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EFFECTS OF INTERNAL AND EXTERNAL

FLOW ON THE VIBRATIOM CHARACTERISTICS

OF ANISOTROPIC CYLINDRICAL SHELLS

Aouni A. Lakis,
Department of Mechanical Engineering,
Ecole Polytechnique,
Montreal, Que., Canada.

SUMMARY

This paper presents a general theory for the dynamic analysis of
anisotropic thin cylindrical shells containing turbulent flowing fluid.
The shell may be uniform or non-uniform, provided it is geometrically
axially symmetric. This is a finite-element theory, using cylindrical
finite elements, but the displacement functions are determined by using
classical shell theory. A new solution of the wave equation of the 1liquid
finite element leads to an expression of the fluid pressure, p, as a func-
tion of the nodal displacements of the element and three operative forces
(inertia, centrifugal and Coriolis) of the moving fluid. The random pres-
sure forces are lumped at the nodes of the finite elements. The mean square
response of the displacements of the shell are obtained for a boundary-
layer pressure field. Some calculations are conducted to iTlustrate the
theory. This theory is compared with the experiments of others and agree-

ment is found to be quite good.




1.  INTRODUCTION

Thin shells appear as components in practically every type of modern
industrial equipment, in aerospace, nuclear, marine and petrochemical in-
dustries. A careful study of the shells used in practical applications
leads to the conclusion that they are most often anisotropic (naturally
or structurally) and in many cases are anisotropic and laminar. The need
is evident for a theory which can be used for the dynamical analysis of
any kind of anisotropic circular cylindrical shell subjected to various

boundary conditions.

Such shells are commonly used to contain or convey fluids, and this,
to a certain extent, determines the classes of problems in which interest
is focused. Thus, in addition to the determination of the vibration cha-
racteristics of the shells in vacuo, it is also of considerable interest
to determine the dynamical characteristics of shells containing either

stationary or flowing fluid.

There are many ways in which the presence of the fluid may influence
the dynamics of the shell. If the shell contains a stationary gas at low
pressure, then the vibration of the shell differs only slightly from that
of the same shell in vacuo. This is not the case, however, if the shell

is substantially pressurized by the enclosed fluid, as this entails addi-

tional strain energy in the shell. Moreover, if the fluid is compressible,

the compressibility of the fluid alters the effective stiffness of the

system. Also, if the density of the enclosed fluid is relatively high, as

~



is the case with liquids, then the fluid exerts considerable inertial
loading on the shell, and this results in diminishing the resonant fre-

quencies significantly.

Coupling between the fluid and the shell can manifest itself in
several other ways, In the case of shells partially filled with liquid,
free-surface motions may be coupled to the shell motions. This is of par-
ticular interest in liquid-propelled rockets; in cases of proximity or
coincidence of the natural frequencies of the free surface motion and that
of the shell, large oscillations may develop in the propellent tanks and
are normally referred to as sloshing. Nonlinear coupling may also induce
sloshing; in this case subharmonic excitation of free-surface modes is in-

volved.

Other effects of coupled fluid-shell motions occur when the fluid is
flowing. Depending upon the boundary conditions, if the flow velocities

are large, buckling or oscillatory flexural instabilities are possible.

Similarly, in considering the response of cylindrical shells, consi-
derable interest exists in the case where the excitation is transmitted
through, or arises from, the contained fluid. This could take the form
of pressure waves transmitted through the fluid; or, if the fluid is flow-
ing, the excitation could arise from gross pressure perturbations due to
disturbances in the flow, or from boundary-layer perturbations. It is
known that vibration caused by these pressure fluctuations may, in certain

circumstances, cause fatigue failures of the structures involved.



Several methods have been developed for the dynamical analysis of
shells. Of these the most versatile have proved to be Rayleigh-Ritz
methods [1 -é]*, Stodola-type iteration methods [31, finite-difference
method [4] and finite-element methods [5 -10]. A1 these methods and
their variants have their advantages and disadvantages. One of the cri-
teria of success df a method may be considered to be its capability of
yielding the high, as well as the low, characteristic frequencies and
modal shapes with comparable high accuracy. This requirement is not really
met by the finite-difference and Stodola-type methods [4]. The Rayleigh-
Ritz and finite-element methods, on the other hand, are satisfactory from
this point of view; furthermore, because they lead to a symmetric eigen-
value problem, they are easily amenable to solution by digital computer,
which is great advantage. The finite-element method has added advantages
in terms of ease of formulation, and because numerical convergence is not
as sensitive to particular sets of boundary conditions as is the case with

the Rayleigh-Ritz method [1] .

