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RÉSUMÉ

Pour répondre aux exigences de sécurité et de performances dans une enveloppe de vol
de plus en plus étendue, des analyses d’aérodynamique numérique doivent être réalisées par
logiciels résolvant les équations RANS sur des cas pouvant causer l’apparition de phénomènes
instationnaires. Pour éviter les coûts de calculs élevés liés à la simulation de phénomène
instationnaire en temps réel, une analyse sur une solution stationnaire des équations peut
être effectuée. Un solveur stationnaire itératif peut cependant être incapable d’obtenir une
telle solution à cause de l’instabilité liée au phénomène étudié.

L’objectif de ce projet est l’analyse et l’implémentation d’une méthode de stabilisation per-
mettant d’obtenir une solution stationnaire quand ce problème est rencontré. Pour ce faire,
la méthode "Selective Frequency Damping" (SFD) est utilisée. Deux formulations principales
de cette méthode sont présentées, soit la formulation couplée et la formulation encapsulée.
L’implémentation de chaque formulation est détaillée ainsi qu’une analyse mathématique sim-
plifiée de leur effet sur une valeur propre du problème. La méthode de l’analyse de stabilité
globale est également présentée comme méthode permettant d’identifier une valeur propre
instable dans un écoulement. Un algorithme appelé "adaptive SFD" est finalement présenté
pour stabiliser un écoulement et sélectionner les paramètres de la méthode automatiquement
en utilisant la méthode de stabilité globale pour identifier un mode instable physiquement
et en optimisant les paramètres en se basant sur un modèle simplifié. Des modifications sont
proposées pour améliorer les méthodes existantes de la littérature, en particulier une correc-
tion périodique des variables filtrées pour accélérer la convergence du solveur et l’utilisation
d’équations indépendantes du pas de temps pour optimiser les paramètres de façon à réduire
le temps de calcul de cette étape.

Les deux formulations de la méthode SFD sont implémentées dans le solveur CHAMPS. La
comparaison de leur stabilité révèle des limitations liées aux simplifications utilisées dans le
cas d’un large pas de temps. La formulation encapsulée, l’analyse de stabilité globale et une
fonction d’optimisation des paramètres sont implémentées dans le solveur NSCODE formant
un algorithme "adaptive SFD". Cet algorithme est testé sur un cas de tourbillons derrière
un cylindre. L’accélération de la convergence liée à la correction périodique des variables
filtrées est testée. La capacité de la méthode SFD implémentée dans CHAMPS à stabiliser
des écoulements sur un profil multi-éléments en condition de décrochage est démontrée.
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ABSTRACT

In order to meet the safety and performance requirements in an increasingly large flight
envelope, numerical aerodynamic analyses must be performed by software solving the RANS
equations on cases that may cause unsteady phenomena. To avoid the high computational
cost of simulating unsteady phenomena in real time, an analysis on a stationary solution of
the equations can be performed. However, an iterative stationary solver may not be able to
obtain such a solution because of the instability of the studied phenomenon.

The main goal of this project is the analysis and implementation of a stabilization method
to obtain a stationary solution when this problem is encountered. To do this, the "Selective
Frequency Damping" (SFD) method is used. Two main formulations of this method are
presented, the coupled formulation and the encapsulated formulation. The implementation
of each formulation is detailed along with a simplified mathematical analysis of their effect
on an eigenvalue of the problem. The global stability analysis method is also presented as
a method to identify an unstable eigenvalue in a flow field. An algorithm called "adaptive
SFD" is finally presented to stabilize a flow field and select the parameters of the method
automatically by using the global stability method to identify a physically unstable mode
and by optimizing the parameters based on a simplified model. Improvements are proposed
to the existing methods from the literature, in particular a periodic correction of the filtered
variables to speed up the convergence of the solver and the use of equations that are not
dependent on the time step to optimize the parameters in order to reduce the computational
cost of this step.

Both formulations of the SFD method are implemented in the CHAMPS solver. The
comparison of their stability reveals limitations related to the simplifications of the math-
ematical analysis when using a large time step. The encapsulated formulation, the global
stability analysis and a parameter optimization function are implemented in the NSCODE
solver forming an "adaptive SFD" algorithm. This algorithm is tested on a case of vortex
shedding behind a cylinder. The convergence acceleration due to the periodic correction of
the filtered variables is tested. The ability of the SFD method implemented in CHAMPS to
stabilize cases of a multi-element profile in stall condition is demonstrated.
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CHAPTER 1 INTRODUCTION

1.1 Context

In the domain of aircraft design and analysis, Computational Fluid Dynamic (CFD) is
an indispensable tool. A numerical analysis is usually less expensive and faster than a flight
test or wind tunnel testing, while the rapidly increasing computational performance available
allows for numerical simulations with higher accuracy to be used earlier in the design process.
Without completely replacing physical testing, numerical simulation is a tool used as an
alternative and addition to greatly diminish testing and design costs.

Since the need for better aircraft efficiency has pushed design teams to explore expanded
flight envelope, these tools need to be able to reliably and efficiently study flow conditions and
aircraft configurations at the limit of the flight envelope. Such flight conditions can include
high-lift configurations (take-off and landing) but also transonic and high-speed conditions.
Unfortunately, the boundaries of the flight envelope are usually associated with unsteady
phenomena that limit the use of steady CFD analysis, as shown in Fig. 1.1. In this figure,
the horizontal axis corresponds to the equivalent airspeed of an airplane and the vertical axis
corresponds to the loads on the aircraft structure. The combinations of these conditions for
which the aircraft can fly safely are identified by an enclosed area. The limits of this area are
defined by the minimum speed required to maintain sufficient lift and the speed and loading
limits that would result in damage or failure of the structure.

Ensuring an accurate analysis of these conditions is particularly important from a safety
standpoint because they can be associated with unsteady phenomena such as vortex-shedding
and buffet. Buffet in particular can lead to flutter, a dangerous aeroelastic phenomenon in
which a coupling of aerodynamic and structural forces leads to harsh vibration of the aircraft
and can result in failure of the structure. This work is thus centered on providing designers
with steady solutions of unsteady aerodynamic problems.
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Figure 1.1 Flight envelope compared with the area for which steady CFD analysis is most
reliable, reproduced from Tinoco et al. [1]

1.2 Basic concepts

1.2.1 Navier-Stokes equations

The Navier-Stokes equations are a set of partial differential equations used to describe the
motion of compressible and viscous fluids. As such, they are an expression of the conservation
law for mass, momentum and energy for fluids. Multiple formulations for these equations are
possible, but in the context of a finite-volume CFD solver a useful formulation is the integral
formulation using a convective flux vector ~Fc and a viscous flux vector ~Fv [3].

∂

∂t

∫
Ω
~W dΩ +

∮
∂Ω

( ~Fc − ~Fv) dS =
∫

Ω
~QdΩ (1.1)

~W = [ρ, ρu, ρv, ρw, ρE]T (1.2)

~Fc = [ρV, ρuV + nxp, ρvV + nyp, ρwV + nzp, ρHV ]T (1.3)



3

~Fv =



0
nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz


(1.4)

where

Θx = uτxx + vτxy + wτxz + k
∂T

∂x
(1.5)

Θy = uτyx + vτyy + wτyz + k
∂T

∂y
(1.6)

Θz = uτzx + vτzy + wτzz + k
∂T

∂z
(1.7)

V = nxu+ nyv + nzw (1.8)

H = E + p

ρ
(1.9)

In these equations, ~W is the vector of conservative variables and ~Q is the vector of source
terms corresponding to volume force and volumetric heating. In the range of aeronautics
applications covered by this research, it is assumed these sources are negligible and as such
they are considered equal to 0 throughout this work. Time is defined as t. The density
variable is defined by ρ while the x,y and z components of the fluid velocity are respectively
u, v and w. The E, H and P variable refers to the energy, the total enthalpy and the pressure
of the fluid respectively. The temperature of the fluid is referred to as T . The τii and τij

symbols refer to the viscous stresses affecting the plane perpendicular to the i-axis in the
direction of the i-axis or j-axis and are represented respectively by

τii = 2µ
(
∂vi
∂xi
− 1

3div(~v)
)

(1.10)

and
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τij = µ

(
∂vi
∂xj

+ ∂vj
∂xi

)
(1.11)

where µ is the dynamic viscosity. The thermal conductivity coefficient is referred to as
k. Finally, the nx, ny and nz symbols refer to normal unit vectors in their respective axis
direction.

For our application it is assumed that the medium studied is a perfect gas, so the total
energy E can be directly related to the pressure, density and velocity using the heat capacity
ratio γ as

E = p

ρ(γ − 1) + u2 + v2 + w2

2 . (1.12)

1.2.2 Reynold-Averaged Navier-Stokes equations

A popular approach to model aerodynamic flows over civil aircraft is the use of the Reynolds
Average Navier-Stokes (RANS) equations. The RANS equations are based on the concept of
time-averaging the original Navier-Stokes equations, which leads to the equations now solving
the average value of the conservative variables. The equations solving the average variables
then retain the same structure as in their original form with the exception of the addition of
the Reynolds-stress tensor −ρv′iv′j to the original stress tensor τij and the addition of the so-
called turbulent heat-flux vector term −ρh′v′i to each k ∂T

∂xi
term where i and j represents one

of the three spatial directions, h′ refers to the fluctuating static enthalpy and the v′i notation is
used to refer to a fluctuating component of a velocity [3]. These new terms create additional
variables without adding equations, and as such create what is called a closure problem.
This means that additional modeling for these terms is required before these equations can
be solved.

1.2.3 Closure of the Reynold-Averaged Navier-Stokes equations

A popular approach, and the one used in this work, to model the additional terms related to
turbulence in the RANS equations is the use of the Boussinesq’s eddy viscosity hypothesis [3].
This consists in stating that the turbulent shear stress can be computed as the product of
an eddy viscosity and the mean strain-rate tensor. In practice, this hypothesis can be used
to simplify the additional terms related to turbulence. The Reynolds-stress tensors can
be computed by adding to the laminar viscosity µl of the fluid a turbulent viscosity µt to
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compute a new total viscosity µ = µl +µt. The turbulent heat-flux vector term can similarly
be computed by adding to the thermal conductivity k a turbulent thermal conductivity kt
which can be computed from the turbulent viscosity as cp µt

PrT
where cp is the specific heat

capacity and PrT is the turbulent Prandtl number, set as a constant. To solve the closure
problem of the RANS equations, a model then needs to be used to compute this additional µt
turbulent viscosity variable. Multiple models exist to do so, but in the case of this work the
one-equation model of Spalart and Allmaras is used [4]. However, the theory presented could
be applied to other turbulence models since the methods used are not inherently limited to
this particular model.

1.2.4 Finite volume method

The use of an analytical method to solve these equations being limited to simplified prob-
lems, a discretization method is usually used. To solve the RANS equations computationally,
different discretization methods can be used including finite-difference, finite-element and
finite-volume. The finite-volume method is a popular method and the one used in this work.
It consists in dividing the studied domain in small control volumes (so-called cells) and di-
rectly using the integral formulation of the Navier-Stokes equation on each of the cells. The
fluxes are then computed on each face of the cells and summed to evaluate the residual R
which is proportional to the time derivative of the flow variables. As such, when computing
a steady solution the residual R is equivalent to the error of the approximate solution. The
other values which are integrated in the cell volume Ω are approximated across the volume,
and as such a simplified formulation of the integral Navier-Stokes equation 1.1 is used by the
solver. This results in the problem written as

Ω∂
~W

∂t
= −−→R ( ~W ) (1.13)

where

−→
R ( ~W ) =

∮
∂Ω

( ~Fc − ~Fv) dS. (1.14)

1.2.5 Steady and unsteady solutions of the RANS equations

Another aspect that differentiates the way the equations are solved is the temporal char-
acteristics of the solution that is expected. As seen in Eq. 1.13, a term in the equation is
directly proportional to the temporal variation of the conservative variable value in the cell.
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If the desired solution is steady, meaning that it has no temporal variation, this term is
known to be zero for the solution. Since the steady solution is time-independent, the iterative
solver can use a different time-stepping value for each cell in the domain to reach a converged
solution in less computational time without a loss in accuracy. This technique is called local
time stepping and is useful because the maximum time step that the solver can use is limited
by stability conditions that vary across the domain, such as the cell size and the values of the
conservative variables in the cell. The use of the maximum allowable time step for each cell
reduces the required number of iterations to reach a steady solution but makes the transient
solution physically inaccurate.

However if the desired solution is unsteady, the time evolution must be physically accurate.
In this case the time step used by the solver must be consistent across all cells of the domain,
otherwise referred to as global time-stepping. This requirement limits the allowable time
step in almost all cells since the time step of the most limiting cell must be used. A method
used to circumvent this limitation is the dual time-stepping approach. It consists in using
two different time-stepping schemes to advance the problem. The first one represents the
global physical time step, while the second is a local time-stepping scheme used to calculate
the next physical solution. The method, as presented by Jameson [5], modifies the original
equations so that a new problem can be defined where the physical temporal variation is
taken into account in the residual. Consider Eq. 1.13, where the temporal scheme used to
advance the flow in time globally is a second order time-accurate explicit scheme using a
3-point backward-difference approximation to calculate the derivative in time. This results
in the equation

3
2∆t(Ω

~W n+1)− 4
2∆t(Ω

~W n) + 1
2∆t(Ω

~W n−1) = −~Rn+1 (1.15)

where n+1 defines the current time step. This equation is then modified to be treated as a
steady state problem in pseudo-time t∗, such that

Ω∂
~W ∗

∂t∗
= − ~R∗ (1.16)

where ~W ∗ corresponds to the conservative variables of the current time step (n+1) and ~R∗

is defined as

~R∗ = ~R + 3
2∆t(Ω

~W ∗)− ~Q∗ (1.17)
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~Q∗ = 4
2∆t(Ω

~W n)− 1
2∆t(Ω

~W n−1). (1.18)

The resulting equation is a steady state problem that can be solved using the same meth-
ods as the ones used when searching for steady state solutions. The solution found then
corresponds to one time step of the time-accurate unsteady calculation.

1.2.6 Nondimensionalization

Comparing flow field properties from different test cases and different computational sim-
ulations can become difficult if no nondimensionalization is used. Nondimensionalization
consists in multiplying or dividing a variable by characteristic physical values to remove all
physical dimensions from it. This in turn allows comparing similar test cases and values that
are not initially equal because their physical dimensions are different. Three nondimensional
constants are particularly used throughout this work. The first one is the Reynolds number

Re = ρUL

µ
(1.19)

where ρ, U and µ refer to the free stream density, the free stream velocity and the free stream
dynamic viscosity of the fluid respectively. L refers to a length characteristic value, in our
case the chord of the airfoil or the diameter of a considered cylinder. This nondimensional
constant represents the ratio of inertial forces over viscous forces within the fluid. The Mach
nondimensional constant is also used, defined by

Ma = U/c (1.20)

where U refers to the fluid velocity and c refers to the speed of sound. Another nondimensional
constant specific to oscillating phenomena used is the Strouhal number

St = fL

U
(1.21)

where the f variable refers to the frequency of an unsteady phenomenon.

In addition to these nondimensional constants, the nondimensionalization of eigenvalues is
also done in this work. The reason for this is that in the context of numerical methods used,
the evolution in time of the flow is approximated as an eigenvector that is multiplied by an
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exponential function written as

eµo∆t (1.22)

where µo is the eigenvalue corresponding to the eigenvector and ∆t is an interval in time.
The dimensional units of µo in this equation are 1

[t] . To compare the value of µo used in
this work with values of similar test cases in the literature, nondimensionalization is useful.
This is done by multiplying the eigenvalues µo by a characteristic length and dividing by a
characteristic speed. Since the units of the characteristic speed are a length divided by time,
this results in cancelling the time units of the original dimensional eigenvalues.

1.2.7 Unsteady phenomena

Aerodynamic unsteady phenomena can be encountered for a large variety of flow conditions
and surface geometries. A well-known unsteady phenomenon is the vortex-shedding of a
cylinder at low Reynolds number, the so-called von Kármán vortex street [6]. Airfoil at a
low Reynolds Number can also experience the vortex-shedding phenomenon near the stall
angle because of flow separation [7]. Another type of instability that is encountered in the
aeronautical field is the transonic buffet phenomenon over an airfoil. Buffet is an instability
that can appear at high speed in transonic flow conditions. This phenomenon is caused by
a shock-boundary layer interaction and results in an oscillation of the shock position on the
airfoil [8]. While the phenomena mentioned can be observed in bidimensional test cases, they
can also be observed in tridimensional equivalent test cases in which a different superposed
tridimensional physics and instability is sometimes observed [9].

1.2.8 System instability and equilibrium

When a steady state solution of the RANS equations is reached by a solver, the conservative
variables in the flow field have reached an equilibrium. In a system, a point of equilibrium
can be stable, unstable or have neutral stability. These situations are illustrated in Fig. 1.2
using the example of a marble at rest respectively at the bottom of a cavity, at the tip of a
bump or on flat ground. While the marble is at a point of equilibrium in all situations since
it is at rest, a perturbation of its position will have different results. In the stable case, the
marble will return to the position pictured. In the unstable case, the marble will move away
from the initial equilibrium point following the perturbation. In the neutral stability case,
the marble will stay at its new position after a perturbation. Similarly, a steady state solution
of the RANS equations, representing an equilibrium of the conservative variable solved, can
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also be unstable.

Figure 1.2 Visualization of various equilibrium points of a marble with different stability
properties

A mathematical example of this stability can also be observed with a system where the
evolution in time is defined by the differential equation

ẏ(t) = Cy(t) (1.23)

where t is an independent variable and C is a constant that can be a complex number. The
functions y(t) = eCt and y = 0 are solutions of this equation. The evolution in time of these
functions from an initial time t after a time step ∆t is

y(t+ ∆t) = eC(t+∆t) + 0 = eC∆t(eCt + 0) = eC∆ty(t). (1.24)

An iterative exact solver can be used to simulate the evolution of the system in time with
the operation

y(t+ ∆t) = eC∆ty(t). (1.25)

Depending on the real part of the constant C, the solution y = 0 can be stable or unstable
when using this time-stepping operation. In the case where C has a positive real part, the
solution y = 0 is unstable. Any initial condition that is not 0 will cause the variable to tend
toward positive or negative infinity. In the case where the real part of C is equal to 0, the
system will tend to oscillate according to a limit-cycle for an initial condition that is different



10

from 0. This also means that in both of these cases a small perturbation to the variable y
from 0 will cause the solver to diverge from this value. When the C constant has a negative
real part, the solution y = 0 is stable and the behavior of the solver is to converge toward
this solution no matter the initial condition.

