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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.5683/SP3/JZJ The proliferation of tedious and repetitive tasks on production lines has accelerated the deployment of
TGG automated robots. This has also led to a demand for more flexible robots, known as cobots, that can work
in collaboration with operators to perform a variety of tasks in different contexts. This paper explores
the potential of computer vision-based hand gesture recognition as a means of human-robot interaction
within cobotic platforms. Our research focuses on the challenges of gesture recognition in the face of visual
occlusions and different camera viewpoints, typical of part finishing tasks in a real-world industrial setting.

Keywords:

Vision-based human-robot interaction
Gesture recognition

Hand detection

Occlusion We introduce a new dataset, MuViH (Multi-View Hand gesture), which features a high variability in camera
Multi-view viewpoints, human operator characteristics, and occlusions, and is fully annotated for hand detection and
Dataset

gesture recognition. We then present a comprehensive hand gesture recognition pipeline that leverages this
dataset. Our pipeline incorporates a multi-view aggregation step that significantly enhances gesture recognition
accuracy, particularly in the case of visual occlusions. Thanks to extensive experiments and cross-validation on
the MuViH dataset and another public dataset, HANDS, our approach demonstrates state-of-the-art performance
in gesture recognition. This breakthrough underlines the potential of integrating robust vision-based interaction
techniques into cobotic systems, improving flexibility and speed on the production line.

gestural, or through brain signal analysis [1,2]. Traditional approaches
include mouse, keyboard and tactile screens. Despite its robustness, it

1. Introduction

Advanced manufacturing has brought new automation technologies,
including robots, which offer the considerable advantage of executing
tasks that are tedious and repetitive, and that pose a high risk of injury
for personnel on the production line. While industries generally use pre-
programmed robots with rigid codes that are not designed to cooperate
with humans, some manufacturing processes such as polishing and
deburring of metallic parts, used for finishing, require proper parameter
settings, such as the geometry of the part to be machined, the tool
required and the tool trajectory. Interactive cyber—physical systems
offer an elegant solution, giving the human operator essentially more
elevated roles of inspection and supervision. The concept of human—
robot collaboration does not focus on replacing humans with robots
but rather on collaboration between them in a common workspace: the
cobotic platform.

The collaboration is directed and coordinated by the human op-
erator providing commands to be executed by the cobot. Possible
communication channels are varied, it can be either traditional, verbal,
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requires a fixed operating space. Verbal communication can be difficult
to implement on production lines where noise is highly prevalent.
Gesture-based communication offers strong intuition and high flexibil-
ity, it is a natural way to convey information. Hand gesture recognition
has been explored in previous work for human-robot interaction in the
context of manufacturing [3]. Its accuracy, however, is closely related
to the sensing technology and algorithm used [4].

Sensing technologies can be divided into wearable and vision-based
devices. Having workers wear additional equipment dedicated solely
for communication with the cobot, such as gloves equipped with iner-
tial measurement units or a connected watch, is generally to be ruled
out, as such equipment creates a constraint for the worker [5]. Vision-
based solutions, by contrast, extract the spatial information required to
recognize an operator’s action, such as a pointing gesture [6,7].

Vision-based hand gesture recognition essentially relies on acquir-
ing images of the operator, detecting the hands and recognizing the
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gesture. The latter two steps are nowadays tackled using deep learning,
requiring large annotated datasets to train models for each task.

Among the remaining challenges of vision-based hand gesture
recognition is the sensitivity to visual occlusions and viewpoint of the
camera in relation to the operator’s position. In the particular context
of a cobotic platform, occlusions are frequent since both the cobot and
the operator are assumed to move. Moreover, as we do not want to
restrict the operating space, we aim to offer flexibility for the operator
to communicate with the cobot from anywhere around the platform.

The general objective of this paper is therefore to develop a static
hand gesture recognition pipeline that is robust to visual occlusions and
to different viewpoints. Our contributions are:

+ A new hand gesture recognition dataset, named MuViH (Multi-
View Hand), with high variability in terms of camera view-
points, human characteristics and occlusions. It contains more
than 85,000 images captured by 6 RGB-D cameras positioned at
different locations around the cobotic platform. It comprises 20
participants (13 male, 7 female) performing 10 gestures with their
hands. The background is highly cluttered. The placement of the
cobot is modified on several occasions during data collection,
creating various uncontrolled visual occlusions. The dataset is
fully annotated for hand detection and static gesture recognition.
It is made available for academic purpose upon request (https:
//doi.org/10.5683/SP3/JZJTGG).

A complete hand gesture recognition pipeline, evaluated by cross-
validation on two datasets (the proposed MuViH and the publicly
available HANDS [8]), showing state-of-the-art performance in
single-view mode for hand detection and gesture recognition. The
pipeline comprises a fine-tuned YOLOv8 hand detection model,
and a gesture classification model based on ResNet, to recognize
gestures among the 10 present in the dataset.

A multi-view aggregation step that improves by 14% the recog-
nition accuracy in comparison to single-view, more precisely in
cases of visual occlusions.