Here we shall present a finite-element type of theory which is capable
of giving highly accurate prediction of the free vibration characteristics
of cylindrical shells, and their response when subjected to a random pres-
sure field. The theory can also deal with shells partially filled with

liquid.

The analysis is based on a recently developed method for the case of
isotropic cylindrical shells ﬁ ]. It is a hybrid theory based on the

finite-element method, with the displacement functions determined by exact

* References are given in Appendix II.



solution of the equations of equilibrium of a thin cylindrical shell
instead of the more usual polynomial displacement functions. The finite
elements are cylindrical frusta; thus a given non-uniform shell is first
subdivided into its component uniform cylindrical segments and then, ge-
nerally each segment is similarly subdivided into a number of cylindrical

finite elements.

The theory for predicting the response of anisotropic cylindrical
shells due to random pressure fields is developed in reference [1%]. The
cbntinuous pressure field is transformed to a discrete set of forces; then
the cross-correlation spectral density and the mean square values of the
displacement of the shell are expressed in terms of correlation functions

of the boundary-layer pressure fields.

Here the dynamics of an anisotropic cylindrical shell and its response
will be considered, with the following aims: (i) to extend the theory of
DZ] to cases where the shells are anisotropic and especially for the case
of shells consisting of an arbitrary number of orthotropic layers; (ii) to
develop a theory accounting for the effects of compressible flow on the
free vibration characteristics of a thin, cylindrical shells; (iii) to use
the theory of 1}3] to predict the response of such shells to a pressure
field arising from the turbulent boundary-layer of internal flow, to the

point of predicting R.M.S. amplitudes of vibration.

This genera]ized theory will be more directly pertinent to engineering

applications, since in nearly all practical cases the shells are often ani-



sotropic; e.g., heat exchangers and liquid metal cooled channels used in
the nuclear industry. A number of assumptions are made during the course
of the investigation; a compendium of these assumptions and the limitations

of the theory will be given in the text.

2. GENERAL APPROACH

2.1 General theory

A given shell is subdivided into a number of finite elements, each
being defined by the two nodes, i and j, and the corresponding nodal circle

boundaries (Fig. 1). Then, the displacement functions may be defined by

[uteae)s wixae), vixe)] T = W] byosg] T (1)

where {61} and {sj} represent the nodal displacements, and the elements of

[NJ are in general functions of position and the shell's anisotropy.

It is noted that the finite-element method yields useful results pro-
vided that the displacement functions chosen represent adequately the true
displacements; accordingly, the displacement functions should satisfy the
convergence criterion of the finite-element method stating that strains
within the element should be zero when the nodal displacements are generated
by rigid-body motions. To this end, we shall employ the equations of thin
cylindrical shells to obtain the displacement functions, instead of using

the more common arbitrary polynomial forms.



Sander's theory Dd] for thin cylindrical shells is used for the
determination of these displacement functions. This shell theory which
is based on Love's first approximation was preferred, for the following
reason: in Sander's theory all strains vanish for small rigid body mo-
tions, which is not true for Love's or Timoshenko's theories, for instance.
By using such displacement functions, we automatically satisfy the conver-

gence criterion of the finite-element method previously stated.

2.2 Equations of Motion

Using Love's first approximation, we obtain the following elasticity
relationships between the stress-resultant and the deformations of the

middle surface for the general case of a multi-layer anisotropic shell

% - ;
NX P11 Pi2 0 P Pis 0
N¢ P21 P22 0 P2z Pas 0]

N 0 0 P33 0 0 Pis

Mx Py1  Puz 0 Pus  Pus 0
Mq) Psi1  Ps2 0 Psy  Pss 0
M
K xX¢ 0 0 Pes3 0 0 Pess
J u J

the elements pij of the elasticity matrix [P] characterize the shell's
anisotropy which depends on the mechanical properties of the material of

the structure.



