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RÉSUMÉ

Les systèmes de reconnaissance vocale existants sont très précis et atteignent des perfor-
mances élevées lorsqu’ils traduisent le signal de parole en une intention. Ces appareils né-
cessitent souvent la réception de signaux vocaux sans bruit afin d e p rédire a vec précision 
l’intention du locuteur. La présence de bruit dans les signaux vocaux peut conduire à de 
fausses prédictions qui peuvent conduire le système à exécuter de fausses actions.

La recherche effectuée fait partie des stages Mitacs Accelerate, qui ont été menés en colla-
boration avec Fluent.ai, une startup montréalaise spécialisée en intelligence artificielle, plus 
précisément dans la reconnaissance vocale pour des appareils utilisés dans les maisons intel-
ligentes. L’objectif principal de la recherche est de développer un nouvel algorithme agissant 
comme front-end pour réduire le bruit des signaux vocaux en utilisant la séparation des 
sources.

Le travail effectué introduit d’abord un examen critique des approches développées précé-
demment pour appliquer la séparation des sources et réduire le bruit des données. La revue 
de ces méthodes a permis de développer un algorithme capable de séparer les signaux en un 
signal de parole et un signal de bruit puis de reconstruire la source de parole débruitée.

Deux méthodes ont été proposées aux deux situations possibles : avec ou sans la présence de 
délais entre les microphones. Les deux algorithmes ont été testés et validés à l’aide d’enregis-
trements contenant du bruit fournis par notre partenaire industriel Fluent.ai. L’algorithme a 
été implémenté en tant qu’interface pour l’algorithme de Fluent.ai qui utilise les réseaux de 
neurones artificiels pour comprendre l’intention du locuteur. Pour cela, nous avons utilisé le 
même environnement utilisé par Fluent.ai qui a été entièrement implémenté en langage de 
programmation Python.
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ABSTRACT

The existing speech recognition systems reach high and precise performances when under-
standing the intention of the speaker. These devices require often the reception of clean
speech signals in order to accurately predict the intent of the speaker. The presence of noise
in speech signals can lead to false predictions which can lead the system to execute false
actions.

The research done is part of the Mitacs Accelerate internships, which were conducted in col-
laboration with Fluent.ai, a Montréalese startup specializing in speech recognition for smart
home devices. The main purpose of the research is to develop a new front-end algorithm to
help reducing the noise from speech signals using sources separation.

The work done introduces first a critical review of approaches developed previously to apply
source separation and reduce the noise from data. The review of those methods helped to
develop an algorithm able to separate signals to a speech signal and a noise signal then re-
construct a cleaner speech.

Two methods were proposed to both possible situations: with or without the presence of
delays between the microphones. Both algorithms were investigated and validated using
recordings containing noise that were provided by our industrial partner Fluent.ai. The
algorithm was implemented as a front-end for a software that uses deep learning neural
networks to understand the intent of the speaker. For that we used the same environment
used by Fluent.ai which was entirely implemented in Python language.
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CHAPITRE 1 INTRODUCTION

La reconnaissance vocale est un des domaines de recherche les plus en vogue de ces dernières
années. L’interaction entre l’humain et la machine devient de plus en plus facile grâce à la
détection et la compréhension de la voix humaine. La voix humaine est une suite d’ondes
créées par les cordes vocales grâce à la vibration. Cette voix est reçue par l’appareil de
reconnaissance vocale sous forme de signal qui sera traité grâce à des techniques de traitement
de signaux afin d’en comprendre l’intention. La machine peut apprendre à comprendre la voix
humaine grâce à différentes techniques en utilisant l’apprentissage machine. La voix est une
des interfaces naturelles les plus faciles à utiliser. Cela permet de remplacer plusieurs actions
qui demandent l’interaction physique de la personne avec la machine, chose qui permet de
faciliter l’utilisation de la machine dans des cas difficiles (e.g. contrôle des fonctionnalités
d’une voiture en conduisant).

Le domaine de la reconnaissance vocale a vu naître des algorithmes performants pour com-
prendre l’intention de l’utilisateur, cependant ces algorithmes sont affectés par la présence
de bruit et de réverbération dans les signaux de paroles et de bruit. Dans le cas général, la
personne se tient à distance de l’appareil, chose qui dégrade le signal par l’ajout de bruit et
de réverbération. La reconnaissance vocale automatique doit être robuste au bruit et à la
réverbération afin de ne pas détériorer la précision de l’appareil. Dans le but d’atteindre cet
objectif, l’utilisation de techniques de traitement des signaux devient impérative. En présence
de bruit, l’appareil de reconnaissance vocale reçoit un signal de parole provenant d’une ou
plusieurs sources de parole superposées à un autre signal provenant d’une source de bruit.
Ces deux composantes des signaux reçus par l’appareil réduisent la précision de l’algorithme
de compréhension de la voix humaine.

Pendant les récentes années, la recherche dans le domaine du traitement des signaux ainsi
qu’en intelligence artificielle ont prêté beaucoup d’attention à la résolution du problème de
BSS (Blind Source Separation). Dans le cas général, les microphones reçoivent une super-
position de signaux qui peuvent être séparés en composantes indépendantes. On distingue
essentiellement deux types d’algorithmes permettant de résoudre ce genre de problèmes : les
algorithmes d’apprentissage non supervisés ou supervisés.

Les algorithmes d’apprentissage non supervisés permettent de séparer des signaux superpo-
sés sans avoir recours à des données d’entraînement au préalable ni à des données liées aux
coefficients de mixage des microphones. L’Analyse en Composantes Indépendantes (ACI) est
l’un des algorithmes les plus connus de ce genre. Les algorithmes d’apprentissage supervisés
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comme les réseaux de neurones artificiels permettent d’apprendre à partir de données d’en-
traînements à estimer les paramètres de poids permettant de faire la séparation de signaux
. Leur application à ce problème pourrait aider à séparer la superposition des signaux reçus
par le micro en deux composantes indépendantes, la source de parole et la source de bruit.

Notre projet de recherche se fait dans le cadre d’une coopération avec notre partenaire in-
dustriel Fluent.ai. Notre partenaire utilise un système de reconnaissance automatique de
l’intention Automatic Speech to Intent Recognition (ASIR). Ce système se base sur une ar-
chitecture utilisant les réseaux de neurones profonds qui servent à reconnaître une succession
de commandes. Ce système utilise un processeur ARM qui calcule les prédictions localement
sans avoir besoin de puissance de calcul infonuagique. ARM est un type d’architecture de
processeur très utilisé dans les petits appareils électroniques comme les téléphones intelli-
gents ou les appareils de maisons intelligentes. Le système est équipé de deux microphones
et a une position fixe dans une salle où il y aurait présence d’une personne ou plus. La
forme géométrique de l’appareil peut changer, cependant l’appareil est relativement petit et
les deux microphones sont très proches l’un de l’autre. L’appareil a une fonction de réveil
(’wake word’) qui permet d’activer la reconnaissance vocale de l’appareil grâce à un signal de
réveil comme "Hey Fluent". L’appareil est conçu afin de recevoir des signaux vocaux d’inten-
tion, e.g. "Turn On coffee machine". Ce genre de signaux d’intention sont traduits en actions
par un réseau de neurones profond. À part les signaux d’intention, il y a aussi présence de
signaux comme de la musique, parasites ou du bruit venant d’autres appareils comme un
ventilateur. Dans la situation typique que nous considérons, les interlocuteurs parlent à tour
de rôle, avec de courtes périodes où on entendrait les personnes parler ensemble ou seulement
du bruit. Cette situation typique diffère de la situation du problème de séparation aveugle
des sources où on aurait des personnes qui parlent simultanément. On considère alors que
l’appareil entend une personne à la fois parler en présence de bruit, avec la possibilité d’avoir
un changement de locuteur qui serait plus loin ou plus proche de l’appareil. Dans ce cas,
le système de Fluent.ai devrait pouvoir reconnaître le signal provenant de la personne qui
parle comme étant le signal d’intention. Notre partenaire souhaite isoler seulement le signal
d’intention afin de l’envoyer à l’algorithme de reconnaissance d’intention. De plus l’appareil
en question possède deux microphones, ceci implique l’existence de délais lors de la réception
des ondes sonores par les microphones. Plusieurs algorithmes ont vu le jour pour résoudre ce
genre de problème, cependant aucune méthode ne réussit à parfaitement séparer des sources
des signaux de microphones. Les délais entre les microphones changent en fonction de la
distance qui sépare ces derniers ainsi que la distance qui sépare les sources des microphones.
L’ajout de la contrainte des délais rend la réduction de bruit des signaux de parole plus
compliquée. La réduction du bruit en tenant compte de délais entre deux microphones reste
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encore un sujet de recherche qui n’a pas été exploré en détails.

Pour ces raisons, le développement d’un algorithme pour séparer le bruit de la source de
parole en respectant l’existence de délais est nécessaire. Cet algorithme doit aussi pouvoir
suivre la variation du délai si la source de parole change de position. Les signaux de parole
et de bruits sont supposés inconnus. La relation entre les signaux ainsi que les paramètres de
mixage sont aussi inconnus. Sachant que le bruit réduit les performances de la reconnaissance
automatique de l’intention, cet algorithme devrait pouvoir estimer les différents paramètres
de mixage ainsi que les délais afin de pouvoir reconstruire correctement les signaux et envoyer
seulement le signal de parole à l’algorithme de reconnaissance d’intention de Fluent.ai.

L’objectif principal de ce mémoire est de développer une méthode basée sur une extension
de l’ACI afin de séparer les signaux des microphones et enlever le bruit en présence de délais.
Pour résoudre ce problème nous devons : - Formuler le problème sans délais entre les deux
microphones
- Adapter la méthode pour tenir compte des délais entre les microphones
- Détecter les périodes calmes lorsque le locuteur ne parle pas.
- Estimer les coefficient de mixage ainsi que les délais pour la source de parole et la source
de bruit.
- Reconstruire le signal de parole sans bruit.
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CHAPITRE 2 DÉFINITION DU PROBLÈME

2.1 Introduction

L’appareil de reconnaissance vocale automatique permet de comprendre l’intention de la
voix humaine. Ce genre d’appareil utilise généralement des algorithmes de traitement de la
langue naturelle qui permettent de prédire l’intention de l’humain quand le signal de parole
est reçu par l’appareil. Un appareil conventionnel de reconnaissance vocale comprend un
système de compréhension de la langue parlée (Spoken Language Understanding (SLU)). Le
système conventionnel intègre deux modules principaux. Le premier est un algorithme de
reconnaissance automatique de la parole (Automatic Speech Recognition (ASR)) qui sert à
traduire le signal en texte. Le deuxième module est un algorithme de compréhension du
langage naturel (Natural Language Understanding (NLU)) qui est utilisé pour comprendre le
sens de la phrase et l’intention du locuteur. L’appareil de notre partenaire industriel Fluent.ai
a une architecture différente, il intègre un système complet de compréhension de langage
parlé (End-to-end SLU ) qui comprend un seul module principal. Ce module peut comprendre
directement l’intention du locuteur à partir du signal de parole sans avoir besoin de le traduire
en texte, comme le montre la figure (2.1) de Lugosch et al. [2].

Figure 2.1 Différence entre l’architecture conventionnelle SLU et End-to-end SLU.
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Ces algorithmes sont très sensibles à la présence de bruit dans les signaux car la prédiction de
l’intention est estimée directement à partir du signal et non du texte. En présence de signaux
autres que le signal de parole, i.e. bruit, la performance de l’appareil de reconnaissance vocale
automatique diminue. Dans ce projet, on se focalise sur la réduction du bruit. Le problème
est de séparer les signaux sources, i.e. signal de parole et signal de bruit en utilisant les
deux signaux reçus par les microphones de l’appareil. Les signaux de parole et de bruit sont
supposés être inconnus. La relation entre les signaux des sources et les microphones est aussi
inconnue. Ce problème est connu comme le problème de séparation aveugle de sources (Blind
Source Separation (BSS)).

2.2 Le Cocktail Party Problem et la séparation aveugle de sources

En 1953, Cherry [3] a introduit le problème du Cocktail Party qui décrit la situation où plu-
sieurs personnes parlent en même temps. En présence de plusieurs microphones, on enregistre
des superpositions des voix des personnes qui parlent. Dans ce contexte, la séparation aveugle
de sources a vu le jour et est devenu un sujet de recherche actif. C’est une méthode de trai-
tement des signaux qui permet de reconstruire les signaux sources qui sont inconnus à partir
des signaux de microphones qui sont connus. Plusieurs méthodes de BSS ont été proposées
par des chercheurs des domaines du traitement statistique des signaux, du traitement des
signaux audio, de la psychologie cognitive ainsi que du traitement d’images. La séparation
aveugle de sources est une méthode de séparation qui suppose que les signaux des sources
sont indépendants, inconnus et sans délais d’un microphone à un autre.

On suppose que les signaux acoustiques reçus par les microphones sont des combinaisons
linéaires des sources inconnues. Chaque signal est une suite de valeurs qui représente la lecture
du microphone au temps n ∈ N et est défini comme une observation x(n). Cette observation
est formulée comme une combinaison linéaire des mêmes sources inconnues s(n) ∈ R. Les
sources sont inconnues et indépendantes au cours du temps n ∈ N. On appelle A la matrice
de mixage inconnue de dimensions m× n. Chaque élément ai,j de la matrice A correspond à
un des coefficients de mixage du microphone xm(n) pour la source sn(n). On peut modéliser
le système par

x(n) = A s(n), (2.1)

où
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x(n) =


x1(n)
x2(n)

...
xm(n)

 , (2.2)

Am,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n

 , (2.3)

et

s(n) =


s1(n)
s2(n)
...

sn(n)

 . (2.4)

L’objectif de la séparation aveugle des sources est de reconstruire les signaux des sources s(n)
à partir des signaux des microphones. Pour cela, il est nécessaire d’estimer la matrice A et
ensuite de calculer son inverse W dans le cas où m = n :

W = A−1, (2.5)

s(n) = Wx(n). (2.6)

Ainsi on peut reconstruire les signaux des sources s(n) en suivant le diagramme de la figure
(2.2) selon Rana et al. [4]
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Figure 2.2 Diagramme de séparation aveugle des sources.