2. Related works

2.1. Hand gesture recognition dataset

The state of the art of datasets for hand gesture recognition cov-
ers a wide range of scenarios, in both controlled and more complex
environments. There are several datasets for static gesture recognition
created for sign language translation [9,10]. In the field of manu-
facturing, the HANDS dataset [8] has been used for gesture-based
human-robot interaction [6]. More recently, a richer dataset for static
gesture recognition, named HaGRID, has been published [11]. Nev-
ertheless, in all these RGB-D datasets, the human is ideally placed
facing the camera resulting in limited variability in terms of viewpoint.
The EgoGesture [12] dataset, captured using a head-mounted Intel
Realsense SR300, provides a wide variety of scenes and gestures, but
the camera-to-hand distance is very short (< 1 m) and visual occlusions
are absent. In the HGM-4 dataset [13], four different angles of view
are provided for hand gesture recognition, but images have undergone
background removal. This absence of background makes it difficult for
a hand detection or gesture recognition model trained on this data to
generalize to real scenarios in cluttered environments.

There is thus a need for a new public dataset for static hand gesture
recognition with sufficient images, variability in terms of viewpoints,
human characteristics and camera-to-hand distances, visual occlusions
and realistic scenarios.

Robotics and Computer-Integrated Manufacturing 94 (2025) 102957
2.2. Hand detection

Numerous neural network architectures have been developed for
object recognition and tested on various datasets [14]. Early deep
learning methods used CNNs, such as R-CNN [15], which first generates
region proposals and then uses a CNN to extract features from these
regions and classify them. Fast R-CNN [16] then improved on this
proposal, applying the CNN to the entire image and not just to the
proposed region. Faster R-CNN [17] improved the speed of this method
by replacing Fast R-CNN’s region proposal generation method with a
Region Proposal Network (RPN). The disadvantage of these two-step
methods is their inference time. This is why single-shot methods have
been developed. YOLO [18] was the first of these methods, processing
the image in a single pass through the network. The image is divided
into a grid, and each grid cell is responsible for detecting objects in
that region. SSD [19] improved this method by using feature maps
of different resolutions to detect objects at different scales. Over the
years, new YOLO versions [20] have been released, improving the
efficiency of CNNs in particular. In contrast to the aforementioned
CNN-based methods, DETR [21] reformulates object detection as an
ensemble matching problem, using transformers to model the spatial
relationships between objects in the image.

2.3. Hand gesture recognition

Predicting dynamic hand gestures, where motion carries semantic
information, requires the use of neural networks that take into ac-
count the temporal scale. For this reason, the networks used in the
literature are often recurrent neural networks (RNN) [22] or long short-
term memory networks (LSTM) [23]. However, these networks do not
receive images as input but rather hand pose estimation outputs [24].

Recognition of static gestures is a simpler problem than that of
dynamic gestures, as the temporal component no longer needs to be
taken into account upstream. It can, however, be exploited downstream
to correct a model’s output according to its predictions on neighbor-
ing images. This is why convolution neural networks (CNNs) [25]
can be sufficient to solve the problem. Methods like MEGURU [6],
using an R-FCN network [26], predict gestures solely on the basis
of hand detection, showing that hand pose estimation is no longer a
prerequisite.

3. Material
3.1. Cobotic platform

A collaborative robotic platform has been purposefully designed to
serve as a dedicated testbed for cobotic industrial applications within
the Aerospace Manufacturing Technologies Centre (AMTC) at the Na-
tional Research Council of Canada (NRC) [27]. A schematic top view
of the platform is shown in Fig. 2. It is composed of a UR10/CB3 cobot
mounted upside down on a linear range extender, which is supported
by a fixed gantry structure (hashed area in Fig. 2) and an ergonomically
designed downdraft table facilitating part handling and clamping. The
hashed area is inaccessible to the operator, as it contains, among other
things, the cobot’s power supply system and is not easy to navigate.

3.2. Optical sensors

A disadvantage of optical systems is the possibility for the visually
monitored area to be obscured partially during the operation either
because of the robot’s movement or by the operator’s activity. This cre-
ates visual occlusions resulting in a part of the workspace volume not
being monitored. Hence, hand gestures might not always be visible by
the camera. Minimizing these occlusions in the collaborative workspace
can be achieved by increasing the number of cameras and by carefully
choosing their arrangement [28]. Many affordable RGB-D sensors are
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Fig. 1. Viewing angle of each of the six RGB-D cameras around the cobotic platform.

available on the market, like Microsoft’s Kinect Azure, Orbec’s Astra
and Intel Realsense’s D400 series. Each of these uses a different range
sensing technique (respectively time-of-flight, structured-light and ac-
tive stereo-vision) [29]. Active stereo offers one important advantage
over the other two techniques: the projected light patterns do not need
to be structured. Consequently, having multiple active stereo-based
sensors running simultaneously only adds more resolution to the light
pattern, resulting in better depthmaps. For this reason, we selected
Intel RealSense D455 cameras for our platform. Camera placement was
determined by the authors based on the following:

1. Available guidelines for human motion capture [30] recommend
installing cameras so as to circumscribe the capture volume at
a high elevation and maximize camera coverage and capture
volume size,

2. Considering that in our cobotic platform (illustrated in Fig. 2),
one side of the downdraft table is inaccessible to the operator,
there was no need to place cameras on the opposite side,

3. Cameras could not be placed inside the robot workspace volume.

As illustrated in Fig. 2, the sensors are positioned at two different
heights (2 m and 2.3 m from the ground for levels 1 and 2 respectively).
Fig. 1 shows the viewpoints from each camera.

