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CONSTANT COOLING RATE APPLIED ON ITS BOUNDARIES
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Ecole Polytechnique, Université de Montréal

Department of Civil Engineering
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ABSTRACT

The transient natural convection of a mass of water contained
in a closed cavity with wall temperature decreasing at a steady rate
is considered. For situations where a linear density temperature rela-
tionship can be assumed, a quasi steady state following an initial
transient may be reached provided that the cooling rate applied to the
wall is held constant long enough. Steady state flow characteristics
in the case of a specific geometry are function of a single parameter,
the Rayleigh number, in which a dimensionless temperature, based on
the cooling rate, is used. For the particular case of water cooled
through 4°C, temperature at which a maximum density occurs, a linear
variation of density with respect to temperature is no more acceptable.
However, it can be assumed that a linear relationship between the water
thermal expansion coefficient and the temperature is valid in the neigh-
bourhood of 4°C. With such an assumption it is still possible to cha-
racterize the cooling process that follows the initial transient by a
single parameter. Detailed numerical results are presented for the
particular case of a square cavity. Existing experimental and numerical

results for the case of a horizontal circular pipe are also discussed.



1. INTRODUCTION

Natural convection flows in cold water are strongly affected
by the occurrence of a density extremum with temperature variation. Thus
at a temperature T = 3.98°C, the density of water attains a maximum value,
thereafter decreasing in a non linear manner as the temperature passes
this critical value. It results from this peculiar behaviour that the
usual linear approximation of the temperature effect on density, used
in conventional analysis, must be replaced by another more realistic
density equation of state. This latter must be capable to approximate
with precision not only the presence of the density extremum at 3.98°C
but also the nonlinearity of the density dependence in the neighbourhood
of this point.

The first studies demonstrating reversals of convective
motion around the density extremum were reported almost simultaneously
by Codegone (1939) and Powel (1940). The earliest theoretical study on
the effect of density extremum on natural convection is due to Merk
(1954) who predicted a minimum Nusselt number for melting spheres
at 5.31°C. A brief experimental report by Dumore et al. (1953) together
with some results from a vertical nonmelting plate by Ede (1951) gene-
rally supported Merk's analysis. Since these pioneering works, the
problem of buoyancy-induced flows in cold water have been studied by

many investigators not only because of their intriguing features but

also due to the fact that they are a very commun occurrence in our en-
vironment and in many processes in technology.

Recent litterature on the effects of maximum density on
natural convection may be classified in three different kinds of motion,

namely external flow caused by a localized heat source; circulation,



which may occur in horizontal and unstably stratified fluid layers;
and flows inside cavities. In the present study we consider only natu-
ral convection in enclosures. However, the current litterature will
be now reviewed for the three types of motions, for reference purpose.
External flows in cold water have been throughly investi-
gated in the past for flat, spherical and cylindrical surfaces. For
instance, heat transfer rates, temperature profiles, and velocity gra-
dientsproduced by a heated vertical plate in water in the region of
3.98°C were determined experimentally and theoretically by Schechter
and Isbin (1958) and Vanier § Tien (1967, 1968). An exhaustive inves-
tigation of the convection flows adjacent to a vertical isothermal sur-
face in cold or saline water has been presented recently by Carey,
Gebhart & Mollendorf (1980). Temperature conditions for which local
buoyancy force reversals occurs across the thermal boundary layer have
been determined analytically. Surface heat transfer rate for flows

with large buoyancy-force reversal was found to be only 50% of that

for flows with no buoyancy-force reversal. Merk (1954) showed that
third-order density polynomials for water could be successfully utilized
in the boundary layer equations. Measurements by Oborin (1967) and Schenk
and Schenkels (1968) for spheres in cold water are in fair agreement with
Merk's prediction of convective inversion. However, as demonstrated by
Carey et al (1980), an integral boundary layer treatment for such flow

may be quite unrealistic. Using photographic techniques, Tkachev (1953)
found a minimum Nusselt number of melting ice cylinder at 5.5°C. Tkachev
was apparently the first worker to suggest that under certain conditions
the flow within the boundary layer might be dual (i.e. up and down).

More recently the natural convection over a horizontal ice cylinder has



been studied numerically by Saitoh & Hirose (1980). It was found that
three-dimensional flow instability is induced in the vicinity of the
minimum heat transfer region. The water temperature over which such
instability occurs ranged from approximately 5.5°C to 6.5°C.

Circulations in horizontal fluid layers of cold water
have been considerably studied because of their importance in
several areas of geophysical fluid. The influence of the density ano-
maly on the onset of convection of such layers of fluid has been inves-
tigated by Veronis (1963) and Merker et al (1979), using the linear
stability theory. Results are presented in terms of critical Rayleigh
numbers and stability diagrams. Yen et al (1969) observed a regular
cell structure in a melting ice layer heated from below. Numerical
and experimental studies with a melting ice layer heated from above
have been carried out by Seki et al (1977). 1In all those studies it was
found that the density inversion plays an influential role on the onset
of free convection and the free convection heat transfer. Concerning
the convection process in cold water layers, no analytical solution is
available due to the complex governing equations, the stability problem
involved and the density anomaly of water.