Plusieurs approches ont été développées pour résoudre le problème de séparation aveugle
de sources. L’approche la plus connue est l’Analyse en Composantes Indépendantes (ACI)
qui a été introduite par Hérault et Ans [5]. Plusieurs variétés de l’ACI ont vu le jour. La
plus populaire est l’algorithme FastICA de Hyvärinen [6]. La méthode ACI est efficace et
précise pour séparer des superpositions de sources indépendantes si les superpositions sont
de simples combinaisons linéaires des sources. Cependant, l’ACI est une méthode qui a été
modélisée pour traiter des signaux qui n’ont pas été enregistrés par des microphones distants.
L’existence d’une distance entre les microphones crée des délais pendant la réception des si-
gnaux sonores. La présence de délais crée une limitation pour le modèle formulé par l’ACI
et rend la méthode non utilisable dans un cas réel. De plus l’algorithme de l’ACI est plus
performant si le nombre des signaux observés est supérieur aux nombre des sources, i.e si le
nombre de microphones est plus grand que le nombre des sources de parole. Cette limitation
cause problème dans le cas réel car on a un nombre fixe de microphones, deux dans le cas de
notre projet.
Dans notre projet de recherche, l’utilisation de l’appareil de reconnaissance vocale de notre
partenaire industriel se fait généralement dans une pièce. Ceci implique l’existence de réver-
bérations créées par la réflexion des ondes sonores des sources de paroles avec les murs de la
pièce. Cette réverbération est un signal parasite qui vient rendre la séparation des sources
encore plus compliquée. Dans notre projet, on suppose qu’il n’y a pas réverbération.
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2.3 La séparation de sources dans le cas où m = 2 et n = 2

Pour une matrice A de dimensions m× n, on peut distinguer trois cas :

— m = n, si le nombre de sources est égal au nombre de microphones.

— m > n, si le nombre de microphones est plus grand que le nombre de sources.

— m < n, si le nombre de sources est plus grand que le nombre de microphones.

Dans notre projet, l’appareil de notre partenaire possède deux microphones et nous sup-
posons qu’on a une source de parole et une source de bruit. Nous considérons alors seulement
le cas où m = n = 2.

Dans notre projet de recherche, il existe une petite distance entre les microphones de l’ap-
pareil. Cette distance crée des délais lors de la réception des ondes sonores des sources entre
les deux microphones. Le modèle (2.1) peut alors être reformulé sous la forme équivalente

x(n) = A(n) +B(n),

y(n) = α A(n+ i) + β B(n+ j),
(2.7)

où x(n) et y(n) sont les signaux enregistrés par les deux microphones, α > 0, β > 0 sont
des constantes qui dépendent de la distance entre les microphones et les source, A(n) ∈ R
et B(n) ∈ R sont les sources inconnues reçues par le premier microphone, et (i, j) ∈ Z2 sont
les délais respectifs des sources de parole et source de bruit. Les variables A(n) et B(n) sont
supposées avoir une espérance nulle E {A(n)} = 0, E {B(n)} = 0 pour tout n. Ces deux
variables aléatoires sont aussi supposées être indépendantes dans le sens probabiliste.
On supposera que le signal A(n) a des caractéristiques statistiques semblables à celles d’un
signal de parole. Le signal B(n) a une structure statistique inconnue. En tenant compte de la
forme géométrique de l’appareil, nous pouvons réduire l’intervalle de variation des paramètres
de mixage et des délais.
En se basant sur l’architecture de l’appareil de notre partenaire Fluent.ai, on peut supposer
que la distance entre les deux microphones de l’appareil ne dépasse pas les 10 cm. Fluent.ai
utilise des signaux avec une fréquence d’échantillonnage de 16 kHz. Sachant que la vitesse
du son est de l’ordre de 343 m/s, on peut déduire que i ≤ 4.66 et j ≤ 4.66. Dans la suite, on
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supposera que i et j sont dans l’intervalle [−5, 5]. Si la distance entre la source et l’appareil
est beaucoup plus grande que 10 cm, alors on peut supposer que α ≈ 1 et β ≈ 1. On suppose
aussi que la source de parole A(n) n’est pas constamment active et qu’il existe plusieurs
périodes calmes pendant lesquelles le locuteur ne parle pas. Pendant ces périodes calmes, on
peut supposer que A(n) = 0.

Dans notre projet de recherche, nous étudions le modèle sans réverbérations. Si on tenait
compte des réverbérations alors le modèle prendrait plutôt la forme


x(n) =

K∑
k=0

h1(k)A(n− k) +
K∑
k=0

h2(k)B(n− k),

y(n) =
K∑
k=0

h3(k)A(n− k) +
K∑
k=0

h4(k)B(n− k)
(2.8)

où les filtres hi(k) > 0, i ∈ {1, 2, 3, 4} sont inconnus et K >> 1. Sachant que les microphones
sont proches l’un de l’autre, on peut déduire que h1 ≈ h3 et h2 ≈ h4.

En général, les distances entre les microphones et les sources sont légèrement différentes. En
absence de réverbération, si on suppose que les microphones sont très proches l’un de l’autre,
alors les délais satisfont i = 0 et j = 0 et le système d’équation (2.7) devient

x(n) = A(n) +B(n),

y(n) = α A(n) + β B(n).
(2.9)
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CHAPITRE 3 REVUE DE LITTÉRATURE

L’ACI utilise l’indépendance des sources sonores pour faire la séparation des superpositions
de signaux. Cette séparation se fait grâce à deux hypothèses : la non-gaussianité des sources
et l’absence d’information mutuelle entre les sources.

3.1 L’analyse en composantes indépendantes

3.1.1 Introduction

Plusieurs approches de l’analyse en composantes indépendantes ont été développées pour la
séparation des sources. Toutes les approches utilisent la même représentation du problème.
On considère des signaux provenant de sources physiques. Plusieurs types de signaux peuvent
être traités par l’ACI :

— Signaux de paroles enregistrés par des microphones ;
— Signaux enregistrés par des capteurs (e.g EEG) ;
— Ondes radios enregistrées par des récepteurs ;
— Images enregistrées par des capteurs photo

Dans le contexte de la séparation de sources, on assume que les capteurs sont placées dans des
positions différentes de la pièce, ceci implique l’existence de coefficients de mixage différents
pour chaque capteur. D’après Chien [7], chaque coefficient decrit la corrélation spatiale qui
peut exister entre la source et le capteur récepteur. On note x(t) et y(t), les amplitudes de
deux signaux enregistrés respectivement par les microphones 1 et 2 à chaque instant t. On
note les deux sources inconnues s1(t) et s2(t) correspondant à une source de parole et une
source de bruit. On peut écrire les signaux x(t) et y(t) comme étant la somme pondérée des
sources inconnues s1(t) et s2(t)

x(t) = a11s1(t) + a12s2(t),

y(t) = a21s1(t) + a22s2(t).
(3.1)

Les coefficients de mixage aij sont constants et inconnus. Les aij forment la matrice de mixage
A. La méthode ACI suppose que A est inversible. L’inverse de A sert à reconstruire les sources
s1(t) et s2(t) si
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W := A−1 =
W1,1 W1,2

W2,1 W2,2

 , (3.2)

alors

s1(t) = w11 x(t) + w12 y(t),

s2(t) = w21 x(t) + w22 y(t).
(3.3)

L’analyse en composantes indépendantes est une méthode statistique qui utilise les observa-
tions x(t) et y(t) afin d’estimer la matrice inverse W et reconstruire les sources.

3.1.2 Indépendance des sources

Si deux sources s1 et s2 sont considérées comme deux variables aléatoires différentes, alors
l’indépendance statistique entre ces deux variables aléatoires implique que

p(s1, s2) = ps1(s1)ps2(s2), (3.4)

où ps1,s2(s1, s2) est la densité conjointe de s1 et s2, et ps1(s1), ps2(s2) sont les probabilités
marginales de variables s1 et s2.

3.1.3 Fonction coût

Afin de mesurer l’indépendance des sources, l’ACI utilise des fonctions indicatrices d’indé-
pendances appelées fonctions coût. La méthode ACI cherche à minimiser ou maximiser la
fonction coût, dépendamment de la fonction utilisée, à l’aide d’un algorithme d’optimisation.
Plusieurs fonctions coût existent et le choix de cette dernière influe sur la variance asympto-
tique et la robustesse de l’ACI. Plusieurs fonctions coût ont été utilisées pour les différentes
approches de l’ACI.

Mesure de la non-gaussiannité

Plusieurs fonctions coût existent pour mesurer la non-gaussiannité des signaux. Les plus
utilisées sont :

— Coefficient d’aplatissement :
Le coefficient d’aplatissement est une mesure statistique qui décrit le degré d’aplatis-
sement d’une distribution. Elle est définie par
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kurtose(s1) = E
{
s4

1

}
− 3E

{
s2

1

}
, (3.5)

où E {.} désigne l’espérance mathématique du signal s1.
Si E {s1} = 0 et E {s2

1} = 1, alors

kurtose(s1) = E
{
s4

1

}
− 3. (3.6)

Pour une variable gaussienne s1, le coefficient d’aplatissement est nulle. Une variable
aléatoire non-gaussienne a un coefficient d’aplatissement non nulle. On peut mesurer
la non-gaussianité d’une variable aléatoire en calculant la valeur absolue ou le carré
de son coefficient d’aplatissement.

— Néguentropie
La néguentropie est aussi une mesure de la non-gaussiannité d’une variable aléatoire
souvent appelée entropie négative. Hyvärinen [8] définit la néguentropie comme la
différence d’entropie entre une variable aléatoire et la variable aléatoire gaussienne
qui a la même matrice de covariance. La néguentropie peut être calculée comme suit :

J(s1) = H(sgauss)−H(s1), (3.7)

où sgauss la variable gaussienne qui a la même matrice de covariance que s1 etH(sgauss)
l’entropie de sgauss avec

H(sgauss) = −
N∑
i=1

p(i) ln(p(i)), (3.8)

où p(i) > 0 sont les distributions de probabilités des s(i).

L’information mutuelle

L’information mutuelle est une mesure très utilisée dans le domaine du traitement des signaux
pour mesurer la dépendance statistiques entre des variables aléatoires. L’information mutuelle
mesure l’information partagée par deux variables alátoires s1 et s2 et peut être utilisée comme
une fonction coût. Hyvärinen [8] définit l’information mutuelle entre s1 et s2 comme

I(s1, s2) =
2∑
i=1

H(si)−H(s1, s2). (3.9)
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3.1.4 Les Algorithmes de l’ACI

Plusieurs algorithmes ont été développés pour résoudre le problème de séparation de sources
indépendantes. On peut séparer ces algorithmes en deux catégories :

— Algorithmes qui mesurent l’indépendance des sources en minimisant l’information mu-
tuelle.

— Algorithmes qui mesurent l’indépendance des sources en maximisant la non-gaussiannité.

Algorithme FastICA de Hyvärinen [9]

L’algorithme FastICA d’Hyvärinen [9] est l’approche la plus connue pour résoudre le pro-
blème de séparation de sources aveugles. C’est une méthode connue pour la rapidité de sa
convergence et sa précision. Elle est très utilisée pour séparer les signaux enregistrés par les
capteurs d’électroencéphalographie qui enregistrent l’activité électrique du cerveau. L’ACI
permet d’enlever les artéfacts pour améliorer l’analyse de l’activité cérébrale. La méthode
FastICA se base sur la maximisation de la non-gaussiannité des composantes. Cette méthode
utilise le blanchiment des données comme prétraitement et la descente du gradient stochas-
tique comme méthode d’optimisation pour maximiser la fonction coût. FastICA s’inspire des
réseaux de neurones et utilise un apprentissage neural en ligne. FastICA est une méthode
itérative de mise à jour à point fixe qui estime la matrice des poids w qui maximise la
non-gaussiannité des composantes. Pour estimer les poids w, Hyvärinen [8] utilise la forme
suivante :

w(i) = E
{
xg(w(i− 1)Tx)

}
− E

{
g′(w(i− 1)Tx)

}
w(i− 1) (3.10)

où y est le signal de sortie du réseau de neurones, g(.) est une fonction d’activation et w
la matrice de poids mise à jour à chaque itération i. Nous avons testé l’algorithme FastICA
en utilisant trois signaux superposés à partir de trois signaux différents. Il y a trois signaux
sources, dont un signal sinusoïdal, un signal en créneaux et une onde triangulaire. Les trois

observations ont été créées en utilisant une matrice de mixage M =


1 1 1

0.5 2 1
1.5 1 2

.

Dans la figure (3.1), le premier graphique montre trois observations créées à partir des sources.
Le deuxième graphique montre les signaux des sources, le signal sinusoïdal est coloré en rouge,
le signal en créneaux est coloré en bleu et l’onde triangulaire est colorée en vert. La figure (3.1)
montre que les reconstructions ont des couleurs différentes des sources. La reconstruction
du signal sinusoïdal est colorée en bleu, le signal en créneaux est coloré en vert et l’onde
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triangulaire est colorée en rouge. On remarque que l’algorithme FastICA réussit à séparer les
trois sources. Cependant, les couleurs des reconstructions sont différentes des couleurs des
sources car la séparation par FastICA s’effectue d’une manière aveugle et il n’est pas possible
de reconnaître l’ordre des sources. On remarque aussi que le signe de l’onde triangulaire a été
inversé lors de la reconstruction. Dans un contexte de reconnaissance de la parole, FastICA
ne permet pas de reconnaître la source de parole.