Four areas are defined around the table. Each area is covered by at
least two cameras, two of which are at different heights. This increases
the number of viewpoints for each area. Thus, areas 1, 2, 3 and 4 are

covered by cameras (c4, c6), (c2, c4, c5), (c2, 3, c5) and (cl, c3)
respectively.

3.3. Visual occlusions

During real-life operations of the cobotics platform, the cobot moves
above the downdraft table to perform the manufacturing tasks and the
operator can move freely around the table to supervise the operations.
There are therefore spatial configurations where the operator can be
partly hidden by the cobot, potentially hiding the hand(s) performing
the gesture. To reflect this in the dataset, the cobot configuration was
changed randomly at several points in time during the creation of the
dataset, resulting in a variety of occlusions that we did not control for
in a deterministic manner.

4. Method
4.1. Dataset creation pipeline

To ensure good generalization performance of hand detection and
gesture recognition models, it is important to use a training set with
high variability. The latter can be expressed in terms of camera config-
uration (viewing angle and distance from the operator), human char-
acteristics (morphology, gender, skin color, manual preference), and
environment (operator location in the platform, presence of occlusions,
presence of more than one human).
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Fig. 3. Proposed gestures dictionary to communicate with the cobot.

The variability of viewpoints is made possible by the use of 6
RGB-D sensors simultaneously during data collection. In terms of hu-
man characteristics, we established that a total of 20 participants
would be sufficient for this work, while, in comparison, similar public
databases [8,13] involved only 5 participants each.

To communicate with the cobot, a dictionary containing 10 gestures
was created (Fig. 3). It is desirable that the dictionary be easily adapted
to different industries. The use of new tools within the cobotic platform
must not compromise the established set of gestures. Otherwise, the
addition of a new gesture would require re-training a recognition model
with an additional class. This is why the gestures chosen for tools and
parameters selection are simply numbers (one through five), and
their meaning is generic, not specific to a particular industrial context.
The remaining gestures (except for punch) all require both hands. The
reason for using two-handed gestures is that there is little chance that
an operator passing through the cobotic cell will make these gestures
inadvertently. These gestures are therefore reserved for the most critical
commands, such as starting communication (start), canceling pre-
vious gestures (cancel), starting a task (run) or stopping the robot
while it is working (stop).

Each participant is asked to perform the 10 gestures illustrated in
Fig. 3, some of which are performed twice: the one-handed gestures are

performed both with the right and left hands. For the two-handed ges-
tures, the symmetrical start is executed once. For the asymmetrical
gestures, cancel is performed in both of the right/left hand configura-
tions, whereas the participants perform run and stop without paying
attention to hand sides. In all, there are 17 recording sequences (one per
gesture), each lasting one minute. For each sequence, the participant is
asked to move around in a single predetermined zone (Fig. 2), ensuring
that the optimum camera set is fixed. All participants make at least four
gestures per area, and a given gesture is performed in different areas
by different participants. In this way, gestures (resp. participants) are
equally performed (resp. present) in each area.

Natural language concepts and the requirement to maximize ges-
ture contrast and recognition should guide the design and selection
of 3D-modeled hand gestures for human-computer interaction [31].
Moreover, it is desirable that the dictionary be easily adapted to
different industries. The addition of new tools or commands within the
cobotic platform must not compromise the established set of gestures.
Otherwise, the addition of a new gesture would require re-training
a recognition model with an additional class. For these reasons, a
dictionary containing 10 gestures was created (see Fig. 3). The gestures
chosen for tools and parameters selection are simply a punch and
numbers one through five; their meaning is generic, not specific to a
particular industrial context. They can easily be combined to create a
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Fig. 4. Overall hand gesture recognition pipeline.

complete vocabulary for a multitude of actions. The remaining gestures
all require both hands. The reason for using two-handed gestures is
that there is little chance that an operator passing through the cobotic
platform will make these gestures inadvertently. These gestures are
therefore reserved for the most critical commands, such as starting com-
munication (start), canceling previous gestures (cancel), starting
a task (run) or stopping the robot while it is working (stop). The
numbers (one through five) and the punch and run gestures are
based on previous work [6] for an industrial collaborative workstation.
They are included in the HANDS dataset [8], thus allowing for a
straightforward comparison with the latter.