The behaviour of convective motion of enclosed water, in
the region of maximum density, has been studied for several different
geometries, boundary conditions and temperature gradients. Desai and
Forbes (1975) and Watson (1972) have studied numerically the heat trans-
fer and flow patterns in cold water in a rectangular enclosure with
vertical boundaries maintained at different temperatures and insulated
horizontal boundaries. The flow was bicellular, in contrast to the one

cell flow obtained for a fluid without maximum density effect and the



heat transfer occurred primarily by conduction. The transient behaviour
of water, contained in rigid rectangular insulator and cooled from above
to near freezing has been considered by Forbes & Cooper (1975). Vasseur
and Robillard (1980) have studied the transient cooling of water, en-
closed in a rectangular cavity with wall temperature maintained at 0°C.
Supercooling of water contained in an enclosure subjected to convection
boundary condition has been investigated by Cheng et al. (1978) for the
case of a circular pipe and Robillard & Vasseur (1980) for a rectangular
cavity. It was found that the resulting flow motion is greatly influen-
ced by the presence of a maximum density effect. This latter slows down
the initial circulation inside the cavity and subsequently reverses it.
The resulting heat transfer is thus reduced in comparison to a standard
situation without maximum density effect.

The present study considers the transient recirculating
flow of cold water induced in a closed cavity by decreasing the wall
temperature at a constant time rate. Cooling of the cavity is maintai-
ned long enough for the water temperature to encompass the 3.98°C point.
Theoretical analysis on transient natural convection in enclosures with
a uniform fluid temperature and a linear variation of wall temperature
with time has received little attention in the litterature. Prior stu-
dies on the subject have examined theoretically (Quack (1970), Takeuchi
& Cheng (1976)) and experimentally (Deaver § Ecker (1970)) the transient
natural convection in horizontal cylinders with constant cooling rate
for temperature conditions such that there is no maximum density effect.
It was found that after an initial transient period, a quasi-steady
state takes place inside the cavity and the developement of a correla-

tion equation for Nusselt number is possible. An experimental investi-



gation on the cooling of water in a horizontal cylinder through the
maximum density point has been presented by Gilpin (1975). Four flow
regimes were identified, namely transient, quasi-steady, inversion and
quasi-steady states before the occurrence of the freezing process.
These findings are in agreement will Gilpin's quasi-steady state boun-
dary layer model and a numerical study conducted by Cheng and Takeuchi
(1976) . Numerical results were obtained for three cases involving dif-
ferent cooling rates, pipe diameters and initial water temperatures.
The importance of the inversion process, due to the maximum density
effect, on the flow pattern preceeding the formation of ice inside the
water pipe was evidenced by these authors.

In this paper, the convection of a mass of water with boun-
daries cooled at a constant rate is considered through a dimensional
analysis based on the assumption of a linear relationship between the
thermal expansion coefficient and the temperature. Exhaustive results
for the specific case of a square cavity are obtained by a standard
numerical method and conclusions of general character are withdrawn.
The particular thermal boundary conditions of the present problem, when
applied to a rectangular cavity introduce density gradients at the four
boundaries. On one hand, driving forces are generated near the verti-
cal walls in a way comparable to more standard situations where the two
vertical walls are maintained at different temperatures (e.g. Patterson
and Imberger, 1980). On the other hand an unstable layer is formed and
one of the two horizontal walls, as it occurs when a cavity is heated

from below (Linthorst et al. 1980).



24 PROBLEM FORMULATION

Consider the natural convective motion of a mass of water
contained in the closed rectangular two-dimensional cavity illustrated
schematically in figure 1. The aspect ratio of the half cavity is de-
noted by E = h/b. A rectangular Cartesian co-ordinate system is loca-
ted in the centre of the base. Initially the water is motionless and
at a uniform temperature T, higher than 3.98°C. At time t = 0 a uniform
temperature T, = T, - ct, where ¢ is a constant cooling rate, is imposed
on the boundaries of the cavity. Cooling of the system is maintained
long enough so that the water maximum temperature inside the cavity
reaches a value below 3.98°C.

The appropriate equations governing the resulting transient

flow of fluid in this situation are:

g%%.+ u' g;: + v g;: 2 - g;-%g%-+ w2y ! (2)
LA LA (4)




Here, u' and v' are vertical and horizontal velocity compo-
nents, T the local temperature of fluid, P'the pressure, g the accele-
ration due to gravity and p, the density. Vv, p,, C,, k and 0=K/pmC,
are the kinematic viscosity, density, heat capacity, thermal conducti-
vity and thermal diffusivity, all refered to the temperature corresponding
to the maximum density (3.98°C).

The initial and boundary conditions are:

t' =20 u' =v' =0 ; T T; everywhere

t' >0 u' =v' =0 ; Ty = T, - ct' on a solid boundaries (5)
]
g%T'= v' =0 ; gg} = 0 on the symmetry axis (y' = 0)

Inherent in the derivation of equations (1) and (2) is the
usual Oberbeck-Boussinesq approximation (Chandraskhar 1961 and Gray §
Giogini 1976). Also the works of compression and viscous dissipation
are neglected and all fluid properties are assumed constant except for
density in the buoyancy term (Booker 1976). Each of these assumptions
introduces certain small inaccuracies, and the reference cited give dis-
cussions under which these inaccuracies become significant. For the
present study none is of major importance.

