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RÉSUMÉ

La théorie moderne du portefeuille développée par Markowitz est considérée comme le fon-
dement de la finance moderne. Cette théorie porte sur la diversification des portefeuilles
d’investissement grâce à une logique rationelle et vise simultanément à minimiser le risque
et à maximiser le rendement des portefeuilles. D’une part, un problème qui préoccupe les
investisseurs est l’augmentation des coûts de surveillance et de gestion lorsque le nombre de
titres dans leurs portefeuilles d’investissement est élevé. Par conséquent, ils préfèrent limiter
le nombre de titres dans lesquelles ils investissent à un sous-ensemble de tous les titres dis-
ponibles. Ces portefeuilles sont appelés portefeuilles parcimonieux. La question qui se pose
est de savoir si investir dans des portefeuilles parcimonieux est optimal par rapport aux si-
tuations où tous les titres disponibles sont inclus dans les portefeuilles d’investissement. Ce
mémoire tente de répondre à cette question.

Deux principaux paramètres d’entrée du modèle de sélection de portefeuille moyenne-variance,
à savoir la moyenne et la variance des rendements boursiers, sont estimés par la moyenne
et la variance de l’échantillon car les vraies valeurs de ces paramètres ne sont pas connues.
Le problème lié à l’utilisation de la moyenne de l’échantillon et de la variance des rende-
ments boursiers est que les portefeuilles optimaux souffrent de l’instabilité résultant des fluc-
tuations des échantillons des rendements boursiers. Cela signifie que le portefeuille optimal
pour un échantillon de rendements boursiers spécifique donné pourrait ne pas être optimal
pour d’autres échantillons. Par conséquent, les investisseurs devraient rééquilibrer leurs por-
tefeuilles plus souvent et supporter des coûts de transaction en raison des instabilités des
portefeuilles dues à l’erreur d’estimation des paramètres d’entrée.

Dans ce mémoire, le modèle de sélection de portefeuille moyenne-variance parcimonieux, qui
est dérivé en incluant une restriction sur le nombre de titres dans le portefeuille optimal, est
utilisé pour construire les portefeuilles optimaux parcimonieux. En outre, nous examinons si
investir dans des portefeuilles parcimonieux est une décision optimale pour les investisseurs
neutres et averses au risque.

Afin d’augmenter le pouvoir de généralisation du modèle de sélection de portefeuille moyenne-
variance, nous évaluons la performance du modèle non seulement sur la base de la qualité des
résultats dérivés des données utilisées pour estimer les paramètres d’entrée, dites données à
l’intérieur de l’échantillon, mais également sur la base de la qualité des résultats obtenus à
partir du nouvel ensemble de données, dites données hors échantillon. L’étude approfondie
de la performance hors échantillon est menée en partant du principe que la vente à découvert
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est soit interdite, soit autorisée. Les résultats de l’étude empirique confirment qu’investir
dans des portefeuilles parcimonieux est une décision optimale pour les investisseurs neutres
et averses au risque. Mais pour les investisseurs très averses au risque, il est optimal d’investir
dans toutes les actions disponibles, en particulier lorsque la vente à découvert est autorisée.
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ABSTRACT

The portfolio selection theory introduced by Markowitz is referred to as the foundation of
modern finance. This theory cares about diversifying investment portfolios by a reasonable
logic and aims at minimizing the risk and simultaneously maximizing the return of the
portfolios. One issue that investors are concerned with is the increase in monitoring and
managerial costs when the number of stocks included in their investment portfolios is high.
Therefore, investors prefer limiting the number of stocks they invest in to a subset of all
available stocks. Such portfolios are called sparse portfolios. The question that arises is
whether investing in sparse portfolios is optimal compared to the situation in which all
available stocks are included in the investment portfolio. This research aims at answering
this question.

On the other hand, two main input parameters of the mean-variance portfolio selection model,
namely the mean and the variance of the stock returns, are estimated by the sample mean
and variance since the true values for these parameters are not known. The issue that arises
due to employing the sample mean and variance of the stock returns is that the optimal
portfolios suffer from instability resulting from the fluctuations in the stock returns’ samples.
This means that the optimal portfolio for a given specific stock returns’ sample might not
be optimal for other samples. Hence, the investors should rebalance their portfolios more
often and incur transaction costs due to the instabilities of the portfolios resulting from the
estimation error of the input parameters.

In this research, the sparse mean-variance portfolio selection model derived by including a
restriction on the number of the stocks in the optimal portfolio is employed to construct the
sparse optimal portfolios. Moreover, we examine whether investing in sparse portfolios is an
optimal decision for the risk-neutral and risk-averse investors.

To increase the generalization power of the sparse mean-variance portfolio selection model
under study, the model’s performance is evaluated not only based on the quality of the results
derived from the data used to estimate the input parameters, called in-sample data, but it
is also evaluated based on the quality of the results obtained from the new dataset, called
out-of-sample data. A comprehensive study of the out-of-sample performance is conducted
under the assumptions that short-selling is prohibited and also short-selling is allowed. The
empirical study results substantiate that investing in sparse portfolios is an optimal decision
for the risk-neutral and risk-averse investors. But for highly risk-averse investors, it is optimal
to invest in all the available stocks especially when short-selling is allowed.



viii

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Portfolio Selection with Variance Risk Measure . . . . . . . . . . . . . . . . 6
2.2 The Objective Function in Markowitz Mean-Variance Model . . . . . . . . . 7
2.3 Portfolio Selection with Other Risk Measures than Variance . . . . . . . . . 8
2.4 Applying Real-World Constraints to Markowitz Mean-Variance Model . . . . 8
2.5 Portfolio Selection and Naive Diversification . . . . . . . . . . . . . . . . . . 9
2.6 Sparse Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Portfolio Selection Out-of-Sample Performance Studies . . . . . . . . . . . . 13

CHAPTER 3 RESEARCH METHODOLOGY . . . . . . . . . . . . . . . . . . . . 18
3.1 Mathematical Formulation of the Sparse Portfolio Optimization . . . . . . . 18
3.2 Perspective Reformulation of the Mean-Variance Portfolio Selection Model . 19
3.3 Discussion on Out-of-Sample Study . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Rolling Horizon Training Procedure of Best Sparsity Degree . . . . . 26
3.3.2 Rolling Horizon Testing Procedure of Sparsity Degree . . . . . . . . . 27

CHAPTER 4 NUMERICAL STUDIES . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 The Data under Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



ix

4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Rolling Horizon Training and Testing Procedures for Sparsity Degree 31
4.2.3 In-Sample Performance Study . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Out-of-Sample Performance Study . . . . . . . . . . . . . . . . . . . . 35
4.2.5 Discussion on Model Selection Procedure Implementation . . . . . . . 37

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS . . . . . . . . . . . . 40
5.1 Summary of Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



x

LIST OF TABLES

Table 4.1 Validation experiment results (γ = 1) . . . . . . . . . . . . . . . . . . 32
Table 4.2 Validation experiment results (γ = 0.2) . . . . . . . . . . . . . . . . . 34
Table 4.3 Performance on test set, no short-sell . . . . . . . . . . . . . . . . . . 37
Table 4.4 Performance on test set, with short-sell . . . . . . . . . . . . . . . . . 37



xi

LIST OF FIGURES

Figure 4.1 The evolution of the weekly return of a randomly chosen stock (1993/3
to 2014/7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.2 The investment proportions versus different values of regularization
parameter (γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.3 Training and validation result for α=0.1 and γ=1 (short-selling is pro-
hibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.4 Training and validation result for α=1 and γ=1 (short-selling is prohi-
bited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.5 Training and validation result for α=10 and γ=1 (short-selling is pro-
hibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.6 Training and validation result for α=100 and γ=1 (short-selling is pro-
hibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.7 Training and validation result for α=0.1 and γ=0.2 (short-selling is
allowed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.8 Training and validation result for α=1 and γ=0.2 (short-selling is allowed) 38
Figure 4.9 Training and validation result for α=10 and γ=0.2 (short-selling is

allowed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.10 Training and validation result for α=100 and γ=0.2 (short-selling is

allowed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xii

LIST OF SYMBOLS AND ACRONYMS

MIP Mixed-integer programming
NLP Non-Linear programming
MIQP Mixed-integer quadratic programming
SOCP Second order cone programming
MISOCP Mixed-integer second order cone problem
LASSO Least absolute shrinkage and selection operator
SR Sharp ratio
B&C Branch & Cut
MLE Maximum likelihood estimator
EM Evaluation measure



1

CHAPIER 1 INTRODUCTION

Every year, several billion dollars are invested in various sectors by individual investors, bro-
kers and large fund management corporations which are the representatives of the mutual 
funds, pension funds, and other institutions. Hence, proper selection of the assets and secu-
rities to invest in plays a crucial role in the financial markets to be able to incur the least 
losses and maximize the profit to the highest possible level out of the investments [1, 2]. In 
recent years, more and more investment decisions are made based on the quantitative ap-
proaches and such decisions are made less qualitatively. One of the important quantitative 
approaches is mathematical modeling which is applied to develop mathematical formulations 
considering the financial environment that the investors want to invest in and the investors’ 
goals that have to be embedded. The next step while applying mathematical modeling for 
decision making is to optimize the model to achieve the optimal decision [3].

One prominent and widely used investment strategy is not to restrict investment of all the 
available budget in one asset and invest in different assets or securities which is referred to 
as creating investment portfolios. Therefore, the key question is how to select the assets that 
create the optimal investment portfolios which has led to numerous researches conducted 
in the literature focusing on the portfolio selection problem. Specifically, portfolio selection 
problem cares about allocation of the limited budget to a finite set of assets or securities [4].

The preliminary versions of portfolio selection models used to focus on maximization of the 
discounted expected returns of the assets. Besides, it was widely accepted by the finance 
experts as a rule of thumb that diversified portfolios outperform the portfolios l imited to 
contain one or very few number of assets. In fact, this rule of thumb was interpreted based 
on the law of the large numbers saying the return of the diversified portfolio focusing on 
maximization of the expected return is almost the same as its anticipated expected return 
and such diversification was able t o e liminate t he variance i n t he r eturn o f t he selected 
portfolio [4, 5].