The one-minute duration of each sequence allows the participant to
move around in the designated area, increasing the diversity of view-
points and occlusions. The cobot spatial configuration was changed
several times during the whole data collection to further increase
variability in terms of occlusions.

For data collection, a script was written in C++. It records RGB,
aligned depth images and automatically associated gestures and areas
to the images. The frame rate was set to 30 FPS, but in practice this is
never reached. The image resolution is 1280 x 720 pixels.

The position of the hands making the gestures, defined by bounding
boxes, was annotated manually by a single operator for all captured
images in which the hand making the gesture is actually visible (not
occluded).

Since Intel RealSense cameras capture the scene asynchronously,
image timestamps are recorded and used a posteriori to match images
between cameras (fixing the maximum allowed duration 4¢ = 100 ms
between timestamps). Once the images are matched, they form a group
of synchronized images. We retain 100 groups of synchronized images
per gesture, and each group has at least one image in which a hand is
annotated.

The creation of this dataset has been approved by the Ethics Review
Boards of Polytechnique Montréal and the NRC.

4.2. Hand gesture recognition pipeline

The pipeline described in the present work comprises three distinct
parts, as shown in Fig. 4:

1. Hand detection in RGB-D images.

2. Gesture recognition based on the hands detected by each cam-
era.

3. Combining gesture predictions from different cameras.

In the remainder of this paper, we assume that we only have images
from well-positioned cameras (as shown in Fig. 2), thus the operator is
always in the field of view.

4.3. Hand detection with RGB image

For the hand detection step, we considered several algorithms. We
ruled out two-stage algorithms [15-17], as they are too slow and
deliver too little performance compared with more recent architec-
tures. We also chose not to use algorithms using transformers such
as DETR [21] and its derivatives, because they are relatively slow
and because their main advantage, bipartite matching, is not useful
in our case, given that only a single gesture is detected in the image.
The algorithms of the YOLO [18] family of models were therefore the
best solution, for their speed and high performance in a variety of
contexts. We used the latest version available, YOLOv8 [20], as it was
the most powerful of the series. This architecture directly returns the
coordinates of the bounding boxes surrounding the hand in each image.
We therefore fine-tune the model on our data so that it only detects
hands that are actually performing a gesture.

4.4. Gesture recognition with RGB-d image

Once a hand is detected in an image, the latter is cropped to
the bounding box and fed into a gesture classification network. We
propose a 10 class ResNet-inspired architecture [32], comprising a
sequence of residual blocks with four convolutions each. This type
of architecture has proven its robustness over time. In addition, it
is relatively fast compared with more recent architectures, such as
those based on transformers. One can easily modify this architecture by
choosing the number of bottleneck blocks, to strike the desired balance
between classification performance and inference time. In this work,
we considered six residual blocks, each followed by a 2 x 2 pooling
stage. For an input image of size 100 x 100, these blocks provide a
feature map of size 1 x 1. This feature map is then fed into three
fully connected layers to obtain a class probability vector. The final
architecture is illustrated in the supplemental materials.

Since the network input size is fixed at 100 x 100 pixels, an image
preprocessing step consisting of bilinear interpolation is necessary.
However, to prevent image distortion, we fix the aspect ratio of the
bounding box and use zero padding when necessary.

4.5. Multi-view aggregation

At this stage, we have as many probability vectors as there are well-
positioned cameras at each instant. We now need to combine these
different predictions to determine which gesture is actually performed.
To this end, we propose to simply average the different probability
vectors. The gesture with the highest probability after averaging is the
one estimated to be performed. One of the advantages of this method is
that it can be easily generalized: whatever the position of the cameras
or their number, averaging the probabilities should always have the
same impact on the results obtained.
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5. Experimental setup
5.1. Implementation details

For both detection and recognition models, the graphics card used
for training is a GeForce RTX 3070 with 8 GB of VRAM. To fine-tune
the hand detection model, Adam optimizer is used with a learning rate
equal to 1073, during 10 epochs and the batch size is 16 for an image
size of 640 x 640 pixels. To train the gesture classification model from
scratch, Adam optimizer is used with a learning rate equal to 1074,
during 12 epochs with a batch size of 10.

5.2. Model evaluation and metrics

To quantitatively assess the performance of the proposed pipeline,
a 5-fold cross-validation is conducted: first, on a public hand gesture
dataset (HANDS [8]) for direct comparison with previous work [6], and
second on the proposed MuViH dataset. For each fold, images of 80%
of the participants are used for training, while the remaining 20% of
participants are used for testing.

To evaluate the hand detection model, 4 metrics are used: mean
average precision at a 50% IoU threshold (mAPs,), averaged precision
for IoU thresholds between 50% and 95% (mAPs.q5), precision and
recall at a 50% IoU threshold. Additionally, a false positive analysis
is performed on the subset of images in which the hand making the
gesture is occluded and thus not annotated.

