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JANVIER 2011

c© Jocelyn Pellerin, 2011.
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ÉCOLE POLYTECHNIQUE DE MONTŔEAL
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Laforest et d’apprécier sa riche culture mathématique.
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RÉSUMÉ

Considérons la loi de conservation scalaire∂u/∂t + ∂f(u)/∂x = 0 quand la fonc-

tion de fluxf(u) est concave convexe. Notre but dans cette recherche est de construire

un potentiel d’interaction décroissant pour les quatre cas problématiques générés par la

fonctionnelle Iguchi-LeFloch. Puis, nous allons tester les douze autres cas d’interactions

pour vérifier si le potentiel d’interaction est décroissant. Ce travail est basé sur la théorie

des fonctions cinétiques de LeFloch pour la régularisation des lois de conservation non

convexes. Les résultats présentés ici sont une amélioration par rapport à ceux de Baiti,

LeFloch et Piccoli ainsi que ceux d’Amadori, Baiti, LeFlochet Piccoli.
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ABSTRACT

Consider the scalar conservation law∂u/∂t + ∂f(u)/∂x = 0 when the flux function

f(u) is concave convex. Our goal in this research is to construct adecreasing interac-

tion potential for the four problematic cases generated by the Iguchi-LeFloch functional.

Then, we will test the twelve other interaction cases to check if the interaction potential

is decreasing. This work is based on LeFloch’s theory of kinetic functions for regulari-

sation of nonconvex conservation laws. The results presented here are an improvement

over those of Baiti, LeFloch and Piccoli as well as those of Amadori, Baiti, LeFloch and

Piccoli.
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INTRODUCTION

Une loi de conservation est une équation différentielle aux dérivées partielles. Ces

équations proviennent de la mécanique des fluides où elles représentent la conservation

de la masse, la quantité de mouvement, l’énergie et l’entropie.À l’origine, elles ont été

introduites par Euler et étudiées par d’autres chercheurs comme Riemann, Stokes. Avec

l’arrivée de la seconde guerre mondiale, les équations d’Euler sont étudiées en profon-

deur puisqu’elles permettent de modéliser les ondes de chocs générées par les avions

supersoniques, les ogives et les bombes nucléaires. Durant les années 50, Oleinik (Olei-

nik, 1957; Oleinik, 1959) débute l’étude abstraite des lois de conservation avec le cas

scalaire ainsi que deux lois de conservation couplées. Puis, Lax (Lax, 1973) se penchera

sur le problème de Riemann. Par la suite, les potentiels d’interactionQ(u(t)) seront in-

troduits par Glimm (Glimm, 1965) afin de présenter la premi`ere preuve générale d’exis-

tence de solutions pour les systèmes de lois de conservation. Les potentiels d’interaction

sont au coeur de la théorie des lois de conservation et ils doivent satisfaire plusieurs

caractéristiques d’un point de vue mathématique. En effet,

1) le potentiel ne dépend pas de la position exacte des ondesau temps t mais seulement

de leur ordre ;

2) le potentiel correspond à une somme de termes qui sont quadratiques par rapport à la

force des ondes ;

3) le potentiel doit être décroissant pour une interaction entre deux ondes et celui-ci

diminue de manière proportionnelle au produit des ondes impliquées dans l’interaction ;

4) quand un potentiel d’interaction décroissant satisfait 1), 2) et 3), il forme une com-

binaison linéaire avec la variation totale et le résultatest une mesure décroissante de la

variation totale.
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Depuis la percée de Glimm (Glimm, 1965), d’autres individus ont contribué à l’avance-

ment des connaissances concernant les lois de conservation. Au début des années 80, des

gens ont amélioré les techniques introduites par Glimm. Toujours durant cette période,

des chercheurs (Glimm and Lax, 1967; Liu, 1977a; Liu, 1977b;Liu and Yang, 1999;

Bressan et al., 1999) ont présenté des preuves d’existence, d’unicité et de stabilité de

solutions pour ces mêmes lois, tout en respectant les conditions initiales à petite varia-

tion totale, employées par Glimm dans ses travaux à l’époque. Après le développement

d’une théorie mature d’existence, d’unicité et de stabilité pour les systèmes convexes, la

question des systèmes non convexes est apparue de plus en plus importante pour d’autres

personnes.

En effet, dans les années 80 et 90, la majorité des travaux au sujet des systèmes de lois

de conservation convexe concave se sont attardés à ceux dont l’ensemble des solutions

étaient caractérisées par des régularisations visqueuses (diffusion). Nous pouvons main-

tenant affirmer que les travaux de Bressan et Bianchini (Bressan and Bianchini, 2005)

ont entièrement réglé la question de l’existence, de l’unicité et de la stabilité. Durant

cette période, LeFloch a développé la théorie des fonctions cinétiques pour caractériser

les solutions des lois de conservation obtenues avec des régularisations plus générales

(de type diffusion-dispersion) (LeFloch, 2002).

Vers la fin des années 90, Baiti, LeFloch et Piccoli (Baiti etal., 1999) ont proposé une

nouvelle fonctionnelle de variation totale pour mesurer laforce des ondes pour le flux

concave convexe le plus simplef(u) = u3. Leurs calculs démontrent que cette fonction-

nelle est toujours inférieure ou égale à zéro. Puis, Amadori, Baiti, LeFloch et Piccoli ont

utilisé la même définition pour la fonctionnelle de variationV (u) qui avait été introduite

dans (Amadori et al., 1999). Pour corriger l’augmentation de la fonctionnelle de varia-

tion totale, les chercheurs ont travaillé avec une nouvelle définition pour la force des

ondes. Par la suite, en s’appuyant sur quatre hypothèses, ils ont évalué la fonctionnelle

V . Pour chacun des seize cas étudiés, la fonctionnelleV est plus petite ou égale à zéro.
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Malheureusement, leur approche abstraite ne permet pas de bien identifier le rôle de la

fonction cinétique. De plus, la complexité de cette approche fait que ce n’est pas possible

de généraliser celle-ci au cas des systèmes de type concave convexe.

Seulement quelques années plus tard, Baiti, LeFloch et Piccoli (Baiti et al., 2004b) in-

troduit une fonctionnelle de variation totalẽV (u) qui se veut plus explicite que celle

étudiée dans (Amadori et al., 1999). Mais, encore une fois, les calculs sont trop com-

plexes pour obtenir une extension aux systèmes (Baiti et al., 2004a). La définition de

celle-ci nécessite le calcul de la force des ondesσ̃(u−, u+). Dans le cas des solutions non

classiques, la définition dẽσ(u−, u+) semble assez complexe à utiliser. Jusqu’à mainte-

nant, la littérature présente des définitions pour évaluer les potentiels d’interaction qui

exigent des calculs qui ne sont pas très transparents (Baiti et al., 1999; Amadori et al.,

1999; Baiti et al., 2004b). Plus spécifiquement, les propriétés fondamentales de la fonc-

tion cinétique n’apparaı̂ssent pas naturellement, en particulier la propriété de contraction

|ϕ♭ ◦ ϕ♭(u)| ≤ k|u|.

Puis, Laforest et LeFloch (Laforest and LeFloch, 2010) ont proposé une définition plus

intuitive et plus naturelle pour évaluer la force des ondescomparativement à celle décrite

dans (Baiti et al., 2004b).̀A l’aide de cette nouvelle définition, les auteurs ont calculé

la fonctionnelle de Glimm pour les solutions non classiqueslorsque la fonction de flux

f(u) est de type concave convexe. L’inspection de tous les cas traités permet d’affirmer

que la fonctionnelle de Glimm est décroissante sauf pour quatre cas, ce qui contredit la

condition 3, présentée dans le premier paragraphe. Toutefois, ils démontrent que celle-ci

est décroissante dans le cas de solutions de type splitting-merging (LeFloch and Shearer,

2004). Dans ce mémoire, nous nous proposons d’étendre lestravaux de Laforest et Le-

Floch (Laforest and LeFloch, 2010) et de construire un potentiel d’interactionQ adapté

à leurV . Si nous parvenons à trouver lebonQ alors la relationV +kQ est équivalente à

l’existence de solutions pour les lois de conservation scalaire non convexes. La littérature

sur le sujet ainsi que des travaux préliminaires de Laforest et LeFloch suggèrent forte-
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ment qu’il devrait exister un tel potentiel d’interactionQ. Bien que les travaux de La-

forest et LeFloch n’ont pas encore été en mesure de produire un potentiel d’interaction

décroissant, les résultats obtenus sont encourageants.
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CHAPITRE 1

LES LOIS DE CONSERVATION

1.1 Introduction aux lois de conservation

Une loi de conservation scalaire est une équation différentielle aux dérivées partielles de

la forme :

∂u

∂t
+
∂f(u)

∂x
= 0 u = u(x, t) ∈ R (1.1)

avec une condition initiale au tempst = 0 :

u(x, 0) = u0(x). (1.2)

Dans l’équation (1.1), les variables indépendantesx et t représentent respectivement les

coordonnées pour l’espace et le temps. La fonctionf(u) est dite fonction de flux. Il est

aisé de voir que même si|u0| < ǫ et quef , u0 sont dansC∞ alorsu peut développer des

discontinuités après un temps fini (Oleinik, 1959). Il estdonc nécessaire d’envisager des

solutions discontinues pour l’équation différentielle.

Définition 1.1. (solution faible)

Consid́erons les donńees initialesu0 ∈ L∞(R) 1. Siu ∈ L∞(R × R+) alors u est dite

une solution faible du problème de Cauchy représent́e par (1.1-1.2) si pour toutθ(x, t)

1. L∞(Ω) = {u est mesurable surΩ, ||u||L∞ = supx∈Ω |u(x)| <∞}
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lisse et de support compact, nous avons :

∫ ∞

0

∫

R

(

u(x, t)
∂θ(x, t)

∂t
+ f(u(x, t))

∂θ(x, t)

∂x

)

dx dt+

∫

R

θ(x, 0) u0(x) dx = 0.

Deux équations différentielles bien connues sont des exemples de lois de conservation.

Il s’agit des équations de Burgers (1.3) et de Buckley-Leverett (1.4). Elles ont la forme

suivante :

ut +
(u2

2

)

x
= 0 (1.3)

ut +

(

u2

(u2 + (1 − u)2)

)

x

= 0 (1.4)

L’équation de Burgers est un modèle simple et bien étudi´e des fluides compressibles.

L’équation de Buckley-Leverett permet de représenter unfluide avec deux phases

u ∈ [0, 1] tel un mélange eau-huile ;u représente la saturation d’une des deux phases.

Tentons de déterminer la provenance des chocs en regardantl’équation de Burgers après

avoir fait la différentiation du second terme par rapport `a x. Nous avons maintenant

l’équation sous la forme :

ut + uux = 0 (1.5)

et ajoutons la condition initiale ci-dessous :
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u(x, 0) = u0(x) =











−1, si x < 0

1, si x > 0

(1.6)

Le problème de Riemann donné par (1.5-1.6) possède la solutionu(x, t) = u0(x) pour

tout (x, t). Toutefois, il admet aussi une autre solution qui a la forme :

u(x, t) =



























−1, si x < −t

x/t, si −t < x < t

1, si x > t

(1.7)

Ces deux solutions sont des solutions faibles.

Or, le fait que le problème de Riemann puisse comporter plusieurs solutions illustre bien

la nécessité d’avoir une approche pour sélectionner unesolution particulière parmi toutes

celles obtenues. Nous verrons que si le flux est convexe alorsl’imposition d’une seule

condition d’entropie est suffisante pour identifier une solution unique.

Définition 1.2. (entropie-flux d’entropie)

Une paire de fonctions lisses(U(u), F (u)) → R
2 est une paire entropie-flux d’entropie

siF ′(u) = f(u) × U ′(u).

Il est facile de voir que siu est une solution lisse de (1.1) et que la définition ci-dessus

est respectée alorsu sera aussi une solution de l’équation suivante :

∂(U(u))/∂t + ∂(F (u))/∂x = 0.

La définition 1.2 origine de la thermodynamique. Plus précisément, la seconde loi de

la thermodynamique couvre la notion d’irréversibilité des phénomènes physiques. Cette

loi comporte une fonction d’entropie que nous pouvons associée au désordre ; lors d’une
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transformation le désordre ne peut qu’augmenter. En chimie par exemple, lorsqu’on ef-

fectue une transformation dans un système, l’entropie doit augmenter. Précisons que

l’entropie mathématique= − entropie physique.

Théorème 1.3.

Soient (1.1-1.2) ainsi quef ∈ C2 et convexe,u0 ∈ BV ∩ L1 et2 une3 paire (U, F )

avecU qui est l’entropie etF le flux d’entropie. Alors, il existe une solution unique de

(1.1-1.2) qui satisfait au sens faible :

U(u)t + F (u)x ≤ 0.

Malheureusement, l’unicité ne tient pas si nous n’avons pas l’hypothèse de convexité sur

le flux, comme dans le cas de l’équation de Buckley-Leverett(LeFloch, 2002). Pour des

conditions initialesu0 ∈ Ω, dans le voisinage d’un point d’inflexion def , il peut exister

un nombre infini de solutions qui satisfont la même condition d’entropie.

Nous allons maintenant présenter les bases de la théorie.Il existe plusieurs références

reconnues dans le domaine, dont celle de Smoller (Smoller, 1983) qui est sans doute

la mieux connue, mais nous suivrons celle de LeFloch (LeFloch, 2002). Nous débutons

avec un théorème important.

Théorème 1.4(inégalités d’entropie d’Oleinik).

Soit une fonction de fluxf(u) quelconque. Soit une onde de choc qui est

une solution faible de (1.1) et qui a localement la forme ci-dessous :

u(x, t) =











ul, si x < λ t

ur, si x > λ t

(1.8)

2. L1(Ω) = {u est mesurable surΩ, ||u||L1 =
∫

Ω |u(x)| dx <∞}
3. BV (Ω) = L’ensemble des fonctions avec une variation totale finie dans un intervalleI.
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où ul, ur etλ sont des constantes avecul 6= ur. L’onde de choc v́erifie les ińegalit́es

∂U(u)/∂t + ∂F (u)/∂x ≤ 0 (1.9)

pour toutes les paires d’entropies convexes(U, F ) si et seulement si les inégalit́es d’en-

tropie d’Oleinik

f(v) − f(ul)

v − ul

≥ f(ur) − f(ul)

ur − ul

(1.10)

sont respect́ees pour toutv qui se situe entreul etur.

Définition 1.5.

Dans le th́eor̀eme 1.4, la constanteλ représente la vitesse de l’onde et on l’appelle

la vitesse de Rankine-Hugoniot. Il est possible de vérifier queu(x, t) ci-dessus est une

solution faible seulement si

λ =
f(ur) − f(ul)

ur − ul

. (1.11)

Définition 1.6. (raréfaction)

Consid́erons lesétatsul et ur. Supposons aussi quef ′(u) crôıt lorsqueu passe deul

à ur. Dans ce cas, la fonction inverse def ′(u) que nous appelleronsh est d́efinie dans

l’intervalle [f ′(ul), f
′(ur)]. Alors

u(x, t) =



























ul, si x < tf ′(ul)

h(x/t), si tf ′(ul) < x < tf ′(ur)

ur, si x > tf ′(ur)

(1.12)

constitue une solution continue de l’équation (1.1). Cette solution est une onde de

raréfaction qui joint leśetatsul à ur.
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Les solutions obtenues ne sont donc pas uniques car l’onde dechoc donnée par (1.8)

avec la vitesse de l’ondeλ décrite par (1.11) est aussi une solution faible. En revanche,

cette solution discontinue ne satisfait pour aucune paire(U, F ) la condition

∂U(u)/∂t + ∂F (u)/∂x ≤ 0.