Figure 3.1 Résultats obtenus avec FastICA.

(L’unité de temps est la période d’échantillonnage)
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Algorithme InfoMax de Bell et Sejnowski [10]

Cet algorithme est une approche itérative d’apprentissage développée par Bell et Sejnowski
[10]. Cette variante de l’ACI s’inspire de l’optimisation utilisée pour les réseaux de neurones
artificielles. Bell et Sejnowski [10] décrivent Infomax comme une méthode adaptative qui se
base sur la maximisation de l’information apprise par un réseau de neurones. L’idée est de
maximiser l’entropie jointe H(y) des signaux résultants de la séparation. Cette séparation
utilise la minimisation de l’information mutuelle entre les composantes indépendantes. Les
poids du réseau de neurones artificiel sont mis à jour d’une manière itérative comme décrit
par Hyvärinen [6]

wi+1 = wi + µ[I − 2g(yiyTi I)]wi, (3.11)

avec i l’indice de l’itération, µ le taux d’apprentissage, y le signal de sortie du réseau de neu-
rones et g(.) une fonction d’activation non linéaire. Il existe différentes fonctions d’activations
utilisées lors de l’apprentissage du réseau de neurones. La fonction d’activation du réseau de
neurones utilisée par cette approche est la fonction logistique. La fonction logistique est une
fonction non linéaire calculée par

g(y) = 1
1 + e−y

, (3.12)

On utilise les signaux de l’expérience précédente pour tester l’approche Infomax de Bell et
Sejnowski [10]. La figure (3.2) montre les résultats de séparation obtenus par l’algorithme
Infomax. Dans la figure (3.2), le premier graphique montre trois observations créées à partir
des sources. Le deuxième graphique montre les signaux des sources, le signal sinusoïdal est
coloré en rouge, le signal en créneaux est coloré en bleu et l’onde triangulaire est colorée
en vert. Le troisième graphique de la figure (3.2) montre les reconstructions retrouvées par
Infomax. On remarque qu’on ne réussit pas à retrouver des reconstructions similaires aux
sources. Le résultat retrouvé par FastICA semble être bien meilleur que Infomax.
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Figure 3.2 Résultats avec Infomax.

(L’unité de temps est la période d’échantillonnage)

Analyse en composantes indépendantes algébrique de Yamaguchi et Itoh [11]

Il existe une approche algébrique de l’analyse en composantes indépendantes qui permet d’ex-
traire la matrice de mixage et de reconstruire directement les signaux sources. L’estimation
se fait à partir de moments d’ordre quatre et conduit à des équations algébriques. Cette mé-
thode non itérative développée par Yamaguchi et Itoh [11] utilisent les moments statistiques
de quatrième ordre pour estimer les coefficients de mixage.
Pour deux signaux enregistrés x1 et x2 on a

x1

x2

 =
1 α

β 1

s1

s2

 , (3.13)

où α et β sont deux paramètres de mixage. On peut reconstruire les signaux sources s1 et
s2 en inversant la matrice de mixage. Yamaguchi et Itoh [11] proposent une technique pour
estimer les paramètres inconnus α et β en utilisant seulement x1 et x2. En partant de l’idée
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que s1 et s2 sont indépendants on peut dire que

E {s1s2} = E {s1}E {s2} , (3.14)

et
E
{
s3

1s2
}

= E
{
s3

1

}
E {s2} . (3.15)

En combinant les équations (3.13) et (3.14) on peut alors déduire que

β = αC2 − C3

αC3 − C1
, (3.16)

où
C1 = E

{
x2

1

}
− E {x1}2 , (3.17)

C2 = E
{
x2

2

}
− E {x2}2 , (3.18)

C3 = E {x1x2} − E {x1}E {x2} , (3.19)

À partir des équations (3.13) et (3.15) on peut aussi dériver

− C4β + C5 + 3C6αβ − 3C7α− 3C8α
2β − 3C9α

2 + C10α
23β − C11α

3 = 0, (3.20)

où
C4 = E

{
x4

1

}
− E

{
x3

1

}
E {x1} , (3.21)

C5 = E
{
x3

1x2
}
− E

{
x3

1

}
E {x2} , (3.22)

C6 = E
{
x3

1x2
}
− E

{
x2

1x2
}
E {x1} , (3.23)

C7 = E
{
x2

1x
2
2

}
− E

{
x2

1x2
}
E {x2} , (3.24)

C8 = E
{
x2

1x
2
2

}
− E

{
x1x

2
2

}
E {x1} , (3.25)

C9 = E
{
x1x

3
2

}
− E

{
x1x

3
2

}
E {x2} , (3.26)

C10 = E
{
x1x

3
2

}
− E {x1}E

{
x3

2

}
, (3.27)

C11 = E
{
x4

2

}
− E

{
x3

2

}
E {x2} , (3.28)

Par la suite on peut simplement éliminer β de l’équation (3.16) en utilisant (3.20) de manière
à retrouver
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(C2C10−C11C3)α4+(3C9C3−3C8C2−C3C10+C1C11)α3+(3C6C2+3C8C3−3C9C1−3C7C3)α2

+ (C5C3 + 3C7C1 − 3C6C3 − C2C4α + C3C4 − C1C5 = 0. - (3.29)

Afin de résoudre l’équation de quatrième degré (3.28) et estimer α et β, Yamaguchi et Itoh [11]
utilisent la méthode Ferrari pour résoudre une équation de quatrième degré. Cependant, cette
méthode souffre du fait que les estimateurs des moments d’ordre quatre ont une variance
élevée.

3.2 Estimation de délais

Dans le cadre de notre projet de recherche, la distance qui existe entre les microphones
implique l’existence de délais à la réception des ondes sonores par les capteurs. Pour cela,
nous avons investigué quelques approches afin d’estimer le délai entre les signaux lors de leur
réception, dont une méthode basée sur la corrélation croisée entre les signaux et une approche
basée sur l’estimation d’un filtre adaptatif utilisant les moindres carrés.

3.2.1 Corrélation croisée pour l’estimation de délais

L’approche utilisant la corrélation croisée entre les signaux est la méthode la plus simple
pour estimer un délai existant entre deux signaux. On considère deux signaux s1 et s2 définis
par

s1(t) = A(t), (3.30)

et
s2(t) = α A(t− i), (3.31)

où A(t) correspond aux mesures enregistrées par un capteur à chaque instant t et i est un
délai, et α est un coefficient d’atténuation lié à la propagation de l’onde sonore entre la
source et le de microphone. Dans le cas d’un délai i constant et si A(t) est un processus
stochastique stationnaire, on peut exprimer la corrélation croisée entre s1 et s2 comme le
montre Marmaroli et al. [12]

Rs1s2 [t] = E {s1[n]s2[n+ t]} . (3.32)
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La corrélation croisée (3.32) atteint son maximum pour le délai qui met les deux signaux s1

et s2 en phase. On peut alors dériver l’estimation du délai i comme l’argument qui maximise
la fonction de corrélation croisée entre les signaux s1 et s2 avec

î ∈ arg max
t

R̂s1s2 [t], (3.33)

avec t ∈ [−N,N ] et N le délai maximum qu’on pourrait observer et qui dépend de la distance
entre les deux capteurs utilisés. Pour des signaux données de longueur L on peut estimer
Rs1s2 [t] avec

Rs1s2 [t] = 1
N + 1− |t|

min(N−t,N)∑
n=max(0,−t)

s1[n]s2[n+ t]. (3.34)

3.2.2 Méthode du filtre adaptatif des moindres carrés

La méthode du filtre adaptatif basé sur les moindres carrés a été développée par Reed et
al. [13]. Cette méthode utilise une fonction de mise à jour pour chaque itération t

g(t+ 1) = g(t) + βe(t)s1(t), (3.35)

avec g(k) un filtre à réponse impulsionnelle finie et β le coefficient d’adaptation. Pour estimer
le délai i entre deux signaux s1 et s2, on calcule l’erreur entre le signal x1(t) et un signal y(t)
avec

y(t) = gT (t)s1(t), (3.36)

et l’erreur est calculée comme suit :

e[t] = s2(t)− y(t). (3.37)

Pour estimer le délai i entre les signaux x1 et x2, on minimise l’erreur des moindres carrées
entre s1 et s2 après avoir appliqué le filtre g(t)

î ∈ arg min
i

MSE(s1(i)− gT s2(i)). (3.38)
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3.3 Détection de l’activité vocale

Une des composantes de la méthode développée durant ce projet de recherche vise à retrouver
les périodes calmes quand le locuteur de parle pas. Nous avons investigué quelques méthodes
existantes pour détecter automatiquement les périodes calmes d’un enregistrement d’un mi-
crophone. La détection des périodes calmes est une partie importante de la méthode car elle
permet d’estimer le délai lié à la source de bruit B(n).
La détection de l’activité vocale (Voice Activity Detection (VAD)) est un sujet de recherche
très populaire. Le VAD vise à classifier un morceau d’un signal comme un morceau actif ou
calme. Cette technique est très utilisée dans le domaine de la reconnaissance vocale. Plu-
sieurs approches de VAD ont été développées pour déterminer les périodes calmes. On peut
diviser ces méthodes en deux catégories : les approches utilisant l’apprentissage automatique
supervisé et les approches utilisant l’apprentissage automatique non supervisé. Les méthodes
les plus populaires sont celles qui utilisent la machine à vecteur de support pour faire la
classification des périodes calmes en utilisant l’énergie du signal et les coefficients MFCC.

3.3.1 Machine à vecteur de support pour la classification

La machine à vecteur de support (Support Vector Machine (SVM)) est une des méthodes
d’apprentissage statistique supervisé utilisées pour faire de la classification. Dans le domaine
de la VAD, le SVM est utilisé pour classifier les périodes calmes et actives. Il est possible
d’entraîner un SVM sur un ensemble de données d’entraînement afin qu’il apprenne à seg-
menter l’enregistrement d’un microphone en périodes actives et périodes calmes. A partir
d’enregistrements vocaux, il est possible de calculer plusieurs coefficients à partir des signaux
pour construire un ensemble de données étiquetées. Ces données sont utilisées pour entraîner
le SVM à faire la classification.

Machine à vecteur de support binaire

La machine à vecteur de support binaire est un classificateur binaire qui retourne une décision
entre deux classes. Ces deux classes sont séparées par un hyperplan estimé pendant la phase
d’entraînement du SVM. Pour apprendre au SVM à prendre une décision, on l’entraîne sur
des données avec deux étiquettes différentes : une étiquette yl = +1 associée à un morceau
actif du signal, ou une étiquette yl = −1 associée à un morceau calme. Afin de calculer
une prédiction, le SVM utilise la fonction f comme définie par Evgeniou et Pontil [14] pour
calculer la prédiction
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f(x) = wTx+ b. (3.39)

Au cours de la phase d’entraînement le SVM estime un hyperplan qui sépare les données en
deux classes avec une marge formée par l’ensemble des points contenus par les vecteurs de
supports comme le montre la figure (3.3)

Figure 3.3 Fonctionnement d’une machine à vecteurs de support binaire.

Pour les deux classes y = +1 et y = −1 on retrouve

wTx+ b ≥ 1 pour y = +1, (3.40)

wTx+ b ≤ 1 pour y = −1. (3.41)

On peut combiner les deux inégalitées (3.40) et (3.41) pour obtenir

y(wTx+ b)− 1 ≥ 0 pour y ∈ (−1, 1) (3.42)
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Afin d’estimer les paramètres w de l’hyperplan on mesure la distance D entre chaque point
xi et la marge en calculant

D(x, y) = y(wTx+ b)
||w||2

. (3.43)

avec ||(.)||2 la norme euclidienne. Pour les points se retrouvant exactement sur la marge de
l’hyperplan la distance D = 1

||w||L2
. L’idée est de retrouver l’hyperplan qui va maximiser la

distance entre les points de l’ensemble d’entraînement et la marge de l’hyperplan. On assume
que la marge totale de l’hyperplan est calculée ainsi

m+ +m− = 2
||w||L2

, (3.44)

où m± est la marge de chaque côté de l’hyperplan du SVM.
On veut maximiser la largeur de la marge qui sépare les points et l’hyperplan. On minimise
le dénominateur ||w||L2 sous la contrainte

y(wTx+ b)− 1 ≥ 0. (3.45)

On combine les équations (3.44) et (3.45) pour formuler le problème d’optimisation suivant :

ρ(w, b, α) = ||w||
2

2 −
n∑
i=1

αi[y(wTx+ b)− 1], (3.46)

où αi sont les multiplicateur lagrangiens. Pour estimer les paramètre de l’hyperplan du SVM,
on minimise ρ par rapport à w et b et on maximise ρ par rapport à α.

SVM Binaire utilisant les coefficients MFCC de Kinnunen et al. [15]

Le SVM binaire est une approche populaire pour classifier l’activité vocale de la personne. La
méthode développée par Kinnunen et al. [15], utilise les coefficients MFCC pour entraîner un
SVM à classifier les signaux en périodes silencieuses ou actives. Ces coefficients sont extraits
à partir des signaux utilisés pour l’entraînement du SVM. Les signaux sont alors divisés
en petites morceaux, pour chaque morceau Kinnunen et al. [15] calculent les coefficients
MFCC et les enregistre comme données d’entraînement pour apprendre au SVM à classifier
les morceaux du signal en calmes ou actifs.
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Approche utilisant l’énergie du signal et les coefficients MFCC de Dey et al. [16]

Dey et al. [16] ont développé une architecture utilisant l’énergie du signal pour faire une
classification binaire des signaux. L’idée est d’utiliser un seuil d’énergie pour séparer les
données d’entraînement selon leur énergies. Puis ces données sont utilisées pour entraîner un
classificateur pour classifier le signal en signal de parole ou non. La figure (3.4) représente
l’architecture utilisée par Dey et al. [16] pour faire la détection d’activité vocale

Figure 3.4 Diagramme de l’architecture du système VAD.