In 1952, Harry Markowitz criticized the shortcomings of relying on maximization of the 
discounted expected returns in his prominent work for which he later won the Nobel prize 
award in economics for his contribution to the quantitative finance. He a rgued t hat the 
securities yields are highly intercorrelated, therefore, diversifying a portfolio following the 
law of the large numbers will not minimize the variance of the portfolio return. In other 
words, he elaborated that the portfolio with the highest expected return will not necessarily 
lead to have the portfolio with the lowest variance [4].
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Furthermore, the other main shortcoming he addressed was the fact that merely relying on
maximizing the discounted expected returns fails to create diversified portfolios since it leads
to investing all the funds in the asset which has the highest discounted return and, when
there are extra funds, this approach allocates the rest of the budget on the other asset(s)
with the second highest discounted return value and the procedure continues untill there is no
budget left to invest. Hence, in this situation, the portfolio will not be diversified and it does
not matter how precisely the discount rates are chosen and estimated and how discounted
returns are derived [4].

Specifically, the main focus of Harry Markowitz in [4] is to address how to choose the compo-
nents of an investment portfolio selection model and what logic have to be behind developing
such models. He suggests to include the expected return and the variance of the returns as
the main components of the portfolio selection model. He also asserts that following such
rule, which he refers to it as “the expected return-variance of return rule”, leads to have the
right type of diversification. According to Markowitz, this rule is not just about investing the
available fund in a lot of securities but actually means that it is crucial to avoid investing
in securities that are highly correlated with each other. The reason is that the high corre-
lation between a set of securities implies those securities belong to the same industry and
the investor is actually misdiversifying if he/she ignores variance-covariance matrix of the
returns while optimizing the portfolio selection model. The idea behind such diversification
is to invest in many securities belonging to different industrial segments so that the portfolio
profitability will not be affected substantially in case that a specific industrial sector that is
invested in be negatively impacted. Therefore, the right diversification occurs when the cor-
relation between the selected securities is low and minimization of the variance of the returns
is included in the portfolio selection model. Markowitz’s findings and proposed approach of
embedding both the risk and the expected return in the portfolio selection model is referred
to as the foundation of the modern finance [1].

The portfolios in stock markets are normally constructed out of 500 to 3200 number of
stocks [6]. Besides, applying the original mean-variance portfolio selection model to build
portfolios typically results in including very large numbers of the considered stocks in the
ultimate optimal portfolio [7]. It is discussed in [8] that the large number of selected stocks in
the optimal portfolios concerns both the investors and the investment companies’ managers
about the following issues :

1. The number of transactions for rebalancing the portfolio can be high and the transac-
tion costs will consequently be high, which is not desirable.

2. The more stocks are included in a portfolio, the higher the monitoring costs will be.



3

To tackle these issues, in practice, investors adjust the degree to which they diversify the
optimal portfolio and aim to construct sparse portfolios meaning that a limited number of
stocks will be held in the portfolio.

To achieve an optimal selection of a subset of stocks out of the total number of available
stocks, one approach that was proposed and is criticized in [7] was to consider a postprocessing
step to omit the investments that are smaller than a specific threshold. This approach does
not work since usually the small investment portions belong to small-market-capitalization
stocks and they will proliferate and it is not wise to eliminate them from the potential choices.
Besides, hundreds of the stocks in the stock markets belong to small-market-capitalization
stocks. Furthermore, from the optimization point of view, the elimination of small investments
in small-market-capitalization stocks will not result in optimal portfolios and the clients
of the investment institutions expect the investment institutions have full control over the
investment market opportunities [7].

With respect to the above-mentioned discussions, it was needed to come up with the mathe-
matical models to enable the decision makers to allocate optimally the available budget to a
subset of stocks out of all possible stocks to invest in. Adding a cardinality constraint to the
portfolio optimization model is known as the main approach that lets the investor control
the size of the subset of stocks that is desired to be included in the optimal portfolio. It is
worth mentioning that the models with the ability to determine the size of the portfolio are
called sparse portfolio optimization models and the size of the subset to be included in the
optimal portfolio is called sparsity degree. Adding a cardinality constraint to the portfolio
optimization model makes the model computationally challenging to be solved by exact solu-
tion methods. Therefore, various solution methods and reformulations are proposed in order
to tackle the computational intractability of the sparse portfolio optimization model for real
world applications which will be discussed extensively in Chapter 2 and Chapter 3.

The assumption that the classical mean-variance portfolio selection model is built on is that
the stock returns follow a multivariate normal distribution [2]. Under this assumption, the
sample mean and sample variance will be the maximum likelihood estimators for the input
parameters which are the mean and covariance of the stock returns. The assumption of normal
multivariate distribution for stock returns is violated most of the times since the distribution
of the stocks tends to have more extreme values and be more fat-tail than the normal dis-
tribution. Therefore, the performance of mean-variance portfolio optimization model will be
impacted by error in the estimation of the input parameters of the model. In other words,
estimation error of input parameters of the model results in unstable investment weights that
fluctuate drastically when the mean-variance portfolio selection model is reoptimized. Such
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instabilities are not desirable since they cause large transaction costs for the investors. Hence,
the model performance in the sense of parameters estimation error mitigation and stability of
the portfolio weights over time are two important issues to be considered while optimizing a
portfolio selection model. The research question that is aimed to be answered in this research
study is whether investing in a sparse portfolio is an optimal decision for risk-neutral and
risk-averse investors or not. To achieve this aim, a comprehensive empirical out-of-sample
performance study is conducted for the sparse mean-variance portfolio optimization model
under the assumptions that short-selling is either allowed or prohibited 1. The sparse mean-
variance portfolio optimization model is a mixed integer second order cone program model
and the advantage of such reformulation is discussed in Chapter 3. In the empirical study,
the evaluation measure which is the linear combination of the risk and the return computed
by the sparse mean-variance portfolio optimization model is compared for the case that no
sparsity restriction is applied on the model and the case in which different sparsity degrees
are imposed on the desired portfolios. In order to tackle the instability of the optimal port-
folio weights which is resulted from the error in estimation of the input parameters of the
model, the sparse mean-variance portfolio optimization model is regularized by adding the
squared l2 − norm penalty (||x||22) to the objective function of the model. Furthermore, the
parameter that determines the right amount of generalization is tuned in a model selection
procedure that is discussed in Chapter 3.

The results derived from the out of sample performance study of the sparse mean-variance
portfolio optimization model reveal that investing in a subset of all the available stocks
results in better portfolios for a risk-neutral and risk-averse investor under the assumption
that short-selling is prohibited. The same result is derived for risk-neutral investors when
short-selling is allowed, but the optimal portfolio for the investors that are highly risk-averse
is built when she includes all the stocks in her investment portfolio by short-selling some of
the stocks and adding the fund gained out of short-selling to the available fund that she has
and invest the aggregation in other stocks.

This research study is organized as follows. The literature of portfolio optimization and out-
of-sample performance study are reviewed in Chapter 2. Chapter 3 discuses the methodology
applied to conduct the empirical study of out-of-sample performance of sparse mean-variance
portfolio optimization which includes description of the mathematical formulation of sparse
portfolio optimization and the model selection procedure. The out-of-sample performance

1. Short-selling is an investment strategy in which the investor borrows the shares of stocks from a broker
and sells them. Subsequently, the money which is earned by short-selling can be used to invest in other
stocks. It is worth mentioning that the borrower is responsible for buying the same number of the shares of
the same stock(s) that was borrowed and returning them to the broker who is also known as the lender of
the stocks [9].
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study of the sparse mean-variance portfolio optimization model is conducted in Chapter 4.
In Chapter 5, the summary of this research study along with its limitations will be discussed.
Furthermore, some avenues for future studies will be presented.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, after discussing the crucial role of constructing investment portfolios and 
diversification of the investment portfolios, the basic mean-variance portfolio selection model 
will be elaborated specifically to emphasize on the revolutionary role of this optimization 
model in the quantitative finance field. The importance of  th is model re lies on  the logic 
that is behind its formulation which leads to a diversified and efficient portfolio based on 
appropriately inclusion of the risk aversion in the portfolio selection optimization model. 
Then, the different reformulations of the objective function of the classic portfolio selection 
model and the efforts to enhance the applicability of this model with the help of considering 
various constraints that are defined based on real-world needs will be reviewed. The focus of 
the rest of this chapter will be on discussing the usefulness of sparse portfolio construction and 
the models that result in sparse and stable portfolios, the computational challenges for this 
stream of models and the advances that are achieved. Finally, the most applied out-of-sample 
measures and the researches conducted in this area will be elaborated.

2.1 Portfolio Selection with Variance Risk Measure

Employing the variance-covariance of the returns as the risk measure along with the ex-
pected returns of the securities as proposed by Markowitz’s has led to a revolution in the 
quantitative finance and has had a great influence on the theoretical and practical aspects 
of portfolio management field from then on [10]. Markowitz defined his portfolio selection 
problem following his “expected return-variance of return rule” as follows :

max
x∈Rn

+
µ̂Tx

min
x∈Rn

+
xT Σ̂x

s.t. eTx = 1

(2.1)

here µ̂ ∈ Rn is a vector that contains the expected marginal returns of the stocks, Σ̂ ∈
Rn×n represents the variance-covariance matrix of the returns, e ∈ Rn

+ is a vector with all
the elements equal to one and the elements of x are the investment proportions. The first
objective defines the expected value of the portfolios returns and the second term refers to
the variance of the returns. There is also one sign constraint that means no short-sell is
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allowed and the investment proportions have to be zero or positive amounts, i.e. x ∈ Rn
+,

although this constraint can easily be removed. Furthermore, his proposed model contains
one hard constraint that implies the summation of the investments must be equal to the
total investment budget. This hard constraint imposes that the summation of the investment
portions, which each of them can take the value as 0 ≤ x ≤ 1 , be equal to one. By fixing the
expected return to a desired return, his model solves for the associate risk that the decision
maker takes to achieve her desired return. This solution approach results to build the efficient
frontier which gives the idea to the investor that for each level of profitability what level of
risk she has to take. In section 2.2, the other versions of formulating the objective function
of this model will be discussed based on the researches that are conducted in the literature
of portfolio selection models.

Since 1952, numerous researches in different fields such as finance, mathematics and computer
science have been conducted to improve this approach based on faster and more efficient
computation and also enhance real-world applicability of this risk-return approach. Besides,
numerous variants of this model is solved with various methodologies tested on different data
and performance measures (see [1] for a comprehensive review).

