POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

Polytechnique Montréal D'INGENIERIE
Titre: . . : . .
Title: Analysis of the sequential decoding metric by Markov Chains
Auteurs:. David Haccoun
Authors:

Date: 1977
Type: Rapport / Report

Référence: 'Haccoun, D. (1977). Analysis of the sequential decoding metric by Markov Chains.
Citation:  (Technical Report n°® EP-R-77-48). https://publications.polymtl.ca/6239/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: .
; . : . .
PolyPublie URL: https://publications.polymtl.ca/6239/

Version: Version officielle de I'éditeur / Published version

Conditions d Ut'l'sat'onf Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numeéro de rapport: o o 57 40
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/6239/
https://publications.polymtl.ca/6239/

......-......,.....
{
|

CAZPQ
UPL
77RLE

Rapport Technique EP77-R-48

Classification: Library of Congress no......

ANALYSIS OF THE SEQUENTIAL DECODING METRIC
BY MARKOV CHAINS

par

David Haccoun,Ph.D.
Professeur Agrégé

Ecole Polytechnique de Montréal

Campus de |'Université
de Montreéal

Case postale 6079
Succursale "A”
Montréal, Québec
H3C 3A7



Lo

pe



ANALYSIS OF THE SEQUENTIAL DECODING METRIC BY MARKOV CHAINS*

DAVID HACCOUN Ph.D.

Professeur Agrégé
Département de Génie Electrique
Ecole Polytechnique de Montréal

-i)c)/v/

RAPPORT TECHNIQUE No. EP 77-R-48

ECOLE POLYTECHNIQUE DE MONTREAL
Décembre 1977

* This research was supported in part by the National Research
Council of Canada, grant No. A-9336.

13 Jan 197



ANALYSIS OF THE SEQUENTIAL DECODING METRIC BY MARKOV CHAINS

by
DAVID HACCOUN

ABSTRACT

A new approach to the analysis of the factors responsible for the
computational variability of sequential decoding is presented. The
analysis uses Massey's Markov Chain model of the difference between a
node on the correct path and its smallest succeeding value. In this
model the states of the chain correspond to the possible metric dip values
includind zero, and it is shown that the average separation between
breakout nodes is equal to the reciprocal of the stationary probability
of state zero. The analysis is extended to multiple-path sequential
decoding yielding a closed-form expression of the improvement over the
single-path sequential decoding of the average separation between non-
search nodes. Finally by regarding the probability distribution of the
correct path metric dip, Pr (Dip < H) as the probability that starting
from state zero the systems returns to that state without visiting any
state equal or larger than H, and exact expression of this distribution
is derived. All the expressions are given in terms of the set of the
correct path branch metric values and their probability assignments.

They are easily computable, directly applicable to particular cases, and
as shown by specific examples the theoretical results are in excellent
agreement with experimental measurements.



I.  INTRODUCTION

Sequential decoding is one of the most powerful decoding techniques
for convolutionally encoded messages transmitted over a discrete memoryless
channel. It is a suboptimum tree search procedure which attemps to find
the most 1likely data sequence or path y_:f(u], Uys Usgs ...) through the
encoded tree in which the branches are assigned 1ikelihood or branch metric
values {y}. For a tree of length L branches the objective of the decoder
is to find the path U for which the total accumulated metric

L
- £
1=
is the largest [f] . The central idea of sequential decoding is to ex-

plore the tree one branch at a time without searching the entire tree.
This exploration is performed along the path that appears to be the

most Tikely, that is whose metric is the largest among those examined.
With this procedure the decoder must occasionnaly go back in the tree and
reverse an earlier decison, but in order to minimize this backing up

and extension of unlikely paths, the metric is biased in such a way that
on the average it increases along the correct path and decreases along
all incorrect paths.

The average number of computations per decoded bit is typically
very small, but the main problem with sequential decoding is the compu-
tational variability which is asymptotically Pareto distributed [2].

This variability can be reduced by having the decoder explore simultane-
ously the M, M > 1 most likely paths (instead of the single most Tikely
path), and exploit the trellis structure of the code to eliminate merging
redundant paths [3].