1.3 Elements of the problematic

The unsteady phenomena mentioned previously are problematic when encountered in the
context of an analysis process for flight performance evaluation, mainly because conducting an
unsteady simulation is more computationally expensive than a steady simulation by several
orders of magnitude. As such, the analysis tools used can be limited in their use by the
requirement of a steady-state solution. Luckily, even in conditions which result in unsteady
phenomena, a steady-state solution can still exist in addition to the unsteady solution. This
steady-state solution is physically unstable since the flow conditions and geometry create
an unsteady phenomenon, but is still a mathematically converged solution of the RANS
equations covered by the solver. Moreover, this steady-state solution can be used in the
analysis process despite not being physically stable by other engineering applications and
CFD analysis tools that require a steady-state solution. An example of such applications is
global stability analysis, which can be used to identify and study unsteady phenomena based
on converged steady-state solutions.

A problem encountered when trying to compute a physically unstable steady-state solution
is that the unsteady phenomenon physic can prevent an iterative RANS solver from converg-
ing toward the desired solution by affecting the evolution of the flow. Even if the pseudo-time
steps are not directly related to a time-stepping process in physical time, the unsteady phe-
nomenon can still manifest itself in the evolving solution of this iterative process. A possible
method to obtain the steady-state solution despite the unsteady physic of the phenomenon
can be the use of a strong implicit solver. This approach was used by Kamenetskiy et al. [10]
with a finite element solver. A similar strategy can be used by implementing a Newton
solver in a finite volume solver [11, 12]. However, these methods might lack robustness for
engineering applications, for instance requiring the initial solution to be inside the radius of
convergence. In addition, segregated solvers might be preferred for multi-physics areas such
as aero-elasticity. Hence, many flow solvers used in the industry rely on explicit Runge-Kutta
schemes or Gauss-Seidel implicit schemes with an approximation of the Jacobian matrix to
carry out pseudo-time iterations, for which the convergence of the solver can be prevented
by an unsteady phenomenon.
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Selective Frequency Damping (SFD) is a method that can be added to an iterative CFD
solver to damp unsteady oscillations in the flow in time. Its concept amounts to correcting
the flow computed by the solver with a filtered version of the flow that vanishes as the
solver converges to a steady-state solution. This method has been studied and used in
scientific literature, however its implementation in a pseudo-time stepping solver still has
some challenges, particularly the selection of the parameters associated with its use. Since
an unsuitable choice of these parameters can prevent a solver from converging and that they
can highly vary between cases, this challenge is an important roadblock to the use of SFD in
an industrial setting.

1.4 Research objectives

The main objective of this research project is to develop, implement and verify an algorithm
able to damp oscillations displayed by a RANS solver that disrupt or prevent convergence
so that it is able to converge to a steady-state solution of the RANS equations. The method
needs to be robust and to have a limited computational cost compared with the original
solver without stabilization. To respect these requirements, Selective Frequency Damping
will be used inside a RANS solver. Sub-objectives are defined from this overarching main
objective:

1. Compare existing formulations of SFD stabilization algorithms.

2. Investigate the potential for improvements of the existing methods.

1.5 Thesis outline

This thesis is divided in 3 main sections, which are: literature review, numerical methods
and numerical results.

The literature review presents an overview of the existing knowledge concerning unsteady
phenomena and their simulation, the SFD stabilization technique, the characterization and
analysis of instability and the Von Neumann analysis. The numerical methods section con-
tains a presentation of the solvers used and their particularities, a detailed mathematical
presentation of the SFD formulations and the SFD parameters selection processes. It also
presents the addition of a periodic reset to the SFD algorithm, the global stability analysis for
the RANS equations and the adaptive SFD algorithm. The numerical results section presents
the various tests on different configurations used to validate the methods, including global
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stability analysis, the adaptive SFD algorithm and the optimization of the parameters. It
finally addresses the stabilization of a case on a complex geometry. The document concludes
on the various scientific observations and provides future research perspectives.
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CHAPTER 2 LITERATURE REVIEW

2.1 Unsteady phenomena

This section presents a review of information currently available in the literature that is
relevant to this work. A review of various available experimental and numerical available
results for unsteady phenomena is presented. Previous developments and use in numerical
experiments of the SFD method are then reviewed. The section concludes with existing
methods of instability identification.

2.1.1 Vortex shedding over cylinder

The vortex shedding mechanism over bluff body has been extensively studied by the sci-
entific community. It is a self-excited phenomenon where the separation of the boundary
layer causes an unsteady oscillation in the flow resulting in the periodic shedding of vortices
in the wake of the object. The so-called Karman vortex street in the wake of a cylinder
is a well-known example of this phenomenon. A compilation of experiments and numerical
simulation of this case has led Zdravkovich [13] to use a classification of the different flow
regimes depending on the Reynolds number of the flow. The transition between a steady and
unsteady phenomenon in a laminar flow is observed to be occurring at a Reynolds number
of 48 and the transition between the unsteady laminar flow and an unsteady turbulent flow
occurs at a Reynolds number of 180. Williamson [14] presents a continuous relationship be-
tween the Strouhal number of the instability and the Reynolds number of the flow obtained
experimentally. The Strouhal number increases as the Reynolds number increases, starting
at a value of 0.12 for a Reynolds number of 50. It should be noted that these values refer to
a developed instability, which is different from the onset of the instability.

Numerical analysis results are available for an array of computational methods. Rajani
et al. [6] presented results of URANS simulations of both bidimensional and tridimensional
circular cylinders in laminar flow for various Reynolds numbers. The unsteadiness associated
with the vortex shedding phenomenon is observed and the results, including the computed
Strouhal number, are compared with experiments. Similar results on a bidimensional case
with a Reynolds number of 180 are presented by Gopinath & Jameson [15] using a Time
Spectral Method (TSM) method and by Mosahebi & Nadarajah [16] using a Non-Linear
Frequency Domain (NLFD) method.
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2.1.2 Buffet over transonic airfoil

The transonic regime is comprised of flows with freestream Mach numbers below 1.0, but
that can locally reach speeds above the speed of sound. To revert to subsonic speed, the
flow can exhibit a shock. The transonic buffet phenomenon on airfoil occurs because of
an interaction between a sonic shock and the turbulent boundary layer of the airfoil. The
oscillation exhibited is an oscillation of the position of the shock on the upper surface of
the airfoil, accompanied by a separation of the boundary layer behind the shock when it is
closer to the leading edge in its movement. It should be noted that unlike the phenomenon
of vortex shedding over a cylinder, this instability requires a turbulent flow to develop. This
phenomenon can eventually cause flutter on an aircraft when considering the coupling of the
aerodynamical and structural models [8].

Experimental results of this phenomenon are presented by Jacquin et al. [17]. The experi-
ment is performed in a wind tunnel with efforts to make the results close to a bidimensional
case by limiting the wall effects on the results. The studied airfoil is the OAT15A, a su-
percritical profile. The unsteady phenomenon is observed and measured, making for useful
reference values, in particular the frequency of the shock oscillation.

Grossi et al. [18] have done numerical computations of a test case similar to the experiment
of Jacquin et al. [17]. The URANS and Delayed Detached-Eddy Simulation (DDES) simu-
lation methods are used. While differences in the flow behavior are observed between the
two methods, the unsteadiness frequency prediction is in agreement with the experimental
results. The results also show a sensitivity to the choice of turbulence model.

Computational (RANS) testing has also been done on the OAT15A test case by Sartor et
al. [19]. URANS is used to simulate the unsteady phenomenon, which is observed with good
agreement with experimental results of Jacquin et al. [17]. Global stability analysis is used
to characterize the onset of the unstable phenomenon. In particular, the Strouhal number
and amplification factor of the unstable eigenvalue computed from global stability analysis
are provided.

2.1.3 Instability of airfoil in post-stall conditions

The post-stall regime of an airfoil, which is the range of angle of attacks after its maxi-
mum lift coefficient has been reached, has been observed both experimentally [20] [21] and
numerically [22] [23] to present hysteresis of steady flow solutions. This hysteresis is observed
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to be associated with the separation and reattachment of the flow to the airfoil occurring
at different angles of attack depending on the initial condition used [11]. The study of this
behavior is made difficult by the fact that instabilities are usually encountered in these con-
ditions. SFD is a method that has been used by Richez et al. [22] to compute these steady
solutions despite their instability on the case of the single element airfoil OA209.

2.2 Selective Frequency Damping

2.2.1 Original formulation

Selective Frequency Damping [24] is a mathematical method that can be added to an
existing solver with the goal of damping oscillations displayed by the solver. The method
is based on the assumption that it is applied on a system that has a steady-state solution
toward which it can converge, but that also exhibits an unsteady mode which prevents the
complete system from converging to its steady solution. The method was first presented by
Akervik et al. [24] in its original coupled formulation. This formulation adds a source term
to the right-hand side of the Navier-Stokes equation to stabilize the equations. An additional
equation is also added to calculate a low-pass time-filtered version of the flow, augmenting
the system of equation. The method can be related to a similar source term implemented
in a Large Eddy Simulation (LES) method for the Temporal Approximate Deconvolution
Model (TADM) model by Pruett et al. [25].

The equation used to calculate the filtered flow is a causal temporal filter in its differential
formulation, which allows for the filtering to proceed simultaneously with the evolution of
the flow by the solver and limits the memory requirements of the filter implementation. The
use of this filter on the Navier-Stokes equation was presented by Pruett et al. [26]. The
resulting system of equation 2.1, where W refers to the physical flow variables, W̄ refers
to the time-filtered corresponding variables and Ẇ , ˙̄W refers to their respective variation in
time, can then be solved by an iterative solver.

Ẇ = f(W )− χ(W − W̄ )
˙̄W = W−W̄

∆

(2.1)

Two main points are stressed. The first one is that the method adds two parameters to
the equations. The first one is the χ parameter, which scales the magnitude of the additional
source term. It is called the control coefficient. The second parameter is the ∆ parameter,
which corresponds to the cutoff wavelength of the low-pass time filter. These parameters
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need to be set by the user to suitable values. The suitable range of values varies between
different instabilities. The second main point is that while the method allows the solver to
reach a steady state solution that it could not have reached otherwise, the method itself does
not create any additional solutions since the source term vanishes when a steady state is
reached.

The equations and their developments are presented with more details in the numeri-
cal methods section of this document, however a description of the analysis of the method
provided by Akervik [24] is relevant to this section. Multiple possibilities could have been
selected for the second equation corresponding to the calculation of the causal low-pass time
filter, corresponding to other filter kernels. The used filter is selected for its simplicity. The
effect of the modification of the equation is studied through an analysis of the modification
of the eigenvalues of the linearized equation system. It is observed that while SFD is able to
make unstable eigenvalues of a high enough frequency more stable, the inverse effect can be
observed for eigenvalues of a low enough frequency. However, another observation is that no
eigenvalue that is already stable can be made unstable because of SFD. Based on this analysis
and practical observations, an approximate methodology is proposed to manually get a rough
estimate of suitable parameter values. In a related analysis, Passaggia & Ehrenstein [27] pre-
sented a development relating the eigenvalues of the modified system with stabilization to
the eigenvalues of the original system.

Akervik et al. [24] present successful results of stabilization with an implementation of this
technique for a Direct Numerical Simulation (DNS) method on the case of a bidimensional
flow over a long cavity. The method with this formulation is used by numerous authors for
simulations of a variety of cases including the case of jet in a crossflow [28] [29], the case
of a lifted flame [30] [31], the case of the wake of a sphere [32] and thin aerofoil wake [33].
More recently Moise [34] successfully used SFD to obtain a steady solution of a bubble vortex
breakdown in a laminar swirling jet.

It should be noted that it was reported by Jones & Sandberg [35] that an attempt was
made to stabilize the case of tonal airfoil self-noise over the NACA0012 airfoil using SFD.
However, the authors were not able to obtain a flow corresponding to a steady state solution
of the Navier-Stokes equation by using SFD despite trying multiple values for the χ and ∆
parameters and allowing long time integration. The authors hypothesized that the reason for
this failure to apply the method was that a very large damping parameter χ is needed to damp
the oscillations observed for this case, which results in an impractically long time-integration
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requirement to converge. This highlights the importance of the choice of parameters on the
performance of the method, and the fact that its application has limits that can depend
on the implementation, the accuracy of the method used to select the parameters and the
instability being studied.

2.2.2 Alternative formulations

Following this original formulation, an important improvement to the method was pre-
sented by Jordi et al. [36] with the Encapsulated Selective Frequency Damping (ESFD).
ESFD is an alternative formulation for the implementation of SFD. The rationale for the
development of this new formulation is that the original formulation of SFD requires signif-
icant modifications to an existing CFD solver, with the calculation of an additional source
term and solving an augmented set of equations. A way to avoid this difficulty is proposed
with a new implementation where the original solver is segregated from the solving of the
calculation of the low-pass time filtered flow and the correction of the flow by the source
term.

This segregation of the equations in two steps is based on a mathematical method named
sequential operator-splitting [37]. This method is based on the hypothesis that using time
steps to advance multiple differential equations representing different physical phenomena
iteratively in time using the solution of the preceding one as the initial condition of the
subsequent will result in a good approximation of advancing in time an equation where all the
different physics are taken into account. The possibility to solve multiple smaller equations
makes the solving of multi-physics problems significantly easier. ESFD takes advantage of
this benefit by allowing the original Navier-Stokes equation problem to be solved by the
original solver with no modification and the subsequent problem being solved by a direct
solver requiring very minimal computing power. A possible downside of sequential operator
splitting however is that the segregated advancement in time of the different equations results
in a loss of temporal accuracy.

The ESFD formulation was used by various authors since its presentation. This includes
Casacuberta et al. [38] which used it successfully to stabilize the case of vortex shedding from
a cylinder using DNS. A case of tridimensional buffet over a wing using a RANS method
was stabilized by Plante et al. [23]. Other cases were also stabilized by various authors such
as the case of shear driven cavity flow by Bengana et al. [39], natural circulation system by
Pini et al. [40] and laminar separation bubble by Rodriguez et al. [41].
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Implementations with alternative development were also presented recently in the litera-
ture. Plante & Laurendeau [42] presented an implementation based on ESFD with a local
selection of the ∆ parameter value with the goal of damping numerical oscillations and as
such increase the convergence rate of a steady-state solver using the RANS equations. Pal-
adini et al. [43] presented another alternative where the stabilizing source term of SFD is
applied on selected regions of the solved domain only, with the goal of identifying which
region could be stabilized to prevent the appearance of the unsteady phenomena. Numerical
results are presented for the case of transonic buffet over an airfoil using URANS.

2.2.3 Parameters selection

Because of the importance of parameter selection on the behavior of the solver regarding
convergence, multiple authors proposed methodologies to set these parameters. Akervik et
al. [24] presented a heuristic methodology approximating suitable values based on prelimi-
nary knowledge of the eigenvalue related to the unstable mode. It is mentioned that this
methodology should only be considered as a general guideline.

Jordi et al. [44] presented such a method, which they called adaptive SFD. The idea behind
this method is to periodically run a global stability analysis on a partially converged flow and
use the dominant unstable eigenvalue found to estimate the characteristics of the instability
to damp. An optimization is then run to optimize the selection of the χ and ∆ parameters
to maximize the damping of this eigenvalue.

Cunha et al. [45] present a similar method using Dynamic Mode Decomposition (DMD) to
identify the dominant eigenvalues. A notable difference and addition when compared to the
previous algorithm is that in this case the algorithm considers other eigenvalues in addition
to the dominant unstable one in the optimization by setting a minimum damping for all
eigenvalues identified.

Casacuberta et al. [38] present a methodology based on observing the development of the
instability in relation to the time iteration to estimate the dominant eigenvalue defining
the instability and the one limiting the convergence rate. They then present a developed
mathematical analysis of the effect of parameter choice on both unstable and stable eigen-
values. Their method is notable for optimizing the value of the χ and ∆ directly by solving
an equation that uses both the unstable eigenvalue and the stable but convergence limit-
ing eigenvalue, but requires manual observation of the convergence rate or an automatic
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convergence rate detection functionality.

Plante & Laurendeau [42] set a local value for the ∆ parameter based on the objective of
accelerating the rate of convergence of the solver with good results. However this parameter
selection is not based on the objective of stabilizing an unsteady phenomenon preventing a
solver from converging, instead assuming the frequency of the numerical oscillations to be
damped based on knowledge of the underlying equations.

2.3 Instability identification

Many methods are available to identify and characterize instabilities in time-dependent
flows of numerical simulations. Oscillation detection is a research subject in itself and more
complete reviews of the different methods are available [46]. Some notable methods used in
the literature for detection and characterization of instabilities in the field of CFD simulations
with the aim of stabilization by SFD are presented in this section.

A method that can be used in the absence of a better alternative is a visual observation of
the unstable flow. This simple method is mentioned by Akervik et al. [24] for an estimation
of suitable parameters. This method has many drawbacks and limitations. For instance, the
characterization is limited to the evaluation of the frequency of the instability. In addition,
this method is subjective, prone to noise and not automated. Richez et al. [22] similarly used
probes in different regions of the flow to determine the lowest frequency to damp.

A method used by Cunha et al. [45] is Dynamic Mode Decomposition. This method is
based on estimating the eigenvalues of the jacobian matrix defining the evolution of the flow
by correlating the evolution of the flow with a matrix multiplication and identifying the
eigenvalue of the matrix defining this evolution. Numerical results have shown the method
is able to identify eigenvalues of the flow with good accuracy.

