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ABSTRACT

The transient natural convection in a fluid contained in a rectan-
gular enclosure, the wall of which is maintained at a uniform temperature
which changes at a steady rate, is approached by a numerical method. The
time-dependent governing differential equations are solved using an alter-
nating implicit finite difference method. Numerical solutions are
obtained for Pr = 0.73, 7.3 and 73 and a range of Rayleigh numbers
Ry = 102r~ 108 . The transient flow and temperature fields, local and
overall heat rate are presented. Although the present problem is transient,
a quasi-steady state develops if the cooling rate applied to the wall of
the cavity is held constant long enough. For quasi-steady state, a genera-
lized correlation curve for Nusselt number valid for Pr > .73 and
Ra < 107 is presented. At relatively low Rayleigh numbers the flow is
caracterized by the development of double cells with flow up the center and
down the sidewalls. However it was found that the increase of the Rayleigh
number leads to the development of strong secondary circulation on the
axis of symmetry of the cavity near the top wall. Thus, as the Rayleigh
number is increased the secondary cells grow in size. The effects of the
secondary cells on the temperature fields and heat transfer coefficients
are discussed. Most results are obtained in the case of a square cavity

(E = 2) but the influence of the aspect ratio of the cavity is also stu-

died for E = 1 and 4.



NOTATION

b enclosure width

C wall constant cooling rate

C specific heat at constant pressure
p

aspect ratio of the half cavity, h/b

g gravitational vector

g acceleration due to gravity in x direction

h enclosure height

k thermal conductivity of fluid

N dimensionless coordinate normal to a boundary

Np number of horizontal grid spaces

Mp number of vertical grid spaces

Nu Nusselt number, Eq.(18)

P pressure

p' dynamic pressure, Eq.(5)

Pr Prandtl number, v/o

q local wall heat flux by unit area

Q dimensionless average wall heat flux by unit area

Ra Rayleigh number, gb3B AT /v

Ra' modified Rayleigh number, Eq. (22)

Ra o critical Rayleigh number separating the first and second modes
e

of convection

T temperature of fluid

AT characteristic temperature difference, bZC/a
t time

u,Vv velocities in x and y directions

U,V dimensionless velocities in X and Y directions



>
w vector velocity
X, ¥ cartesian coordinates

X,Y dimensionless cartesian coordinates

Greek symbols

o thermal diffusivity

B volumetric coefficient of expansion with temperature

v kinematic viscosity

o) density

po density at TO

AT characteristic temperature difference, bz(Va

T dimensionless time (Fourier number), at/b2

¢T,¢L,¢B dimensionless average heat flux at the top wall, side wall and

bottom wall respectively

Qav dimensionless wall heat flux averaged over the boundaries of the
entire cavity, Eqs. 16 and 17

] stream function

L 4 dimensionless stream function

W vorticity

9] dimensionless vorticity

) dimensionless temperature, (T - Iw)/AT

ec dimensionless temperature at the centre of the cavity

) dimensionless maximum temperature

max



Superscripts

* refers to pure conduction

- refers to mixed mean temperature

~ refers to a value averaged over a given boundary
Subscripts
w refers to wall condition
i refers to initial condition
c refers to the center of the cavity
Operators
~
Vo= =1(3/3%) + 3(3/3y)
T2 202 2 a2
v = (37/3%%) + (3%/3y?)
2
v2 = (373%X2) + (32/5Y2)
D= (a/3t) + u(3/ax) + v(3/3y)
D

= (3/91) + U(3/3X) + V(3/9Y)



1. INTRODUCTION

The study of natural convection in enclosures is of importance in
many industrial and geophysical problems [1]. Such problems may vary
from the circulation in a vessel of liquid in which a crystal is being
grown to the convective heat loss from a flat plate solar collector. Other
problems include the natural convection cooling of nuclear fuel in shipping
flasks [ 2 ] and the energy distribution in a geothermal liquid-dominated

reservoir [3].

Analyses of the heat transfer due to natural convection in enclosu-
res have received considerable attention since the 1960's. This is due to
the remarkable development of the electronic computer allowing to economi-
cally evaluate the temperature and flow fields inside these enclosures.
Particular attention has been directed in the past toward the study of rec-
tangular cavities under the condition of isothermal vertical walls at dif-
ferent temperatures and under constant heat flux conditions. These systems
were seen in an insulation double window. The calculated results obtained
recently by several workers [4-9] agree with the experimental results.