To evaluate the gesture classification model separately, without
taking hand detection into account, we use the bounding boxes from
the reference annotations available in both the HANDS and MuViH
datasets. From these annotations, we extract the hand ROI in the image,
pre-process it, and predict the gesture with the trained model. The
accuracy is calculated as the percentage of gestures that have been
correctly predicted. A confusion matrix is also computed to report
per-class accuracy.

To evaluate the complete hand gesture recognition pipeline (detec-
tion and classification), we use the bounding boxes predicted by the
hand detection model as input to the gesture classification model and
report the classification accuracy. Note that in this case, classification
accuracy is computed in two ways: overall accuracy and accuracy on
hands that are correctly detected only.

6. Results and discussion
6.1. Muvih dataset

The dataset contains a total of 85,000 images from 20 participants
performing 17 gestures captured simultaneously by 6 cameras. Partic-
ipant demographics are provided in Fig. 8 to show the variability in
terms of operator morphology (sex and body mass index (BMI)) in the
MuViH dataset. This variability allows for better generalization of our
models.

For each gesture made by each participant, there are 100 groups
of synchronous images from 2 or 3 cameras, i.e. 200 or 300 images
depending on the area in which the gesture was made. As a result, there
are 4,200 or 4,300 images per participant. Some sample images from
the dataset are shown in Fig. 5. These examples show the complexity
of the recognition task: cluttered background, visual occlusions and
non-ideal viewpoints.

Fig. 6 provides an obvious example of visual occlusion, where no
annotation of the hand is possible. Such cases account for exactly 6,236
images, which corresponds to less than 8% of the whole MuViH dataset.

Fig. 7 shows a few images from a recording sequence of a participant
performing a gesture (run) while moving within a zone of the cobotic
cell.

Robotics and Computer-Integrated Manufacturing 94 (2025) 102957

Table 1
Cross validation on HANDS dataset (metrics in %).
HANDS Test subject Average
1 2 3 4 5
Hand Detection
mAPs5, 99.5 99.2 99.0 99.5 99.5 99.3
mAPs. o5 81.4 78.9 75.3 82.5 83.4 80.3
Precision 99.5 97.4 98.5 99.4 99.9 98.9
Recall 99.7 97.2 96.4 100 100 98.7
Gesture Classification
Accuracy 93.5 97.5 86.9 92.7 97.8 93.7
Detection and Classification
Accuracy 85.7 93.8 77.3 92.3 95.7 88.9

6.2. Pipeline evaluation on the HANDS dataset

The aim of this section is to present and discuss the results of the
various pipeline elements, as well as the complete pipeline, on the
HANDS dataset. A summary of the results is available in Table 1.

With regard to hand detection, the results are highly satisfactory,
since almost all hands are detected by the algorithm if we refer to
the mAPs,, which returns the percentage of hands correctly detected
with an IoU threshold set at 50%. The mAP remains acceptable as the
IoU threshold increases, demonstrating the accuracy of hand detection.
Recall and accuracy are also high, demonstrating respectively the low
number of undetected hands and wrongly detected hands, further
demonstrating the robustness of our model.

For gesture classification only (with manually annotated bounding
boxes as input), the results are also quite high, with an average accu-
racy of 93.7%. However, it should be noted that accuracy decreases
when subject 3 is taken as the test subject (86.9%).

On the overall pipeline (hand detection followed by gesture classi-
fication), we observe a decrease of 4.8% in accuracy in comparison to
gesture recognition with manual bounding boxes. This can be explained
by the fact that when a hand is detected, it may only partly lie inside
the predicted bounding box, thus making it harder for the classification
model to recognize the gesture. Still, these results remain satisfactory
when compared with those reported in [6] using the same dataset. It is
important to bear in mind that the comparison is not straightforward.
Indeed, in [6], the authors had access to images of a sixth subject
which were not made public in the HANDS dataset [8]. In addition,
the authors did not perform a cross-validation, they rather used images
from subjects 1, 2, 3 and 6 for their training and subjects 4 and 5 for
testing. Therefore, we compare their test results on subjects 4 and 5
with the average of our results obtained with the two models tested on
these same subjects. In all cases, both their model and ours are trained
on the same number of subjects (4) and tested on the same subjects.
The comparison is therefore relevant. On average, on subjects 4 and
5, the total accuracy we obtain with our pipeline is 93.9% (92.3% for
subject 4 and 95.7% for subject 5), while the accuracy on the same test
set is reported to be 90.0% in [6].

Furthermore, it can be seen that the accuracy for subject 3 is lower
than for the other subjects. This can be explained first, by the fact
that subject 3 is further away from the camera than the other subjects,
which reduces the resolution of the image patch fed to the classification
network; and second, by the fact that subject 3, as opposed to subjects
1, 2, 4 and 5, moved around during the recording as illustrated in
Fig. 9). This increases the variability of the data, making the task more
difficult. When we train a model with images from subjects 1, 2, 4 and
5, the model does not learn this variability. This highlights the overall
lack of variability in the HANDS dataset.