2.2 The Objective Function in Markowitz Mean-Variance Model

There are different formulations for the mean-variance portfolio optimization model in terms
of defining the objective function. The problem either is a single-objective or a multi-objective
model. In case of the single-objective function, it is presumed that the desired return level
is known to the decision maker and by including the restricted expected return term by the
known return level in the constraints, the objective function of the model minimizes the risk
for each level of the desired portfolio return. This type of formulation results in creating the
efficient frontier that helps the decision maker to see what is the optimal risk level for every
level of the return that an investor prefers to achieve. The other stream that considers the
multi-objective case, either transforms it to a single-objective function by giving weights to
each of the return and risk terms or applies Pareto/dominance-based approaches [1].

In [1], after conducting a comprehensive review regarding the objective functions that are
considered in the literature of the mean-variance portfolio optimization, the authors conclude
that multi-objective formulations are preferred to the single-objective formulation since in
reality the return level is not always known to the decision maker. Besides, their research
reveals that the tendency to apply weighted sum method to convert the multi-objective model
to a single objective one was high and Pareto/dominance-based approaches are employed in
the recent years.
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2.3 Portfolio Selection with Other Risk Measures than Variance

For the original mean–variance portfolio optimization model it is assumed that the assets
return follow a normal multivariate distribution. This assumption is discussed and criticized
in the literature of portfolio selection model arguing that the distribution of the assets tends
to have more extreme values and be more fat-tail than the normal distribution. Therefore,
there is the need to consider the higher moments other than the first (expected mean) and
the second momemts (the variance) of the securities returns distribution in order to be able
to describe the behaviour of the portfolio more precisely [2]. Since our focus in this research
study is on the classical Markowitz mean-variance portfolio selection framework, we refer you
to the studies done in [11], [12], [13], [14], [15], [16], [17], [18], [19] and [20] where different
risk measures than the variance of the returns are investigated.

2.4 Applying Real-World Constraints to Markowitz Mean-Variance Model

Despite the usefulness of the original mean-variance portfolio selection model, there is the
need to enhance its advantages by introducing the constraint(s) depending on the desired
real-world application of the model. As discussed before, the original mean-variance port-
folio model contains one hard constraint which sets the summation of investment amounts
(weights) of all chosen assets in the optimal portfolio to be equal to the total available budget
(one).

The most applied constraints to the mean-variance portfolio selection model, beside the
mentioned main hard constraint, are the following constraints but not limited to them [1] :

The boundary constraint that restricts the value of each stock amount (weight) between a
lower and an upper bound.

The cardinality constraint that ensures the number of the assets included in a portfolio to be
equal or within a specific range.

The transaction costs constraint which relates to the fee that the investors pay when they sell
or buy the stocks in the portfolio.

It is worth mentioning that even adding the linear and simple structured constraints to
the original mean-variance portfolio selection model results in a combinatorial optimization
problem and the large number of stocks to invest leads it to have a complex search [21]. We
will get back to this issue in section 2.6 for adding the cardinality constraint to the model
which is a nonlinear and non-convex constraint and makes the model become intractable.

We have to add that numerous researches are conducted to adjust the original mean-variance
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portfolio selection model and help to enhance its applicability in the real financial world
which we refer the reader to [1], [22] and [23] for a thorough investigation of the literature
that exists in this regard.

2.5 Portfolio Selection and Naive Diversification

As mentioned before, diversification is an important component of the investment decisions
and diversifying the investments is known to be important in terms of reducing the invest-
ments risks. One of the investment diversification approaches is the naïve diversification
which is the investment strategy that allocates uniformly the available budget to all the se-
curities available for being invested in. There are studies that advocate applicability of naïve
diversification as a general heuristics for selection and as an acceptable investment strategy
by asserting that behavioral experiments show that people tend to invest equally in different
investment opportunities specifically when the uncertainty in the market is high [24]. But, be-
side such justifications coming from the behavioral experiments, there are studies conducted
to see if there is any superiority for applying naïve diversification rather than the optimiza-
tion models developed for portfolio selections [25]. The answer as discussed in [26] is that, in
uncertain situations and considering the distribution of securities returns to be ambiguous,
the result derived from the worst-case risk minimizing portfolio models will converge to the
equally invested portfolio. But, the objection against such justification is that generalizing
decisions made based on worst-case situations is not reasonable in the sense that tendency of
investors to take risk is different and it is not always the case that no information or inference
about the investment opportunities be available to the investors.

In the rest of the literature review section, another approach for diversifying the allocation
of the wealth in the stock market will be examined which aims at restricting the number of
chosen stocks in the portfolios.

2.6 Sparse Portfolios

There are two main approaches to develop mathematical models with the ability to select a
subset of all available stocks and such models are called sparse models. The first technique
is to add a constraint which is referred to as cardinality constraint in the literature of sparse
portfolio selection. Cardinality constraint is defined as {x ≤ z, eT z ≤ k}, where we have
x ∈ Rn

+, z ∈ {0, 1}n and k which determines the sparsity degree. As discussed in section 2.1,
the classical mean-variance portfolio selection model can be represented as a single-objective
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mathematical model as :

min
x∈Rn

+
xT Σ̂x− µ̂Tx

s.t. eTx = 1
(2.2)

The mean-variance portfolio selection model defined in (2.2) is a quadratic model that for
simplicity the weights of the return and the risk of the portfolio optimization model are
assumed to be equal as one in the objective function. Therefore, adding the cardinality
constraint and consequently its binary variable to model (2.2) results in a mixed-integer
quadratic programming (MIQP) model. Quadratic models even with significant number of
variables can be solved optimally as convex models by commercial solvers such as CPLEX
in a reasonable amount of time [27]. But, MIQP’s are nonlinear and nonconvex which are
proved to belong to the NP-hard class of models [28, 29], therefore, such formulations are
computationally challenging to be solved [27].

As mentioned before, the number of available stocks in real-world problems vary in the range
[500, 3200] and it is also desired to have the portfolios with the size in [20, 50] [6]. The research
studies that aimed to solve the mean-variance portfolio selection problems with cardinality
constraint as a mixed-integer nonlinear model with exact solution approaches were able to
handle about 400 stocks [6]. Since the applied model in this empirical study solves the sparse
mean-variance by exact solution methods, a comprehensive review of mean-variance models
with cardinality constraints solved with exact solution methods will be presented in this
section.

For the first time, Bienstock (1996) [28] employed branch-and-cut algorithm to solve problem
(2.2) with cardinality constraint considering n = 40 and 20 ≤ k ≤ 25. Another branch-
and-bound algorithm was suggested to solve the mean-variance portfolio selection problem
constrained with a cardinality constraint in [30] which was tested for a dataset that contained
30 stocks. Also, a Lagrangian relaxation procedure was suggested in [29] and a branch-and-
bound algorithm to solve the relaxed MIQP formulation of the sparse mean-variance portfolio
selection problem. This procedure was able to solve the problem of 100 stocks optimally and
the gap between the upper and the lower bound for handling the problems of 200 stocks was
reported to be about 0.0005.

Later on, more efficient branch-and-bound algorithms were implemented in [31] and [32]
which led to certifiable optimality of handling instances including 200 stocks. Since applying
branch-and-bound algorithms to the cardinality constrainted model results in weak relaxa-
tions coming from the big-M method [33], the idea of reformulating the sparse mean-variance
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portfolio selection model as a second order cone programming model was suggested in [34] to
achieve tighter relaxations for second order cone constraints and, subsequently, to have tigh-
ter optimality bounds. Improving the suggested method in [34], non-linear branch-and-bound
methods were proposed in [35] and [36] to handle up to 450 stocks in a sparse portfolio op-
timization problem and result in tighter second order cone relaxations and, therefore, better
certifiable optimality.

Another approach to achieve tighter relaxations for sparse mean-variance portfolio selection
model was proposed in [37] by defining the covariance matrix (Σ) as summation of diagonal
matrix (D) and a positive semidefinite matrix (Σ−D � 0). The next step of their proposed
procedure was to generate perspective cuts. This method resulted in bound gap of less than
one percent for sparse mean-variance portfolio selection problem of size 200 stocks. After-
wards, Frangioni and Gentile in [38] and [39] extracted larger diagonal matrices by solving
auxilliary semidefinite optimization problems which led to handle sparse mean-variance port-
folio selection problem with 400 stocks. More extensions on perspective reformulations were
presented in [40], [41] and [42] which led to derive an equivalent mixed-integer second order
cone problem (MISOCP) for the sparse mean-variance portfolio selection problem under the
condition of having a positive definite covariance matrix (Σ � 0) and a positive semidefinite
matrix as Σ−D � 0 after extracting the diagonal matrix (D � 0) from the positive definite
covariance matrix. Their proposed perspective reformulations was able to handle up to 400
stocks. The perspective reformulations for sparse mean-variance portfolio selection problem
will be extensively discussed in Chapter 3. Besides efforts to solve sparse mean-variance port-
folio selection model as a nonlinear mixed-integer problem, there are studies to reformulate
this model as a mixed-integer linear model and solve them for problem size of 400 to 475
stocks [43, 44].

As reviewed in this section, the best exact methods that are applied to solve the mean-
variance portfolio selection problem constrained with a cardinality constraint were able to
solve the problem size of up to 400 stocks to a certifiable optimality level in a reasonable
amount of time. The other stream of the researches conducted to solve such mixed-integer
non-linear problem focused on developing heuristics and meta-heuristics algorithms to ta-
ckle the problem of large sizes. However, the heuristic and meta-heuristic approaches do not
guarantee to result in optimal solutions and, most of the time, are able to find near optimal
solutions and, in very rare cases, optimal solutions in a reasonable time. Since the number
of such studies is high and a comprehensive review is done in [1], we refer the interested
readers to examine this reference. Besides, there are some studies that are more recent and
not mentioned in [1] such as [45], [46] and [3]. In [45] and [3], two particle swarm optimi-
zation algorithms are employed to solve the mean-variance portfolio selection problem with
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a cardinality constraint. Furthermore, a hybrid meta-heuristic algorithm [46] consisting of
simulated annealing, genetic algorithm, electromagnetism algorithm, genetic network pro-
gramming and particle swarm optimization is developed to solve the mean-variance portfolio
selection problem with cardinality constraint.