Pour entraîner le classificateur, Dey et al. [16] extraient les coefficients MFCC qu’ils calculent
à partir des enregistrements d’entraînement. Puis dépendamment de son énergie, le signal
est classifié en période silencieuse ou active. Si l’énergie du signal dépasse le seuil alors il est
considéré comme une période active. Par la suite, le classificateur est entraîné en utilisant
les coefficients MFCC afin de classifier le signal en signal de parole ou non . Pour cette
méthode, deux algorithmes de classification sont proposés : un algorithme utilisant le SVM
et un algorithme utilisant les réseaux de neurones profonds.
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CHAPITRE 4 MÉTHODE ICA/2S/2PM SANS DÉLAIS

4.1 Introduction

Notre partenaire industriel Fluent.ai désire débruiter les signaux sonores reçus par les micro-
phones de son appareil de reconnaissance vocale. Le but de la méthode ICA/2S/2PM est de
séparer les signaux reçus en deux composantes indépendantes dont la source de parole A(n)
et la source de bruit B(n). On commence d’abord par développer une approche qui ne tient
pas compte des délais présents entre les microphones, par la suite on veut généraliser cette
approche et l’adapter au cas où il y a présence de délais.

4.2 Formulation du problème ACI

Dans ce projet, nous implémentons l’algorithme de séparation des signaux pour un appareil
qui contient deux microphones séparés par une distance qui ne dépasse pas 10 cm. Ceci
implique que les délais existants entre les microphones sont très petits. Si on suppose que la
fréquence d’échantillonnage utilisée est égale à 16 kHz et que la vitesse du son est égale à 343
m/s alors on peut déduire que le délai entre les microphones est égale à 0.00029 secondes.
En utilisant la fréquence d’échantillonnage on déduit que les délais i < 5 et j < 5 avec i
le délai lors de la réception des ondes sonores provenant de la voix locuteur et j le délai
lors de la réception des ondes sonores provenants de la source de bruit aux microphones.
Dans ce chapitre, nous commençons par le cas où i = j = 0. Nous utilisons la notation
ICA/2S/2PM pour la méthode comme référence à l’analyse en composantes indépendantes
pour deux sources en utilisant les moments à deux points. Cette méthode résout le problème
classique de l’ACI en utilisant les corrélations entre deux variables aléatoires.

On commence par formuler notre modèle avec des délais i = j = 0. Les mesures x(n) et y(n)
des deux microphones sont reliées aux sources A(n) et B(n) par

x(n) = A(n) +B(n), (4.1)

y(n) = αA(n) + βB(n), (4.2)

où α > 0 et β > 0, sont deux paramètres réels constants et correspondant aux coefficients
d’amplification liés aux sources A(n) et B(n). Ces deux paramètres satisfont la condition
α > β par convention. De plus, dans le cas de l’appareil de reconnaissance vocale utilisé, la
distance entre les microphones est si petite qu’on peut supposer que α ≈ 1 et β ≈ 1.
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4.3 Approche des corrélations en deux points

L’approche développée pour résoudre le problème d’ACI utilise les corrélations en deux points
avec un décalage temporel k entre deux variables aléatoires. On utilise les équations précé-
dentes à un autre instant n+ k, où k > 0 un paramètre ajustable, pour obtenir

x(n+ k) = A(n+ k) +B(n+ k), (4.3)

y(n+ k) = α A(n+ k) + β B(n+ k). (4.4)

Les variables aléatoires A(n) et B(n) sont deux sources indépendantes pour chaque échan-
tillon n ∈ Z. Les sources sonores {A(n), n ∈ Z} et {B(n), n ∈ Z} sont supposées être station-
naires. Cela implique aussi que les processus aléatoires {x(n), n ∈ Z} et {y(n), n ∈ Z} sont
stationnaires. Toutes ces variables aléatoires ont une espérance nulle

E {A(n)} = 0,

E {B(n)} = 0,

E {x(n)} = 0,

E {y(n)} = 0.

(4.5)

On commence par calculer les différents moments qu’on utilisera pour calculer les estimés
des paramètres α et β

XX := E
{
x(n)2

}
= E

{
x(n+ k)2

}
, (4.6)

Y Y := E
(
n)2

}
= E

{
y(n+ k)2

}
, (4.7)

XY := E {x(n) y(n)} , (4.8)

XX∗ := E {x(n) x(n+ k)} , (4.9)

Y Y∗ := E {y(n) y(n+ k)} , (4.10)

XY∗ := E {x(n) y(n+ k)} , (4.11)

AA := E
{
A(n)2

}
= E

{
A(n+ k)2

}
, (4.12)

BB := E
{
B(n)2

}
= E

{
B(n+ k)2

}
, (4.13)
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AA∗ := E {A(n) A(n+ k)} , (4.14)

BB∗ := E {B(n) B(n+ k)} . (4.15)

En utilisant les carrés des équations (4.1) on peut alors réécrire XX comme

XX = E
{
x(n)2

}
,

= E
{

(A(n) +B(n))2
}
,

= E
{
A(n)2 + 2A(n)B(n) +B(n)2

}
,

= AA+BB.

(4.16)

De même on peut réécrire Y Y comme

Y Y = E
{
y(n)2

}
,

= E
{

(αA(n) + βB(n))2
}
,

= E
{
α2A(n)2 + 2α(n)B(n) + β2B(n)2

}
,

= α2AA+ β2BB.

(4.17)

On multiplie les équations en (4.1) pour retrouver XY :

XY = E {x(n)y(n)} ,

= E (A(n) +B(n))(αA(n) + βB(n))} ,

= E
{
αA(n)2 + βA(n)B(n) + αA(n)B(n) + βB(n)2

}
,

= αAA+ βBB.

(4.18)

On multiplie les équations (4.1) et (4.3) pour retrouver XX∗ :

XX∗ = E {x(n)x(n+ k)} ,

= E (A(n) +B(n))(A(n+ k) +B(n+ k))} ,

= E {A(n)A(n+ k) + A(n)B(n+ k) +B(n)A(n+ k) +B(n)B(n+ k)} ,

= AA∗ +BB∗.

(4.19)
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De même nous multiplions les équations (4.2) et (4.4) pour calculer Y Y∗ :

Y Y∗ = E {y(n)y(n+ k)} ,

= E (αA(n) + βB(n))(αA(n+ k) + βB(n+ k))} ,

= E
{
α2A(n)A(n+ k) + αβA(n)B(n+ k) + αβB(n)A(n+ k) + β2B(n)B(n+ k)

}
,

= α2AA∗ + β2BB∗.

(4.20)

De même on multiplie (4.1) et (4.4) afin d’obtenir XY∗ :

XY∗ = E {x(n)y(n+ k)} ,

= E (A(n) +B(n))(αA(n+ k) + βB(n+ k))} ,

= E {αA(n)A(n+ k) + βA(n)B(n+ k) + αA(n+ k)B(n) + βB(n)B(n+ k)} ,

= α AA∗ + β BB∗.

(4.21)

Les équations calculées précédemment nous permettent de formuler un système d’équations.
Résoudre ce système nous permettra d’estimer les paramètres inconnus α et β. On peut alors
formuler ce système d’équations comme suit :

XX = AA+BB, (4.22)

Y Y = α2AA+ β2BB, (4.23)

XY = αAA+ βBB, (4.24)

XX∗ = AA∗ +BB∗, (4.25)

Y Y∗ = α2AA∗ + β2BB∗, (4.26)

XY∗ = αAA∗ + βBB∗. (4.27)

où {AA,BB,AA∗, BB∗, α, β} sont les six inconnues.

4.4 Résolution du système d’inconnues (4.22)-(4.27)

On résout d’abord les équations (4.22)-(4.23), (4.22)-(4.24), (4.23)-(4.24) afin de calculer les
inconnues AA,BB, ceci nous permet d’obtenir trois paires de solutions (AA,BB).
En combinant les équations (4.22)-(4.23) on retrouve la première paire (AA,BB)



28

AA = Y Y − β2XX

α2 − β2 , BB = α2XX − Y Y
α2 − β2 . (4.28)

De même en utilisant les équations (4.22)-(4.24) on retrouve la deuxième paire (AA,BB)

AA = XY − βXX
α− β

, BB = XY − αXX
β − α

. (4.29)

Par la suite on utilise les équations (4.23)-(4.24) on retrouve la troisième paire (AA,BB)

AA = Y Y − βXY
α2 − αβ

, BB = αXY − Y Y
(α− β)β . (4.30)

La consistance du système d’équations implique que les trois paires de solutions retrouvées
pour (AA,BB) soient égales. Ceci implique que

Y Y − β2XX

α2 − β2 = XY − βXX
α− β

,
Y Y − β2XX

α2 − β2 = Y Y − βXY
α2 − αβ

. (4.31)

De même, pour BB on obtient

α2XX − Y Y
α2 − β2 = XY − αXX

β − α
,
α2XX − Y Y
α2 − β2 = αXY − Y Y

(α− β)β . (4.32)

Les égalités précédentes sont satisfaites si et seulement si

β = Y Y − αXY
XY − αXX

. (4.33)

De la même manière, grâce aux équations (4.25)-(4.26), (4.25)-(4.27), (4.26)-(4.27) on re-
trouve trois paires de solutions pour les équations (AA∗, BB∗).

En combinant les équations (4.25)-(4.26) on retrouve la première paire (AA,BB)

AA∗ = Y Y∗ − β2XX∗
α2 − β2 , BB∗ = α2XX∗ − Y Y ∗

α2 − β2 , (4.34)

De même en utilisant les équations (4.25)-(4.27) on retrouve la deuxième paire (AA,BB)

AA∗ = XY∗ − βXX∗
α− β

, BB∗ = XY∗ − αXX∗
β − α

, (4.35)
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Par la suite on utilise les équations (4.26)-(4.27) on retrouve la troisième paire (AA,BB)

AA∗ = Y Y∗ − βXY∗
α2 − αβ

, BB∗ = αXY∗ − Y Y∗
(α− β)β . (4.36)

De même la consistance du système d’équations implique que les trois paires de solutions
retrouvées pour (AA∗, BB∗) soient égales. Ceci implique que

Y Y∗ − β2XX∗
α2 − β2 = XY∗ − βXX∗

α− β
,
Y Y∗ − β2XX∗

α2 − β2 = Y Y∗ − βXY∗
α2 − αβ

. (4.37)

Ainsi on retrouve que les égalités précédentes sont satisfaites si et seulement si

β = Y Y∗ − αXY∗
XY∗ − αXX∗

. (4.38)

En utilisant les équations (4.33) et (4.38) on retrouve l’égalité

Y Y − αXY
XY − αXX

= Y Y∗ − αXY∗
XY∗ − αXX∗

. (4.39)

La dernière égalité peut être reformulée en une équation de second ordre pour l’inconnue α

α2(XY XX∗−XY∗ XX)−α(Y Y XX∗+XY XY∗−XX Y Y∗−XY XY∗)+(Y Y XY∗−Y Y∗ XY ) = 0.
(4.40)

On peut alors résoudre cette équation de second ordre en calculant δ :

δ :=
√

(XX∗ Y Y −XX Y Y∗)2 + 4(XX∗ XY −XX XY ∗)(XY Y Y∗ − Y Y XY∗). (4.41)

Les solutions de l’équation du second degrée sont donnée par

α± = XX∗ Y Y −XX Y Y∗ ± δ
2(XY XX∗ −XX XY∗)

, (4.42)

Les solutions qui correspondent aux valeurs des inconnues α et β sont

α = XX∗ Y Y −XX Y Y∗ + δ

2(XY XX∗ −XX XY∗)
, (4.43)
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β = XX∗ Y Y −XX Y Y∗ − δ
2(XY XX∗ −XX XY∗)

. (4.44)

car α > β. Pour calculer les estimés de α et β on doit estimer les variablesXX,XX∗, Y Y, Y Y∗, XY,XY∗.
Ces variables sont calculées en utilisant les estimateurs suivants :

XX = 1
N

N−1∑
n=0

x(n) x(n), (4.45)

Y Y = 1
N

N−1∑
n=0

y(n) y(n), (4.46)

XX∗ = 1
N

N−1−k∑
n=0

x(n) x(n+ k), (4.47)

Y Y∗ = 1
N

N−1−k∑
n=0

y(n) y(n+ k), (4.48)

XY = 1
(N − 1)

[
N−1∑
n=0

x(n) y(n)
]
, (4.49)

XY∗ = 1
2(N − k − 1)

[
N−k−1∑
n=0

x(n) y(n+ k) +
N−k−1∑
n=0

y(n) x(n+ k)
]
. (4.50)

Le paramètre k ne doit pas être très grand pour éviter de retrouver des corrélations nulles.
k doit être plus petit que la longueur de corrélation de x(n) et celle de y(n).

4.5 Reconstruction des sources

Après avoir estimé les paramètres inconnus α et β, on peut écrire la matrice de mixage H
suivant le système d’équations (4.1) comme

H =
1 1
α β

 , (4.51)

Il suffit alors d’estimer l’inverse de la matrice de mixage H−1 afin de reconstruire les sources
A(n) et B(n). H−1 peut être calculé comme suit :

H−1 = 1
β − α

 β −1
−α 1

 , (4.52)
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et les estimés Â(n) et B̂(n) des sources A(n) et B(n) sont donnés par

Â(n)
B̂(n)

 = H−1

x(n)
y(n)

 . (4.53)

4.6 Test de la méthode ICA/2S/2PM

Afin de vérifier que l’approche ICA/2S/2PM fonctionne, on poursuit notre activité par des
tests de vérification effectués avec des signaux enregistrés par les microphones de Fluent.ai.
L’idée est de créer des signaux superposés qui correspondent à des signaux enregistrés par
deux microphones dans un environnement avec du bruit. On effectue aussi un test de com-
paraison avec les méthodes FastICA de Hyvärinen [6] et Infomax de Bell et Sejnowski [10]
pour voir si la méthode ICA/2S/2PM produit de meilleurs résultats.