This experiment on a public dataset demonstrates that our proposed
pipeline and its elements taken separately perform as well if not better
than the pipeline presented in [6]. We also provide a more rigorous
performance evaluation using cross-validation on this dataset, rather
than a single train/test split.
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Fig. 6. Example of a non-annotated image in the dataset (hands hidden by cobot).
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Fig. 7. Example of a participant moving within an area.
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Fig. 8. Participants demographics.

Fig. 9. Four images illustrating the movements of subject 3 from the HANDS dataset [8].
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Table 2
Cross-validation on MuViH dataset (metrics in %).
MuViH Test fold Average
1 2 3 4 5
Hand Detection
mAP;5, 96.3 97.9 87.0 98.3 97.8 95.5
mAP.o5 50.0 53.0 475 533 521 51.2
Precision 96.0 957 932 97.3 954 955
Recall 90.2 95.0 78.7 96.4 94.7 91.0
Gesture Classification
Accuracy 89.2 88.8 84.7 91.4 92.1 89.2
Detection and Classification
Accuracy 77.5 80.0 652 84.0 833 780

Accuracy (detected hands only) 85.3 85.2 85.6 88.7 91.4 87.3

6.3. Pipeline evaluation on muvih dataset

The cross-validation results of the proposed hand gesture recogni-
tion pipeline on the new MuViH dataset are provided in Table 2. Unlike
Table 1, here each fold includes images of several participants: fold
1 comprises participants 1 to 4, fold 2 comprises participants 5 to 8,
and so on. Moreover, we introduce an additional metric to evaluate the
complete pipeline. While “Accuracy” measures the percentage of cor-
rectly recognized gestures among all annotated images, “Accuracy for
detected hands only” measures the percentage of correctly recognized
gestures among all images where a hand is detected. (This metric was
not relevant in the case of HANDS, as almost all hands were detected).

The hand detection results for the MuViH dataset are lower than
those obtained with HANDS (95.5% mAPs, compared to 99.3% previ-
ously). This can be attributed to the higher complexity of the MuViH
dataset. While in HANDS, the hands are always visible to the camera, in
MuViH several elements (cobot and equipment) can occlude the line of
sight of the sensor, as illustrated by the example in Fig. 11. The results
decrease even more sharply when the confidence threshold is increased
(mAPs.95), but once again the precision and recall are greater than
90%, which indicates sufficient robustness for the 50% threshold. Note
that fold 3 has much lower results than the others, as discussed below.

Fig. 10 illustrates the number of false positive hand detections
obtained in the 6,236 images (<8% of the dataset) where no hand
annotation was possible due to occlusions, as a function of the con-
fidence threshold on the detection model. Considering that only the
hand performing the gesture (for single hand gestures) is annotated
in the dataset and used to train the detection model, it is expected
that, since the model will often detect the second hand, these will be
considered as false positives. Nevertheless, with a 50% threshold for
which the average mAP is 95.5% (Table 2), we only have 1,013 false
hand detections out of the 6,236 images considered. Note that multiple
false positives can be detected in a single image.

Similarly, the results for hand gesture recognition and for the com-
plete pipeline are lower than for the HANDS dataset (89.2% accuracy
compared to 93.7%, and 78.0% compared to 88.9% previously), ex-
plained again by the complexity of the environment in MuViH. Never-
theless, if we take into account only images where a hand is detected
by the model, the accuracy remains quite close to that obtained on the
other dataset (87.3%).

Tables 3 and 4 provide respectively the cumulative confusion matrix
(sum of the confusion matrices of the 5 classification models in the
cross-validation) and the per-class accuracies. The latter are computed
as the accuracy of each class (the positive class) against all other classes
(taken collectively as the negative class). These results show that the
model seems to be slightly more accurate for the two-handed gestures
(around 99%), which correspond to the most critical commands, as
well as the punch gesture (99.0%), compared to the one to five
one-handed gestures (between 96% and 98%).
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According to the confusion matrix in Table 3, three pairs of gestures
show higher confusion rate: two vs. three, four vs. five, and stop
vs. cancel. Gestures three and two and gestures five and four
only vary by the thumb open or closed, respectively. The thumb, lo-
cated at the end of the hand, is sometimes difficult to distinguish in the
image, either because it is confused with the background, or because it
is occluded. Additionally, gestures stop and cancel also show some
level of confusion; this can be explained by the similarity in diagonal
alignment of the hands between those two gestures. Nevertheless, for
all gestures, the per-class accuracy is greater than 96.3%.

All the results in Table 2 are noticeably lower for fold 3. This
result can be explained by the fact that the eleventh participant (part
of fold 3) is the only one with dark skin. Table 5 highlights the
performance specifically on this subject. Quantitatively, the accuracy
for this participant alone is much lower than the average over the three
other participants in the same fold. The same goes for the accuracy for
detected hands only, illustrating a poorer performance of the detection
model on this participant’s images. The average results on the three
other participants are however in the same range as the other folds.
The model has thus great difficulty generalizing to skin colors different
than the ones seen in training.