Un problème de Riemann est un problème à valeur initiale de la forme :

u0(x) =











ul si x < 0

ur si x > 0

(1.13)

Nous avons indiqué que l’addition d’une condition d’entropie nous assure de l’existence

et de l’unicité. Ci-dessous, nous verrons que la régularisation d’une loi de conservation

assure le même niveau d’existence et d’unicité. Nous utiliserons ce critère un peu plus

tard.

Théorème 1.7.

Soitf ∈ C2(Ω) et convexe ainsi qu’un problème de Riemann avec une condition initiale

u0. Alors,

1) pour une paire d’entropie-entropie flux(U, F ) il existe une solution faible unique,u

de (1.1) qui v́erifieU(u)t + F (u)x ≤ 0 pour (U, F ) ;

2) il existe une solution faible unique,u de (1.1) qui respecte les inégalit́es d’entropie

d’Oleinik ;

3) il existe une solution faible unique,u de (1.1) de la formeu = limε→0 u
ε ouuε est la

solution deuε
t + f(uε)x = εuε

xx. Mentionnons ici que la limite est prise poit par point.

Pour les flux convexes, l’énoncé ci-dessus nous indique donc qu’une seule paire d’entropie-

entropie flux est suffisante pour obtenir l’unicité. De plus, cette solution est la limite
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d’une régularisation visqueuse.

1.2 Lois de conservation non convexes

Le théorème 1.7 est faux pour les lois de conservation non convexes puisqu’une seule

paire (U, F ) ne détermine pas uniquement la solution. Nous verrons maintenant qu’il

est possible d’identifier une classe de solutions en sélectionnant une régularisationu.

Prendre une régularisaiton est équivalent au choix d’unefonction cinétique. Nous in-

troduirons un peu plus tard la notion de fonction cinétique.

Considérons le problème de Riemann constitué des équations (1.1-1.2).

Remplaçons le terme homogène dans l’équation (1.1) par un terme de diffusion :

uǫ
t + f(uǫ)x = ε uε

xx (1.14)

Il s’agit d’une régularisation visqueuse oùε introduit la viscosité. Essentiellement, cette

approche a pour but de réintroduire la viscosité (d’ordre2) dans le modèle physique

(d’ordre 1) qui décrit un fluide. Plus généralement, les lois de conservation non linéaires

d’ordre 1 sont des modèles simplifiés de phénomènes physiques à l’intérieur desquels

nous avons fait le choix de négliger la diffusion (ordre 2),la dispersion (ordre 3) et

les autres processus d’ordres supérieurs. Selon le développement de Chapman-Enskog,

tout système en mécanique statistique s’exprime comme unsystème d’équations aux

dérivées partielles avec des termes d’ordre arbitrairement élevé. La physique du système

nécessite donc la présence de termes d’ordres supérieurs.

Dans cette optique, il est préférable de réintroduire davantage de physique à l’aide de

régularisations de la loi de conservation (1.13) de la forme :
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uε
t + f(uε)x = εauε

xx + ε2buε
xxx. (1.15)

L’équation (1.15) avec les termesεauε
xx et ε2buε

xxx est un problème bien posé si

ε, a > 0 (LeFloch, 2002). Si la limitelimε→0 u
ε existe alors nous aurons une manière

de choisir une solution unique. Malheureusement, la limiteuε dépend dea et deb. Plus

précisément, du rapportα = b/a qui représente le rapport du taux de dispersion sur celui

de la diffusion. Quandα = 0 alors il n’y a pas de dispersion tandis que lorsqueα → ∞
c’est la dispersion qui domine. Dans certains systèmes, des termes d’ordres supérieurs

(uxxx et plus) pourraient être nécessaires. Pour des lois de conservation non convexes

assujetties à des régularisations de la forme (1.15), nous verrons l’apparition d’ondes de

choc dites non classiques.

Définition 1.8. (ondes de chocs classiques et non classiques)

Une discontinuit́e qui v́erifie les ińegalit́es d’entropie d’Oleinik est dite une onde de choc

classique.

Une discontinuit́e qui ne v́erifie pas les ińegalit́es d’entropie d’Oleinik est dite une onde

de choc non classique.

Théorème 1.9.

Soit une fonction de flux concave convexe ainsi que la représentation de la diffusion

dispersion donńee par∂tu+ ∂xf(u) = ε(b(u)ux)x + δ
(

c1(u)(c2(u)ux)x

)

x
avec

u = uǫ,δ(x, t) ainsi queb(u), c1(u), c2(u) > 0. Le rapportα = ε/
√
δ > 0 est donńe.

Alors, il existe une fonction cinétiqueϕ♭ : R → R qui satisfait :

H1) Lipschitz continue ;

H2) monotone d́ecroissante etϕ♭(0) = 0 ;
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H3) il existe un voisinage compactI dans lequel4 Lip(ϕ♭) < 1 ;

H4) ϕ♭ ◦ ϕ♭ est une contraction stricte. Autrement dit, il existek ∈ (0, 1)

tel que|ϕ♭ ◦ ϕ♭| ≤ k|u| pour toutu.

Quandǫ et δ tendent vers źero mais queα reste constant alors toute discontinuité dans

la limite

u− := lim
x→x−

0

lim
ǫ→0

uǫ(x, t)

u+ := lim
x→x+

0

lim
ǫ→0

uǫ(x, t)

qui est une onde de choc non classique satisfaitu+ = ϕ♭(u−).

De plus, en lien avec la fonction cinétiqueϕ♭, nous avons deux fonctions canoniques.

La première est la fonction de dissipation d’entropie zéro,ϕ♭
0 alors que la secondeϕ♮ est

donnée par la condition de tangence :

f ′(ϕ♮(u)) =
f(ϕ♮(u)) − f(u)

ϕ♮(u) − u

Ces deux fonctions ne dépendent que def et de la paire(U, F ). En lien avec ces fonc-

tions, nous avons aussi :

ϕ♮(u) ≤ ϕ♭(u) < ϕ♭
0(u), u < 0

4. La constante de Lipschitz est :0 < Lip(ψ) := infu6=v

∣

∣

∣

ψ(u)−ψ(v)
u−v

∣

∣

∣
.
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ϕ♭
0(u) < ϕ♭(u) ≤ ϕ♮(u), u > 0.

Nous pouvons aussi obtenir une fonction accompagnatriceϕ♯ : R → R qui provient de

ϕ♭. Cette fonction accompagnatrice est la seule qui satisfait

f(u) − f(ϕ♯(u))

u− ϕ♯(u)
=
f(u) − f(ϕ♭(u))

u− ϕ♭(u)

ainsi que

ϕ♭(u) < ϕ♯(u) < u u > 0

u < ϕ♯(u) < ϕ♭(u) u < 0

quandϕ♭(u) 6= ϕ♮(u).

L’intérêt de la fonction accompagnatriceϕ♯ réside dans le fait que celle-ci marque une

transition pour une solution d’entropie non classique. En effet, tant queur est à droite de

la fonction accompagnatriceϕ♯, la solution obtenue comporte une seule onde (soit une

raréfaction ou une onde de choc classique). Dès que nous nous retrouvons à gauche de

ϕ♯ alors la solution présente deux ondes (soit une onde de chocnon classique avec une

onde classique ou une onde non classique avec une raréfaction).

Théorème 1.10. (solutions d’entropie non classiques)

Soit une fonction cińetiqueϕ♭ et les hypoth̀eses du th́eor̀eme 1.9. Alors, le problème de

Riemann d́ecrit par :
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u(x, 0) =











ul, si x < 0

ur, si x > 0

∂tU(u) + ∂xF (u) ≤ 0

admet une solution d’entropie non classique qui possède la forme suivante lorsque

ul > 0 :

1) Siur ≥ ul alors la solution est une raréfaction qui jointul à ur.

2) Siur ∈ [ϕ♯(ul), ul) alors la solution est une onde de choc classique qui jointul à ur.

ϕ♯ est la fonction accompagnatrice deϕ♭.

3) Siur ∈ [ϕ♭(ul), ϕ
♯(ul)) alors la solution est une onde de choc non classique qui joint

ul à ϕ♭(ul) et une onde de choc classique qui jointϕ♭(ul) à ur.

4) Siur ≤ ϕ♭(ul) alors la solution est une onde de choc non classique qui jointul à

ϕ♭(ul) et une raŕefaction qui jointϕ♭(ul) à ur.

L’attrait de la fonction cinétique est de permettre une analyse et une construction des so-

lutions d’une loi de conservation non convexesans avoirà passer par la ŕegularisation.

La limite d’une régularisation est complexe et particuli`erement difficile dans le contexte

des fonctions dansL1
⋂

L∞. La théorie des fonctions cinétiques telle que développée

par LeFloch est donc une manière de contourner le problèmede la régularisation.
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1.3 La méthode de front tracking

Dans cette section, nous allons aborder la méthode de fronttracking qui permet de

résoudre une loi de conservation scalaire avec une fonction de flux donnée.

En ce moment, la théorie nous assure de l’existence d’une solution faible pour (1.1)

obtenue comme la limite d’une régularisation visqueuse. De plus, la théorie permet de

décrire chaque discontinuité mais il nous manque un outilpour représenter la solution

en se basant sur des discontinuités locales. Cet outil s’appelle la méthode de front tra-

cking (Dafermos, 1972; DiPerna, 1976; Risebro, 1993). Elleest fondamentalement une

simplification de la méthode que Glimm avait introduit dansson article original (Glimm,

1965). Ci-dessous, nous allons décrire avec un algorithmecomment la méthode de front

tracking permet de construire une approximation de la solution faible.

On choisit un nombre réel positifǫ suffisamment petit pour contrôler l’erreur d’approxi-

mation totale permise. Pour toute condition initialeu0 ∈ L1(R)
⋂

L∞(R), on construit

une approximation constante par morceauxũ0 possédant un nombre fini de disconti-

nuités et telle que||u0 − ũ0||L1(R) < ǫ.

Pour faire évoluer la condition initiale approximativẽu0 qui est constituée uniquement

de discontinuités, il suffit de suivre les étapes suivantes au tempst = 0 :

1) si ũ(·, t) a une discontinuité enx0 qui est une onde de choc (classique ou non) alors

on permet à cette discontinuité de se déplacer avec la vitesse de Rankine-Hugoniot ;

2) si ũ(·, t) a une discontinuité enx0 qui est une onde de raréfaction séparant les états

ul, ur alors

a) on subdivise l’onde enn ondes de raréfaction séparant les états ordonnés

ul = u0, u1, u2, . . . , un+1 = ur tels que|ui − ui−1| = ǫ pouri = 1, 2, . . . , n et
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|un+1 − un| ≤ ǫ ;

b) on permet aux ondes de se déplacer avec la vitesse de Rankine-Hugoniot ;

Éventuellement, ces discontinuités pourraient se rencontrer, disons au temps̃t. Par contre,

en tout temps,t ∈ [0, t̃]. La solution ũ(·, t) sera constante par morceaux et formée

d’ondes qui voyagent selon la vitesse de Rankine-Hugoniot.

Durant l’intervalle de temps[0, t̃], la fonctionũ sera donc une solution faible de (1.1)

bien que la condition d’entropie ne soit pas satisfaite le long des ondes de raréfaction.

Pour que l’algorithme puisse poursuivre du tempst = t̃ au tempst = ∞, on doit

i) décrire comment les interactions sont approchées ;

ii) vérifier que le nombre total d’ondes reste borné.

Concernant le premier point, il suffit d’utiliser le théor`eme 1.10 pour identifier le résultat

de l’interaction et par la suite se servir de 1) ou 2) pour chaque onde sortante.

Quant au nombre total d’ondes, il est possible de montrer que

a) le nombre total d’ondes de raréfaction au départ est borné parTV (ũ0)/ǫ ;

b) durant les interactions, la force des ondes de raréfaction est toujours décroissante ;

c) durant les interactions, le nombre total d’ondes de choc (classique ou non) est non

croissant.

Ensemble, ces observations permettent de conclure que la m´ethode de front tracking

produit une solution faiblẽu qui est bien définie pour toutx ∈ R et t ∈ [0,∞).

Dans les approximations de front tracking, il n’y a que des discontinuités. La manière

classique (Glimm, 1965) de définir la force d’une seule discontinuité séparée par deux
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étatsul etur estσ̃(ul, ur) = |ur − ul|.

Cette définition de la force d’une onde suggère qu’on mesure la force totale des ondes,

aussi dite la variation totale, à l’aide de

TV (u) =
∑

α

σ̃(uα
l , u

α
r ).

Dans les travaux de Laforest et LeFloch, ceux-ci ont introduit une nouvelle mesure de la

force des ondes :

σ(ul, ur) =











|ul − ur| si ulur ≥ 0

|ul + ur| si ulur < 0.

Cette définition est valide sous des hypothèses techniques que nous passerons sous si-

lence. La variation totale qui en découle est

V (u) =
∑

α

σ(uα
l , u

α
r ).

Plus généralement, pour les fonctions lisses par morceaux nous aurons la définition sui-

vante :

Définition 1.11.

TV (u) = sup
∑

j

| u(yj) − u(yj−1) | (1.16)

Le supŕemum est la valeur obtenue lorsque nous considérons toutes les partitions finies

{yi} tout en ayantyj−1 < yj. L’ensemble qui contient toutes les fonctions possédant une
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variation totale finieà l’int érieur d’un intervalleI est not́eBV (I).

Regardons de plus près un autre concept important : le potentiel d’interaction. Une force

est associée à chaque onde de choc. Or, avant que deux ondesse frappent, nous pourrions

prédire à l’avance qu’elles pourraient interagir en regardant leurs positions et leurs na-

tures (ondes de choc ou raréfactions) respectives. Glimm (Glimm, 1965) suggère qu’on

définisse le potentiel d’interactionQ de la manière suivante :

Q(u) =
∑

α approche β

σ̃(ul
α, ur

α) σ̃(ul
β, ur

β) (1.17)

Dans la définition (1.17),̃σ représente la force d’une onde alors queuα
l et uα

r sont res-

pectivement les états de gauche et de droite de la discontinuité α. Nous considérons

qu’une ondeα à gaucheapprocheune ondeβ à droite sauf si les deux ondes sont des

raréfactions. Dans le chapitre 3, nous allons étudier unevariante de (1.17) avec̃σ rem-

placé parσ.

Ci-dessus, nous avons présenté la notion de variation totaleTV . Il est possible de réécrire

pour les approximations de front tracking :

TV (u) =
∑

α

|uα
l − uα

r | (1.18)

oùul etur sont les états de gauche et de droite d’une discontinuitéα. Or, il est clair que

dans (Laforest and LeFloch, 2010) la définition de la variation totaleTV ci-dessus est

équivalente à :

V (u) =
∑

α

σ(uα
l , u

α
r ) (1.19)
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oùσ(ul, ur) représente la force d’une onde (Laforest and LeFloch, 2010). Mentionnons

queσ est une fonction qui satisfaitc1 σ(ul, ur) ≤ |ul − ur| ≤ c2 σ(ul, ur), avec les

constantesc1, c2 6= 0. Plus spécifiquement, nous allons considérer des forces définies

par :

σ(ul, ur) =











|ul − ur| si ulur ≥ 0

|ul + ur| si ulur < 0

(1.20)

où ũ est un changement de variables décrit paru ∈ R.

Tous les éléments sont en place pour aborder une autre notion dans la théorie des lois de

conservation : la fonctionnelle de Glimm, notée parH. Elle a la forme :

H(u(t)) = V (u(t)) + kQ(u(t)) (1.21)

Dans cette équation,V est la fonctionnelle de variation totale alors queQ est le potentiel

d’interaction quadratique. Laforest et LeFloch (Laforestand LeFloch, 2010) ont étudié

la variation de la fonctionnelle de Glimm dans les seize cas possibles (LeFloch, 2002)

lorsque deux ondes interagissent pour une loi de conservation scalaire avec une fonction

de flux de type concave convexe.