However a limitation of methods based on analysis of limit-cycle oscillations is that the
evolution of the unstabilized flow in these oscillations may differ from the dynamic of the
linearly growing unsteady mode because of the non-linearity of the equations. This means
that the eigenvalues of the flow’s jacobian matrix obtained from a limit-cycle oscillation may
differ from the eigenvalues of the stabilized flow’s jacobian matrix when the studied case has
a non-critical Reynolds number [47].
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Global stability analysis is a method that can be used in CFD to analyze unstable aerody-
namic phenomena. Jordi et al. [44] notably use this method to obtain the unstable eigenvalue
related to vortex shedding over a cylinder. It is based on the idea of studying the linearized
equations of the system around a solution point. The Jacobian matrix of the linearized
equation is then computed by finite difference so that its eigenvalues can be evaluated [48].
Crouch et al. [2] used global stability analysis to predict the offset of flow unsteadiness on
the cases of laminar flow around a cylinder and transonic flow around an airfoil. The results
show good agreement with experiments and unsteady simulations.

An important benefit of this method is that since it is based on a linearization of the
equation around a flow field, the eigenvalues obtained represent the behavior of the instability
during its linear rising phase instead of its limit-cycle oscillation behavior. This would be a
disadvantage if the goal was to describe the developed instability, but in this case where the
goal is to characterize the instability when it appears this is actually a wanted feature. A
limitation of this method is that the computational cost of the matrix eigenvalue solving is
high and scales with the size of the mesh, limiting the use of the method for larger meshes
that would result in larger global matrices. Another limitation of the method is that to
facilitate the calculation of the eigenvalues of interest in the matrix, an initial estimation of
the eigenvalues is needed. This is somewhat alleviated by the fact that general relationships
and previous experiments can help a user to roughly estimate the eigenvalues related to the
unstable phenomenon.

Casacuberta et al. [38] use a method specifically designed to be used in conjunction with
SFD, which they call SFD unleashed. Their methodology is to conduct a SFD run using a pair
of parameters χ and ∆ manually selected without optimization to get a partial convergence on
the test case. Once this is achieved, SFD is turned off and a perturbation noise is applied to
the flow field. This triggers the appearance of the unstable mode and allows the observation
of the linear growing phase of the mode. The frequency of the mode is evaluated through
the use of probes in the field. The growth rate of the mode is evaluated by measuring the
upward slope of the norm of the residual of the low-pass time filter equation, which can be
fitted with an exponential function in the linear growth regime. The eigenvalue limiting the
convergence is then evaluated by measuring with the same method the downward slope of
the same residual when SFD is applied.

This method has the benefit of obtaining the values of relevant eigenvalues in the linear
growth phase which is of interest for stabilization. However, it is based on observation of the
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flow evolution and as such requires either manual observation or a dedicated analysis func-
tionality that can handle different cases since the linear growth phase needs to be identified.
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CHAPTER 3 NUMERICAL METHODS

This section presents the numerical algorithm used in this work. First, a description
of the solvers used and their capabilities is provided. The mathematical definition of the
stabilization method, SFD, its implementations and an analysis of its effects are then shown.
Finally, the instability identification method used, the global stability analysis, is detailed
and the complete algorithm used to damp an unsteady oscillation is presented.

3.1 CFD solvers

Two distinct CFD solvers, "NSCODE" and "CHAMPS", are used in this project. Both
of them solve the RANS equations with a finite-volume method. However, they differ in
some of their capabilities and the programming language in which they are coded. The most
important difference between them is that NSCODE requires 2D structured meshes while
CHAMPS works on 2D and 3D cases and unstructured meshes.

3.1.1 NSCODE

NSCODE is a CFD software developed by professor Éric Laurendeau’s team at Polytech-
nique Montréal [49]. It is coded in C with shared-memory local thread parallelization using
OpenMP and is linked to a Python interface to allow for more modularity when using different
functionalities.

This software solves the RANS or URANS equations using a cell-centered finite-volume
approach. The convective fluxes are computed by a central scheme [50] with either scalar or
matrix artificial dissipation [51]. The required mesh type for the solver is a 2D structured
grid. Convergence can be accelerated with a multi-grid functionality and residual smoothing.

The solver solves steady and unsteady simulations. In the case of steady simulations,
local time-stepping is used and two temporal schemes are available, namely the explicit
hybrid five-stage Runge-Kutta scheme and the implicit Lower-Upper Symmetric-Gauss-Seidel
scheme. Multiple turbulence models are implemented in the solver such as the Baldwin-
Lomax algebraic model [52], the Spalart-Allmaras model with compressibility correction and
Edwards-Chandra modification [4] [53] [54] and the Menter k − ω SST model [55].
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Other available functionalities include an overset grid functionality and frequency-domain
solver for time periodic problems. The γ − Reθt model [56] is also implemented and can be
used conjointly with the k−ω SST model for laminar to turbulent flow transition prediction.

3.1.2 CHAMPS

CHAMPS, which stands for Chapel Multiphysics Simulation, is the latest CFD software
developed by professor Éric Laurendeau’s team at Polytechnique Montréal [57]. It is coded
using the Chapel language. The software supports shared memory and distributed memory
parallelism through the use of native functionalities of the Chapel language.

In a similar manner to NSCODE, CHAMPS solves the RANS or URANS equations using
a cell-centered finite-volume approach. The convective fluxes are computed using the Roe
scheme [58]. The flow variables gradients used to achieve second-order spatial accuracy can
be computed with the Green-Gauss or Weighted Least Square methods. Gradient limiters
implemented include the Barth-Jespersen and the Venkatakrishnan limiters. The mesh type
used by CHAMPS is either 2D unstructured or 3D unstructured. The solver includes a
residual smoothing functionality for convergence acceleration, however unlike NSCODE no
multi-grid functionality is available in this solver.

The solving of both steady and unsteady simulations is possible. In the case of steady sim-
ulations, local time-stepping is used. Multiple temporal schemes are implemented, including
the explicit hybrid five-stage Runge-Kutta scheme and the implicit Lower-Upper Symmetric-
Gauss-Seidel and Generalized Minimal Residual (GMRES) schemes. Available turbulence
models include the Spalart-Allmaras model and the k − ω SST model. A more detailed
description of the CHAMPS software and its performance was presented by Parenteau et
al. [57].

3.2 Selective frequency damping implementation

In this section, the Selective Frequency Damping method is detailed mathematically. This
includes a presentation of the different formulations implemented and their stabilization ef-
fect. The parameter selection methodology is then detailed. Finally, the new addition to the
algorithm of a periodic reset is presented. It should be noted that the implementation of SFD
in this work uses a "frozen turbulent viscosity" approach, which means that the stabilized
variables are the density, velocity components and pressure. The turbulent viscosity variable
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coming from the turbulence model is not directly stabilized and is solved by a segregated iter-
ative solver in the software used. For this reason, the mathematical developments presented
in this section do not consider the turbulent viscosity variable.

3.2.1 Coupled Selective frequency damping

The coupled formulation of SFD is the first one that was presented by Akervik et al. [24].
This formulation is implemented in the CHAMPS software. As presented in section 1.2.4,
Eq. 1.13 defines the original equations solved by a CFD solver. For simplicity, this original
equation can be written as a general differential equation, where the dot notation (Ẇ ) is used
to indicate a time-derivative. The vector notation is omitted for simplicity since the SFD
equations introduce no interactions between the different variables in a system of equations.
The equations can then be demonstrated for a scalar with no loss of generality regarding an
application to matrix equations. This results in

Ẇ = f(W ) (3.1)

in which f(W ) denotes the residual R, equivalent to the summation of the convective fluxes,
viscous fluxes and source terms (if any) divided by the cell volume. A steady-state solution
Ws is sought so that f(Ws) = 0. To allow the solver to converge to the steady state in the
presence of unsteady oscillations, a source term proportional to the difference between the
variable and the steady-state solution can be added to the original equation:

Ẇ = f(W )− χ(W −Ws). (3.2)

This additional source term is tantamount to a proportional controller, a well-known con-
cept in control theory, with the χ parameter being equivalent to a proportional gain. When
the steady state is reached, the additional source term will amount to zero since in this case
W = Ws. As such, a solution of this new system of equations is also a solution of the original
equation.

In practice the steady state is not known in advance, if it was the solver would not be
necessary. To counter this limitation, a low-pass time-filtered version of the flow, represented
as W̄ , is used in place of the actual steady-state value:

Ẇ = f(W )− χ(W − W̄ ). (3.3)
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The idea behind the use of a low-pass filter is that the filtered version of the unconverged
flow, while not necessarily a solution of the RANS equations, will have significantly damped
oscillations compared to the solver. As such the coupling of this filtered flow with the physical
flow will still be able to drive the flow solver toward a steady solution. Since a steady state
has no temporal variation, as the solver gets closer to a steady state the low-pass time-filtered
version of the flow will also approach a steady state, until the low-pass time-filtered version
of the flow and the flow itself both have converged to a steady state. By ensuring that both
the physical flow and the low-pass time-filtered flow have the same values, it can then be
confirmed that the steady solution obtained is a solution of the original equations.

The use of a low-pass time-filtered version of the physical flow requires the calculation of
this filtered flow. Hence, a new equation must be defined to implement a low-pass time filter
for the flow field. Since the filtering is done as the calculation progresses, a causal filter is
necessary. Multiple filters could be used for this task, but the one selected is the one used by
Akervik et al. [24]. This filter is a first order low-pass time filter, which in integral formulation
can be written:

W̄ (t) =
∫ t

−∞

1
∆exp(τ − t∆ )W (τ)dτ. (3.4)

The integral formulation is not very practical to implement the filter since the integration
in time requires the storage of all previous values of the filtered flow [24]. This would lead
to potentially limiting memory requirements. The equivalent differential formulation

˙̄W = W − W̄
∆ (3.5)

is preferred for this reason. The original system of equations is then augmented with the
additional filter equation for each variable to simultaneously solve for the low-pass time-
filtered value of the flow.

The complete augmented set of differential equations for the coupled SFD method is de-
fined by this matrix equation, where W , W̄ , Ẇ and ˙̄W are column vectors containing all
conservative variables of the cells of a considered mesh:

Ẇ˙̄W
 =

f(W )
0

+
−χI χI

1
∆I

−1
∆ I

 W
W̄

 . (3.6)
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The implementation of this formulation in an existing CFD software requires multiple
modifications to the solver. To illustrate this fact, an explanation of how this formulation
modifies the linear system of equation considered by the solver is provided below.

The spatially-discretized matrix equations solved by a finite-volume RANS CFD solver are
presented in Eq.1.13. These equations must also be discretized in time to obtain a linear
system of equations that can be solved numerically. The temporal scheme used to numerically
advance these equations from a flow field Wn at time tn to a flow field Wn+1 at time tn+1

can be based only on values already known at time tn to compute the residual Rn, in which
case it is considered that an explicit temporal scheme is used. The equation with this type
of scheme can be written as

Ω(∆t)−1∆W = −Rn (3.7)

where

∆W = Wn+1 −Wn

∆t = tn+1 − tn.
(3.8)

It should be noted that, since these equations represent the calculation of the whole flow
field, the variable used represent matrices. The size of these matrices is defined by the number
of degrees of freedom, which is the number of cells in the field that will be considered equal
to m and the number of variables solved. For a laminar 3D case, 5 variables are solved
corresponding to density, velocities in the x,y and z directions and pressure. The Ω matrix
then consists of the diagonal matrix


Ω1 0

. . .
0 Ωm

 (3.9)

where each Ωi element is actually a 5x5 diagonal matrix where each diagonal element is equal
to the volume of the ith cell in the field. The ∆t matrix is defined similarly, with the difference
that the diagonal elements are equal to the time step used for the ith cell. The ∆W and R
variables correspond to column vectors of size mx1 of which each element is actually a 5x1
column vector containing respectively the flow variables mentioned earlier and the residuals
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corresponding to the sum of the fluxes for each of these variables. For example, the R matrix
is defined with the column vectors


R1
...
Rm

 (3.10)

where an element Ri can be written as

Ri =



Ri ρ

Ri ρu

Ri ρv

Ri ρw

Ri ρE


. (3.11)

The detailed formulas of the elements of these Ri column vectors can be found in the book
of Blazek [3]. A notable difference between this matrix equation and the general equation
used to present SFD in Eq. 3.1 is the Ω term present on the left-hand side, which is not
present in Eq. 3.1. This term could theoretically be brought to the right-hand side to better
match the original generic equation, but is actually kept in the left-hand side in the assembled
system used by the solvers of this project. To compensate for the fact that this term is present
outside of the residual, the additional terms introduced by SFD will be multiplied by this
term so that it can cancel itself during the linear solving of the system and correspond to
the original formulation.

From this simple explicit temporal scheme, we can define the more complex implicit tem-
poral scheme, which uses the residual at the next time step

Ω(∆t)−1∆W = −Rn+1. (3.12)

To approximate this residual, a linear approximation is done using the Jacobian matrix

∂R

∂W
=


∂R1
∂W1

. . . ∂R1
∂Wm... . . . ...

∂Rm
∂W1

. . . ∂Rm
∂Wm

 (3.13)

in which each element ∂Ri
∂Wj

corresponds to a 5x5 matrix where the derivative of each residual
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is calculated for each conservative variables. An approximation of the complete residual
equation is usually used for the calculation of this matrix [3]. In practice, the majority of
the ∂Ri

∂Wj
matrices are null matrices, since the fluxes calculated at the faces of a cell are only

influenced by a limited amount of neighboring cells. However, the diagonal elements ∂Ri
∂Wi

are
not null matrices since they represent the influence of the value of the variables inside a cell
on the fluxes calculated at its own faces. The residual at the next time step Rn+1 is then
defined based on the current residual, the current conservative variables of the flow and the
variables being calculated for the next time step

Rn+1 = Rn + ∂Rn

∂W
∆W (3.14)

resulting in the new system

(
Ω(∆t)−1 + ∂Rn

∂W

)
∆W = −Rn. (3.15)

With this definition of the original matrix system, we can then observe the modifications
applied to it by the addition of SFD, starting with the explicit temporal scheme. The new
augmented SFD system is comprised of matrices with the same structure of matrix elements
as the one presented previously for the original system. The difference lies in the definition of
the smaller element matrices that they contain. In the case of the explicit temporal scheme,
the SFD augmented system consists in

ΩSFD(∆tSFD)−1∆WSFD = −RSFD,n. (3.16)

The ∆WSFD matrix is once again composed of a certain number m of matrix elements,
corresponding to the m cells in the domains. The matrix elements in question are now 10x1
column vectors that can be written as

∆WSFD i =
∆Wi

∆W̄i

 (3.17)

for the ith element, where the ∆Wi matrix is identical to the original matrix 5x1 columns
vectors mentioned in the presentation of the original system. The ∆W̄i is also a 5x1 column
vector, containing the equivalent filtered variables. The ΩSFD and ∆tSFD matrices are once
again block-diagonal matrices of size mxm, with the smaller ith matrices on the diagonal
ΩSFD i and ∆tSFD i being 10x10 matrices containing the volume and time step of the cell on
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their diagonal elements.

A particular attention is provided to the RSFD matrix since the modifications in its case
are more extensive. This matrix is also once again a mx1 block-matrix, with each element
being a 10x1 column vector. An ith element can be written in function of the original 5x1 Ri

elements presented in Eq. 3.11 as

Ri,n − χΩi(Wi,n − W̄i,n)
R̄i,n

 (3.18)

where the 5x1 R̄i column vector can be detailed as

R̄i,n = 1
∆Ωi(Wi,n − W̄i,n). (3.19)

The appearance of the Ωi matrix in the terms added by SFD is necessary to compensate for
the multiplication of the left-hand side of the equation by the Ω matrix, as mentioned earlier.

In the case of the implicit time-stepping scheme with the addition of SFD, the matrix
system consists of

(
ΩSFD(∆tSFD)−1 + ∂RSFD,n

∂WSFD

)
∆WSFD = −RSFD,n. (3.20)

The matrices in this system are the same as the ones presented above, with the addition of
the ∂RSFD

∂WSFD
matrix. This matrix once again has a similar structure as the original ∂R

∂W
matrix,

being defined as

∂RSFD

∂WSFD

=


∂RSFD,1
∂WSFD,1

. . .
∂RSFD,1
∂WSFD,m... . . . ...

∂RSFD,m
∂WSFD,1

. . .
∂RSFD,m
∂WSFD,m

 (3.21)

in which each element ∂RSFD,i
∂WSFD,j

corresponds to a 10x10 matrix where the derivative of each
residual is calculated for each conservative variable of the original equations and their filtered
counterpart. Since the original residual vector is still present in the augmented residual vector
and the terms added with SFD only relate each variable with its corresponding counterpart,
the additions to the complete matrix are limited to three diagonals. This results in:
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∂RSFD,i

∂WSFD,j

=
 ∂Ri
∂Wj

0I5x5

0I5x5 0I5x5

+
−χΩjI5x5 χΩjI5x5

1
∆ΩjI5x5

−1
∆ ΩjI5x5

 (3.22)

where I5x5 is used to denote an identity matrix of dimensions 5x5 and 0I5x5 is used to denote
this same matrix multiplied by 0, which results in an empty 5x5 matrix. Finally, Ωj denotes
once again a diagonal 5x5 matrix with the volume of the jth cell on its diagonal.

These modifications must also be considered from a programming perspective. To store the
values of the conservative variables of the filtered flow, new memory must be allocated. The
size required is the same as the one used by the base flow conservative variables. Regarding
the solver, since the system of equation is augmented, the memory allocated for the matrices
of the solver must also be increased for the low-pass filter equation, Eq. 3.5. A function
must be added to compute the proportional feedback source term of Eq. 3.3 and add it to
the sum of the fluxes during a solver iteration. A function must also be added to compute
the right-hand side of the filter equation. Depending on the architecture of the code for the
solver, more extensive modifications may be needed to apply the temporal scheme and to
solve the new filter equations.

A CFD solver is usually a complex program, and as such these modifications can be hard
to implement in an existing solver without compromising its performances. For this reason,
the coupled formulation presented in this subsection is not implemented in the NSCODE
software. This formulation is implemented in the CHAMPS software since the architecture
of the software is particularly well suited for the augmentation of the system of equations
that the coupled SFD requires.

