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RESUME

Considérons la loi de conservation scalaie/0t + 0f(u)/0x = 0 quand la fonc-
tion de flux f (u) est concave convexe. Notre but dans cette recherche eshsuite
un potentiel d’'interaction décroissant pour les quateprablématiques générés par la
fonctionnelle Iguchi-LeFloch. Puis, nous allons testerdeuze autres cas d’interactions
pour vérifier si le potentiel d’interaction est décroisis&e travail est basé sur la théorie
des fonctions cinétiques de LeFloch pour la régulansadies lois de conservation non
convexes. Les résultats présentés ici sont une araéborpar rapport a ceux de Baiti,

LeFloch et Piccoli ainsi que ceux d’Amadori, Baiti, LeFloghPiccoli.



Vi

ABSTRACT

Consider the scalar conservation law/0t + 0f(u)/0x = 0 when the flux function
f(u) is concave convex. Our goal in this research is to construlecaeasing interac-
tion potential for the four problematic cases generatedbydguchi-LeFloch functional.
Then, we will test the twelve other interaction cases to klikihe interaction potential
is decreasing. This work is based on LeFloch’s theory ofticrfeinctions for regulari-
sation of nonconvex conservation laws. The results preddmtre are an improvement
over those of Baiti, LeFloch and Piccoli as well as those ofaflori, Baiti, LeFloch and

Piccoli.
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INTRODUCTION

Une loi de conservation est une équation differentialbe @érivées partielles. Ces
eéquations proviennent de la mécanique des fluides osi ®f@ésentent la conservation
de la masse, la quantité de mouvement, I'énergie et beigrA I'origine, elles ont &te
introduites par Euler et étudiées par d’autres cherchemmme Riemann, Stokes. Avec
I'arrivée de la seconde guerre mondiale, les équatioBsldr sont étudiées en profon-
deur puisqu’elles permettent de modéliser les ondes descpenérées par les avions
supersoniques, les ogives et les bombes nucléaires. Dasamnées 50, Oleinik (Olei-
nik, 1957; Oleinik, 1959) débute I'étude abstraite das tte conservation avec le cas
scalaire ainsi que deux lois de conservation couplées, Paxk (Lax, 1973) se penchera
sur le probléme de Riemann. Par la suite, les potentiatsedtaction@(u(t)) seront in-
troduits par Glimm (Glimm, 1965) afin de présenter la pe@ipreuve générale d’'exis-
tence de solutions pour les systemes de lois de conservhge potentiels d’interaction
sont au coeur de la théorie des lois de conservation et il@nibsatisfaire plusieurs

caractéristiques d’un point de vue mathématique. En,effe

1) le potentiel ne dépend pas de la position exacte des @udiesnps t mais seulement

de leur ordre;

2) le potentiel correspond a une somme de termes qui sodtafigues par rapport a la

force des ondes ;

3) le potentiel doit étre décroissant pour une interacgotre deux ondes et celui-Ci

diminue de maniére proportionnelle au produit des ondgdiguées dans I'interaction;;

4) quand un potentiel d’'interaction décroissant satigdfgi2) et 3), il forme une com-
binaison linéaire avec la variation totale et le résudtsttune mesure décroissante de la

variation totale.



Depuis la percée de Glimm (Glimm, 1965), d’autres indigidunt contribué a I'avance-
ment des connaissances concernant les lois de conservatiddbut des années 80, des
gens ont amélioré les techniques introduites par Glimpojdurs durant cette période,
des chercheurs (Glimm and Lax, 1967; Liu, 1977a; Liu, 1974b;and Yang, 1999;
Bressan et al., 1999) ont présenté des preuves d’exestefunicité et de stabilité de
solutions pour ces mémes lois, tout en respectant les thomslinitiales a petite varia-
tion totale, employées par Glimm dans ses travaux a tjgpoApres le développement
d’une théorie mature d’existence, d’unicité et de stebpour les systemes convexes, la
guestion des systémes non convexes est apparue de plusémpbrtante pour d’autres

personnes.

En effet, dans les années 80 et 90, la majorité des trauasyijat des systemes de lois
de conservation convexe concave se sont attardés a catXetssemble des solutions
étaient caractérisées par des régularisations visspsg(diffusion). Nous pouvons main-
tenant affirmer que les travaux de Bressan et Bianchini @resand Bianchini, 2005)
ont entierement réglé la question de I'existence, deritité et de la stabilité. Durant
cette période, LeFloch a développé la théorie des fonstcinétiques pour caractériser
les solutions des lois de conservation obtenues avec datarisations plus générales

(de type diffusion-dispersion) (LeFloch, 2002).

Vers la fin des années 90, Baiti, LeFloch et Piccoli (Baitalet 1999) ont proposé une
nouvelle fonctionnelle de variation totale pour mesurefiolae des ondes pour le flux
concave convexe le plus simpféu) = u3. Leurs calculs demontrent que cette fonction-
nelle est toujours inférieure ou égale a zéro. Puis, doniaBaiti, LeFloch et Piccoli ont
utilisé la méme définition pour la fonctionnelle de véina V' («) qui avait été introduite
dans (Amadori et al., 1999). Pour corriger 'augmentatierialfonctionnelle de varia-
tion totale, les chercheurs ont travaillé avec une noawadfinition pour la force des
ondes. Par la suite, en s’appuyant sur quatre hypothésestieévalué la fonctionnelle

V. Pour chacun des seize cas étudiés, la fonctioniedst plus petite ou égale a zéro.



Malheureusement, leur approche abstraite ne permet pasmélbntifier le role de la
fonction cinétigue. De plus, la complexité de cette appedfait que ce n’est pas possible

de généraliser celle-ci au cas des systemes de typeveoocavexe.

Seulement quelques années plus tard, Baiti, LeFloch ebPiBaiti et al., 2004b) in-
troduit une fonctionnelle de variation totafé(u) qui se veut plus explicite que celle
etudiée dans (Amadori et al., 1999). Mais, encore une fesscalculs sont trop com-
plexes pour obtenir une extension aux systemes (Baiti.eR@04a). La définition de
celle-ci nécessite le calcul de la force des ondes , u., ). Dans le cas des solutions non
classiques, la définition d&(u_, v, ) semble assez complexe & utiliser. Jusqu'a mainte-
nant, la litterature présente des définitions pourw@amles potentiels d’interaction qui
exigent des calculs qui ne sont pas tres transparentd éBait, 1999; Amadori et al.,
1999; Baiti et al., 2004b). Plus spécifiguement, les p&ips fondamentales de la fonc-
tion cinétique n'apparaissent pas naturellement, eticpéer la propriété de contraction

" 0 " (u)] < Klul.

Puis, Laforest et LeFloch (Laforest and LeFloch, 2010) eappsé une définition plus
intuitive et plus naturelle pour évaluer la force des orataparativement a celle décrite
dans (Baiti et al., 2004b) I'aide de cette nouvelle définition, les auteurs ont ciicu
la fonctionnelle de Glimm pour les solutions non classiqoesgue la fonction de flux
f(u) est de type concave convexe. L'inspection de tous les césstizermet d’affirmer
gue la fonctionnelle de Glimm est décroissante sauf poatrgicas, ce qui contredit la
condition 3, présentée dans le premier paragraphe. fiasitds démontrent que celle-ci
est décroissante dans le cas de solutions de type spiitterging (LeFloch and Shearer,
2004). Dans ce mémoire, nous nous proposons d’étendtealerix de Laforest et Le-
Floch (Laforest and LeFloch, 2010) et de construire un gegkd'interaction() adapté
a leurV. Si nous parvenons a trouverben() alors la relatiorl + k(@ est équivalente a
I'existence de solutions pour les lois de conservatiores@ahon convexes. La litterature

sur le sujet ainsi que des travaux préliminaires de Laf@ekeFloch suggerent forte-



ment qu’il devrait exister un tel potentiel d’'interactiGh Bien que les travaux de La-
forest et LeFloch n’ont pas encore été en mesure de peduipotentiel d’interaction

décroissant, les résultats obtenus sont encourageants.



CHAPITRE 1

LES LOIS DE CONSERVATION

1.1 Introduction aux lois de conservation

Une loi de conservation scalaire est une équation diftexkbe aux dérivées partielles de

la forme :

ot ozr

ou N Of (u) _ 0 w=u(z,t) € R (1.1)

avec une condition initiale au temps-= 0 :

u(z,0) = up(x). (1.2)

Dans I'équation (1.1), les variables indépendantest représentent respectivement les
coordonnées pour I'espace et le temps. La foncfian est dite fonction de flux. Il est
aisé de voir que méme Biy| < € et quef, uo sont dang’> alorsu peut développer des
discontinuités apres un temps fini (Oleinik, 1959). llésbc nécessaire d’envisager des

solutions discontinues pour I'equation différentielle

Définition 1.1. (solution faible)
Consicerons les don@es initialesuy € L>*(R) . Siu € L>(R x R, ) alorsu est dite

une solution faible du problme de Cauchy repsengé par (1.1-1.2) si pour toud(z, t)

1. L>(Q) = {u est mesurable s@t, ||u||~ = sup,q |u(z)| < oo}



lisse et de support compact, nous avons :

/OOO /1R<U(x’t) ae(axt, t) + f(u(z,t)) 09(81; t)) dx dt—l—/R@(x,O) uo(z) dr = 0.

Deux équations differentielles bien connues sont dempies de lois de conservation.
Il s’agit des équations de Burgers (1.3) et de Buckley-kett€1.4). Elles ont la forme

suivante :

s + (%) —0 (1.3)
U2
ut+<(u2+(1—u)2)>m:0 (1.4)

L'équation de Burgers est un modele simple et bien etadi$ fluides compressibles.
L'équation de Buckley-Leverett permet de représentdiuide avec deux phases

u € [0, 1] tel un mélange eau-huile;représente la saturation d’'une des deux phases.

Tentons de déterminer la provenance des chocs en regéiedpration de Burgers apres
avoir fait la differentiation du second terme par rapport. Nous avons maintenant

'équation sous la forme :

Uy + uu, =0 (1.5)

et ajoutons la condition initiale ci-dessous :



-1, siz <0
u(z,0) = uo(z) = (1.6)
1, siz >0

Le probléme de Riemann donné par (1.5-1.6) possedeudiaol(x,t) = ug(z) pour

tout (z, t). Toutefois, il admet aussi une autre solution qui a la forme :

(
-1, siz<-—t

u(z,t) = x/t, si—t<xz<t (1.7)

1, Siz >t

\

Ces deux solutions sont des solutions faibles.

Or, le fait que le probleme de Riemann puisse comporterguus solutions illustre bien
la nécessité d’avoir une approche pour sélectionnesahgion particuliere parmi toutes
celles obtenues. Nous verrons que si le flux est convexe ldloposition d’une seule

condition d’entropie est suffisante pour identifier une sotuunique.

Définition 1.2. (entropie-flux d’entropie)
Une paire de fonctions lissé#/(u), F'(u)) — R? est une paire entropie-flux d’entropie
Si F'(u) = f(u) x U'(u).

Il est facile de voir que si. est une solution lisse de (1.1) et que la définition ci-dessu
est respectée alotssera aussi une solution de I'équation suivante :
A(U(u))/0t + O(F(u))/0x = 0.

La définition 1.2 origine de la thermodynamique. Plus @&uwent, la seconde loi de
la thermodynamique couvre la notion d’irréversibiligsdphénomenes physiques. Cette

loi comporte une fonction d’entropie que nous pouvons aésau désordre ; lors d’'une



transformation le désordre ne peut gu’augmenter. En ehpar exemple, lorsqu’on ef-
fectue une transformation dans un systeme, I'entropié alaymenter. Précisons que

I'entropie mathématique:- — entropie physique.

Théoreme 1.3.
Soient (1.1-1.2) ainsi qu¢ € C? et convexeyu, € BV N L' et? une® paire (U, F)
avecU qui est I'entropie etF le flux d’entropie. Alors, il existe une solution unique de

(1.1-1.2) qui satisfait au sens faible :

Uu) + F(u), <0.

Malheureusement, I'unicité ne tient pas si nous n’avorsd’hgpothése de convexité sur
le flux, comme dans le cas de I'équation de Buckley-Levékettloch, 2002). Pour des
conditions initiales:, € €2, dans le voisinage d’un point d’inflexion dg il peut exister

un nombre infini de solutions qui satisfont la méme conditientropie.

Nous allons maintenant présenter les bases de la théogiste plusieurs références
reconnues dans le domaine, dont celle de Smoller (SmoB&3)1qui est sans doute
la mieux connue, mais nous suivrons celle de LeFloch (LéF12602). Nous débutons

avec un théoreme important.