Reference [10] contains a comprehensive bibliography on this subject.

Natural convection with heat and mass transfer in a cavity whose
walls are maintained at a uniform temperature which change at a steady rate,
has received little attention in the litterature. Quack [11l] , using a
perturbation method, has studied the transient natural convection in long
horizontal cylinders with a uniform initial fluid temperature and a linear
variation of wall temperature. However the resulting perturbation solution

is valid only for very low Rayleigh number regime (Ra < 1.5 x 103) which



is not important practically. An interferometric investigation of convec-
tive heat transfer in a horizontal fluid cylinder with wall temperature in-
creasing at a uniform rate has been performed by Deaver and Eckert [ 12 ].
Although the phenomenon is a transient one, a quasi-steady state develops

if the heating rate is held constant long enough. Thus a correlation equa-
tion for Nusselt number in terms of Rayleigh number, valid for Ra > 5 x 105
was obtained by these authors. More recently the transient natural convec-
tion in horizontal cylinder with constant cooling rate was approached by

a numerical method by Takeuchi and Cheng [ 13] . For quasi-steady state,

a generalized correlation equation for Nusselt number valid for Pr 2 0.7

and Ra g 107 was developed.

The purpose of the present investigation is to study numerically
the transient two-dimensional laminar convection and the heat transfer oc-
curing in an enclosed rectangular cavity with wall temperature decreasing
at a constant rate. The cooling process 1is supposed to be
maintained long enough so that a quasi-steady state may be approached for
which local temperature gradients, velocities, and other parameters are very
nearly independent of time. If thermophysical properties are assumed cons-
tant, the equations describing this problem are identical with those for
a fluid with uniform heat sources in a rectangular cavity whose
walls are held at a constant uniform temperature. Thus the results of

this study should apply as well to the uniform heat source problem.



2. MATHEMATICAL FORMULATION

Consider a cavity of width 2b and height h, shown schematically in
Fig. 1, which contains a newtonian fluid. The aspect ratio of the half
cavity is denoted by E = h/b . The fluid is initially motionless and at
a uniform temperature T; . At time t =0 it is assumed that the cavity
is subjected to a linear wall temperature decreasing with time as
Tw = T4 - Ct. The problem is to find the subsequent velocities and tempe-
ratures as function of time and position inside the cavity and the rate of
heat transfer across the enclosure as a function of time. A final steady
state solution, if such exists, would be of particular interest. The mo-
tion in the fluid will be laminar provided the Rayleigh number based on

cavity height is less than about 108 [5,6 ] .

For natural convection flows with small density changes it is com-
mon to make the Boussinesq approximation [14] , i.e., to assume that the
effect of temperature on density is confined to the body force term of the
momentum equation and that otherwise the thermodynamic and transport pro-
perties of the fluid are independent of temperature and pressure. This
implies that the fluid is essentially incompressible, and that its equation
of state is

p=p, [1-8(T - T)] (1)

where p, B and T denote respectively the density, volumetric expansion
coefficient and temperature of the fluid, and the subscript denotes some
reference state. Further, making the reasonable assumption that viscous

dissipation is negligible , the fundamental equations are:
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where w = 1 u + 3 v 1is the vector velocity field, o« and v are respecti-

vely the thermal diffusivity and kinematic viscosity.,

In Eq.(2), the gravity vector has been taken to be in the
x-direction as indicated in Fig. 1 and the pressure to be represented

by a dynamic plus a static term such that:

~ -~ %
v = Vv % 5
p pl DO g ( )

The initial and boundary conditions appropriate to the present problem are:

t =20 u=v-=20 T =T,
i
x =0 u=v =20 T = T
w
x = h u=v-=20 T=TW (6)
ou oT
=0 — = =0 — =0
Y 9y 3y
=b = = T = T
y u=v=20 "

Furthermore, the dimensionless variables as shown in Eq.(7) are
introduced and the dimensionless stream function ¥ and vorticity Q are
defined as Eqs. (8) and (9) respectively. After some manipulations the

fundamental equations are written as Egs. (8) - (11).



T o= ﬁ% x=% y=7

g =4 v v

¥ =.£ g = E—%EEX AT = 929 (7)
Ra = (ng3 AT) /va) Pr = v/ao

All other symbols are defined in the nomenclature.