3.2.2 Encapsulated Selective frequency damping

An alternative implementation of SFD was proposed by Jordi et al. [36] with the goal of
reducing the modification needed to an existing solver to apply SFD. The so-called Encapsu-
lated Selective Frequency Damping is based on the operator-splitting method. This method
consists in segregating a system of Ordinary Differential Equation (ODE) in multiple sim-
pler sub-problems. This method is particularly useful in multiphysics problems, where the
various physical models used can have different accuracy and stability requirements for the
length of the time steps resulting in impractically high computational cost. The functionality
of operator-splitting can be demonstrated with a generic Cauchy problem where we assume
that A and B are linear operators in the form of matrices and W is a column vector of the
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variables that need to be solved

∂W

∂t
= AW +BW

t ∈ [0, T ], W (0) = W0.
(3.23)

With a defined time interval of tn+1− tn = ∆t, the exact solution of the problem in the time
interval is

Wn+1 = e∆t(A+B)Wn. (3.24)

If for any reasons already mentioned this equation is impractical to solve in its original
form by an iterative solver, operator-splitting aims to segregate the original problem into two
simpler sub-problems:

∂W

∂t
= AW

t ∈ [0, T ], W (0) = W0,
(3.25)

∂W

∂t
= BW

t ∈ [0, T ], W (0) = W0.
(3.26)

Each sub-problem can then be solved by an iterative solver, potentially a different one for
each problem, with the best time step value for each problem. The result of each sub-problem
over the same time interval are then

Wn+1 = e∆tAWn (3.27)

and

Wn+1 = e∆tBWn. (3.28)
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The two sub-problems should of course still be linked, and multiple algorithms exist to
make the two sub-problems interact in an approximation of the original problem. The goal
of course is that this approximation of the original problem results in a solution of sufficient
accuracy compared with a solution of the original problem.

The particular splitting method used in this case is sequential operator-splitting with the
Lie-Trotter algorithm [37]. Using the analytical solution of each problem to calculate a
progression in time, which represents the effect of an exact solver, the algorithm in the case
of the current example of Eq. 3.23 results in the following steps.

First, the first sub-problem (Eq. 3.25) is advanced in time by a defined time step to get a
temporary solution

Wn+0.5 = e∆tAWn. (3.29)

This temporary solution is then used as the initial condition of the other sub-problem
(Eq. 3.26, which is advanced in time subsequently by the same time step

Wn+1 = e∆tBWn+0.5. (3.30)

The result of the iteration of the algorithm, which will be used as the initial condition of
the first sub-problem in the next iteration, is then

Wn+1 = e∆tBe∆tAWn. (3.31)

When comparing this solution with the solution of the original problem, shown in Eq. 3.24,
one can see that the two equations are equal if the A and B matrix operators are commutative.
If this is not the case, an error exists between the evolution in time of the operator-splitting
solution and the original solution. This error means that the use of operator-splitting intro-
duces a loss of time-accuracy when compared to solving the original problem. The sequential
operator-splitting shown above has been demonstrated in the literature to have a local split-
ting error of second order and as such is a first order scheme [37].

While the SFD matrix equation of Eq. 3.6 is not originally a linear differential equation,
its linearized formulation using the jacobian matrix of the original RANS equations is one.
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This makes the previous analysis relevant to the SFD equations, both to demonstrate how
sequential operator-splitting is able to approximate the original solution and the loss of time-
accuracy. To apply this sequential operator-splitting algorithm to the SFD equations, the
terms from the original equation which will define the sub-problems must be identified. The
fluxes and source terms of the original RANS equations are used to define the first sub-
problem, while the proportional feedback source term and the calculation of the low-pass
filtered flow are used to define the second sub-problem.

The first sub-problem then consists of

Ẇ = f(W )
˙̄W = 0

(3.32)

which is the initial RANS equation problem. The original RANS solver is already able to
solve this problem iteratively, and as such the first subproblem is advanced in time with

Wn+0.5

W̄n+0.5

 =
Φ(Wn)

W̄n

 (3.33)

where Φ(W ) represents the action of the solver over one iteration.

The second sub-problem consists of

Ẇ = −χ(W − W̄ )
˙̄W = W−W̄

∆

, (3.34)

which are the terms added to apply the SFD method. This problem is in fact a linear
differential equation

Ẇ˙̄W
 = L

W
W̄

 =
−χI χI

1
∆I

−1
∆ I

 W
W̄

 . (3.35)

This linear differential equation can be easily solved analytically, and as such the second
sub-problem can be iterated in time with an exact solver consisting in a simple matrix
multiplication

Wn+1

W̄n+1

 = eL∆t

Wn+0.5

W̄n+0.5

 (3.36)
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where the eL∆t operator is

eL∆t = 1
1 + χ∆

I + χ∆Ie−(χ+ 1
∆ )∆t χ∆I(I − Ie−(χ+ 1

∆ )∆t)
I − Ie−(χ+ 1

∆ )∆t χ∆I + Ie−(χ+ 1
∆ )∆t

 . (3.37)

The iterative solving of the two sub-problems of ESFD is very simple provided that an
iterative solver for the original equation already exists since the solver can be used on the
original problem and the second sub-problem can be advanced in time with a simple matrix
product. To implement this formulation, memory must be allocated for the filtered variables,
a function must be added to compute the matrix product to advance the second sub-problem
in time and a function must be added to compute the added residual of the low-pass filter
function. No resizing of the matrices of the original solver is necessary. These modifications
are much less extensive than for the original coupled SFD. For this reason, this encapsulated
formulation is implemented in both the NSCODE and CHAMPS solvers.

A last consideration can be made regarding the loss of accuracy in time linked to the
sequential operator-splitting method. It was shown that an error is introduced by the method
when the solution varies in time. However, when a steady-state is reached, the sequential
operator-splitting method used in this case does not introduce an error because there is no
time variation of the solution.

Indeed, for a steady-state to be reached by the filtered flow it is necessary that its value
be equal to the value of the physical flow of the CFD solver, such that

Wn = W̄n = Ws. (3.38)

When this happens, the action of the eL∆t operator on the filtered flow cancels itself and the
relationship between W̄n and W̄n+1 becomes

W̄n+1 = 1
1 + χ∆((I + χ∆I) + (Ie−(χ+ 1

∆ )∆t − Ie−(χ+ 1
∆ )∆t))Ws = Ws. (3.39)

Since the eL∆t operator is the only operator that can modify the value of W̄ , this represents
the case where there is no variation in time for the filtered flow. When this equality is
achieved, the action of the operator eL∆t on the physical flow W also has no effect, since it
becomes
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Wn+1 = 1
1 + χ∆((I + χ∆I) + χ∆(Ie−(χ+ 1

∆ )∆t − Ie−(χ+ 1
∆ )∆t))Ws = Ws. (3.40)

If the value Ws is not a solution of the RANS equations, the solver will modify the value
of the physical flow at the next iteration, removing the equality between the physical and
filtered flow and meaning that a steady state was not actually reached. If however the solver
also does not modify the value Ws, then the field is a solution of the equations. The operator
eL∆t can be considered to vanish when a converged steady-state is obtained, indicating that
it does not add new solutions compared with the original coupled formulation of SFD and
that it does not introduce an additional error when the flow is steady in time.

3.2.3 Addition of periodic reset

A problem regularly encountered when using SFD, no matter the formulation used, is a
slow rate of convergence exhibited by the solver compared to what could be expected for a
similar case with the same parameters without SFD. In the cases presented in this work,
a phenomenon observed was particularly a decrease of the initial convergence rate after a
certain number of iterations.

This behavior is not surprising, since the modification of the eigenvalues of the system
caused by the addition of SFD has been demonstrated mathematically [38] to reduce the
damping of already stable eigenvalues associated with low frequencies. This is problematic
from a practical point of view. The reduction of convergence rate varies when different pa-
rameters are used, and as observed in the numerical results of this work, even a parametric
sweep aimed at optimizing the selection of the χ and ∆ parameters leads to a pair of param-
eters exhibiting this convergence rate reduction. Such a sweep also reveals that many pairs
of parameters can be suitable to stabilize the same test case but that among the suitable
ones, the parameter pairs with the higher χ and ∆ value present slower convergence. This is
expected since an increase in these parameters results respectively in the filtered flow having
a larger influence on the physical flow and on the filtered flow varying at a slower rate. In
both cases, it could be expected that the convergence rate would be negatively impacted by
the slow temporal variation of the filtered flow.

To counteract this phenomenon, an addition to the SFD formulations presented in the
literature is proposed. An additional step is added to the SFD algorithm, consisting in
periodically "resetting" the value of the filtered version of the flow field to the exact current
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value of the physical flow field. The number of iterations between these "resets" is determined
by the user as an input. This new input parameter is called the "r" parameter.

The goal of this modification is to avoid or minimize the convergence rate decrease asso-
ciated with the use of SFD by directly changing the values of the filtered flow to what is
hoped to be a better approximation of the solution corresponding to the partially converged
physical flow. This can also be seen as restarting the solving algorithm with different initial
values for the filtered flow, which should not be problematic in itself: Akervik et al. [24]
specifically highlights the fact that the initial value of the filtered flow can be set arbitrarily
without preventing convergence when using SFD as an advantage of the method.

The new resulting algorithm will not be repeated here entirely, because it consists in
the same iterative algorithms presented for encapsulated SFD and coupled SFD, with the
difference that for the nth iteration, where n is a multiple of r, an additional step is done at
the end of the iteration, which is defined as

Wn+1

W̄n+1

 =
Wn+1

Wn+1

 n = [r, 2r, 3r, ...]. (3.41)

This matrix definition highlights the fact that this additional step is very simple both from
a mathematical and computational point of view. The only action required is a copy of
an array of values and as such the additional computational time required to complete this
additional step is negligible. The added function to complete this task is also very easy to
implement.

3.2.4 Parameters selection

An important aspect to consider when using SFD is the selection of the parameters χ and
∆. These parameters can be selected with a process of trial and error or a more structured
parametric sweep, but these methods require time to conduct multiple runs of the solver.
These approaches can be made slightly more efficient by using educated guesses on suitable
values of the parameters based on experience with the method.

Akervik et al. [24] give such a methodology based on their experience. If the eigenvalue
of the unstable mode is unknown and can’t be obtained, the frequency exhibited by the
oscillating flow, ωflow can be used. The ∆ parameter should then be set to an approximate
value of 2

ωflow
. The χ parameter is then set to an approximate value of 1

∆ .



37

The selection of the parameters can be improved by knowing the eigenvalue corresponding
to the dominant unstable phenomenon. This eigenvalue is formulated as

µo = µor + iµoi (3.42)

where the real part of the eigenvalue represents the growth rate of the associated eigenmode
and the imaginary part represents its frequency. This information can be used to improve
the selection of the parameters of SFD. Akervik et al. [24] give additional indications for
their general experience-based guidelines when this eigenvalue is known. The relationship
for the ∆ parameter can still be used with the imaginary part of the eigenvalue used instead
of the frequency of the unstable phenomenon. Knowing the growth rate of the phenomenon,
the χ value should be set as µor < χ < µor + (1/∆).

While this method of parameter selection can be useful for a single case or a case where
not much information is known, a more advanced detailed methodology using the unstable
eigenvalue to approximate the dynamics of the flow field can be used.

An approach used in this work is to approximate the complex flow problem with a simple
scalar problem containing only the same unstable eigenvalue, since this unstable eigenvalue
dominates the evolution of the flow field. The effect of SFD on this simple problem can then
be used to represent the effect of SFD on the flow evolution. Jordi et al. [44] presented such
a method with their encapsulated SFD formulation.

Assuming that we know the dominant unstable eigenvalue µo, we will use the simple 1-D
problem

Ẇ = µoW (3.43)

where µo is a constant number that can be complex. The solution to this problem for the
evolution over the time span ∆t from Wn to Wn+1 is

Wn+1 −Wn = eµo∆t. (3.44)

The dynamic of this problem is driven by the value of µo which is equivalent to a unique
eigenvalue of the problem. For the problem to converge toward a steady state, the real part
of µo must be smaller than 0. Assuming that µo has a positive real part, the problem will
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not converge toward a steady solution. Additionally, if µo has an imaginary part that is not
equal to 0, it will present oscillations. In these conditions, we can apply SFD to the problem.

The mathematical effect of SFD is not the same depending on the implementation used
between the original coupled SFD and the encapsulated SFD. Jordi et al. [44] use the matrix
multiplication of the encapsulated SFD to conduct their analysis presented below.

To simplify the analysis, the evolution in time of the scalar problem without SFD will be
represented by the analytical solution presented above. This corresponds to the case of an
exact solver and removes possible numerical effects coming from the spatial and temporal
schemes. Following this, the evolution between two iterations with SFD corresponds to a
multiplication by the matrices of the two sub-problems as presented in Sec. 3.2.2, which
results in the 2x2 matrix


1.0
(

∆χe∆t(−1.0χ− 1.0
∆ )+1.0

)
e∆tµo

∆χ+1.0

1.0
(
−∆χe∆t(−1.0χ− 1.0

∆ )+∆χ
)

∆χ+1.0

1.0
(

1.0−e∆t(−1.0χ− 1.0
∆ )
)
e∆tµo

∆χ+1.0

1.0
(

∆χ+e∆t(−1.0χ− 1.0
∆ )
)

∆χ+1.0

 . (3.45)

The condition for the system to converge toward a steady solution is now that the two
eigenvalues of this matrix λe1,e2 must have a norm |λe1,e2| smaller than 1.0. These eigenvalues
can be calculated analytically and result in the expression

λe1,e2 =

±

√
−4 (∆χ+ 1)2 e∆t(µo+ ∆χ+1

∆ ) +
(

∆χe∆tµo + ∆χe∆t(χ+ 1
∆) + e∆t(χ+µo+ 1

∆) + 1
)2
e−

∆t
∆ e−∆tχ

2 (∆χ+ 1)

+

(
∆χe∆tµo + ∆χe

∆t(∆χ+1)
∆ + e

∆t(∆χ+∆µo+1)
∆ + 1

)
e−∆t(χ+ 1

∆)

2 (∆χ+ 1) . (3.46)

These eigenvalues are dependent on the variables χ,∆,∆t and µo. The first two variables
are provided by the user and the two last ones are dependent on the original CFD solver.
We can then apply an optimization algorithm on these equations to minimize both values
|λe1,e2| to maximize the damping of the unstable phenomenon.
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This use of the encapsulated formulation is the one used by Jordi et al. [44] but is not very
practical in the context of this work. The main reason for this is the fact that the time step
∆t is present in the eigenvalues definition. This is not a problem when a global time step is
used across the whole domain, but implies a lot of additional calculations for a solver using
a local time step for each cell such as the steady state solvers used in this work.

To avoid computing the optimization problem presented above for each cell separately,
the analysis of the modification of the eigenvalues when using the coupled SFD formulation
is used. In this case, the original problem is once again approximated on a 1-D problem,
using the dominant unstable eigenvalue µo of the Jacobian matrix ∂R

∂W
which dominates the

evolution of the flow in time. The resulting system of equation is

Ẇ˙̄W
 =

µo − χ χ
1
∆

−1
∆

 W
W̄

 (3.47)

which is similar to the system presented in Eq. 3.6 with the function representing the solver
f(W ) replaced by the unstable eigenvalue µo. This 2x2 matrix will allow the system to
converge toward a steady solution if both of its eigenvalues µc1,c2 have a real part that is
negative. These eigenvalues can once again be calculated analytically. The result is

µc1,c2 = −∆χ−∆µo + 1
2∆ ±

√
∆2χ2 − 2∆2χµo + ∆2µ2

o + 2∆χ+ 2∆µo + 1
2∆ . (3.48)

This formulation of the resulting eigenvalue is equivalent to the one presented by Akervik
et al. [24] with the difference that in the referenced work, the eigenvalues calculated are mul-
tiplied by -i and called the complex eigenvalues. In a similar approach as for the encapsulated
formulation, this relationship between the original eigenvalue and the eigenvalue with SFD
can be used with an optimization algorithm to maximize the damping of the original unstable
eigenvalue. In this case, this means having a negative value as large as possible for the real
parts of the new eigenvalues.

When comparing the modified eigenvalues obtained with the two methods, one important
difference is that the eigenvalues obtained for the encapsulated formulation are for the matrix
that advances the problem iteratively in time while the ones obtained for the coupled formu-
lation are for the matrix defining the differential equation system. This difference makes it
necessary to do an additional calculation to compare them. They can be related by bringing
the encapsulated eigenvalues λe1,e2 in the differential referential with
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µe1,e2 = ln(λe1,e2)
∆t (3.49)

in which case they can be compared with µc1,c2 and the condition of stability is a real part
smaller than 0. The eigenvalues µc1,c2 can also be brought in the time referential with

λc1,c2 = eµc1,c2∆t (3.50)

in which they can be compared with λe1,e2 and the condition of stability is a norm smaller
than 1.

When numerically comparing the eigenvalues obtained from the two formulations, it is
possible to observe that for small time step values the two eigenvalues are close. However, as
the time step ∆t increases, the difference between the eigenvalues becomes important. This
behaviour is illustrated in Fig. 3.1 where as an example the real part of the eigenvalues µc1,c2
and µe1,e2 are pictured for values of µo = 1.5 + 10i, χ = 5.35, ∆ = 0.2 for various ∆t time
step values.

To better understand the behavior of the encapsulated formulation’s eigenvalues with a
large time step, it is possible to use a simplified 1-D matrix by using the assumption that
the term e∆t(−1.0χ− 1.0

∆ ) becomes dominated by the large value of ∆t and tends toward 0.
This happens if the time step ∆t is larger by order of magnitudes than the inverse of the
(−1.0χ− 1.0

∆ ) term. The matrix representing an iteration of the 1-D problem then becomes

 e∆tµo

∆χ+1.0
∆χ

∆χ+1.0
e∆tµo

∆χ+1.0
∆χ

∆χ+1.0

 (3.51)

which has only one eigenvalue

∆χ+ e∆tµo

∆χ+ 1 . (3.52)

The condition to ensure stability is that this eigenvalue needs to have a norm smaller than
1. However with the assumption that a large time step is used, it can be seen that this
eigenvalue will be dominated by the term e∆tµo , which corresponds to the behavior of the
original problem. This can be observed in Fig. 3.2, where the eigenvalues µe1,e2 and µc1,c2

are pictured for the same example values as in Fig. 3.1. When the time step is augmented
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Figure 3.1 Comparison of modified eigenvalues from the encapsulated and coupled formula-
tions of SFD for various time steps

further, it is possible to see that the real part of the eigenvalues linked to the encapsulated
formulation tends toward the real part of the original eigenvalue that is set as µor = 1.5.