The temperature dependent density for water in equation (1)
is usually approximated in litterature by a polynomial which may take

the form:

p - pm =
S ke J}; B (T - 3.98) (6)



Vanier and Tien (1967) have already used a polynomial of
comparable form. In the case of a fourth order polynomial, the numeri-

cal values of coefficients B, may be deduced from Fujii (1974):

B, = - .392313066 x 10°7 (°c”™})
B, = 800823127 x 18°° (°C™
B; = - .825365644 x 10”7 (°C™H) (7)
B, = .B73587655 x 107* (°C™™)

With these coefficients in (6), it is possible to estimate
the value of (p - p,)/p,, with great accuracy for the range 0-20°C.

It is seen from (6) and (7) that in the neighbourhood of
3.98°C the contribution is negligibly small for all terms except the
second order term. In fact, according to Moore and Weiss (1973), a

parabolic type relationship of the form

9-5—91 = - A(T - 3.98)2 (8)
with A = .8 x 10"° (°C) 2 may be used within 4% over the range 0-8°C.

The thermal expansion coefficient becomes:

- _ 1 9p
B = - o 3T 2X(T - 3.98) (9

Defining the following dimensionless parameters:
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vorticity w such that
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(10)

(11)

and using eqs (5), (8) and (9), one can reduce eqs (1) to (4) to the

following nondimensional forms:
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boundary conditions:
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= - Ww
8 _ vog 41
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=0 everywhere
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=0 aty-=0
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There are no boundary conditions for the vorticity but in-

directly:

QU
[N
=

g
n
1

at x = 0, E and at y =1 (16)

Q
=
™)

n being a coordinate normal to the boundary.

For the specific case of a square cavity containing water,
E = 2 and the Prandtl number Pr = v/o is uniquely determined.

The unity (b? ¢ AT/o = 1) appearing on the right hand side
of the energy equation (14) can be regarded as a uniform heat source
term. As a matter of fact for situations where p is linearly related
to T, the present problem is known to be equivalent to transient natural
convection heat transfer between a fluid with uniform internal heat sour-
ces of strength per unit time and volume p ¢ C, and a cavity with cons-
tant wall temperature.

The parameter Ra appearing in (12) is a time dependent

Rayleigh number defined as:

3
- g
Ra = -GT Bw AT (17)
in which B, is the thermal expansion coefficient based on T,, the tempe-
rature at the wall at a given time t. Since B, = B, - 2AATt in the case
of a parabolic relationship between p and T, equation (17) becomes:

Ra = Ra;, - Ra't (18)
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in which Ra; is an initial Rayleigh number based on temperature T, .
Ra' is a parameter called non linear Rayleigh. It corresponds to the

rate of decrease of Ra and is defined as:

3
gb 2 _ _ ORa
<5 2MT? = - S (19)

Ra' =
According to (12) non linearity effects between density
and temperature are expected to be small at a given time t provided that

the following condition:

Ra'f T - T

is satisfied.
In the numerical results, the dimensionless heat transfers
across the top lateral and bottom boundaries and denoted by ¢, ¢,  and

¢; respectively are of interest. ¢; is defined as:

1
_ qrb _ 90
¢T - kAT - jo (‘ SX)X=E d}’ (21)

in which q; is the heat flux by unit area averaged over the top bounda-
ry. Similar expressions may be obtained for lateral and bottom bounda-
ries. Furthermore it may be shown that the dimensionless heat transfer
averaged over all boundaries corresponds to the following expression:

duy = 74 (O + 05 + B0 = 25 (1 - 5D (22)
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in which 8 is the dimensionless temperature averaged over the cavity

according to the following equation

E a1
6=—é—‘//6dydx (23)
00

6 is a measure of the heat energy in excess of the wall temperature

contained in the cavity.

95 NUMERICAL APPROACH

In this study a two-dimensional alternating direction
(A.D.I.) procedure is employed to solve the coupled transport and
energy -equations (12) and (14) which are quasi-linear, second-order
partial differential equations of the parabolic type. The computatio-
nal method involved differs slightly from that used by Mallison and de
Vahl Davis (1973). The first and second derivatives are approximated
by central differences and the time derivatives by a first order for-
ward difference. The finite difference form of the equations are writ-
ten in conservative form for the advective terms in order to preserve
the transportive property (Roache 1976). The elliptic equation (13)
for the stream function, is solved by the method of successive over-
relaxation (S.0.R.) for the new field which is then used to obtain the
velocities from (11) and the wall vorticity (which requires the velocity
boundary conditions).

Boundary conditions on ¥ and 6 are applied in the usual
manner, using central differences whenever possible and image points

for derivative conditions. Exact boundary conditions for w are not
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known in the present problem. However, approximate values of w on the
boundaries can be obtained from the most recent estimates of either U
or u and v, using (11). 1In the present study the second way is used
since it was found, from numerical experimentations, that in general
it yielded more stable results.