4.6.1 Les signaux utilisés

On utilise des signaux enregistrés par les microphones de notre partenaire industriel Fluent.ai.
Le premier signal A(n) représente l’enregistrement de la voix d’un homme qui prononce une
suite de signaux d’intention : "Alexa let me know the parking location, Alexa let me know
the notice, Alexa call the elevator". Le deuxième signal B(n) est le signal d’un bruit rose. Le
bruit rose est un bruit aléatoire qui a une densité spectrale inversement proportionnelle à sa
fréquence. Dans la figure (4.1) on a représenté les deux signaux qui ont une fréquence d’échan-
tillonnage de 16 kHz et une longueur de 10 secondes correspondant à 160 000 échantillons.
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Figure 4.1 Signaux des sources.

(L’unité de temps est la période d’échantillonnage)

Pour créer des signaux superposés qui représentent ce que recevraient les microphones de
l’appareil de Fluent.ai dans un environnement contenant du bruit, on utilise des coefficients
de mixage α = 1.2 et β = 0.8. En utilisant les signaux des sources A(n) et B(n) et une
matrice de mixage H donnée par

H =
 1 1

1.2 0.8

 , (4.54)

on peut créer les signaux superposés représentés dans la figure (4.2).
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Figure 4.2 Signaux des microphones.

(L’unité de temps est la période d’échantillonnage)

4.6.2 Résultats de la méthode FastICA de Hyvärinen (1999)

On commence par faire un test de séparation en utilisant la méthode FastICA pour comparer
les résultats qu’on retrouvera plus tard avec ICA/2S/2PM. En utilisant la méthode FastICA,
on retrouve deux reconstructions très similaires au signaux A(n) et B(n) comme le montre la
figure (4.3). Afin de bien comparer les résultats obtenus par les trois méthodes utilisées, on
calcule une erreur e définie comme le pourcentage de différence d’amplitude entre le signal
estimé Â(n) et la source A(n)

e = ||Â(n)− A(n)||. (4.55)

On utilise des signaux centrés et réduits pour les sources utilisées et leurs estimés avec

S = s− µ
σ

. (4.56)
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Pour le test de la méthode FastICA, on retrouve une erreur e = 0.00017 et un temps de
calcul T = 0.1 seconde.

Figure 4.3 Signaux reconstruits par FastICA.

(L’unité de temps est la période d’échantillonnage)

4.6.3 Résultats de la méthode Infomax de Bell et Sejnowski (1995)

Par la suite, on effectue un autre test de séparation en utilisant la méthode Infomax pour
comparer les résultats qu’on retrouvera plus tard avec ICA/2S/2PM. En utilisant la méthode
Infomax, on retrouve deux reconstructions très similaires au signaux A(n) et B(n) comme le
montre la figure (4.4). Pour le test de la méthode Infomax, on retrouve une erreur
e = 2.74e− 05 et un temps de calcul T = 4.3 seconde.
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Figure 4.4 Signaux reconstruits par Infomax.

(L’unité de temps est la période d’échantillonnage)

4.6.4 Résultats de la méthode ICA/2S/2PM

En utilisant les mêmes signaux que dans le test précédent avec la méthode FastICA, nous
avons effectué un deuxième test en utilisant l’approche ICA/2S/2PM et nous avons retrouvé
des estimations exactes pour la matrice de mixage H

HICA/2S/2PM =
 1 1

1.20 0.80

 . (4.57)

De même on retrouve des reconstructions identiques aux signaux des sources A(n) et B(n)
comme le montre la figure (4.5). Les signaux reconstruits ne représentent aucune atténuation
ou amplification des amplitudes à l’instar de FastICA et Infomax. On retrouve une erreur
e = 1.95e − 06 qui est plus faible que les erreurs retrouvées pour les tests de FastICA et
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Infomax. Le temps de calcul T = 0.007 seconde est très faible en comparaison avec FastICA
et Infomax.

Figure 4.5 Signaux reconstruits par ICA2S2PM.

(L’unité de temps est la période d’échantillonnage)
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4.7 Test de la méthode ICA/2S/2PM sur des signaux avec des délais

4.7.1 Test comparatif avec la méthode FastICA en présence de délais

Les méthodes ICA/2S/2PM, FastICA et Infomax n’ont pas été développée pour tenir compte
de l’existence de délais lors de la réception des signaux par les microphones. Afin de simuler
une situation réelle, on ajoute des délais aux sources lors de la création des mixages. On
ajoute un délai i ∈ Z lié à la source de parole A(n) et un délai j ∈ Z lié à la source de
bruit B(n). Pour nos tests, on garde les mêmes paramètres de mixage α et β et on utilise
des délais i = 2 et j = −1 tout en gardant les mêmes signaux des sources A(n) et B(n). On
retrouve une erreur e = 2.45 plus grande que dans le test précédent. La figure (4.6) montre
que les délais ajoutés ont eu un impact sur les résultats de la reconstruction des signaux. Les
signaux reconstruits contiennent encore le bruit qu’on a ajouté lors du mixage

Figure 4.6 Signaux reconstruits par FastICA avec présence de délais.

(L’unité de temps est la période d’échantillonnage)
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4.7.2 Test comparatif avec la méthode Infomax en présence de délais

On utilise les mêmes signaux ainsi que les mêmes paramètres pour ce test. En utilisant
l’approche de Infomax, on retrouve une erreur e = 1.81 plus grande que dans le test avec
les signaux sans délais. La figure (4.7) montre que les délais ajoutés ont eu un impact sur
les résultats de la reconstruction des signaux. Les signaux reconstruits contiennent encore le
bruit qu’on a ajouté lors du mixage

Figure 4.7 Signaux reconstruits par Infomax avec présence de délais.

(L’unité de temps est la période d’échantillonnage)
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4.7.3 Test de la méthode ICA/2S/2PM

De même, on utilise les mêmes signaux avec les mêmes paramètres α, β, i et j afin de tester
l’effet de la présence de délais lors du mixage sur la méthode ICA/2S/2PM. Pour ce test
l’estimation de la matrice de mixage H donne

HICA/2S/2PM =
 1 1

1.14 −0.74

 . (4.58)

Cette estimation n’est pas correcte et on peut constater sur la figure (4.8) que les délais ont
beaucoup affecté la reconstruction des signaux. On voit que le bruit reste très présent dans
les deux reconstructions, et l’erreur calculée e = 1, 64 est aussi plus grande que dans le test
avec les signaux sans délais.

Figure 4.8 Signaux reconstruits par ICA/2S/2PM avec présence de délais.

(L’unité de temps est la période d’échantillonnage)
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4.8 Conclusion

La méthode ICA/2S/2PM a été développée pour résoudre le problème ACI sans tenir compte
des délais. En analysant les tests précédents, on voit que ICA/2S/2PM a permis de retrouver
des estimations exactes pour les paramètres de mixage α et β même quand α est très proche
de β. On a testé la méthode en utilisant d’autres structures de signaux et on a remarqué que la
performance de séparation n’est pas sensible à la nature des signaux. L’erreur retrouvée avec
ICA/2S/2PM et le temps de calcul sont plus faibles que celles retrouvées avec les deux autres
approches d’ACI. Les résultats des tests prouvent que l’approche ICA/2S/2PM surpasse les
méthodes FastICA et Infomax quand on utilise deux signaux superposés à partir de deux
sources indépendantes.



41

CHAPITRE 5 MÉTHODE ICA/2S/2PM AVEC DÉLAIS

5.1 Introduction

Dans le chapitre précédent, nous avons montré que la méthode ICA/2S/2PM réussit à ré-
soudre le problème de séparation de sources de l’ACI pour deux microphones et deux sources.
Cependant les tests ont montré que l’existence de délais créait d’importantes imprécisions
lors de la reconstruction des sources, chose qu’on ne peut négliger. On a décidé alors de s’ins-
pirer de l’approche de l’ICA/2S/2PM pour développer une méthode générale qui tiendrait
compte des délais existants entre les microphones.

5.2 Reformulation du problème ACI

L’existence des délais i et j implique la nécessité de reformuler le problème de séparation de
sources. Si on désigne par i le délai associé à la source de parole A(n) et par j le délai associé
à la source de bruit B(n), alors on peut réécrire le système d’équation de l’ACI comme suit :

x(n) = A(n) +B(n),

y(n) = α A(n+ i) + β B(n+ j),
(5.1)

avec i ∈ Z, j ∈ Z, α ∈ R et β ∈ R.
Afin de reconstruire les sources A(n) et B(n), et réduire le bruit, nous devons commencer par
estimer les inconnues i, j, α et β. Cependant, même si ces paramètres sont connus, l’utilisation
d’une inverse de la matrice de mixage n’est pas appropriée pour reconstruire les sources à
cause des délais i et j. En effet, les sources ont subi un décalage avant le mixage et on ne
peut plus utiliser l’approche ICA/2S/PM car les composantes des signaux des microphones
x(n) et y(n) sont différentes. Dans ce chapitre nous allons adapter la méthode ICA/2S/2PM
pour résoudre le problème de séparation de sources en tenant compte des délais.
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5.3 Reconstruction des sources avec une pseudo-inverse

Dans cette section, on présente l’approche développée pour reconstruire les signaux A(n) et
B(n) en tenant compte des délais. On suppose ici que les variables i, j, α et β sont connues.
On peut alors réécrire le système d’équations (5.1) en remplaçant n par n− j dans la seconde
équation pour obtenir

x(n) = A(n) +B(n),

z(n) := y(n− j) = α A(n+ l) + β B(n),
(5.2)

où l = i− j et l ∈ Z.
Dépendamment du signe du paramètre l, on distingue deux formes d’inverses possibles. Consi-
dérons un exemple où n ∈ {0, 1, 2, 3} et l = 1. On peut alors réécrire le système d’équations
(5.2) sous la forme explicite suivante :



x(0)
x(1)
x(2)
x(3)
z(0)
z(1)
z(2)
z(3)



=



1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1
0 α 0 0 0 β 0 0 0
0 0 α 0 0 0 β 0 0
0 0 0 α 0 0 0 β 0
0 0 0 0 α 0 0 0 β





A(0)
A(1)
A(2)
A(3)
A(4)
B(0)
B(1)
B(2)
B(3)



. (5.3)

Considérons un autre exemple avec n ∈ {1, 2, 3, 4} et l = −1. On peut alors réécrire le
système (5.2) sous la forme explicite suivante :
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

x(1)
x(2)
x(3)
x(4)
z(1)
z(2)
z(3)
z(4)



=



0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
α 0 0 0 0 β 0 0 0
0 α 0 0 0 0 β 0 0
0 0 α 0 0 0 0 β 0
0 0 0 α 0 0 0 0 β





A(0)
A(1)
A(2)
A(3)
A(4)
B(1)
B(2)
B(3)
B(4)



. (5.4)

En fonction du signe du délai l, la matrice de mixage H peut prendre une forme similaire à
(5.3) ou (5.4).
En supposant qu’on connaît déjà les coefficients de mixage α et β et si l = 1, on peut constater
que le système d’équations (5.3) comprend 8 équations et 9 inconnues :
{A(0), A(1), A(2), A(3), A(4), B(0), B(1), B(2), B(3)}.
Si l = −1 alors le système d’équations (5.4) comprend 8 équations et 9 inconnues :
{A(0), A(1), A(2), A(3), A(4), B(1), B(2), B(3), B(4)}.
Pour un signal de longueur N , le nombre d’inconnues est égal à (2N + |l|) et le nombre
d’équations est égal à (2N − |l|). Si on note par X ∈ R8 le vecteur qui contient les valeurs
des x(i) et z(i) et θ ∈ R9 le vecteur qui comprend les valeurs des inconnues A(i) et B(i) alors
on peut alors réécrire les équations (5.3) et (5.4) sous la forme

X = H±θ, (5.5)

où H± la matrice de mixage de dimensions (8 × 9). H+ désigne la matrice mixage pour un
délai positif et H− la matrice de mixage pour un délai négatif. Comme le système en (5.5)
est sous-déterminé, on considère plutôt un estimé θ̂ de θ qui est la solution du problème

arg min
θ∈R9

||θ||2,

sous la contrainte X = H±θ.
(5.6)

En d’autres termes, parmi tous les θ qui satisfont la contrainte (5.5), on choisit celui qui a la
norme la plus petite. La solution du problème (5.6) est

θ̂± = HT
±(H±HT

±)−1X, (5.7)
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si et seulement si |HT
±H±| 6= 0. La matrice A± := HT

±(H±HT
±)−1 est la pseudo-inverse de

Penrose [1].
Pour calculer θ̂±, on résout le système en (5.5) avec

H±H
T
±V = X, (5.8)

et on retrouve la solution
θ̂± = HT

±V. (5.9)

Cela permet de retrouver le même résultat plus rapidement qu’en inversant la matrice H±HT
±.

Si la matrice H± est constante, on peut alors calculer l’inverse car on peut utiliser la même
matrice sur les nouveaux morceaux du signal. Si la matrice H± varie contuellement, alors on
devrait plutôt résoudre le système d’équations. Dans la partie qui suit, on prend un exemple
plus simple, où la longueur du signal est K = 3 et le délai est l = 1. On peut alors exprimer
la matrice de mixage H+ comme suit :

H+ =



1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 α 0 0 β 0 0
0 0 α 0 0 β 0
0 0 0 α 0 0 β


, (5.10)

avec
|HT

+H+| = 2α6 + 2α4β2 + 2α2β4 + β6. (5.11)

Sachant que α > 0 et β > 0, alors on peut conclure que |HT
+H+| 6= 0 et la pseudo-inverse de

Moore-Penrose prend la forme

A± =



2 0 0 β 0 0
αβ α2 + 2 0 α(α2 + β2 + 1) β 0
0 αβ α2 + 2 0 α(α2 + β2 + 1) β

0 0 αβ 0 0 α(α2 + β2)
β2 + 2 αβ 0 β(α2 + β2 + 1) 0 0

0 β2 + 2 αβ α β(α2 + β2 + 1) 0
0 0 β2 + 2 0 α β(α2 + β2 + 1)


.