The strain vector {e} is the modified strain-displacement relations

of Sanders 34] and is given by
\
(;x rBu/ax \
€4 (1/r) (3V/3¢) + (W/r)
2. || avex + (1/v) (30/26)
{C} = 4 Xd) & = { >
Ky -32W/ax?
¥ -(1/e2) [(a2ura07) - (av/20)]
2EX¢ -(2/r) (9%W/3x3¢) + (3/2r) (aV/sx) - (1/2r2) (8U/3¢).| (8)
N ) \ y

Upon substituting equations (2) - (4) into Sanders shell equations
of motion, the author obtains the equations of equilibrium in terms of

elements Pis of [P] and in terms of U, V and W, namely

pu (3%U/3x%) +(1/r)p12 (8W/3x) - pr. (3°W/8x) + [(1/r) (P1z2+pas)+ (1/r?) (pis+pse) - (3/4r3)pss]-
-(BZV/3¢BX)+(1/r2)ﬁh3-(1/r)paa+(1/4r2)p%](BZU/8¢2)—(1/r2)[p15+2pas-
~(1/r)peq] (2°W/3x30%) = 0

(1/r) [Paa+~pzl+-(1/r)pss+-(1/r)p51 —(3/4r2)p64 (32U/3¢0x) + (1/r?) [pzz+-(1/r2)pss+
+(2/r) Dzs] (9%v/39?) +[D33+ (3/r) pse+ (9/4r?) pss] (9%V/3x?) + [.Dzz+ (1/r) Psz] (1/r2).
A(3M/30) = (17¢°) [pas+ (1/r) pss] (9%/96°) = (1/r) 2036+ paut (3/7) pest (1/7) py] -
.(3%W/3¢3x?) =0 ,

-(1/7)pax (U/3x) = (1/r2) [Pzt (1/r) pas] (3V/29) - (1/r2)peab+pur (3°U/3x*) + (1/v2) [par +
+2pea—(1/r)psﬂ (3°U/8x3¢?) +(1/r3)[psz+ (1/r)psﬂ (9°Vv/2¢°) + (1/r) [Puz*‘ZPsa F
+(]/r)pb5'+(3/r)Pse] (9°V/39ax?) +(2/r*)pas (37W/3¢%) - (1/r*)pss (3"U/39") + (2/r) pay -
(9%W/3x?) - puy (3*W/3x*) = (1/r?) (2pus+4pse) (3"H/3x%39%) = 0 (5)



Here U, V and W are, respectively, the axial, circumferential and
radial displacements of the middle surface of the shell, and r its mean
radius (Fig. 1). The solution of these equations will give the displace-

ment functions.

2.3 The displacement functions

In the continuum, we express U, V and W of the middle surface of the

shell by
/ W i 1¢ ( \
U(x,9) cos n¢ 0 0 un(x) un(x) !
< w(x,cp)> = Z 0 cos noé 0 ﬁwn(x)>= Z {T} < wn(x) >
n=0 n=0
V(x,0) 0 o sinng| v (x) v_(x) (6)
L) E I\ \ ")

where n is the circumferential wave-number. By substituting equation (6)

into equation (5) and letting

u {x) =A GXX/r,

ax/r
n 9

w (x) =C eXx/r’ (7)

v (x) =B e .

n

we obtain three simultaneous ordinary linear equations in A, b, C of the

form

For non-trivial solution, the determinant of [H] must vanish, leading

to the following characteristic equation



he

he

hy

h2

ho

Il

where

h8>\8 - hg)\s + hq)\“ = h2>\2 -+ ho = O, (9)

(hg/rz) (Pn Puyy - Pfq ¥s

{n?/r?) [he(hxptm‘l“ 2p11 Pus+ 4p11 Pes - 2hsrpyy) + ho(py puy - pfu) = Y‘zhil Pun -

= hgpu, + 2rhshy, Plu]

+ (2/r)ho(p1 Pas - P1sP12)>s

(n*/r?) [h1h7.0m++ hop11 Pss+ (2pus+ 4pse) (hihg +hypyy - hi) + (pas+ (1/r) pss) .
(2hspw = 2hppur) + hy r?(2hshs -hyhyy) - rhs(2hpy, + Y‘hshs)] + {n?/r).