The determination of an appropriate mesh size is related
to the complex questions of accuracy and stability. Patterson and
Imberger (1980), in their numerical treatment of the square cavity use
a time-length scale approach to estimate the limits of time-step and
mesh size for accurate spatial and temporal representation of the solu-
tion. They conclude that maintaining two mesh points inside the boun-
dary layer at each vertical level requires an excessive number of points
when Ra reaches 10%. For the present study, a maximum mesh size of
30 x 15 for the half cavity was found to be an acceptable compromise
between the desired accuracy of the solution and the required compu-
tation time.

A check of the conservative properties of the algorithm
was made at regular intervals during the computation by comparing the
heat transfer ¢,, to the rate of change of ® according to equation (22).
Simpson's rule was used for numerical integration and a three points
finite difference approximation for 36/3t.

In order to check the validity of the present numerical
method, comparisons have been made with other existing solutions. An
excellent agreement was observed, for low Rayleigh numbers, with the
analytical Poot's solution (28). For higher Rayleigh numbers, the
numerical results from Wilkes and Churchill (1968), for the case of

heat transfer into a rectangular cavity, were integrally reproduced.
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To expedite plotting of the results, an auxiliary computer
program was written to locate points lying on specified isotherms and
streamlines by linear interpolation of the computed values at the grid
points. As mentioned earlier the problem under consideration is symme-
trical and it was found advantageous to reproduce the computer results
at a given time on a single graph with the flow pattern on the right

half of the cavity and the isotherms on the left half.

4. RESULTS AND DISCUSSION

Equation (18) indicates that when Ra' is set equal to

zero, the resulting Rayleigh number Ra caracterizing the present problem
remains constant throughout the cooling process. This situation corres-
ponds to the standard hypothesis of a linear relationship between densi-
ty and temperature. However, if Ra' is given a finite value larger

than zero, Ra decreases linearly with time. The resulting situation
then corresponds to the cooling of a fluid having a non-linear relation-
ship between its density and temperature, such as water at a temperature

in the neighbourhood of 4°C . Both situations will be discussed in the

following sections.

4.1 Results with Ra constant

The cooling with constant Ra of a mass of fluid contained
in a horizontal circular pipe has been studied theoretically by Quack
(1970) and Takeuchi and Cheng (1976) and experimentally by Deaver and
Ecker (1970). It was found that, although the cooling process is a
transient one, a quasi-steady state develops if the cooling rate is

held constant long enough. This quasi steady state, as described by
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Takeuchi and Cheng (1976) for the case of a circular fluid cylinder,
is characterized by temperature differences between interior points and
boundary which remain constant with time. Figure 2a gives B, the dimen-
sionless temperature averaged over the cavity, function of the cooling
time t, for Ra = 5 x 10* and 3 x 10°. The pure conduction case (Ra = 0)
is reproduced for comparison purpose. For those three cases, at time
t = 0, the fluid is motionless and at uniform temperature T, . At the
early stages of the cooling process, temperature gradients are set up
near the walls. If motion is excluded, as it is the case for |Ra| = 0,
a pure conduction quasi-steady state is reached for which 6 = .14. If
motion is allowed, temperature gradients introduce density differences.
Near the side walls, those density differences generate driving forces;
motion is set up and takes the form of two counter-rotating vortices
with fluid moving downward near the side walls for Ra > 0. With time
elapsing, a quasi steady state is reached for which 6 becomes indepen-
dent of time and ¢,, = .5, according to equation (22), in the case of a
square cavity. (E = 2). At quasi steady state, the value ((14 - 8)is a
measure of the convective motion inside the cavity, this difference in-
creasing with increasing Ra. Thus Ra represents a potential of convec-
tive motion, this latter being attained at steady state. The quasy steady
state flow and temperature fields corresponding to Ra = 5 x 10" are re-
presented in figure 2b on the right and left half of the cavity respec-
tively, the symmetry condition prevailing throughout the computation.
The specific configuration of the isotherms on the left half indicates
that the top heat transfer ¢. is larger than the bottom heat transfer ¢s.
Figure 2c corresponds to Ra=3x10° and implies a relatively high

convective motion for which a second mode of convection, consisting of
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two additional rolls near the top boundary, is established inside the
cavity. No comparable secondary motion has been reported by Takeuchi
and Cheng (1970) for the case of the circular fluid cylinder. Secondary
motions observed in the past were related either to the high aspect ra-
tio of the cavity (Elder 1965) or to low Prandtl number effects (Charrier
Mojtabi § al., 1979). 1In fact the second mode of convection observed in
this study results essentially from the interaction between the zone of
instability located near the top boundary and the flow field induced by
the side wall. This situation arises from the particular geometry and
thermal boundary conditions involved in the actual problem. Thus the
origin of the secondary motion depicted in the present investigation
seems more closely related to the multicellular flow arising from ins-
tabilities such as those obtained in the case of a cavity heated from
below, for which a large variety of flow structures have been observed
in the past, as discussed for instance by Linthorst and al. (1980).
Therefore, some doubt arises about the appropriateness of a
two dimensional approach to adequately describe the physical flow beha-
viour at large Ra. Nevertheless new modes of convection are expected
to occur with increasing Ra and the present result provides a mean to
investigate the behaviour of such flows when density extrema are present.
Quasi steady state results giving 8 as a function of Ra cor-
respond to the heavy lines of figs 4a and 5a. Those lines may be obtai-
ned point by point, by solving numerically the basic equations with
Ra' = 0 far enough in time to obtain the quasi steady state, the proce-
dure being repeated for different Ra. Other steady state characteristics

are given by heavy lines of figures 4b, c¢ and 5b,c,d, O, being the
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dimensionless temperature at the center of the cavity. The disconti-
nuity observed on some of the heavy lines of figures 4 and 5, is located
at Ra = + 8 x 10" and separates the first and second mode of convection
already mentioned.