This means that if the original problem did not converge toward a steady-state solution,
using the encapsulated formulation of SFD with a large time step to stabilize the problem
has a high chance of failure. From this observation, it is concluded that special care must
be taken concerning stability when using encapsulated SFD in conjunction with a large time
step. This situation can potentially arise when using an implicit temporal scheme.

It is also decided based on this observation to use the eigenvalue analysis of the coupled
SFD formulation to optimize the value of the χ and ∆ parameters, both when using the
encapsulated and coupled formulation of SFD. The reasoning for this choice is that the need
to consider the time step in the encapsulated formulation’s eigenvalues would result in an
impractically high number of required calculations since a separate optimization would be
needed for each cell in the domain. In addition, the expression of the coupled formulation’s
eigenvalue has fewer terms and as such has a lower computational cost. Finally, the use of
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Figure 3.2 Comparison of modified eigenvalues from the encapsulated and coupled formula-
tions of SFD with large time steps

the coupled formulation has been shown to be a good approximation of the encapsulated
formulation’s eigenvalues when using a small time step. The higher error encountered when
using a longer time step is not considered limiting, since it has been shown earlier that the
use of a large time step with the encapsulated formulation of SFD is not desirable.

A last consideration is given to the effect of the parameters χ and ∆ on the eigenvalues
that are already stable. While in the presence of an unsteady phenomenon without SFD the
convergence of the flow is dominated by the eigenvalue with the largest positive real part, in
the case where no eigenvalue has a positive real part the least damped eigenvalue is the one
with a negative real part closest to zero. In a graph using the X-axis to display the imaginary
part and the Y-axis to display the real part of a number, the eigenvalue at the most upward
position would then be the one limiting the convergence of the problem.

While the effect of SFD is to reduce the real part of eigenvalues with a sufficiently high
imaginary part by damping oscillations, its effect on eigenvalues with an imaginary part
sufficiently small can potentially create new modified eigenvalues for which the real part is
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closer to zero than the original. This can be observed in Fig. 3.3 in which the new modified
eigenvalues µc1,c2 are shown for one unstable original eigenvalue with a real part of 1.5 and
one stable eigenvalue with a real part of -1.0. The values of the parameters are set to χ = 5.35
and ∆ = 0.2 as an example. The imaginary part of the original eigenvalues is varied to show
the effect for various eigenvalues with the same real part. Arrows are used to link the original
eigenvalues to their modified pair of eigenvalues with SFD for the cases of eigenvalues with
a large or small imaginary part in both the stable and unstable cases.

Globally it can be seen that an eigenvalue with a smaller imaginary part will be less damped
by SFD than an eigenvalue with a large imaginary part, and can even become less damped
than it was originally without SFD. Casacuberta et al. [38] demonstrated however that SFD
will never create an unstable eigenvalue from an originally stable eigenvalue.

This dependency of the real part of the modified eigenvalues relative to the imaginary
part of the original eigenvalues highlights one problem with considering only the unstable
eigenvalue in a 1-D system to optimize the parameters. Taking as an example Fig. 3.3,
let us consider the case where these χ and ∆ parameters are used on a system with an
eigenvalue of 1.5− 30.0i and a stable eigenvalue of −1.0 + 6.0i. Both of these eigenvalues are
pictured in Fig. 3.3 with arrows pointing to their corresponding modified eigenvalues in the
augmented system. We can see that the eigenvalue limiting the convergence after applying
SFD originates from the originally stable eigenvalue.

This means that only optimizing the χ and ∆ parameters to maximize the damping of
the most unstable eigenvalue will usually result in a sub-optimal choice of parameters when
considering the convergence rate of the problem since other less damped eigenvalues will then
dominate the convergence rate. Some authors such as Cunha et al. [45] and Casacuberta et
al. [38] have used methodologies to consider such eigenvalues in their optimization. However,
these methodologies come with drawbacks. In the case of Cunha et al. more eigenvalues
need to be evaluated without knowing in advance which one will be the most limiting in
term of convergence rate. In the case of Casacuberta et al., the limiting eigenvalue is evalu-
ated by observing the behavior of the stabilized flow which can be complex without manual
intervention.

In the context of this work, the approach chosen is to use the simplified model only consider-
ing the unstable eigenvalue. The first reason for this approach is the fact that as presented in
Sec. 3.3 and 3.4, the global stability analysis method used to identify the unstable eigenvalue
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Figure 3.3 Visualization of the new eigenvalues created from unstable and stable eigenvalues
when using SFD, χ = 5.35, ∆ = 0.2

is sometimes used on a partially converged flow which limits the accuracy of the estimation
of the unstable eigenvalue. Since SFD can’t make stable eigenvalues unstable, it is preferable
to prioritize the damping of unstable eigenvalues to ensure that no unstable eigenvalues will
remain when using approximations of the unstable eigenvalue. In addition, the complexity
associated with the identification of the most limiting stable eigenvalue results in a more
computationally expensive algorithm. Finally, the addition of the periodic reset presented in
Sec. 3.2.3 was able to drastically diminish the problem of the convergence rate being reduced
by SFD. The problem of a slightly sub-optimal rate of convergence consequently became less
limiting compared with the other arguments presented previously.

3.3 Global Stability Analysis

The analysis of the modification of the dominant eigenvalue presented in Sec. 3.2.4 requires
knowing the dominant unstable eigenvalue of the flow to be useful. Multiple methods exist to
obtain this eigenvalue, however the method used in this work is global stability analysis. The
reasons for this choice compared with other methods mentioned in the literature review is that
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compared to the DMD method used by Cunha et al. [45], the global stability analysis method
is not influenced by non-linear effects which allows it to focus on the small perturbation
domain associated with the onset of instability. From an implementation standpoint, the
global stability analysis method was also associated with less risk during development since
it can leverage functions already present in the solver to calculate necessary values and
since support during development could be provided by a member of the research team
already familiar with the method. This would not have been the case for the DMD method.
Moreover, the global stability analysis method was preferred to the "flow unleash" method
of Casacuberta et al. [38] because it requires fewer manual operations which can be limiting
when using these methods in an industrial context. The global stability analysis method is
implemented for the laminar equations in the NSCODE solver.

The general RANS equations solved in this work have already been presented in Eq. 1.13.
These equations are nonlinear because of the term −→R ( ~W ). We want to analyse the behaviour
of these equations for small perturbations, linearized around a value ~Ws such that ~Wl =
~Ws + ~∆W . The nonlinear term −→R ( ~W ) can be linearized as

−→
R ( ~W ) = −→R ( ~Ws) + ∂

−→
R ( ~Ws)
∂W

(∆W ). (3.53)

The new linearized equation is now

Ω∂
~Wl

∂t
= Ω∂

~Ws

∂t
+ Ω∂

~∆W
∂t

= −−→R ( ~Ws)−
∂
−→
R ( ~Ws)
∂W

(∆W ). (3.54)

From the original equation we know that

Ω∂
~Ws

∂t
= −−→R ( ~Ws) (3.55)

and Eq. 3.54 can be simplified to

Ω∂
~∆W
∂t

= −∂
−→
R ( ~Ws)
∂ ~W

( ~∆W ). (3.56)

This last equation is now a linear differential matrix equation, and the behavior of the
solution can be analyzed with the eigenvalue of the matrix ∂

−→
R ( ~Ws)
∂ ~W

which has constant coef-
ficients. It should be stressed here that this matrix represents the entire field. It is a very
large square matrix with a size of 5 times the total number of cells in the row and column
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directions for a tridimensional laminar flow since in this case 5 conservative variables are
solved. Global stability analysis is based on the idea of assembling this matrix, called the
global Jacobian matrix, and computing its eigenvalues to characterize the evolution of the
flow in the range of small perturbations. In this case, the Jacobian matrix is evaluated with
finite difference to approximate it numerically as ∆−→R ( ~Ws)

∆ ~Ws
.

The first step to implement this method is the calculation of the Jacobian matrix. To
assemble this matrix numerically by finite difference, each variable of each cell in the domain
must be perturbed and the effect of each of those perturbations on the residual of every
cell in the domain must be stored. This would theoretically result in a very large number
of perturbations and subsequent residual calculations. In practice, it is possible to greatly
diminish the required computation to assemble this matrix by considering how a cell affects
the residual of another.

The case of the NSCODE solver will be used to demonstrate this. The calculation of the
residual in each cell in this structured solver only takes into account the values of the cells
directly in contact with the cell and the cells one further cell away in each principal direction
"i" and "j". The area affected, which will be referred from now on as the stencil of the cell,
is pictured in Fig. 3.4 for two cells identified with "X" marks. Knowing that only the cells
in this area around a perturbed cell will experience a variation of their residual, time can
be saved by only storing the variation in these cells and ignoring the others since the stored
value will necessarily be 0.

With this information, it is also possible to perturb multiple cells at the same time as
long as their stencils do not overlap and gather the difference in the residual in each of the
cells in their respective stencil. This saves a great amount of computational time, since
these operations are done through functions already present in the solver that normally
already act on the entire domain simultaneously. With these strategies, instead of requiring
to compute a function to perturb the field and subsequently measure the residual for each
variable multiplied by the number of cells, the required steps can theoretically be as low as 13
steps multiplied by the number of variables in the optimal case. In practice, the amount of
steps required is usually greater because of the cells near the boundaries that have incomplete
stencils.

To identify with which pattern and in which order the cells will be perturbed, an in-house
program is previously run on the meshes. This program iteratively selects as many cells
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Figure 3.4 Adjacent stencils of two cells in the case of the structured solver NSCODE

as possible for which none of their stencils overlap and identifies them as part of the same
perturbation step. These cells are then removed from the search algorithm and the operation
is repeated until all cells are part of one perturbation step. The patterns in these steps are
stored in files provided to the solver as input to be used in the flow perturbation function.

After the patterns of perturbations are established, the perturbation itself can be generated.
This perturbation must be of a small value to remain in the linear domain of the analysis. In
the case of the global stability analysis implemented in NSCODE, the perturbations applied
all have a value of 1.0e-6. No sensitivity study was done on this constant value. To get achieve
second order, a central difference is used, which means that all the cells are perturbed twice:
once by adding the perturbation value and another time by subtracting it. The result is then
used to compute the finite difference, calculated for each cell at position (o,p) for the residual
of each variable j in the stencil of the perturbed cell at position (n,m) for the perturbation
of each variable i

∆Ro,p
j

∆W n,m
i

=
Ro,p
j (W n,m

i + ε)−Ro,p
j (W n,m

i − ε)
2.0× ε , ε = 1.0× 10−6. (3.57)

These finite difference values are then stored with their corresponding location in the
complete Jacobian matrix. When all perturbations and residual calculations have been com-
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pleted, the Jacobian matrix is obtained and the next step is to compute its eigenvalues. Since
the Jacobian matrix is a very large matrix, it would be impractical to compute all of its eigen-
values and subsequently identify the dominant unstable eigenvalue among them. To remedy
this problem, the external function libraries PETSc and SLEPc are used. These libraries
contain solver functions specifically designed to compute a specific number of eigenvalues
from a large sparse matrix according to specific requirements.

In this implementation, an Arnoldi eigensolver is used in conjunction with a shift-and-
inverse spectral transformation. The shift-and-invert spectral transformation allows to spec-
ify a target value around which to search for the eigenvalue. This allows us to specify to the
solver that it should search for eigenvalues with positive real parts and relatively high imag-
inary parts. In particular, if an approximation of the expected eigenvalue is known, either
because a previous global stability analysis was already conducted or because of information
from the literature, this expected eigenvalue can be used to accelerate the convergence of
the eigensolver thanks to a better initial guess. When the eigensolver has converged to the
required eigenvalue, the global stability analysis is complete and the obtained eigenvalue can
be used to characterize the flow [59].

3.4 Adaptive selective frequency damping

The previous subsections have presented how to calculate the dominant unstable eigenvalue
characterizing the instability in the flow and how to calculate the effect of the χ and ∆
parameters when applying SFD on this eigenvalue. Both of these methods can be coupled
to optimize the selection of the parameters on a test case. This approach was presented by
Jordi et al. [44] and is called by these authors the adaptive SFD algorithm. The adaptive
SFD algorithm implemented in this work is similar to the one presented by these authors
but with some differences that will be described in this section.

This algorithm consists in first letting the solver complete a certain number (selected by
the user before execution) of iterations, either without SFD or with SFD using parameters
initially selected by the user. After these iterations are completed, a global stability analysis,
as presented in Sec. 3.3 is conducted on the partially converged flow. This first global stability
takes as inputs the required precision for the eigenvalue found and an initial guess to set the
value of the shift-and-invert spectral transformation. In this case since the goal is to identify
the unstable eigenvalue, this guess should have a positive real part.
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The result of this global stability analysis is an unstable eigenvalue that is used to conduct a
basic optimization of the χ and ∆ parameters. The analysis is based on the modification of the
eigenvalues presented in Sec. 3.2.4. The dominant eigenvalue considered is the one found with
the previous global stability analysis. The modification of this eigenvalue according to the
analysis based on the coupled formulation of SFD is used since it has a lower computational
cost and is considered a good approximation of the encapsulated formulation of SFD when
a small time step is used, which should be the case to limit the error in time associated with
this formulation. This differs from the original adaptive SFD algorithm of Jordi et al. [44]
who used the encapsulated formulation in their 1-D model to analyze the modification of the
eigenvalue.

The goal of the optimization is to select a couple of parameters to maximize the damping
of the original eigenvalue, which means making the real parts of the two corresponding
eigenvalues negative and as far from zero as possible. Multiple methods would be possible to
conduct this optimization. In the case of this work, the optimization method used is a simple
parametric sweep of various χ and ∆. The modified eigenvalues are evaluated iteratively for
every pair of parameters. If both modified eigenvalues have a larger negative real part than
the previous best result, the χ and ∆ parameters replace the previous best pair. When the
parametric sweep is complete, the best identified pair of parameters replaces the previous
pair of parameters used.

The values of χ and ∆ tested during the parametric sweep consist in 2000 values for each
parameter, centered around the χ and ∆ parameters that would be expected based on the
empirical relation provided by Akervik et al. [24] presented in Sec. 3.2.4 as an initial guess.
The boundaries for the tested values are a maximum of 5 times the initial guess and a
minimum of 0,25% of the initial guess. This minimum allows the eigenvalue evaluation to
consider cases where the parameters are almost negligible, which roughly corresponds to a
case without SFD while avoiding testing a value of zero and an undefined division by zero.
This simple optimization method is admittedly not particularly efficient, however since this
step does not represent a significant computational cost, this choice is made to not add to
the complexity of the whole algorithm.

Once this optimization is complete, the iterations of the solver are resumed while being
stabilized by SFD, either with the encapsulated or coupled formulations, while using the
identified optimal parameters to maximize the damping of the phenomenon. After a certain
amount of iterations selected by the user prior to the execution, the global stability analysis
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is once again conducted on the partially converged flow. The flow should now have a better
convergence, and as such the eigenvalue found should be similar to the one of the previous
global stability analysis but represent more accurately the unstable phenomenon. For this
reason, the initial guess given to the shift-and-invert spectral transformation is the value of
the unstable eigenvalue found in the previous global stability analysis. A new optimization
of the χ and ∆ parameters is then conducted in the same way as the first one.

This algorithm is repeated until a sufficient residual convergence criterion is reached. It
was shown in Sec. 3.2 that while the original equations have a residual that can be used to
evaluate the convergence of the solver, there also exists a residual that can be used to evaluate
the convergence of the solver considering the equation of the low-pass filter. When both of
these residuals reach a sufficient convergence, the global stability analysis and subsequent
parameters optimization are not conducted anymore. This is because the flow is considered
close enough to the solution, which means the unstable eigenvalue will not vary meaningfully
and the parameter optimization would not give different results. In the case of the present
algorithm, the criteria used is a residual convergence of 3 orders of magnitude.

The iterations of the solver with SFD are then continued until sufficient convergence of the
flow equations is reached. The complete algorithm is represented schematically in Fig. 3.5
where the first convergence criteria to stop the solver iterations and the second convergence
criteria to bypass the global stability analysis and parameter optimization are pictured.

Solver steps with 
SFD

START

Convergence 
check, criteria 1

END

Yes

No
Convergence 

check, criteria 2

1D model to 
maximize damping

Stability analysis

Yes

No

Figure 3.5 Schematical representation of the adaptive SFD algorithm implemented in
NSCODE
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CHAPTER 4 NUMERICAL RESULTS

This section contains the numerical experiments that were conducted during this research
project to verify and validate the implementation of the instability recognition and stabiliza-
tion in both the NSCODE solver and the CHAMPS solver. The results are compared with
relevant results from the literature. An important point about the test cases presented in this
section is that since the stated goal of the algorithm is to stabilize a RANS solver searching
for a steady-state solution, a local time-stepping scheme is used to advance the equations
in time unless stated otherwise. The test cases presented in the literature of stabilization
with SFD are usually done with time-accurate simulations to get a representation of the un-
steady phenomenon in time, with the notable exception of Richez et al. [22]. This difference
in methodology does not affect the steady solution of the simulation and it is hypothesized
that for small perturbations of the flow where a linearization can be used to represent its
evolution, the use of local time-stepping does not prevent SFD to be effective.

4.1 Laminar cylinder

The laminar flow around a circular cylinder test case is a well-known case that results in
unsteady vortex shedding for a range of low Reynolds number. This test case is first studied
in NSCODE for a Reynolds number of 150, which is above the critical Reynolds number for
the appearance of an instability in a laminar flow found in the literature. The Mach number
used is 0.2 and the diameter of the cylinder is 1.0. Since this is a laminar flow case, no
turbulence model is used. For this test, the temporal scheme is advanced using a hybrid 5
stage Runge-Kutta scheme. Moreover, the multigrid capabilities of NSCODE are used in this
test case to reduce computational time, and so a multigrid algorithm of 3 levels in a W-cycle
is used. The mesh used is a structured O-grid of 257x129 cells. The farfield is placed at 50
diameter length from the center of the mesh.