The other way a sparse portfolio selection can be obtained is by applying norm penalties to
the model. The norm penalty function can be defined as ||x||ρ which can be either added
to the objective function as λ||x||ρ or considered as a constraint like ||x||ρ ≤ λ, where λ is
a parameter defined as a scalar that controls the magnitude of the penalty. For imposing
sparsity to the model, ρ can take the value 0 or 1 ; i.e. l0−norm, ||x||0, and l1−norm, ||x||1.
Most of the time, l0 − norm is applied in the model as the cardinality constraint defined via
||x||0 = {x ≤ z, eT z ≤ k, z ∈ {0, 1}n} which limitations is discussed before.

Applying l1−norm, also known as least absolute shrinkage and selection operator (LASSO),
results in a convex formulation that is convenient to solve comparing to the non-convex model
led by employing l0 − norm to the model.

Introduction of l1 − norm was done by Tibshirani [47]. Since a convex model will be the
outcome of adding l1−norm to the portfolio selection model, the convex optimization solution
approaches are applicable to solve the model [48]. Unfortunately, unlike cardinality constraint
model which enables the decision maker to choose the desired degree of sparsity, l1 − norm
does not allow to choose the sparsity degree, k, directly. The other shortcoming that has
been addressed for l1−norm is that it has positive effect in cases that short-sales are allowed
and not satisfactory effect in term of sparsifying the model in the cases that short-sales are
prohibited [48]. In other words, when short selling is prohibited and the decision variable, xi,
is not allowed to take negative values, l1 − norm can only take value one as the summation
of the non-negative investment proportions, xi’s. Therefore, the sparsity cannot be resulted
from the portfolio selection model by imposing l1 − norm in cases that short selling is not
allowed.

Before moving to review the literature of the studies aiming at improving the out-of-sample
performance of the mean-variance portfolio selection problem, it is worth mentioning that the
regularization penalties like l1 − norm, which does not affect the convexity of the problem,
are able to handle up to 500 securities and result to optimal and sparse portfolios and the
issue in this approach is the inability to control directly and optimally the sparsity degree.
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2.7 Portfolio Selection Out-of-Sample Performance Studies

The classical mean-variance portfolio selection model proposed by Markowitz is widely ap-
plied to construct optimal portfolios, but it suffers from shortcomings with respect to their
unsatisfactory out-of-sample performance. Specifically, the generalization error of the classi-
cal mean-variance portfolio selection model is high and affects its performance. The accuracy
of the input parameters estimation of the model, which are the mean and the variance, is
very important since we are not aware of the actual values of these parameters. Therefore,
there is a need to employ appropriate approches for estimating the model parameters. For
this purpose, it is widely relied on statistical approaches to make reliable parameter estima-
tions. In statistical experiments, as there is no access to the true value of the parameters and
the true distribution of the data under study, the experiments are conducted based on the
limited available data/samples. The performance of the statistical experiments are evaluated
not only based on the quality of the results derived from the employed data to estimate the
parameters, which is called the in-sample-data, but it is also evaluated based on the quality
of the results gained by the new set of data called out-of-sample data. In order to do the
out-of-sample study evaluation, a measure has to be defined aligned with the objective of the
model [49].

In the literature of mean-variance portfolio selection model, the measures that are widely
used to evaluate the out-of-sample performance of the model are the out-of-sample mean
(µ̄), out-of-sample variance ( ¯var), Sharpe ratio (ŜR) and portfolio turnover [50]. Sharpe
ratio is derived through dividing the out-of-sample mean by the out-of-sample variance. In
defining portfolio turnover, the aim is to see how much difference is between the investment
done in a particular stock comparing to the next period and averaging over the total number
of experiments for each stock under study.

The studies regarding the out-of-sample performance of the portfolio selection models can
be categorized in three main streams. The first stream is concerned with achieving better
out-of-sample performance by applying robust and stochastic optimization approaches. This
class of models are extensively reviewed in [1]. The second stream deals with the instability
of the input parameters, the estimated mean and covariance matrices, by employing the
robust statistical estimators for the mean and the variance [51]. The idea in this approach
is to eliminate and shrink the effect of outliers that are the extreme and rarely happening
observations in the performance of the portfolio selection model [52]. The third technique is
employing regularization terms to achieve more stable and robust out-of-sample performance,
which is the focus of this research study and the researches done in this domain will be
extensively reviewed in the following paragraphs.
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The preliminary goal of applying norms to mean-variance portfolio selection model was to
tackle the instability of the optimal portfolio weights caused by the estimation error of the
mean and the covariance matrix as the main model parameters. In other words, the optimal
investment portions derived from the mean-variance portfolio selection model might be opti-
mal for the sample that the mean and the covariance matrix are calculated from, but due to
sample fluctuations such optimal weights are unstable and drastically affect the out-of-sample
performance of the model under study (see [53], [54], [55], [56], [57], [58], [59] and [60]). In-
vestigating the portfolio selection problem in the context of statistical learning theory, such
instabilities are caused by over-fitting of the model. Over-fitting means the model is suitable
for the sample of the data that its parameters are derived from but it fails to estimate the
other observations reliably [49]. Before examining the techniques to overcome overfitting, let
us explain overfitting problem from a machine learning and statistical learning theory point
of view. Since it is common to encounter large estimation errors in the models designed in
machine and statistical learning field, the out-of-sample performance will be affected and will
not be satisfactory. It means that the model will not be able to reliably preform in the new
data sets. Therefore, numerous studies are conducted in the field of machine learning and
statistical learning to improve such undesirable performances and overfitting issue and one
common technique is to regularize such models [10]. Specifically, in statistical and machine
learning, upper bounds that quantify the model expected generalization performance will
be achieved on the generalization error by regularization. The error bounds decrease while
the capacity of the problem to be fitted to the data set is diminished and this mechanism
leads to better generalization of the model, meaning the model can be used by various data
sets [61, 62].

The portfolio optimization problem is also known as a special case of regression model [10].
Hence, the norms that are applied in machine and statistical learning models to regularize
such models can also be employed in portfolio selection model in order to tackle the overfitting
and undesirable out-of-sample performance issue. Two norms that are widely applied to
regularize the portfolio selection model are l1 − norm and l2 − norm that will be discussed
more.

Applying l1 − norm leads to improve out-of-sample performance of the portfolio selection
model and at the same time results in a sparse portfolio [48]. The first attempts to apply
l1 − norm to portfolio selection model as a regularizer was conducted in [57] and [63]. The
mean-variance portfolio selection model was reformulated as a least-squares regression model
constrained to the budget constraint in [63]. The result of applying the l1 − norm regulari-
zation to the reformulated model was to achieve a sparse portfolio selection model with an
improved out-of-sample Sharpe ratio performance.
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The portfolio selection model that was investigated in [57] was a minimum-variance portfolio
problem. The logic behind omitting the maximization of mean of the stock returns was said to
be avoiding the high vulnerability of the mean parameter, its estimation error that commonly
occurs and, consequently, its adverse impact on the out-of-sample performance of the portfolio
selection model [57]. The improved out-of-sample performance of the regularized minimum-
variance portfolio model with respect to variance, Sharpe ratio, and turnover performance
measures is also substantiated in [57] comparing to the case of unregularized minimum-
variance portfolio model. The other regularized portfolio selection models by l1−norm aiming
at achieving better out-of-sample performances and sparse portfolios are investigated in [64],
[65], [66], [67], [68], [69] and [70].

Another interesting research to propose a regularization penalty derived from l1−norm was
conducted in [48]. This called sorted l1 − norm penalization (SLOPE), ρλ(x), is derived as
the summation of multiple l1 − norm regularizers that each l1 − norm has its own penalty
coefficient and it is defined as :

ρλ(x) :=
n∑
j=1

λj|x(j)| (2.3)

where x(j) is the jth largest term of x in term of absolute value and λj’s follow the order
λ1 ≤ λ2 ≤ ... ≤ λn. It is shown in [48] that by choosing different penalty sequences, this
regularization approach can result in the whole set of optimal portfolios in terms of risk
diversification frontier. Moreover, it is shown that the out-of-sample performance of the model
measured in terms of turnover improves comparing to the unregularized model and, also, the
case of regularizing by l1 − norm.

For the first time, Andrey N. Tikhonov introduced the squared l2−norm penalty (||x||22) that
is also known as ridge regularization [71]. Adding squared l2− norm penalty to the portfolio
selection model results in a convex model. Consequently, the convex optimization solution
approaches are applicable to solve the model [48]. The squared l2 − norm regularizes the
portfolio weights and mitigates the extreme portfolio weights [71], hence it helps to promote
the out-of-sample performance of the model. The squared l2 − norm penalty leads to have
diversified and large size portfolios and does not result in any sparsity [10,71].

Since l1 − norm tends to set some weights to zero and the number of the zero weights are
not controllable and l2 − norm helps diversification and lowers the extreme weights, both
of these two regularizers are recommended to be applied in the portfolio selection models
to achieve sparse portfolios and low generalization error [71]. In this direction, l1 − norm

and l2 − norm regularizers are applied in the minimum variance portfolio selection model
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in [71] and a mechanism is proposed to calibrate the norm penalty coefficients in order to
improve the out-of-sample performance of the model. Another effort was made in [72] to
improve the stability of the model by adding l2 − norm to the minimum variance portfolio
selection model and achieving sparse optimal portfolio weights by applying l1− norm to the
objective function of the model. It is argued in [72] that the out-of-sample performance of
the model improved and also comparing to the naïve diversification a more stable and better
out-of-sample performance is achieved.

In [73], l0 − norm and l2 − norm are applied to the mean-variance portfolio selection model
and the model is solved as a sequence of penalized subproblems to overcome the complexity
of the resulted non-convex model. It is claimed in [73] that the proposed solution procedure
can result in suboptimal solutions that are efficient compared to the local solutions resulting
from applying other heuristics. Besides, the improvement of the out-of-sample performance
of the mean-variance portfolio selection model is reported.