- oY -
U=%y . ¥ 3X (8)
= (U _3Vy _ _ o2
2 = Gy~ 1 (9
ba _ 96 2
B Ra Pr - Pr v2Q (10)
Dt
The inital and boundary conditions become Eq. (12)
T =0 Yy=0U=V=0Q=06=0
X=0 y=U=V=9 =0
X =E y=U=V=9 =0 (12)
Y =0 ¥y =0 =V =3U/3Y =06/0Y =0
Y=1 y=U=V= 6=0

It is noted in Eq. (7) that the characteristic temperature dif-
ference AT wused in the Rayleigh number Ra 1is based on the cons-
tant wall cooling rate C. It is also observed that the dimensionless time

2
T = (ot/b”) is similar in form to Fourier number in unsteady heat conduction.



It should be mentioned at this stage that the unity (bZCAT/a = 1) appearing
on the right hand side of the energy equation, Eq. (11), can be regarded

as a uniform heat source term. In fact the present problem'with a wall
temperature varying linearly with time as Tw = T; - Ct 1is equivalent

to the transient natural convection heat transfer between a fluid with
uniform internal heat sources of strength per unit time and volume [C Cp
and a cavity with constant wall temperature. It is noted that the solution
of the governing equations with C < 0 corresponds to the transient natu-
ral convection for the case of constant heating rate. Finally it is obser-
ved in Eq. (12) that use has been made of the symmetry of the present pro-
blem with respect to a vertical plane passing through Y = 0 (see Fig. 1).
With the boundary conditions specified in Eq. (12), solution for the stream
function and temperature field exhibit the following symmetry:

¥(X,Y) = ¥(X,-Y)
(13)

6(X,Y) = 6(X,-Y)

which will be utilized to reduce numerical calculations.

In view of the complex nature of the governing equations, i.e.
second order simultaneous partial differential equations of the parabolic
and elliptic type respectively, a numerical solution appears to be the on-
ly practical approach for the present problem. In this numerical solution,
the heat transfer, which is of practical interest, will be evaluated at
the boundaries. The local heat flux q across a given boundary at any time
t can be computed by considering the wall temperature gradient. The dimen-

sionless local heat flux Q = (qgb)/(k AT) dis then given as:

10
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g = -2y

ON“N=0 (14)

where N is the dimensionless normal to the boundary.

Integrating Eq.(l4) over the top boundary will give the dimen-

sionless average heat flux ¢, as:
5 = - f(_ 20y dy (15)

where E& is the average heat flux relative to the top boundary. Similar

results may be obtained for the side and bottom boundaries.

The dimensionless average heat flux through the walls of the en-

tire cavity is then given, in terms of the wall temperature gradients, as:

1
_ 1 36
q)av T (24E) ({ (ax)x=0 dy (16)
E 1
+ 30 30
(j) (- g, X * ('){ (- 3X)X=E dy

Furthermore it may be shown that Qav can also be computed by the

following expression:

oz E 1 o
0 = 5 1+£ ({ (——a-T—)dXdY] an

1 : . ;
n which the time rate of change of fluid temperature has been considered.

The Nusselt number based on the temperature difference between mixed

‘mean temperature T and wall temperature T is defined as
w

(“+,_, —
Wb T Ty 2

— 18
(T - T,) ) )

where ® = %‘ f f 6 dX dy
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3. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

3.1 Finite difference procedure

The coupled transport and energy equations (10) and (11) are quasi-
linear, second-order partial differential equations of the parabolic type
and such numerical methods as standard explicit method, alterning direction
implicit method, Dufort-Frankel method and others may be applicable. In
this study a two-dimensional alternating direction (A.D.I.) procedure
is employed and the computational method involved differs slightly from
that used by Mallison and de Vahl Davis [9]. The first and second deriva-
tive were approximated by central differences and the time derivatives
by a first order forward difference. The finite difference form of the
equations were written in conservative form for the advective terms in or-
der to preserve the transportive property (Roache [15 ]). Applying the
A.D.I. method to Egs. (10) and (11) produces first-order algebric equations
with a coefficient matrix of three-diagonal components. The unknowns are
solved by line in the X and Y directions. The A.D.I. technique has the
advantage over explicit methods that it is numerically more stable and hence
allows the use of a larger time step At. However it has the disadvantage
that each iteration requires more computations than does an iteration with

the explicit techniques.