Théoreme 1.4(inégalités d’entropie d’Oleinik)
Soit une fonction de fluk(«) quelconque. Soit une onde de choc qui est

une solution faible de (1.1) et qui a localement la formeessbus :

u;, Slx <At
u(zx, t) = (1.8)

Up, Slx >Nt

2. L'(Q) = {u est mesurable s, ||u||;: = [, |u(z)] dz < oo}
3. BV (Q2) = Lensemble des fonctions avec une variation totale finiesdamintervallel.



ou u;, u,. et \ sont des constantes avec+# u,.. L'onde de chocérifie les iregalites

OU(u) /0ot + OF (u)/0z <0 (1.9)

pour toutes les paires d’entropies convex&sF') si et seulement si leségalites d’en-

tropie d’Oleinik

f(v) = f(w) > fuy) — f(u)

vV — U Uy — Uy

(1.10)
sont respe@es pour tout qui se situe entre; etu,.

Définition 1.5.
Dans le tleoreme 1.4, la constantg représente la vitesse de I'onde et on I'appelle
la vitesse de Rankine-Hugoniot. Il est possible @efier quew(z,t) ci-dessus est une
solution faible seulement si

A= M (1.11)

Up — U
Définition 1.6. (raréfaction)

Consicerons lesétatsu,; et u,.. Supposons aussi qué(u) croit lorsquew passe dey,
a u,. Dans ce cas, la fonction inverse déu) que nous appellerors est ckfinie dans
lintervalle [f'(w;), f'(u,)]. Alors

(

uy, siz < tf'(w)
u(r,t) = Q h(z/t), sitf'(w) <z <tf(u) (1.12)
Uy, siz > tf'(u,)

constitue une solution continue dédjuation (1.1). Cette solution est une onde de

raréfaction qui joint le®tatsu; a u,..
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Les solutions obtenues ne sont donc pas uniques car 'ondaatedonnée par (1.8)
avec la vitesse de I'onde décrite par (1.11) est aussi une solution faible. En revanc
cette solution discontinue ne satisfait pour aucune gairé’) la condition

oU(u)/0t + OF (u)/0x < 0.

Un probléeme de Riemann est un probleme a valeur initialladorme :

w Siz <0
up(r) = (1.13)

u, Slx >0

Nous avons indiqué que 'addition d’'une condition d’episonous assure de I'existence
et de l'unicité. Ci-dessous, nous verrons que la régedéion d’une loi de conservation
assure le méme niveau d’existence et d’unicité. Nougsatibns ce critere un peu plus

tard.

Théoreme 1.7.
Soitf € C?(Q2) et convexe ainsi qu’un probine de Riemann avec une condition initiale

ug. Alors,

1) pour une paire d’entropie-entropie flyx/, F') il existe une solution faible unique,

de (1.1) quierifie U(u); + F(u), < 0 pour (U, F);

2) il existe une solution faible unique,de (1.1) qui respecte leségalitts d’entropie

d’Oleinik ;

3) il existe une solution faible unique,de (1.1) de la forme = lim._ou° ouu® est la

solution deu§ + f(u®), = eus,. Mentionnons ici que la limite est prise poit par point.

Pour les flux convexes, 'énoncé ci-dessus nous indique do’une seule paire d’entropie-

entropie flux est suffisante pour obtenir I'unicité. De plastte solution est la limite
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d’une régularisation visqueuse.

1.2 Lois de conservation non convexes

Le théoreme 1.7 est faux pour les lois de conservation nomexes puisqu’une seule
paire (U, F') ne détermine pas uniquement la solution. Nous verronsterant qu'il
est possible d’identifier une classe de solutions en sélewnt une régularisation.
Prendre une régularisaiton est équivalent au choix dfanetion cinétique. Nous in-

troduirons un peu plus tard la notion de fonction cinétique
Considérons le probleme de Riemann constitué desiegsdtl.1-1.2).

Remplacgons le terme homogene dans I'eéquation (1.1) psemne de diffusion :

up 4+ f(u), =€ us, (1.14)

Il s’agit d’'une régularisation visqueuse eintroduit la viscosité. Essentiellement, cette
approche a pour but de réintroduire la viscosité (d'or@gralans le modele physique
(d’ordre 1) qui décrit un fluide. Plus généralement, tés tle conservation non linéaires
d’ordre 1 sont des modeles simplifies de phénomenesiqumss a I'intérieur desquels
nous avons fait le choix de négliger la diffusion (ordre l&)dispersion (ordre 3) et
les autres processus d’'ordres supérieurs. Selon leajiparnent de Chapman-Enskog,
tout systeme en mécanique statistique s’exprime commsystéme d’équations aux
dérivées partielles avec des termes d’ordre arbitrargraleve. La physique du systeme

nécessite donc la présence de termes d’ordres sugerieur

Dans cette optique, il est préféerable de réintroduineadtage de physique a I'aide de

régularisations de la loi de conservation (1.13) de la form
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ui + f(uf), = eaus, + *bus (1.15)

xrx*

L'équation (1.15) avec les termesu:,, ets2bus,,, est un probleme bien poseé si

g, a > 0 (LeFloch, 2002). Si la limitéim._,, «® existe alors nous aurons une maniere
de choisir une solution unique. Malheureusement, la limsitdépend de: et deb. Plus
précisément, du rappaft= b/a qui représente le rapport du taux de dispersion sur celui
de la diffusion. Quand. = 0 alors il n’y a pas de dispersion tandis que lorsgque> oo
c’est la dispersion qui domine. Dans certains systemestetees d’ordres supérieurs
(u.z €t plus) pourraient étre nécessaires. Pour des lois deeogation non convexes
assujetties a des régularisations de la forme (1.15% metrons I'apparition d’'ondes de

choc dites non classiques.

Définition 1.8. (ondes de chocs classiques et non classiques)
Une discontinui qui \erifie les iregalites d’entropie d’Oleinik est dite une onde de choc

classique.

Une discontinui qui ne erifie pas les ibgalites d’entropie d’Oleinik est dite une onde

de choc non classique.

Théoreme 1.9.

Soit une fonction de flux concave convexe ainsi que laésaprtation de la diffusion
dispersion don@e pard;u + 0, f (u) = e(b(u)uy), + 5(01 (u)(cz(u)ux)m>x avec

u = u(x,t) ainsi queb(u), c1(u), co(u) > 0. Le rapporta = £/v/§ > 0 est donk.

Alors, il existe une fonction ciitiquey’ : R — R qui satisfait
H1) Lipschitz continue;

H2) monotone @écroissante ep’(0) = 0;



13
H3) il existe un voisinage compatdans lequet Lip(y°) < 1;

H4) ©’ o ¢’ est une contraction stricte. Autrement dit, il existe (0, 1)

tel que|y’ o ¢’| < k|u| pour toutu.

Quande ety tendent vers@o mais quex reste constant alors toute discontireidans

la limite

u” = lim limu(z,1)

T =0

u' = lim limu(z,1)
x—»:cg e—0

qui est une onde de choc non classique satisfait ¢”(u_).

De plus, en lien avec la fonction cinétique, nous avons deux fonctions canoniques.
La premiére est la fonction de dissipation d’entropiezé, alors que la seconde est

donnée par la condition de tangence :

Ces deux fonctions ne dépendent quefds de la pairgU, F'). En lien avec ces fonc-

tions, nous avons aussi :

O(u) < @' (u) < gp(u), u<0

4. La constante de Lipschitz edt < Lip(¢) := inf,-, ‘w
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wo(u) < @' (u) < ¢*(u), u > 0.

Nous pouvons aussi obtenir une fonction accompagnatficeR — R qui provient de

", Cette fonction accompagnatrice est la seule qui satisfait

fw) = flHw)  flu) = f(£"(u))
u — o (u) u — ¢°(u)

ainsi que

O (u) < o*(u) < u u>0

u < o (u) < ¢ (u) u<0

quandy’ (u) # % (u).

Lintérét de la fonction accompagnatrigé réside dans le fait que celle-ci marque une
transition pour une solution d’entropie non classique. figt,gant queu, est a droite de

la fonction accompagnatricg®, la solution obtenue comporte une seule onde (soit une
raréfaction ou une onde de choc classique). Dés que naussratrouvons a gauche de
© alors la solution présente deux ondes (soit une onde derahroclassique avec une

onde classique ou une onde non classique avec une raoéfacti

Théoreme 1.10. (solutions d’entropie non classiques)
Soit une fonction cigtiquey’ et les hypothses du thoreme 1.9. Alors, le probme de

Riemann écrit par :
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u;, Siz <0
u(z,0) =

Uy, Siz >0

U(u) 4+ 0, F(u) <0

admet une solution d’entropie non classique qui possla forme suivante lorsque

u > 0:

1) Siu, > wu; alors la solution est une r&faction qui jointu; a u,..

2) Siu, € [p*(u;), ;) alors la solution est une onde de choc classique qui jojrét u,.

©" est la fonction accompagnatrice ¢e.

3) Siu, € [¢’(u), ¥*(w)) alors la solution est une onde de choc non classique qui joint

w; a¢’(u;) et une onde de choc classique qui jopitwy;) a u,..

4) Siu, < ¢’(u;) alors la solution est une onde de choc non classique qui joirét

¢’ (u;) et une raéfaction qui jointy’ (v;) au,..

L'attrait de la fonction cinétique est de permettre undyseet une construction des so-
lutions d’une loi de conservation non conveseas avoira passer par la iegularisation.

La limite d’une régularisation est complexe et partietgiment difficile dans le contexte
des fonctions dang! () L>. La théorie des fonctions cinétiques telle que dévetepp

par LeFloch est donc une maniéere de contourner le probtkne régularisation.
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1.3 La méthode de front tracking

Dans cette section, nous allons aborder la méthode de firacking qui permet de

résoudre une loi de conservation scalaire avec une fondedlux donnée.

En ce moment, la théorie nous assure de I'existence d’uheico faible pour (1.1)

obtenue comme la limite d’une régularisation visqueusepls, la théorie permet de
décrire chaque discontinuité mais il nous manque un gotilr représenter la solution
en se basant sur des discontinuités locales. Cet outipslkgpla méthode de front tra-
cking (Dafermos, 1972; DiPerna, 1976; Risebro, 1993). &kfondamentalement une
simplification de la méthode que Glimm avait introduit daoas article original (Glimm,

1965). Ci-dessous, nous allons décrire avec un algoritomament la méthode de front

tracking permet de construire une approximation de la mwidaible.

On choisit un nombre réel positifsuffisamment petit pour controler I'erreur d’approxi-
mation totale permise. Pour toute condition initialec L'(R) () L>°(R), on construit
une approximation constante par morceaigxpossédant un nombre fini de disconti-

nuités et telle qufuy — ol |2 () < €.

Pour faire évoluer la condition initiale approximatiZg qui est constituée uniquement

de discontinuités, il suffit de suivre les étapes suivaatetemps = 0 :

1) sia(-,t) a une discontinuité em, qui est une onde de choc (classique ou non) alors

on permet a cette discontinuité de se déplacer avecdasgtde Rankine-Hugoniot ;

2) sia(-,t) a une discontinuité em, qui est une onde de raréfaction séparant les états

ug, u, alors

a) on subdivise I'onde en ondes de raréfaction séparant les états ordonnés

Uy = Ug, Up, U, -« - ., Upt1 = Uy tEIS qUelu; — u;—1| = epouri =1,2,... net
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|un+1 - un| S €,
b) on permet aux ondes de se déplacer avec la vitesse denRadkgoniot ;

Eventuellement, ces discontinuités pourraient se reneguisons au temgsPar contre,

en tout tempst € [0,¢t]. La solutiona(-,t) sera constante par morceaux et formée

d’ondes qui voyagent selon la vitesse de Rankine-Hugoniot.

Durant l'intervalle de temp§), ¢], la fonctiona sera donc une solution faible de (1.1)
bien que la condition d’entropie ne soit pas satisfaite fgyldes ondes de raréfaction.

Pour que I'algorithme puisse poursuivre du tempst au temps = oo, on doit
i) décrire comment les interactions sont approchées;
i) vérifier que le nombre total d’ondes reste borné.

Concernant le premier point, il suffit d’utiliser le theone 1.10 pour identifier le résultat

de l'interaction et par la suite se servir de 1) ou 2) pour deamnde sortante.

Quant au nombre total d’ondes, il est possible de montrer que

a) le nombre total d'ondes de raréfaction au départ estdypar?'V (ug) /¢;

b) durant les interactions, la force des ondes de rarefaett toujours décroissante ;

c) durant les interactions, le nombre total d’ondes de chblasgique ou non) est non

croissant.

Ensemble, ces observations permettent de conclure quetlaod€ de front tracking

produit une solution faiblé qui est bien définie pour tout € R ett € [0, co).

Dans les approximations de front tracking, il n’y a que desaintinuités. La maniere

classique (Glimm, 1965) de définir la force d’une seule aigiquité séparée par deux
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étatsuy; etu, esto(u;, u,) = |u, — .

Cette définition de la force d’une onde suggere qu’on meekuforce totale des ondes,

aussi dite la variation totale, a I'aide de

TV(u) = 5(uf,uf).

67

Dans les travaux de Laforest et LeFloch, ceux-ci ont intitaghie nouvelle mesure de la

force des ondes :

lug — u,|  Siwu, >0
o(uy,u,) =

lug + u,|  Siwu, <O0.