Leurs résultats montrent que pour douze cas la fonctionnelle de Glimm est décroissante.

Ceci correspond à ce que nous espérons. C’est-à-dire qu’un potentiel d’interaction doit

être décroissant. Toutefois, pour l’instant quatre cas demeurent problématiques puisque

la fonctionnelle de Glimm résultante est croissante. L’objectif de cette recherche est

d’étendre les travaux de Laforest et LeFloch en effectuantl’étude d’un nouveau potentiel

d’interactionQ pour lequelV + kQ sera décroissant.
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CHAPITRE 2

ANALYSE DE LA VARIATION TOTALE

Notre objectif dans ce chapitre est de présenter les valeurs obtenues pour la

fonctionnelle de variation totale généraliséeV donnée par (1.19). Nous allons couvrir

les seize cas d’interactions (RC-1, RC-2, ..., NN) qui proviennent de l’équation (1.1) et

qui impliquent l’interaction entre deux ondes lorsque la fonction de fluxf est de type

concave convexe. Ces résultats publiés au départ par Laforest et LeFloch (Laforest and

LeFloch, 2010) seront utiles pour étudier le potentiel d’interaction décroissant dans le

chapitre 3.

Nous utiliserons la formule suivante pour faire les calculs. La fonctionnelle de variation

totale généralisée est donnée par :

V (u(t)) =
∑

α

σ(uα
l , u

α
r ). (2.1)

Dans la formule (2.1),σ est la force de l’onde alors queα est la discontinuité qui se

propage etuα
l , u

α
r représentent les états de gauche et de droite de la discontinuitéα.

Tout comme Laforest et LeFloch (Laforest and LeFloch, 2010), nous supposons qu’un

changement de variableψ a déjà été appliqué à la variableu afin de s’assurer queϕ♭

vérifie les propriétés suivantes :

H1) La fonctionϕ♭ : R → R est Lipschitz continue ;

H2) ϕ♭ est monotone décroissante etϕ♭(0) = 0 ;

H3) Il existe un voisinage compactI à l’intérieur duquelLip(ϕ♭) < 1 ;
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H4) ϕ♭ ◦ ϕ♭ est une contraction. En d’autres termes, pour une constantek ∈ (0, 1) nous

avons|ϕ♭ ◦ ϕ♭(u)| ≤ k|u|, pour toutu.

Théorème 2.1. (fonctionnelle de variation totale ǵenéralisée)

Consid́erons une fonction cińetiqueϕ♭ qui satisfait les propríet́es H1)à H4) ci-dessus.

Pour une approximation de front tracking donnéeu : R+ × R → R, la loi de

conservationut + f(u)x = 0 avec la condition initialeu(x, 0) = u0 ∈ L1
⋂

L∞ avec la

fonction cińetiqueϕ♭ conduità une fonctionnelle de variation totale géńeralisée

V (u(t)) qui est non croissante.

Démonstration

De la même manière que Laforest-LeFloch (Laforest and LeFloch, 2010), nous

démontrerons le théorème 2.1. Nous aurons besoin des in´egalités qui correspondent aux

seize cas dans le chapitre 3. Les symbolesul, ur, um sont présents. Ils représentent

respectivement l’état de gauche, l’état de droite et l’état intermédiaire pour décrire deux

ondes entrantes.

Pour la description des ondes, nous conserverons la notation introduite par LeFloch

(LeFloch, 2002) puisque celle-ci est claire et concise. La signification des différents

symboles est donnée dans les lignes qui suivent.

C : une onde de choc classique (siul > 0 alorsϕ♯(ul) < ur et siul < 0 alors

ϕ♯(ul) > ur) ;

N : une onde de choc non classique (siur = ϕ♭(ul)) ;

R : une onde de raréfaction (siul > 0 alorsur > ul et siul < 0 alorsur < ul) ;

↑ : l’onde se déplace de la gauche vers la droite (onde croissante) ;

↓ : l’onde se déplace de la droite vers la gauche (onde décroissante) ;
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+ : l’onde joint deux états positifs ;

− : l’onde joint deux états négatifs ;

± : l’onde joint un état positif et un état négatif ;

∓ : l’onde joint un état négatif et un état positif ;

′ : onde(s) résultante(s) ;

σ(·) : la force d’une onde ;

σ(·′) : la force d’une onde résultante ;

[V ] : le changement dans la fonctionnelle de variation totale g´enéralisée.

Par exemple, nous employons la notation(R↑
+C

↓)− (C↓′) pour indiquer qu’une onde de

raréfaction et une onde classique interagissent. Pour la raréfaction, le signe+ indique

que l’onde relie deux états positifs alors que la flèche quipointe vers le haut signifie

que cette onde est croissante. L’onde résultante qui provient de cette interaction est une

onde de choc. Pour spécifier qu’il s’agit d’une onde résultante, le symbole′ est employé

et cette onde est décroissante puisque la flèche associéeà celle-ci pointe vers le bas.
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ul

umur

C↓

C↓′ R↑
+

FIGURE 2.1Cas RC-1
(R↑

+C
↓) − (C↓′)

Cas RC-1(R↑
+C

↓) − (C↓′)

Ce cas est constitué des inégalités :

max (ϕ♯(ul), ϕ
♯(um)) < ur < ul, 0 < ul < um.

Nous divisons ce premier cas en deux parties selon le signe deur.

1) Siur ≥ 0 alors nous avons(R↑
+C

↓
+) − (C↓′

+ ).

Nous allons évaluer le changement dans la fonctionnelle devariation totale généralisée,

[V ]. Ce calcul consiste à additionner les forces des ondes résultantes et de soustraire de

celles-ci les forces des ondes entrantes. Nous avons besoinde la série d’inégalités :

0 < ur < ul < um pour traiter les valeurs absolues dans l’expression (2.2).
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[V ] = σ(C↓′

+ ) − σ(R↑
+) − σ(C↓

+) (2.2)

= |ul − ur| − |um − ul| − |um − ur|

= (ul − ur) − (um − ul) − (um − ur)

= −2(um − ul) = −2|um − ul| = −2σ(R↑
+)

2) Siur < 0 alors on obtient(R↑
+C

↓
±) − (C↓′

± ).

De plus,ϕ♭(ul) < ur alors−ur < −ϕ♭(ul) < ul. Donc,

[V ] = σ(C↓′

± ) − σ(R↑
+) − σ(C↓

±) (2.3)

= |ul + ur| − |um − ul| − |um + ur| = −2σ(R↑
+).

Cas RC-2(R↑
+C

↓
±) − (N↓′

±R
↓′

−)

Nous avons les inégalités :

ϕ♯(um) < ur ≤ ϕ♭(ul) < 0 < ul < um.

Encore une fois, nous sommes en présence de deux sous-cas.

1) Si−ur < ul alors nous obtenons la série d’inégalités :−ϕ♭(ul) < −ur < ul < um.
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ul

um

ur

ϕ♭ul

R↑
+R↓

−

′

C↓
±

N↓
±

′

FIGURE 2.2Cas RC-2
(R↑

+C
↓
±) − (N↓′

±R
↓′

−)

[V ] = σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+) − σ(C↓

±) (2.4)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ur| − |um − ul| − |um + ur|

= 2|ϕ♭(ul) − ur| − 2|um − ul| = −2(σ(R↑
+) − σ(R↓

−))

Cette quantité est négative parce queϕ♯(um) < ur ≤ ϕ♭(ul) < 0 et donc

ϕ♭(u−) ≤ ϕ♯(u−) ≤ u−. (2.5)

Puisque la fonctioñu+ ϕ̃♭(ũ) est croissante alors

[V ] ≤ 2|ϕ♭(ul) − ϕ♭(um)| − 2|um − ul| (2.6)

≤ −2 Lip(u+ ϕ♭(ul))σ(R↑
+) < 0.
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FIGURE 2.3Cas RC-3
(R↑

+C
↓) − (N↓′

±C
↑′)

En d’autres mots,σ(R↑
+) > σ(R↓

−).

2) Si−ur > ul la conclusion est la même.

Cas RC-3(R↑
+C

↓) − (N↓′

±C
↑′)

Nous avons les deux séries d’inégalités :

max (ϕ♭(ul), ϕ
♯(um)) < ur < ϕ♯(ul), 0 < ul < um.

Deux sous-cas sont présents selon le signe deur.

1) Siur < 0 alors on a(R↑
+C

↓
±) − (N↓′

±C
↑′

− ).

La série d’inégalités est0 < −ur < −ϕ♭(ul) < ul < um.



28

[V ] = σ(N↓′

± ) + σ(C↑′

− ) − σ(R↑
+) − σ(C↓

±) (2.7)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ur| − |um − ul| − |um + ur|

= −2σ(R↑
+)

2) Siur ≥ 0 alors on obtient(R↑
+C

↓
+) − (N↓′

±C
↑′

∓ ).

Nous avons les contraintesur < −ϕ♭(ul) < ul < um.

[V ] = σ(N↓′

± ) + σ(C↑′

∓ ) − σ(R↑
+) − σ(C↓

+) (2.8)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) + ur| − |um − ul| − |um − ur|

= −2σ(R↑
+)

Cas RN(R↑
+N

↓
±) − (N↓′

±R
↓′

−)

Nous devons considérer les conditionsur = ϕ♭(um) et0 < ul < um.

Ce cas génère deux sous-cas dépendant de l’ordre relatifentreϕ♭(um)

etul.

1) Lorsque nous avons−ϕ♭(ul) < −ϕ♭(um) < ul < um alors
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FIGURE 2.4Cas RN
(R↑

+N
↓
±) − (N↓′

±R
↓′

−)

[V ] = σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+) − σ(N↓

±) (2.9)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ϕ♭(um)| − |um − ul| − |um + ϕ♭(um)|

ce qui implique

[V ] = 2|ϕ♭(ul) − ϕ♭(um)| − 2|um − ul| (2.10)

≤ −2 Lip(u+ ϕ♭)|um − ul| ≤ −2 Lip(u+ ϕ♭)σ(R↑
+).

2) Le second sous-cas est caractérisé par−ϕ♭(ul) < ul < −ϕ♭(um) < um.

La conclusion demeure la même.
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ul

um

ur

R↓
−

C↓
±
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±

′

FIGURE 2.5Cas CR-1
(C↓

±R
↓
−) − (C↓′

± )

[V ] ≤ −2 Lip(u+ ϕ♭)σ(R↑
+) (2.11)

Cas CR-1(C↓
±R

↓
−) − (C↓′

± )

Les inégalités sont les suivantesϕ♯(ul) < ur < um ≤ 0 < ul.

Ceci implique que−um < −ur < −ϕ♭(ul) < ul.

[V ] = σ(C↓′

± ) − σ(C↓
±) − σ(R↓

−) (2.12)

= |ul + ur| − |ul + um| − |um − ur| = −2σ(R↓
−)

Cas CR-2(C↓
+R

↑
+) − (C↓′

+ )

Les contraintes sont données parmax (ϕ♯(ul), 0) ≤ um < ur < ul et les ondes sont
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ul

um ur

C↓
+

C↓
+

′

R↑
+

FIGURE 2.6Cas CR-2
(C↓

+R
↑
+) − (C↓′

+ )

toutes classiques.

[V ] = σ(C↓′

+ ) − σ(C↓
+) − σ(R↑

+) (2.13)

= |ul − ur| − |ul − um| − |um − ur| = −2σ(R↑
+)

Cas CR-3(C↓
±R

↓
−) − (N↓′

±R
↓′

−)

Les inégalités sontur ≤ ϕ♭(ul) < ϕ♯(ul) < um ≤ 0 < ul.

Nous avons deux sous-cas possibles.

1) Siul < −ur alors nous devons considérer les inégalités suivantes

−um < −ϕ♯(ul) < −ϕ♭(ul) < ul < −ur.
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′

FIGURE 2.7Cas CR-3
(C↓

±R
↓
−) − (N↓′

±R
↓′

−)

[V ] = σ(N↓′

± ) + σ(R↓′

−) − σ(C↓
±) − σ(R↓

−) (2.14)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ur| − |ul + um| − |um − ur|

= 2(|ul + ur| − |ϕ♭(ul) − um|) = 2(|ur − ϕ♭(ul)| − |ul + um|)

= −2(σ(R↓
−) − σ(R↓′

−))

et puisqueσ(R↓
−) = | − ur + um| > σ(R↓′

−) = | − ur + ϕ♭(ul)|
alors[V ] < 0.

2) Siul > −ur alors on a−um < −ϕ♯(ul) < −ϕ♭(ul) < −ur < ul.

[V ] = σ(N↓′

± ) + σ(R↓′

−) − σ(C↓
±) − σ(R↓

−) (2.15)

= −2|um − ϕ♭(ul)| = −2(σ(R↓
−) − σ(R↓′

−))
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FIGURE 2.8Cas CR-4
(C↓

±R
↓
−) − (N↓′

±C
↑′

− )

Cas CR-4(C↓
±R

↓
−) − (N↓′

±C
↑′

− )

Les contraintes ont la formeϕ♭(ul) < ur < ϕ♯(ul) < um ≤ 0 < ul.

Alors on obtient−um < −ur < −ϕ♭(ul) < ul.

[V ] = σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
±) − σ(R↓

−) (2.16)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ur| − |ul + um| − |um − ur|

= −2σ(R↓
−)

Cas CC-1(C↓
+C

↓) − (C↓′)

Les contraintes s’expriment sous la forme

max (ϕ♯(ul), ϕ
♯(um)) < ur < um < ul, um ≥ 0.
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ul

um

ur

C↓

C↓′

C↓
+

FIGURE 2.9Cas CC-1
(C↓

+C
↓) − (C↓′)

Il y a deux sous-cas.

1) Siur ≥ 0 alors nous avons(C↓
+C

↓
+) − (C↓′

+ ).

Les inégalités sont0 < ur < um < ul.

[V ] = σ(C↓′

+ ) − σ(C↓
+) − σ(C↓

+) (2.17)

= |ul − ur| − |ul − um| − |um − ur| = 0

2) Siur < 0 alors(C↓
+C

↓
±) − (C↓′

± ).

Nous avons les inégalités suivantes0 < −ur < −ϕ♭(um) < um < ul.
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ul

um

ur

C↓′

C↑

C↓
±

FIGURE 2.10Cas CC-2
(C↓

±C
↑) − (C↓′)

[V ] = σ(C↓′

± ) − σ(C↓
+) − σ(C↓

±) (2.18)

= |ul + ur| − |ul − um| − |um + ur| = 0

Cas CC-2(C↓
±C

↑) − (C↓′)

Les contraintes prennent la forme suivante

ϕ♯(ul) < um < ur < ϕ♯(um) < ul, um < 0.

1) Siur ≥ 0 nous avons(C↓
±C

↑
∓) − (C↓′

+ ).

Les contraintes se présentent comme suit

−um < −ϕ♭(ul) < ul
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ur < ϕ♯(um) < ϕ♭(um) < −um.

Nous combinons celles-ci pour aboutir à

0 < ur < ϕ♯(um) < ϕ♭(um) < −um < −ϕ♭(ul) < ul.

[V ] = σ(C↓′

+ ) − σ(C↓
±) − σ(C↑

∓) (2.19)

= |ul − ur| − |ul + um| − |um + ur| = 0

2) Siur < 0 alors on a(C↓
±C

↑
−) − (C↓′

± ).

Nous devons considérer les inégalités :0 < −ur < −um < ul.