The elliptic equation for the stream function, Eq. (9) was solved
by the method of successive over-relaxation (S.0.R.) for the new field
which is then used to obtain the velocities from Eq. (8) and the wall vor-

ticity (which requires the velocity boundary conditions).
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Boundary conditions on ¥ and 6 are applied in the usual manner,
using central differences whenever possible and image points for derivative
conditions. Exact boundary conditions for @ are not known in the
present problem. However, approximate values of Q on the boundaries can be
obtained from the most recent estimates of either ¥ using Eq. (9), or from
U and V, using Eq. (8). The first method was utilized by both Wilkes and
Churchill [ 7 ] and Gossman et al [ 16] , while Aziz and Hellums [ 17] used
the second. In the present study the second method was used since it was
found, from our numerical experimentations, that in general it yielded
more stable results. Furthermore the second method has the advantage that
any instability associated with it can be eliminated by using the mean
of the distribution of @ at the wall from two successive iterations
(Newell and Schmidt [ 10 ]). It should be mentionned for completeness that
the present technique produces unstable results for large Rayleigh numbers.
As discussed in reference [18] this probably arises from the fact that the
implicit computation of the new interior vorticities supposes that the old boundary
vorticities still hold good at the end of the time increment. The boundary
vorticities themselves are eventually advanced on the basis of Taylor's
series expansions for the flow field at one or two points adjacent to the
boundary. The resulting slight inconsistency between the interior and boun-
dary vorticities could be overcome at the expense of iterating several
times over each time step. Such a procedure has not been carried out in

the present calculations.



3.2 Effect of mesh size

The determination of an acceptable mesh size is of prime importance
since it is well known that it introduces errors that depend explicitely
on the grid spacing. To minimize this truncation error, it is desirable
to use the smallest grid spacing possible throughout the domain of integra-
tion. However, since the computational time increases markedly as the num-
ber of grid points is increased, one must reach a compromise between the
accuracy of the solution and the computation time necessary to reach the

solution.

Square cavities have received thorough consideration in regard with
the effect of grid spacing on the numerical solution. For instance,
Elder [ 6 | found that solutions obtained with an 11x11 grid were qualita-
tively acceptable, that a marked improvement occured when the mesh size
was halved to 21x21 , but that little further change resulted when a finer
mesh was used. Similarly it was found by Wilkes [ 18] that the use of a
10x10 grid gives results remarkably close to that of a 20x20 grid, a
15% difference in the heat transfer at walls between the two being however
observed. This difference was attributed to the inherent difficulty
in estimating the temperature gradient on the wall from values of tempe-
rature at grid extending one side of the wall only. As noticed by Rubel
and Landis [ 19] indications that a given mesh size will become inadequate
as Ra increases are most easily given by the appearence of local tempera-
ture peak and by the unexpected rise of the average heat transfer. The
same type of problem was also observed in the present study when the time

increament was choosen too high. A more insidious problem is the possible

14
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error in the flow configuration where the truncations errors introduced

by coarse mesh size can lead to spurious multiple cells.

These different results suggest that a 20x20 grid is the most
adequate mesh for a satisfactory determination of both flow and heat transfer.
Due to the symmetry of the present problem the numerical domain for a square
cavity is in fact a rectangular space with h=2b. A mesh size of 20x10
was thus utilized in most of the calculations presented in this study excep-
ted for the cases involving relatively high Rayleigh numbers for which a

30x15 grid was used.

3.3 Computational requirements

All calculations were performed on a IBM 360/70 computer where for
a 20x10 mesh the average time for a single step of Eq. (9), the most time-
consuming operation, was about 0.12 s. The test for convergence of itera-
tion involved the calculation of the absolute value of the maximum relati-
ve difference between two consecutives iterations, and comparing it with

a prescribed constant. The condition may be stated as

n+l n n+l
% ¥ -Y /Y. . <& 19
- . % 1,3 h iR
n
in which Wi . denotes the approximation at the n th iteration to the
’
y n+l : .
stream function at a point, Wi 1 a further approximation and £ some pres-
)

cribed value.