(5.12)
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5.3.1 Généralisation de la pseudo-inverse de Moore-Penrose [1] pour tous les
délais

On considère le système d’équations (5.2), avec un délai l ∈ Z qui satisfait |l| < 5 et un indice
n ∈ {0, 1, ..., N − 1} =: I avec N >> 5. Pour le signal B(n), l’indice temporel n satisfait

0 < n < N − 1 + l. (5.13)

Pour le signal A(n), l’indice temporel n satisfait

0 < n < N − 1. (5.14)

Comme dans les exemples de la section précédente, on distingue deux cas possibles :
l > 0 et l < 0.

Cas du délai positif

Si l > 0, on définit le vecteur d’inconnues suivant :

θ+ := (A(0), A(1), ..., A(N − 1 + l), B(0), B(1), ..., B(N − 1)) ∈ R2N+l. (5.15)

on note aussi
a+ = (A(0), A(1), ..., A(N − 1 + l)) ∈ RN+l. (5.16)

et
b+ = (B(0), B(1), ..., B(N − 1)) ∈ RN . (5.17)

Le nombre d’inconnues associé à θ+ est 2N + l. On peut écrire la matrice de mixage sous la
forme

H+ =
Hx

Hy

 ∈ R2N×(2N+l), (5.18)

où Hx ∈ RN×(2N+l) et Hy ∈ RN×(2N+l) sont les matrices de mixage qui correspondent respec-
tivement aux signaux x(n) et y(n). Le système X = Hθ prend donc la forme

X =
Hx

Hy

a+

b+

 . (5.19)

Dans ce qui suit, on indexe les composantes d’une matrice en commençant par 0, e.g. A(0) est



46

la première composante de θ+. L’équation pour x(n) correspond à nième ligne de la matrice
Hx, les sources A(n) et B(n) sont les composantes de longueur respectives n+1 et N+l+n+1
du vecteur de composantes θ+, par conséquent les composantes non nulles de la nième ligne
de Hx sont données par

Hx(n+ 1, n+ 1) = 1, et Hx(n+ 1, N + l + n+ 1) = 1, n ∈ I. (5.20)

L’équation pour y(n) correspond à la nième ligne de la matrice Hy. A(n+ l) et B(n) sont les
composantes de longueur respectives (n + l + 1) et (N + l + n + 1) du vecteur θ+, alors les
composantes non nulles de la nième ligne de Hy sont données par

Hy(n+ 1, n+ l + 1) = α, Hx(n+ 1, N + l + n+ 1) = β, n ∈ I, (5.21)

et la pseudo-inverse peut être calculée avec

A+ = HT
+(H+H

T
+)−1 ∈ R(2N+l)×2N . (5.22)
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Cas du délai négatif

Si l < 0, on définit le vecteur d’inconnues θ− comme suit :

θ− := (A(l), A(l + 1), ..., A(N − 1), B(0), B(1), ..., B(N − 1)) ∈ R2N+l. (5.23)

On écrira aussi
a− = (A(l), A(l + 1), ..., A(N − 1)) ∈ RN+l, (5.24)

et
b− = (B(0), B(1), ..., B(N − 1)) ∈ RN . (5.25)

Le nombre d’inconnues est 2N + |l|. On on peut écrire la matrice de mixage sous la forme

H− =
Hx

Hy

 ∈ R2N×(2N−l), (5.26)

où Hx ∈ RN×(2N−l) et Hy ∈ RN×(2N−l) sont les matrices de mixage qui correspondent respec-
tivement aux signaux x(n) et y(n). On peut réécrire le système X = Hθ comme suit :

X =
Hx

Hy

a−
b−

 . (5.27)

Dans qui suit, on indexe les composantes d’une matrice en partant de 0, e.g. A(0) est la
première composante de θ+. L’équation pour x(n) correspond à nième ligne de la matrice Hx,
les sources A(n) et B(n) sont les composantes de longueurs (n−l+1) et (N−1−l+1+n+1 =
N − l + n + 1) du vecteur de composantes θ−, alors les composantes non nulles de la nième
ligne de Hx sont données par

Hx(n+ 1, n− l + 1) = 1, Hx(n+ 1, N − l + n+ 1) = 1, n ∈ I. (5.28)

L’équation pour y(n) correspond à la nième ligne de la matrice Hy. A(n+ l) et B(n) sont les
composantes n+ l− l+ 1 = n+ 1 et N − l+ n+ 1 du vecteur θ−, alors les composantes non
nulles de la nième ligne de Hy sont données par

Hy(n+ 1, n+ 1) = α, Hx(n+ 1, N − l + n+ 1) = β, n ∈ I, (5.29)

et la pseudo-inverse est obtenue avec
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A− = HT
−(H−HT

−)−1 ∈ R(2N+l)×2N . (5.30)

On n’inverse pas la matrice, on résout plutôt un système d’équations car la complexité nu-
mérique est plus faible. Dans le cas réel, la matrice H ne change pas beaucoup et on peut
calculer l’inverse et l’utiliser sur les morceaux subséquents. Si la matrice H change, alors on
peut la mettre à jour et recalculer sa pseudo-inverse.

Cas du délai nul

Dans le cas où l = 0, on peut simplement calculer directement l’inverse de la matrice de
mixage H comme le suggère la méthode ICA/2S/2PM.

5.3.2 Test de la méthode de pseudo-inverse de Moore-Penrose [1]

L’approche de la pseudo-inverse expliquée précédemment permet de résoudre le système
d’équations qui prend en considération les délais entre les microphones. Cependant la pseudo-
inverse de Moore-Penrose [1] est une estimation de l’inverse de la matrice de mixage H et
elle ne donne pas des résultats exacts. Dans cette section nous testons cette méthode afin de
connaître ses limitations et pour l’adapter afin de retrouver une reconstruction correcte des
signaux sources A(n) et B(n). On commence par exécuter un test préliminaire en utilisant
un signal sinusoidal auquel on additionne un signal de bruit blanc avec les paramètres de
mixage α = 1.1 et β = 0.9 et un délai l = 5. La figure (5.1) montre les reconstructions des
deux signaux A(n) et B(n).
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Figure 5.1 Signaux reconstruits avec la pseudo-inverse de Moore-Penrose.

(L’unité de temps est la période d’échantillonnage)
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Dans la figure (5.1), on constate que la reconstruction de A(n) présente des imprécisions
au début du signal. Elles sont dues à l’erreur induite par l’estimation de la pseudo-inverse.
Le temps de calcul de la pseudo-inverse de Moore-Penrose [1] dépend des dimensions de
la matrice de mixage H. L’estimation de la pseudo-inverse pour un signal d’une longueur
de 1000 échantillons prend un temps considérable (>0.5 seconde). Il faut donc utiliser des
signaux de petites tailles pour réduire la complexité du calcul. Dans la suite, on utilise une
pseudo-inverse sur de petits intervalles pour reconstruire les signaux par morceaux et réduire
le temps de calcul. Pour l’expérience de la figure (5.2), nous avons utilisé un délai l = 1.
Nous avons reconstruit le signal A(n) en utilisant des fenêtres disjointes juxtaposées de taille
L = 100 échantillons. Les expériences effectuées ont permis d’estimer la pseudo-inverse et de
reconstruire les signaux en moins de 0.1 seconde pour des signaux de taille inférieure à 500
échantillons (équivalant à 0.03125 seconde).
On a observé dans la figure (5.2) une erreur périodique à chaque reconstruction de morceau
du signal.

Figure 5.2 Signaux reconstruits avec la pseudo-inverse Moore-Penrose par morceaux.

(L’unité de temps est la période d’échantillonnage)
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La figure (5.2) montre que la reconstruction du signal A(n) présente une discontinuité causée
par une erreur périodique lors de la reconstruction par morceaux. La figure (5.3) montre
que la différence calculée entre le signal A(n) et son estimé. On remarque un pic d’erreur au
début de chaque morceau qui diminue par la suite. Cette erreur est élevée et il est nécessaire
d’adapter notre approche pour la réduire.

Figure 5.3 Différence entre A(n) et son estimé.

(L’unité de temps est la période d’échantillonnage)

Cette erreur peut se situer à droite ou à gauche de la reconstruction de chaque morceau
dépendamment du signe du délai. Comme le montre la figure (5.1), si le délai est positif,
alors l’erreur se trouve au début de la reconstruction. Sinon si le délai est négatif, alors
l’erreur se trouve à la fin de la reconstruction. Cette erreur peut être réduite si on utilise
une reconstruction de morceaux avec un recouvrement entre les morceaux. On a alors ajouté
un paramètre r > 0 de recouvrement entre les morceaux consécutifs. Cela permet à chaque
itération de choisir seulement la partie de la reconstruction qui ne contient pas d’erreur. Si
le délai est positif, alors on remplacera l’erreur qui se trouve dans la première partie de la
reconstruction par la dernière partie de la reconstruction du morceau précédent. Si le délai est
négatif, alors on remplace l’erreur qui se trouve dans la dernière partie de la reconstruction
par la première partie de la reconstruction du morceau successif.
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La figure (5.4) montre que cette méthode permet de réduire l’erreur périodique observée
précédemment. Ici on utilise un recouvrement r = 10 entre deux morceaux consécutifs, ce
qui représente 10% de la taille du morceau reconstruit qui a une longueur de 100 échantillons.
On peut constater une nette amélioration, la reconstruction est presque identique à la source
A(n)

Figure 5.4 Signaux reconstruits avec la pseudo-inverse Moore-Penrose par morceaux avec
recouvrement.

(L’unité de temps est la période d’échantillonnage)
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Pour vérifier la précision de l’approche de la pseudo-inverse avec recouvrement, on a testé la
méthode sur un signal de parole auquel on a additionné un signal de bruit de TV. La figure
(5.5) représente les signaux utilisés pour créer les deux superpositions utilisés.

Figure 5.5 Signaux des sources utilisées pour le test de la pseudo-inverse Moore-Penrose par
morceaux avec recouvrement.

(L’unité de temps est la période d’échantillonnage)

On a utilisé un délai l = 5 (délai maximal entre les microphones) entre les signaux des
microphones et une pseudo-inverse avec une taille de 500 échantillons et un recouvrement de
250 échantillons entre les morceaux consécutifs . Pour tester la précision de la méthode on
a calculé l’erreur entre les amplitudes de l’estimé Â(n) et A(n). La figure (5.6) montre que
l’erreur périodique est très faible si on utilise la pseudo-inverse avec recouvrement.
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Figure 5.6 Signaux reconstruits avec la pseudo-inverse Moore-Penrose par morceaux avec
recouvrement.

(L’unité de temps est la période d’échantillonnage)

5.3.3 Conclusion

La méthode développée permet de reconstruire de manière précise les signaux des sources
A(n) et B(n). L’approche qui utilise une reconstruction par morceaux avec recouvrement a
permis de corriger les erreurs liées à l’estimation de la pseudo-inverse de Moore-Penrose [1].
Grâce à cette approche, on peut reconstruire avec précision les signaux des sources même en
présence de délai.
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5.4 Estimation de j et β

Durant les périodes calmes, le locuteur ne parle pas et on peut alors supposer que cette
période est caractérisée par A(n) = 0. Ainsi le problème de l’ACI peut être réécrit de la
manière suivante :

x(n) = B(n),

y(n) = β B(n+ j).
(5.31)

On considère un intervalle de temps Ik des signaux des microphones x(n) et y(n) défini par

Ik = [mk, nk]. (5.32)

En supposant que le délai satisfait j ∈ {−5,−4, ..., 4, 5}, on peut définir les deux vecteurs
xk ∈ RN et yk,j ∈ RN avec N = nk −mk + 1 comme suit :

xk(n) = x(n), n ∈ Ik,

yk,j(n) = y(n+ j), n ∈ Ik.
(5.33)

Nous voulons calculer le coefficient de corrélation maximal ρ∗(k) donné par

ρ∗(k) := max
j∈J

ρ(xk, yk,j). (5.34)

On utilise l’estimateur du coefficient de corrélation entre deux vecteurs arbitraires X ∈ RN

et Y ∈ RN

ρ(X, Y ) =
∑N
i=1(X(i)− X̂)(Y (i)− Ŷ )√∑N

i=1(X(i)− X̂)2
√∑N

i=1(Y (i)− Ŷ )2
, (5.35)

où X̂ = 1
N

∑N
i=1 X(i)) et Ŷ = 1

N

∑N
i=1 Y (i)).

On définit l’estimé j∗(k) du délai j pendant une période calme par

j∗(k) = arg max
j∈J

ρ(xk, yk,j). (5.36)

On effectue un test de vérification sur des signaux superposés en utilisant un délai j = 5. La
figure suivante montre que le coefficient de corrélation atteint son maximum pour la valeur
j∗ = 5
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Figure 5.7 Coefficient de corrélation en fonction du délai.

Supposons qu’on a réussi à détecter une période calme et à estimer la vraie valeur du délai j.
Il devient alors facile d’estimer le paramètre de mixage β. On peut utiliser le modèle suivant

y(n) = β x(n+ j) + e(j), (5.37)

où e(j) est une erreur .On peut alors utiliser une régression linéaire entre y(n) et x(n + j)
pour estimer le coefficient β, ce qui donne l’estimé

β̂ =
∑N
i=1(y(i)− ŷ)(x(i+ j)− x̂)∑N.

i=1(x(i)− x̂)2 , (5.38)

où x̂ et ŷ sont les moyennes des signaux x(n) et y(n).
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5.4.1 Détection des périodes calmes

Afin de pouvoir estimer le coefficient β et le délai j, il est impératif de détecter une période
calme pendant l’enregistrement du microphone. Dans cette section, nous avons investigué
différentes approches pour détecter la présence d’une période calme dans un enregistrement
où une personne parle en prenant des pauses.