[V ] = σ(C↓′

± ) − σ(C↓
±) − σ(C↑

−) (2.20)

= |ul + ur| − |ul + um| − |um − ur| = 0

Cas CC-3(C↓
+C

↓) − (N↓′

±C
↑′)

Nous avons les états suivants à regarder

ϕ♭(ul) < ϕ♯(um) < ur < ϕ♯(ul) < um < ul, um ≥ 0.

1) Siur < 0 on obtient(C↓
+C

↓
±) − (N↓′

±C
↑′

− ).
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±

′

FIGURE 2.11Cas CC-3
(C↓

+C
↓) − (N↓′

±C
↑′)

On considère queum < −ϕ♭(ul) et que−ur < −ϕ♭(um) < um.

Nous arrivons à :0 < −ur < −ϕ♭(um) < um < −ϕ♭(ul) < ul.

[V ] = σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
+) − σ(C↓

±) (2.21)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ur| − |ul − um| − |um + ur| = 0

Par contre sium > −ϕ♭(ul) on a la série d’inégalités :0 < −ur < −ϕ♭(ul) < um < ul.

L’expression pour[V ] est identique et le résultat demeure 0.

2) Siur ≥ 0 nous sommes en présence de(C↓
+C

↓
+) − (N↓′

±C
↑′

∓ ).

Traitons le casur > 0 etum < −ϕ♭(ul).

Les inégalités ont la forme suivante :0 < ur < um < −ϕ♭(ul) < ul.
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FIGURE 2.12Cas CN-1
(C↓

+N
↓
±) − (C↓′

± )

[V ] = σ(N↓′

± ) + σ(C↑′

∓ ) − σ(C↓
+) − σ(C↓

+) (2.22)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) + ur| − |ul − um| − |um − ur| = 0

Considérons maintenant le dernier sous-cas :ur > 0 etum > −ϕ♭(ul).

Ici, le résultat obtenu est le même que celui qui provient de la première partie du

sous-cas 2). Donc[V ] = 0.

Cas CN-1(C↓
+N

↓
±) − (C↓′

± )

Les contraintes sont :0 < um < ul etϕ♯(ul) ≤ ur = ϕ♭(um).

On obtient les inégalités qui suivent :0 < −ϕ♭(um) < um < ul.
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FIGURE 2.13Cas CN-2
(C↓

±N
↑
∓) − (C↓′

+ )

[V ] = σ(C↓′

± ) − σ(C↓
+) − σ(N↓

±) (2.23)

= |ul + ϕ♭(um)| − |ul − um| − |um + ϕ♭(um)| = 0

Cas CN-2(C↓
±N

↑
∓) − (C↓′

+ )

Ce cas est constitué parϕ♯(ul) < um < 0 etur = ϕ♭(um).

Nous avons besoin des inégalités ci-dessous :

0 < ur = ϕ♭(um) < −um < −ϕ♭(ul) < ul.
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FIGURE 2.14Cas CN-3
(C↓

+N
↓
±) − (N↓′

±C
↑′

− )

[V ] = σ(C↓′

+ ) − σ(C↓
±) − σ(N↑

∓) (2.24)

= |ul − ϕ♭(um)| − |ul + um| − |um + ϕ♭(um)| = 0

Cas CN-3(C↓
+N

↓
±) − (N↓′

±C
↑′

− )

Nous avons les états0 < um < ul etur = ϕ♭(um) < ϕ♯(ul).

Deux sous-cas doivent être pris en considération.

1) Sium < −ϕ♭(ul) nous avons les inégalités qui suivent :

−ϕ♭(um) < um < −ϕ♭(ul) < ul. Alors,
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FIGURE 2.15Cas NC
(N↓

±C
↑) − (C↓′)

[V ] = σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
+) − σ(N↓

±) (2.25)

= |ul + ϕ♭(ul)| + |ϕ♭(ul) − ϕ♭(um)| − |ul − um| − |um + ϕ♭(um)|

= 0.

2) Sium > −ϕ♭(ul) nous avons−ϕ♭(um) < −ϕ♭(ul) < um < ul.

Tout comme dans le premier sous-cas[V ] = 0.

Cas NC(N↓
±C

↑) − (C↓′)

Les états se présentent de la manière suivante :

um = ϕ♭(ul), ϕ♯(ul) < ur < ϕ♯(um) < ul.

1) Siur < 0 les inégalités s’écrivent :−ur < −ϕ♭(ul) < ul.
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Les interactions entre les ondes sont(N↓
±C

↑
−) − (C↓′

± ).

[V ] = σ(C↓′

± ) − σ(N↓
±) − σ(C↑

−) (2.26)

= |ul + ur| − |ul + ϕ♭(ul)| − |ϕ♭(ul) − ur| = 0

2) Siur ≥ 0 alors on a(N↓
±C

↑
∓) − (C↓′

+ ).

Les inégalités sont0 < ur < −ϕ♭(um) < −ϕ♭(ul) < ul.

[V ] = σ(C↓′

+ ) − σ(N↓
±) − σ(C↑

∓) (2.27)

= |ul − ur| − |ul + ϕ♭(ul)| − |ϕ♭(ul) + ur| = 0

Cas NN(N↓
±N

↑
∓) − (C↓′

+ )

Les états sontum = ϕ♭(ul) etur = ϕ♭(um).

Les inégalités requises pour ce cas sont :0 < ϕ♭(um) = ur < −ϕ♭(ul) < ul.

[V ] = σ(C↓′

+ ) − σ(N↓
±) − σ(N↑

∓) (2.28)

= |ul − ϕ♭(um)| − |ul + ϕ♭(ul)| − |ϕ♭(ul) + ϕ♭(um)| = 0

�
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CHAPITRE 3

ANALYSE D’UN POTENTIEL D’INTERACTION

Notre objectif dans ce chapitre est de présenter les résultats qui proviennent de la

fonctionnelle employée pour effectuer l’analyse des seize cas d’interactions possibles

au niveau des ondes. Mais tout d’abord, nous allons définir cette fonctionnelle.

θ(x, y) =











C⋆(â(x) − â(y))+ même monotonocité

1 sinon

Dans la définition de la fonction de poidsθ(x, y), C⋆ est une constante positive. De

plus, nous dirons que deux ondes ont la même monotonicité si elles sont toutes les deux

soient des chocs (classiques ou non classiques) ou des raréfactions.

La définition de la vitesse normaliséeâ d’une onde enx avec des états voisinsu+
x etu−x

se lit comme suit :

â(x) =
f(û+

x ) − f(û−x )

(û+
x ) − (û−x )

À l’intérieur de la définition ci-dessus,̂ux se présente sous la forme :

ûx =











ux, si ux ≥ 0

ϕ♭
0(ux), si ux < 0

Pour la force des ondesσα etσβ nous utiliserons la définition de Laforest-LeFloch

donnée par l’équation (1.19).

La fonctionnelle introduite ci-dessus est l’analyse naturelle de celle présentée par
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Iguchi-LeFloch (Iguchi and LeFloch, 2003) dans leur étude. Par contre, ce n’est pas le

seul potentiel d’interaction qui a été étudié dans le passé. En effet, le potentiel de

Glimm

Q(u(t)) =
∑

α approcheβ

σα × σβ

a fait l’objet d’une étude par Laforest-LeFloch (Laforestand LeFloch, 2010). Ils ont

démontré que ce potentiel est décroissant sauf pour les cas RC-3, CR-4, CC-3 ainsi que

CN-3.

Dans des travaux non publiés, ces deux mêmes chercheurs ont analysé la fonctionnelle

ci-dessous

QG(u(t)) =
∑

α approcheβ

θ̃ × σα × σβ.

Dans ce second cas,θ̃ utilise la vitesse de Rankine-Hugoniot plutôt que la vitesse

normaliséêa. Le potentiel d’interaction est décroissant sauf pour lescas RC-3, CR-4,

CC-3 et CN-3.

Voici le théorème principal de ce mémoire.

Théorème 3.1.

Soitϕ♭ une fonction cińetique qui satisfait les propriét́es H1, H2, H3 et H4 alors la

fonctionnelle introduite ci-dessus est décroissante dans tous les cas d’interactions sauf

pour CC-1, CC-2, CC-3, CN-1, CN-2, CN-3, NC et NN.

Nous avons deux objectifs dans cette recherche. Nous désirons introduire une

fonctionnelle qui permet d’obtenir un potentiel d’interaction décroissant pour les cas

RC-3, CR-4, CC-3 et CN-3. Ces quatre cas font échouer la fonctionnelle

Iguchi-LeFloch. Notre propre fonctionnelle est de type Iguchi-LeFloch. Dans un

second temps, nous allons tester les autres cas d’interactions possibles.

Passons maintenant à la présentation des résultats obtenus à partir de notre
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fonctionnelle. Pour faciliter la lecture, nous allons identifier chaque cas d’interaction

avec son titre et les sous-cas résultants avec les chiffresromains i) à iv).

Cas RC-1(R↑
+C

↓) − (C↓′)

max(ϕ♯(ul), ϕ
♯(um)) < ur < ul et 0 < ul < um.

Considérons tout d’abord la situation oùur ≥ 0. Toutes les ondes présentes joignent

deux états positifs. Toutefois, lorsqueur < 0, des ondes qui relient un état positif à un

état négatif apparaissent. Dans les deux situations, lescalculs sont identiques. Pour

cette raison, nous présenterons les calculs sans faire de distinction selon le signe deur.

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′)σ(C↓′) − θ(y, R↑
+)σ(R↑

+) − θ(y, C↓)σ(C↓) (3.1)

= C⋆|v(C↓′) − Λ|+ σ(C↓′) − σ(R↑
+) − C⋆|v(C↓) − Λ|+σ(C↓)

Nous avons pour les vitesses :v(C↓′) < v(C↓) < v(R↑
+).

En pratique, nous devons étudier le signe de (3.1) pour toutes les valeurs deΛ, la

vitesse eny. En général, il sera facile de constater queB, qui est une fonction continue

et linéaire par morceaux par rapport au termeΛ, est négative en vérifiant sa valeur pour

une seule valeur critique deΛ. Dans le cas actuel, il est facile de voir qu’en regardant

les valeurs deB(y) pour toutΛ décroissant mais débutant enΛ = ∞,B(y) = −σ(R↑
+)

si Λ ≥ v(R↑
+) et queB(y) est certainement décroissant pourΛ ∈ [v(C↓′), v(R↑

+)]. Le

seul terme positif apparaı̂t quandΛ < v(C↓′).
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Dans ce cas, on peut écrire

B(y) = C⋆|v(C↓′) − Λ|+σ(C↓′) − σ(R↑
+) − C⋆|v(C↓) − Λ|+σ(C↓) (3.2)

= C⋆|v(C↓′) − Λ|+[σ(C↓′) − σ(C↓)] − σ(R↑
+) − C⋆|v(C↓) − v(C↓′)|+σ(C↓)

= −C⋆|v(C↓′) − Λ|+σ(R↑
+) − C⋆|v(C↓ − v(C↓′)|σ(C↓) < 0.

Dans bien des cas qui viennent plus tôt, un calcul semblablesera possible et nous

mentionnerons tout simplement que le pire cas possible estΛ = v(C↓′), sans toutefois

répéter le calcul ci-dessus.

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′) − σ(C↓) < 0, alors nous avons

B(y) = θ(y, C↓′)σ(C↓′) − θ(y, R↑
+)σ(R↑

+) − θ(y, C↓)σ(C↓) (3.3)

= σ(C↓′) − C⋆|v(R↑
+) − Λ|+σ(R↑

+) − σ(C↓) < 0.

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x,R↑
+)σ(R↑

+) − θ(x, C↓)σ(C↓) (3.4)

= C⋆|Λ − v(C↓′)|+σ(C↓′) − σ(R↑
+) − C⋆|Λ − v(C↓)|+σ(C↓)

Puisque l’onde se trouve du côté gauche, il est facile de remarquer que cette quantité est

négative siΛ = v(C↓′). Pour montrer queB(y) est négatif pour toutΛ, il suffit de le

montrer quandΛ = v(C↓). Alors, nous avons l’expression

|v(C↓) − v(C↓′)| = C̃σ(R↑
+).
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B(x) = C⋆C̃σ(R↑
+)σ(C↓′) − σ(R↑

+) (3.5)

= σ(R↑
+)[C⋆C̃σ(C↓′) − 1] < 0.

Si nous posonsC⋆ de manière à ce que

C⋆C̃σ(C↓′) < 1

alorsB(x) sera négatif. Ceci est possible si la variation totale des ondes est bornée a

priori.

iv) Soit une onde de raréfaction enx avecx < y.

Pour toutΛ, nous avonsσ(C↓′) − σ(C↓) < 0, ce qui conduit à

B(x) = θ(x, C↓′)σ(C↓′) − θ(x,R↑
+)σ(R↑

+) − θ(x, C↓)σ(C↓) (3.6)

= σ(C↓′) − C⋆|Λ − v(R↑
+)|+σ(R↑

+) − σ(C↓) < 0.

Cas RC-2(R↑
+C

↓
±) − (N↓′

±R
↓′

−)

ϕ♯(um) < ur ≤ ϕ♭(ul) < 0 < ul < um.
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i) Soit une onde de choc eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, R↑
+)σ(R↑

+) (3.7)

− θ(y, C↓
±)σ(C↓

±)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+)

− C⋆|v(C↓
±) − Λ|+σ(C↓

±)

Nous avons :v(N↓′

± ) < v(R↓′

−) < v(C↓
±) < v(R↑

+).

Le pire cas correspond àΛ = v(N↓′

± ). Puisqueσ(R↓′

−) < σ(R↑
+), on obtient

B(y) = σ(R↓′

−) − σ(R↑
+) − C⋆|v(C↓

±) − v(N↓′

± )|+σ(C↓
±) < 0. (3.8)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(N↓′

± ) < σ(C↓
±), σ(R↓′

−) < σ(R↑
+) et pour les vitesses

|v(R↓′

−) − Λ|+ < |v(R↑
+) − Λ|+. Alors,

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, R↑
+)σ(R↑

+) (3.9)

− θ(y, C↓
±)σ(C↓

±)

= σ(N↓′

± ) + C⋆|v(R↓′

−) − Λ|+σ(R↓′

−) − C⋆|v(R↑
+) − Λ|+σ(R↑

+)

− σ(C↓
±) < 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x,R↑
+)σ(R↑

+) (3.10)

− θ(x, C↓
±)σ(C↓

±)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+)

− C⋆|Λ − v(C↓
±)|+σ(C↓

±)

Le pire cas correspond àΛ = v(C↓
±). Alors,

B(x) = C⋆|v(C↓
±) − v(N↓′

± )|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+). (3.11)

Or, |v(C↓
±) − v(N↓′

± )|+ ≤ Cσ(R↑
+). L’expression mathématique devient

B(x) ≤ C⋆Cσ(R↑
+)σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+) (3.12)

= σ(R↑
+) × [C⋆Cσ(N↓′

± ) − 1] + σ(R↓′

−)

Ici, nous introduisons un résultat utile que nous obtenonsen se basant sur l’inégalité :

σ(R↓′

−)) ≤ −Lip(ϕ♭)σ(R↑
+)

Ceci nous permet d’écrire :

B(x) = σ(R↑
+)[C⋆Cσ(N↓′

± ) + Lip(ϕ♭) − 1] < 0 (3.13)

si la condition ci-dessous est respectée

[C⋆Cσ(N↓′

± ) + Lip(ϕ♭)] < 1. (3.14)

Selon la théorie, il est toujours possible de supposer queLip(ϕ♭) < 1 uniformément
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pour l’ensemble des valeurs bornées deu.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x,R↑
+)σ(R↑

+) (3.15)

− θ(x, C↓
±)σ(C↓

±)

= σ(N↓′

± ) + C⋆|Λ − v(R↓′

−)|+σ(R↓′

−) − C⋆|Λ − v(R↑
+)|+σ(R↑

+)

− σ(C↓
±)

Le pire cas estΛ = v(R↑
+). Alors,

B(x) = σ(N↓′

± ) − σ(C↓
±) + C⋆|v(R↑

+) − v(R↓′

−)|+σ(R↓′

−) (3.16)

Or, nous avons l’expression1 σ(N↓′

± ) − σ(C↓
±) = −C2σ(C↓

±) et

|v(R↑
+) − v(R↓′

−)|+ ≤ C1σ(C↓
±). Alors,

B(x) ≤ σ(N↓′

± ) − σ(C↓
±) + C⋆C1σ(C↓

±) (3.17)

≤ −C2σ(C↓
±) + C⋆C1σ(C↓

±)

= σ(C↓
±)[−C2 + C⋆C1] ≤ 0

lorsqueC⋆ satisfait l’inégalité

C⋆C1 ≤ C2

avecC1 etC2 qui sont des constantes.