A particularly important quantity with sequential decoding is the
difference Ak between the cumulative metric at a node on the correct path

and its smallest succeeding value,

A, = I = Min T, (1)
k k i >k

If for a node U, on the correct path U we have

r. 2 T, 1>k (2)

k — "3

then Ak:: 0 and this node is called "breakout" [4]. If inequality (2)

is strict, then U, is a "strict" breakout node. Breakout nodes are called
"nonsearch" since they are decoded by a sinale computation. However, since
all the incorrect paths that the decoder will ever explore emerge from
nonbreakout nodes on the correct path, as Ak increases, the number of com-
putations necessary to decode 9« increases exponentially. Nonbreakout
nodes are called "search" nodes. Fig. (1) shows a typical segment of the

correct path metric.

Clearly, decoding proceeds smoothly when the decoder moves along
consecutive breakout nodes on the correct path. The decoding effort
increases and becomesvariable only when, because of the noise in the
channel, nonbreakout nodes are encountered on the correct path. Each of
these nonbreakout nodes becomes the root node of a potential subtree of
incorrect paths that must be explored as long as their metric value does
not drop below that of the next breakout node. Therefore the decoding
effort increases as both the correct path metric drops and the number of
consecutive nonbreakout nodes increases. Prime determinants for the compu-
tational behaviour of a sequential decoder are thus the distribution of
the correct path metric dips and the separation (in number of branches)
between consecutive breakout nodes.

In this paper a new approach to the analysis of these two factors res-
ponsible for the computational variability of sequential decoding is pre-
sented. The approach uses a Markov Chain model of the metric differences A
introduced by Massey et al [5] . In this chain, the states are the pos-
sible metric dip values, and decoding is regarded as executing a random



walk with a reflecting barrier at the origin. The Markov Chain model is
reviewed in section II and several properties of the chain are interpreted
with respect to sequential decoding. The Markov Chain model is then used
in sections III and IV to derive closed-form expressions for the average
separation between nonsearch nodes for the single-path and the multiple-
path sequential decoders, and to determine an exact expression for the
cumulative distribution of the correct path metric dips. These closed-
form expressions are especially interesting because they are easily
computable on a computer and also because they are given in terms of the
actual set of channel transition probabilities and the actual set of
branch metrics used by the decoder. Finally the accuracy of the model
was verified by the excellent agreement obtained between the theoretical
results and actual measurements performed on computer simulations.

IT. MARKOV CHAIN MODEL OF THE CORRECT PATH METRIC DIPS

In this section we present Massey's Markov Chain model [S] for
the correct path metric dips and interpret some of its properties with
respect to sequential decoding.

Consider some node !k on the correct path U, and let {Yi} be the
set of correct branch metric values. A fundamental quantity closely
related to the decoding of U, is the metric difference given by Eq(1),

_k
repeated below

Ak = Fk = M"ln(f'k, Fk+-|s Fk+29-.-) (3)

Naturally,

Ak >0 . k = 1,2,... (4)
where the equality holds only for breakout nodes.

Since Fk is the cumulative metric ovEr the first k branches, then

r = T . (5
S =t )
and Eq (3) becomes

Ak = - Min {0, Yk‘*‘]’ (Yk+] + Yk+2), . (6)



which can be expressed recursively by

A Y : A o
S T R o I G ) 20 (7)
k 0 otherwise
or
b, = Max {0, (Ak+J _'Yk+1)} (8)

Since all the correct path branch metrics y are statistically
independent random variables with the same distribution, then the non-

negative random variables , induce a queuing process.

Begrs Do Byysee
This process is equivalent to a Markov Chain where the states are the

possible values of Ak, and where the 1-step transition probabilities are
the probabilities associated with the y's. If J is the largest negative

branch metric value and Q the largest positive branch value, then

pzzP(y =—2), 0<82<J

a =Ply = 2), 0<220 (9)

This set of probabilities is readily obtained from the channel transition
probabilities and the definition of the metric. The states Ak are integers
since the branch metric values are always rounded to integers in practical
sequential decoders.

If a node U, has some value A, = j, then state j of the chain

is occupied. The_ﬁext state to be oﬁcupied, say state 2, will be determined
by the 1-step transition from state j, according to the set of probabilities
of Eq.(9), and Ak-] = 4. For example, in Fig. (2), the set of the possible
branch metrics is { 2, 1, 0, -3, -7} and the corresponding probabilities

are {q2, Ays Pys Pas p7}. As shown in Fig. (2), for this particular example

all states to the right of state 2 exhibit the same transition pattern.