It is obvious that the value of € must depend upon the numerical

scheme used and the round off error. By numerical experiments on the com-
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puter it was established that € must be 10—4 to 10_5 , depending on the
parameters of the problem. In most of the calculations presented in this
paper it was found that the number of iterations required decreases rapidly
from about 30 immediatly after the start of the cooling to 1-3 for most

other time steps.

It was observed that a larger discrete time step could be used for
the integration of the temperature equation than for the vor-
ticity equation. Hence, to reduce the computation time require to reach
the final solution, a different time step was used in each equation. It
was also noticed that during the initial cooling period, a small time step
is required for accurate solution since the variation of the temperature
field with time is large. However, with small AT the number of steps re-
quired to reach a quasi-steady state was found to be impractically large.
Consequently, a continually increasing time step was used to increase the

computational efficiency.

To expedite plotting of the results, an auxilliary computer program
was written to locate points lying on specified isotherms and streamlines by
linear interpolation of the computed values at the grid points. As mentio-
ned earlier the problem under consideration is symmetrical and it was found
advantageous to reproduce the computer results at a given time on a single
graph with the flow pattern on the right half of the cavity and the isotherms
on the left half. All graphs were performed on the Ecole Polytechnique

CALCOMP 563 automatic plotter.

The total time steps necessary to solve a typical case ranged from

about 1100 to 1500 and the corresponding computing time on an IBM 360/70

computer was from 8 to 12 minutes approximately depending on the parametric

values of the case treated.
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4. RESULTS AND DISCUSSION

Numerical results obtained in the present study have revealed that,
depending on the Rayleigh number, two different modes of convection may be
observed inside the cavity. For relatively low Rayleigh numbers, the flow
pattern develops into a standard conterrotating vortex pair. However, when
the Rayleigh number is increased sufficiently, the previous flow configuration
referred in this study as the first mode of convection, is modified by the
superposition of two additional secondary vortices symmetrically located near
the upper boundary. The resulting more complex convective circulation, termed
as second mode of convection, appears to be a characteristic of the particular

geometry and boundary conditions considered in this investigation.

As discussed previously, the present problem is basically transient.
However, if the cooling process is maintained long enough, a quasi-steady
state is reached. The first part éf discussion describes the time evolution
of the flow and temperature fields and related heat transfer for the two
possible modes of convection. Quasi-steady solutions are of great interest

in themselves and are presented in the second part.

4.1 Time-dependent Results

The calculated isotherm and streamline fields for Pr = 7,3, Ra =
5 X 104 and Ra = 3 X 105 at four different times steps between the initial
conditions and the quasi-steady state situation are shown in Figs. 2 and 4.
They illustrate respectively the establishment of the first and second mode
of convection. The corresponding transient velocity profiles along X =1 (a),
temperature profiles along Y = 0 (b) and X = 1 (c) and average heat flux

distributions on each wall of the cavity (d) are presented in Figs. 3 and 5.
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The development of the first mode of convection (Ra =5 X 104)
is depicted in Figs. 2 and 3. The resulting flow and isotherm patterns are
quite similar to those obtained experimentally by Deaver and Eckert [12] and
numerically by Takeuchi and Cheng [13]. This initial stage of cooling is
characterized by a pure conduction heat transfer as indicated by the iso-
therms of Fig. 2a. Due to the symmetry with respect to the vertical plane
Y = 0, a pair of counterrotating vortices is formed. Fig. 2a only shows the
right clockwise vortex. As the cooling progresses, the vortex gradually
increases its strength (Fig. 2b). The convective motion progressively stra-
tifies the core region and the isotherm configuration becomes closely spaced
near the top wall but sparely spaced near the bottom one, indicating respec-
tively large and poor heat transfer on those boundaries (Figs. 2c and 3d).
Fig. 2d shows the stabilized pattern of streamline and isotherms corresponding
to the quasi-steady state situation. The vortex center has moved close to the

lateral boundary and its strength has decreased to some extent.