Cas RC-3(R↑
+C

↓) − (N↓′

±C
↑′)

max(ϕ♭(ul), ϕ
♯(um)) < ur < ϕ♯(ul) et 0 < ul < um.

1. La démonstration de ce résultat est difficile.
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i) Soit une onde de choc eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′)σ(C↑′) − θ(y, R↑
+)σ(R↑

+) (3.18)

− θ(y, C↓)σ(C↓)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + C⋆|v(C↑′) − Λ|+σ(C↑′) − σ(R↑
+)

− C⋆|v(C↓) − Λ|+σ(C↓)

Pour les vitesses, on a :max(v(C↓), v(N↓′

± )) ≤ min(v(C↑′), v(R↑
+)).

Le pire cas possible correspond àΛ = v(C↓) et v(C↓) < v(N↓′

± ) alors nous obtenons :

B(y) = C⋆|v(N↓′

± ) − v(C↓)|+σ(N↓′

± ) + C⋆|v(C↑′) − v(C↓)|+σ(C↑′) (3.19)

− σ(R↑
+)

≤ C⋆C1σ(R↑
+)σ(N↓′

± ) + C⋆C2σ(R↑
+)σ(C↑′) − σ(R↑

+)

= σ(R↑
+)[C⋆C1σ(N↓′

± ) + C⋆C2σ(C↑′) − 1] < 0

si nous prenonsC⋆ a priori petit. Autrement dit, il faut que

C⋆C1σ(N↓′

± ) + C⋆C2σ(C↑′) < 1.

ii) Soit une raréfaction eny avecx < y.

Ici, étant donné queσ(N↓′

± ) + σ(C↑′) ≤ σ(C↓) alors on a

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′)σ(C↑′) − θ(y, R↑
+)σ(R↑

+) (3.20)

− θ(y, C↓)σ(C↓)

= σ(N↓′

± ) + σ(C↑′) − C⋆|v(R↑
+) − Λ|+σ(R↑

+) − σ(C↓) < 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′)σ(C↑′) − θ(x,R↑
+)σ(R↑

+) (3.21)

− θ(x, C↓)σ(C↓)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + C⋆|Λ − v(C↑′)|+σ(C↑′) − σ(R↑
+)

− C⋆|Λ − v(C↓)|+σ(C↓)

Le pire cas estΛ = v(C↓) avecv(N↓′

± ) < v(C↓). Lorsque ces conditions sont

satisfaites, nous avons

B(x) = C⋆|v(C↓) − v(N↓′

± )|+σ(N↓′

± ) − σ(R↑
+) (3.22)

= C⋆C3σ(R↑
+)σ(N↓′

± ) − σ(R↑
+)

= σ(R↑
+)[C⋆C3σ(N↓′

± ) − 1] < 0

siC⋆C3σ(N↓′

± ) < 1.

iv) Soit une raréfaction enx avecx < y.

Sachant queσ(N↓′

± ) + σ(C↑′) ≤ σ(C↓), nous déduisons que

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′)σ(C↑′) − θ(x,R↑
+)σ(R↑

+) (3.23)

− θ(x, C↓)σ(C↓)

= σ(N↓′

± ) + σ(C↑′) − C⋆|Λ − v(R↑
+)|+σ(R↑

+) − σ(C↓) < 0.

Cas RN(R↑
+N

↓
±) − (N↓′

±R
↓′

−)

0 < ul < um et ur = ϕ♭(um).
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i) Soit une onde de choc eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, R↑
+)σ(R↑

+) (3.24)

− θ(y,N↓
±)σ(N↓

±)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+)

− C⋆|v(N↓
±) − Λ|+σ(N↓

±)

Les inégalités pour les vitesses ont la forme :

v(N↓′

± ) < v(N↓
±) < min(v(R↓′

−), v(R↑
+)) < max(v(R↓′

−), v(R↑
+)).

Le pire cas consiste enΛ = v(N↓′

± ). Parce queσ(R↓′

−) < σ(R↑
+), nous avons

B(y) = σ(R↓′

−) − σ(R↑
+) − C⋆|v(N↓

±) − v(N↓′

± )|+σ(N↓
±) < 0 (3.25)

ii) Soit une raréfaction eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, R↑
+)σ(R↑

+) (3.26)

− θ(y,N↓
±)σ(N↓

±)

= σ(N↓′

± ) + C⋆|v(R↓′

−) − Λ|+σ(R↓′

−) − C⋆|v(R↑
+) − Λ|+σ(R↑

+)

− σ(N↓
±)

Le pire cas possible est lorsquev(R↑
+) < v(R↓′

−) etΛ = v(R↑
+). Dans cette situation,

nous obtenons ceci

B(y) = σ(N↓′

± ) + C⋆|v(R↓′

−) − v(R↑
+)|+σ(R↓′

−) − σ(N↓
±). (3.27)
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Or, on peut écrire ce qui suit

σ(N↓′

± ) − σ(N↓
±) = σ(R↓′

−) − σ(R↑
+) (3.28)

= Lip(ϕ♭ ◦ ϕ♭)σ(R↑
+) − σ(R↑

+)

= −σ(R↑
+)[1 − Lip(ϕ♭ ◦ ϕ♭)]

De plus,|v(R↓′

−) − v(R↑
+)|+ ≤ C2 quand une borneTV (u0) existe. Donc, nous

aboutissons à l’expression ci-dessous

B(y) = −σ(R↑
+)[1 − Lip(ϕ♭ ◦ ϕ♭) − C⋆C2 Lip(ϕ♭)−1] ≤ 0 (3.29)

siC⋆ est petit a priori.

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x,R↑
+)σ(R↑

+) (3.30)

− θ(x,N↓
±)σ(N↓

±)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+)

− C⋆|Λ − v(N↓
±)|+σ(N↓

±)

Le pire cas correspond àΛ = v(N↓
±), ce qui mène à

B(x) = C⋆|v(N↓
±) − v(N↓′

± )|+σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+) (3.31)

On a|v(N↓
±) − v(N↓′

± )|+ = Cσ(R↑
+) etσ(R↓′

−) = σ(R↑
+)|Lip(ϕ♭ ◦ ϕ♭)|.
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B(x) = C⋆Cσ(R↑
+)σ(N↓′

± ) + σ(R↓′

−) − σ(R↑
+) (3.32)

= σ(R↑
+)[C⋆Cσ(N↓′

± ) + |Lip(ϕ♭ ◦ ϕ♭)| − 1] < 0

si la condition ci-dessous est satisfaite

[C⋆Cσ(N↓′

± ) + |Lip(ϕ♭ ◦ ϕ♭)| ] < 1. (3.33)

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x,R↑
+)σ(R↑

+) (3.34)

− θ(x,N↓
±)σ(N↓

±)

= σ(N↓′

± ) + C⋆|Λ − v(R↓′

−)|+σ(R↓′

−) − C⋆|Λ − v(R↑
+)|+σ(R↑

+)

− σ(N↓
±)

Le pire cas à considérer est quandv(R↑
+) > v(R↓′

−) etΛ = v(R↑
+).

Nous avons l’expression ci-dessous :

B(x) = σ(N↓′

± ) + C⋆|v(R↑
+) − v(R↓′

−)|+σ(R↓′

−) − σ(N↓
±). (3.35)

Tout comme en ii)σ(N↓′

± ) − σ(N↓
±) = −σ(R↑

+)[1 − Lip(ϕ♭ ◦ ϕ♭)]. Alors que

|v(R↑
+) − v(R↓′

−)|+ = C2. Ceci implique

B(x) = −σ(R↑
+)[1 − Lip(ϕ♭ ◦ ϕ♭)] + C⋆C2 Lip(ϕ♭)−1σ(R↑

+) (3.36)

= −σ(R↑
+)[1 − Lip(ϕ♭ ◦ ϕ♭) − C⋆C2 Lip(ϕ♭)−1] ≤ 0
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lorsque les constantesC⋆ etC2 sont suffisamment petites pour avoir

C⋆C2 Lip(ϕ♭)−1 + Lip(ϕ♭ ◦ ϕ♭) ≤ 1. (3.37)

Cas CR-1(C↓
±R

↓
−) − (C↓′

± )

ϕ♯(ul) < ur < um ≤ 0 < ul.

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′

± )σ(C↓′

± ) − θ(y, C↓
±)σ(C↓

±) − θ(y, R↓
−)σ(R↓

−) (3.38)

= C⋆|v(C↓′

± ) − Λ|+σ(C↓′

± ) − C⋆|v(C↓
±) − Λ|+σ(C↓

±)

− σ(R↓
−)

La série d’inégalités est :v(R↓
−) < v(C↓′

± ) < v(C↓
±).

Le pire cas estΛ = v(C↓′

± ). Dans cette situation, nous obtenons :

B(y) = −C⋆|v(C↓
±) − v(C↓′

± )|+σ(C↓
±) − σ(R↓

−) ≤ 0. (3.39)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′

± ) < σ(C↓
±), on a

B(y) = θ(y, C↓′

± )σ(C↓′

± ) − θ(y, C↓
±)σ(C↓

±) − θ(y, R↓
−)σ(R↓

−) (3.40)

= σ(C↓′

± ) − σ(C↓
±) − C⋆|v(R↓

−) − Λ|+σ(R↓
−) < 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′

± )σ(C↓′

± ) − θ(x, C↓
±)σ(C↓

±) − θ(x,R↓
−)σ(R↓

−) (3.41)

= C⋆|Λ − v(C↓′

± )|+σ(C↓′

± ) − C⋆|Λ − v(C↓
±)|+σ(C↓

±)

− σ(R↓
−)

Le pire cas estΛ = v(C↓
±). Alors

B(x) = C⋆|v(C↓
±) − v(C↓′

± )|+σ(C↓′

± ) − σ(R↓
−) (3.42)

= C⋆C̃σ(R↓
−)σ(C↓′

± ) − σ(R↓
−)

= σ(R↓
−)[C⋆C̃σ(C↓′

± ) − 1] < 0

si nous faisons l’hypothèse que les constantesC⋆ et C̃ sont assez petites pour que la

condition suivante soit vraie

C⋆C̃σ(C↓′

± ) < 1. (3.43)

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′

± )σ(C↓′

± ) − θ(x, C↓
±)σ(C↓

±) − θ(x,R↓
−)σ(R↓

−) (3.44)

= σ(C↓′

± ) − σ(C↓
±) − C⋆|Λ − v(R↓

−)|+σ(R↓
−) < 0.

Cas CR-2(C↓
+R

↑
+) − (C↓′

+ )

max(ϕ♯(ul), 0) ≤ um < ur < ul.
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i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y, C↓
+)σ(C↓

+) − θ(y, R↑
+)σ(R↑

+) (3.45)

= C⋆|v(C↓′

+ ) − Λ|+σ(C↓′

+ ) − C⋆|v(C↓
+) − Λ|+σ(C↓

+) − σ(R↑
+)

Nous constatons quev(R↑
+) < v(C↓

+) < v(C↓′

+ ).

Ici, la pire situation correspond àΛ = v(C↓
+). Nous obtenons

B(y) = C⋆|v(C↓′

+ ) − v(C↓
+)|+σ(C↓′

+ ) − σ(R↑
+) (3.46)

= C⋆C̃σ(R↑
+)σ(C↓′

+ ) − σ(R↑
+)

= σ(R↑
+)[C⋆C̃σ(C↓′

+ ) − 1] < 0.

Encore une fois, nous faisons l’hypothèse queC⋆ ainsi queC̃ sont des constantes

positives et assez petites pour avoir

C⋆C̃σ(C↓′

+ ) < 1. (3.47)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′

+ ) < σ(C↓
+) alors

B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y, C↓
+)σ(C↓

+) − θ(y, R↑
+)σ(R↑

+) (3.48)

= σ(C↓′

+ ) − σ(C↓
+) − C⋆|v(R↑

+) − Λ|+σ(R↑
+) < 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x, C↓
+)σ(C↓

+) − θ(x,R↑
+)σ(R↑

+) (3.49)

= C⋆|Λ − v(C↓′

+ )|+σ(C↓′

+ ) − C⋆|Λ − v(C↓
+)|+σ(C↓

+) − σ(R↑
+)

Le pire cas possible provient deΛ = v(C↓′

+ ). Alors,

B(x) = −C⋆|v(C↓′

+ ) − v(C↓
+)|+σ(C↓

+) − σ(R↑
+) < 0. (3.50)

iv) Soit une raréfaction enx avecx < y.

Puisqueσ(C↓′

+ ) < σ(C↓
+), alors on obtient ceci

B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x, C↓
+)σ(C↓

+) − θ(x,R↑
+)σ(R↑

+) (3.51)

= σ(C↓′

+ ) − σ(C↓
+) − C⋆|Λ − v(R↑

+)|+σ(R↑
+) < 0.

Cas CR-3(C↓
±R

↓
−) − (N↓′

±R
↓′

−)

ur ≤ ϕ♭(ul) < ϕ♯(ul) < um ≤ 0 < ul.

Les vitesses sont dans l’ordre suivant :min(v(R↓
−), v(N↓′

± )) < max(v(R↓
−), v(N↓′

± )) <

min(v(C↓
±), v(R↓′

−)) < max((v(C↓
±), v(R↓′

−)).

i) Soit une onde de choc eny avecx < y.

Nous sommes en présence des inégalités suivantes pour les forces :σ(R↓′

−) < σ(R↓
−) et

σ(N↓′

± ) < σ(C↓
±).



61

Tandis que pour les vitesses, on a|v(N↓′

± ) − Λ|+ < |v(C↓
±) − Λ|+. Ces trois inégalités

mènent à

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, C↓
±)σ(C↓

±) (3.52)

− θ(y, R↓
−)σ(R↓

−)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + σ(R↓′

−) − C⋆|v(C↓
±) − Λ|+σ(C↓

±) (3.53)

− σ(R↓
−) < 0.

ii) Soit une raréfaction eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, R↓′

−)σ(R↓′

−) − θ(y, C↓
±)σ(C↓

±) (3.54)

− θ(y, R↓
−)σ(R↓

−)

= σ(N↓′

± ) + C⋆|v(R↓′

−) − Λ|+σ(R↓′

−) − σ(C↓
±)

− C⋆|v(R↓
−) − Λ|+σ(R↓

−)

Le pire cas qu’on puisse avoir estΛ = v(R↓
−).