4.1.1 Unstabilized RANS simulation

To ensure the unsteady phenomenon is captured by the solver, the test case without
stabilization is first run. A RANS simulation aiming to obtain a steady state solution is first
conducted. As it can be seen in the resulting residual convergence and lift coefficient over
iterations in Fig. 4.1a and Fig. 4.1b respectively, the solver is unable to converge to a steady
solution. This can be explained by the instability of the unsteady phenomenon appearing in
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these conditions.

A visualization of the flow field in Fig. 4.3 confirms the fact that the unsteady vortex
shedding phenomenon is captured by the solver since the asymmetrical vortex shedding can
be observed in the unconverged flow field.

4.1.2 Encapsulated SFD

To damp the unsteady phenomenon, the ESFD implementation in NSCODE is used. The
χ and ∆ parameters used are constant and respectively of value 0.1 and 14.826 with a reset
of the low-pass time-filtered flow every 300 iterations. These values are chosen based on
the experience of multiple testing and are used to validate that a steady-state flow can be
obtained with a classical implementation with constant parameters. It can be observed in
Fig. 4.4a that the solver is able to converge to machine accuracy with these parameters. The
lift coefficient value obtained corresponds to the theoretical value of 0.0 for this symmetrical
case as seen in Fig. 4.4b. A visualization of the flow solution in Fig. 4.6 confirms the fact that
the steady solution reached does not show the vortex shedding behavior previously observed.

4.1.3 Unsteady RANS simulation

To further confirm that the vortex shedding phenomenon is encountered and to ensure the
NSCODE solver is able to capture the unsteady phenomenon in a time-accurate scheme, a
URANS simulation is conducted with the NSCODE solver on the same case with a Reynolds
number of 100.0. The interest of this Reynolds number is the availability of similar URANS
simulations in the literature for comparison.

The variation of the lift and drag coefficient with respect to time are displayed in Fig. 4.8.
The Strouhal number of the oscillation is compared with the computational results of Rajani
et al. [6] and the experimental results of Williamson [14] in Table. 4.1. While the mean
drag coefficient of 1.3527 obtained differs by 1.3% from the one obtained by Rajani et al. of
1.3353, the Strouhal number agrees well with the literature. In addition, the development of
the instability and the general behavior of the flow match the results of Rajani et al. for a
similar simulation.
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case without SFD

Table 4.1 Strouhal number of vortex shedding over laminar cylinder at Re=100.0 from
NSCODE and literature

Provenance Strouhal
NSCODE 0.1637

Rajani et al. 0.1569
Williamson 0.1643

4.1.4 Global stability analysis

To first validate the global stability analysis functionality implemented in NSCODE, a
global stability analysis is run on a laminar flow case on the same cylinder. To allow a better
comparison with the literature, the Reynolds number used for this simulation is 100.0. The
base field used to run the global stability analysis is the steady state solution of the test
case, which can be obtained by stabilizing the solver with constant parameters as mentioned
in subsection 4.1.2. The eigenvalue obtained is 0.0277 ± 0.171i. The nondimensionalized
corresponding value is then 0.117± 0.721i This result is in good agreement with the results
of Crouch et al. [2] and Jordi et al. [44] for a similar global stability analysis as shown in
Table. 4.2.
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Figure 4.3 Flow density solution of laminar cylinder case at iteration 20 000 without SFD
for a RANS simulation

Table 4.2 Nondimensional eigenvalues obtained from a global stability analysis from NSCODE
and literature

Provenance Eigenvalue
NSCODE 0.117± 0.721i

Crouch et al. 0.11± 0.72i
Jordi et al. 0.127± 0.741i

The shape of the eigenmode associated with this unstable eigenvalue is also visualized. A
comparison in Fig. 4.10 of the real part of the u-component with the result of Crouch et
al. [2] shows good agreement for the shape of the eigenmode.

4.1.5 Adaptive SFD

To demonstrate the functionality of the adaptive SFD algorithm implemented in NSCODE,
the algorithm is run on the test case for a Reynolds number of 150. The χ and ∆ parameters
used are initially set to 0 before the first global stability analysis. The global stability analysis
is conducted every 300 iterations. The criteria for stopping the global stability analysis and
freezing the SFD parameters is the residual of the low-pass time filter equation reaching a
convergence of three orders of magnitude. To demonstrate the functionality of the periodic
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Figure 4.5 Evolution of NSCODE solver metrics during calculation of the laminar cylinder
case with ESFD

reset of the filtered flow, the case is run both without any periodic reset and with a periodic
reset every 60 iterations. The resulting convergence of the solver is presented in Fig. 4.11 with
the original unstabilized simulation for comparison purpose. It can first be assessed from this
figure that the parameters selected by the adaptive SFD algorithm are indeed able to damp
the oscillations coming from the unsteady phenomenon and to make the solver converge.
However, it can be seen that the convergence rate with the selected χ and ∆ parameters is
impractically slow. The addition of the periodic reset of the low-pass filtered flow results in
a significant increase in the convergence rate.

On the subject of the eigenvalues identified on the partially converged flow, the run without
a periodic reset resulted in multiple subsequent calculations of eigenvalues since the slower
convergence rate prevented the solver from reaching the convergence threshold to freeze the
parameters. In total, 66 eigenvalues evaluations were conducted for this run. The nondimen-
sional eigenvalues identified varied from 0.15265± 0.69547i to 0.14955± 0.67199, converging
toward this last value. In the case of the run with a periodic reset of the low-pass filtered flow,
only 2 eigenvalues evaluations were necessary before sufficient convergence was reached to
freeze the parameters. The nondimensional eigenvalues identified in this case varied between
0.14879±0.68133i and 0.14880±0.67625. A subsequent global stability analysis was executed
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Figure 4.6 Flow density solution of laminar cylinder case at iteration 10 000 with ESFD for
a RANS simulation

separately on the steady flow solution converged to machine accuracy which resulted in an
eigenvalue of 0.14956± 0.67189.

These results highlight the fact that without a periodic reset the solver with SFD is able to
converge to a solution where the physic of the unsteady phenomenon is not present in the flow,
since the eigenvalue found without a periodic reset on the partially converged flow converges
toward the expected value. They also show that the reset of the filtered flow alleviates the
fact that the convergence of the solver then gets limited by the slow evolution of the filtered
flow. This phenomenon can be observed in Fig. 4.12 where the lift coefficient evolution with
respect to the iterations of the solver is shown with and without reset. SFD without reset
results in the oscillations being damped, but also with the lift coefficient slowly converging
toward the expected value of 0 after the oscillations are removed. The lift coefficient notably
shows a bias toward a lower value when approaching the expected solution when no periodic
reset is used, with this tendency being removed from the evolution of the lift coefficient when
the periodic reset functionality is used.

The optimization of the χ and ∆ parameters based on the eigenvalue found converged
toward χ = 0.0995 and ∆ = 15.56. These values correspond to a local minimum concerning
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Figure 4.10 Comparison of the conservative u-component of the eigenmode of laminar cylinder
case from global stability analysis between NSCODE and Crouch et al. [2]
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the highest real part of the two modified eigenvalues, as shown in Fig. 4.13 which displays
the values obtained when the algorithm conducted the parametric sweep for χ and ∆ based
on the eigenvalue obtained at the last global stability analysis.

4.1.6 Comparison of encapsulated and coupled formulations

The previous results presented for the cylinder case were obtained with NSCODE. However,
as it was mentioned in Sec. 3.2, only the encapsulated SFD formulation was implemented
in the NSCODE solver. Since both the original coupled formulation and the encapsulated
formulation of SFD were implemented in the CHAMPS solver, this solver is now used to
compare the stability of both implementations on the same case of vortex shedding in a
laminar flow around a cylinder. The flow conditions used are a Reynolds number of 150.0
and a Mach number of 0.2. The solver used is an implicit LU-SGS solver to allow the
use of large Courant-Friedrichs-Lewy (CFL) numbers. The mesh used for this case is an
unstructured mesh of 54850 cells either of triangular or quadrilateral shape in which the
wake of the cylinder is specifically refined to study the behavior of vortex shedding.
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Since the goal in this section is only the comparison of the stability of both formulations,
the methodology used is based on the resulting convergence after a predetermined amount of
iterations for both formulations with the same parameters. The case is first tested with the
solver without SFD to observe the value of the residual norm reached before the instability
stops a further reduction of the residual. A sufficient amount of iterations is used so that
a limit-cycle oscillation state is reached. The same test case is then computed with both
formulations of SFD on the same amount of iterations with a parametric sweep of the χ and
∆ values. The parameter values tested are separated by an order of magnitude each to cover
a large range of values. The tested parameter values for χ and ∆ are 0.001, 0.01, 0.1, 1.0,
10.0, 100.0 and 1000.0. After the same amount of iterations that was previously used on the
case without SFD is reached, the solver is stopped. This test is done for CFL numbers of
5.0, 10.0, 100.0 and 1000.0, the goal being to compare the implementations with various time
steps.

A parameter pair is then considered successful if the solver was able to both reach a residual
norm lower than the minimum value reached without SFD and reach a lift coefficient value
with a difference with the theoretical value of 0 that is lower than 0.01. The reasoning for
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Figure 4.13 Maximum real part of the two modified eigenvalues computed during the final
optimization of the χ and ∆ parameters

this methodology is that for a parameter pair to be useful in practice, it must both allow the
solver to converge and to reach valid values of the aerodynamic coefficients in an acceptable
amount of iterations.

The successful parameters for the different cases are displayed in Fig.4.15, 4.17, 4.19 and
4.21 where they are identified with "o" marks, while the unsuccessful parameters are identi-
fied with "x" marks. For low CFL numbers of 5.0 and 10.0, it can be seen that the coupled
formulation displayed more successful parameter pairs and that all the successful parameter
pairs displayed by the encapsulated formulation are shared with the coupled formulation.
However, when large CFL numbers such as 100.0 and 1000.0 are used the successful param-
eters are different for each formulation. This result agrees with the expectation that a large
time step would cause the behavior of the two formulations to differ. The limitations of the
analysis presented in Sec.3.2.4 is also observed since the successful parameters for the cou-
pled formulation vary when the CFL number is increased, with the parameters found with
the theoretical 1-D model being suitable at low CFL number but becoming unsuitable at
high CFL numbers. This behavior that is not predicted by the simplified 1-D model is not
surprising either, since it can be expected that when a large time step is used the numerical
effects coming from the temporal and spatial schemes can no longer be neglected to solely
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focus on the physical phenomenon.

From these results it is concluded that special care must be taken to avoid using a time
step that would be too large with the adaptive SFD algorithm, since the numerical effects
could make the parameter selection analysis insufficient. This limitation of the algorithm
could potentially be improved in future works.

4.2 Buffet over transonic airfoil

4.2.1 OAT15A testcase

The ESFD with the filter reset is now tested for a case with turbulence modeling. The
selected case is the OAT15A airfoil at an angle of attack of 3.5 degrees, Mach number of 0.73
and Reynolds number of 3 million. In these flow conditions the transonic buffet phenomenon
is observed [60]. The turbulence model is the Spalart-Allmaras model with Edwards-Chandra
modification and compressibility correction [53] [54]. For all the simulations in this section
the CFL number is set to 5.5 and 3 grid levels are used in the W-cycle multigrid algorithm.
The mesh consists of a structured O-grid. The chord of the profile is set to 1.0 and the
farfield is placed at 50 chords of the profile.

This test case is particularly used to conduct parametric studies of the effect of the choice
of parameters in the ESFD implementation of NSCODE, which are presented in the following
subsections.

Successful parameter pairs identified with a "o"
mark with the coupled formulation

Successful parameter pairs identified with a "o"
mark with the encapsulated formulation

Figure 4.15 Comparison of the successful parameter pairs on the laminar flow over cylinder
case in CHAMPS for different SFD formulations, CFL=5.0
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Successful parameter pairs identified with a "o"
mark with the coupled formulation

Successful parameter pairs identified with a "o"
mark with the encapsulated formulation

Figure 4.17 Comparison of the successful parameter pairs on the laminar flow over cylinder
case in CHAMPS for different SFD formulations, CFL=10.0

Successful parameter pairs identified with a "o"
mark with the coupled formulation

Successful parameter pairs identified with a "o"
mark with the encapsulated formulation

Figure 4.19 Comparison of the successful parameter pairs on the laminar flow over cylinder
case in CHAMPS for different SFD formulations, CFL=100.0

Successful parameter pairs identified with a "o"
mark with the coupled formulation

Successful parameter pairs identified with a "o"
mark with the encapsulated formulation

Figure 4.21 Comparison of the successful parameter pairs on the laminar flow over cylinder
case in CHAMPS for different SFD formulations, CFL=1000.0
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4.2.2 Parametric sweep of χ and ∆

To observe the sensitivity of the solver to the χ and ∆ parameters used, a parametric
sweep is conducted for these two parameters on the initially unconverging case. This first
sweep is conducted without any periodic reset of the filtered flow. The methodology for this
test is to let the solver run for 100 000 iterations while only varying the χ and ∆ parameters
of the case.

A pair of parameters can results in the solver not being able to converge to a steady solution,
either because the choice of parameters causes the solver to diverge from a steady solution
until it encounters an error because of an out of bound value or because it results in the solver
being unable to damp the unsteady phenomenon and to display a limit-cycle oscillation in
the residual convergence that prevents it from converging further. The appearance of one of
these conditions determines the lower boundaries of the considered χ and ∆ parameters. The
upper boundary of both parameters is arbitrary and is chosen because the trend observed
is that the convergence rate of the solver is degrading as one parameter increases when the
other is maintained at a constant value.

For the parameters pairs that are able to stabilize the oscillations, the logarithm of the root
mean square value of the density residual, normalized by the value before the first iteration,
is used as the criterion to determine the best convergence rate that can be obtained. The
results are displayed in Fig. 4.22. The parameters couple resulting in the lowest convergence
and as such the best convergence rate is χ = 4.0 and ∆ = 0.05.

A more detailed observation of the residual convergence evolution with the solver iterations
for these stabilized runs shows that the convergence rate seems to decrease after a certain
point, where a convergence stalling behavior appears. This can be seen in Fig. 4.23 for
the identified optimal parameters pair and two other parameters pairs arbitrarily chosen to
illustrate the general behavior observed. In the case of the optimal parameters pair, this
stalling behavior seems to appear at approximately 25 000 iterations.

4.2.3 Parametric sweep of reset period with constant χ and ∆

After an optimal parameter pair of χ = 4.0 and ∆ = 0.05 is identified, the effects of the
periodic reset are investigated by conducting a second parametric sweep on the period of the
periodic reset. The optimal parameters identified without reset are used during this sweep.
The stopping criterion for a simulation in this test is either to reach 100 000 iterations or
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Figure 4.22 Parametric study of residual convergence after 100 000 iterations of solver for
various SFD parameters pairs

to reach a level of convergence of 7 orders of magnitude. This is because in the parametric
sweep without any reset, which was also limited to 100 000 iterations, no parameter pairs
allowed the solver to reach a better convergence than 7 orders of magnitude. The results,
shown in Fig. 4.24 with the original case without reset provided for comparison purpose, are
that while an unsuitable parameter for the reset period prevents the solver from converging,
a suitable parameter value does mitigate the convergence stalling behavior observed in the
initial case without reset. In this case the best result for a reset period value is a period
of 10 000 iterations, which results in the 7.0 order of convergence criterion to be reached in
41 434 iterations.

4.2.4 Parametric sweep of χ, ∆ and reset period

A parametric sweep of the reset period for constant χ and ∆ parameters is useful to isolate
the effect of the reset parameter. However, based on the fact that the original goal of the
reset of the filtered flow is to counteract the convergence stalling behavior when SFD is
applied and that this convergence stalling can vary with the choice of χ and ∆ parameters,
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studying the effect of the reset period when the other parameters are not kept constant is
also of interest. For this reason, a parametric sweep is conducted simultaneously on the three
parameters to further study their interaction.

The results are displayed in Fig. 4.26. For all displayed parameter combinations the solver
reaches the criterion of 7 orders of magnitude of residual convergence. This is a better conver-
gence level than what is achieved in 100 000 iterations in the best case of the parametric sweep
without any reset. The number of iterations necessary to reach this residual convergence level
is significantly lower compared to the case without reset, being approximately 3500 iterations
in the best cases. Several parameter triplets reach this approximate value. This represents a
reduction of solver iterations of roughly 96.5 percent to reach a better residual convergence
level than what is achieved without reset, a clear improvement in terms of computational
cost. The results also highlight the fact that the value of the optimal parameters of the SFD
method changes when a periodic reset is added to the method.
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Figure 4.24 Parametric study of reset period for a constant SFD parameters pair

A phenomenon also observed is that as expected some selections of parameters are less
optimal than others when considering convergence rate and that not all triplets of parameters
are able to make the solver converge. It is noted however that even for sub-optimal parameters
displayed in Fig. 4.26 the number of iterations required to reach the convergence criterion is
significantly lower than in the case without reset or the reset period parametric sweep with
constant χ and ∆ parameters. The addition of a periodic reset to the numerical scheme can
as such be a positive addition for the solver even if sub-optimal parameters are selected.

To confirm the fact that the solution reached with such a major increase in convergence
rate is still a valid solution, the variation of the lift coefficient along the solver iterations is
provided in Fig. 4.27. The evolution of the lift coefficient for the solver using SFD with and
without a periodic reset of the filtered flow is provided alongside a line indicating the value
of the lift coefficient of the flow solution when machine accuracy is reached. It is possible to
see that in both cases the solver converges toward the machine accurate solution, albeit at a
much slower rate in the case without a periodic reset.
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Figure 4.26 Parametric study of SFD parameters triplets
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4.3 Multi element airfoil in stall conditions

To demonstrate the capabilities of the SFD implementations to stabilize an unstable phe-
nomenon on a complex case, the case of a vortex shedding in the wake of a 3-element airfoil in
stall conditions is studied. The specific case used is the 2-D multi elements airfoil section of
the High-Lift Common Research Model shown in Fig. 4.28, available in the turbulence mod-
eling resource database of NASA [61]. The flow conditions for this test are a Mach number of
0.2 and a Reynolds number of 5 million. The turbulence model used is the Spalart-Allmaras
model and an implicit SGS solver is used to advance the problem in time. The stopping
criterion for the convergence of the cases is a reduction of 8 orders of magnitude of the norm
of the density residual.