A breakout node of the correct path locates the decoder at state
0 whereas a nonbreakout node will Tocate it at the corresponding nonzero
state. Clearly decoding the correct path is equivalent to executing an
interger-valued random walk where a visit to any nonzero state initiates
a search for the correct path. Since from state zero the decoder could



either remain in that state or go into a search, state zero acts as a
reflecting barrier at the origin of the random walk. For a soft-quantized
channel there are in general Q, Q > 1 transitions towards the zero-state
and J possible transitions away from the zero state, corresponding respec-
tively to the possible Q positive and J negative branch metrics values.

The form of the probability transition matrix for such a random walk with
Q=2 and J =4 is given below

- 1 2 3 4 5 6 7 8 9

(p0+q]-+q2) Py Py P3 P 0 0 0 0 0

1 (a;+a,) Pp Py P, P53 P, 0 0 0 0

2 q, 99 Py Py Py, P3 Py O

s 2 9 Pp Py Pp Pg Py

1h® % % Po Py Py P3 Py

1 % % Po Py Py P3 Py
17 %% Py Py By Ry

This Markov chain model for Ak was first proposed by Massey et al
[57 who considered the particular case in which only a single transition
of unit length is permitted toward the origin state, i.e., Q =1, P(YE=+ﬂ)= a s

but any finite number J of transitions away from the origin are permitted.

Regardless of the chain, when a node Qk on the correct path has a

positive metric difference, A, > 0, there is a search associated with

this node, and clearly the cotrect path metric must go through a dip at
least equal to Ak before reaching the next breakout node. We can therefore
associate the A's with the correct path metric dips. Of particular impor-
tance with this representation is the stationary probability distribution
of the different states or dip values, and the average separation between

consecutive breakout nodes.



Properties of the Markov Chain

We now interpret some well known properties of Markov Chains [6]
with respect to sequential decoding.

Property 1:

The average branch separation between breakout nodes on the
correct path is equal to the mean recurrence time of the origin state.

Suppose state j can be reached from state i in n steps. Let
Tij be the waiting time (in number of transitions required) for the
first entrance to state j from the initial state i. Then

ff?) = Bl Te= 1) (10)

Td
is the probability to reach state j for the first time from state i
in exactly n steps. The probability of eventually reaching state j
in a finite number of steps from state i is

n i &
fig=flg = = 3 SRR Hig

In particular Tii is the return time to state i (or recurrence time of i)
and if fii = 1, then state i is said to be recurrent or persistent. If
fii < 1, state i is said to be transient.

For a recurrent state i, the mean recurrence time (or mean return
time) is defined as

wg= I_n f(?) (12)
=1 !

If u =, state i is called a null state, and if My < o it is called

a nonfull state.

For sequential decoding the probability that the first return to
state 0 (a breakout node on the correct path) takes n steps is

P(T_ - n) — £t (13)



Hence the average number of steps to return to state 0, or equivalently
the average separation dO (in number of branches) between consecutive breakout
nodes of the correct path is the mean recurrence time of state 0,

e (n)
d, = v, - i] nf,l (14)

The average separation dO is finite only if state 0 is recurrent
nonnull. We know that for sequential decoding, the only incorrect paths
of interest emerge from nonbreakout nodes on the correct path. Therefore
in general both the average value and the variability of the computational
effort increase with the average separation between consecutive breakout
nodes. A decoding algorithm which effectively reduces the average separation
d0 will also reduce the variability of the decoding effort, and if do== 1
this algorithm will never get into a search for the correct path.

Property 2: If R < RC for the sequential decoder, then state 0 is

omp
recurrent.
Rcomp being the computational cutoff rate of sequential decoding Eﬂ
if R = RComp the average number of computations to decode one branch on

the correct path is finite. Therefore the decoder always returns to a
breakout node or zero state of the chain. Hence foo = 1 and state 0 is
recurrent.

Property 3: The Markov chain is irreducible

There is no absorbing state in our Markov Chain, every state can be
reached from every other state and hence the chain is irreducible. Since
in any irreducible Markov Chain all state are of the same class (recurrent
a transient), if state 0 is recurrent then all other states are recurrent.



IIT. AVERAGE SEPARATION BETWEEN BREAKOUT NODES

We have shown that the average separation between breakout nodes is
equal 'to the mean recurrence time of state zero. Now, if a chain has a
stationary probability distribution {Vj} defined by

Weme & Ve Povs J=0; T @554 (15)

then the unconditional distribution of occupancy of the states becomes
independent of time: the process is in statistical equilibrium. The
stationary is unique when it exists and the Vj are given by

1
i (16)
where “j is the mean recurrence time of state 9.