-[2(D25+ rpzz) ((hs/r)pw - hiipn) - 2p12 (hsher +hspy - hshpyr) - szu(hi - hihe - hspy1) +
+2h9pupzs] + ho(pu P2z - sz) >

(n®fp*) [h1h7,(2Pus+ 4pgs) + Pss (hihg +hspyy - hg) = Y‘2h§h7 +(pas+ (1/r) pss) .
.(-2rhihy+ 2rhshs - p1ipos - (]/T)Pupss)] + {n*/r) [2h1h7pzu+ 2p2s (hhhg+ hopyy - hg) -
-2p12 (rhshs - hapas - (hs/r) pss) -2(pas+ rpzz) (hihu+ (1/r)pu pas+(1/r?)pu pss - hahs)]
+n2[P22 (hihe +h7py - hg) - (1/r) (pas + rp2) ((1/r)pu pas+ P11P2s-2hspr2) - h7pf2] >

n“h1h7[P22+ (2/r)n?pos + (nu/rz)Pss] - n?hy [(na/r)(st"' (]/Y‘)Pss)+ (n/r) (pé5+ Y‘pzz)] ’

ha

hs

he

and the parameters hi’ i=1, 3, 5, 7, 9, 11 are given by

Pss- (1/r) pas+ (]/4F2)P65 > hs = pra+ pas+ (1/r) (pr1s+ pss) - (3/4r?) pes
(1/r)(pis+ 2p3 - (1/7) pee) » hy = pa+ (1/r?) pss+ (2/r) pas >
Pss+ (3/r) pas + (9/4\"2)[?66 s hy= (1/r) [Zpas'*' Pau+ (3/r) pes+ (1/r) Psu]

This characteristic equation for anisotropic cylindrical shells which is

a quartic in A%, has the same general form as equation (5) of [12] for

isotropic one.

The eight roots Ai may therefore be written as follows

-+

(10)



M=~k +ium , A =-Ky =T s A3 ==Ky +iHs 5, Ay =-Kz - ius ,

)\5:= K1+iU1, )\6= Kl'i‘)—'la >\7= K'2+'i’..;2, )\a K2—1.]J2.

where Ky and Wy are real. Each root, Aj, yields a solution of equation (5),
the complete solution being obtained by the sum of all eight with the cons-

tants Aj, Bj and Cj, j =1, 2, ... 8.

For every j, the three constants Aj, Bj and Cj are related among each

other by the linear equations (8), so that u.» v, and W, may be expressed

in terms of only eight constants. To this end, we let
Aj =aj Cj, Bj =B8] Cj,

where aj and Bj, for j = 1 and 3, may be expressed as follows

01=U-1+ia2; a3=a3+iak361=é1"—182, B3=-B.3+'iéy+

The real and imaginary parts of aj, Bji, j = 1 and 3, may be obtained from

the following relationships

an an oJ -ai3
az a2 BJ i ~a23
where
an= n’hu - K; P, 2= 'm\jha » a13= -)~j<n2hs +P12)+(1/Y‘))\3jplu s
da = a2, az= -nh, +)\§h9 s az= -(n/r) (1+n?)pss -npa

-(n?/r®)pss + m\;hn

10

(11)

(13)
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By inspecting the coefficients of equations (8), the other oj, Bj can be

given by
Gz =031 - i0ap as = o5 +1 0g = =03 Bs = Bs+1Bs = B>
Oy = O3 - 104 O'-e.=5°5—1.&6=‘0l1 Bs=és"iés=31
82"—'31—132 a7 = Q7 +1 Qg = -ay Bz = By +i Bg = By
By = B3 - 1 Ba Og = 07 -1 Qg = -03 Bs = Bs -1 Bs = B3 . (15)

Upon substitutind the relations (12)-(15) into equation (7) and thence
into equations (6) we obtain expressions for the displacement functions in

terms of eight constants Cj. These expressions may be written as

U(x,0) -

o)y = [T/ @ .