B(y) = σ(N↓′

± ) + C⋆|v(R↓′

−) − v(R↓
−)|+σ(R↓′

−) − σ(C↓
±) (3.55)

Or, σ(N↓′

± ) − σ(C↓
±) = σ(R↓′

−) − σ(R↓
−) et |v(R↓′

−) − v(R↓
−)|+ = C|σ(R↓′

−) − σ(R↓
−)|

oùC est une constante. Ceci nous permet d’écrire

B(y) = σ(R↓′

−) − σ(R↓
−) + C⋆C|σ(R↓′

−) − σ(R↓
−)| (3.56)

× σ(R↓′

−) = |σ(R↓′

−) − σ(R↓
−)|[−1 + C⋆Cσ(R↓′

−)] ≤ 0
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si la condition donnée ci-dessous est satisfaite

[−1 + C⋆Cσ(R↓′

−)] ≤ 0 (3.57)

avecC⋆ ainsi queC qui sont des constantes positives.

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x, C↓
±)σ(C↓

±) (3.58)

− θ(x,R↓
−)σ(R↓

−)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + σ(R↓′

−) − C⋆|Λ − v(C↓
±)|+σ(C↓

±)

− σ(R↓
−)

Λ = v(C↓
±) est le pire cas.

On peut écrire les inégalités qui suivent :|v(C↓
±) − v(N↓′

± )|+ ≤ Cσ(R↓
−) et pour les

forcesσ(R↓′

−) < λσ(R↓
−) où0 < λ < 1. Alors, en se servant de ces mêmes inégalités,

nous arrivons à

B(x) ≤ C⋆Cσ(R↓
−)σ(N↓′

± ) + λσ(R↓
−) − σ(R↓

−) (3.59)

= σ(R↓
−)[C⋆Cσ(N↓′

± ) + λ− 1] < 0

lorsque la condition exprimée par

C⋆Cσ(N↓′

± ) + λ < 1 (3.60)

est respectée.
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iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x,R↓′

−)σ(R↓′

−) − θ(x, C↓
±)σ(C↓

±) (3.61)

− θ(x,R↓
−)σ(R↓

−)

= σ(N↓′

± ) + C⋆|Λ − v(R↓′

−)|+σ(R↓′

−) − σ(C↓
±)

− C⋆|Λ − v(R↓
−)|+σ(R↓

−)

Λ = v(R↓′

−) représente le pire cas qu’on puisse rencontrer.

Puisqueσ(N↓′

± ) < σ(C↓
±), v(R↓

−) < v(R↓′

−) alors on peut affirmer que

B(y) = σ(N↓′

± ) − σ(C↓
±) − C⋆|v(R↓′

−) − v(R↓
−)|+σ(R↓

−) < 0. (3.62)

Cas CR-4(C↓
±R

↓
−) − (N↓′

±C
↑′

− )

ϕ♭(ul) < ur < ϕ♯(ul) < um ≤ 0 < ul.

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′

− )σ(C↑′

− ) − θ(y, C↓
±)σ(C↓

±) (3.63)

− θ(y, R↓
−)σ(R↓

−)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + C⋆|v(C↑′

− ) − Λ|+σ(C↑′

− )

− C⋆|v(C↓
±) − Λ|+σ(C↓

±) − σ(R↓
−)

L’ordre des vitesses est :v(R↓
−) < v(N↓′

± ) < v(C↓
±) < v(C↑′

− ).
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Le pire cas provient deΛ = v(C↓
±). Alors,

B(y) = C⋆|v(C↑′

− ) − v(C↓
±)|+σ(C↑′

− ) − σ(R↓
−). (3.64)

En observant que|v(C↑′

− ) − v(C↓
±)|+ = C̃σ(R↓

−), nous obtenons

B(y) = C⋆C̃σ(R↓
−)σ(C↑′

− ) − σ(R↓
−) (3.65)

= σ(R↓
−)[C⋆C̃σ(C↑′

− ) − 1] < 0

si nous avonsC⋆C̃σ(C↑′

− ) < 1.

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(N↓′

± ) + σ(C↑′

− ) < σ(C↓
±), nous obtenons

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′

− )σ(C↑′

− ) − θ(y, C↓
±)σ(C↓

±) (3.66)

− θ(y, R↓
−)σ(R↓

−)

= σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
±) − C⋆|v(R↓

−) − Λ|+σ(R↓
−) < 0

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′

− )σ(C↑′

− ) − θ(x, C↓
±)σ(C↓

±) (3.67)

− θ(x,R↓
−)σ(R↓

−)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + C⋆|Λ − v(C↑′

− )|+σ(C↑′

− )

− C⋆|Λ − v(C↓
±)|+σ(C↓

±) − σ(R↓
−)

Le pire cas possible estΛ = v(C↓
±) avecv(C↑′

− ) > v(C↓
±).
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Devant cette situation, nous obtenons :

B(x) = C⋆|v(C↓
±) − v(N↓′

± )|+σ(N↓′

± ) − σ(R↓
−). (3.68)

Si on utilise le fait que|v(C↓
±) − v(N↓′

± )|+ ≤ C̃σ(R↓
−) alors

B(x) = σ(R↓
−)[C⋆C̃σ(N↓′

± ) − 1] < 0 (3.69)

si la conditionC⋆C̃σ(N↓′

± ) < 1.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′

− )σ(C↑′

− ) − θ(x, C↓
±)σ(C↓

±) (3.70)

− θ(x,R↓
−)σ(R↓

−)

= σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
±) − C⋆|Λ − v(R↓

−)|+σ(R↓
−) < 0

Cas CC-1(C↓
+C

↓) − (C↓′)

max(ϕ♯(ul), ϕ
♯(um)) < ur < um < ul et um ≥ 0.

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′)σ(C↓′) − θ(y, C↓
+)σ(C↓

+) − θ(y, C↓)σ(C↓) (3.71)

= C⋆|v(C↓′) − Λ|+σ(C↓′) − C⋆|v(C↓
+) − Λ|+σ(C↓

+)

− C⋆|v(C↓)Λ|+σ(C↓)

Les vitesses sont dans l’ordre :v(C↓) < v(C↓′) < v(C↓
+).

Si Λ ∈ [v(C↓
+),∞) alorsB(y) = 0. Tandis que siΛ ∈ (−∞, v(C↓)], alors nous
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obtenons,

B(y) = C⋆|v(C↓′) − v(C↓)|+σ(C↓′) − C⋆|v(C↓
+) − v(C↓)|+σ(C↓

+) (3.72)

+ C⋆|v(C↓) − Λ|+[σ(C↓′) − σ(C↓
+) − σ(C↓)]

Le pire cas est doncΛ = v(C↓).

Considérons la situation lorsqueur ≥ 0.

Pour évaluerB(y), nous allons nous servir des expressions suivantes pour lesforces :

σ(C↓
+) = |ul − um|, σ(C↓) = |um − ur|, σ(C↓′) = |ul − ur|. En utilisant ces

expressions ainsi que les formules de Rankine-Hugoniot pour les vitesses

v(C↓), v(C↓′), v(C↓
+), nous obtenons

B(y) = C⋆[
f(ul) − f(ur)

ul − ur

− f(um) − f(ur)

um − ur

](ul − ur) (3.73)

− C⋆[
f(ul) − f(um)

ul − um

− f(um) − f(ur)

um − ur

](ul − um)

= C⋆[(f(ul) − f(ur)) − (f(ul) − f(um))]

+ C⋆

f(um) − f(ur)

um − ur

[−(ul − ur) + (ul − um)] = 0

Toutefois, siur < 0 alors les forces s’écrivent sous la forme :

σ(C↓
+) = |ul − um|, σ(C↓) = |um + ur|, σ(C↓′) = |ul + ur|.
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Un calcul similaire montre que

B(y) = C⋆[
f(ul) − f(ur)

ul − ur

− f(um) − f(ur)

um − ur

](ul + ur) (3.74)

− C⋆[
f(ul) − f(um)

ul − um

− f(um) − f(ur)

um − ur

](ul − um)

= C⋆[(f(ul) − f(ur))
(ul + ur)

(ul − ur)
− (f(ul) − f(um)]

+ C⋆

f(um) − f(ur)

um − ur

[−(ul + ur) + (ul − um)

Or, on constate que

ul + ur

ul − ur

=
ul − ur + 2ur

ul − ur

= 1 +
2ur

ul − ur

.

B(y) = C⋆

(

[f(ul) − f(ur) − f(ul) + f(um)] + (f(ul) − f(ur))
2ur

ul − ur

(3.75)

+
f(um) − f(ur)

um − ur

[−(ul + ur) + (ul − um)]
)

= C⋆

(f(um) − f(ur)

um − ur

[(um − ur) − ur − um] +
f(ul) − f(ur)

ul − ur

(2ur)
)

= C⋆

(f(ul) − f(ur)

ul − ur

− f(um) − f(ur)

um − ur

)

× (2ur)

= C⋆

(

v(C↓′) − v(C↓)
)

× (2ur) ≤ 0

puisque(v(C↓′) − v(C↓)) > 0 et2ur ≤ 0.

ii) Soit une onde de raréfaction eny avecx < y.
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Puisqueσ(C↓′) = σ(C↓
+) + σ(C↓)

B(y) = θ(y, C↓′)σ(C↓′) − θ(y, C↓
+)σ(C↓

+) − θ(y, C↓)σ(C↓) (3.76)

= σ(C↓′) − σ(C↓
+) − σ(C↓) = 0

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x, C↓
+)σ(C↓

+) − θ(x, C↓)σ(C↓) (3.77)

= C⋆|Λ − v(C↓′)|+σ(C↓′) − C⋆|Λ − v(C↓
+)|+σ(C↓

+)

− C⋆|Λ − v(C↓)|+σ(C↓)

Ici, le pire cas possible estΛ ∈ [v(C↓
+),∞). Alors, nous avons

ce qui suit

B(x) = C⋆|v(C↓
+) − v(C↓′)|+σ(C↓′) − C⋆|v(C↓

+) − v(C↓)|+σ(C↓). (3.78)

Traitons tout d’abord la situation lorsqueur ≥ 0. Nous allons prendre

les définitions des forces introduites pour le casur ≥ 0 en i).

B(x) = C⋆[
f(ul) − f(um)

ul − um

− f(ul) − f(ur)

ul − ur

](ul − ur) (3.79)

− C⋆[
f(ul) − f(um)

ul − um

− f(um) − f(ur)

um − ur

](um − ur)

= C⋆[−(f(ul) − f(ur)) + (f(um) − f(ur))]

+ C⋆

f(ul) − f(um)

ul − um

[(ul − ur) − (um − ur)]

= C⋆

f(ul) − f(um)

ul − um

[−(ul − um) + (ul − um)] = 0



69

Considérons maintenant la situation quandur < 0. Nous allons

nous servir de nouveau des formules pour les forces présentées

dans le cas i) lorsqueur < 0.

B(x) = C⋆[
f(ul) − f(um)

ul − um

− f(ul) − f(ur)

ul − ur

](ul + ur) (3.80)

− C⋆[
f(ul) − f(um)

ul − um

− f(um) − f(ur)

um − ur

](um + ur)

= C⋆[
f(ul) − f(um)

ul − um

(

(ul + ur) − (um + ur)
)

− (f(ul) − f(ur)) − (f(ul) − f(ur))
2ur

ul − ur

+ (f(um) − f(ur)) + (f(um) − f(ur))
2ur

um − ur

]

= C⋆ × 2ur[−
f(ul) − f(ur)

ul − ur

+
f(um) − f(ur)

um − ur

]

= C⋆ × 2ur

(

v(C↓) − v(C↓′)
)

≥ 0

puisqueC⋆ ≥ 0, 2ur ≤ 0 et (v(C↓) − v(C↓′)) ≤ 0.

iv) Soit une onde de raréfaction enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x, C↓
+)σ(C↓

+) − θ(x, C↓)σ(C↓) (3.81)

= σ(C↓′) − σ(C↓
+) − σ(C↓) = 0

Cas CC-2(C↓
±C

↑) − (C↓′)

ϕ♯(ul) < um < ur < ϕ♯(um) < ul et um < 0.

i) Soit une onde de choc eny avecx < y.
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B(y) = θ(y, C↓′)σ(C↓′) − θ(y, C↓
±)σ(C↓

±) − θ(y, C↑)σ(C↑) (3.82)

= C⋆|v(C↓′) − Λ|+σ(C↓′) − C⋆|v(C↓
±) − Λ|+σ(C↓

±)

− C⋆|v(C↑) − Λ|+σ(C↑)

Nous avons pour les vitesses :v(C↑) < v(C↓
±) < v(C↓′).

Le pire cas estΛ = v(C↓
±). Alors,

B(y) = C⋆|v(C↓′) − v(C↓
±)|+σ(C↓′) > 0. (3.83)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′) = σ(C↓
±) + σ(C↑), alors nous avons

B(y) = θ(y, C↓′)σ(C↓′) − θ(y, C↓
±)σ(C↓

±) − θ(y, C↑)σ(C↑) (3.84)

= σ(C↓′) − σ(C↓
±) − σ(C↑) = 0.

iii) Soit une onde de choc enx avecx < y.
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B(x) = θ(x, C↓′)σ(C↓′) − θ(x, C↓
±)σ(C↓

±) − θ(x, C↑)σ(C↑) (3.85)

= C⋆|Λ − v(C↓′)|+σ(C↓′) − C⋆|Λ − v(C↓
±)|+σ(C↓

±)

− C⋆|Λ − v(C↑)|+σ(C↑)

Λ = v(C↓′) est le pire cas rencontré. Alors,

B(x) = −C⋆|v(C↓′) − v(C↓
±)|+σ(C↓

±) − C⋆|v(C↓′) − v(C↑)|+σ(C↑) < 0 (3.86)

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x, C↓
±)σ(C↓

±) − θ(x, C↑)σ(C↑) (3.87)

= σ(C↓′) − σ(C↓
±) − σ(C↑) = 0

Cas CC-3(C↓
+C

↓) − (N↓′

±C
↑′)

ϕ♭(ul) < ϕ♯(um) < ur < ϕ♯(ul) < um < ul et um ≥ 0.

i) Soit une onde de choc eny avecx < y.
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B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′)σ(C↑′) − θ(y, C↓
+)σ(C↓

+) (3.88)

− θ(y, C↓)σ(C↓)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + C⋆|v(C↑′) − Λ|+σ(C↑′)

− C⋆|v(C↓
+) − Λ|+σ(C↓

+) − C⋆|v(C↓) − Λ|+σ(C↓)

Au niveau des vitesses, nous avons :

v(C↓) < v(N↓′

± ) < min(v(C↑′), v(C↓
+)) < max(v(C↑′), v(C↓

+)).

Le pire cas correspond àΛ = v(C↓
+) et v(C↓

+) < v(C↑′). Alors,

B(y) = C⋆|v(C↑′) − v(C↓
+)|+σ(C↑′) > 0. (3.89)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(N↓′

± ) + σ(C↑′) = σ(C↓
+) + σ(C↓), nous obtenons

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′)σ(C↑′) − θ(y, C↓
+)σ(C↓

+) (3.90)

− θ(y, C↓)σ(C↓)

= σ(N↓′

± ) + σ(C↑′) − σ(C↓
+) − σ(C↓) = 0
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′)σ(C↑′) − θ(x, C↓
+)σ(C↓

+) (3.91)

− θ(x, C↓)σ(C↓)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + C⋆|Λ − v(C↑′)|+σ(C↑′)

− C⋆|Λ − v(C↓
+)|+σ(C↓

+) − C⋆|Λ − v(C↓)|+σ(C↓)

Ici, le pire cas estΛ = v(C↓
+). Alors, on a l’expression suivante :

B(x) = C⋆|v(C↓
+) − v(N↓′

± )|+σ(N↓′

± ) + C⋆|v(C↓
+) − v(C↑′)|+σ(C↑′) (3.92)

C⋆|v(C↓
+) − v(C↓)|+σ(C↓)

Pour l’instant, il est impossible pour nous de conclure siB(x) est négatif mais nous

proposons tout de même une analyse détaillée de cette expression. Nous commencons

avec une analyse approximative deB(x) avant de poursuivre plus tard avec une analyse

rigoureuse.