Cette définition est valide sous des hypothéses techsique nous passerons sous Si-

lence. La variation totale qui en découle est

Plus généralement, pour les fonctions lisses par moxrceaws aurons la définition sui-

vante :

Définition 1.11.

TV (u) = sup Z | u(y;) — u(yj—1) | (1.16)

J

Le supemum est la valeur obtenue lorsque nous camrsids toutes les partitions finies

{y;} touten ayany,_; < y,. L'ensemble qui contient toutes les fonctions pdssit une
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variation totale finiea I'intérieur d’un intervalle/ est noé BV ().

Regardons de plus prés un autre concept important : le fpetdiinteraction. Une force
est associée a chaque onde de choc. Or, avant que deuwsearfdgspent, nous pourrions
prédire a 'avance qu’elles pourraient interagir en regat leurs positions et leurs na-
tures (ondes de choc ou raréfactions) respectives. Gli@iim(n, 1965) suggere qu’on

définisse le potentiel d’interactiap de la maniere suivante :

Qu) = > awu) eu’ u) (1.17)
« approche 3
Dans la définition (1.17)7 représente la force d’'une onde alors giteet u sont res-
pectivement les états de gauche et de droite de la discitétin. Nous considérons
gu’une ondex a gaucheapproche une ondes a droite sauf si les deux ondes sont des
raréfactions. Dans le chapitre 3, nous allons étudiervamiante de (1.17) avet rem-

placé paw.

Ci-dessus, nous avons présenté la notion de variatialettl’. Il est possible de réécrire

pour les approximations de front tracking :

TV(u) = |uff — uf| (1.18)

ouwu; etu, sont les états de gauche et de droite d’une discontinuif@, il est clair que
dans (Laforest and LeFloch, 2010) la définition de la vamatotaleT'V' ci-dessus est

équivalente a:

V(u) = Za(u?‘,uﬁ‘) (1.19)
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ouo(uy, u,) représente la force d’'une onde (Laforest and LeFloch, R0déntionnons
queo est une fonction qui satisfait o(u;, u,) < |u; — u,| < co o(u,u,.), avec les
constantes;, co # 0. Plus spécifiqguement, nous allons considérer des foreksies

par :

lug — u,|  Siwu, >0
U(ula ur) = (120)

lug + u.|  Siwu, <0

ou est un changement de variables décritpar R.

Tous les éléements sont en place pour aborder une autanrd#ins la théorie des lois de

conservation : la fonctionnelle de Glimm, notée parElle a la forme :

H(u(t)) = V(u(t)) + kQ(u(t)) (1.21)

Dans cette eéquatioft] est la fonctionnelle de variation totale alors @pest le potentiel

d’interaction quadratique. Laforest et LeFloch (Laforast LeFloch, 2010) ont étudié
la variation de la fonctionnelle de Glimm dans les seize assiples (LeFloch, 2002)
lorsque deux ondes interagissent pour une loi de conservatalaire avec une fonction

de flux de type concave convexe.

Leurs résultats montrent que pour douze cas la fonctitendelGlimm est décroissante.
Ceci correspond a ce que nous espérons. C’est-a-dita guotentiel d’interaction doit
etre décroissant. Toutefois, pour l'instant quatre eseurent problématiques puisque
la fonctionnelle de Glimm résultante est croissante. jeotif de cette recherche est
d’étendre les travaux de Laforest et LeFloch en effectletuide d’un nouveau potentiel

d’interaction@ pour lequell” + k() sera décroissant.
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CHAPITRE 2

ANALYSE DE LA VARIATION TOTALE

Notre objectif dans ce chapitre est de présenter les \atdhitenues pour la
fonctionnelle de variation totale généraliSéelonnée par (1.19). Nous allons couvrir
les seize cas d'interactions (RC-1, RC-2, ..., NN) qui peavient de I'eéquation (1.1) et
qui impliquent I'interaction entre deux ondes lorsque ladkon de fluxf est de type
concave convexe. Ces résultats publiés au départ pardsifet LeFloch (Laforest and
LeFloch, 2010) seront utiles pour étudier le potentiehtdraction décroissant dans le

chapitre 3.

Nous utiliserons la formule suivante pour faire les calcudsfonctionnelle de variation

totale généralisée est donnée par :

V(ut) = oluf,up). (2.1)
Dans la formule (2.1)7 est la force de I'onde alors queest la discontinuité qui se
propage et, u2 représentent les états de gauche et de droite de la discio@ty.
Tout comme Laforest et LeFloch (Laforest and LeFloch, 2046)is supposons qu’un
changement de variablea déja été appliqué a la variahlefin de s'assurer qug’

vérifie les propriétés suivantes :
H1) La fonctiony’ : R — R est Lipschitz continue ;
H2) ¢” est monotone décroissante£t0) = 0;

H3) Il existe un voisinage compatt I'intérieur duqueLip(¢®) < 1;
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H4) ©’ o ¢’ est une contraction. En d’autres termes, pour une constant@, 1) nous

avons|y® o ¢”(u)| < k|u|, pour toutu.

Théoreme 2.1. (fonctionnelle de variation totale gnéralisée)

Consicerons une fonction citiquey’ qui satisfait les propgtes H1)a H4) ci-dessus.
Pour une approximation de front tracking dazew. : R, x R — R, la loi de
conservation; + f(u), = 0 avec la condition initiales(x, 0) = vy € L' L*> avec la
fonction ciretiquey” conduita une fonctionnelle de variation totalé@reralisee

V' (u(t)) qui est non croissante.

Démonstration

De la méme maniere que Laforest-LeFloch (Laforest anddaif 2010), nous
démontrerons le théoreme 2.1. Nous aurons besoin dgalités qui correspondent aux
seize cas dans le chapitre 3. Les symbales,, u,, sont présents. lIs représentent
respectivement I'état de gauche, I'état de droite eat’'@termédiaire pour décrire deux

ondes entrantes.

Pour la description des ondes, nous conserverons la notatroduite par LeFloch
(LeFloch, 2002) puisque celle-ci est claire et concise.ignification des differents

symboles est donnée dans les lignes qui suivent.

C : une onde de choc classiquesi> 0 alorse*(u;) < u, et siu; < 0 alors

¢Hw) > u,);

N : une onde de choc non classiquesi= ¢’ (w;)) ;

R : une onde de raréfaction (gi > 0 alorsu, > u; et siu; < 0 alorsu, < w;);
1 :I'onde se déplace de la gauche vers la droite (onde critisga

| :'onde se déplace de la droite vers la gauche (onde d&sanie) ;
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+ : 'onde joint deux états positifs ;
— :I'onde joint deux états négatifs ;
+ : 'onde joint un état positif et un état négatif;
F : 'onde joint un état négatif et un état positif;
/ . onde(s) résultante(s) ;
o(-) : laforce d’'une onde;
o("') : la force d’'une onde résultante ;
[V] : le changement dans la fonctionnelle de variation totalegalisée.

Par exemple, nous employons la notaﬂ@i(ﬂ) — (CY) pour indiquer qu’une onde de
raréfaction et une onde classique interagissent. Poaréaction, le signe- indique
gue I'onde relie deux états positifs alors que la flechepginte vers le haut signifie
gue cette onde est croissante. L'onde résultante quigmbde cette interaction est une
onde de choc. Pour spécifier qu’il s’agit d’'une onde réesu#, le symboleest employé

et cette onde est décroissante puisque la fleche assocéle-ci pointe vers le bas.
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Cl
um
(&
R
U
FIGURE 2.1Cas RC-1
(RL.CY) — (V)
Cas RC-1(R.C') — (CV)
Ce cas est constitué des inégalités :
max (@ﬁ(ul)a @ﬁ(um)) < U < Uy, 0 < up < Up,.

Nous divisons ce premier cas en deux parties selon le signg de
1) Siu, > 0 alors nous avongR} C) — (C1).

Nous allons évaluer le changement dans la fonctionnell@dation totale généralisée,
[V]. Ce calcul consiste a additionner les forces des ondefiaétes et de soustraire de
celles-ci les forces des ondes entrantes. Nous avons laestarsérie d’inégalités :

0 < u, < u < u, pourtraiter les valeurs absolues dans I'expression (2.2).



V] =0o(C{) - o(RL) — o(CY)
= |ug — up| = [ — w| = [t — u,|
= (g —uyp) = (U — ug) = (U — 1)

= —2(Up — W) = —2|tp, — wg| = —20(RL)

2) Siu, < 0 alors on obtientR}, C1) — (C).

De plus,’(u;) < u, alors—u, < —¢’(u;) < u;. Donc,

V] =a(CY) - o(R) — o(CL)

= |y + | = |t — W] = |t + u,| = —20(RL).

Cas RC-2(R\.CL) — (NYRY)

Nous avons les inégalités :

<pﬁ(um) <u, < gob(ul) <0< U < Up.

Encore une fois, nous sommes en présence de deux sous-cas.

25

(2.2)

(2.3)

1) Si —u, < u; alors nous obtenons la série d'inégalitess’ (u;) < —u, < w; < Upp,.
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FIGURE 2.2Cas/ RC,:-Z
(RLCY) — (NLRY)

V] = o(NE) + o(RY) — o(RL) — o(CL) (2.4)
= |ug + " ()| + |9 () = ur| = [t — ] = [t + s
= 2[¢"(w) = u,| = 2y — w| = =2(o(RL) — o(RL))
Cette quantité est négative parce qtiéu,,) < u, < ¢’(u;) < 0 etdonc

P (u-) < Hu-) <u (2.5)

Puisque la fonctiof + @’ (@) est croissante alors

V] <219 (w) = & ()| = 2Jtm — ] (2.6)

< —2Lip(u + ¢ (w))o(RL) < 0.



FIGURE 2.3 Cag RC-3
(RLCH) — (NLCT)

En d’autres motsy(R.) > o(R").
2) Si—u, > u,; la conclusion est la méme.
Cas RC-3(RLCY) — (NLCT)

Nous avons les deux séries d’'inégalités :

max (¢ (w), 0% (um)) < ur < ©* (),

Deux sous-cas sont présents selon le signe.de
1) Siu, < Oalors on a R, CL) — (NLCT).

La série d’inégalites est< —u, < —¢’(u;) < U < Upp.

0 < u < Up.

27



28

V] =o(N) +o(Cl) = o(R)) — o(CY) (2.7)
= [+ " ()| + 1" () = | = |t = 1] = [t + 10
= —20(R})

2) Siu, > 0 alors on obtient R, C1) — (N1 C1).

Nous avons les contraintas < —¢”(u;) < w4 < Up,.

V] =o(N{) +0(CL) — o(R}) — o(CY) (2.8)
= |ul + (pb(ul” + |Q0b(ul) + ur| - |um - Ul| - |um — Uy
= —20(R})

Cas RN(RLNL) — (NYRY)

Nous devons considérer les conditians= ¢ (u,,) €t0 < u; < Up,.

Ce cas génére deux sous-cas dépendant de I'ordre esi&f’ (u,, )

etuy;.

1) Lorsque nous avonsy’ (u;) < —¢° (um) < u; < Uy, alors
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FIGURE 2.4Cas RN
(RLNL) — (NLRL)

V] = o(NY) + o(RY) — o(R}) — o(NL) (2.9)

= [+ @ ()] + 19" (w) = @ ()| = [t — @] = [t + & ()|

ce qui implique

V] =21 () = ¢ (um)| = 2| — wi] (2.10)

< —2Lip(u + ¢")|tm — w| < —2Lip(u + ¢")o(RL).

2) Le second sous-cas est caractérisé-pai(u;) < u; < —¢° (Up) < Un.

La conclusion demeure la méme.
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FIGURE 2.5Cas CR-1
(CLRY) — (C1)

[V] < —2Lip(u+ ¢’)o(R}) (2.11)

Cas CR-1(CLR") — (1)

Les inégalités sont les suivante¥u;) < u, < u,, < 0 < u,.

Ceci implique que-u,, < —u, < —¢’(u;) < ;.

V] =o(CY) — o(CL) — o(RY) (2.12)

= |y + up| — |ty + U | — |t — uy] = —20(R")

Cas CR-2(CLR!) — (CY)

Les contraintes sont données patx (¢*(w;),0) < u, < u, < u; et les ondes sont



Uuj
l
Cy Ci/
Uy u,
FIGURE 2.6Cas CI:R-Z
(CLR) —(CY)
toutes classiques.
V] =0o(CY) = o(C) — o(RL)
= |up — up| = | — U] — |t — u,| = _QU(RL)

Cas CR-3(CLR') — (NYRY)

Les inégalités sont, < ¢’ (u;) < ¢ (u) < Uy < 0 < 1.

Nous avons deux sous-cas possibles.

1) Siu; < —u, alors nous devons considérer les inégalités suivantes

—Upy, < —Sﬁﬁ(ul) < —<Pb(uz) <up < —Up.
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(2.13)
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FIGURE 2.7 Cas/ CR-B
(CLRY) — (NLRY)

[V] = o(NY) + o(RY) — o(CL) — o(RY) (2.14)
= |+ @ (w)| + ¢ (w) = wr| = |1+ | = |t — |
= 2w + | = 1" (w) = wml) = 2(Ju, — " (w)] = Ju + wpn))
— —2(¢(R") — o(RY))

et puisquer(R") = | — uy + tm| > o(RY) = | — u, + ¢ (w))

alors[V] < 0.