Approche de la maximisation du coefficient de corrélation

Si on se situe dans une période calme, alors pour un délai estimé j∗ = j, le coefficient de
corrélation entre les signaux x(n) et y(n) atteint une valeur proche de 1 (1 étant la valeur
maximale). Une approche serait de calculer le coefficient de corrélation pour les différentes
valeurs possibles du délai jk ∈ [−5, ..., 5] entre les différents morceaux xk et yk des signaux
x(n) et y(n). On peut alors classifier une période comme calme si et seulement si son coefficient
de corrélation ρk ≈ 1. La figure (5.8) montre les résultats obtenus pour le calcul du coefficient
de corrélation maximal retrouvé pour différents morceaux de longueur de 10 000 échantillons.

Figure 5.8 Variation du coefficient de corrélation maximal par rapport au temps.

(L’unité de temps est la période d’échantillonnage)

On voit bien que la courbe de corrélation maximale entre les signaux des microphones (5.9)
présente des plateaux tels que ρk ≈ 1. Si on représente seulement le signal A(n) avec la
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courbe du coefficient de corrélation maximal, on peut constater que les plateaux coïncident
exactement avec les périodes où la personne ne parle pas, i.e période calme

Figure 5.9 Coefficient de corrélation maximal en fonction du temps.

(L’unité de temps est la période d’échantillonnage)

Une idée serait de classifier comme périodes calmes les morceaux du signal du microphone
qui ont une valeur ρk ≈ 1 et qui seraient aussi entourée par deux autres morceaux ayant aussi
un coefficient de corrélation très proche de 1, i.e ρk−1 ≈ 1 et ρk+1 ≈ 1.
Cependant on voit sur la figure (5.9) que le coefficient de corrélation atteint des valeurs
proches de 1 même pendant les périodes actives. Cette approche nécessite l’utilisation d’un
seuil qui doit être initialisé à l’avance. Si le signal de parole est beaucoup plus intense que le
signal de la source de bruit, le coefficient de corrélation maximal reste élevé même pendant les
périodes actives, contrainte qui rend le choix du seuil difficile et rend la méthode sensible au
changements de la nature des signaux. Quand le signal de la source de bruit est négligeable
par rapport au signal de parole, l’approche de la corrélation maximale ne permet plus de
différencier les périodes calmes des periodes actives car le coefficient de corrélation est très
proche de 1 même pendant les périodes actives.
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L’approche de la machine à vecteur de support

La détection automatique de l’activité vocale est un domaine de recherche très actif. Plusieurs
approches ont été développées afin de détecter la voix d’une personne quand elle parle.
L’approche utilisant la machine à vecteur de support ainsi que celle utilisant les réseaux
de neurones profonds sont les approches les plus connues pour reconnaître la voix humaine.
Ces méthodes nous ont inspiré à utiliser la machine à vecteur de support pour détecter les
périodes calmes. La machine à vecteur de support est une méthode statistique d’apprentissage
automatique supervisée qui nécessite des données d’entraînement. L’idée est d’entraîner une
machine à vecteur de support binaire pour classifier différents morceaux d’un signal en période
calme ou période active. Cet algorithme est entraîné à différencier les morceaux du signal qui
présentent une forte énergie contre les morceaux qui ont une faible énergie. L’énergie d’un
signal x est définie par

E =
N∑
i=1
|x(n)|2. (5.39)

Pour segmenter un signal en périodes silencieuses et périodes calmes, nous utilisons une ap-
proche développée par Giannakopoulos [17]. Cette approche consiste à construire une base de
données d’entraînement à partir d’un enregistrement vocal d’entraînement. Pour construire
cet ensemble de données, il est important de bien choisir les caractéristiques du signal qui
seront utilisées pour faire la classification. On utilise l’approche et le code de la librairie
pyAudio développée par Giannakopoulos [17] pour choisir et calculer les différentes caracté-
ristiques. On commence par diviser l’enregistrement en plusieurs morceaux, puis on calcule
pour chaque morceau k son énergie Ek. Pour chaque morceau, on calcule aussi plusieurs ca-
ractéristiques qui vont constituer nos données d’entraînement. Giannakopoulos [17] suggère
d’utiliser les caractéristiques de 10% des morceaux qui ont la plus forte énergie et les 10% des
morceaux qui ont la plus faible énergie parmi tous les morceaux du signal d’entraînement.
Les caractéristiques définies par Giannakopoulos [18] sont les suivantes :
- Le taux de changement du signe d’un signal appelé aussi Zero Crossing Rate (ZCR) mesure
le nombre de fois que le signal change de signe pendant une fenêtre précise

ZCR(xk) =
+∞∑

n=−∞
|sign[x(n)]− sign[x(n− 1)]|t(k − n), (5.40)

où

sign[x(n)] =

1, si x > 0,

−1, si x < 0,
(5.41)
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et

t[x(n)] =


1

2N , pour 0 < n < N − 1,

0, sinon.
(5.42)

- L’entropie de l’énergie décrit la dispersion de l’énergie d’une fenêtre d’un signal, elle peut
aussi indiquer des changements brusques dans le signal. L’entropie H d’un signal xk est
définie par

H(xk) = −
N∑
i=1

p(i) ln(p(i)). (5.43)

avec p(i) > 0 les distributions de probabilités des x(i).

- Le centroïde spectral est une mesure qui caractérise le spectre d’un signal et indique la
localisation du centre du spectre d’un signal. Le Centroïde C d’un signal de fréquence fi
ayant une transformée de Fourier discrete Fi(n) peut être calculé avec

C =
∑N
i=1 Fifi∑N
i=1 Fi

. (5.44)

- La propagation spectrale mesure la moyenne de déviation autour du centroïde. Les signaux
qui contiennent du bruit ont en général une large propagation spectrale alors que la voix
humaine a une propagation spectrale faible. La propagation spectrale Spread d’un signal de
fréquence fi avec un centroïde C peut être calculée avec

Spread =

√√√√∑N
i=1 Fi(fi − C)2∑N

i=1 Fi
. (5.45)

- Le flux spectral est une mesure de la fluctuation de la magnitude du spectre d’un signal, elle
mesure la différence carrée entre deux magnitude de spectres de deux fenêtres consécutives
d’un signal. Pour un signal x(n) on peut calculer le flux spectral comme suit :

Fs =
N∑
i=1

(Ek(n)− Ek−1(n))2. (5.46)

avec Ek(n) = xk(n)∑N

n=1 xk(n)
.

- Les coefficients MFCC sont les coefficients de fréquence cepstral de Mel et décrivent une re-
présentation cepstrale des bandes de fréquences non-linéaire distribuées selon l’échelle de Mel.
Ces coefficients sont calculés à partir de la transformation en cosinus de l’énergie spectrale.
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- Le vecteur Chroma et sa déviation est une propriété du signal qui décrit le ton d’un enregis-
trement audio et ainsi la qualité de ce dernier. Le vecteur Chroma est en général un vecteur
à 12 éléments qui décrit l’énergie des différentes classes de hauteur (C, C, D, D, E, ..., B).
La déviation de Chroma décrit tout simplement l’écart type du vecteur Chroma.

On définit une étiquette yk = −1 (comme période active) pour les caractéristiques qui sont
associées à une haute énergie et une étiquette yk = +1 aux caractéristiques qui sont associées
à une faible énergie. Par la suite on entraîne le SVM en utilisant les données d’entraînement
calculées précédemment afin de calculer nos prédictions. On effectue un test de vérifica-
tion de l’approche implémentée sur un enregistrement d’un microphone de notre partenaire
Fluent.ai. On a entraîné un SVM sur des morceaux de 5 000 échantillons et un pas de 1000
échantillons. Pour l’entraînement, on a utilisé un signal de longueur de 1 600 000 échantillons
(100 secondes). La figure suivante montre que l’approche réussit bien à détecter les périodes
calmes colorées en rouge.

Figure 5.10 Détection des périodes calmes avec le SVM.

(L’unité de temps est la période d’échantillonnage)
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5.5 Estimation de i et α

Après avoir réussi à estimer le délai j et le coefficient β, nous présentons dans cette partie
l’approche utilisée pour estimer le délai i ainsi que le coefficient α.
Nous utilisons les paramètres j et β, maintenant connus, pour réécrire le système d’équations
en (5.1). En soustrayant j on peut retrouver le système suivant :

x(n) = A(n) +B(n),

z(n) := y(n− j) = α A(n+ i− j) + β B(n).
(5.47)

On utilise l = i−j afin de simplifier l’écriture des équations. Pour cette partie de la méthode,
on utilise similairement à ICA/2S/2PM sans délais les corrélations entre x et z. On utilise le
paramètre de décalage m ∈ Z pour dériver les équations suivantes à partir de (5.47)

x(n+m) = A(n+m) +B(n+m),

z(n−m) = α A(n+ l −m) + β B(n−m).
(5.48)

En combinant les systèmes en (5.47) et (5.48), on retrouve le système d’équations suivant :


x(n) = A(n) +B(n),

z(n) := y(n− j) = α A(n+ l) + β B(n),

x(n+m) = A(n+m) +B(n+m),

z(n−m) = α A(n+ l −m) + β B(n−m).

(5.49)

On définit les différents moments qu’on utilisera pour estimer i et α :

AA := E {A(n)A(n)} , (5.50)

AAm := E {A(n)A(n+m)} , (5.51)

BB := E {B(n)B(n)} , (5.52)

BBm := E {B(n)B(n+m)} , (5.53)

XX := E {x(n)x(n)} , (5.54)

XXm := E {x(n)x(n+m)} , (5.55)

ZZ := E {z(n)z(n)} , (5.56)
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ZZm := E {z(n)z(n+m)} , (5.57)

XZ := E {x(n)z(n)} , (5.58)

XZm := E {x(n)z(n+m)} , (5.59)

ZX := E {z(n)x(n)} , (5.60)

ZXm := E {z(n)x(n+m)} = E {z(n−m)x(n)} . (5.61)

En utilisant les équations en (5.49), on obtient

XX = AA+BB, (5.62)

XXm = AAm +BBm, (5.63)

ZZ = α2 AA+ β2 BB, (5.64)

ZZm = α2 AAm + β2 BBm, (5.65)

XZ = α AAl + β BB, (5.66)

XZm = α AAl−m + β BBm. (5.67)

Les équations précédentes décrivent un système d’équations non linéaire avec les inconnues

{AA,AAm, AAl, AAl−m, BB,BBm, α} . (5.68)

Si m 6= l, alors le système d’équations (5.62)-(5.67) est sous-déterminé car il contient six
équations et sept inconnues. On sait déjà que les statistiques XXm et ZZm ne dépendent
pas du signe de m car les processus aléatoires A(n) et B(n) sont stationnaires. Par contre les
variables XZm dépendent bien du signe de m car

XZ−m −XZm = (αAAl+m + βBB−m)− (αAAl−m + βBBm),

= (αAAl+m − αAAl−m) car B−m = Bm,

pour tout m 6= 0.

(5.69)

Si l = 0, alors
XZ−m −XZm = 0 pour tout m . (5.70)
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La sensibilité de XZm au signe de l et la sous-détermination du système d’équations (5.62)-
(5.67) suggère l’addition de la statistique XZ−m afin d’augmenter le nombre d’équations. On
aura ainsi

XX = AA+BB, (5.71)

XXm = AAm +BBm, (5.72)

ZZ = α2AA+ β2BB, (5.73)

ZZm = α2AAm + β2BBm, (5.74)

XZ = α AAl + β BB, (5.75)

XZm = α AAl−m + β BBm, (5.76)

XZ−m = α AAl+m + β BBm. (5.77)

Ainsi on retrouve un système d’équations sous-déterminé qui inclut sept équations et huit
inconnues données par

{AA,AAm, AAl, AAl−m, AAl+m, BB,BBm, α} . (5.78)

Si m = l, alors le système d’équations prend la forme plus simple

XX = AA+BB, (5.79)

XXl = AAl +BBl, (5.80)

ZZ = α2AA+ β2BB, (5.81)

ZZl = α2AAl + β2BBl, (5.82)

XZ = α AAl + β BB, (5.83)

XZl = α AA+ β BBl, (5.84)

XZ−l = α AA2l + β BBl. (5.85)

Le système d’équations qui précède est non linéaire et est composé maintenant de sept équa-
tions et six inconnues

{AA,AAl, AA2l, BB,BBl, α} . (5.86)
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On constate que ce système d’équations est sur-déterminé et on peut même suggérer que le
paramètre β puisse être estimé si ce dernier était inconnu. Ainsi on peut estimer α et par la
même occasion le délai j car ce système d’équations n’est soluble que si j = l. Une approche
pour résoudre ce système d’équations non linéaire est de minimiser les résidus dans le sens des
moindres carrés en utilisant la méthode d’optimisation de Levenberg-Marquardt. On utilise
les conditions initiales suivantes : 

AA = 0,

AAl = 0,

AA2l = 0,

BB = 0,

BBl = 0,

α = 1.