If such a distribution exists for the state of the chain, then

P(A, =2) =v,, £>0 (17)

Of special interest is the stationary probability Vo of occupying
state 0, since it represents the relative frequency of breakout nodes on
the correct path which a sequential decoder will decode by a single compu-
tation. From Eq (14) and (16) it follows that the average separation
between breakout nodes is given by

]
do ¥,

Since an irreducibie Markov Chain has a stationary distribution
if and only if all states are recurrent nonnull, then it follows from
property 2 and 3, that if R < Rcomp’ the stationary distribution for our
chain exists. The determination of the {vj} according to Eq (15) is in
general quite cumbersome. However, for the simple case where there are
any finite number J of transitions away from the.origin state, but where
only a single transition of unit length towards the origin is permitted,



Massey et al Eﬂ give a simple recursive technique to determine the stationary
probabilities Vi given they exist. For such a chain, the average drift
toward the origin is

J
z=q- I .

i0 1 P {193

and assuming z > 0, T is then given by

z
V0~ a (20)

and hence

-1 _3q

d, vz (21)

Unfortunately for the general case where there are Q, Q > 1 positive
branch metric values, this "drift balancing" technique cannot be used
ﬁﬂ. However it can be applied for the binary symmetric channel when
all metric values are normalized so that the positive branch metric has
unit value.

For example consider sequential decoding for rate 1/2 codes over
a binary symmetric channel with a cross over probability € = 0.0330. The
rounded off branch metrics are ( 1, -4, -9) and the corresponding proba-
bilities are {0.9351 , 0.0638 , 0.0011 }. From Eq(20) the stationary
probability L is then equal to 0.7165 and the calculated average separation
between breakout nodes is equal to 1.3956. Actual measurement of do on
a computer simulation of a path of length 200,000 branches using identical
branch metrics and identical transition probabilities has given a value
of 1.3979 which is in excellent agreement with the theoretical value.

The stationary probability ¥y represents the proportion of the
nodes on the correct path that will be decoded by a single computation.
Hence a proportion (1-vo) of the nodes on the correct path are nonbreakout
and are thus responsible for the variability of the computational effort
of sequential decoding. Eq. (21) is intuitively agreeable since as ¥y
increases, d0 and the proportion of nonbreakout nodes both decrease,
decreasing also the variability of the decoding effort. Clearly a procedure
which reduces the effective dO will consequently reduce the variability of
the computation [3] . This reduction of dO is investigated next.



MULTIPLE PATH SEQUENTIAL DECODING

Consider a sequential decoder that extends simultaneously the
M, M > 1 most likely paths instead of the single most likely path.
As a consequence of the multiple-path extension it has been shown [3], &ﬂ
that the small dips on the correct path metric are simply ignored by
the decoder in the sense that the decoder does not get in a search for
the correct path. For these small dips the nonbreakout nodes behave
like breakout nodes. They become "pseudo" breakout or, just like the
true breakout nodes, "nonsearch" nodes, and consequently, compared to
sequential decoding the average separation between the nonsearch nodes
is therefore reduced.

Suppose all dips smaller than some value H are ignored by the
multiple-path decoder. Since all nonsearch nodes have a state smaller
than H, if the decoder starts from state zero and returns to it without
ever visiting any state at or beyond H, all states in the path correspond
to nonsearch nodes. If Hd0 is the new average separation between the
nonsearch nodes, then the ratio

d

Hdo

o

may be taken as a measure of the improvement afforded by the multiple-
path decoder over the single-path sequential decoder. Using the Markov
Chain model we now proceed to determine an exact expression of this
improvement in terms of the set of the branch metric values and their
associated probabilities.

Let H be the set of states smaller than state H, and let the
first return probability to state zero in n steps without ever leaving
H be defined as

— Pr [An =0, Aj + 0, Aj g My J=1425:0:0 =1] AO = O] (23)

10



Likewise define the first entrance probability to state O in n steps
without leaving H as

(n) = = .= x.]
£\ —Pr[An—O, By 0,8y € Hy §=1,2,...n-1]8 = (24)

The events of returning the state O can be classified into 2
disjoint sets depending on whether all states visited "en route" belong
to H or not. Therefore writing Cfég) as the complement to Hfég) , we

have
gl ln)y cgln) (25)
00 H oo 00

where f(n) is the first return probability to state 0.