2) Siu; > —u, alors on a—u,, < —p'(u;) < —¢’(w) < —u, < .

V] =o(NY) +o(RY) — o(CL) — o(RY) (2.15)
= —2fup, — ¢ (w)| = —2(c(RY) — o(R))
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FIGURE 2.8Cas CR-4
(CLRY) — (NY T

Cas CR-4(CLRY) — (NLCT)

Les contraintes ont la formg’ (u;) < u, < ©* (1) < Uy, < 0 < .

Alors on obtient-u,, < —u, < —¢"(u;) < u.

V] =o(NY) +a(C”) —o(CL) — o(RY) (2.16)
= |ul + (pb(ul” + |90b(ul) - ur| - |ul + um| - |um — Uy
= —20(Rl_)
Cas CC-1(C1Ct) — (CV)

Les contraintes s’expriment sous la forme

max (apﬁ(ul),goﬁ(um)) < Up < Uy < Up, Uy > 0.
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FIGURE 2.9Cas CC-1
(CLCh = (CY)

Il'y a deux sous-cas.
1) Siu, > 0 alors nous avongCt C1) — (V).

Les inégalités sort < u, < u,, < u;.

V] =o(CY) - o(CL) — a(C}) (2.17)

= |uy — up| — |ug — Up| — |y, —u| =0

2) Siu, < 0 alors(CLCL) — (CL).

Nous avons les inégalités suivantes —u, < —¢’ () < Upm < u;.
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FIGURE 2.10Cas CC-2
(cich) —(cY)

V] =0(CE) = o(CL) = o(CL) (2.18)

= |uy + up| — |ug — wp| — |ty + u,| =0

Cas CC-2(CLC) — (CV)

Les contraintes prennent la forme suivante

W) < Um < Uy < O (Up) < upy Uy < 0.

1) Siw, > 0 nous avongCLCL) — (CY).

Les contraintes se présentent comme sulit

— Uy, < _(pb<ul> <
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b
Uy < O (Um) < @ (Up) < —Upn.
Nous combinons celles-ci pour aboutir a

0 <ty < @ () < @ () < —tm < —" (1) < .

V] =0a(CY) - o(CL) - a(CL) (2.19)

= [ = up| = g + | = [t +u,[ =0

2) Siu, < 0alorsonaCLC!) — (CY).

Nous devons considérer les inégalit®s< —u, < —u,, < u;.

V] =o(CY) — o(CL) — o(CT) (2.20)

= [ug + up| = ug + | = [ty — u[ =0

Cas CC-3(CLcl) — (NY ™)

Nous avons les états suivants a regarder

@b(ul) < O up) < up < (W) < U < U, Up > 0.

1) Siu, < 0 on obtient(C+CL) — (NECT).
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FIGURE 2.11Ca§ CC-3
(CiCh) — (NLCT)

On considere que,, < —¢’(u;) et que—u, < —¢’ () < Up.

Nous arrivons a0 < —u, < —¢"(up) < Uy < —¢"(u;) < u;.

V] = o(NL) +o(CT) = o(CH) — o (CL) (2.21)

=+ ¢ ()| + 1" (w) = el = |ug = | = [t +ur| = 0

Par contre Sii,, > —¢’(1;) on a la série d'inégalites) < —u, < —¢’(u;) < Up, < u;.
L'expression poufV/] est identique et le résultat demeure O.

2) Siu, > 0 nous sommes en présence(dd C1) — (N} CL).

Traitons le cas, > 0 etu,, < —"(u).

Les inégalités ont la forme suivanté < u, < u,, < —¢"(u;) < .
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FIGURE 2.12Cas CN-1
(CLNE) = (C)

V] = a(NL) +0(CY) — a(CL) — a(CL) (2.22)

= Jur+ @ ()| + 19 (w) + | = fur = | = |t = ur = 0

Considérons maintenant le dernier sous-ags= 0 etu,, > —¢"(u).

Ici, le résultat obtenu est le méme que celui qui provientadoremiére partie du
sous-cas 2). Dond’| = 0.

Cas CN-1(CLNY) — (C)

Les contraintes sont): < u,, < u; €tf(u) < u, = @ (uy,).

On obtient les inégalités qui suiverlt < — " (u,,) < Uy, < .
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FIGURE 2.13Cas QN-Z
(CLNT) = (CY)

V] =o(CE) = o(Cy) - a(NY) (2.23)

= |ug + ¢b(um)| — [ = U | =t + ¢b(um)| =0

Cas CN-2(CLNL) — (¢h)
Ce cas est constitué paf(u;) < u, < 0 etu, = ¢"(u,).

Nous avons besoin des inégalités ci-dessous :

0 <ty = ¢ (tum) <~ < =" () < .
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FIGURE 2.14Ca§ C[\I-3
(CiNy) — (NpCh)

V] =o(CY) - o(CL) — a(N}) (2.24)

= |u — ¢b(um)| — [ + U | — U + ¢b(um)| =0

Cas CN-3(CL VL) — (Y o™

Nous avons les états< u,, < u; etu, = ¢’ (uy,) < ¢ (u;).

Deux sous-cas doivent étre pris en considération.

1) Siu,, < —¢"(u;) nous avons les inégalites qui suivent :

— 0" (U) < U < —¢"(u;) < 1. AlOrs,
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Uy

NZN

ol

Uy

FIGURE 2.15Cas NC
(NLCT) —(CY)

V] = o(NY) +0(CT) = o(C}) — a(NY) (2.25)
— Jur + @ ()] + [0 (w) = & ()] = 1t = | = it + ¢ (1)
=0.

2) Siu,, > —¢’(u;) NOUs avons-¢’ (u,,) < —¢’ (u;) < U, < ;.
Tout comme dans le premier sous-¢&$ = 0.

Cas NC(NiCh) — (V)

Les états se présentent de la maniére suivante :

Uy = (pb(ul>7 (pﬁ(ul> < U, < @ﬁ(um) < uy.

1) Siu, < 0 les inégalités s'écrivent+u, < —¢”(u;) < ;.



Les interactions entre les ondes soNt.C') — (C).

V] =0(CE) = o(NL) o (C)

= |l +u,| — Jw + ¢ (w)| — ¢ (w) —u,| =0

2) Siu, > 0 alorson A NLCL) — (CY).

Les inégalités sortt < u, < —¢"(u,,) < —¢ (u) < .

V] =a(CY) = o(NL) — o(CL)

= lw —u,| — Ju + ¢ ()| — 1" (w) +u,| =0

Cas NN(NtNL) — (¢)

Les états sont,, = ¢’ (u;) etu, = ©"(u,,).

Les inégalités requises pour ce cas sank: ¢’ (u,,) = u, < —¢ () < u;.

V] = 0(CY) = o(N) = o(NY)

= Jur = ¢ ()| = Ju + & ()| = | (w) + &’ ()| = 0

42

(2.26)

(2.27)

(2.28)



FIGURE 2.16CasINN
(NLND) = (CY)
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CHAPITRE 3
ANALYSE D’'UN POTENTIEL D'INTERACTION

Notre objectif dans ce chapitre est de présenter lestegswgjui proviennent de la
fonctionnelle employée pour effectuer I'analyse desese&s d’interactions possibles

au niveau des ondes. Mais tout d’abord, nous allons défitiie fonctionnelle.

C.(a(x) —a(y))t méme monotonocité
0(z,y) =
1 sinon

Dans la définition de la fonction de poidéz, y), C, est une constante positive. De
plus, nous dirons que deux ondes ont la méme monotoni@tkes sont toutes les deux

soient des chocs (classiqgues ou non classiques) ou désctags.

xT

La définition de la vitesse normaliséel’une onde en: avec des états voising etu
se lit comme suit :

f (i)
(@)

A l'intérieur de la définition ci-dessug,, se présente sous la forme :

a(z) = —

f(i)
(

i)

Uy, Siu, >0
Uy =

gp%(ux), Siu, <0

Pour la force des ondes, etos nous utiliserons la définition de Laforest-LeFloch

donnée par I'équation (1.19).

La fonctionnelle introduite ci-dessus est I'analyse neltarde celle présentée par
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Iguchi-LeFloch (Iguchi and LeFloch, 2003) dans leur étuRir contre, ce n’est pas le
seul potentiel d’interaction qui a été étudié dans lespaEn effet, le potentiel de

Glimm

Q) = Y oaxog

« approched
a fait 'objet d’'une etude par Laforest-LeFloch (Laforastd LeFloch, 2010). lls ont
démontré que ce potentiel est décroissant sauf pouaeR€-3, CR-4, CC-3 ainsi que
CN-3.

Dans des travaux non publiés, ces deux mémes cherchdwasaiysé la fonctionnelle

ci-dessous

Qc(u(t)) = Z 0 x 0, X 0p.

« approched

Dans ce second castilise la vitesse de Rankine-Hugoniot plutdt que la \dtes
normaliséei. Le potentiel d’interaction est décroissant sauf poucksRC-3, CR-4,
CC-3 et CN-3.

\oici le théoreme principal de ce mémaoire.

Théoreme 3.1.

Soity” une fonction cigtique qui satisfait les propgies H1, H2, H3 et H4 alors la
fonctionnelle introduite ci-dessus es®aloissante dans tous les cas d’interactions sauf
pour CC-1, CC-2, CC-3, CN-1, CN-2, CN-3, NC et NN.

Nous avons deux objectifs dans cette recherche. Nousdésittroduire une
fonctionnelle qui permet d’obtenir un potentiel d’intetiaa décroissant pour les cas
RC-3, CR-4, CC-3 et CN-3. Ces quatre cas font échouer |gifomelle
Iguchi-LeFloch. Notre propre fonctionnelle est de typecigeieFloch. Dans un

second temps, nous allons tester les autres cas d'intamagibssibles.

Passons maintenant a la présentation des résultatsustaepartir de notre
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fonctionnelle. Pour faciliter la lecture, nous allons itieer chaque cas d’interaction

avec son titre et les sous-cas résultants avec les chiffresins i) a iv).

Cas RC-1(RLCY) — (CV)

max(of (1), o (Um)) < ur < u; €1 0 < 1y < Upy,.

Considérons tout d’abord la situation ou > 0. Toutes les ondes présentes joignent
deux états positifs. Toutefois, lorsque < 0, des ondes qui relient un état positif a un
état négatif apparaissent. Dans les deux situationsalesls sont identiques. Pour

cette raison, nous présenterons les calculs sans fainstifection selon le signe de..

i) Soit une onde de choc enavecz < y.

B(y) = 0(y,C")o(CY) — 0(y, R} )o(R]) — O(y,CY)o(C*) (3.1)
= Cu|v(CY) = Al o(CY) — o(RL) = Culv(CY) — Al o(CY)

Nous avons pour les vitesses(C'') < v(C') < v(RL).

En pratique, nous devons étudier le signe de (3.1) pouesdast valeurs d&, la

vitesse ery. En général, il sera facile de constater ggequi est une fonction continue
et linéaire par morceaux par rapport au terfmest négative en vérifiant sa valeur pour
une seule valeur critique de Dans le cas actuel, il est facile de voir qu’en regardant
les valeurs de3(y) pour toutA décroissant mais débutant &n= oo, B(y) = —o(R.)

si A > v(R.) et queB(y) est certainement décroissant paue [v(C"), v(R.)]. Le

seul terme positif apparait quand< v(C").
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Dans ce cas, on peut écrire

B(y) = C,|v(CY) = Alya(C) = o(RL) — Cifo(CY) = Ao (CY) (3.2)
= Cu[o(CY) = Al [o(CY) = o(CY)] = a(RL) = Culo(CY) = v(CY) 1o (CY)
= —C,Ju(CY) = AlLa(RL) — CJu(Ct —v(CY)|o(CY) < 0.

Dans bien des cas qui viennent plus tot, un calcul sembsaviepossible et nous
mentionnerons tout simplement que le pire cas possiblé est(C''), sans toutefois

répéter le calcul ci-dessus.
i) Soit une raréfaction ep avecr < y.

Puisques (CV) — ¢(C') < 0, alors nous avons

B(y) = 0(y,C")o(CY) = 6(y, R} )o(R}) — 0(y, C1)o(CY) (3.3)
= o(CY) = Cylu(RL) — Al o(RL) — o(Ch) < 0.

iii) Soit une onde de choc enavecr < y.

B(z) = 0(z,C")o(CY) — 6(x, R )o(RL) — 6(z,CHYo(CY) (3.4)
= C,|A = o(CY)|4o(CY) — o(RL) = CL A = v(CY) |10 (CY)

Puisque I'onde se trouve du cdté gauche, il est facile awarquer que cette quantité est

négative si\ = v(C""). Pour montrer qué3(y) est négatif pour tout, il suffit de le
montrer quand\ = v(C"'). Alors, nous avons I'expression
[0(C*) = o(CY)| = Co(RL).
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B(z) = C,.Co(RL)o(CY) — o(RL) (3.5)
= o(RV)[C.Ca(CV) - 1] < 0.