Another recent mean-variance portfolio selection model employing l0 − norm and l2 − norm
is proposed in [6]. The ultimate optimization model in [6] is the reformulation of the mean-
variance portfolio selection model as a constrained regression problem. Furthermore, the
l0 − norm is defined by substitution of xizi instead of xi ≤ zi to imply the logical constraint
xi = 0 if zi = 0. The reason they substituted a non-convex term instead of a linear constraint
is to overcome the issue of weak relaxation while solving the sparsity constraint with the
big-M method [74]. A solution procedure called "scalable outer-approximation algorithm"
is proposed in [6] to achieve exact solution for the mixed-integer quadratic programming
reformulation considering the stock market index S&P500 with the power of resulting to
certifiable optimality in less than 10 minutes. Also this powerful solution algorithm is shown
to have the ability to handle large size mean-variance portfolio selection problems considering
the data of Wilshire5000 index, which includes about 3500 stocks in the US stock market,
with a solution gap of 2% from optimality. Through the various experiments with different
problem sizes done in [6], this suggested reformulation and solution procedure is compared
to the MISOCP reformulation of the mean-variance portfolio selection problem proposed
in [40] and [41] with the modification to the diagonal matrix (D � 0) and defining it as λI
which is suggested in [75] and [76]. It is reported that although the MISOCP reformulation
of portfolio selection model is powerful in handling the problems with the size of about
500, it fails to compete with the power of mean-variance portfolio selection reformulation
and the scalable outer-approximation algorithm in [6] to solve the problems with about
1000 or more stocks within a reasonable amount of time. Specifically, the "scalable outer-
approximation algorithm", which is actually an enhanced cutting-plane method, accelerates
its convergence by starting the solution procedure from a warm-start value for the integer
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variable zi derived by a heuristic algorithm proposed in [77] and improved in [78] that uses
the objective function gradient information. Besides, this solution algorithm benefits from
employing the lazy-constraint callbacks available in CPLEX.

The research question that is aimed to be answered in this research study is whether investing
in a sparse portfolio is an optimal decision for risk-neutral and risk-averse investors. To the
best of our knowledge, there is not study in the literature of sparse portfolio optimization
that specifically aims at evaluating the out-of-sample performance of the sparse portfolio
selection models with presence of l0 − norm and squared l2 − norm.
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CHAPTER 3 RESEARCH METHODOLOGY

In this chapter, after discussing the mathematical reformulation for sparse mean-variance 
portfolio selection model, the out-of-sample performance study strategy for evaluating the 
performance of the sparse mean-variance portfolio selection model will be elaborated. Speci-
fically, the aim in section 3.1 is to present the evolution of the sparse mean-variance portfolio 
selection model as a mixed integer second order cone program that will be used to conduct 
the numerical study in chapter 4. Furthermore, the importance and logic behind the out-of-
sample performance study approach required for conducting empirical study in chapter 4 is 
presented.

3.1 Mathematical Formulation of the Sparse Portfolio Optimization

As reviewed in chapter 2, there have been numerous researches conducted to solve sparse 
portfolio selection model to handle real-world size problems. Also, different approaches to 
reformulate problem (2.1) to achieve sparse portfolios as a non-convex model by considering 
l0 − norm or a convex model by adding l1 − norm were discussed 1. The focus in this research 
is to embed l0 − norm in the portfolio selection problem in order to have sparse optimal 
solutions and simultaneously enabling the decision maker to decide the degree to which the 
sparsity is desired.

As a recall, the sparse portfolio selection model with a single-objective function and l0 −norm 
aiming for stable and robust solutions can be defined as the following :

min
x∈Rn

+
xT Σ̂x− µ̂Tx+ γ||x||22

s.t. eTx = 1

||x||0 ≤ k.

(3.1)

The squared l2 − norm is considered in problem (3.1) to regularize the portfolio weights
and mitigate the extreme portfolio weights [71], hence it helps to promote the out-of-sample
performance of the model. The out-of-sample performance of the model and the impact of
l2 − norm on it will be discussed in section 3.3.

When representing the cardinality constraint ||x||0 ≤ k by ∃z ∈ {0, 1}n, x ≤ z, eT z ≤ k,

1. l1 − norm does not allow to exactly control the sparsity.
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problem (3.1) can be rewritten as follows :

min
x∈Rn

+,z∈{0,1}n
xT Σ̂x− µ̂Tx+ γ||x||22

s.t. eTx = 1

x ≤ z

eT z ≤ k.

(3.2)

As mentioned in chapter 2, branch-and-bound is the preliminary solution method applied
to solve the sparse mean-variance portfolio optimization model as a mixed-integer quadratic
programming model. Since applying branch-and-bound algorithms to cardinality constrainted
models results in weak relaxations coming from the big-M method related to the constraint
x ≤ z [33], the idea of reformulating the sparse mean-variance portfolio selection model
as a second order cone programming model and employing non-linear branch-and-bound
algorithm was suggested in [34] to achieve tighter relaxations for second order cone constraints
and, subsequently, to have tighter optimality bounds. Improving the suggested method in [34],
non-linear branch-and-bound methods were proposed in [35] and [36] to handle up to 450
stocks in a sparse portfolio optimization problem and result in tighter second order cone
relaxations and, therefore, better certifiable optimality.

Another approach to achieve tighter relaxations for sparse mean-variance portfolio selection
model was proposed in [37] by developing perspective reformulation of the sparse mean-
variance portfolio optimization problem and solve it by either generating perspective cuts or
reformulating the perspective formulation as a mixed integer second order cone programming
(MISOCP) model and solving it by off-the-shelf optimization softwares.

The focus of section 3.2 is on the evolution of perspective reformulation to benefit from the
tighter relaxations and good quality solutions resulting from it in the empirical study of the
sparse mean-variance portfolio selection problem which will be presented in chapter 4.

3.2 Perspective Reformulation of the Mean-Variance Portfolio Selection Model

It is well-known that when solving the mixed integer problem defined as :

min
x,z

{f(x) + cT z : Ax+Bz ≤ d, z ∈ {0, 1}n, x ∈ Rn
+}, (3.3)

with the Branch & Cut (B&C) approach, the continuous relaxation of (3.3), requiring
z ∈ [0, 1]n, is used and results in the lower bound of the objective function in (3.3). Then,
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adding cuts enhances the quality of the lower bound and results in a better determination of
the convex hull related to the integer solutions. As mentioned before, using the linear rela-
tionship between the continuous and the integer variable (x ≤ z) and using big-M technique
lead to weak relaxations and, depending on the structure of the MIP problem, perspective
reformulation for MIP problem and adding perspective cuts was discussed to be a successful
approach to improve the quality of the lower bounds of the solution procedure [6]. In order
to be able to reformulate a problem in a perspective form, the objective function has to be
separable. Although the objective function of the sparse portfolio selection problem is not
separable because of the covariance matrix which includes the relations of each stock with
itself and the other stocks in the market, there are reformulation techniques to separate the
objective function such that at least a part of the objective function can be used to deve-
lop the perspective reformulation and perspective cuts [37]. In order to make the objective
function of the sparse portfolio selection model separable, it is suggested in [37] to extract a
diagonal matrix, D � 0, from the covariance matrix, Σ̂, in the way that Σ̂−D be a positive
semidefinite matrix, Σ̂ − D � 0. Therefore, the sparse portfolio selection model with the
separable objective function will be defined as :

min
x∈Rn

+,z∈{0,1}n
xT (Σ̂−D)x+ xTDx− µ̂Tx

s.t. eTx = 1

x ≤ z

eT z ≤ k.

(3.4)

The abovementioned reformulation facilitates the writing of the perspective reformulation
and subsequently applying perspective cuts.

Generally, the perspective function for a function f : R → R is the function f̃ : R2 → R
defined as :

f̃(z, x) =


0 if z = 0

zf(x
z
) if z ≥ 0

∞ if otherwise.

(3.5)

Hence, the perspective reformulation for the separable part of the sparse portfolio selection
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model defined in (3.4) can be retpresented as follows :

min
x∈Rn

+,z∈{0,1}n
xT (Σ̂−D)x+

n∑
i=1
zi

[
dii(

xi
zi

)2 − µ̂i(
xi
zi

)
]

s.t. eTx = 1

x ≤ z

eT z ≤ k,

(3.6)

where dii ≥ 0 is the ith element in the diagonal of matrix D [37].

The perspective reformulation described in (3.6) has a highly non-linear objective function
which subsequently is costly in terms of computations to be solved. To tackle this issue, there
are two types of reformulations as a Semi-Infinite Non-Linear Program (Semi-Infinite NLP)
which deals with adding perspective cuts or as a Second Order Cone Program (SOCP).

Based on theorem 1 in [37], perspective cuts are the set of linear inequalities that represent
the epigraphs as :

f̂(zi, xi) := inf{vi|vi ≥ zi [f(x̄i)− x̄is] + xis ∀ s ∈ ∇f(x̄i),∀ x̄i ∈ [0, 1], ∀ i ∈ [n]}.
(3.7)

Therefore, the sparse portfolio optimization model with perspective cuts can be reformulated
as follows when considering f(xi) = dix

2
i − µ̂ixi :

min
x∈Rn

+,z∈{0,1}n,v∈Rn
xT (Σ̂−D)x+ eTv

s.t. vi ≥ xi (2dix̄i − µ̂i)− zi
(
dix̄i

2
)
∀ x̄i ∈ [0, 1], ∀ i ∈ [n]

eTx = 1

eT z ≤ k.

(3.8)

Since the separable part of the objective function in (3.4) had quadratic form, the reformula-
tion in (3.8) results in a semi-infinite mixed integer non-linear model. The approach to solve
problem (3.8) is to keep a small subset of constraints related to perspective cuts and solve
the relaxed version of (3.8). Afterwards, the violated perspective cuts (constraints) will be
added iteratively to the problem in order to achieve the feasible and optimal solution [39].

Another reformulation to benefit from tight relaxations resulting from perspective formula-
tion in (3.6) is to reformulate it as a Mixed-Integer SOCP. This aim is achievable by refro-
mulating the epigraph of the perspective fucntion in (3.6) as conic inequalities. Therefore,
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the following representation is required [39] :

min
x∈Rn

+,z∈{0,1}n,v∈Rn
+

xT (Σ̂−D)x+ diag(D)Tv − µ̂Tx

s.t. vi ≥
x2
i

zi
∀ i ∈ [n]

eTx = 1

eT z ≤ k.