Viae)| M (16)
- where [R] is given in appendix I and IC} = [Cl ... EJ.T. The eight Cj are

the only free constant which must be determined from eight boundary condi-
tions, four at each edge of the finite element. The nodal displacements

(Fig. 1) at nodes i, (x = 0) and j, (x = &) are defined by

85

Il

(g Mg (A /dx) o v cau oo (/) 50 v YT =[] @1y )

n J
S
J

where [A] is given in appendix I, its element being determined from those of

[R]. Finally, combining equations (16) and (17), we obtain



12

U(x,9) ) ) :
ooy - LAY T

n=0 j n=0 3 (18)
V(x,0)

This equation defines the displacement functions in terms of n¢, X, the

elements pij of [P] and the nodal displacements ’Oi‘

o

8.
J

2.4 Determination of the Mass and Stiffness Matrices

Substituting equations (18) into equations (4) we obtain the strain

vector {e} in terms of {61} and {éj} as follows:

[ee]

T 0] 5. :
o- Y[ T@m-4- ¥ @l
n=0 . j n=0 il (19)

where [Q] is given in ref. [12.. The corresponding stress-resultant matrix

may be found from equation (2), i.e.,

(o]

et = [p] te)= Z [¢] [5] s

n=0 1 (20)

where [P] is the elasticity matrix for anisotropic shells.

The stiffness and mass matrices for one finite element are expressed

as

[] = s [e]" [°][e] en. [w] = ot s [\]" [8] an, (21)
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where dA = rdpdx, p is the density of the shell and t its thickness. Inte-

grating over ¢ and using equations (18)-(20) we obtain
I 0 A 1 o S e N O
1= oo 0] o g [ w0 [ - o0 107] " [0

where [G] and [S] are defined by the above equations.

[G] and [S] were obtained analytically for the case of isotropic shell
in reference [12] by carrying out the necessary matrix operations and in-
tegrating over x in equations (22) and (23). To do this it was found
necessary to introduce several intermediate matrices, eventually obtaining

expressions for the general terms kij and mij of [k] and [nﬂ, respectively.

For the case of anisotropic shells, the elements of [G] and [S] are
similar to those of reference [Hﬂ , for the following reason: in [12], the
(i,3)th terms of [G] and [S] are determined functions of the elements of
[P] and of the general terms, k and u, of the roots A's which have the same
general form as those of equation (11). Because of the complexity of the
manipulations, only the final result will be given here. The interested

reader is referred to reference [12] for details.

The (i,j)th term of [G] is given by
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. 8l1,39) = Mt [(01 - Dy)A, - (D2 +D3) (B, ~+C1)] COS[(BI +C1)2]
[ALZ +(By +C; )2

-

IS

[(Dl -Dy)(By +Cy) +(D; +Da)A1- sint(Bl+C1)2]'
[Al2 +(BI+C1)1
[(Dl +D4)A; - (D2 - D3) (B, - Cy)] cos :(Bl -cl)z]
[A12 +(By -Cy)?
[(D1+Dh)(81 —C1)+(D2-Da)A1j sm[(sl -cl)z]
[Al2 +(By - 1))
(By +C,) (D, +D3) -A, (D, -Dy)
[7:2 + 8y +cy 2]
(B, -Cl)(Dz—D ) -Ay(Dy +Dy)
[A:2 +(8:-c1)7] (24)

+

“+

+

for all i, =1, 2, ..., 8, except for the following elements:

G(1,5), G(1,6), G(2,5), G(2,6), G(3,7), G(3,8), G(4,7), G(4,8),
G(5,1), G(6,1), G(5,2), G(6,2), G(7,3), G(8,3), G(8,3), G(8,4)

which can be written as follows:

6(i,j) = 5

[(o1 -Dy) sin (2B,2) +2(D, +D3) sin? (By) J
+(D1 +Dq)£
2B, (25)

In equations (24) and (25), A;, By, C1, Dy, Dy, D3, D, represent the (i,j)th
elements, corrospondingly, of matrices [Al] . [Bl] 5 [Cl] 5 [Dl] . [Dz] 5 [03]

and [Dl.] which are given in reference [12].
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Similarly, the (i,j)th term of [s] is given by