Si nous poson€’, de maniere a ce que

C.Co(CY) <1

alors B(z) sera négatif. Ceci est possible si la variation totale deles est bornée a

priori.
iv) Soit une onde de raréfaction eravecx < y.

Pour toutA, nous avong (C') — o(C') < 0, ce qui conduit &
B(x) = 0(x,C")o(C) = 8(x, RL)o(RL) — 6(z, CH)o(CY) (3.6)

= o(CY) = CLJA = v(RL )| o(RL) — o(C) < 0.

Cas RC-2(R\.C}) — (NYRY)

() < up < () <0< 1y < Uy,



i) Soit une onde de choc gnavecr < y.

B(y) = 0(y, N )o(NL) + 0(y, RY)o(RY) — 0(y, R})o(RL)
— 0y, C1)o(CL)
= CuJo(NE) = Alyo(NE) + o(RY) — o(R))
— Cufo(C) — Alya(CY)

Nous avons v(N1) < v(RY) < v(CL) < v(RD).

Le pire cas correspond&= v(NY ). Puisquer(RY) < o(R!), on obtient

B(y) = o(RY) = o(RL) = CL[v(CL) = v(N{)|4+0(CL) < 0.

i) Soit une raréfaction ep avecz < y.

Puisquer(NY) < o(CL),o(RY) < o(R.) et pour les vitesses
lw(RY) — Aly < Ju(RL) — Al. Alors,

B(y) = 0(y, NY)o(NL) + 0(y, RY)o(RY) — 0(y, RL)o(RL)
= o(NY) + Culo(RY) = AlLo(RY) = CiJv(RL) = Al o(R])

—o(CY) < 0.
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(3.7)

(3.8)

(3.9)
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iii) Soit une onde de choc enavecr < y.

B(z) = 6(z, NV Yo (NY) + 6(z, RY)o(RY) — 6(z, R} )o(R!) (3.10)
—0(z,CL)o(CY)
= CA = v(NL)|so(NY) + o(RY) — o(RL)
— CJA —v(CL)]4a(CY)

Le pire cas correspondf= v(C1). Alors,
B(z) = Cy[v(CL) — o(NE) |40 (NE) + o(RY) — o(RY). (3.11)

or, [u(C) — v(NY)|4 < Co(R!). Lexpression mathematique devient

B(z) < C,Co(RV)o(NY) + o(RY) — o(R]) (3.12)
= o(R)) x [C.Co(NY) = 1] + o(RY)

Ici, nous introduisons un résultat utile que nous obtermmse basant sur I'inégalité :
o(RL)) < —Lip(¢")o(R})

Ceci nous permet d’écrire :
B(z) = o(R)[C.Co(NL) + Lip(¢’) — 1] < 0 (3.13)
si la condition ci-dessous est respectée
[C.Co(NL) + Lip(¢)] < 1. (3.14)

Selon la théorie, il est toujours possible de supposeidpie’) < 1 uniformément



pour I'ensemble des valeurs bornéesude

iv) Soit une raréfaction em avecr < y.

B(z) = 0(z, NDo(NY) + 6(z, RV)o(RY) — 6(x, R} o (R))
—0(x,CL)a(CY)
= o(NL) + CuJA = o(RY)[1o(RE) — C|A —v(RL) 1o (RL)
—a(CL)

Le pire cas esh = v(R. ). Alors,

B(z) = o(N{) = o(CL) + Culo(RL) = v(RY)| 1 o(RY)

Or, nous avons I'expressidnr (N ) — o(CL) = —Cho(CL) et
lw(RL) —v(RY)|+ < Co(CL). Alors,

B(x) < o(NL) - o(CL) + C.Cio(CL)
< —Cho(CY) + C,.Cio(C)
= o(CL)[-Cy + C,.C1] < 0

lorsqueC, satisfait I'inégalité
O*Cl S CZ

avec(C ety qui sont des constantes.

Cas RC-3(RLCY) — (NLCT)

max (¢’ (u), o (um)) < u, < O*(w) et 0 < < uy,.

1. La démonstration de ce résultat est difficile.

51

(3.15)

(3.16)

(3.17)
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i) Soit une onde de choc gnavecr < y.

B(y) = 0(y, N{)o(NY) + 0(y,C")a(C) - 0(y, RL)o(RL) (3.18)
— 0y, CHYo(Ch)
= C,Jo(NL) = Alo(NE) + Culv(CV) = Ao (CT) — o(R)
— CuJo(CY) = Also(CY)

Pour les vitesses, on aax(v(C}), v(NY)) < min(v(C1), v(RL)).

Le pire cas possible corresponda= v(C*) etv(C') < v(NY) alors nous obtenons :

B(y) = Cu[o(NL) = o(CH)] o (NE) + Cufo(CT) = o(CH4o(CT)  (3.19)
—o(R})
< C,Co(RV)o(NE) + C.Coo(RY)o(CT) — o(R))
= o(RV)[C.C1o(NE) + C,.Coo(CT) = 1] < 0

si nous prenoné’, a priori petit. Autrement dit, il faut que

C,Cio(NY) + C.Coo(C1) < 1.

i) Soit une raréfaction ep avecz < y.

Ici, étant donné que(NY) + o(C1") < o(C*) alors on a

B(y) = 0(y, N )o(NL) +0(y, C")o(C) — 6(y, R )o (R (3.20)
—9(y, CHa(C)

= o(N) +0(C") = Culo(RL) - Alyo(RL) - o(Ch) < 0.
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iii) Soit une onde de choc enavecr < y.

B(z) = 0(z, NN Yo (NY) + 0(z, C")o(C") — 0(z, R} )o(R]) (3.21)
—0(z,CHYo(CY
= A = v(NE) |y o(NE) + CulA = v(C) ] o(CT) — o(RL)
— CiA = v(CY)] 4o (C)

Le pire cas esh = v(C') avecu(NL) < v(C). Lorsque ces conditions sont

satisfaites, nous avons

B(z) = CuJo(CY) = v(NE) |0 (NY) — o(RL) (3.22)
= C.Cy0(RL)o(NY) — o(R))
— o(RD)[C.Cs50(NL) —1] < 0
SiC,Cso(NY) < 1.
iv) Soit une raréfaction em avecr < y.

Sachant que(NY) + o(C") < o(C'), nous déduisons que

B(z) = 0(z, NN )o(NY) + 0(z, CT)o(C) — 0(z, R} )o(R]) (3.23)
—O(x,CHo(C)
= o(NL) +0(C") = Ci A = v(RL) |40 (RL) — o(CY) < 0.

Cas RN(RLNY) — (NY RY)

0<w <Un e u. = ().
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i) Soit une onde de choc gnavecr < y.

B(y) = 0(y, N©)o(NL) + 0(y, RY)o(RY) — 0(y, R})o(RL)  (3.24)
— 0(y, Ni)o(NL)
= CuJo(NE) = Alyo(NE) + o(RY) — o(R))
— CuJo(NL) = Ao (NY)

Les inégalités pour les vitesses ont la forme :
v(NL) < v(NL) < min(v(RY),v(R])) < max(v(RY), v(R1)).

Le pire cas consiste eh = v(N1 ). Parce quer(R") < o(RL), nous avons

B(y) = o(RY) — o(R) — CuJv(NL) — v(NL)|4o(NL) < 0 (3.25)

i) Soit une raréfaction ep avecz < y.

B(y) = 0(y, N{)o(NY) + 0(y, RX)o(RY) — 0(y, RL)o(RL) (3.26)
= o(N) + Cuu(RY) — Also(RY) — Culu(R}) — Also(R})

—o(NL)

Le pire cas possible est lorsqueR!. ) < v(RY) etA = v(R.). Dans cette situation,

nous obtenons ceci

B(y) = o(N{) + Culo(RY) — v(R)|+o(RY) — o(NY). (3.27)
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Or, on peut écrire ce qui suit

o(NY) —o(NY) = o(RY) — o(R) (3.28)
= Lip(¢® 0 ¢")o(RL) — o(RL)

= —o(RL)[1 — Lip(¢’ 0 ¢)]

De plus,|u(RY) — v(R})|; < C, quand une born&V (u,) existe. Donc, nous

aboutissons a I'expression ci-dessous

B(y) = —o(R})[1 — Lip(¢’ 0 ") = C.Cy Lip(¢") 7] < 0 (3.29)
si C, est petit a priori.
iii) Soit une onde de choc enavecr < y.

B(x) = 0(x, N )o(NL) + 6(x, RD)o(RL) — 6(x, R )o(RL) (3.30)
= CuA = (NP |40 (NE) + o(RY) — o(RY)
— CyA = v(Ng)|4o(N2)
Le pire cas correspond/f= v(N1), ce qui méne &

B(z) = Culu(NL) = v(NE)| 1o (NY) + o(RL) — o(RL) (3.31)

Onalu(Ni) - v(NY)|; = Co(R)) eto(RY) = o(RL)|Lip(¢’ o ¢*)].
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B(z) = C,Co(R))o(NY) 4+ o(RY) — o(R)) (3.32)
= o(RL)[C.Co(NY) + | Lip(¢ 0 @) = 1] < 0

si la condition ci-dessous est satisfaite

[C.Co(NL) + | Lip(¢® 0 )| ] < 1. (3.33)

iv) Soit une raréfaction em avecx < y.

B(z) = 6(z, NY )o(NY) + 6(z, RY)o(RY) — 6(z, R} )o(R!) (3.34)
— 0(x, N)o(Ny)
= o(NY) + C|A = o(RY)[1o(RY) — Cu|A — v(R})| 1o (R)
—a(Ny)

Le pire cas & considérer est quand’, ) > v(RY) etA = v(RL).
Nous avons I'expression ci-dessous :
B(z) = o(NL) + C,Jo(RL) — v(RY)| 4o (RY) — o(NL). (3.35)

Tout comme en iy (NY) — o(NL) = —o(R1)[1 — Lip(¢® o ¢")]. Alors que
lu(RL) — v(RY)|4 = C,. Ceciimplique

B(z) = —o(R1)[1 — Lip(¢’ o )] + C.Cy Lip(¢") "o (RL) (3.36)
= —o(RL)[1 - Lip(¢® 0 ¢*) — C.Cy Lip(¢") ™1 < 0



lorsque les constantés. et C; sont suffisamment petites pour avoir

C.Cy Lip(¢") ™" + Lip(¢’ 0 ¢*) < 1.

Cas CR-1(CLR") — ()

O (wy) < Up < Uy <0 < .

i) Soit une onde de choc gnavecx < y.

B(y) = 0y, CL)a(CL) — 6(y, C)a(CL) — 8(y, R )o(R)
= C,|o(CY) = Ao (CY) — Culo(CL) — Al (CY)
—o(RY)

La série d'inégalités esti(R" ) < v(CL) < v(CL).
Le pire cas esh = v(CY ). Dans cette situation, nous obtenons :

B(y) = —C.|v(CL) —v(C)|+o(CL) — o(RY) < 0.

i) Soit une raréfaction ep avecr < y.

Puisquer(CY) < o(CL), ona

B(y) = 0y, CL)a(CL) — 6y, CL)a(CL) — 8(y, R )o(R)
— o(CY) = o(CL) = Cu(RY) — AlLo(RY) < 0.
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(3.37)

(3.38)

(3.39)

(3.40)
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iii) Soit une onde de choc enavecr < y.

B(x) = 60(x,C{)o(CL) — 0(x,CL)o(CL) — O(x, RL)o(RL)  (3.41)
= C4|A = o(CY)] o (CY) = CUA = v(CY)[o(CL)
—o(RY)

Le pire cas esh = v(C1). Alors

B(z) = CiJu(CL) —v(CE)|1o(CY) — o(R) (3.42)
= C,Co(RY)o(CY) — o(RY)
= o(RY)[C.Ca(CY) —1] <0

si nous faisons I'hypothése que les constaftest C' sont assez petites pour que la

condition suivante soit vraie

C.Co(Ch) < 1. (3.43)

iv) Soit une raréfaction em avecr < y.

B(z) = 6(z,CL)o(CL) — 6(z, CL)o(CL) — 6(z, R )o(R") (3.44)
=o(CY) = o(CL) = CL|A — v(RY)|10(RY) < 0.

Cas CR-2(CLR!) — (CY)

max(f (1), 0) < Uy, < Uup < .
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i) Soit une onde de choc gnavecr < y.

B(y) = 0(y,CY)a(CL) — 0(y, CL)o(CL) — 0(y, R )o(RL) (3.45)
= C,Ju(CL) = Ao (CY) — Cuv(CY) — Al4a(CY) — o(R})

Nous constatons quéR|) < v(Ch) < v(CY).

Ici, la pire situation correspond&= v(C). Nous obtenons

B(y) = CyJo(CY) = v(Ch) o (CL) - o(RL) (3.46)
= C.Co(R})o(CY) — o(R])
— o(RV)[C.Co(CY) —1] < 0.

