Antuono, Colagrossi, Marrone, & Molteni, (2010)), the present model does not contain
any tunable parameter to control the density diffusive term (). The performance and robustness
of the proposed modification was verified against a series of challenging benchmark cases such
as dam break, stretching of a circular water drop, rotating square patch of fluid and natural
convection heat transfer in a square enclosure. The obtained results showed that, inserting
additional diffusive term into the continuity equation can efficiently remove high-frequency
oscillations noise from the pressure field (unfavorable check-board pressure field), leading to a
more accurate and stable results as compared to conventional WCSPH (for more details see

article 2).



296

8.6 Treatment of the boundary conditions

As highlighted before, unlike the conventional Eulerian mesh-based methods, addressing the
influence of the solid walls in the purely Lagrangian mesh-free models such as MPS and SPH is
not often as straightforward as it seemed. To overcome this shortcoming, the dynamic ghost
particle technique suggested by Marrone et al. (Marrone, Antuono, Colagrossi, Colicchio, Le
Touzé, & Graziani, (2011)) is adopted in the current work to enforce no-slip and no-penetration
conditions on the rigid walls. As portrayed in Fig. 8-2, in this technique, both tangential and
normal component of fluid velocity with opposite sign (no-slip) is extrapolated on the

corresponding wall particles outside of the flow domain. However, to impose the Neumann

boundary condition, the target variable (i.e. pressure ( p;) or temperature (6,) on the isolated

walls) is first computed on the solid boundary line using one of the smoothing operators
presented in section 8-2 (Egs. (8-1) to (8-4)), and then the predicted values are assigned to the
corresponding ghost particles in the same row, column or corner. Note that, as schematically
shown in Fig. 8-2, only the fluid particles in the support domain of the kernel function are used to
approximate the pressure or temperature on the fixed ghost particles. The obtained results showed
that, the implementing the mirror velocity technique can successfully mitigate the undesirable

problem of penetration of fluid particles into the boundaries walls.
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Implementing the mirror velocity technique
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Figure 8-2 The conceptual illustrations of implementing Neumannand and Dirichlet (mirror
velocity technique) boundary conditions in the context of the Lagrangian particle method.
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Chapter 9 CONCLUSION AND RECOMMENDATIONS

9.1 Conclusions

Based on the results obtained from the present thesis, the following major conclusions may be

drawn:

1.

The results showed that, the type of the kernel function has a remarkable impact on the

accuracy and stability of the particle methods,

The results show that, four newly developed smoothing kernel (Wj) considerably
outperformed the existing kernel functions (i.e. Cubic, Wendland, quintic spline) in

modeling of shockwave propagation and multiphase flow with physical discontinuities.

It was found that, the order of accuracy of governing operators (i.e. gradient, Laplacian
and divergence of velocity) has a significant impact on the regularity of particle

distributions and stability of the numerical solution

The results showed that the newly proposed Laplacian operators could provide more
accurate, stable and reliable results compared to the traditional operators used in WCSPH,
ISPH and MPS methods, in modeling breaking dam flow, stretching of circular water
drop, rotating square patch of fluid and natural convection heat transfer in a square

enclosure.

The results showed that the newly proposed high-order gradient operators could
successfully eliminate the non-physical pressure fluctuations from the computational

domain, leading to a more stable and robust numerical model,

The results showed that the newly proposed free-surface detection technique could

accurately identify the position of the free-surface and its vicinity particles,

The results show that, particles in Lagrangian framework have a natural tendency to
cluster along the streamline, leading to the significant void formation and density error

accumulation.

It was found that the implementation of the Particle Shifting Technique (PST) has a
notable impact on the stability and accuracy of the mesh-free particle methods,
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9. It was found that, the proposed Hybrid Particle Shifting Technique (HPST) could
efficiently eliminate spurious pressure fluctuation caused by tensile instability (particle

clustering) from the computational domain,

10. The obtained results vividly confirmed the broad applicability of proposed modifications

in handling free-surface flows and particulate flows with thermal convection.

11. The results showed that, the proposed Modified Pressure Gradient operator (MPG) could
effectively resolve the problem of particle clumping on the interface while retaining the

conservation properties of momentum,

12. It was found that inserting additional diffusive term into the continuity equation can
successfully remove high-frequency oscillations noise from the pressure field (undesirable
check-board pressure field), leading to more accurate results as compared to conventional
WCSPH model.

13. It was found that, the newly proposed smoothing operators can accurately interpolate
values of the field function and circumvent the problem of density discontinuity in the

multiphase flows,

14. It was found that traditional formulations of SPH model are prone to tensile instability
and characterized by noisy pressure field whereas the proposed KDF-WCSPH model
benefit from high level of accuracy and consistency,

9.2 Recommendations for Future Works

As a future investigation, the proposed models can be employed to explore multiphase flows with
high-density ratio such as bubble rising and water droplet falling in air where undesirable particle
scattering/clustering is likely to occur on the interface. It would be a future challenge to
investigate turbulent natural convection heat transfer in porous enclosure, which has many

important applications ranging from electronic packaging to solar collector technology.

Moreover, although the sensitivity of the models to the particle size was eventuated for a few
benchmark cases (natural convection heat transfer), a detailed particle convergence study is re-
commented for the future work to (1) determine the particle size which ensures the

interdependency of results to the particle size, and (2) qualify the order of spatial convergence.
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To further enhance the capability and robustness of the proposed models in solving real-life
large-scale moving interface problems involving breaking and spray formation, the existing
mesh-free Lagrangian particle methods can be combined with the classical grid-based Eulerian
models. In this technigque, the mesh-free particle method can be employed to capture details of the

free-surface area whereas the mesh-based model can be applied to resolve the bulk flow.

To further improve the versatility and consistency of the newly developed SPH and MPS models
in handling multiphase flows with high-density contrast, the particle refinement scheme (Multi-
resolution technique) introduced by Tanaka et al. (Tanaka et al., 2018b) will be incorporated into

the models.
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