The test case is run using the CHAMPS solver, which is compatible with the unstructured
meshes provided for this more complex geometry. Seven meshes are provided for this case,
with an increasing amount of cells. The mesh used in this case contains 508366 cells and
corresponds to the third mesh, selected as a compromise between accuracy and computational
cost. Reference results are available in the literature for this test case, particularly for an
angle of attack of 16 degrees. The case is first run at this angle of attack without using SFD
to compare the result of the CHAMPS solver with the NASA reference values.
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Figure 4.28 Zoomed view of the 2D High-Lift CRM wing section unstructured mesh

The location of re-circulation zones and the stagnation point location, shown in Fig. 4.29,
are in agreement with the flow field presented in an identical test case from the literature [62].
The aerodynamics coefficients obtained with the FUN3D solver show an important variation
between the coarsest mesh and the finest mesh because of mesh while achieving grid conver-
gence. The lift coefficient obtained by FUN3D varies from 3.57 for the coarsest mesh to 3.78
for the finest mesh. The drag coefficient varies from 0.076 for the coarsest mesh to 0.062 for
the finest mesh. The values obtained with CHAMPS for the lift and drag coefficient values
are respectively 3.59 and 0.076. While the values obtained have a difference with the grid
converged reference values that is not negligible, the results are considered acceptable for the
purpose of testing the stabilization method. The reason for this is that they are inside the
range of values obtained in the reference case on the coarser grids and that the CHAMPS
test case uses a grid coarser than the one used to obtain the grid converged values in FUN3D.

The geometry with these flow conditions is then tested for a range of angles of attack to
create the lift polar for this airfoil starting at 0.0 by an increment of 1.0. The initial condition
for each angle of attack simulation is the converged solution of the previous angle of attack
simulation. No instability is observed up to the post-stall angle of attack of 28.0 where the
flow is not fully separated over the main element of the airfoil, as shown in Fig. 4.30a. At
the angle of attack 29.0, the flow becomes fully separated over the main element of the airfoil
as shown in Fig. 4.30b which causes a sudden drop in lift coefficient. It can be observed
in Fig. 4.32 that the rate of convergence of the solver is reduced as this angle of attack is
approached and that the sum of the residual even initially rises before the solver converges
to a flow field fully separated from the main element at the angle of attack of 29.0.
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Figure 4.29 Streamlines and pressure around the 2D High-Lift CRM wing section unstruc-
tured mesh at α=16.0

When the simulations for angles of attack after 29.0 degrees are performed using the
converged flow fully detached from the main element as an initial condition, the subsequent
converged solutions also present the same separation. However, by using a flow field that is
not fully detached from the main element as the initial condition for the next angle of attack
of 30.0, another converged flow can be obtained where the flow is not fully separated. This
solution consequently has a higher lift coefficient. The flow fields of these two solutions are
shown in Fig. 4.34. This multiplicity of solutions at the same angle of attack for an airfoil
in stall conditions is a known phenomenon that can be found in the literature [22] [23] [11]
for simpler single element airfoils. Solutions for subsequent angles of attack can be obtained
by using either flows as an initial condition to continue the polar, resulting in two different
new solutions. These solutions can in turn be used as an initial condition to evaluate other
subsequent angles of attack resulting from these two initial conditions.

These multiple solutions will be referred to as two branches of solutions. The solutions
originating from the use of the converged flow field with a full separation over the main
element of the airfoil at α=30.0 will be referred to as the first branch of solutions. The
solutions originating from the use of the flow field that is not fully separated from the main
element at α=30.0 will be referred to as the stabilized branch since some solutions of this
branch will require stabilization through the use of SFD. Both branches are continued up to
an angle of attack of 34.0 degrees.
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Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=28.0

Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=29.0

Figure 4.31 Comparison of streamlines and pressure around the 2D High-Lift CRM wing
section before and after full separation of the flow over the main element of the airfoil

When computing the angles of attack of the stabilized branch, instabilities that prevent
the solver from converging are encountered at angles of attack of 31.0, 32.0 and 34.0. Each
of these angles of attack displays a different unsteady behavior, with varying lift coefficient
amplitudes and frequencies respective to iterations. The coupled SFD implementation in
CHAMPS is used to stabilize the flow at the 31.0 and 34.0 angles of attack. The suitable
SFD parameters for these cases are found with a basic parametric study for each angle, limited
in scope by the computational cost of running the simulation repeatedly. The parameters
selected for the angle of attack of 31.0 are a χ,∆ and reset period values of 0.5, 50.0 and 20000
respectively. For the angle of attack of 34.0, these parameters have values of 0.1, 10.0 and
5000. No suitable parameters were found to stabilize the instability at the angle of attack of
32.0 with this limited methodology, which highlights the importance of a reliable parameter
selection method. The lift coefficient values of the converged flow fields in this stabilized
branch are displayed in Fig. 4.35 along with the other lift coefficients obtained for this polar.

The main difference observed between the solutions of the stabilized branch and the solu-
tions of the first branch is the area of the airfoil over which the flow is separated. In particular,
at an angle of attack of 34.0, the main difference between the two flow fields seems to be a
separation of the flow over the slat of the airfoil in the stabilized branch. These fields can be
observed in Fig. 4.37 and Fig. 4.39.
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Figure 4.32 Residual convergence for angles of attack before and during the occurrence of
the complete separation of the flow for the 2D High-Lift CRM case

The stabilization of these angle of attacks highlights the capability of the implemented SFD
stabilization with a local time-stepping scheme to be used on complex industrially relevant
cases and to study the phenomenon of multiple solutions in subsonic stall conditions on these
geometries, as done by Richez et al. [22] and Plante et al. [23] on the simpler geometry of a
single element airfoil.
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Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=30.0, first branch

Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=30.0, stabilized branch

Figure 4.34 Comparison of streamlines and pressure around the 2D High-Lift CRM wing
section for the first branch and stabilized branch at α=30.0
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Figure 4.35 Lift coefficient for various angle of attacks obtained for the 2D High-Lift CRM
case
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Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=31.0, first branch

Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=31.0, stabilized branch

Figure 4.37 Comparison of streamlines and pressure around the 2D High-Lift CRM wing
section for the first branch and stabilized branch at α=31.0

Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=34.0, first branch

Streamlines and pressure around the 2D High-
Lift CRM wing section unstructured mesh at
α=34.0, stabilized branch

Figure 4.39 Comparison of streamlines and pressure around the 2D High-Lift CRM wing
section for the first branch and stabilized branch at α=34.0
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CHAPTER 5 CONCLUSION

5.1 Summary of works

The main objective of this work is to develop, implement, verify and validate an algorithm
able to damp oscillations preventing a RANS solver from converging toward a steady solu-
tion. To achieve this goal an algorithm using the Selective Frequency Damping method was
developed and implemented in the NSCODE solver. In addition, an implementation of two
formulations of the SFD method was performed in the CHAMPS solvers.

The first sub-objective was to compare the various SFD implementations presented in the
literature. Two main formulations for SFD emerged, namely the original and encapsulated
formulations. These formulations were compared with an analytical development on a simpli-
fied 1-D problem approximating a flow field dominated by a single eigenvalue. The analysis
considers that an exact solver is used to advance the problem in time. The main result from
the analysis is that while the two formulations are equivalent on a smaller time step, their
behavior may differ when using a large time step. Another prediction from this analysis is
that the encapsulated formulation should lose its efficiency and be unable to damp unstable
modes when the time step becomes large.

The two formulations were subsequently implemented in the 3D unstructured CHAMPS
solver. Their behavior was compared on the test case of vortex shedding in the wake of a
cylinder in a laminar flow. The results obtained confirm the expected difference between
the two formulations when using a large time step. However, the expectation that the
encapsulated formulation should be unable to stabilize an unstable flow when a large time
step is not validated, indicating that the simplified analysis is useful but has limitations.

The second sub-objective was to investigate potential improvements of the existing SFD
stabilization implementations. The most important improvement made to the method in
the implementation of this work is the addition of a periodic reset of the filtered flow field
to the value of the physical flow field. This new step in the algorithm is added to improve
the convergence rate by removing the convergence stalling behavior observed on various test
cases. The effect of this additional step is observed through a parametric sweep of the χ,
∆ and reset period parameters. The results of the tests indicate that a suitable choice of
periodic reset is able to improve the convergence rate of the solver when using SFD.
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In addition to the periodic reset, other improvements were made on the adaptive SFD
algorithm implemented in NSCODE compared with the original implementation presented
by Jordi et al. [44]. The first one is the fact that the algorithm is used in a local time-
stepping scheme. The second one is the use of the analytical model based on the original
coupled SFD formulation to compute the modification of the dominant eigenvalue instead of
the encapsulated formulation, which diminishes the computational cost of the algorithm. The
adaptive algorithm, including the global stability analysis, the optimization of the eigenvalues
and the stabilization through the use of SFD is used on the test case of vortex shedding over
a cylinder with satisfactory results.

The functionality of the original coupled formulation of SFD implemented in CHAMPS
is also demonstrated on a more complex case of a 3-elements airfoil in stall conditions to
show the potential of stabilization on industrially relevant cases with various instabilities. In
doing so, it also extended results obtained on single element airfoils to a 3-elements airfoil
of the multiplicity of solutions at post-stall angles of attack. This hysteresis phenomenon is
observed in the separation of the flow from the airfoil.

5.2 Limitations

The SFD method itself as a stabilization technique has limitations. Since it uses a low-pass
filter to remove oscillations, SFD is not able to stabilize unsteady cases that are not oscillating.
In addition to this, the analysis done in this work to choose suitable SFD parameters also
has limitations. The first one is the assumption that only one unstable frequency is present
in a test case. The second is the approximation of the evolution of the flow being represented
by an exact solver. This removes the effect of the temporal and spatial schemes of the solver
in the analysis. It was however shown by Plante & Laurendeau [42] that the oscillations
influenced by these numerical schemes can be damped by SFD.

The assumption of a "frozen" turbulent viscosity variable in the SFD implementations and
the global stability analysis being implemented only for laminar flow equations is also a
limitation of this work.

Even though the adaptive SFD algorithm was implemented in NSCODE and the coupled
SFD implementation of CHAMPS was tested on a 3-element airfoil case, the adaptive algo-
rithm was not implemented in the 3-D unstructured solver CHAMPS. This resulted in the
adaptive algorithm not being tested on more complex cases such as the 3-elements airfoil.
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Finally, the additional periodic reset added to improve the convergence rate is limited in its
implementation by the fact that the methodology used to set the value of its period in this
work is based on manual setting and observation.

5.3 Future research

Considering the limitations previously mentioned, possible future developments include
the implementation of a similar adaptive SFD algorithm in the CHAMPS solver to consider
more complex cases. The SFD implementations could be extended to directly stabilize the
turbulent viscosity variable in the case of turbulent flows. The global stability analysis
implementation could be extended to include the turbulent viscosity variable and a sensitivity
study could be conducted on the perturbation value ε for the computation of the jacobian
matrix. The analysis of the effect of SFD on an unsteady eigenvalue could be extended by
including the effect of the temporal and spatial scheme to replace the approximation of an
exact solver. Finally, the selection of the period for the reset of the low-pass time-filtered
flow can be improved. A possible method would be to include this reset in the analysis of
the effect of SFD by identifying which eigenvalue is most related to the evolution of the
time-filtered flow by computing the corresponding modified eigenvector of the two modified
eigenvalues. These developments could also allow to expand the scope of the current work
and optimize the choice of the parameters of SFD to accelerate the convergence rate of a
solver, an application that was shown possible by Plante & Laurendeau [42] but for which
an analytical parameter selection methodology is not yet present in the literature.



78

REFERENCES

[1] E. N. Tinoco, D. R. Bogue, T.-J. Kao, N. J. Yu, P. Li, and D. N. Ball, “Progress
toward CFD for full flight envelope,” The Aeronautical Journal, vol. 109, no. 1100,
pp. 451–460, Oct. 2005, publisher: Cambridge University Press. [Online]. Available:
https://doi.org/10.1017/S0001924000000865

[2] J. D. Crouch, A. Garbaruk, and D. Magidov, “Predicting the onset of flow unsteadiness
based on global instability,” Journal of Computational Physics, vol. 224, no. 2, pp.
924–940, Jun. 2007. [Online]. Available: https://doi.org/10.1016/j.jcp.2006.10.035

[3] J. Blazek, Computational Fluid Dynamics : Principles and Applications, 1st ed. Oxford,
UK: Elsevier, 2001.

[4] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,”
in 30th Aerospace Sciences Meeting and Exhibit, ser. Aerospace Sciences Meetings.
American Institute of Aeronautics and Astronautics, Jan. 1992. [Online]. Available:
https://doi.org/10.2514/6.1992-439

[5] A. Jameson, “Time dependent calculations using multigrid, with applications to
unsteady flows past airfoils and wings,” in 10th Computational Fluid Dynamics
Conference, ser. Fluid Dynamics and Co-located Conferences. American Institute of
Aeronautics and Astronautics, Jun. 1991. [Online]. Available: https://doi.org/10.2514/
6.1991-1596

[6] B. N. Rajani, A. Kandasamy, and S. Majumdar, “Numerical simulation of laminar flow
past a circular cylinder,” Applied Mathematical Modelling, vol. 33, no. 3, pp. 1228–1247,
Mar. 2009. [Online]. Available: https://doi.org/10.1016/j.apm.2008.01.017

[7] S. Yarusevych, P. E. Sullivan, and J. G. Kawall, “On vortex shedding from an
airfoil in low-Reynolds-number flows,” Journal of Fluid Mechanics, vol. 632, pp.
245–271, Aug. 2009, publisher: Cambridge University Press. [Online]. Available:
https://doi.org/10.1017/S0022112009007058

[8] O. O. Bendiksen, “Review of unsteady transonic aerodynamics: Theory and
applications,” Progress in Aerospace Sciences, vol. 47, no. 2, pp. 135–167, Feb. 2011.
[Online]. Available: https://doi.org/10.1016/j.paerosci.2010.07.001

https://doi.org/10.1017/S0001924000000865
https://doi.org/10.1016/j.jcp.2006.10.035
https://doi.org/10.2514/6.1992-439
https://doi.org/10.2514/6.1991-1596
https://doi.org/10.2514/6.1991-1596
https://doi.org/10.1016/j.apm.2008.01.017
https://doi.org/10.1017/S0022112009007058
https://doi.org/10.1016/j.paerosci.2010.07.001


79

[9] F. Plante, J. Dandois, S. Beneddine, D. Sipp, and E. Laurendeau, “Numerical
simulations and global stability analyses of transonic buffet and subsonic stall,”
in AAAF AERO2019, PARIS, France, Mar. 2019. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02127307

[10] D. S. Kamenetskiy, J. E. Bussoletti, C. L. Hilmes, V. Venkatakrishnan, L. B.
Wigton, and F. T. Johnson, “Numerical Evidence of Multiple Solutions for the
Reynolds-Averaged Navier–Stokes Equations,” AIAA Journal, vol. 52, no. 8, pp.
1686–1698, 2014. [Online]. Available: https://doi.org/10.2514/1.J052676

[11] D. Busquet, O. Marquet, F. Richez, M. Juniper, and D. Sipp, “Global stability analysis
of turbulent flows around an airfoil near stall,” in EUROGEN 2017, Madrid, Spain,
Sep. 2017. [Online]. Available: https://www.researchgate.net/publication/319746431_
Global_stability_analysis_of_turbulent_flows_around_an_airfoil_near_stall

[12] C. Wales, A. L. Gaitonde, D. P. Jones, D. Avitabile, and A. R. Champneys, “Numerical
continuation of high Reynolds number external flows,” International Journal for
Numerical Methods in Fluids, vol. 68, no. 2, pp. 135–159, 2012. [Online]. Available:
https://doi.org/10.1002/fld.2497

[13] M. M. Zdravkovich, Flow Around Circular Cylinders: A Comprehensive Guide through
Flow Phenomena, Experiments, Applications, Mathematical Models, and Computer Sim-
ulations. Oxford, New York: Oxford University Press, Jul. 1997, vol. 1.