(3.9)

The first constraint in (3.9) can be rewritten as :

x2
i − vizi ≤ 0 ∀ i ∈ [n] , (3.10)

which represents a convex set described by non-convex functions and there is no guarantee to
achieve the globally optimal solution while employing non-linear programming (NLP) solvers
to solve the relaxation of the model. Instead, it is preferable to convert (3.10) to a convex
constraint by the following mathematical manipulation :

√
4x2

i + (vi − zi)2 − (vi + zi) ≤ 0 ∀ i ∈ [n] . (3.11)

Set of constraints defined in (3.11) can also be shown as :

‖ (2xi, vi − zi)T ‖2 ≤ (vi + zi) ∀ i ∈ [n] . (3.12)

Constraint (3.10) is the set of rotated second order cone constraints and constraint (3.11)
represents the set of second order cone constraints which both are equivalent [41]. Now, set
of constraints in (3.12) can be substituted in (3.9) which results in :

min
x∈Rn

+,z∈{0,1}n,v∈Rn
+

xT (Σ̂−D)x+ diag(D)Tv − µ̂Tx

s.t. ‖ (2xi, vi − zi)T ‖2 ≤ (vi + zi) ∀ i ∈ [n]

eTx = 1

eT z ≤ k.

(3.13)

The question that arises in this stage is how to determine matrix D as the separable part
of the covariance matrix. As a simple approach, matrix D is defined in [37] by calculating
the minimum eigenvalue (γmin) of the covariance matrix (Σ̂) and set D = γminI. Another
technique applied in [38] and [39] to reflect more of the covariance matrix Σ̂ in matrix D
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to result in tighter relaxations is to solve an auxiliary semidefinite program. Determination
of matrix D in terms of extracting a diagonal matrix that leads to a tighter continuous
relaxation of the perspective reformulated model is improved in [42] by solving a semidefinite
program. Recently, the idea of imposing a ridge regularizer to the objective function of the
model and setting matrix D as γI is employed in [75] and [76]. Furthermore, the combination
of the ridge regularizer and decomposition of the covariance matrix Σ to the diagonal matrix
D � 0 and positive semidefinite matrix Σ̂−D � 0 is applied in [6].

In the empirical study conducted in chapter 4, the strategy in [75] and [76] is followed
by defining matrix D = γI, therefore the ridge regularizer is embeded in the objective
function of (3.13). Parameter γ is called the regularizer parameter which its role will be
explained in section 3.3.Furthermore, risk aversion parameter represented by α is considered
in the objective function of the model to trade-off between the risk and the return of the
sparse portfolios. Moreover, the non-separable part of the covariance matrix is factorized as
Σ̂−D = XTX to write the quadratic part of the objective function in the form of the squared
l2−norm. Ultimately, the sparse mean-variance portfolio optimization problem under study
will be formulated as a MISOCP model as follows :

min
x∈Rn

+,z∈{0,1}n,v∈Rn
+

α‖Xx‖2
2 + γeTv − µ̂Tx

s.t. ‖ (2xi, vi − zi)T ‖2 ≤ (vi + zi) ∀ i ∈ [n]

eTx = 1

eT z ≤ k.

(3.14)

Since x is allowed to take non-negative values, i.e., x ∈ Rn
+, shortselling is prohibited in (3.14).

Hence, in order to study the case that shortselling is allowed, problem (3.14) is modified as
follows by setting x as a free variable :

min
x∈R,z∈{0,1}n,v∈Rn

+

α‖Xx‖2
2 + γeTv − µ̂Tx

s.t. ‖ (2xi, vi − zi)T ‖2 ≤ (vi + zi) ∀ i ∈ [n]

eTx = 1

eT z ≤ k

− z ≤ x ≤ z

(3.15)

It is worth mentioning that each zi as a binary decision variable excludes the ith stock from
the optimal sparse portfolio when takes value zero and includes the ith stock in the optimal
sparse portfolio when takes value one. Afterwards, if the ith stock is included in the optimal
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sparse portfolio, zi = 1, the continuous variable xi can take its optimal weight in the interval
[0, 1] for the case that short-selling is prohibited and is able to take its optimal weight in the
interval [−1, 1] for the case that short-selling is allowed.

The empirical study of out-of-sample performance of the sparse mean-variance portfolio opti-
mization problem that will be conducted in chapter 4 exploits the models presented in (3.14)
and (3.15).

3.3 Discussion on Out-of-Sample Study

In order to employ the sparse mean-variance portfolio selection model to determine the op-
timal investment portions, determination of the mean and the covariance matrix is required.
Since the actual values of the mean and the covariance matrix are not known, these model
inputs are estimated by sample mean (µ̂) and sample covariance matrix (Σ̂) under the as-
sumption that the stock returns are normally distributed. In fact, sample mean and sample
covariance matrix are the maximum likelihood estimators (MLE) for mean and covariance
parameters calculated out of historical data. Theoretically, the maximum likelihood estima-
tors are the most efficient estimators for the mean and the covariance matrix of the returns
if they follow the normal (assumed) distribution. On the other hand, the true distribution
of the returns often deviates from normality because of being a heavy-tailed distribution or
having jumps. Consequently, plugging the maximum likelihood estimators µ̂ and Σ̂ in the
mean-variance portfolio optimization model affects the mean-variance portfolio optimization
performance due to the estimation error in the input parameters. It is worth mentioning that
the estimation error of the mean and the covariance matrix results in unstable optimal port-
folio weights with values that fluctuate drastically when the investor reoptimizes the portfolio
optimization model over time. Such instabilities are not desirable for the investors since they
lead to large transaction costs. What is discussed reveals that the model performance in the
sense of estimation error mitigation and stability of the portfolio weights over time are two
important issues to be considered while optimizing a portfolio selection model.

Investigating the portfolio selection problem in the context of the statistical learning theory,
such instabilities are caused by the over-fitting of the model. Over-fitting means that the
model works suitably with respect to the sample of the data that its parameters are derived
from while it fails to reliably perform and predict for new datasets [49]. Specifically, in
statistical learning and machine learning, upper bounds that quantify the model expected
generalization performance can be controlled using regularization. The error bounds decrease
while the capacity of the problem to be fitted to the dataset is diminished. This mechanism
leads to better generalization of the model which means the model can be used by various
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datasets [61], [62]. As discussed in section 2.6, one way to tackle the over-fitting issue and
instability of the optimal portfolio weights caused by the estimation error of the mean and
the covariance matrices is regularizing the model by employing l2 − norm.

Looking into (3.14) and (3.15), the term eTv which represents l2 − norm is multiplied by
regularization parameter γ which role is to give weight to the l2 − norm and to help to
generalize the model and tackle over-fitting issue. One has to tune parameters like γ in order
to obtain a sparse mean-variance model that performs optimally and in a stable manner. In
other words, parameter γ can take different values and each of the values may result in a
different performance of the model under study. Therefore, it is crucial to determine the value
of γ meticulously to obtain a model that does not over-fit or under-fit but generalizes the
sparse mean-variance model to achieve stable optimal portfolios over time. The parameters
like γ, which values impact the model performance, are called hyperparameters. Model
selection is the procedure to select one model among a set of candidate models by determining
the model’s hyperparameter. In model selection, the aim is to achieve optimal performance
of the model under study and obtain predictions with minimum error by tuning the model’s
hyperparameter and as a result to avoid under-fitting or over-fitting issues. Employing model
selection on the sparse mean-variance portfolio optimization model defined in (3.14) and
(3.15) focuses on minimizing the generalization error of the model and determination of the
hyperparameter γ in the way that results in reliable investment predictions for the next
period.

In model selection, the performance of the set of candidate models is evaluated not only ba-
sed on the quality of the results derived from the employed data to estimate the parameters,
which is called the in-sample-data, but it is also evaluated based on the quality of the results
gained by the new dataset called out-of-sample data. More specifically, out–of–sample per-
formance study is one of the main and commonly applied approaches to do model selection
and error estimation. It is worth mentioning that out-of-sample performance study is useful
when a large dataset is available and the dataset under study in this research also has this
characteristic.

The widely applied out-of-sample performance approaches are leave-one-out cross-validation,
k-fold cross-validation, time series cross-validation. The idea behind the out-of-sample tech-
niques is to resample the available dataset to make three independent datasets called training,
validation and testing sets. The training set is used to build up the model. The validation
set is applied to tune the hyperparameters in the way the generalization error of the model be
minimized. Also, the test set is useful for evaluating the model performance in an unbiased
manner. Because the training, validation and testing datasets are the independent divisions
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of the original dataset, they all have the same distribution [79].

Since in this research study the order of the stocks’ returns are important and the dataset is a
time-related one, the out-of-sample performance study approach suitable to apply is rolling
horizon cross-validation which is also employed in [57] and [50]. Generally, the rolling horizon
cross-validation, also known as time series cross-validation, is used to evaluate the stability
of model’s parameters over time. Therefore, the rolling horizon cross-validation is an aligned
out-of-sample study strategy with the purpose of this research study.

3.3.1 Rolling Horizon Training Procedure of Best Sparsity Degree

The purpose of this section is to explain how the best sparsity degree, kbest, can be determined
by employing a rolling horizon strategy. In turn, this can allow to find out if investing on
sparse optimal portfolios is an optimal investment strategy for a risk-neutral and risk-averse
decision maker.

We employ a rolling horizon training procedure that exploits L−H − 1 experiments where
L is the total number of periods in the training data set and H is the size of the history used
to estimate sample mean, µ̂, and sample covariance, Σ̂. Given a fixed level of risk aversion
α, one can roll through the L−H − 1 periods of investments, to monitor the performance of
the optimal portfolios produced under different sparsity level k. Specifically, in each period :

1. the mean and the covariance matrix can be estimated from the latest H historical
returns ;

2. an optimal portfolio for each sparsity level k can be established ;

3. the realized return of these portfolios can be measured in the following period.