Encore une fois, nous faisons I'hypothése quainsi queC' sont des constantes

positives et assez petites pour avoir

C,.Co(CY) < 1. (3.47)

i) Soit une raréfaction ep avecz < y.

Puisquer(CY) < o(C1) alors

B(y) = 0(y, C{)o(CL) = 0(y, CL)o(CL) — 0(y, RL)o(RL)  (3.48)
= o(CY) — o(C}) = Culo(RL) — Al (RL) <.
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iii) Soit une onde de choc enavecr < y.

B(x) = 8(x,CY)a(CY) — 8(z,CL)o(CY) — O(x, R )o(RL) (3.49)
= O A = o(CY) |+ (CY) — CLA — v(CL)4a(CY) — o(R})

Le pire cas possible provient de= v(C_{). Alors,

B(x) = —Cy[v(CY) = v(C})]+0(CY) — o(RL) < 0. (3.50)

iv) Soit une raréfaction em avecx < y.

Puisquen(C’}r') < o(C+), alors on obtient ceci

B(x) = 0(z,CY)o(CY) = 0(x, CL)o(CL) — (z, RL)o(RL)  (3.51)
= o(CL) = o(C}) — CLJA —v(RL)|1o(RL) < 0.

Cas CR-3(CLRY) — (NY RY)

Uy < () < O (wy) < um <0 < .

Les vitesses sont dans l'ordre suivantin(v(R" ), v(NL)) < max(v(R"), v(NL)) <
min(v(CL), v(RY)) < max((v(CL), v(RY)).

i) Soit une onde de choc gnavecx < y.

Nous sommes en présence des inégalités suivantes gdordes U(Rl_') < o(RY) et
o(Ni) < o(CL).
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Tandis que pour les vitesses, ofp@NY ) — A|, < |v(CL) — Al,. Ces trois inégalités

meénent a

B(y) = 0(y, N )o(N) + 0(y, R)a(RY) — 6(y, CL)o(CL) (3.52)
—0(y, R )o(R")
= CJo(NY) = Al Lo(NEY) + o(RY) = CLu(CL) — Al o (CL) (3.53)
—o(RY) <.

i) Soit une raréfaction ep avecr < y.

B(y) = 0(y, N} )o(NL) + 0(y, RY)a(RY) — 0(y, CL)a(CL) (3.54)
—O(y, R )o(RY)
= o(NY) + Cu|v(RY) — Alyo(RY) — o(CY)
— Cv(RY) — Al o(RY)

Le pire cas qu’on puisse avoir est= v(R").

B(y) = o(NL) + CuJu(RY) — v(RY)| o (RY) — o(CY) (3.55)

or,a(NL) — o(CL) = o(RY) — o(R ) et |u(RY) — v(RY)|, = Clo(RY) — o(RY)|

ou C est une constante. Ceci nous permet d’écrire

B(y) = o(RY) — o(R") + C.C|o(RY) — o(RY)| (3.56)
x o(R") = |o(RY) = o(R")|[~1 + C,.Co(RY)] <0
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si la condition donnée ci-dessous est satisfaite
1+ C,Co(RY)] <0 (3.57)

avecC, ainsi queC qui sont des constantes positives.

iii) Soit une onde de choc enavecx < y.

B(z) = 0(z, NY)o(NY) + 6(z, RV )o(RY) — 6(z, CL)a(CL) (3.58)
— 0(z, RY)o(RY)
= CWA — o(NE)|1o(N) + o(RY) — CLA — v(CY)]40(CL)
—o(RY)

A = v(CL) est le pire cas.

On peut écrire les inégalites qui suivent(C'L) — v(NY)|, < Co(RY) et pour les
fOfCGSO’(Rl_I) < Ao(R') oli0 < X < 1. Alors, en se servant de ces mémes inégalités,

nous arrivons a

B(z) < C,Co(R")o(NL) + Ao (RY) — o(RY) (3.59)
= o(RO[C.Co(NYY+ A -1 <0

lorsque la condition exprimée par
C.Co(NYY+ A< 1 (3.60)

est respectée.
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iv) Soit une raréfaction em avecx < y.

B(z) = 0(z, N )o(NY) + 0(z, RV )o(RY) — 6(z,CL)o(CL)  (3.61)
—0(z, RY o (R")
= o(NY) + CA — o(RY)| o (RY) — o(CL)
— Cu|A = v(RY)| 4o (RY)

A = v(RY) représente le pire cas qu’on puisse rencontrer.

Puisquer(NY) < o(CL), v(RY) < v(RY) alors on peut affirmer que

B(y) = o(N{) — o(CL) — C,Jo(RY) — v(RY)|yo(RY) < 0. (3.62)

Cas CR-4(CLR'Y) — (NL )

gob(ul) <y < OHwy) < Uy <0 < .

i) Soit une onde de choc gnavecx < y.

B(y) = 6(y, N )o(NL) +6(y, CT)o(Cl) = 6(y, CHo(CL)  (3.63)
— 0(y, R )o(R")
— O |o(NE) = Also(NE) + C.Jo(CY) = Al o(CT)
— Cfo(CL) = Alyo(CL) — o(RY)

L'ordre des vitesses esb(R*) < v(NL) < v(CL) < v(CT).
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Le pire cas provient d& = v(C'). Alors,
B(y) = C.o(CT) = vo(CL) |40 (CT) — o(RL). (3.64)
En observant que/(C") — v(CL)|, = Co(RY), nous obtenons

B(y) = C,Co(R o (C) — o(R) (3.65)
= o(RH[C.Co(C)=1] <0

si nous avons’,C'o(C1) < 1.

i) Soit une raréfaction ep avecr < y.

Puisquer(NY) 4 o(C") < o(CL), nous obtenons

B(y) = 0(y, ND)o(NL) + 0(y. CT)a(CT) — 0y, CL)o(CL) (3.66)
—0(y, R* o (R)
=o(NL) +o(CT) = o(CL) = Clo(RY) — Al o(RY) < 0

iii) Soit une onde de choc enavecr < y.

B(z) = 0(z, N o(NY) + 0(z, 1o (C1) = 0(z, CL)o(CL) (3.67)
— 0(z, RY o (R")
= CuJA = o(NY)| o (NE) + CilA = o(CT)|o(CT)
— C|A = 0(Cy)|+0(CL) — a(RL)

Le pire cas possible et = v(C1) avecu(C!) > v(CL).



Devant cette situation, nous obtenons :
B(z) = Cifo(CL) — o(NL) |40 (NY) — o(RL).
Si on utilise le fait quév(CL) — v(NY)|. < Co(RY) alors
B(z) = o(RY)[C.Co(NE) —1] <0
si la conditionC,Co(NY) < 1.
iv) Soit une raréfaction em avecr < y.

B(z) = 0(z, N Yo (NY) + 0(z, 1o (C1) = 0(z, CL)o(CL)
— 0(x, R" o (RY)
=o(NY) +0(C") = o(CL) = CLA — v(RY) |0 (RY) < 0

Cas CC-1(Ctch) — (CY)

max (¢ (1), 0% (Um)) < tp < Up < u; €L Uy > 0.

i) Soit une onde de choc gnavecx < y.

B(y) = 0(y,C*)o(CY) — 0(y,CL)a(CL) — 6(y, CHa(CH)
= Cuu(CY) = Al1o(CY) = Culv(CY) — Alro(CY)
— C,Jo(CHA| o (CY)

Les vitesses sont dans l'ordre(C) < v(CY) < v(CY).

SiA € [v(CY), 00) alors B(y) = 0. Tandis que si\ € (—o0, v(C')], alors nous
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(3.68)

(3.69)

(3.70)

(3.71)



obtenons,

B(y) = Cuu(CY) = v(CH40(CY) = Culo(CL) = v(Ch)]+0(CL)

+ Cuo(CY) = Al4[o(CY) = o(CL) — o (CY)]

Le pire cas est dont = v(C').

Considérons la situation lorsqug > 0.
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(3.72)

Pour évalue3(y), nous allons nous servir des expressions suivantes polartes :

o(CY) = g — )|, o (CH) = |ty — 1|, 7(CY) = |uy — u,|. En utilisant ces

expressions ainsi que les formules de Rankine-Hugoniatlgswitesses

v(C),v(CY),v(CL), nous obtenons

f(ul) B f(ur) _ f(um) _ f(ur)
U — Uy Uy — Uy

_ C*[f(“;) :Z(Um) _ f(U;n) : i(ur)
= Cul(f (w) = flur) = (f () = f (um))]
4 C*f(um> - f(ur>

Uy — Up

B(y) = C4]

](ul - um)

[—(w —up) + (W — um)] =0

Toutefois, siu, < 0 alors les forces s’écrivent sous la forme :

a(CL) = |ug — tml, 0 (CY) = |t + u,|, o (CY) = |y + .

(3.73)
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Un calcul similaire montre que

f(ul) B f(ur) _ f(um) B f(ur)

Bly) = Gl — e ) (3.74)
~o ) Tl =, )
= () = F0) {2 () = f(w)
o UL 2T ) 4 )

Or, on constate que

B(y) = Cu([F () — () = Fun) + F(uwn)) + (Fw) = f(w) = (3.75)
L 2 IO ) = )
AL LU P R R AL (COTES)
- T e

puisque(v(CY) —v(CY)) > 0 et2u, < 0.

il) Soit une onde de raréfaction gravecr < y.



Puisquer(CY) = o(CL) + o (C)

B(y) = 0(y,C*)a(CY) — 0(y, CL)o(CL) — 0(y,C*)o(CH)
=o(CY) —o(CL) —a(CH) =0

iii) Soit une onde de choc enavecr < y.

B(z) = 0(z,C")o(CY) — 0(x,C1)a(CL) — 0(x,CYH)a(CY)
= C,JA = v(CY)]1a(CY) = Cu|A = o(CY) [0 (CY)
— CiA = v(CY)] 4o (Ch)

Ici, le pire cas possible edt € [v(C?), 00). Alors, nous avons

ce qui suit

B(x) = CuJo(CY) — v(C)|+a(CY) = Culo(CF) = v(CH)] 1o (CY).

Traitons tout d’abord la situation lorsque > 0. Nous allons prendre

les définitions des forces introduites pour le gas> 0 en ).

B2y = {0 = F ) flw) = f(w)

U — U, u — u, Jw = ur)
e e U8
= Cul () — )+ () — ()

+ o D)y ) Gy — )
= 0 LTIy 4 = )] = 0
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(3.76)

(3.77)

(3.78)

(3.79)



Considérons maintenant la situation quand< 0. Nous allons
nous servir de nouveau des formules pour les forces péesent

dans le cas i) lorsque. < 0.

B(w) = .1 DIy )
e T A
= C*[f(u;)l - iium) ((w +ur) = (wm + uy))
— () = ) = (Fu) = Fur)) 2
() = £(0)) + (F () = ) ——]
o F ) = Hw) | ) = fa)

Uy — Up Uy, — Up

= C, x 2u, (v(Ch) — ’U(Cl/)) >0
puisqueC, > 0, 2u, < 0et(v(C') —v(CY)) <O0.
iv) Soit une onde de raréfaction eravecx < y.

B(z) = 0(z,C")o(CY) — O(x, C1)a(CYL) — O(z, CHa(C)
= o(CY) —o(CL) —a(CH =0

Cas CC-2(CLCh) — (CV)

() < Upy < Up < O (up) <up €t upy, < 0.

i) Soit une onde de choc enavecz < y.
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(3.80)

(3.81)



B(y) = 0(y, C*)a(CY) = 8(y, CL)a(CL) — 0(y, C)a(CT)
= Cuu(CY) = Al o(CY) = Culv(CL) — Al1o(CL)
— C,Jo(CT) = Alyo(CT)

Nous avons pour les vitesses(C'!) < v(CL) < v(CV).

Le pire cas esh = v(CL). Alors,

B(y) = C.o(CY) —v(CL)l+o(C) > 0.

i) Soit une raréfaction ep avecz < y.

Puisquer(CV) = o(CL) + o(C'), alors nous avons

B(y) = 0(y,C")a(CY) = by, CL)o(CL) — by, CMo(CT)
=o(CY) —o(CL) —a(CT) = 0.

iii) Soit une onde de choc enavecr < y.
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(3.82)

(3.83)

(3.84)



B(z) = 0(x,C")o(CY) — 8(z, CL)o (CL) — O(z, Co(CT)
= C|A = v(CY)] 4o (CY) = CLA = v(CL) 40 (CL)
— CJA —v(C)]4o(CT)

A = v(CV) est le pire cas rencontré. Alors,

B(z) = ~CuJo(CY) = v(CL)[+0(CL) = Culu(CY) = o(CT) |10 (CT) < 0

iv) Soit une raréfaction em avecr < y.