The development of the second mode of convection (Ra = 3 X 105) is
illustrated in Figs. 4 and 5. At the initial stage of the cooling, the tempe-
rature and flow fields are quite similar to those observed for the first mode
of convection. This is shown in Fig. 4a, where a pair of counterrotating
vortices develops. However, due to the higher Rayleigh number involved in
the present case, there is a strong tendency for the vortex center to move
very close to the side boundary (Fig. 4b). The velocity profile tends to be
of the boundary layer type, as illustrated in Fig. 5a while the fluid in the
upper central region of the cavity becomes almost stagnant. Furthermore,
the fluid in this region is unstable because of the top heavy situation

resulting from the particular temperature field prevailing near the top wall.
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The induced density field combined to the existing flow motion gives rise to

an additional pair of secondary vortices symmetrically located on the axis

of symmetry, near the upper boundary (Fig. 4b). The occurence of this secon-
dary motion presents some similarity with the start of the inversion process
studied in [20] for the case of water cooled through 4°C. With time progression
the additional vortex pair increases its strength as it may be seen by compa-
ring Figs. 4b and 4c. The quasi-steady state situation is depicted in Fig. 4d
in which the secondary vortex has reached its equilibrium intensity. It

results from this particular flow pattern that the relatively cold fluid pene-
trates the core region not only from the bottom but also from the top of the
cavity. This motion perturbates greatly the isotherm field in the centre

upper region (compare Figs. 4d and 2d). Furthermore the second mode of convec-
tion allows the warmer core fluid to reach the region near the top boundary

by two paths instead of one. The noticeable bump characterizing the heat transfer
®T in Fig. 5d corresponds to the occurence of the secondary motion. It was

observed from numerical results that this secondary motion develops very

rapidly, giving rise to this sudden increase of @T.

It is interesting to note that for the case of the cooling of a
circular fluid cylinder [ 12, 13] no comparable secondary motion has been
reported. It is true that multicellular flows have been observed both expe-
rimentally and theoretically in the past. However, those secondary motions
were rather related either to the high aspect ratio of the cavity [6] or to
low Prandtl number effects [22]. In fact the second mode of convection
observed in this study results essentially from the interaction between the
zone of instability located near the top boundary and the flow field induced
by the side wall. This situation arises from the particular geometry and

thermal boundary conditions involved in the actual problem. The origin of
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the secondary motion depicted in the present investigation appears more
closely related to the multicellular flow arising from instabilities such

as those studied by Samuel and Churchill [ 21].

In order to study the effect of the Prandtl number the quasi-
steady state situations of Fig. 2d and 4d were computed for a Prandtl number
of .73. Results are shown on Figs. 6a and 6b. It is seen that for a given
Rayleigh number a decrease of Pr 1° 1lowers the position of the vortices
center, 7° promotes the occurence of the secondary motion (compare Figs. 2d

and 6a), and 3% increases the size of the secondary vortex when it is present.

The influence of the aspect ratio E on the flow configuration is
illustrated on Figs. 7a and 7b for E = 4 and 1 respectively. Qualitatively
the general features of the flow and temperature field remain similar to those
obtained with E = 2. However, in the case of the shallow cavity the secon-
dary motion is enhanced. This is due to the fact that, with decreasing E,
the instability zone related to the vertical density gradient near the upper
horizontal boundary becomes more important whereas the stabilizing driving
force generated by the horizontal density gradient near the vertical wall

is reduced.

The relationship at different Ra between the dimensionless wall
heat flux averaged over the boundaries of the entire cavity ®av and the
dimensionless time T is shown in Fig. 8 for Pr = .73 and 7.3. It is clear
from the results that the heat transfer mechanism involved in the present
problem is caracterized by three distinct regimes namely pure conduction,
intermediate and asymptotic regimes. When the asymptotic regime, or quasi-
steady state, is reached, the cooling rate inside the cavity becomes equal

to the wall cooling rate C. The ratc of heat flow per unit length of cavity
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is then 2 E b2 0 Cp. Substituting 00/0T = 0 in Eq. (17) gives the value of

the average heat flux Qav as:

°  =E/(2+E) (20)

Thus, for a square cavity, Qav = .5 for the quasi-steady state regime and

all the curves on Fig. 8 tend towards this value independently of the Rayleigh
number. Fig, 8 indicates not only the time necessary to reach a quasi-steady
state for a particular Ra and Pr, but also the onset of natural convection
effect as given by the time T at which a deviation from the pure conduction
curve occurs. It is noticed of Fig. 8 that for the higher Rayleigh numbers
oscillations are present in some of the curves and the computations are
terminated before reaching the quasi-steady state. These oscillations might
well be an indication of the occurence of turbulence since, for these high
Rayleigh number values, this latter is expected to take place. However, in
order to reproduce properly the strong transients associated with those oscilla-
tions, very small time increments would have been necessary, rendering rapidly
prohibitive the computing time required to reach the quasi-steady state. For
this reason no intensive study of these oscillations was carried on. Never-
theless it is worth to notice that the instabilities are more accentuated for
Pr = .73 than Pr = 7.3. This result is understandable owing to the fact that
at large Pr the non linear inertia term becomes negligible in the vorticity
equation, thereby attenuating the instabilities which characteristically

arise from non linearity.