6.4. Datasets crossover

This experiment consists of training the model on one dataset (either
HANDS or MuViH) and evaluating it on the other one. The aim of
this experiment is to evaluate the generalization capability of our
pipeline and to study the impact of dataset variability on hand gesture
recognition.

We cross-referenced training and testing data between the HANDS
and MuViH datasets for detection (Table 6), recognition (Table 7) and
the entire pipeline (Table 8). The recognition model is trained only on
the gestures that are common to both datasets (13 in total). The results
in these tables are obtained by averaging those of the 5 cross-validation
models. For example, for the column “Training on HANDS”and the row
“Test on MuViH”, the 5 models trained on the 5 folds of the HANDS
dataset are tested on the entire MuViH dataset.

Common to these three tables is the poor performance of the models
trained on HANDS when tested on the MuViH dataset. As a result, for
the complete pipeline, the model trained on HANDS performs barely
better than random gesture prediction with 13 classes. This is mainly
due to the low performance of the hand detection model (mAPs, =
6.3%). In addition, this metric does not take into account the number
of images for which no hands were detected, which nevertheless has
an impact on the result of the entire pipeline.

These results give rise to two interesting observations:

1. Training on the HANDS dataset does not allow good general-
ization to the MuViH dataset, which is more representative of
practical reality in industrial conditions, with an operator who
can move freely around the platform.

2. Conversely, the model trained on MuViH offers better gener-
alization to other datasets. Our results show that when the
classification model is trained on MuViH and tested on HANDS,
it achieves a higher accuracy (96.6%) than when trained and
tested on HANDS (93.7%).

6.5. Comparison between multi and single-view results

We now want to evaluate the effect of aggregating the overall
pipeline’s predictions from multiple synchronized views. For this ex-
periment, we only use the MuViH dataset since it was acquired in
multi-camera mode. Table 9 presents the results for the single-view
and multi-view modes in terms of overall detection and classification
pipeline’s accuracy.
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Fig. 10. Hand detection’s false positive analysis on the 6236 images of the MuViH dataset where no hand annotation was made possible due to occlusions.

Table 3

Confusion matrix for gesture classification on MuViH. Each entry corresponds to a number of images.
GT Predicted label Total

One Two Three Four Five Punch Run Start Stop Cancel

one 8133 567 161 38 28 221 10 23 7 32 9220
two 366 7883 733 234 30 14 11 9 14 39 9333
three 133 578 8100 190 208 27 25 27 29 32 9349
four 38 177 293 7770 877 54 14 36 29 62 9350
five 14 24 219 584 8324 15 16 3 14 104 9317
punch 44 7 34 23 16 9069 33 8 18 102 9354
run 3 6 56 46 10 89 4069 28 19 67 4393
start 57 25 28 26 51 8 34 4283 18 72 4602
stop 7 3 24 12 11 33 82 7 4079 367 4625
cancel 18 39 32 72 144 41 111 52 238 8474 9221
Total 8813 9309 9680 8995 9699 9571 4405 4476 4465 9351 78764

Fig. 11. Example of a case of occlusion, the gesture performed is a 4.

Note that the accuracy in single-view mode takes into account all
images in the dataset, including those in which the hand is not visible.
This explains why the results for the single-view in Table 9 are lower
than those presented in Table 2, in which non-annotated images are not
taken into account. When the hand is occluded, the multi-view mode

10

can still make a correct gesture recognition thanks to the other images
in the group, as the hands are likely to be visible in at least one of them.

Table 9 shows a large improvement (14%) when multiple views
are aggregated. If we compare these results to those in Table 2, we
see that the multi-view performance is comparable to the complete
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Table 4
Per-class accuracies for gesture clas-
sification on MuViH.

Per-class accuracy

one 97.8%
two 96.3%
three 96.4%
four 96.4%
five 97.0%
punch 99.0%
run 99.2%
start 99.3%
stop 98.8%
cancel 97.9%

Table 5
Comparison of complete pipeline results (in %) for participant 11 versus the other
participants in fold 3.

MuViH Participant 11 Other participants
Accuracy 12.9 82.0
Accuracy for detected hands only 51.9 88.6
Table 6
Average hand detection results (in %).
mAP5, Trained on
HANDS MuViH
Tested on HANDS 99.3 84.7
MuViH 6.3 95.5
Table 7
Average gesture classification results (in %).
Accuracy Trained on
HANDS MuViH
Tested on HANDS 93.7 96.6
MuViH 35.0 89.2
Table 8
Average results of complete pipeline (in %).
Accuracy Trained on
HANDS MuViH
Tested on HANDS 88.9 78.6
MuViH 8.4 87.3
Table 9
Results (in %) in single- and multi-view settings for the MuViH dataset.
MuViH Test fold Average
1 2 3 4 5
Single-view 72.9 74.5 60.0 76.6 79.8 72.8
Multi-view 88.1 87.6 75.2 91.9 91.5 86.8

pipeline for detected hands only (86.8% vs 87.3% accuracy). In a case
of occlusion of the hand, the multi-camera system can then use another
camera to obtain a correct prediction of the gesture performed. It also
allows to correct any prediction error on one camera by comparing with
predictions made on the other ones. An example of a group of images
for which a multi-view approach can correct errors is shown in Fig. 12.