Considérons l’onde de choc imaginaireCI reliant les étatsul etϕ♯(ul). Alors,

σ(N↓′

± ) + σ(C↑′

− ) ≤ σ(CI).

Supposons que nous avons l’expression :

a(u, v) =
f(u) − f(v)

u− v
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qui est la vitesse de Rankine-Hugoniot qui joint les étatsu etv. Si um est proche deul

alors on a

v(C↓) = a(ur, um) ≤ a(ϕ♯(ul), um). (3.93)

En revanche,um doit toujours être positif. Quandum sera proche deum = 0 alorsC↓

sera une onde de choc qui reliera deux étatsur etum qui sont approximativement dans

une région avecf ′′ < 0, une région concave. Donc, nous pourrions aussi avoir

a(um, ϕ
♯(ul)) ≤ a(um, ur) (3.94)

En général, l’expression qui comportev(C↓) = a(ur, um) semble plus probable que

a(um, ϕ
♯(ul)) ≤ a(um, ur). Dans ce cas,

|v(C↓
+) − v(C↓| ≤ |a(ul, um) − a(ϕ♯(ul), um)| (3.95)

≤ C3|ul − ϕ♯(ul)| = C3σ(CI).

Donc,

B(x) ≤ C⋆σ(C↓
±)
(

C1σ(N↓′

± ) + C2σ(C↑′

− ) − C3σ(CI)
)

. (3.96)

Si les constantesC1, C2, C3 sont toutes presque égales alors puisque

σ(N↓′

± ) + σ(C↑′

− ) ≤ σ(CI) il y a une possibilité queB(x) soit négatif.
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Dans les lignes qui suivent, nous allons tenter de confirmer cette

affirmation en effectuant des calculs détaillés.

Nous avonsur < ϕ♯(ul) < 0 et l’expression (3.95)

B(x) = C⋆|v(C↓
+) − v(N↓′

± )|σ(N↓′

± ) + C⋆|v(C↓
+) − v(C↑′

− )|σ(C↑′

− ) (3.97)

− C⋆|v(C↓
+) − v(C↓

±)|σ(C↓
±)

= C⋆

(

a(ul, um) − a(ul, u
♭
l)
)

(ul + u♭
l) + C⋆

(

a(ul, um) − a(u♭
l , ur)

)

× (ur − u♭
l) − C⋆

(

a(ul, um) − a(um, ur)
)

(um + ur)

Nous avons l’égalité :a(ul, u
♭
l) = a(ul, u

♯
l). Nous allons nous servir de celle-ci pour

réécrireB(x).

B(x) = C⋆

(

a(ul, um) − a(ul, u
♯
l)
)

(ul + u♭
l) (3.98)

+ C⋆

(

a(ul, um) − a(ul, u
♯
l) + a(ul, u

♭
l) − a(ur, u

♭
l)
)

(ur − u♭
l)

− C⋆

(

a(ul, um) − a(u♯
l , um) + a(u♯

l , um) − a(um, ur)
)

(um + ur)

Les identités suivantes vont être utiles pour écrireB(x) sous une autre forme.

a(ul, um) − a(ul, u
♯
l) = a

(

ul, u
♯
l + (um − u♯

l)
)

− a(ul, u
♯
l) (3.99)

=
∂a

∂v
(ul, u

♯
l)(um − u♯

l) +O
(

(um − u♯
l)

2
)
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a(ul, u
♭
l) − a(ur, u

♭
l) = a(u♯

l , u
♭
l) − a(ur, u

♭
l) (3.100)

= a(u♭
l , u

♯
l) − a

(

u♭
l , u

♯
l + (ur − u♯

l)
)

= −∂a
∂v

(u♭
l , u

♯
l)(ur − u♯

l) +O
(

(ur − u♯
l)

2
)

a(ul, um) − a(u♯
l , um) = a(um, ul) − a

(

um, ul + (u♯
l − ul)

)

(3.101)

= −∂a
∂v

(um, ul)(u
♯
l − ul) +O

(

(u♯
l − ul)

2
)

a(u♯
l , um) − a(um, ur) = a

(

um, ur + (u♯
l − ur)

)

− a(um, ur) (3.102)

=
∂a

∂v
(um, ur)(u

♯
l − ur) +O

(

(u♯
l − ur)

2
)

Réécrivons maintenantB(x) en utilisant les expressions présentées ci-dessus.

B(x) = C⋆(ul + u♭
l)
∂a

∂v
(ul, u

♯
l)(um − u♯

l) +O
(

(ul + u♭
l)(um − u♯

l)
2
)

(3.103)

+ C⋆(ur − u♭
l)
(

− ∂a

∂v
(u♭

l , u
♯
l)(ur − u♯

l) +O
(

(ur − u♯
l)

2
)

+
∂a

∂v
(ul, u

♯
l)(um − u♯

l) +O
(

(um − u♯
l)

2
))

− C⋆(um + ur)
(

− ∂a

∂v
(um, ul)(u

♯
l − ul) +O

(

(u♯
l − ul)

2
)

+
∂a

∂r
(um, ur)(u

♯
l − ur) +O

(

(u♯
l − ur)

2
))
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Le second terme dans l’expression précédente a la forme :

g(u♭
l)(u

♯
l − ur) + g(ul)(um − u♯

l) = (um − ur)
(

g(u♭
l)
u♯

l − ur

um − ur

+ g(ul)
um − u♯

l

um − ur

)

= (um − ur)
(

g(u♭
l)λ+ g(ul)(1 − λ)

)

avecλ ∈ (0, 1).

Si g est continue alors il existeu⋆ ∈ (u♭
l , ul) tel que l’expression

précédente puisse s’écrire(um − ur)g(u
⋆) = (um − ur)

∂a
∂v

(u⋆, u♯
l).

De plus, on remarque que siλ ≈ 0 alorsu⋆ ≈ ul et vice-versa ; siλ ≈ 1

alorsu⋆ ≈ u♭
l .

À une constantẽC près, nous avons la série d’inégalités :

0 < um − u♯
l < um − ur ≤ C̃(um + ur) = C̃σ(C↓

±).

La constantẽC est reliée à la constante de Lipschitz de la fonction cinétique. Alors,

B(x) ≤ C⋆(ul + u♭
l)
∂a

∂v
(ul, u

♯
l)C̃σ(C↓

±) + C⋆(ur − u♭
l) (3.104)

× ∂a

∂v
(u⋆, u♯

l)C̃σ(C↓
±) + C⋆σ(C↓

±)
∂a

∂v
(um, ul)(u

♯
l − ul)

− C⋆σ(C↓
±)
∂a

∂v
(um, ur)(u

♯
l − ur) +O(s3)
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s est la force d’une des ondes.

Réécrivons de nouveauB(x).

B(x) ≤ C⋆σ(C↓
±)
(

C̃(ul + u♭
l)
∂a

∂v
(ul, u

♯
l) + C̃(ur − u♭

l)
∂a

∂v
(u⋆, u♯

l) (3.105)

+ (u♯
l − ul)

∂a

∂v
(um, ul)

)

− C⋆σ(C↓
±)
∂a

∂v
(um, ur)(u

♯
l − ur) +O(s3)

Or, nous avons

(ul + u♭
l)
∂a

∂v
(ul, u

♯
l) + (ur − u♭

l)
∂a

∂v
(u⋆, u♯

l) = (ur + ul) (3.106)

×
(∂a

∂v
(ul, u

♯
l)

(u♭
l − (−ul))

(ur − (−ul))
+
∂a

∂v
(u⋆, u♯

l)
(ur − u♭

l)

(ur − (−ul))

)

= (ur + ul)
∂a

∂v
(u⋆⋆, u♯

l)

pour une valeuru⋆⋆ ∈ (ul, u
⋆) avecu⋆ ∈ (u♭

l , ul).

Donc, nous arrivons finalement à l’expression qui suit :

B(x) ≤ C⋆σ(C↓
±)
(

C̃(ur + ul)
∂a

∂v
(u⋆⋆, u♯

l) + (u♯
l − ul) (3.107)

× ∂a

∂v
(um, ul)

)

− C⋆σ(C↓
±)
∂a

∂v
(um, ur)(u

♯
l − ur) +O(s3)

≤ C⋆σ(C↓
±)
(

C̃(ul − ur)
∣

∣

∣

∂a

∂v
(u⋆⋆, u♯

l)
∣

∣

∣
− (ul − u♯

l)
∂a

∂v
(um, ul)

)

− C⋆σ(C↓
±)
∂a

∂v
(um, ur)(u

♯
l − ur) +O(s3)
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Malheureusement, ce long développement ne nous permet pasde conclure concernant

le signe deB(x).

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′)σ(C↑′) − θ(x, C↓
+)σ(C↓

+) (3.108)

− θ(x, C↓)σ(C↓)

= σ(N↓′

± ) + σ(C↑′) − σ(C↓
+) − σ(C↓) = 0

Cas CN-1(C↓
+N

↓
±) − (C↓′

± )

0 < um < ul ainsi que ϕ♯(ul) ≤ ur = ϕ♭(um).

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′

± )σ(C↓′

± ) − θ(y, C↓
+)σ(C↓

+) − θ(y,N↓
±)σ(N↓

±) (3.109)

= C⋆|v(C↓′

± ) − Λ|+σ(C↓′

± ) − C⋆|v(C↓
+) − Λ|+σ(C↓

+)

− C⋆|v(N↓
±) − Λ|+σ(N↓

±)

Les différentes vitesses sont :v(N↓
±) < v(C↓′

± ) < v(C↓
+).

Le pire cas que nous puissions rencontrer estΛ = v(N↓
±). Alors,
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B(y) = C⋆|v(C↓′

± ) − v(N↓
±)|+σ(C↓′

± ) − C⋆|v(C↓
+) − v(N↓

±)|+σ(C↓
+). (3.110)

L’ expression pourB(y) ci-dessus ne nous permet pas de conclure. Alors, réécrivons

B(y) comme suit :

B(y) = C⋆|a(ul, ur) − a(ur, um)|σ(C↓′

± ) (3.111)

− C⋆|a(ul, um) − a(um, ur)|σ(C↓
+)

Sachant que nous pouvons développer les expressions ci-dessus comme suit :

a(ur, ul) − a(ur, um) =
∂a

∂v
(ur, um)(ul − um) +O

(

(ul − um)2
)

(3.112)

= f ′′(um)(ul − um)

+O
(

(ur − um)(ul − um) + (ul − um)2
)

a(ul, um) − a(um, ur) = a
(

um, ur + (ul − ur)
)

− a(um, ur) (3.113)

=
∂a

∂v
(um, ur)(ul − ur) +O

(

(ul − ur)
2
)

= f ′′(ur)(ul − ur)

+O
(

(um − ur)(ul − ur) + (ul − ur)
2
)



81

En utilisant ces formules, nous obtenons

B(y) = C⋆f
′′(um)(ul − um)(ul + ur) − C⋆f

′′(ur)(ul − ur)(ul − um) (3.114)

+O(s3)

= C⋆(ul − um)
(

f ′′(um)(ul + ur) − f ′′(ur)(ul − ur)
)

+O(s3)

ce qui ne nous permet pas de conclure concernantB(y). Par contre, cette expression

sera peut-être utile plus tard.

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′

± ) = σ(C↓
+) + σ(N↓

±), on obtient

B(y) = θ(y, C↓′

± )σ(C↓′

± ) − θ(y, C↓
+)σ(C↓

+) − θ(y,N↓
±)σ(N↓

±) (3.115)

= σ(C↓′

± ) − σ(C↓
+) − σ(N↓

±) = 0.

iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′

± )σ(C↓′

± ) − θ(x, C↓
+)σ(C↓

+) − θ(x,N↓
±)σ(N↓

±) (3.116)

= C⋆|Λ − v(C↓′

± )|+σ(C↓′

± ) − C⋆|Λ − v(C↓
+)|+σ(C↓

+)

− C⋆|Λ − v(N↓
±)|+σ(N↓

±)
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Ici, Λ = v(C↓
+) s’avère le pire cas possible. Nous obtenons donc :

B(x) = C⋆|v(C↓
+) − v(C↓′

± )|+σ(C↓′

± ) − C⋆|v(C↓
+) − v(N↓

±)|+σ(N↓
±) (3.117)

Regardons plus en détails ce que nous pouvons faire pour tenter

de conclure. Nous avons les expressions suivantes :

|v(C↓
+) − v(C↓′

± )| = a(ul, um) − a(ul, ur) (3.118)

=
∂a

∂v
(ul, ur)(um − ur) +O

(

(um − ur)
2
)

= f ′′(ur)(um − ur)

+O
(

(ul − ur)(um − ur) + (um − ur)
2
)

|v(C↓
+) − v(N↓

±)| = a(ul, um) − a(ur, um) (3.119)

=
∂a

∂v
(um, ur)(ul − ur) +O

(

(ul − ur)
2
)

= f ′′(ur)(ul − ur)

+O
(

(um − ur)(ul − ur) + (ul − ur)
2
)
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B(x) = C⋆

(

f ′′(ur)(um − ur)(ul + ur) − f ′′(ur)(ul − ur)(um + ur)
)

(3.120)

+O(s3)

= C⋆f
′′(ur)

(

(um − ur)(ul + ur) − (ul − ur)(um + ur)
)

+O(s3)

= C⋆f
′′(ur)

(

(um − ur)(ul − ur) + (um − ur)2ur

− (ul − ur)(um − ur) − (ul − ur)2ur

)

+O3

= C⋆f
′′(ur) × 2ur × (um − ul) +O(s3)

Techniquement,f ′′(ur) < 0, ur < 0, (um − ul) < 0 et le premier terme est négatif. Par

contre, l’expression est aussi d’ordre trois et le signe de l’expression dépend donc du

terme que l’on négligeait plus tôt. En pratique, un estim´e indiquant queB est d’ordre

trois est insuffisant pour une analyse classique.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′

± )σ(C↓′

± ) − θ(x, C↓
+)σ(C↓

+) − θ(x,N↓
±)σ(N↓

±) (3.121)

= σ(C↓′

± ) − σ(C↓
+) − σ(N↓

±) = 0

Cas CN-2(C↓
±N

↑
∓) − (C↓′

+ )

ϕ♯(ul) < um < 0 et ur = ϕ♭(um).

i) Soit une onde de choc eny avecx < y.
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B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y, C↓
±)σ(C↓

±) − θ(y,N↑
∓)σ(N↑

∓) (3.122)

= C⋆|v(C↓′

+ ) − Λ|+σ(C↓′

+ ) − C⋆|v(C↓
±) − Λ|+σ(C↓

±)

− C⋆|v(N↑
∓) − Λ|+σ(N↑

∓)

L’ordre des vitesses est :v(N↑
∓) < v(C↓

±) < v(C↓′

+ ).