The time required to reach a quasi-steady state is of practical
importance and the results obtained with a square cavity for Pr = .73, 7.3
and 73. are presented in Fig. 9. In this figure the quasi-steady state is

assumed to be reached when Qav = .485, i.e. 97 percent of the asymptotic
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value Qav = .5. The resulting curve, expressed as a function of Ra, is
observed to be independent of the Prandtl number. Furthermore this curve
indicates that for Ra = 107 the time required to reach a quasi-steady state
is only about one-seventh of that for the pure conduction case. Finally

it is observed that the occurence of the second mode of convection has a
noticeable effect on the slope of this curve. Fig. 9 also shows the time T
when 2 percent deviation from the pure conduction case occurs, this time
being an indication of the onset of natural convection effects. A distinct
curve is obtained for Pr = .73, indicating a Prandtl effect associated with

the transient aspect of the solution.

4.2 Quasi-steady State Results

The exact solution of the steady heat conduction inside an infi-
nite rectangular cavity whose walls are kept at constant temperature and
with an internal heat production at a constant rate is well known [ 23].

For such a situation the Nusselt number is given by:

Nu = 2(5_%5—) gl*- (21)
where
E 1 . i}
e—% E ’(15_x2) ) % %_o Cal cos(zn;rl)n X/2 cosh(2n+1)Y/2 | a5 4
‘070 - ™ n=0 (2n+t1)~ cosh(2ntl)mw E/2 5

Evaluating Eq. (21) for cavities with aspect ratio of E =1, 2
and 4 gives Nusselt numbers of 11.70, 7.12 and 5.85 respectively. As a
preliminary test to establish the overall consistency of the numerical results

obtained in the present study, the program was run for the above mentionned
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conditions. With a 30 X 15 grid, nusselt numbers of 11.71, 7.13 and 5.87

were obtained respectively.

Quasi-steady state results concerning the velocity and tempera-
ture profiles, wall heat flux averaged over the boundaries @T, @L and @B

and the temperatures ec, emax and 0, are presented in Figs. 10 and 11 at
different Ra. On all thoses graphs, the pure conduction solution is given
for comparison nurpose. In particular the pure conduction temperatures

* *

ec = emax = ,295 and §$ = 0.140, evaluated from [ 23], are represented by
dash lines on Figs. 10d and 11d. Since it is well known that, for moderate
Rayleigh numbers, the solution are practically independent of the Prandtl
number, provided Pr > 1, the results for Pr = 7.3 and 73 are presented on

the same graphs, Figs. 10, whereas those for Pr = .73, on Figs. 11.

4.2.1 Rayleigh effect

Figs. 10 show that when Ra is low, the velocities are small and
the temperature profiles and heat transfer results deviate only slightly
from the pure conduction case. With increasing Rayleigh, the convective
motion is amplified (see Fig. 10a) and consequently @T increases whereas @B
decreases, as it can be noticed on Fig. 10c. The value Qav: .5
is represented by a dashed line on that figure. The behaviour of the tempera-
ture inside the cavity as a function of Rayleigh is depicted on Fig. 10d. It
is seen that an increase of the Rayleigh number promotes the convective heat

transfer, thus reducing the difference of temperature between a given inte-

rior point of the cavity and the boundary.

For Ra >=RaCr ~ 80,000, the second mode of convection is set up.
Corresponding numerical results are represented by blackened symbols on

Figs. 10c and 10d. It is noticed that the apparition of the additional
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vortices abruptly enhances @T and reduces @L, Qav remaining constant. As
the Rayleigh number increases further, the nature of the flow becomes more
and more of the boundary layer type (see Fig. 10a). Furthermore Fig. 10c
indicates that for Ra >~ 2 X 105, results obtained for the two different

Pr produce distinct curves. A similar behaviour has been reported in [4].