2 g(3,5) - eAlz{ [(E: - Ay - (B2 +E5) (81 +01)] cos [184 +C1)4]
(A2 + (8, +C.)7

[, £ By +00) + (B, +E A sin (8 +€1))
| [A12 +(81+C1)2]

+ [(El +Ey)Ay - (E2 - E3) (B, —C,l)] cos [(Bl -Cy )2
_Al2 +(Bl'C1)2]

5 B51+EuHBx-C1)+(E2-EQAJsinkBl—Clﬁ:}

A2+ (8 - 01)Y

+

-

(By +Cy)(Eo +E3) - Ay (E; - Ey)

+
[A12 +(81+C1)2]
n (By -Cy)(E; -E3) -A,(Ey +E4)
72 + (8, - )] (26)
for all i,j =1, 2, ..., 8 except for the following elements

5{1:8). 5(1,6)s 5{2.,5), S(2:6), $(3.7)s 5{3.8); 5{4,7), 5(4,8)
S15.1)+ 58,1}, 8{5.2). 5(6,2), 5(7.3), 5(B,3), Si7,8), 5(8.4)

which can be written as follows:

— (El—Eq) Sin(2812)+2(E2 +E3)S'in2 (Bl»q,)
$liog) = L b (E) +ELS
2B, (27)

Here again, E;, E», E3, E4, By and C;, in equations (26) and (27),
represent the (i,j)th elements of the corresponding matrices given in refe-

rence [1 2] ‘



2.5 Elasticity Matrix

The elasticity matrix [P] given by equation (3) is quite general,
so this theory may be applied to: (i) shells consisting of single or an
arbitrary number of isotropic or orthotropic layers, (ii) double-walled,
gridwork or folded shells and (iii) shells with rings and stringers pro-
vided their characteristics are known. Here we 1limit ourselves to shells
consisting of single or an arbitrary number of isotropic or orthotropic

layers symmetrically arranged relative to the coordinate surface.

For isotropic shells, the elements pij of [P] are listed in reference
D ]. In the case of an arbitrary number of orthotropic layers, we assume
that these layers function concurrently without slippage and as previously
stated that the principal directions of elasticity at each point of the
shell coincide with the directions of coordinate lines; (i) for an even

number of layers, 2v, the elements pij of [P] may be written in the form

v
. S _ . s
_ :E: BY. (t ts+])’ i=1to 3, and j=1 to 6,

pij i S
s=1
= S 3 _ 43 . .
Pij = (2/3) :E: Bi-3, j-3 (ts ts+1)’ i=4 to 6, dnd J=4 to 6.
S:] (28)

(ii) for an odd number, 2v +1, we obtain

v
v+l S o P s
Pyg = Z[Bij typun # E Bij (tg _ts+1ﬂ , i=1to 3 and j=1 to 6
s=1

o
I

\Y

v+] 3 5 3 _ 43 - .

;5 = (2/3) [81_3,j_3 . +Z B3 5.5 [E2 ts+])], i=4 to 6 and j=4 to 6
s=1

(29)
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where

=85, = [v§ E3/01 - V)] .+ BG =0.565, .

th

tS is the coordinate of the s~ 1layer with respect to the middle surface

as shown in Fiqure 2, (E?, vf) and (Ei, vz) are its Young's modulus and
Poisson's ratio in the x and ¢ directions, respectively, and sz is the

shear modulus. Al1 other terms of B?j are zero.

2.6 Stiffness and mass matrices for the whole shell in vacuo

As previously mentioned, the complete shell is divided into finite
elements each of which is a cylindrical frustum (Fig. 3). The position of

the nodal circles may be chosen arbitrary.

The vectors {Fi}’ {Fj} represent the internal forces acting at nodes
i and j, respectively, and {61} are the corresponding displacements. As
the shell is continuous, the sum of forces and moments at a particular node

must be equal to the external forces and moments applied at the node. Thus,

(F}€ = (Fs} + {F; )

i+]
moreover, the displacement must be continuous, and

{dj} = {68, .} .

i+]



These relationships allow us to superimpose the mass and stiffness matrices
of individual finite elements, to obtain the global mass and stiffness ma-
trices [M] and [K] for the whole shell in vacuo. This is shown diagramma-
tically in Fig. 3; [K] and [M] will be squarc matrices of order 4(N + 1),

where N is the number of finite elements.