(5.87)

On a commencé par résoudre le système sur-déterminé au complet et choisir le délai l qui
donne le résidu le plus faible de tout le système. Cette approche fonctionne bien sauf pour
le cas où l = 0. Si le délai l est nul, l’algorithme fonctionne mais retrouve de temps en
temps un estimé faux l = 1 ou l = −1. Ce problème nous a poussé à utiliser une méthode
basée sur la sur-détermination du système d’équations. Sachant que le délai j ∈ [−5, ..., 5],
on peut alors résoudre le système d’équations pour les différentes valeurs possibles de j. Pour
chaque itération, on résout le système d’équations pour les sept combinaisons possibles de six
équations prises parmis les sept équations (5.79)-(5.85) et on calcule la somme des résidus à
chaque fois. Après avoir résolu le système d’équations pour les sept combinaisons possibles,
on calcule la variance des estimés de α obtenues pour toutes combinaisons d’équations. Après
avoir calculé la variance de α pour les différentes valeurs possibles de j, notre estimé j∗ de j
est celui qui produit la variance de α la plus faible.
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5.6 Méthode ICA/2S/2PM avec délais par morceau

Après avoir développé les approches nécessaires pour l’estimation des coefficients de mixage
α et β ainsi que les délais i et j, nous avons regroupé les différentes parties de la méthode
ICA/2S/2PM avec délais dans un seul bloc.
Notre partenaire Fluent.ai utilise des algorithmes de traitement de la voix naturelle qui
reçoivent comme entrée des petits morceaux d’enregistrement. Ainsi Fluent.ai souhaiterait
avoir une approche qui fonctionne par morceau. Afin de satisfaire ce besoin, nous avons adapté
notre algorithme afin de calculer les estimations nécessaires et générer les reconstructions
des signaux A(n) et B(n) par morceau. Nous avons aussi ajouté quelques contraintes afin
de bien vérifier qu’un morceau de signal est bel et bien classé comme une période calme.
Pour l’expérience suivante, nous avons utilisé un enregistrement de longueur de 100 secondes
pour entraîner un SVM comme décrit par Giannakopoulos [17] afin de détecter les périodes
calmes d’un enregistrement d’un microphone dans un environnement bruyant. Cet SVM a
été entraîné sur des fenêtres de 0.3125 secondes et un pas de 0.0625 secondes. La figure (5.11)
montre les résultats obtenus pour la segmentation des périodes calmes sur une partie de
l’enregistrement du microphone

Figure 5.11 Segmentation des périodes calmes.

(L’unité de temps est la période d’échantillonnage)

On remarque que la segmentation des périodes calmes fonctionne bien malgré l’existence de
quelques fausses prédictions signalant la présence de périodes calmes. Afin d’éviter ce genre
de fausses prédictions, nous avons ajouté une contrainte lors de la classification du SVM, un
morceau du signal est classé comme période calme si et seulement si le morceau précédent et
le morceau suivant est aussi classé comme période calme par le SVM. On utilise le critère
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fcalm(xk) = +1 si et seulement si fsvm(xk) = fsvm(xk−1) = fsvm(xk+1) = +1, (5.88)

où fcalm est la fonction de classification des périodes calmes et fsvm la fonction de prédiction
du SVM. Si fcalm = +1, alors l’algorithme estime les paramètres β et le délai j grâce à
l’approche utilisant la maximisation de la corrélation et la régression linéaire. Cependant, il
n’est pas possible de calculer une reconstruction des sources Ak(n) et Bk(n) car Ak(n) = 0
pendant la période calme.
Si fcalm(xk) = −1, alors l’algorithme classifie le morceau xk comme une période non calme.
Tant que l’algorithme n’a pas retrouvé des estimés de tous les paramètres α, β, i et j, alors
il est impossible de calculer une reconstruction et donc l’algorithme retourne le signal du
microphone. Si fcalm(xk) = −1 et αk−1 6= 0 (estimé de α du morceau xk−1), alors l’algorithme
estime la pseudo-inverse en utilisant les paramètres prédits et enregistrés précédemment et
calcule la reconstruction des sources.
Si fcalm(xk) = −1 et αk−1 = 0 alors l’algorithme retourne le signal du microphone car l’estimé
de α est nul.
Dans le cas où le SVM retourne une prédiction fsvm(xk) = −1 et classifie la période direc-
tement comme une période active alors l’algorithme estime les inconnues αk et ik seulement
si βk−1 6= 0. Si βk−1 6= 0 alors l’algorithme estime par la suite la pseudo-inverse et calcule la
reconstruction des sources Ak(n) et Bk(n) du morceau.
Si fsvm(xk) = −1 et βk−1 = 0 alors il est impossible d’estimer la pseudo-inverse car il n’y a
pas eu présence de période calme avant. Le diagramme (5.12) décrit le fonctionnement de la
méthode ICA/2S/2PM par morceau.
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Figure 5.12 Diagramme en flux de ICA/2S/2PM avec délais par morceaux.

5.7 Test de la méthode au complet

Dans cette section nous avons effectué le test de la méthode ICA/2S/2PM avec délais par
morceaux au complet. Le signal x(n) utilisé pour entraîner le SVM est l’enregistrement d’un
microphone qui représente la voix d’un homme en train de dire une suite de commandes
d’intentions comme "Open the window" dans un environnement contenant du bruit rose.
L’entraînement du SVM s’est fait par morceaux de longueur K = 5000 échantillons et un pas
p = 1000 échantillons. Pour effectuer le test nous avons utilisé deux parties de l’enregistrement
de Fluent.ai. qu’on a superposé à du bruit rose additif en utilisant les paramètres suivants :
- α = 1.1 , β = 0.9, j = 1, i =-3 pour le morceau entre 0 et 40 000 échantillons.
- α = 1.2, β = 0.9, j = 1, i = -4 pour le morceau entre 40 000 et 80 000 échantillons.
- α = 1.3, β = 0.9, j = 1, i = -5 pour le morceau entre 80 000 et 150 000 échantillons.
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- α = 1.4, β = 0.9, j = 1, i =6 pour le morceau entre 150 000 et 200 000 échantillons.
- α = 1.5, β = 0.9, j = 1, i =7 entre 200 000 et 250 000 échantillons.
Ces enregistrements permettent de simuler une situation où une personne parle en changeant
de position ou bien une situation où plusieurs personnes situés à des endroits différents parlent
successivement. Dans les résultats suivants nous avons représenté les estimations enregistrées
par l’algorithme ainsi que la reconstruction du signal désiré A(n). Les deux figures (5.13)
et (5.14) montrent les résultats obtenus en utilisant l’algorithme ICA2S2PM avec délais au
complet. On voit que les estimations des paramètres α, β, i et j pour les différents morceaux
étaient correctes et que les reconstructions du signal estimé A∗(n) sont presque identiques au
signal source A(n).

Figure 5.13 Estimés j, β, i, α et reconstruction du signal de parole pour le premier enregis-
trement.

(L’unité de temps est la période d’échantillonnage)
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Les figures (5.13) et (5.14) contiennent chacune sept graphiques au total. Le premier gra-
phique représente le signal de parole A(n) qui ne contient pas de bruit. Le signal de parole
représente une suite des signaux d’intention enregistrés par Fluent.ai. Ce signal a une fré-
quence d’échantillonnage de 16 kHz et a une taille de 250 000 échantillons (équivalant à 15,62
secondes). Le deuxième graphique représente le signal d’un des deux microphones avec la seg-
mentation calculée par le SVM. Le graphique montre des régions en rouge qui correspondent
aux morceaux xk avec fsvm(xk) = +1. Les graphiques 4, 5, 6 et 7 représentent les estimés de
jk, βk, ßk et αk calculés pour les morceaux xk de taille de 5 000 échantillons. Le symbole ◦
montre la vraie valeur du paramètre quand on a créé les signaux superposés, le symbole ×
montre la valeur de l’estimé du paramètre. Le troisième graphique représente le résultat de
la reconstruction du signal de parole A(n) sans le bruit B(n).

Figure 5.14 Estimés j, β, i, α et reconstruction du signal de parole pour le deuxième enre-
gistrement.

(L’unité de temps est la période d’échantillonnage)
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On constate que cette méthode nous permet de séparer parfaitement les signaux A(n) et B(n).
Grâce à cette approche, on peut à la fois identifier le signal de parole A(n) et le reconstruire
sans le bruit B(n). Cet algorithme a permis de réduire le bruit d’un enregistrement d’une
longueur de 15,625 secondes en 3 secondes de temps d’exécution. Pour chaque morceau xk

de longueur de 5 000 échantillons, le temps d’exécution pour calculer les estimés jk, βk, ßk et
αk et calculer les signaux Ak(n) et Bk(n) est de 0.06 seconde.

5.8 Résultats préliminaires pour des signaux réels

Dans le but de tester l’approche ICA/2S/2PM avec délais, nous avons effectué quelques tests
en utilisant des signaux réels enregistrés par des microphones. Dans le cas des signaux réels,
le bruit n’est pas additionné manuellement au signal de parole. Fluent.ai nous a procuré
un enregistrement produit dans une salle comprenant une source de bruit provenant d’un
haut parleur placé à une distance des microphones et une source de parole qui provient
d’un deuxième haut parleur situé dans un autre endroit. Les signaux des sources de parole
et de bruit sont identiques aux signaux utilisés pour créer les superpositions synthétiques
dans les tests précédents. Les résultats obtenus en utilisant l’approche ICA/2S/2PM avec
délais ont montré que les estimés des délais i et j étaient très volatiles et avaient plusieurs
fois une valeur nulle. Les estimés des coefficients α et β avaient une grande variance et les
reconstructions étaient très similaires aux signaux des microphones. Cependant ces résultats
peuvent s’expliquer par la présence de réverbérations dans les enregistrements. En effet,
enregistrer des sources provenant de hauts parleurs dans une salle crée des réverbérations qui
viennent fausser les résultats des estimés de l’algorithme ICA/2S/2PM.
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CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS

L’objectif principal de ce mémoire est de réduire le bruit des signaux enregistrés par les
deux microphones de l’appareil de notre partenaire Fluent.ai. On a présenté les approches
permettant de séparer les signaux de microphones en deux signaux sources : le signal de
parole d’un locuteur et le signal d’une source de bruit.

6.1 Synthèse des travaux

Nous avons développé deux méthodes pour séparer les signaux des microphones en deux
composantes indépendantes. Ces deux méthodes utilisent les corrélations entre les deux si-
gnaux des microphones.

Au chapitre 4, nous avons présenté la méthode ICA/2S/2PM pour la séparation des
signaux qui arrivent à deux microphones sans délais. On a expliqué comment utiliser la
corrélation entre les signaux à des temps différents pour formuler un système d’équations qui
nous permet d’estimer les paramètres de mixage. La méthode qu’on a implémentée respecte
les suppositions du problème de l’analyse en composantes indépendantes. On a aussi présenté
le test de la méthode ainsi que des comparaisons avec les deux approches existantes les plus
utilisées. Les tests de vérification nous ont permis de constater que la première méthode
fonctionne parfaitement si on utilise des signaux qui ont été reçus par les microphones sans
délais. Le test nous a aussi montré que notre méthode présente des résultats meilleurs que
les deux autres méthodes étudiées pendant notre revue de litérature. On a aussi remarqué les
limitations de ces méthodes quand on a introduit des délais dans les signaux des microphones.

Dans le chapitre 5, on a présenté les différentes parties de l’algorithme qu’on a développé
pour la séparation des signaux des microphones quand il y a présence de délais entre les
microphones. La méthode utilise aussi la corrélation à deux points similaire à ICA/2S/2PM
sans délais. La méthode inclut un algorithme utilisant la machine à vecteur de support qui
permet de détecter les périodes calmes. On a aussi réussi à estimer les paramètres de mixage
ainsi que les délais grâce à une régression linéaire simple et la méthode d’optimisation de
Levenberg-Marquardt.

Dans le chapitre 5, nous avons aussi présenté une adaptation de la méthode permettant
de faire la séparation et la reconstruction des signaux par morceaux. Cette adaptation est né-
cessaire pour un traitement du signal en temps réel. L’approche développée permet d’estimer
les paramètres dans un contexte dynamique où les paramètres changent au cours du temps.
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On a trouvé que les reconstructions étaient pécises et permettent de séparer clairement le
signal de parole du bruit. Cette adaptation a permis d’avoir un temps d’exécution faible.
Cette méthode peut fonctionner en temps réel pour faire la réduction de bruit. Pour tester
notre méthode, nous avons utilisé des enregistrements fournis par notre partenaire Fluent.ai.
Ces données contiennent l’enregistrement d’une personne qui parle sans bruit et un autre
enregistrement d’un bruit rose. Les tests ont montré que l’approche qu’on a développé per-
met de calculer les estimés des paramètres inconnus avec précision. On a aussi montré que
l’algorithme permet d’estimer des paramètres qui pourraient changer suite au changement
de la distance entre le locuteur et les microphones et ainsi permetterait de tenir compte de
la non-stationarité du signal de parole.

6.2 Limitations de la solution proposée

Pour estimer les paramètres de mixage ainsi que les délais, nous avons utilisé des en-
registrements superposés synthétiques. Cette méthode de mixage ne permet pas d’avoir des
enregistrements qui contiennent de la réverbération. Nos expériences préliminaires avec des
signaux contenant de la réverbération montrent que la précision de la séparation se dété-
riore significativement. En particulier, les délais estimés sont souvent nuls. En fait, il existe
plusieurs délais associés aux multiples réverbérations reçues par les microphones au cours
de l’enregistrement. La présence de réverbération n’a pas été inclue dans la formulation du
problème de l’analyse en composantes indépendantes. La réverbération cause un problème
lorsqu’on utilise des signaux qui ont été enregistrés par des microphones dans une pièce fer-
mée où le locuteur se tient à distance des deux microphones. Les réverbérations sont créées
par la réflexion des signaux de paroles et de bruits sur les murs et les objects de la pièce où
se trouve le locuteur.

6.3 Améliorations futures

Dans le cadre d’améliorations futures, on pourrait modifier la formulation du problème
de l’analyse en composantes indépendantes pour inclure les réverbérations dans notre sys-
tème d’équations. Une autre possibilité serait de réduire la réverbération avec un algorithme
approprié avant d’appliquer notre méthode.
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