Le pire cas à considérer ici est lorsqueΛ = v(C↓
±). Alors,

B(y) = C⋆|v(C↓′

+ ) − v(C↓
±)|+σ(C↓′

+ ) > 0. (3.123)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′

+ ) = σ(C↓
±) + σ(N↑

∓) on obtient l’expression :

B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y, C↓
±)σ(C↓

±) − θ(y,N↑
∓)σ(N↑

∓) (3.124)

= σ(C↓′

+ ) − σ(C↓
±) − σ(N↑

∓) = 0.

iii) Soit une onde de choc enx avecx < y.
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B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x, C↓
±)σ(C↓

±) − θ(x,N↑
∓)σ(N↑

∓) (3.125)

= C⋆|Λ − v(C↓′

+ )|+σ(C↓′

+ ) − C⋆|Λ − v(C↓
±)|+σ(C↓

±)

− C⋆|Λ − v(N↑
∓)|+σ(N↑

∓)

Le pire cas possible se produit lorsqueΛ ∈ [v(C↓′

+ ),∞). Et, puisque

σ(C↓′

+ ) − σ(C↓
±) − σ(N↑

∓) = 0

B(x) = C⋆|Λ − v(C↓′

+ )|+ × [σ(C↓′

+ ) − σ(C↓
±) − σ(N↑

∓)] (3.126)

− C⋆|v(C↓′

+ ) − v(C↓
±)|+σ(C↓

±) − C⋆|v(C↓′

+ ) − v(N↑
∓)|+σ(N↑

∓) < 0.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x, C↓
±)σ(C↓

±) − θ(x,N↑
∓)σ(N↑

∓) (3.127)

= σ(C↓′

+ ) − σ(C↓
±) − σ(N↑

∓) = 0

Cas CN-3(C↓
+N

↓
±) − (N↓′

±C
↑′

− )

0 < um < ul et ur = ϕ♭(um) < ϕ♯(ul).

i) Soit une onde de choc eny avecx < y.
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B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′

− )σ(C↑′

− ) − θ(y, C↓
+)σ(C↓

+) (3.128)

− θ(y,N↓
±)σ(N↓

±)

= C⋆|v(N↓′

± ) − Λ|+σ(N↓′

± ) + C⋆|v(C↑′

− ) − Λ|+σ(C↑′

− )

− C⋆|v(C↓
+) − Λ|+σ(C↓

+) − C⋆|v(N↓
±) − Λ|+σ(N↓

±)

La série d’inégalités concernant les vitesses est :

v(N↓
±) < v(N↓′

± ) < min(v(C↑′

− ), v(C↓
+)) < max(v(C↑′

− ), v(C↓
+)).

Le pire cas qui peut se présenter est :Λ = v(C↓
+) lorsquev(C↓

+) < v(C↑′

− ). Alors,

B(y) = C⋆|v(C↑′

− ) − v(C↓
+)|+σ(C↑′

− ) > 0. (3.129)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(N↓′

± ) + σ(C↑′

− ) = σ(C↓
+) + σ(N↓

±), alors nous avons

B(y) = θ(y,N↓′

± )σ(N↓′

± ) + θ(y, C↑′

− )σ(C↑′

− ) − θ(y, C↓
+)σ(C↓

+) (3.130)

− θ(y,N↓
±)σ(N↓

±)

= σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
+) − σ(N↓

±) = 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′

− )σ(C↑′

− ) − θ(x, C↓
+)σ(C↓

+) (3.131)

− θ(x,N↓
±)σ(N↓

±)

= C⋆|Λ − v(N↓′

± )|+σ(N↓′

± ) + C⋆|Λ − v(C↑′

− )|+σ(C↑′

− )

− C⋆|Λ − v(C↓
+)|+σ(C↓

+) − C⋆|Λ − v(N↓
±)|+σ(N↓

±)

Le pire cas est donné par :Λ = v(C↓
+) et l’inégalité2 v(C↑′

− ) < v(C↓
+). Alors,

B(x) = C⋆|v(C↓
+) − v(N↓′

± )|+σ(N↓′

± ) + C⋆|v(C↓
+) − v(C↑′

− )|+σ(C↑′

− ) (3.132)

− C⋆|v(C↓
+) − v(N↓

±)|+σ(N↓
±).

Regardons les expressions suivantes pour tenter de conclure concernant le signe de

B(x).

v(C↓
+) − v(N↓′

± ) = a(ul, um) − a(ul, u
♯
l) (3.133)

=
−∂a
∂v

(ul, um)(u♯
l − um) +O((u♯

l − um)2)

= −f ′′(um)(u♯
l − um) +O((ul − um)(u♭

l − um) + (u♭
l − um)2)

≤ C1|u♯
l − um|

2. Le casΛ = v(N↓
±) est aussi problématique mais plus simple.
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v(C↓
+) − v(N↓

±) = a(ul, um) − a(um, u
♭
m) (3.134)

= a(ul, um) − a(um, u
♯
m)

=
−∂a
∂v

(um, ul)(u
♯
m − ul) +O((u♯

m − ul)
2)

= −f ′′(ul)(u
♯
m − ul) +O((u♯

m − ul)(um − ul) + (u♯
m − ul)

2)

≤ C2|u♯
m − ul|

Ces deux expressions permettent d’écrire :

B(x) = C⋆C1|um − u♯
l |σ(N↓′

± ) − C⋆C2|ul − u♯
m|σ(N↓

±) (3.135)

+ C⋆C3σ(N↓
±)σ(C↑

−)

Dans l’expression ci-dessus, les deux premiers termes sontsemblables et s’annulent

presque en totalité mais le dernier terme est problématique. Tout ceci implique que

B(x) peut être positif ou négatif.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x,N↓′

± )σ(N↓′

± ) + θ(x, C↑′

− )σ(C↑′

− ) − θ(x, C↓
+)σ(C↓

+) (3.136)

− θ(x,N↓
±)σ(N↓

±)

= σ(N↓′

± ) + σ(C↑′

− ) − σ(C↓
+) − σ(N↓

±) = 0
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Cas NC(N↓
±C

↑) − (C↓′)

um = ϕ♭(ul) et ϕ♯(ul) < ur < ϕ♯(um) < ul.

i) Soit une onde de choc eny avecx < y.

B(y) = θ(y, C↓′)σ(C↓′) − θ(y,N↓
±)σ(N↓

±) − θ(y, C↑)σ(C↑) (3.137)

= C⋆|v(C↓′) − Λ|+σ(C↓′) − C⋆|v(N↓
±) − Λ|+σ(N↓

±)

− C⋆|v(C↑) − Λ|+σ(C↑)

Les vitesses se présentent dans l’ordre suivant :v(C↑) < v(N↓
±) < v(C↓′).

Λ = v(N↓
±) est le pire cas qui puisse se produire. Alors,

B(y) = C⋆|v(C↓′) − v(N↓
±)|+σ(C↓′) > 0. (3.138)

ii) Soit une raréfaction eny avecx < y.

On aσ(C↓′) = σ(N↓
±) + σ(C↑) alors

B(y) = θ(y, C↓′)σ(C↓′) − θ(y,N↓
±)σ(N↓

±) − θ(y, C↑)σ(C↑) (3.139)

= σ(C↓′) − σ(N↓
±) − σ(C↑) = 0.
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iii) Soit une onde de choc enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x,N↓
±)σ(N↓

±) − θ(x, C↑)σ(C↑) (3.140)

= C⋆|Λ − v(C↓′)|+σ(C↓′) − C⋆|Λ − v(N↓
±)|+σ(N↓

±)

− C⋆|Λ − v(C↑)|+σ(C↑)

Le pire cas à considérer s’avère êtreΛ ∈ [v(C↓′),∞). De plus,

σ(C↓′) − σ(N↓
±) − σ(C↑) = 0, alors on peut affirmer que

B(x) = C⋆|Λ − v(C↓′)|+ × [σ(C↓′) − σ(N↓
±) − σ(C↑)] (3.141)

− C⋆|v(C↓′) − v(N↓
±)|+σ(N↓

±) − C⋆|v(C↓′) − v(C↑)|+σ(C↑) < 0.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′)σ(C↓′) − θ(x,N↓
±)σ(N↓

±) − θ(x, C↑)σ(C↑) (3.142)

= σ(C↓′) − σ(N↓
±) − σ(C↑) = 0

Cas NN(N↓
±N

↑
∓) − (C↓′

+ )

um = ϕ♭(ul) et ur = ϕ♭(um).

i) Soit une onde de choc eny avecx < y.
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B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y,N↓
±)σ(N↓

±) − θ(y,N↑
∓)σ(N↑

∓) (3.143)

= C⋆|v(C↓′

+ ) − Λ|+σ(C↓′

+ ) − C⋆|v(N↓
±) − Λ|+σ(N↓

±)

− C⋆|v(N↑
∓) − Λ|+σ(N↑

∓)

Les différentes vitesses sont ordonnées comme suit :v(N↑
∓) < v(N↓

±) < v(C↓′

+ ).

Le pire cas provient deΛ = v(N↓
±).

B(y) = C⋆|v(C↓′

+ ) − v(N↓
±)|+σ(C↓′

+ ) > 0 (3.144)

ii) Soit une raréfaction eny avecx < y.

Puisqueσ(C↓′

+ ) = σ(N↓
±) + σ(N↑

∓), nous avons

B(y) = θ(y, C↓′

+ )σ(C↓′

+ ) − θ(y,N↓
±)σ(N↓

±) − θ(y,N↑
∓)σ(N↑

∓) (3.145)

= σ(C↓′

+ ) − σ(N↓
±) − σ(N↑

∓) = 0.

iii) Soit une onde de choc enx avecx < y.
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B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x,N↓
±)σ(N↓

±) − θ(x,N↑
∓)σ(N↑

∓) (3.146)

= C⋆|Λ − v(C↓′

+ )|+σ(C↓′

+ ) − C⋆|Λ − v(N↓
±)|+σ(N↓

±)

− C⋆|Λ − v(N↑
∓)|+σ(N↑

∓)

Le pire cas possible a la forme :Λ ∈ [v(C↓′

+ ),∞). Alors,

B(y) = C⋆|Λ − v(C↓′

+ )|+ × [σ(C↓′

+ ) − σ(N↓
±) − σ(N↑

∓)] (3.147)

− C⋆|v(C↓′

+ ) − v(N↓
±)|+σ(N↓

±) − C⋆|v(C↓′

+ ) − v(N↑
∓)|+σ(N↑

∓) < 0.

iv) Soit une raréfaction enx avecx < y.

B(x) = θ(x, C↓′

+ )σ(C↓′

+ ) − θ(x,N↓
±)σ(N↓

±) − θ(x,N↑
∓)σ(N↑

∓) (3.148)

= σ(C↓′

+ ) − σ(N↓
±) − σ(N↑

∓) = 0

�
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CHAPITRE 4

CONCLUSION

Notre objectif principal dans cette recherche était de pr´esenter une fonctionnelle qui

pourrait résoudre les quatre cas d’interactions problématiques qui découlent de l’équation

aux dérivées partielles∂u/∂t + ∂f(u)/∂x = 0 lorsque la fonction de fluxf(u) est de

type concave convexe. Et, par la suite, vérifier si cette même fonctionnelle est en mesure

de conduire àB(y) ≤ 0 pour les autres cas d’interactions.

La fonctionnelle Laforest-Pellerin proposée à l’intérieur du chapitre 3 ne permet pas de

solutionner les quatre cas problématiques caractérisés parB(y) > 0 qui proviennent de

la fonctionnelle Iguchi-LeFloch. En effet, les cas d’interactions RC-3, CR-4 fonctionnent

puisqueB ≤ 0. Toutefois, les cas CC-3, CN-3 font échouer notre fonctionnelle ; ils

produisent des sous-cas avecB(y) > 0. Elle ne permet pas non plus de vérifier certains

autres cas d’interactions pour la même raison.

Une analyse de nos calculs montre deux points importants quand un cas d’interaction

donne comme résultatB(y) ≤ 0 :

1) la force de l’onde résultanteσ(·′) est plus petite que la force de l’onde entranteσ(·) ;

2) la vitesse de l’onde résultantev(·′) est plus petite que la vitesse de l’onde entrante

v(·).

D’un point de vue mathématique, nous savons maintenant ce qui doit être fait. Est-

ce qu’il est possible de construire une fonctionnelle de Glimm de manière à satisfaire
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les points 1) et 2) ? Si oui, comment ? Pour l’instant, ces deuxquestions restent sans

réponses.

Le mieux que nous puissions faire est de suggérer des approches potentielles. L’étude

des systèmes de dimension 2× 2 pourrait mener à une meilleure compréhension du cas

scalaire et à une résolution éventuelle du problème. Une étude en profondeur des 16

cas d’interactions pourrait s’avérer une autre avenue à explorer. Au moment d’écrire ces

lignes - novembre 2010 - ce problème pose toujours un défi considérable et il demeure

ouvert...
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ANNEXE I

RÉSUMÉ DES RÉSULTATS

Cette annexe comporte les résultats pour la fonctionnellequi a été abordée dans la re-

cherche. La présentation a pour but de réintroduire les r´esultats démontrés dans le cha-

pitre 3 de ce mémoire mais de manière beaucoup plus compacte.

Fonctionnelle Laforest-Pellerin (de type Iguchi-LeFloch)

La fonction de poidsθ(x, y) se définit comme suit :

θ(x, y) =











C⋆(â(x) − â(y))+ même monotonicité

1 sinon

La définition de la force des ondesσ(u−, u+) est :

σ(u−, u+) =











|u+ − u−| si u−u+ ≥ 0 ;

|u+ + u−| si u−u+ < 0.

Le termeB présenté dans les calculs est obtenu en effectuant le produitB(·) = θ(x, y)×
σ(·).

Passons maintenant aux résultats. Pour chacun des cas, i) représente le résultat pour une

onde de choc eny, ii) le résultat pour une raréfaction eny, iii) le résultat pour une onde

de choc enx, iv) le résultat pour une raréfaction enx.
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Cas RC-1

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas RC-2

i) B < 0 ii) B < 0 iii) B < 0 iv) B ≤ 0

Cas RC-3

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas RN

i) B < 0 ii) B ≤ 0 iii) B < 0 iv) B < 0

Cas CR-1

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas CR-2

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas CR-3

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas CR-4

i) B < 0 ii) B < 0 iii) B < 0 iv) B < 0

Cas CC-1

i) B ≤ 0 ii) B = 0 iii) B = 0 etB > 0 iv) B = 0
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Cas CC-2

i) B > 0 ii) B = 0 iii) B < 0 iv) B = 0

Cas CC-3

i) B > 0 ii) B = 0 iii) B =? iv) B = 0

Cas CN-1

i) B =? ii) B = 0 iii) B =? iv) B = 0
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Cas CN-2

i) B > 0 ii) B = 0 iii) B < 0 iv) B = 0

Cas CN-3

i) B > 0 ii) B = 0 iii) B ≷ 0 iv) B = 0

Cas NC

i) B > 0 ii) B = 0 iii) B < 0 iv) B = 0

Cas NN

i) B > 0 ii) B = 0 iii) B < 0 iv) B = 0

Remarques sur les cas d’interactions

Tout d’abord, les cas RC-1, RC-2, RC-3, RN, CR-1, CR-2, CR-3,CR-4 conduisent à

B ≤ 0. C’est ce que nous souhaitons obtenir pour en arriver à un potentiel d’interaction

décroissant.

Tandis que les cas CC-1, CC-2, CC-3, CN-2, CN-3, NC et NN font ´echouer notre fonc-

tionnelle puisque pour chacun de ces cas nous avonsB > 0 pour au moins un sous-cas.

Le cas CN-1 présenteB = 0 à deux reprises. Toutefois, les deux sous-cas qui font in-

tervenir des ondes de chocs mènent à des expressions qui nepermettent pas de conclure

concernant le signe deB. Pour exprimer ceci, nous avons fait appel au point d’interoga-

tion ?.

Finalement, pour les quatre cas problématiques RC-3, CR-4, CC-3, CN-3. Nos résultats
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ci-dessus indiquent que RC-3 ainsi que CR-4 débouchent surB < 0 alors que CC-3 et

CN-3 conduisent àB > 0.