3. FREE VIBRATION

For free vibration, the equation of motion may be written in the form

18

[v] @+ [] @) =0y, (30)

where {A} = {§,, &2, ...,6N+]}T

[K] are real, symmetric matrices of order 4(N+1) x 4(N+1), and {6N+]}

, N is the number of finite elements, [M] and

being the displacement vector associated with the lower edge of the last

finite element.

In the cases where the shell has rigid edge contraints, the kinematic
boundary conditions must be taken into consideration. Accordingly, [K] and
[M] are reduced to square matrices of order 4(N+1)-J, where J is the number
of constraint equations imposed. Thus, for a shell with two edges supported,
we must have ¥, =0, 0 in the displacement vector {§;} and {6N+1} and
J =4; for a free shell, J = 0; and for one with two clamped edges J = 8.

The solution of equation (30) now follows by standard matrix techniques,
yielding the natural frequencies, w5 i=1,2, ..., 4(N+1)-d and the cor-

responding eigenvectors.



It must be stressed that the mass and stiffness matrices obtained
are associated with a specific circumferential wave number, n, as is the
nodal displacement vector. Thus the analysis is carried out independently

for each n.

19
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4. EFFECTS OF COMPRESSIBLE FLOW

When the fluid is flowing, the shell is subjected to inertia forces,
centrifugal forces and coriolis-type forces coupled with the elastic de-
formation of its walls. The characteristics of the mathematical model to

be used are as follows:

- ] @ - [ @+ [ - [x]] @ - o0 (31)

where {A} is a displacement vector, [M] and [K] are, resnectively, the mass
and stiffness matrices of the shell in vacuo, and [Mf] " [Cf] and [Kf] "

represent the inertia, coriolis and centrifugal forces of the flowing f]uid.gggxtﬂx

ol

[M] and [K] were obtained analytically by carrying out the necessary
matrix operations eventually obtaining expressions (22) and (23) for the
general terms of the mass and stiffness matrices for one finite element in

vacuo, [k] and [m] , respectively.

4.1 Mass, stiffness and damping matrices of the moving fluid

Consider now the way in which the shell interacts with the fluid. It

is assumed that:

\
|

(i) The flow is potential and the fluid compressible; furthermore, the

limiting case of small vibrations will be considered.

(i1) The pressure of the fluid on the walls is supposed to be purely

lateral and the velocity distribution throughout the cross section
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of the shell is also supposed to be constant.

(iii) The internal pressures are not unduly high, so that pressurization
of the shell is negligible. The general formulation of the problem

will be carried out in the case oﬁftoabressib]e fluid where both
( P

generality.

The governing equation for the potential flow is given by
e ae g oY
Vo= (1/5) |+ 2R +0 g = (32)
where C is the velocity of sound in fluid and UX is the velocity of the
fluid throughout the cross section of the shell; ()  and ()~ stand for
/
9()/at and 3()/ax, respectively, and ¢ is the potential of the distrubances {

which is given by

vx= UX + 30/9x, V, = (1/r) (8%/34), vr = 3%/or, (33)

¢

where Vx’ V, and Vr are the components of the velocity field for disturbed

¢

motion.

The condition fo impermeability of the surface of the shell and the
dynamic condition of this surface which is given by Bernouilli's equation
for disturbed motion, permit us to obtain the pressures of the fluid opn

the shell's walls as follows:

Pi = P4 (¢1 + Uy ¢i)r+a ’
pe = pe (Qe > Uxe ¢e)r=a+t ? (34)
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where a and t are the internal radius and the thickness of the shell ele-
ment, respectively, the suffixes i and e indicate the internal and external

region of the structure.

Finally the condition

Wy o= (Y

r‘r=a or’‘r=a (w'+Ux W)

r=a (35)

must be satisfied at any point of the contact surface between the shell

and the fluid.