6.6. Inference time and size

The complete pipeline execution time for an image is 37.5 ms,
including 14.3 ms for detection and 23.2 ms for classification, using
an nVidia RTX 3060 GPU. This equates to around 27 frames per
second. The pipeline could still be improved in terms of speed, but the
acquisition frequency of the Intel RealSense D455 camera is limited to
30 frames per second.

11
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Moreover, the inference model weighs less than 1 Gb on the GPU,
making it deployable on multiple cameras with a single GPU while
maintaining acceptable execution times.

Industrial-grade GPUs, such as NVIDIA A100 or A40, typically
offer higher computational power, memory capacity, and parallelism
compared to an RTX 3060 (the one used for our experiments). This
could further reduce execution times, potentially enabling the system
to process more frames per second, even beyond the RealSense D455’s
30 frames per second limit. The inference model’s small size (less
than 1 GB) is a significant advantage. On GPUs with large memory
capacities, it becomes feasible to deploy the pipeline across multiple
cameras, handling several streams simultaneously. Edge computing is
also a viable option for decentralized setups, especially in scenarios
requiring low latency and reduced network dependency. Devices like
NVIDIA Jetson series or Google Coral offer lower computational power
compared to an RTX 3060, but the lightweight nature of the pipeline
(model size under 1 GB and sub-40 ms execution time) aligns well with
their capabilities.

6.7. General discussion & limitations

So far, the proposed solution only predicts gestures from a group of
two to three synchronized images from different viewpoints taken at a
single timestamp. The aggregation of different viewpoints has proven
to enhance the hand gesture recognition, more specifically in situations
of visual occlusion. In future work, we envisage a temporal aggregation
of images, taking into account several successive frames to determine
a posteriori whether or not a gesture is being made. A similar solution
has been exploited in previous work [6].

The camera placement that was considered for the MuViH data
collection was based on guidelines and constrained by the geometric
configuration of the platform. While camera placement in MuViH has
not been necessarily optimized for the platform under consideration,
we can make the following recommendation for adaptability to differ-
ent platforms: each possible operator’s position around the platform
should be covered by at least one camera. This minimum number could
be increased to two or three in scenarios where a robot is moving
around, possibly occluding the cameras field of view. Algorithms to
determine the camera placement have recently been proposed, such as
the one in [28]. Such a tool could be used to maximize the coverage of
the workspace.

Furthermore, our current methodology requires the detection and
classification algorithms to be run on all the cameras. This is necessary
to ensure that the gesture recognition comes from a viewing angle free
of occlusion. In the interest of efficiency, we are also investigating the
automatic selection of the camera with the clearest view of the opera-
tor’s hands. This will allow the detection and recognition algorithms to
be run only on the optimal camera.

Unlike other public datasets, all images in MuViH were recorded in
the same cobotic environment. Although it offers a great variability in
movements and viewpoints, the background of the cobotic cell remains
unchanged. Nevertheless, we were able to show that the models trained
on MuViH are able to adapt to different backgrounds, such as the one
in HANDS.

The limitations of the detection and recognition models presented
lie mainly in their declining performance when it comes to dark-
skinned individuals, compromising their reliability in real-life appli-
cations. This shortcoming can largely be attributed to their under-
representation in the MuViH database used to train these models.
This observation underlines the importance of more diverse data col-
lection to represent all populations more fairly. To mitigate under-
representation and enhance models generalization, additional data aug-
mentation such as random modification of hue and saturation channels,
histogram equalization could be considered. Moreover, balanced sam-
pling strategies could ensure that participants with diverse skin tones
are equitably represented in training batches.
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Fig. 12. Illustration of how the multi-camera configuration can correct occlusion problems. In the image on the left we are able to locate the hand but not recognize the gesture,
whereas in the image on the right, obtained from another point of view, we can recognize gesture three.

7. Conclusion

We developed a complete hand gesture recognition pipeline that
takes into account images from several cameras. We also created a
new dataset, named MuViH, with a large amount of variability and
occlusions; this allowed us to build a robust pipeline that can generalize
to other datasets. In order to demonstrate the versatility of the new
dataset, we tested our model on an existing dataset (HANDS) and
showed that it performed as well as the model from the HANDS authors.
Meanwhile, when our model was trained on their data, it did not
generalize well. We also showed that a multi-camera system can greatly
limit the impact of occlusions in the cobotic cell, as well as providing
a larger field of view and allowing the operator to move more freely
around the cell. The MuViH dataset is entirely hand-annotated and
allows full training for a hand detection model as well as a gesture
recognition model. In future work, we intend to annotate a subset of
the images for segmentation of the human body in the cobotic cell. This
will make it possible to train segmentation networks that are robust to
occlusions.
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