B(z) = 0(z, CY)o(CV) = 0(x, CL)o(CL) — 0(z, CTo(CT)
=o(CY)=a(CL) —a(CT) =0

Cas CC-3(CLch) — (NY ™)

O (w) < () < up < (1) < Uy < up €L Uy > 0.

i) Soit une onde de choc enavecr < y.
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(3.85)

(3.86)

(3.87)
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B(y) = 0(y, N{)o(NL) +0(y, C")o(CT) = 0y, CL)o(CL)  (3.88)
— 0y, CHYo(CY)
= CiJu(NY) = Also(NE) + Cifo(CT) = Al (CT)
— CL|o(CL) = Ao (CL) = Culo(CH) = Al (Ch)

Au niveau des vitesses, nous avons :
v(CY) < v(NY) < min(v(C1"), v(CL)) < max(v(C1"),v(CL)).

Le pire cas correspond= v(C) etv(C}) < v(CT). Alors,

B(y) = C,Jv(C") —v(CY)|La(CT) > 0. (3.89)

i) Soit une raréfaction ep avecz < y.

Puisquer(NY ) + o(CT) = o(CL) + o(C'), nous obtenons

B(y) = 0(y, NL)o(NL) +0(y,C")o(C") = 0(y, CL)a(CL)  (3.90)
— 0y, CH)o(CY)
= o(N) +o(CT) = o(CH) —a(CH) =0
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iii) Soit une onde de choc enavecr < y.

B(z) = 0(z, N o(NY) + 6(z, C")o(C1) = Oz, CH)o(CY) (3.91)
— Bz, CHo(CH)
= CyA = o(NE)| 1o (NE) + CulA = o(CT) 4o (CT)
— CiA = o(C)|40(C) = CUA = w(CY) 1o (CY)

Ici, le pire cas esh = v(C). Alors, on a I'expression suivante :

B(x) = CLJo(C}) — o(ND)[so(NY) + CLlo(CL) — w(CT) oo (CT)  (3.92)
Culo(CL) = v(CH] 1o (Ch)

Pour l'instant, il est impossible pour nous de conclur86i) est négatif mais nous
proposons tout de méme une analyse détaillée de cettesskpn. Nous commencons
avec une analyse approximative Bér) avant de poursuivre plus tard avec une analyse

rigoureuse.
Considérons I'onde de choc imaginaire reliant les états; et (u;). Alors,

o(NL) +o(CT) < o(C)).

Supposons gue nous avons I'expression :

fu) = f(v)

a(u,v) = T
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qui est la vitesse de Rankine-Hugoniot qui joint les éteg$v. Siu,, est proche de;

alorson a

v(CY) = a(ty, ) < a(Qf (W), um). (3.93)

En revanchey,, doit toujours &tre positif. Quang,, sera proche de,, = 0 alorsC"
sera une onde de choc qui reliera deux étatst u,,, qui sont approximativement dans

une région ave¢” < 0, une région concave. Donc, nous pourrions aussi avoir

a(t, ¢ (w)) < alum, uy) (3.94)

En général, I'expression qui compoutéC!) = a(u,., u,,) semble plus probable que

a(Um, 0" (1)) < aun,,u,). Dans ce cas,

[0(C) = v(CH < Jaluy, tm) — al@(w), )| (3.95)
S C’3|ul - @ﬁ(ul)| = CgO'(C[).
Donc,
B(z) < C.o(CY) (clauvi’) 4 Cyo(Cl) — cgo—<cl)). (3.96)

Si les constanteS|, C5, C5 sont toutes presque égales alors puisque

o(NY) +o(C) < o(C;) ily a une possibilite qué(z) soit négatif.



75

Dans les lignes qui suivent, nous allons tenter de confirmite c

affirmation en effectuant des calculs détaillés.

Nous avons:, < ¢*(y;) < 0 et 'expression (3.95)

B(z) = C.|v(C}) — v(N)|o(NL) + Culu(CL) — v(CD)|o(CT) (3.97)
— C,Jo(CY) —v(CL)|e(CY)
:C’*<a(ul,um — ul,ul)> ul—l—ul +C'< (g, U —a(u'l’,ur))

X (ty —u)) — C, <a(ul, Up) — (U, ur)) (U, + uy)

Nous avons I'égalité a(u;, u}) = a(uy, u}). Nous allons nous servir de celle-ci pour

réécrireB(z).

B(x) =C, (a(ul, Up) — a(uy, u?)) (u; + u)) (3.98)
+C, <a(ul, Up) — aluy, uf) + a(uy, u'l’) — a(u,, u'f)) (u, — ulb)

- C, (a(ul, Um) — a(u?, Um) + a(u?, Upm) — (U, uT)> (U + uy)

Les identités suivantes vont étre utiles pour écHfe) sous une autre forme.

a(uy, Upy) — aluy, ulﬁ) = a(ul, ulﬁ + (tp — u?)) — a(uy, uf) (3.99)

o ) )+ O (s — )
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a(ur, up) — alur, @) = a(uf, up) — a(u,, u;) (3.100)

= afuf,uf) — auf, o + (u, — o))

a(ula um) - a(ulﬁ> um) = a’(um> ul) - a’(”ma u; + (ulﬁ - ul)) (3101)
da
= () (uf — ) + o((ulﬁ _ ul)2>
(s ) = (it ) = @1, e+ (0 = 10,) ) = i, ) (3.102)
B
= Sty (uf =) + O( (0 = w,)?)

Réécrivons maintenatit(x) en utilisant les expressions présentées ci-dessus.

B(x) = O, (u + u?)a—:j(ul, 1) (i — ) + O((ul ) — u§)2) (3.103)

+ Culuy — ) (= 52 () — ) + O (= u?)
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Le second terme dans I'expression précédente a la forme :

uﬁ—u Uy — U
() (f = )+ g0 (1t — uf) = (1 — ) (9(0ud) - + g () ==L )

m r Uy — Up

= (= ) (DA + g()(1 = V)

avech € (0,1).

Si g est continue alors il existe" € (u], ;) tel que I'expression

précédente puisse s'écrife,, — u,)g(u*) = (un, — u,) 32 (u*, u).

De plus, on remarque que si~ 0 alorsu* ~ u; et vice-versa; sh ~ 1

alorsu* ~ u).

A une constant€' prés, nous avons la série d'inégalitées :

0 < U — U < Uy — Uy < Ctyn + 1) = Co(CL).

La constant& est reliée & la constante de Lipschitz de la fonctiontioe. Alors,

B(z) < C,(u + ul)g (ug, uf)Co(CL) + C,(u, — ) (3.104)
Oa Oa
X a_<“ uf)Co(CL) + C. U<Cﬂ:)a (thm, ) (uf — w)

— Co(CH S 1) = 1) + O
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s est la force d’'une des ondes.

Réécrivons de nouveas(z).

. 0 . 9
B(x) < Coo(C) (Clur+ uf) 5w, uf) + Cluy — ) 5o (' uf)  (3.105)
da da
(4] = 1) 5t ) ) = Cor(CL) S (s (uf = ) + Os”)

Or, nous avons

(w + u?)%(ul,u?) + (u, — u?)%(u*, uh) = (u, 4 up) (3.106)
(Pa e (w) ()
(8v( b l)( r— (—w)) + 0 (W l)(ur—(—uz))>
= (u ) g (",

pour une valeut™ € (u;, u*) avecu* € (u), u;).

Donc, nous arrivons finalement a I'expression qui suit :

B(x) < Co(C) (Clue + ) 2 () + (uf — ) (3.107)
8@ ! 8@ 3
X (s ) ) = Coo(CL) 5 () (f = ) + O(s°)
0
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Malheureusement, ce long développement ne nous permdepasiclure concernant

le signe deB(z).

iv) Soit une raréfaction em avecx < y.

B(x) = 0(w, N{)o(NL) + 0(x,C")o(C") = O(x, C)o(CL)

—0(z,CHo(CY)
— o(NL) +0(CT) = o(CH) —a(CH) =0

Cas CN-1(CLNY) — (C)

0 < Uy, < ainsique () < up = @ (Un).

i) Soit une onde de choc enavecr < y.

B(y) = 0(y,C£)a(CL) — 0(y, CL)o(CY) — 0(y, Nt)o(NY)
= C,Jo(CY) — Alsa(CY) — Culu(CL) — Alya(CY)
— Cu|u(NL) — Alyo(NY)

Les différentes vitesses sont(N1) < v(CY) < v(Ch).

Le pire cas que nous puissions rencontrer\est U(Ni). Alors,

(3.108)

(3.109)
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B(y) = Cio(CY) = v(ND)|1o(CY) — Culu(CL) — v(ND)[1o(CL).  (3.110)

L’ expression poui3(y) ci-dessus ne nous permet pas de conclure. Alors, ré@srivo
B(y) comme suit :

B(y) = Cyla(uw, uy) — a(tr, un)|o(CL) (3.111)
- C*|a(ul, um) - a(um, ur>|U(C+l-)

Sachant que nous pouvons développer les expressionsstigleomme suit :

a(um ul) - a(um um) = %(um um)(ul - um) + O((ul - um)2> (3.112)

= f"(um)(w — um)
+ O((ur — U ) (W — Up,) + (w0 — um)2)

a(uy, Up) — a(Up, ) = a(um, w4 (u — ur)) — a(Up, Uy (3.113)

= %(um, ur)(uy — uy) + O((Ul — Ur)Q)

= " (u,)(u; — u,)
+ O((um —up)(w — up) + (u — ur)z)
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En utilisant ces formules, nous obtenons

B(y) = Cof" (wm) (i — w) (i + u,) = Cof"(ur) (i — ur) (wr — ) (3.114)
+ O(s*)

= Culun = ) ("t (e + 1) = f () 0 = ,)) + O(s”)

ce qui ne nous permet pas de conclure concerBén}. Par contre, cette expression

sera peut-étre utile plus tard.

i) Soit une raréfaction ep avecr < y.

Puisquer(CL) = o(C) + o(NL), on obtient

B(y) = 0(y,C£)a(CL) — 0(y, CL)o(CL) — 0(y, N})o(NY) (3.115)
=o(CL) — o(C}) — o(NL) = 0.

iii) Soit une onde de choc enavecr < y.

B(x) = 0(x, C{)o(CL) = 0z, CL)o(CL) = 0(x, Ni)o(NY) (3.116)
= CulA = 0(CH)l 10 (CL) = CulA = o(CH) o (CY)
— G| = o(ND) o (VD)



lci, A = v(C) s'avere le pire cas possible. Nous obtenons donc :

B(z) = Cy|v(Ch) = v(CE)]40(CY) — Culv(Ch) — v(NL)| 1o (NL)

Regardons plus en détails ce que nous pouvons faire paer ten

de conclure. Nous avons les expressions suivantes :

[0(CL) — v(CY)] = alu, um) — alw, u,)
Oa

= St ur) (= r) + O (1 = ,)?)

= f"(u,)(tm — uy)
+ O((ul — Uy ) (U, — Uy ) + (U, — ur)z)

[0(C) = v(NL)| = alug, ) — a(tiy, )
oa

= 5, (tm, ) (w = wr) + O <(ul a ur)z)

= f"(u,)(u; — u,)
+ O((um —up)(w — uy) + (g — UT’)2>
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(3.117)

(3.118)

(3.119)



83

B(a) = Cu ()t — ) 1+ 1) = () (o = ) (v +0)) (3.120)
+0(s%)
= Co (1) (1t — ) a0+ 10) = (1 = 0) (i + 02) ) + O(s")
= O () (= )1 = ) + (1t = )20,
= (= ) (= ) = (0 = u)2u, ) + OF

= O f"(uy) X 2up X (Up — 1) + O(5%)

Techniquementf” (u,) < 0, u, <0, (u,, —u;) < 0 et le premier terme est négatif. Par
contre, I'expression est aussi d’ordre trois et le signéadgtession dépend donc du
terme que I'on négligeait plus tét. En pratique, un estimdiquant que3 est d’ordre

trois est insuffisant pour une analyse classique.

iv) Soit une raréfaction em avecx < y.

B(x) = 0(x, CL)o(CL) — (. C1)o(CL) — 0z, No)o (V) (3.121)
= o(CY) ~ o(Ch) — a(NL) =0

Cas CN-2(CLNL) — (Ch)

W) <ty <0 et u, = @ (uy).

i) Soit une onde de choc gnavecx < y.



B(y) = 0(y, C¥)o(CL) — 0y, CL)a(CL) — Oy, NL)o(NL)
= C,Jo(CY) = Alsa(CY) = Culu(CL) — Alyo(CY)
— Cuo(NL) — Al o(NY)

L'ordre des vitesses esb(N1) < v(CL) < v(CY).

Le pire cas a considérer ici est lorsgue= v(CL). Alors,

B(y) = C.[o(CY) = v(Ch)|4o(CY) > 0.

i) Soit une raréfaction ep avecr < y.

Puisquer (CY) = o(CL) + o(NL1) on obtient I'expression :

B(y) = 0(y, C¥)o(CL) — 0y, CL)a(CL) — Oy, NL)o(N1)
= o(CY) = o(CL) = a(NL) = 0.

iii) Soit une onde de choc enavecx < y.