Figure 4 shows results with Ra on arithmetic scale with nega-
tive range. The negative range corresponds to negative B, in (17), i.e.
to a situation for which density is decreasing with decreasing tempera-
ture, as it occurs for water below 3.98°C. The flow and temperature
fields at negative Ra are the mirror image of those at corresponding
positive Ra. (_¢T)E behaves as (d)B)E and vice versa. Such a behaviour
can be noticed on figures 4b and 4c. At Ra = 0, the heavy line 8; of
figure 4a attains a maximum value of .14 with a sharp peak whereas (¢;).
and (¢g)eg of figures 4c and 4d take the value .5 with maximum slope.
Thus extrema for & and the derivatives of ¢, and ¢, are seen to occur
at Ra = 0.

Logarithmic scale for Ra is used in figures 5 in order to
cover the wide range involved in the numerical solution. Positive and
negative range of Ra are superposed. As a consequence figure 5c shows
two heavy lines with the top one corresponding to positive Ra and the

bottom one to negative Ra. The converse is true for figure 5d.

4.2 Results with Ra decreasing linearly with time

When Ra decreases with time at a constant rate (Ra'), the
initial transient is followed by a non linear transient, as illustrated
in figure 3. In this figure, the time scale of figure 2 is replaced by

a Rayleigh scale which corresponds also to a temperature scale with
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3.98°C at Ra = 0. The three dashed lines are initial transients corres-
ponding to cases with same Ra' = 2 x 10° but with different Ra, , one of
which (Ra, = 1.47 x 10°) having its flow and temperature fields reprodu-
ced on figure 6a. The three initial transients tend asymptotically to

a single curve represented by a continuous line on figure 3. This curve
is a non linear transient uniquely determined by the single parameter
Ra'. Non linear transients exist for other physical quantities such as

0 heat transfers at boundaries or stream function. Once relieved of

e s
the initial transients, they form all together the essential features
of the cooling through a maximum density.

It is possible to obtain the non linear transients to their
full extent 1° by initiating the cooling process at a value Ra, such
that non linear effects are absent, inequality (20) being satisfied for
all interior points and 2° by providing enough computer time to reach
negative Ra such that (20) is again satisfied. Light lines of figures
4 and 5 represent non linear transients that have been obtained accor-
ding to that approach. Among them are the non linear transients corres-
ponding to Ra' = 2 x 10° of figures 3 and 6. On figures 5 these latter
are represented by dottéd lines. The direction of the cooling process
is indicated by arrows on figures 5c and 5d. The heavy lines of figures
4 and 5 have already been described to be quasi steady states for cases
where p varies linearly with T. Here they correspond to equilibrium
states to which the fluid system tends, with a lag proportional to the
rate of change of Ra. Non linear transients tend to join asymptotically
equilibrium curves with Ra' 6/Ra becoming negligibly small. It is ob-

served on figure 4, that when Ra has decreased sufficiently, 0, ¢, and

¢g will depart from the equilibrium curves &, (¢:)g and (¢g)e respecti-
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vely, this departure occurring earlier for higher Ra'.

4.3 The inversion process

It may be observed on figure 4a that the peak corresponding
to a given Ra' shows a more or less pronounced lag with respect to
Ra = 0, position along the abcisse where the peak of the equilibrium
curve B is located. It is also observed that the peak value is smal-
ler for larger Ra'. The pure conduction value of .14 for the equilibrium
curve is due to the fact that, for Ra' - 0, there is no more convective
heat transfer at Ra = (0. However, for finite Ra', convective motion is
transported toward negative Ra and thus convective motion resulting from
positive Ra is still present when negative Ra effects are acting to
reverse the flow field. As a matter of fact, once Ra has become nega-
tive, temperature differences introduced near the boundaries start gene-
rating density gradients of opposite sign. An inversion process is thus
initiated inside the cavity at the end of which the flow and temperature
fields tend to become the mirror image of the ones at corresponding po-
sitive Ra. The higher is Ra', the more intense is the convective motion
inside the cavity during the inversion process. This fact explains why
the peak characterizing the non linear transient decreases with increa-
sing Ra'. With progression of cooling process beyond the peak value for
B, i.e., with Ra becoming more negative, the density differences intro-
duced near the boundaries become more pronounced. The new counter rota-
ting motion set up inside the cavity is reinforced, and convective heat
transfer is enhanced. As a consequence, O begins to decrease. Condi-

tion (20) is more and more satisfied and § tends asymptotically to the
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equilibrium curve. Non linear transients are therefore connected to
the equilibrium curve in both positive and negative directions and this
observation is true for the other physical quantities such as 6,

and heat transfers at boundaries.