00

Now suppose there are N true breakout nodes over a very long path,
whose average separation between breakout nodes is d0 and average separa-
tion between nonsearch nodes is Hdo' We can write

oo
v

d N = 4 N [Hf(”+ :on £ 4 8 Cf(”)] (26)

o] 00 =2 H oo At

where the terms in the brackets represent respectively, the proportion of
consecutive breakout nodes, consecutive "pseudo" breakout nodes, and search
nodes. Using Eq(25), Eq(26) becomes

d =d | £ (n-1) ™ 4 3 f("):l (27)
o H o[n=] H oo ey 00
Since state 0 is recurrent, i fég) =1 and we finally obtain
n=1
d es)
o _ " (n)
Hdo 1 4-ni](n 1) Hfoo (28)
or
d -,d ©
oHo — 5 (n1) M (29)

11



Before proceeding to evaluate the infinite sum, we can check the
validity of Eq(28) by making H = 1 (sequential decoding) and H = »

*

(Viterbi decoding )

(1) Sequential decoding. Since H=1, clearly Hfoén) = 0 for

n > 1, and Eq(28) yields do = ldo as required.

(ii) Viterbi decoding. A1l nodes are nonsearch nodes. Therefore,

PR w
and Eq (28) becomes
% e _ 5 o)
g-d-o—— = +-ni]n foo - ni'l foo (31)

Using Eq (14) we obtain

d
0= o =
gl T4 =g
that is
hdp =1

As expected, for Viterbi decoding the average separation Hdo
between the nonsearch nodes (that is all the nodes) on the correct path
is equal to 1. Having verified the validity of Eq(28) for the two
extreme cases, we now show that the infinite sum of Eq(28) can be
evaluated for any H from the set of transition probabilities of the Markov
chain of the correct path.

Direct evaluation of the righthand side of Eq(29) is rather cum-

bersome and we shall compute separately & f'(n) and I n £ (n)
n=1 # °° n=1  H oo

If the multiple-path decoder operates on a trellis and exploitsthe path
remergers, it can be shown that if M= 2™ where m is the memory of the
convolutional code, then the decoder is essentially a Viterbi decoder [3].Bﬂ
Consequently all nodes on the correct path are nonsearch.



From the definitions of the first return probability Eq(23), and first
entrance probability Eq(24) we can write
H-1

(ny1) (n)
Hoo 7 B Pos wfio e
Jj=I
and
£ (n41) _ H;I P $ (n) T™F H-1 (33)
H' 50 o Hap ¢ AT e

where the {Pij} are the T-step transition probabilities of the Markov Chain.

The form of Eq (32) and (33) suggests the following matrix repre-
sentation: define the vector

F o] -
H oo P
() 00
1
110 P10
(1)
| f ]
E, = |#20 — 20 (34)
o) :
LHfH-l,o Pu-1.0
= L o

and let [A]be the H x H transition probability matrix of the chain where
the Trst column is set equal to zero

_ _
0 Py Py _— Py-1
@ By B Ph_2
. 9 Po PH-3 (35)
K 35
0 % 9 PH-4
8 Gyo a  Po

13



then from Eqs (32) and (33) we obtain

[ (2) ]

HOO

(2)
10

Likewise we obtain - -

and in general

Let the vector En be the (n41)th  column of a matrix [B] having H rows
and an infinite number of columns

L LA T
then "
. . . ; n ;
(8] =¥, [A] F,: [A1° F, @ -.oe @ [A] B, § asus
The elements b]i of the first row of [B]are the Hfgg) of interest.
Consequently
g o fn) o %

e B0 g gy



Factoring the common vector Eo’ Eq(40) becomes

[B]= [(I t [A] ;[A]ZE SR (A" Do

The matrix power series Ii—[A]+[A]2 S +[A]n .. will converge
to (I - [A])_] if the eigenvalues of [A] are less than 1. Since [A] is
the truncation of a stochastic matrix, the sum converges. Letting