84

(3.122)

(3.123)

(3.124)
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B(x) = 0(z,C})o(CY) — 0(x, C)o(CL) — b(z, N1)o(NL) (3.125)
= C|A —o(CY)]o(CY) = CLlA = v(C)] o (CL)
— CLJA = v(ND)| o (N])

Le pire cas possible se produit lorsques [U(C_l,_/), o0). Et, puisque

o(C{) = a(CL) — o(NL) =0

B(x) = CuA —v(CL)|1 x [0(CY) — o(CL) — o(N})] (3.126)
— Cuo(CY) = v(C)[+o(CL) = Culp(CY) = v(ND)| 1o (NL) < 0.

iv) Soit une raréfaction em avecr < y.

B(z) = 8(x,CY)a(CY) = 8(z,CL)o(CL) — 6(z, N (NL) (3.127)
= 0(CY) —o(CL) —o(NL) =0

Cas CN-3(CLNY) — (NY ¢!

0<Un<u et u, = (uy,) <o (u).

i) Soit une onde de choc gnavecx < y.
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B(y) = 0(y, N )o(NL) + 0(y, CL)o(CL) — 0(y, C)o(CL) (3.128)
— 0y, Ni)o(Ny)
= Co(NY) = Ao (NE) + Cuu(CT) — Al o(CT)
— C.Jo(CL) = Al4o(Cy) — Cufo(NL) — Alyo(NY)

La série d’inégalités concernant les vitesses est :
o(NL) < o(NE) < min(o(CT),0(CL)) < max(u(CT), 0(CL)).

Le pire cas qui peut se présenter est= v(C* ) lorsquen(Ct) < v(C"). Alors,

B(y) = C|o(CT) —v(Ch)|4o(CT) > 0. (3.129)

i) Soit une raréfaction ep avecz < y.

Puisquer(NY) + o(CT) = o(CL) + o(INL), alors nous avons

B(y) = 0(y, NY)o(NL) +0(y, CT)o(CT) — 0(y, CL)o(CL) (3.130)
—8(y, N )a(N})

= o(NY) +o(CT) = o(CL) — o(NL) = 0.
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iii) Soit une onde de choc enavecr < y.

B(z) = 6(z, N o (NY) + 0(z, o (CT) = 6(z, CH)o(CH) (3.131)
—0(x, Ni)o(NY)
= C|A = o(NE)[ 1o (NE) + CulA — o(CD) 1o (CL)
— A = 0(C)|4o(CF) — Cul A = v(NL)| o (NL)

Le pire cas est donné pan:= v(C* ) et l'inégalité? v(C!) < v(CL). Alors,

B(z) = CLlo(C}) — oV 1o (NY) + CLlo(C) - o(CT)so(C))  (3.132)
— CLJo(CL) — w(ND)]so(NL),

Regardons les expressions suivantes pour tenter de cerduacernant le signe de
B(z).

v(Ch) — o(NY) = alwg, um) — alu;, ub) (3.133)
= o )0 = 1) + O((u )
= —f"(um)(U§ - um) + O((ul - UM)(UI; - um) + (ulb - um)z)
< Cl|u§i - um|

2. LecasA = v(Nj[) est aussi problématique mais plus simple.
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v(CL) = v(N) = alw, up) — altm, ul,) (3.134)

m
= a(uy, Up) — a(tp, ul )

zggﬁwﬂmw%—uo+0w&—uf)
= — " (w)(uf, — ) + O((uly, —w) (= w) + (uh, — w)?)

< Cylul, —

Ces deux expressions permettent d’écrire :

B(z) = C,C|un, — uf|o(NL) — C,.Caluy — uf, |o(NL) (3.135)
+ C,.Cy0(NH)o(C)

Dans I'expression ci-dessus, les deux premiers termessartilables et s’annulent
presque en totalité mais le dernier terme est problémetifout ceci implique que

B(z) peut étre positif ou négatif.

iv) Soit une raréfaction em avecr < y.

B(xz) = 0(x, NN Yo (NY) + 0(z, 1o (CT) = 0(x, CH Yo (CH) (3.136)
— 0(x, N1 )o(Ny)

= o(N{) +0(Cl) = 0(Cy) = o(NL) = 0
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Cas NC(NiCh) — (CV)

U = ¢’ (w) et F(w) < up < F(un) < w.

i) Soit une onde de choc gnavecx < y.

B(y) = 0(y, C*)o(CY) — 0(y, NL)a(NL) — 0(y,C1a(CT) (3.137)
= C.u(CY) — Ao (CY) — Cuv(NL) — Alyo(NL)
— C,Jo(Ch) = Alyo(CT)

Les vitesses se présentent dans I'ordre suivaf®?) < v(N1) < v(CV).

A = v(N}) est le pire cas qui puisse se produire. Alors,

B(y) = C,|v(CY) — v(N)| 1o (CY) > 0. (3.138)

i) Soit une raréfaction ep avecz < y.

Onac(CY) = ¢(N1) 4+ o(C") alors

B(y) = 0(y, C*)o(CY) — 0(y, NL)a(NL) — 0(y,CNa(CT) (3.139)
=o(CY) = o(NL) —o(CT) = 0.
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iii) Soit une onde de choc enavecr < y.

B(z) = 0(x,C")o(CY) — 0(x, N} )o(NL) — 8(z, CNo(CT) (3.140)
= CuA = 0(CY) 4o (CF) = CL|A — v(NL) 1o (VL)
= CuA = o(CN)|4o(CT)

Le pire cas a considérer s’avere &tres [v(C'), 00). De plus,
o(CV) — o(NL) — o(CT) = 0, alors on peut affirmer que
B(z) = C.A = v(CY)[1 x [0(CY) — a(N) — o(CT)] (3.141)

— Cu|o(CY) = o(ND|4o(NL) = Cufo(CY) = o(CT)|40(CT) < 0.

iv) Soit une raréfaction em avecx < y.

B(z) = 0(x,C")o(CY) — 0(x, NL)o(NL) — 8(z, CN)o(CT) (3.142)
=o(CY) —o(NL) —o(CT)y =0

Cas NN(NiNL) — (C)

U = " (u;) €t u, = gpb(um).

i) Soit une onde de choc gnavecx < y.
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B(y) = 0(y, CL)o(CY) — 0(y, N£)o(NL) — 0y, NL)o(NL) (3.143)
= C,Jo(CY) = Al4o(CY) — CLlo(NL) — Al o(NY)
— Cufo(NT) = Al o(NY)

Les différentes vitesses sont ordonnées comme s(it}) < v(N1) < v(CL).

Le pire cas provient d& = v(N1).

B(y) = C.Jo(CL) = v(NL) 1o (CY) > 0 (3.144)
i) Soit une raréfaction ep avecr < y.

Puisquer(C!) = o(N}) + o(NL), nous avons

B(y) = 0(y, CL)o(CL) — 0(y, NH)a(NL) — (y, NDo(NL) (3.145)
= o(CY) — o(NY) —o(NL) =0.

iii) Soit une onde de choc enavecx < y.
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B(z) = 0(z,CY)o(CY) — 0(x, N )o(NL) — 0(z, NL)o(NL) (3.146)
= O A = v(C)],a(CY) = CLA = v(NY)| Lo (VL)
— CLJA = o(N})| o (N])

Le pire cas possible a la formé\: e [U(C_l,_/), 00). Alors,

B(y) = C.|A —v(C)]s x [0(CY) — o(NL) — o(N])] (3.147)
— Cuo(CY) = v(ND) 1o (NL) — Culu(CY) — o(NL)]+o(NL) < 0.

iv) Soit une raréfaction em avecx < y.

B(z) = 8(x, CY)a(CY) = 6(z, ND)o(NL) — 0(z, NL)o(NL) (3.148)

= o(CL) = o(N{) —o(NL) =0
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CHAPITRE 4

CONCLUSION

Notre objectif principal dans cette recherche était desenter une fonctionnelle qui
pourrait réesoudre les quatre cas d'interactions proht&es qui découlent de I'équation
aux dérivées partielledu /0t + 0f (u)/0x = 0 lorsque la fonction de fluy (u) est de

type concave convexe. Et, par la suite, vérifier si cettmmfonctionnelle est en mesure

de conduire &(y) < 0 pour les autres cas d’interactions.

La fonctionnelle Laforest-Pellerin proposée a l'inger du chapitre 3 ne permet pas de
solutionner les quatre cas problématiques caractepaéB(y) > 0 qui proviennent de

la fonctionnelle Iguchi-LeFloch. En effet, les cas d'iratetions RC-3, CR-4 fonctionnent
puisqueB < 0. Toutefois, les cas CC-3, CN-3 font échouer notre fonctée ; ils
produisent des sous-cas ave(y) > 0. Elle ne permet pas non plus de vérifier certains

autres cas d’interactions pour la méme raison.

Une analyse de nos calculs montre deux points importantsdqua cas d’interaction

donne comme résultdt(y) < 0:

1) la force de I'onde résultantg-’) est plus petite que la force de I'onde entrante ;

2) la vitesse de I'onde résultant¢-’) est plus petite que la vitesse de I'onde entrante

v(+).

D’un point de vue mathématique, nous savons maintenanucelait étre fait. Est-

ce gu'il est possible de construire une fonctionnelle den@lide maniere a satisfaire
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les points 1) et 2)? Si oui, comment? Pour l'instant, ces dguestions restent sans

réponses.

Le mieux que nous puissions faire est de suggérer des dmm@otentielles. L'étude
des systemes de dimensiorx2 pourrait mener a une meilleure compréhension du cas
scalaire et a une résolution éventuelle du problemes &de en profondeur des 16
cas d'interactions pourrait s’avérer une autre avenu@bbeer. Au moment d’écrire ces
lignes - novembre 2010 - ce probleme pose toujours un défiidérable et il demeure

ouvert...
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ANNEXE |

RESUME DES RESULTATS

Cette annexe comporte les résultats pour la fonctionoglle €té abordée dans la re-
cherche. La présentation a pour but de réintroduiredssltats demontrés dans le cha-

pitre 3 de ce mémoire mais de maniere beaucoup plus compact

Fonctionnelle Laforest-Pellerin (de type Iguchi-LeFloch

La fonction de poid#(z, y) se définit comme suit :

C.(a(x) —a(y))™ méme monotonicité
0(z,y) =
1 sinon

La définition de la force des onde$u_, u. ) est:

luy —u_| Slu_uy >0;
olu_,uy) =

luy +u_|  Siu_uy <O0.

Le termeB présenté dans les calculs est obtenu en effectuant leip®d) = 6(z, y) x

o(+).

Passons maintenant aux résultats. Pour chacun des egw@3ente le résultat pour une
onde de choc en, ii) le résultat pour une raréfaction emniii) le résultat pour une onde

de choc en, iv) le résultat pour une raréfaction en



Cas RC-1

i) B<O0

Cas RC-2

i) B<0

Cas RC-3

i) B<0

Cas RN

i) B<0

Cas CR-1

i) B<0

Cas CR-2

i) B<0

Cas CR-3

i) B<0

Cas CR-4

i) B<O0

Cas CC-1

i) B <0

i) B <0

iy B<0

iy B<0

iy B<0

iy B<0

iy B<0

iy B<0

i) B <0

i) B=0

i) B <0

i) B<0

i) B<0

i) B<0

i) B<0

i) B<0

i) B<0

i) B <0

iv) B<0

iv) B<0

iv) B<0

iv) B<0

iv) B<0

iv) B<0

iv) B<0

iv) B<0

i) B=0etB >0

iv) B=0
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Cas CC-2

i) B>0

Cas CC-3

i)B >0

Cas CN-1

i) B =?

iy B=0
iy B=0
iy B=0

i) B <0

iii) B =7

iii) B =7

iv) B=0

iv) B=0

v) B=0
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Cas CN-2
i)B>0 i) B=0 i) B<0 iv) B=0
Cas CN-3
i) B>0 i) B=0 i) B=0 iv) B=0
Cas NC
i) B>0 i) B=0 i) B<0 iv) B=0
Cas NN
i) B>0 i) B=0 i) B<0 iv) B=0

Remarques sur les cas d’interactions

Tout d’abord, les cas RC-1, RC-2, RC-3, RN, CR-1, CR-2, CRR;4 conduisent a
B < 0. C’est ce que nous souhaitons obtenir pour en arriver a tanpiel d’interaction

décroissant.

Tandis que les cas CC-1, CC-2, CC-3, CN-2, CN-3, NC et NN émhibuer notre fonc-

tionnelle puisque pour chacun de ces cas nous aBond) pour au moins un sous-cas.

Le cas CN-1 présentB = 0 a deux reprises. Toutefois, les deux sous-cas qui font in-
tervenir des ondes de chocs menent a des expressions geiimettent pas de conclure
concernant le signe d8. Pour exprimer ceci, nous avons fait appel au point d’irgero

tion 7.

Finalement, pour les quatre cas problématiques RC-3, GF43, CN-3. Nos résultats



101

ci-dessus indiguent que RC-3 ainsi que CR-4 débouchen® sar0 alors que CC-3 et
CN-3 conduisent & > 0.