The sequence of events taking place during the inversion
process may be observed on the set of figures 6a to 6f where flow and
temperature fields corresponding to a moderate Ra' are illustrated.
Figure 6a, with Ra = 1.4 x 10° corresponds to the initial transient
described in section 4.2, during which temperature differences are being
set up inside the cavity. The value of Ra, involved in the present case
(1.47x 10°) is important enough for a second mode of convection to deve-
lop and, consequently, two pairs of conterrotating vortices are present
inside the cavity (figure 6b) when the initial transient is over (see
also figure 3). The initiation of the inversion process is depicted by
figure 6c in which the occurrence of a small vortex of opposite rotation
near the bottom corner indicates the beginning of the flow reversal.
With time elapsing, this vortex grows and displaces the original one
(figure 6d). Eventually a situation is reached where the original cir-
culation is completely reversed, as shown on figure 6e. The new motion
gradually brings the relatively warm fluid of the core region near the
bottom boundary. With progression of the cooling process, the reversed
convective motion is enhanced. A second mode of convection appears,
with a pair of additional vortices near the bottom boundary, as shown
on figure 6f. It is also noticed on this last figure that the tempera-
ture field, like the flow field, has become opposite in character to

the one existing at positive Ra.
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4.4 Transportive property of Ra' toward low temperatures

The extremum in density at 4°C gives rise to a very impor-
tant change in flow behaviour within the laminar range of the cooling
process. There are however other important changes such as the passage
from one mode of convection to another along the Ra axis. As mentioned
in section 4.1 the passage is abrupt in the case of the equilibrium
curves with a finite jump separating first and second mode of convec-
tion at Ra = *8 x 10*. For Ra' > 0, the passage from one mode to the

other occurs later and is more gradual. For instance it may be observed

on figure 4a that the jump occurring at Ra = -0.8 x 10° on the 8; curve is
reported approximately at Ra = -1.3 x 10° and -1.8 x 10° on the non
linear transients corresponding to Ra' = 2 x 10° and 5 x 10° respective-

ly. Similar effects concerning the passage from one mode to the other
are observed for the heat transfer curves of figures 4b and 4c. Thus,
considering the lag created by Ra' on the flow reversal -at 3.98°C and the
lag also created by Ra' on the passage from one mode to the other it may
be concluded that an important property of Ra' is to transport toward
negative Ra the features of the convection which characterize the equi-
librium state. Moreover, if Ra' is important enough, the second mode
occurring at positive Ra will not disappear before the initiation of the
inversion process at Ra=0 and will interact with it. The sequence of
flow and temperature fields of figures 7a to 7f illustrates a case where
Ra' is important enough for the secondary motion to be present when the
inversion process starts. All figures of this sequence, including the
first one, describe the non linear transient exclusively, no initial
transient being involved. It can be noticed that figure 7f is almost

the mirror image of figure 7a. Some flow characteristics can be readily
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obtained for each of these figures from the corresponding non linear
transients (Ra' = 107) of figures 5.

If very large values of |Ra| are involved, the cooling pro-
cess may start in the range of turbulent convection above 3.98°C and also
end up in the turbulent range below 3.98°C. Here also it might be expected
that turbulent features will be carried toward lower Ra thus reducing the
laminar range. Large Ra' can be conceived for which turbulence is car-
ried with enough strength to reach the inversion process and even to
reach negative Ra where the reversed convection itself start generating
turbulence. If the initial transient occurs in the turbulent range, a
laminar range for the non linear transient will follow provided that
Ra' is not too large, i.e., that enough time is given for viscous forces
to absorb the turbulent motion of the system. The present numerical
computation is, of course, limited to the laminar range. When large Ra
values (Ra ~ 107) are involved, oscillations develop in the numerical
results and parts of the curves corresponding to the occurrence of those

oscillations are represented by dashed lines on figures 5.

4.5 Effects of the non linearity in the relationship between B and T

Each non linear transient of figures 4 and 5 describes ade-
quately the behaviour of a mass of water cooled to a constant rate pro-
vided that temperatures involved remain in the neighbourhood of 3.98°C.
Discrepancies will develop with increasing difference between T, and
3.98°C. In fact, due to the non linearity between B and T, the rate of
change of Ra, is slightly increasing with decreasing temperature, c being
maintained constant. This tendency is more or less pronounced at a par-

ticular Ra, depending on |T, - 3.98|. Strictly speaking, Ra'of (19)
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corresponds to the exact rate of change of Ra only when T, = 3.98°C.
Figure 8 illustrates the kind of discrepancy to be expected. The heat

transfer ¢, given as a function of Ra is defined in (22) and is seen

v
to vary according to the derivative of 8. The horizontal line at ¢,, =.5
is the equilibrium state (¢,, ), constant for any Ra. Two cases

having the same Ra' are reproduced on figure 8. The computation of the
two cases was done by using a fourth order polynomial in the relation-
ship between p and T. Case 1, represented by a continuous line, covers
a relatively narrow temperature range above and below 3.98°C, as indi-
cated by its temperature scale. Case 2 is represented by a dashed line
where it differs significantly from Case 1. Its temperature scale also
given on figure 8 indicates that a wider range of temperature is covered.
Discrepancies should appear at locations where high gradients occur.