Note that in this procedure, as we roll forward in time, the new portfolios will account for an
updated estimate of the mean and the covariance matrix based on the new H most recently
observed returns. Finally, given the set of L − H − 1 produced portfolio returns for each
sparsity levels, one can identify the empirically best performing k (for the fixed risk aversion
level α) by comparing the different return distribution using a measure that is coherent with
the mean-variance minimization objective of the portfolio optimization problems in (3.14)
and (3.15). Inspired by the procedure used in [49], we use the trajectory-wise mean-variance
trade-off defined as :

EM = α σ̄2 − µ̄ (3.16)
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where µ̄, which represents the out-of-sample mean, and σ̄2, which defines the out-of-sample
variance, are calculated by the following formulations :

µ̄ = 1
L−H

L−1∑
t=H

x∗Tt rt+1

σ̄2 = 1
L−H − 1

L−1∑
t=H

(x∗Tt rt+1 − µ̄)2
(3.17)

In (3.17), x∗t is the optimal portfolio produced at period t and is multiplied by the returns
of the next period, rt+1, to see how much is the return of the portfolio for period t + 1
with respect to the optimal allocation x∗t . This procedure is done L −H − 1 times and the
resulting portfolio returns are averaged to estimate µ̄. A similar logic is followed to calculate
σ̄2. Since the aim is to minimize the objective function of the model, the smaller the evaluation
measure, the better the performance of the model. Therefore, for each type of decision maker
associated to an α value, the best sparsity degree, kbest, can be selected as the one that leads
to the lowest value of the evaluation measure in (3.16).

As a final remark, it is worth mentioning that EM consists of an unbiased estimator of the
instantaneous mean-variance trade-off when the portfolio is kept fixed and the stock return
vectors rt, with t = H, . . . , L− 1, are independently and identically distributed. While these
conditions do not occur in a real market, it certainly serves as a good motivation for using
EM.

3.3.2 Rolling Horizon Testing Procedure of Sparsity Degree

A procedure similar to the one discussed in section 3.3.1 can be followed on the test set to
evaluate the out-of-sample performance of the sparse mean-variance portfolio optimization
models in (3.14) and (3.15) with the trained sparsity level. In this procedure, L becomes the
total available periods in the test set. Moreover, the same evaluation measure as defined in
3.16 will be used in the study of out-of-sample performance of the models in (3.14) and (3.15).
The difference is that, for each α, only kbest will be employed and the evaluation measure
calculated for each risk aversion level will be compared to the evaluation measure calculated
for the case that no sparsity is imposed on the model.
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CHAPTER 4 NUMERICAL STUDIES

In this chapter, the empirical study of out-of-sample performance is conducted.

4.1 The Data under Study

Data employed in this empirical study is collected from the stock market which consists of
475 companies that compose S&P index. The time span that the stock prices are collected
starts from 1993/09/01 and ends in 2014/08/12 which is equivalent to 1114 weekly prices.

In statistical learning, it is common to handle missing data in the dataset either by dele-
tion of the feature (the stock) that has missing value, imputing the missing value by the
mean/median calculated from the prices of that specific stock in other periods or predicting
the missing value by statistical techniques like regression. The deletion approach is used to
handle the missing data in this empirical study. After deleting the stocks with missing values,
there are 334 stocks left.

Figure 4.1 The evolution of the weekly return of a randomly chosen stock (1993/3 to 2014/7)

The standard formulation followed to calculate stock returns is rt = (pt−pt−1)/pt−1, where rt
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and pt denote the return and the price of stock at time t, respectively. The result of converting
stock prices over time to stock returns is depicted in Figure 4.1. As mentioned in 3.3, the
sample mean and sample variance as maximum likelihood estimators are the estimators
designed under the assumption that the data is independent identically distributed (i.i.d).
As it is depicted in Figure 4.1, the variance of the returns varies over time which means
that the distribution of the returns is not i.i.d and stationary. Also, a short history of the
returns will be used for computing µ̂ and Σ̂ which means the non-stationarity of the stock
returns affects the values of these estimators. Therefore, the sample mean and sample variance
estimators are naïve estimators in such cases and they could be improved by the techniques
that accounts for the non-stationary data [80].

Now that the data is prepared by removing stocks with missing prices and converting the
stock prices to stock returns, the next step will be to conduct the model selection.

4.2 Model Selection

As discussed in section 3.3, the sample mean (µ̂) and sample covariance matrix (Σ̂) as the
maximum likelihood estimators (MLE) for the mean and the covariance parameters are cal-
culated out of historical data under normality assumption. Due to deviation of the stock
returns distribution from normality, there will be estimation error in determination of the
sparse mean-variance portfolio optimization input parameters. One common approach to mi-
nimize the effect of estimation errors related to the input parameters is to regularize the
model by employing regularization term, which in this research study is done by embedding
l2 − norm in the sparse mean-variance portfolio selection model (3.14) and (3.15). Determi-
nation of regularization parameter γ will be discussed in 4.2.1.

4.2.1 Hyperparameter Tuning

To avoid large transaction costs which occur due to instability of optimal portfolio weights
over time and, also, to mitigate the effect of error in estimation of the model inputs, the model
is regularized by embedding l2 − norm in its objective function, which also helps with the
generalization power of the model. The regularization parameter γ as a hyperparameter needs
to be determined with caution to avoid over-fitting and under-fitting. Therefore, different
values are associated to regularization parameter, γ ∈ {0.01, 0.1, 1, 10, 100, 1000}, to see
how the investment proportions will be affected by different values of γ. The outcome of
conducting sensitivity analysis on γ under the assumption that short-selling is prohibited
is visualized in Figure 4.2. It is worth mentioning that the number of stocks considered to
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optimize the sparse mean-variance portfolio selection model defined in (3.14) is n = 100
and no sparsity restriction (k = n = 100) is imposed to determine the optimal investment
proportions (x∗) associated to each different γ values.

Figure 4.2 The investment proportions versus different values of regularization parameter (γ)

As depicted in Figure 4.2, all n stocks are included in the optimal portfolio in the way
that all the investment proportions are equal when γ takes large values like 1000 and 100.
Therefore, there is the risk that the sparse mean-variance portfolio optimization models in
(3.14) and (3.15) under-fit the training dataset. On the other hand, few stocks are included
in the optimal portfolios each with very different weights when γ is set to small values such
as 0.01 and 0.1. Hence, there is the chance that the models in (3.14) and (3.15) over-fit the
training data. Therefore, it seems reasonable to set γ to values like 1 in order to achieve a
reasonable balance of performance for the sparse mean-value portfolio optimization model
in this study. Upon conducting the same analysis under the assumption that short-selling is
allowed, the regularization parameter takes a different value (γ = 0.2).

In section 4.2.2, γ is set to the values 1.0 and 0.2 since these values seem reasonable with
respect to the distribution of the weights under the assumption that short-selling is prohibited
and allowed, respectively. Note that a sensitivity analysis for determining hyperparameter γ
could be an interesting additional study to perform, which is out of the scope of this study.
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4.2.2 Rolling Horizon Training and Testing Procedures for Sparsity Degree

The performance of the set of candidate models in model selection is evaluated by assessing
the quality of the results that are derived from employed data to estimate parameters which
is called in-sample study. Also, evaluating the quality of the results of the model by employing
new data set, which is called out-of-sample performance, is a crucial step in model selection.
As mentioned in section 3.3, the out-of-sample performance study is useful when a large
dataset is available and the dataset in this research study has this characteristic. The stock
market returns dataset is divided into two subsections as training and testing sets containing
70% and 30% of the periods out of all periods in the original dataset, respectively. In other
words, the weekly returns from 1993/09/01 to 2008/02/22 constitute the training set and the
weekly returns from 2008/03/04 to 2014/08/12 constitute the the testing set.

The rolling horizon training and testing procedures explained in 3.3.1 and 3.3.2, are applied
to assess the stability of the optimal portfolios that result from the sparse mean-variance
portfolio selection model over time.The size of the history used to estimate sample mean, µ̂,
and sample covariance, Σ̂, is set to H = 50 weeks, which is almost equivalent to one year.
Experiments are done by selecting randomly n = 100 stocks out of the total stocks in the
dataset, N = 334. Also, this set of 100 randomly chosen stocks is kept unchanged while
conducting training and testing procedures.

Furthermore, α as the coefficient applied to trade-off between the risk and the return of the
sparse portfolios takes value α ∈ {0.1, 1, 10, 100} to reflect the degree to which the investors
might be risk-averse. Since α is multiplied to the term that represents risk in the objective
functions of (3.14) and (3.15), the value such as α = 0.1 reflects that the investor is nearly
risk-neutral since the impact of risk in choosing the optimal sparse portfolio is reduced
by multiplying a constant that is less than 1. Following the same logic, α ∈ {10, 100} is
considered for risk-averse investors.

The key parameter that is considered for conducting sensitivity analysis is the sparsity para-
meter k which takes 6 logarithmically spaced values between 1 and 100, k ∈ {1, 3, 6, 16, 40, 100}.

4.2.3 In-Sample Performance Study

Now that the values of the parameters are set and explained, the next step will be to describe
how the experiments are done based on rolling horizon testing strategy. After choosing
n = 100 stocks randomly, the sample mean µ̂ and Σ̂ are calculated using a time window of 50
weeks,H = 50. Furthermore, the sample covariance matrix is factorized as Σ̂ = XTX in order
to be fed to the objective function of the MISOCP models described in (3.14) and (3.15). Per
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each value that the risk-aversion parameter takes (α ∈ {0.1, 1, 10, 100}), the chosen data 
will be used to solve the sparse mean-variance portfolio selection models in (3.14) and (3.15) 
while sparsity parameter takes its values as k ∈ {1, 3, 6, 16, 40, 100}. The resulting optimal 
selected stocks (z∗) and the optimal portfolio weights (x∗) given to each stock that is included 
in the optimal portfolio will be available upon optimizing models in (3.14) and (3.15). The 
optimal portfolio weights, x∗, will be multiplied by the stocks returns of the next period of 
the chosen time window and the outcome represents the realized portfolio return for that 
period. The next step will be to update the data for the next experiment by eliminating the 
first week of the |n| ×  |H| matrix and include the next week stock returns. This procedure 
has been followed 50 times for each combination of γ = 1, α ∈ {0.1, 1, 10, 100} and 
k ∈ {1, 3, 6, 16, 40, 100} for the case that short-selling is prohibited. For the case that 
short-selling is allowed, the regularization parameter takes a different value (γ = 0.2), but 
the rest of the parameters take the same values as mentioned in case that short-selling is 
not allowed. Then, the evaluation measure values are calculated out of estimated returns for 
next periods which are resulted from the experiments for each parameter combination by 
computing the mean (µ̄) and the variance (σ̄) and substituting in (3.16). Since the models 
in (3.14) and (3.15) aim to minimize their objective functions, the sparsity parameter that 
results in the lowest evaluation measure value for each combination of α’s and k’s will be 
considered as the best sparsity value, kbest.

Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6 show the change in the evaluation measure 
value defined in (3.16) when the sparse portfolio selection model in (3.14) for the case that 
short-selling is prohibited is restricted to different values of sparsities k’s, and optimized for 
investors with different levels of risk-aversion. The trends in these figures indicate that the 
evaluation measure takes its minimum value when the sparsity parameter k, takes a value 
less than the total number of stocks used in each experiment, n = 100.

Table 4.1 Validation experiment results (γ = 1)

α Best Sparsity (kbest)
0.1 3
1 6
10 6
100 40

The results of the rolling horizon training procedure for the case that short-selling is pro-
hibited are reported in Table 4.1. The best sparsity degrees, kbest’s, that are resulted per
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different degree of risk-aversion show that the optimal portfolios resulted from the sparse
mean-variance portfolio selection model defined in (3.14) contains less number of stocks com-
paring to the total stocks available in each experiment, n = 100. More precisely, it is optimal
for the risk-neutral decision maker, who reduces the magnitude of the risk in the portfolio
selection model by setting α = 0.1, to build a portfolio of 3 stocks to achieve the minimum
risk and maximum return. As reported in Table 4.1, the number of stocks in the optimal
sparse portfolio increases when the risk-aversion parameter increases. In other words, the
sparse portfolio selection model in (3.14) results in the optimal portfolios that include more
stocks when the investors are more risk-averse. This result which is gained from the sparse
portfolio selection model in (3.14) is aligned with the fact that the risk-averse investors tend
to invest in portfolios that include more stocks to reduce the risk of their investments.

Figure 4.3 Training and validation result for α=0.1 and γ=1 (short-selling is prohibited)

For the case that short-selling is allowed, the variability of evaluation measure with respect
to different sparsity degree values are depicted in Figure 4.7, Figure 4.8, Figure 4.9 and
Figure 4.10. The trends in these figures show that the evaluation measure takes its minimum
value when the sparsity parameter k, takes the value less than the total number of stocks
used in each experiment, n = 100, except for the case that the risk-aversion coefficient is high,
α = 100. Also, Table 4.2 summarizes the best sparsity values associated with each α value.
In case that short-selling is allowed, optimizing the sparse mean-variance portfolio selection
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Figure 4.4 Training and validation result for α=1 andγ =1 (short-selling is prohibited)

model defined in (3.15) results in the minimum value for the evaluation measure when the 
number of stocks included in the optimal portfolio is less than the total number of stocks in 
each experiment, n=100, except for the case that the risk-aversion degree is set to 100. This 
means that when the investor is highly risk averse, she prefers to include all the stocks in her 
portfolio by short-selling some of the stocks and adding the fund gained out of short-selling 
to the available fund that she has and invest the aggregation in other stocks. Therefore, all 
stocks with negative and positive proportions will be included in the optimal portfolio of the 
investor with risk-aversion of 100. It is worth mentioning that Table 4.2 indicates that kbest 
increases as the investors get more risk averse.

The next step is to confirm whether the model is well generalized for the datasets that are 
new to the model or not.

Table 4.2 Validation experiment results (γ = 0.2)

α Best Sparsity (kbest)
0.1 3
1 3
10 6
100 100
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Figure 4.5 Training and validation result for α=10 and γ=1 (short-selling is prohibited)

4.2.4 Out-of-Sample Performance Study

Now that the results from the training step are in hand, the testing dataset will be used
to calculate the evaluation measure for the experiments that will be done in the study of
out-of-sample performance. It is worth reminding that the aim of out-of-sample performance
study is to confirm if the models in (3.14) and (3.15) are well generalized and do not over-fit
with respect to the γ values that are selected for them. In the out-of-sample performance
study, the evaluation measure calculated per experiment that are done for each combination
of α’s and kbest’s is compared to the evaluation measure calculated under the assumption that
the sparsity restrictions in (3.14) and (3.15) are relaxed which means setting k = n = 100.

As discussed in section 4.2.3, the training experiments determined the sparsity degrees that
lead to the minimum risk and maximum return for each investors with different levels of
risk-aversion with respect to the tuned hyperparameter of the model γ. The next step is
to see whether the sparse mean-variance portfolio selection models in (3.14) and (3.15) can
generalize the results in training step for a new dataset like the testing dataset or not.

In the out-of-sample performance study step, the input parameters µ̂ and Σ̂ are calculated
using the historical data in the testing dataset and have been fed to the models in (3.14)
and (3.15). Also, γ, H, k’s and α’s have the same value(s) employed to conduct the trai-
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Figure 4.6 Training and validation result for α=100 and γ=1 (short-selling is prohibited)

ning experiments. In out-of-sample study, the evaluation measure is calculated using (3.16)
for best sparsity degrees that are determined in training step and also for k=n=100. The
results are summarized in Tables 4.1 and 4.2. The aim is to see if the results of the testing
step substantiates that the kbest’s leads achieving a smaller evaluation measure value than
the evaluation measure that is calculated under no sparsity restriction, k=n=100. For this
purpose, the rolling-horizon out-of-sample study strategy as explained in 3.3.2 is followed.

The results of the out-of-sample performance study are summarized in Table 4.3, for the case
that short-selling is prohibited, and Table 4.4, for the case that short-selling is allowed.

As reported in Table 4.3 and Table 4.4, the evaluation measure takes smaller values for
different types of investors comparing to the case that there is no sparsity restriction, k=100.
This confirms that the sparse mean-variance portfolio selection models in (3.14) and (3.15) are
well generalized by setting hyperparameter γ=1, for the case that short-selling is prohibited,
and γ = 0.2, for the case that short-selling is allowed. As the result, the models do not over-fit
the datasets that the models are trained with, which is what was desired to achieve in the
study of the out-of-sample performance of the models (3.14) and (3.15).
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Figure 4.7 Training and validation result for α=0.1 and γ=0.2 (short-selling is allowed)

Table 4.3 Performance on test set, no short-sell

α = 0.1 α = 1 α = 10 α = 100
EM for Sparse Portfolio Selection Model -0.0011 -0.0242 0.0035 0.0305

EM for Non-sparse Portfolio Selection Model -0.0005 0.0002 0.0060 0.0350

4.2.5 Discussion on Model Selection Procedure Implementation

The model selection procedure and out-of-sample performance evaluation procedure are im-
plemented in MATLAB R2017b employing the YALMIP toolbox. Moreover, CPLEX 12.8.0 
is used as the solver for optimizing the MISOCP models defined in (3.14) and (3.15). Using 
default settings of CPLEX 12.8.0, optimality and feasibility tolerance of 10−6 and integrality 
tolerance of 10−5 were considered for the solution schemes. The longest and shortest compu-
tational time for solving MISCOCP model in (3.14) were 4.6 and 113.7 seconds, respectively.

Table 4.4 Performance on test set, with short-sell

α = 0.1 α = 1 α = 10 α = 100
EM for Sparse Portfolio Selection Model -0.0043 -0.0026 0.0030 0.0198

EM for Non-sparse Portfolio Selection Model -0.0011 -0.0002 0.0044 0.0198
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Figure 4.8 Training and validation result for α=1 and γ=0.2 (short-selling is allowed)

Also, for solving MISCOCP model in (3.15), the longest and shortest computational time for
were 5.4 and 118.9 seconds, respectively. It is observed that the computational time increases
as the sparsity degree k decreases which means the computational time is the shortest for
the non-sparse portfolio optimization model. The reason is that the binary decision variable
z is redundant when k = n due to inclusion of all stocks in the optimal non-sparse portfolio.
It can be inferred that solving the MISOCP models in (3.14) and (3.15) is computationally
costly because of the binary decision variable z.
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Figure 4.9 Training and validation result for α=10 and γ=0.2 (short-selling is allowed)

Figure 4.10 Training and validation result for α=100 and γ=0.2 (short-selling is allowed)
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

In this chapter a brief summary of what was done in this research study will be presented. 
Furthermore, the limitations of our study will be discussed and some avenues for future 
studies will be suggested.

5.1 Summary of Works

We tried to answer the question whether investing in sparse portfolios is an optimal in-
vestment decision compared to the situation that all available stocks are included in the 
investment portfolio. To achieve our goal, risk-neutral and risk-averse investors were conside-
red in this research study since it is more likely that these types of investors tend to minimize 
the risk of their investments by including all available stocks in their investment portfolios.

In order to avoid model overfitting and underfitting issues and improving the generalization 
power of the sparse portfolio optimization model under study, squared l2 − norm was consi-
dered in the objective function of the model as regularizer and the coefficient that regulates 
the magnitude of its impact was tuned by following model selection procedure. Moreover, the 
dataset that contained the stock market weekly prices for 1114 weeks were divided into three 
independent datasets called training, validation and testing datasets. The training dataset 
was used to build up the model and the validation dataset was used to tune the sparse portfo-
lio selection models’ hyperparameters so that generalization error of the model be minimized. 
Furthermore, testing dataset helped to evaluate the models’ out-of-sample performance in 
an unbiased manner. It is worth mentioning that rolling-horizon cross-validation approach 
was applied to evaluate the stability of the optimal sparse portfolios over time since we had 
a time-related dataset.

The results of our study confirmed that the sparse portfolios were optimal investment deci-
sions for risk-neutral and risk-averse decision makers when short-selling was not allowed. In 
the scenario that short-selling is allowed, risk-neural investors’ optimal decision was to invest 
in sparse portfolios. But the optimal investment decision for highly risk-averse investors was 
to short-sell some of the stocks and add the fund gained out of short-selling to the available 
fund that such investors has and invest the aggregation in other stocks.
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5.2 Limitations of the Study

We conducted the empirical study for 100 stocks out of all 334 available stocks that we had in
our dataset. The reason was that conducting the experiments for all of these stocks was time
consuming due to the nature of integer programming models. One might be able to enhance
the exact solution procedure of the sparse model or reformulate it in a way that makes her
able to use large datasets and achieve the optimal results in a reasonable amount of time.

5.3 Future Research

For future researches, other risk measures such as conditional value-at-risk, entropic value-at-
risk, etc can be substituted with the variance of the stock returns to see if investing in a sparse
portfolio derived by employing other risk measures is an optimal investment decision for the
investors. Furthermore, stocks’ transaction costs can be embedded in the sparse model. Also,
boundary constraints which restrict the investment proportion of each stock can be considered
in the sparse portfolio selection model.
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