5=[1 - W] F, (43)
it then follows that the sum of the elements of the first row of [B]is
the first element X of X. Therefore we obtain the intermediate result
@ (n)
g . f = X (44)
it H oo 1
Likewise eaéh element of the sum 5 n fég) is an element of
the first row of the infinite matrix =l
L ’ g . ; n :
(8] —[50 P2 [A] Fg 3[R E L He)[A]TE ] (45)
. 5 ; 2 s ‘ N«
_[(1 A Y R 1 (A 1% 4 3 7.1 (R, Eo} (46)
The sum of the columns converges to the vector
_ -1,2
Y= ([1-[A]™HF, (47)
and hence
& (n)
b f = 48
=1 " oo y] e

where Y is the first element of the vector Y.
and (48) we have the result

dO
—— = 14y, — X
Hdo 1 1
or
d - ,d
0 H .
" PR & Rl

Finally combining Eq (44)

(49)

15



Observing that Eo and [A] are known, and that H is finite the
closed form expressions (49) or (50) can easily be evaluated on a computer.
This computation has been carried out for a rate 1/2 convolutional code
operating at Eb/NO:= 3.0dB and 3.5dB over a discrete memoryless Gaussian
channel using a 3 bit quantization. The set of transition probabilities
{qi} and {pi} of the associated Markov Chain are civen in Table 1 and
Table 2. Results of the computation of Eq(49) are plotted in Fig. (3)

The curve shows that the ratio do/Hd0 seems to level off for H-> 120,
which indicates that Hd0 must be close to 1 for those values of H; that is
d0 is slightly larger than 1.51 for Eb/N0 = 3.5dB and slightly larger than
1.64 for Eb/N0 = 3.0dB.

In order to verify experimentally these results, Hd0 was measured
for 1 < H < 160 on a computer simulation of the correct path metric
performed under strictly identical conditions. Based on simulation runs of
a correct path metric of length 200,000 branches, d0 was found to be equal
to 1.6745 for Eb/NO = 3.0dB and 1.5179 for Eb/No = 3.5dB. As for the ratio
do/Hd0 the experimental values are so close to the theoretical results that
hardly any difference can be observed on the curve of Fig.(3). Table 3
gives the experimental and theoretical values and demonstrates how closely

(within 1%) the theory fits to the measurements.

IV CUMULATIVE DISTRIBUTION OF THE CORRECT PATH METRIC DIPS

Defining a dip on the correct path as the largest metric difference
between two consecutive nonadjacent breakout nodes (see Fig. 4a), we
shall use again the Markov Chain model and the previous results to derive
an exact expression of its cumulative distribution

Py Py (Dip < H) (51)
Following the same approach as in section III, we let H be the

set of states smaller than state H. Then, clearly, as illustrated in

Fig (4b), PH is the probability that starting from state 0, the system

returns to that state without ever leaving the set H . Recalling that

' (n) is the first return probability to state 0 in n steps without

H oo
ever leaving H (see Eq (24)) , it follows that Eq(51) can be written as

© (n)
Po= & of (52)
H —4 oo

16
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This expression was encountered in section III and is given by
Eq.(44). This closed form expression of the cumulative distribution of
the correct path metric dips is, again, easily evaluated on a computer.

Using the set of transition probabilities given in Table 1
for Eb/N0 = 3.5dB computation of PH has been carried out and plotted
H) = Pr(Dip > H). Results of the
corresponding measurement obtained from a computer simulation on a

in Fig.(5) as the complement (1 - P

path of 2 x 105 branches are also plotted for comparison.

The distributions are clearly exponentially decreasing with H
and again, the measurements fit remarquably well with the theoretical
results. Although the exponential behaviour was expected, The Markov
Chain approach to the analysis of the metric dips is superior to the
traditional bounding technique which considers a random ensemble of
codes, and gives for PH a loose upper bound rather than an equa]ity[7]
On top of yielding easily computable expressions, the Markov Chain
technique presents the additional advantage of taking into account the
particular channel quantization scheme and the actual set of integer
branch metrics used, making it directly applicable to any particular case.