4.2.2 Prandtl Effect

Figs. 11 show the results obtained for Pr = .73 and it is seen
that the general trend is comparable to that discussed in Figs. 10.
However a value of 6 X 104 is now obtained for Racr, indicating that the
second mode of convection occurs at lower Ra when Pr is reduced. Further-
more it is seen that the jumps in the curves for @T, @L, emax, GC and 6

are more pronounced.

The particular behaviour of the heat transfer and temperature
curves near the critical Rayleigh number suggests a possible hysteresis
effect. Numerical tests have been performed for Pr = 7.3 and .73, at
Rayleigh numbers slightly below Racr’ using as initial conditions steady-
state results obtained from a case involving the second mode of convection.
Tests for Pr = 7.3 indicate no significant hysteresis effect. For Pr = .73,
there has been some hysteresis effect detected over a very limited range of

Rayleigh values, this effect vanishing completely at Ra = 4 X 104.

4.2.3 Aspect ratio effects

The relationship between Nusselt number Nu and the modified
Rayleigh number Ra' for the quasi-steady state is of practical interest and

the results obtained for cavities with E =1, 2 and 4. are presented in
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Fig. 12. The relationship between the modified Rayleigh number Ra', based
on the temperature difference between mixed mean temperature T and wall

temperature Tw, and the Rayleigh number Ra is given by:

3
Ra = (T-T)=86Ra (22)

The 1imit values of Nu corresponding to the pure conduction case (i.e.
Ra' - 0), obtained from Eq. 21, are indicated on the graph for reference.
It is seen from the curves that the pure donduction theory is valid for
Ra' <~ 5 X 10° when E = 4 and Ra' <~ 5 X 10° when E = 1. Furthermore

it may be observed that as Ra' increases, the three curves tend to collapse.

The relationship between 6/6* and Ra for three different aspect
ratios E is presented on Fig. 13. The ratio 6/6* is a measure of the rela-
tive importance of heat transfer by convection as compared to that by con-
duction. Thus, for 57@4 = 1, heat transfer results from pure conduction
only. For a given 6764, the importance of the unstable zone located near
the top wall is amplified when the aspect ratio is decreased. The critical
values of 5764 at which the second mode of convection occurs are identified
on the graph for -each curve plotted. It is seen that the critical value
6/6* = .63 corresponding to the smallest aspect ratio is the largest. This
result indicates that the occurence of the second mode of convection is

strongly related to the unstability zone.

5. CONCLUDING REMARKS

The natural convection of a fluid contained in a rectangular
cavity, the wall of which is maintained at a temperature decreasing at a

constant rate, has being study numerically for Prandtl numbers Pr = .73,
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7.3 and 73., aspect ratio of the cavity E = 1, 2 and 4 and a range of Rayleigh

2

numbers Ra = 10 “'108. The results obtained in the present study may be

summarized as follows:

i)

ii)

1ii)

A quasi-steady state regime is reached from initial conditions where
the fluid is at rest and at a uniform temperature. The transient
solution is characterized at the initial stage by pure conduction.
Subsequently a developping regime occurs where motion is set up inside
the cavity. At a sufficiently large time, velocities, flow patterns
and temperature differences between the fluid and the wall tend to
become constant with time. The effects of unsteady terms in the gover-

ning equation are then negligible and the quasi-steady state is reached.

Depending mainly on Rayleigh number, two distinct modes of convection
may develop inside the cavity. In the first mode, occuring at relati-
vely low Rayleigh numbers, the flow field is characterized by a single
pair of counterrotating vortices. For Rayleigh numbers beyond a critical
value, a second mode appears in which an additional pair of counterro-
tating vortices, located near the top boundary is superposed to the

basic flow of the first mode. This second mode was found to enhance

the convective heat transfer near the top boundary.

The influence of the aspect ratio of the cavity on the occurence of the
second mode of convection has been studied for E =1, 2 and 4. For a
given intensity of convection, the importance of the unstable zone

increases with a decreasing E, thus promoting the second mode.



iv) The effect of the Prandtl number on the present problem follows the
trend already reported in past litterature. For Pr ~1 {7.3 and 73},
the flow and temperature field and the resulting heat transfer was

found to be almost independent of Pr except for very high values 6f

the Rayleigh number. For Pr <1 (.73), some effect of Pr was observed.
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