[14] C. H. K. Williamson, “Defining a universal and continuous Strouhal–Reynolds number
relationship for the laminar vortex shedding of a circular cylinder,” The Physics of
Fluids, vol. 31, no. 10, pp. 2742–2744, Oct. 1988, publisher: American Institute of
Physics. [Online]. Available: https://doi.org/10.1063/1.866978

[15] A. Gopinath and A. Jameson, “Application of the Time Spectral Method to Periodic
Unsteady Vortex Shedding,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, ser.
Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics,
Jan. 2006. [Online]. Available: https://doi.org/10.2514/6.2006-449

[16] A. Mosahebi and S. Nadarajah, “An Adaptive Nonlinear Frequency Domain Method
for Viscous Periodic Steady State Flows,” in 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, ser. Aerospace Sciences
Meetings. American Institute of Aeronautics and Astronautics, Jan. 2010. [Online].
Available: https://doi.org/10.2514/6.2010-1267

https://hal.archives-ouvertes.fr/hal-02127307
https://hal.archives-ouvertes.fr/hal-02127307
https://doi.org/10.2514/1.J052676
https://www.researchgate.net/publication/319746431_Global_stability_analysis_of_turbulent_flows_around_an_airfoil_near_stall
https://www.researchgate.net/publication/319746431_Global_stability_analysis_of_turbulent_flows_around_an_airfoil_near_stall
https://doi.org/10.1002/fld.2497
https://doi.org/10.1063/1.866978
https://doi.org/10.2514/6.2006-449
https://doi.org/10.2514/6.2010-1267


80

[17] L. Jacquin, P. Molton, S. Deck, B. Maury, and D. Soulevant, “Experimental Study
of Shock Oscillation over a Transonic Supercritical Profile,” AIAA Journal, vol. 47,
no. 9, pp. 1985–1994, Sep. 2009, publisher: American Institute of Aeronautics and
Astronautics. [Online]. Available: https://doi.org/10.2514/1.30190

[18] F. Grossi, M. Braza, and Y. Hoarau, “Prediction of Transonic Buffet by Delayed
Detached-Eddy Simulation,” AIAA Journal, vol. 52, no. 10, pp. 2300–2312, Apr. 2014,
publisher: American Institute of Aeronautics and Astronautics. [Online]. Available:
https://doi.org/10.2514/1.J052873

[19] F. Sartor, C. Mettot, and D. Sipp, “Stability, Receptivity, and Sensitivity Analyses of
Buffeting Transonic Flow over a Profile,” AIAA Journal, vol. 53, no. 7, pp. 1980–1993,
Dec. 2014, publisher: American Institute of Aeronautics and Astronautics. [Online].
Available: https://doi.org/10.2514/1.J053588

[20] J. A. Hoffmann, “Effects of freestream turbulence on the performance characteristics
of an airfoil,” AIAA Journal, vol. 29, no. 9, pp. 1353–1354, Sep. 1991,
publisher: American Institute of Aeronautics and Astronautics. [Online]. Available:
https://doi.org/10.2514/3.10745

[21] G. Hristov and P. J. Ansell, “Post-Stall Hysteresis and Flow Field Unsteadiness
on an NACA 0012 Airfoil,” in 55th AIAA Aerospace Sciences Meeting. American
Institute of Aeronautics and Astronautics, Jan. 2017. [Online]. Available: https:
//doi.org/10.2514/6.2017-0997

[22] F. Richez, M. Leguille, and O. Marquet, “Selective frequency damping method
for steady RANS solutions of turbulent separated flows around an airfoil at
stall,” Computers & Fluids, vol. 132, pp. 51–61, Jun. 2016. [Online]. Available:
https://doi.org/10.1016/j.compfluid.2016.03.027

[23] F. Plante, J. Dandois, and E. Laurendeau, “Similarities Between Cellular Patterns
Occurring in Transonic Buffet and Subsonic Stall,” AIAA Journal, vol. 58, no. 1, pp.
71–84, 2020. [Online]. Available: https://doi.org/10.2514/1.J058555

[24] E. Akervik, L. Brandt, D. S. Henningson, J. Hœpffner, O. Marxen, and P. Schlatter,
“Steady solutions of the Navier-Stokes equations by selective frequency damping,”
Physics of Fluids, vol. 18, no. 6, p. 068102, Jun. 2006, publisher: American Institute of
Physics. [Online]. Available: https://doi.org/10.1063/1.2211705

https://doi.org/10.2514/1.30190
https://doi.org/10.2514/1.J052873
https://doi.org/10.2514/1.J053588
https://doi.org/10.2514/3.10745
https://doi.org/10.2514/6.2017-0997
https://doi.org/10.2514/6.2017-0997
https://doi.org/10.1016/j.compfluid.2016.03.027
https://doi.org/10.2514/1.J058555
https://doi.org/10.1063/1.2211705


81

[25] C. D. Pruett, B. C. Thomas, C. E. Grosch, and T. B. Gatski, “A temporal approximate
deconvolution model for large-eddy simulation,” Physics of Fluids, vol. 18, no. 2,
p. 028104, Feb. 2006, publisher: American Institute of Physics. [Online]. Available:
https://doi.org/10.1063/1.2173288

[26] C. D. Pruett, T. B. Gatski, C. E. Grosch, and W. D. Thacker, “The temporally filtered
Navier–Stokes equations: Properties of the residual stress,” Physics of Fluids, vol. 15,
no. 8, pp. 2127–2140, Jun. 2003, publisher: American Institute of Physics. [Online].
Available: https://doi.org/10.1063/1.1582858

[27] P.-Y. Passaggia and U. Ehrenstein, “Optimal control of a separated boundary-layer flow
over a bump,” Journal of Fluid Mechanics, vol. 840, pp. 238–265, Apr. 2018, publisher:
Cambridge University Press. [Online]. Available: https://doi.org/10.1017/jfm.2018.6

[28] S. Bagheri, P. Schlatter, P. J. Schmid, and D. S. Henningson, “Global
stability of a jet in crossflow,” Journal of Fluid Mechanics, vol. 624, pp.
33–44, Apr. 2009, publisher: Cambridge University Press. [Online]. Available:
https://doi.org/10.1017/S0022112009006053

[29] M. Ilak, P. Schlatter, S. Bagheri, and D. S. Henningson, “Bifurcation and stability
analysis of a jet in cross-flow: onset of global instability at a low velocity ratio,”
Journal of Fluid Mechanics, vol. 696, pp. 94–121, Apr. 2012, publisher: Cambridge
University Press. [Online]. Available: https://doi.org/10.1017/jfm.2012.10

[30] J. W. Nichols and P. J. Schmid, “The effect of a lifted flame on the
stability of round fuel jets,” Journal of Fluid Mechanics, vol. 609, pp. 275–
284, Aug. 2008, publisher: Cambridge University Press. [Online]. Available:
https://doi.org/10.1017/S0022112008002528

[31] U. A. Qadri, G. J. Chandler, and M. P. Juniper, “Self-sustained hydrodynamic
oscillations in lifted jet diffusion flames: origin and control,” Journal of Fluid
Mechanics, vol. 775, pp. 201–222, Jul. 2015, publisher: Cambridge University Press.
[Online]. Available: https://doi.org/10.1017/jfm.2015.297

[32] B. Pier, “Local and global instabilities in the wake of a sphere,” Journal of Fluid
Mechanics, vol. 603, pp. 39–61, May 2008, publisher: Cambridge University Press.
[Online]. Available: https://doi.org/10.1017/S0022112008000736

[33] B. Pier and N. Peake, “Global nonlinear dynamics of thin aerofoil wakes,” in Seventh IU-
TAM Symposium on Laminar-Turbulent Transition, ser. IUTAM Bookseries, P. Schlatter
and D. S. Henningson, Eds. Dordrecht: Springer Netherlands, 2010, pp. 319–324.

https://doi.org/10.1063/1.2173288
https://doi.org/10.1063/1.1582858
https://doi.org/10.1017/jfm.2018.6
https://doi.org/10.1017/S0022112009006053
https://doi.org/10.1017/jfm.2012.10
https://doi.org/10.1017/S0022112008002528
https://doi.org/10.1017/jfm.2015.297
https://doi.org/10.1017/S0022112008000736


82

[34] P. Moise, “Bistability of bubble and conical forms of vortex breakdown in laminar
swirling jets,” Journal of Fluid Mechanics, vol. 889, Apr. 2020, publisher: Cambridge
University Press. [Online]. Available: https://doi.org/10.1017/jfm.2020.105

[35] L. E. Jones and R. D. Sandberg, “Numerical analysis of tonal airfoil self-noise and
acoustic feedback-loops,” Journal of Sound and Vibration, vol. 330, no. 25, pp.
6137–6152, Dec. 2011. [Online]. Available: https://doi.org/10.1016/j.jsv.2011.07.009

[36] B. E. Jordi, C. J. Cotter, and S. J. Sherwin, “Encapsulated formulation of
the selective frequency damping method,” Physics of Fluids, vol. 26, no. 3, p.
034101, Mar. 2014, publisher: American Institute of Physics. [Online]. Available:
https://doi.org/10.1063/1.4867482

[37] I. Farago, “Splitting Methods and Their Application to the Abstract Cauchy Problems,”
in Numerical Analysis and Its Applications, ser. Lecture Notes in Computer Science,
Z. Li, L. Vulkov, and J. Waśniewski, Eds. Berlin, Heidelberg: Springer, 2005, pp.
35–45.

[38] J. Casacuberta, K. J. Groot, H. J. Tol, and S. Hickel, “Effectivity and efficiency of
selective frequency damping for the computation of unstable steady-state solutions,”
Journal of Computational Physics, vol. 375, pp. 481–497, Dec. 2018. [Online]. Available:
https://doi.org/10.1016/j.jcp.2018.08.056

[39] Y. Bengana, J.-C. Loiseau, J.-C. Robinet, and L. S. Tuckerman, “Bifurcation analysis
and frequency prediction in shear-driven cavity flow,” Journal of Fluid Mechanics,
vol. 875, pp. 725–757, Sep. 2019, publisher: Cambridge University Press. [Online].
Available: https://doi.org/10.1017/jfm.2019.422

[40] A. Pini, A. Cammi, S. Lorenzi, M. T. Cauzzi, and L. Luzzi, “A CFD-
based simulation tool for the stability analysis of natural circulation systems,”
Progress in Nuclear Energy, vol. 117, p. 103093, Nov. 2019. [Online]. Available:
https://doi.org/10.1016/j.pnucene.2019.103093

[41] D. Rodriguez, E. M. Gennaro, and L. F. Souza, “Self-excited primary and
secondary instability of laminar separation bubbles,” Journal of Fluid Mechanics,
vol. 906, Jan. 2021, publisher: Cambridge University Press. [Online]. Available:
https://doi.org/10.1017/jfm.2020.767

[42] F. Plante and E. Laurendeau, “Acceleration of Euler and RANS solvers via Selective
Frequency Damping,” Computers & Fluids, vol. 166, pp. 46–56, Apr. 2018. [Online].
Available: https://doi.org/10.1016/j.compfluid.2018.01.027

https://doi.org/10.1017/jfm.2020.105
https://doi.org/10.1016/j.jsv.2011.07.009
https://doi.org/10.1063/1.4867482
https://doi.org/10.1016/j.jcp.2018.08.056
https://doi.org/10.1017/jfm.2019.422
https://doi.org/10.1016/j.pnucene.2019.103093
https://doi.org/10.1017/jfm.2020.767
https://doi.org/10.1016/j.compfluid.2018.01.027


83

[43] E. Paladini, O. Marquet, D. Sipp, J.-C. Robinet, and J. Dandois, “Various approaches
to determine active regions in an unstable global mode: application to transonic
buffet,” Journal of Fluid Mechanics, vol. 881, pp. 617–647, Dec. 2019, publisher:
Cambridge University Press. [Online]. Available: https://doi.org/10.1017/jfm.2019.761

[44] B. E. Jordi, C. J. Cotter, and S. J. Sherwin, “An adaptive selective frequency damping
method,” Physics of Fluids, vol. 27, no. 9, p. 094104, Sep. 2015, publisher: American
Institute of Physics. [Online]. Available: https://doi.org/10.1063/1.4932107

[45] G. Cunha, P.-Y. Passaggia, and M. Lazareff, “Optimization of the selective frequency
damping parameters using model reduction,” Physics of Fluids, vol. 27, no. 9, p.
094103, Sep. 2015, publisher: American Institute of Physics. [Online]. Available:
https://doi.org/10.1063/1.4930925

[46] B. Srinivasan and R. Rengaswamy, “Automatic oscillation detection and characterization
in closed-loop systems,” Control Engineering Practice, vol. 20, no. 8, pp. 733–746, Aug.
2012. [Online]. Available: https://doi.org/10.1016/j.conengprac.2012.02.008

[47] D. Barkley, “Linear analysis of the cylinder wake mean flow,” Europhysics Letters,
vol. 75, no. 5, pp. 750–756, Sep. 2006, number: 5 Publisher: EDP Sciences. [Online].
Available: https://doi.org/10.1209/epl/i2006-10168-7

[48] F. Guiho, F. Alizard, and J.-C. Robinet, “Global stability Analysis with Compressible
CFD Solver,” in 43rd Fluid Dynamics Conference, ser. Fluid Dynamics and Co-located
Conferences. American Institute of Aeronautics and Astronautics, Jun. 2013. [Online].
Available: https://doi.org/10.2514/6.2013-2620

[49] A. Pigeon, A. Levesque, and E. Laurendeau, “Two-dimensional Navier-Stokes flow solver
developments at Ecole Polytechnique de Montreal,” in CFD Society of Canada 22nd
Annual Conference, CFDSC. CFD Soc. of Canada (CFDSC), 2014.

[50] A. Jameson, W. Schmidt, and E. Turkel, “Numerical solution of the Euler equations
by finite volume methods using Runge Kutta time stepping schemes,” in 14th Fluid
and Plasma Dynamics Conference, Palo Alto, CA, U.S.A., 1981. [Online]. Available:
https://doi.org/10.2514/6.1981-1259

[51] R. Swanson and E. Turkel, “Multistage Schemes With Multigrid for Euler
and Navier-Stokes Equations,” NASA Langley Research Center, Technical Report
3631, 1997. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
19970028360.pdf

https://doi.org/10.1017/jfm.2019.761
https://doi.org/10.1063/1.4932107
https://doi.org/10.1063/1.4930925
https://doi.org/10.1016/j.conengprac.2012.02.008
https://doi.org/10.1209/epl/i2006-10168-7
https://doi.org/10.2514/6.2013-2620
https://doi.org/10.2514/6.1981-1259
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970028360.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970028360.pdf


84

[52] B. Baldwin and H. Lomax, “Thin-layer approximation and algebraic model for
separated turbulentflows,” in 16th Aerospace Sciences Meeting, ser. Aerospace Sciences
Meetings. American Institute of Aeronautics and Astronautics, Jan. 1978. [Online].
Available: https://doi.org/10.2514/6.1978-257

[53] P. Spalart, “Trends in turbulence treatments,” in Fluids 2000 Conference and Exhibit.
Denver, CO, U.S.A.: American Institute of Aeronautics and Astronautics, Jun. 2000.
[Online]. Available: https://doi.org/10.2514/6.2000-2306

[54] J. R. Edwards and S. Chandra, “Comparison of eddy viscosity-transport turbulence
models for three-dimensional, shock-separated flowfields,” AIAA Journal, vol. 34, no. 4,
pp. 756–763, 1996. [Online]. Available: https://doi.org/10.2514/3.13137

[55] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering
applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994. [Online]. Available:
https://doi.org/10.2514/3.12149

[56] F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and
S. Volker, “A Correlation-Based Transition Model Using Local Variables—Part I:
Model Formulation,” Journal of Turbomachinery, vol. 128, no. 3, pp. 413–422, Mar.
2004. [Online]. Available: https://doi.org/10.1115/1.2184352

[57] M. Parenteau, S. Bourgault-Cote, F. Plante, E. Kayraklioglu, and E. Laurendeau,
“Development of Parallel CFD Applications with the Chapel Programming Language,”
in AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics,
Jan. 2021. [Online]. Available: https://doi.org/10.2514/6.2021-0749

[58] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,”
Journal of Computational Physics, vol. 43, no. 2, pp. 357–372, Oct. 1981. [Online].
Available: https://doi.org/10.1016/0021-9991(81)90128-5

[59] V. Theofilis, “Global Linear Instability,” Annual Review of Fluid Mechanics,
vol. 43, no. 1, pp. 319–352, Jan. 2011. [Online]. Available: https://doi.org/10.1146/
annurev-fluid-122109-160705

[60] F. Plante and E. Laurendeau, “Simulation of Transonic Buffet Using a Time-Spectral
Method,” AIAA Journal, vol. 57, no. 3, pp. 1275–1287, 2019. [Online]. Available:
https://doi.org/10.2514/1.J057224

[61] C. Rumsey, “2D Multielement Airfoil Verification - Intro Page,” Jan. 2021. [Online].
Available: https://turbmodels.larc.nasa.gov/multielementverif.html

https://doi.org/10.2514/6.1978-257
https://doi.org/10.2514/6.2000-2306
https://doi.org/10.2514/3.13137
https://doi.org/10.2514/3.12149
https://doi.org/10.1115/1.2184352
https://doi.org/10.2514/6.2021-0749
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.2514/1.J057224
https://turbmodels.larc.nasa.gov/multielementverif.html


85

[62] T. R. Michal, J. Krakos, D. S. Kamenetskiy, M. Galbraith, C.-I. Ursachi, M. A. Park,
W. K. Anderson, F. Alauzet, and A. Loseille, “Comparing Unstructured Adaptive Mesh
Solutions for the High Lift Common Research Model Airfoil,” in AIAA AVIATION
2020 FORUM. American Institute of Aeronautics and Astronautics, Jun. 2020.
[Online]. Available: https://doi.org/10.2514/6.2020-3219

https://doi.org/10.2514/6.2020-3219

	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	1 INTRODUCTION
	1.1 Context
	1.2 Basic concepts
	1.2.1 Navier-Stokes equations
	1.2.2 Reynold-Averaged Navier-Stokes equations
	1.2.3 Closure of the Reynold-Averaged Navier-Stokes equations
	1.2.4 Finite volume method
	1.2.5 Steady and unsteady solutions of the RANS equations
	1.2.6 Nondimensionalization
	1.2.7 Unsteady phenomena
	1.2.8 System instability and equilibrium

	1.3 Elements of the problematic
	1.4 Research objectives
	1.5 Thesis outline

	2 LITERATURE REVIEW
	2.1 Unsteady phenomena
	2.1.1 Vortex shedding over cylinder
	2.1.2 Buffet over transonic airfoil
	2.1.3 Instability of airfoil in post-stall conditions

	2.2 Selective Frequency Damping
	2.2.1 Original formulation
	2.2.2 Alternative formulations
	2.2.3 Parameters selection

	2.3 Instability identification

	3 NUMERICAL METHODS
	3.1 CFD solvers
	3.1.1 NSCODE
	3.1.2 CHAMPS

	3.2 Selective frequency damping implementation
	3.2.1 Coupled Selective frequency damping
	3.2.2 Encapsulated Selective frequency damping
	3.2.3 Addition of periodic reset
	3.2.4 Parameters selection

	3.3 Global Stability Analysis
	3.4 Adaptive selective frequency damping

	4 NUMERICAL RESULTS
	4.1 Laminar cylinder
	4.1.1 Unstabilized RANS simulation
	4.1.2 Encapsulated SFD
	4.1.3 Unsteady RANS simulation
	4.1.4 Global stability analysis
	4.1.5 Adaptive SFD
	4.1.6 Comparison of encapsulated and coupled formulations

	4.2 Buffet over transonic airfoil
	4.2.1 OAT15A testcase
	4.2.2 Parametric sweep of  and 
	4.2.3 Parametric sweep of reset period with constant  and 
	4.2.4 Parametric sweep of ,  and reset period

	4.3 Multi element airfoil in stall conditions

	5 CONCLUSION
	5.1 Summary of works
	5.2 Limitations
	5.3 Future research

	REFERENCES