V.  CONCLUSION

The analysis of the correct path metric of sequential decoding
presented in this paper departs from the traditional random coding tech-
nique over ensemble of codes and emphasizes the importance of the Markov
Chain model. Interpreting this model with sequential decoding we have
derived closed form expressions of the average separation between nonsearch
nodes for both the single and multiple-path sequential decoding, and an
exact expression of the cumulative distribution of the correct path metric
dips. These new expressions are easy to evaluate, and being expressed in
terms of the set of the correct path branch metric values and their
probability assignments they are directly applicable to specific cases. The
excellent agreement obtained between theoretical and experimental results
demonstrates the accuracy of the model. Finally the Markov Chain approach
seems to be applicable to other important problems of sequential decoding
such as buffer overflow [5] and computational effort.
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TABLE 1 : Markov Chain transition probabilities for a 3-bit
quantized channel and Eb/No== 3.5dB.
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TABLE 1

Markov Chain transition probabilities for a 3-bit quantized channel
and Eb/N0 = 3.5dB

qgg = 0.477151 Pgp = .001469
q9; = 0.207368 Pgc = .006750
q9g = 0.022530 Pyg = 001467
q; = 0.127200 Pgg — 000900
9, = 0.027640 Pg — -000276
Pag = 4.32x107"
Peg = 1.877x107°
p, =  .008477 ey = 408107
po =  .061074 pe, — 1.62x107"
pg — 013271 Pes — 2.50x107"
Pio—  -008141 Py = 1.2¢107°
Dia .001954 pg = 2.4x107°
pyg= 022951 Pgy = 4.5x10"°
Ppo =  -004987 prgg = 1.32x107
Ppg =  -003059 Plog = 2.0x107°



TABLE 2

Markov Chain transition probabilities for a 3-bit quantized channel
and Eb/N0 = 3.0dB

qg = -4364452 Py = -002025
q, = .2101586 pyp = 8.062x107
q = -0252991 pyy = 1.941x107
gy = .1343121 pyy — 1.2405x107>
q, =.032372 Pgp = 3.965x10"*
pgs = 6.206x107"
P = 2.3558x107
p, - .0103333 Pg; = 3.625x107"
ps = 0671917 Peg — 1.813x10™*
pg — -016177 pyp — 3.72x107
Pyo = -010338 pgy — 7-1x107°
py7 = -026309 Pgg — 2.18x107°
Pyg = -008920 ppg= 3-2x107°
— 004048



TABLE 3

Comparison of the theoretical and experimental values of do/Hd0

Eb/No = 3.0 dB Eb/No = 3.5 dB
Experiment Theory Experiment Theory
(200,000 branches) (200,000 branches)
H pdo do/Hdo do/Hdo pdo do/Hdo do/Hdo
1 1.6745 1.0000 - 1.5179 1.0000 -
3 1.6594 1.0091 1.0087 1.5065 1.0075 1.0073
4 1.6594 1.0091 1.0087 1.5065 1.0075 1.0073
6 1.5596 1.0737 1.0731 1.4206 1.0685 1.0672
8 1.5316 1.0933 1.0928 1.3986 1.0852 1.0834
10 1.5285 1.0955 1.0953 1.3964 1.0870 1.0851
12 1.4836 1.1287 1.1286 1.3647 1.1122 1.1126
15 1.4736 1.1336 1.1333 1.3581 1.1177 1.1158
20 1.3582 1.2329 1.2340 1.2785 1.1872 1.1879
25 1.3054 1.2828 1.2833 1.2292 1.2349 1.2378
30 1.2827 1,3055 1.3080 1.2111 1.2533 1.2687
35 1.2134 1.3800 1.3800 1.1933 1.2720 1.2775
40 1.1792 1.4200 1.4215 1.1374 1.3345 1.3367
45 1.1588 1.445] - 1.1143 1.3621 -
50 1.1336 1.4771 1.4762 1.0987 1.3816 1.3851
60 1.0887 1.5381 1.5305 1.0773 1.4089 1.4156
70 1.0610 1.5782 1.5702 1.0438 1.4542 1.4586
80 1.0419 1.6072 1.5960 1.0293 1.4746 1.4803
90 1.0281 1.6287 1.6138 1.0178 1.4913 1.4942
100 1.019 1.643 1.626 1.013 1.498 1.503
110 - - 1.633 - - 1.509
120 1.008 1.661 1.638 1.006 1.509 1.513
130 - - 1.641 - - 1.516
140 1.003 1.669 - 1.002 1.518 -
160 1.001 1.672 - 1.001 1.517 -
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FIGURE 1: Segment of the correct path metric

FIGURE 2: Example of a Markov Chain with Q =2, J =7



FIGURE 3: Calculated values of d /Hd
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Figure 4: (a) Definition of a dip of the correct
(b)  Markov Chain representation
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