The first important gradient at Ra = - 4 x 10" corresponds to the inver-
sion process. The very slight discrepancies observed in the numerical
results were not sufficient to produce distinct curves at this location.
The second important gradient at Ra = - 1.3 x 10° corresponds to the
establishment of the second mode of convection following the inversion.
Discrepancies produce distinct curves with the peak of Case 2 slightly
at left. Corresponding temperature is ~ - 0.2°C. Thus the parabolic
approach in the present dimensional analysis appears to give fairly
acceptable results provided that the temperature range at which the non
linear transient differs from the equilibrium curve remains within the

range 0 - 8°C.
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4.6 Comparison with existing experimental data

In Gilpin's experiments (1975) on the cooling of a horizontal
circular cylinder filled with water, the temperature at the center was
recorded as a function of time for various diameters and cooling rates.
Those experimental results, when transformed by the application of the
present dimensional analysis, become the set of curves represented by
the continuous lines of figure 9. It is observed that the trend of
figure 5b is qualitalively reproduced. For the particular geometry
involved here, the maximum possible value for 6., which corresponds to
the pure conduction quasi steady state, is 0.25. Numerical results
obtained by Cheng and Takeuchi (1976) for the same type of problem have
also been transformed and reproduced on figure 9 (dashed lines). Those
last curves are incomplete and not entirely relieved of the initial
transients. Nevertheless their trend and ordering shows relatively

good agreement with the previous ones.

CONCLUSIONS

The natural convection taking place in a mass of water near
3.98°C with boundaries subjected to a constant cooling rate has been inves-
tigated through a dimensional analysis based on a parabolic relationship
between density and temperature. Although most graphics presented in
this article concern specific numerical method and geometry (square
cavity), general conclusions may be established with application to any
geometry and to experimental as well as theoretical studies on the sub-

ject. In particular the following statements may be listed:
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When density is linearly related to temperature, a quasi-
steady state regime may be reached from initial conditions
for which the fluid is at rest and at uniform temperature.
The transient solution in characterized by a developing
regime during which motion is set up inside the cavity. At
sufficiently large time, velocities, flow patterns and tem-
perature differences between the fluid and the wall become
constant with time, indicating that the quasi steady state
is reached;

The presence of a maximum density, as it is the case for
water at 3.98°C, implies a decrease followed by a reversal
and finally an increase of the convective motion inside the
cavity;

When a maximum density is involved in the cooling process,
non linear transients replace the quasi steady state results.
Those non linear transients, relieved of the initial ones,
are the essential features of the cooling process and are
uniquely determined by a single parameter called the non
linear Rayleigh number. The set of non linear transients
obtained for different values of the non linear Rayleigh
number forms an exhaustive solution for a given geometry.
Quasi steady state results obtained when the density is
linearly related to the temperature correspond to equili-
brium curves to which non linear transients tend asympto-

tically when the difference |T - 3.98| is increased;
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5° An important effect of the non linear Rayleigh number is to
transport toward low temperatures the features of convection
characterizing the equilibrium curves. A lag is so created
between the non linear transient and the corresponding equi-
librium curve, the importance of this lag being directly

related to the value of the non linear Rayleigh number.
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LI 5.1 0F FIGURES

Fig. 1 Coordinate system and boundary conditions

Fig. 2 Initial transients and quasi-steady state flow and tempe-
rature fields at constant Ra

Fig. 3 Initial and non linear transients for Ra decreasing linearly

with time (Ra' = 2 x 10°)

Fig. 4 Equilibrium state and non linear transients

Fig. 5a Dimensionless temperature averaged over the cavity, function
of Ra

Fig. 5b Dimensionless temperature at the center of the cavity,

function of Ra

Fig. 5c Heat transfer at the top boundary, function of Ra
Fig. 5d Heat transfer at the bottom boundary, function of Ra
Fig. 6 Transient streamlines and isotherm field with A6 = .025,

for Ra' = 2 x 10° and Ra;, = 1.47 x 10® (dashed line, where
it appears, represents the 4°C isotherm)

Fig. 7 Transient streamlines and isotherm field with A6 = .025,
for Ra' = 107 (dashed line, where it appears, represents
the 4°C isotherm)

Fig. 8 Non linear effects of relationship between B and T
(Ra' = 2 x 109)

Fig. 9 Horizontal circular cylinder filled with water and cooled

at a constant rate.



Fig. 1

A X'
TW
ul
T %
>
|
]]
£ T T, =T -ct
" I W I
= ;
_H
3\
- b >
————— >
Tw y

Coordinate system and boundary conditions

32



S [ LN [P R (O Y,

t-0,611
(b) Ra = 5 x 10%

A
A5
(PURE_CONDUCTION)
qo =9
A0
Ra=5x10%
g
Ra =3 x 10°
05—
(o} | | | | -
0 2 4 t 6 8 1.0

(a)

Fig. 2 Initial transients and quasi-steady state flow
and temperature fields at constant Ra.

|

0,075

0,050

0,025

L g b b def 4, P 4. Tl

PP T T I T TV b L

t:0,36l

(¢) Ra = 3 x 10°

&g



0.12

0.08

D

0.04

0.00
-2

—— NON LINEAR TRANSIENT
N\ ———INITIAL TRANSIENT

Fig. 3

Initial and non linear transients for Ra decreasing
linearly with time (Ra' = 2 x 10%)

ve



A
0.5

0.10

|

0.05

1.0

35

PURE CONDUCTION (8=0.140)

/cqu)E

PURE CQNDUCTION (¢ =0.5)

(b)

(c)

PURE_CONDUCTION (¢p5=0.5)

\\&4@’8)5

) 1 I
L) L} L} T

I 2

N+
|
(@

Fig. 4 Equilibrium state and non linear transients



0.15

lll 1 LU 1

PURE_CONDUCTION (8 = 0.140)

0.10—

D

0.086—

N3

.o
......................

0.00
0]

Fig. 5a

Dimensionless temperature averaged over the cavity,

ILI | llll 1
{ L]

4 5
10 |Ro| 10

function of Ra

lll
L

10

6

10

9¢



] T T 17 T T T T T T] T T T] T
0.8= .
03
0.2fF—
Ec
0.1
0.0 | 1 L] ! L ! L1 L L1 !
10 10° 10* 10° 10° 10’

|Ral

L

Fig. 5b Dimensionless temperature at the center of the cavity,
function of Ra



0.8

........
.....

0.6 —
b,
0.4 —
0.2 PURE CONDUCTION _- —
T
0.0 ; L1 I | L L1 l | L 11 l | L1 1 I 1 L 11 l ]
10% 103 104 10 108 107

|Ral

Fig. 5c¢ Heat transfer at the top boundary, function of Ra

8¢



I
; H
0.8f— PURE CONDUCTION %,
( =0.5) PN
b N
\
-~ \
-
07 S~
Ra'=10°
”’
0.0 - ! 1 S - ! | 1 ! 1 ] ! ] L1 ! 1
10 10° 0% 10° 108 107
| Ral

Fig. 5d Heat transfer at the bottom boundary, function of Ra

6¢



LLERE R L DL

N T Y T I |

(a) Ra = 1.40x 10°

| Sy S T B A ) |

\(

| S O O MO A (A [

|

&

| 1S ! S O O O

/i

FEREEEEMN

(b) 1.01 x 10°

|

| IS (ST O T (O 1O

() -1.24 x 104

(B0 (B My =B B0 A N ) A €

=

=

| S T T Y T Y I |

(e) -3.25 x 104

Fig. 6

(d) -2.45 x 104

(]

T 1 T T O VR R A T U

&)

) T T T O Y |

(f) -3.1 x 10°

for Ra' = 2 x 105 and Raj = 1.47 x 10°
(dashed line, where it appears, represent the 4°C isotherm)

Transient streamlines and isotherm field with A6 = .025,

40



2]

T LTETFVVIE LT

0

0

&

PR S S A O 1S5 (0

0 (I O ) ) | 1O

(a) Ra = 3.00 x 106

{1 | (el O B 1, (N

-
| O [ O 1 (9 (O

(c) -5.16 x

105

T

: A

—

Fig. 7

(e) -8.17 x 10°

J

R T LS

ff

1 VS IS O PR (Ol L (0

%

| S 0 (O S S P il |

(b) -3.15 x 109

Z

T T TTTT

T T

j I | e S S |

el 15 it S (8

(d) -6.16 x 105

ol e

]

O VA sl S S 1

(£) -3.00 x

106

Transient streamlines and isotherm field with A6 = .025,

for Ra' = 107 (dashed line, where it appears, represents

the 49

C isotherm)

41



-4
, y RaxI0 _

0.4—

e
-

3.0 3.5 CASE | 4.0 4.5 T(°C)

T(°C)

N
)

0 2 CASE 2

Fig. 8 Non linear effects of relationship between
B and T (Ra' = 2 x 10°)

v



0.3

0.2—

Qul =

I L l | | 'l | l | bl l I o l | ol r]' ! ¥ ¥ i

RADIUS b COOLING RATE C
cm °C/h
3
5.91 x 10 .PUF:EQ CQ’\(I)D:SCJ.)'ON A, 6.8 0.6 o
c =0 A,| 6.8 3.8
&, B, | 3.75 20.3
c, | 1.3 5.5
34x10° Co 1.3 40.0 o
/A\
3.12 x10° .
7.50 x 10

.34 x 10°

—— EXPERIMENTAL RESULTS (GILPIN 1975)
——— NUMERICAL RESULTS (CHENG & TAKEUCHI 1976)

R\a'iam x 108

0.0
10

S U O 1 I SO NN U O ANETS (N S0 0 8 SN AN SN 0 N NN R R B e

10> 10% 10° 10° 10’
|Ra

Fig. 9 Horizontal circular cylinder filled with water and cooled at a constant rate.

¢y



43904




T

|