Assuming that the displacement components have the form of equation (16)

whichsatisfied the system of differential equation (5) and that

8
= ) R (M) S, (6,0.0),

k=1 (36)

we obtain the internal and external pressures as follows: 4

8
:E: { ap r, +ap Sk] Nk % 28 [—piUxirk 4 peUxeSk] N ‘ ]pjl}ﬁ/
/

k=1

2 2 i
ol [ 1Ux1rk eUxeSk] wk } 3 (37)

where W = Cke“kX/a“‘“C cos né, is given by equation (16), p is the den-

sity of the fluid, w is the frequency and

k 1/(n -imka (Jn+1 (imka)/Yn (imka)n,

s, = 1/{n mima Yo,y (ima)/y, (imkaﬂ),

[ fa*/c?) (Aka +u) ] : ) (38)

I

im, a
k
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and Jn(imka) and Yn(imka) are, respectively, the Bessel functions of the

first and second kind and of order n.

Introducing equation (18) into equation (37) by carrying out the
necessary matrix operations of the finite element method and integrating

) — o
over x and ¢ we obtain the inertia, cen@rifuga] and coriolisYof the moving

uid as follows: L%>/ﬁf Z;P ‘ .
fluid foll ‘//) ﬁh“” /f%f*7vﬂ7
nd = BT [ ] - - )

8x8 g
)= [0 B 7= a0
X

and
g‘fg] - [ [e]{x] (41)
X

where

s 2 i i
Sp(ksg) = -M&;yr 1y (19,15,a;)

) » (42)

Dp(k,g) = 2A i [-6.U.Y.r I, (1i,13,a



In equations (42)-(44) the dimensionless quantities are defined as

follows:
51- e (ai/tl)(pi/pl)’ de = (ae/tl) (oe/m)
uo2 = p{1,1,1)/p1t1, Ue = U /Uy, O, =U /U]
Y; = 3;/r1, Yo =23/

where

p1> t1 and r; are, respectively, the density, thickness and radius of the
shell's element number one; p(1,1,1) is the first terms of the elasticity

matrix [P] . rg and sg are given by equation (38).

iz =13 I, (Mi,1j,a) = (1j-1i)/a when A -+Ag =0 and

kg k

. b _ 1 i(A +2) 13/ i(A +)2) 1i/a
Ikg(h,h,a) - WE)[€1 k™g J/a e k'"g ]

otherwise.

With the mass, damping and stiffness matrices known for each fluid
element, the global mass, damping and stiffness matrices for the whole
column of fluid, [Mf], [Cf] and [Kf], respectively, may be constructed by
superposition in the normal manner. Between fluid elements continuity will
be satisfied exactly by requiring an exact match of velocity normal to the
element with the velocity of the adjacent element at all points on the
interface. Each of these (square) matrices will be of order 4(N+1),

where N is the total number of finite elements.

24
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5. PRESSURE FLUCTUATIONS INDUCED BY INTERNAL FLOW

The dynamical behavior of the shell subjected to arbitrary loads may

be governed by the following equation

{[M] o [Mf]} 15} +4{[c] - [cf]} G +4{[x] —[Kf]}- {y} = {F}, (45)

where [C] is the damping matrix of the system; and [M], [Mf], [K], [K&

and [Cf] are given by equations (31).

tuations at the shell's walls resulting from the passage of fully-developed
turbulent flow. While this pressure field varies from point to point at
any instant, its variation at any given point fluctuates irregularly with
time, and the frequency spectrum results in many modes of vibration being
excited with a statistical dependence between them. However, the forces Jé/

(7

vibration can be represented by synthesis of the natural modes; this assump- _
tion is generally permissible only for such structures where nonlinearities \\3>
can be ignored.

The displacements are assumed small enough for the resultant forces
to be normal to the shell's surface. It is also assumed that the pressure
field is spatially continuous and that it has the properties of a weakly
stationary, ergodic process. We further assumed that the pressure drop in
the length of the shell is sufficiently small for the mean pressure to be
considered constant over the length of the shell. Finally, the continuous

random pressure field of the deformable body is approximated by a finite

set of discrete forces and moments acting at the nodal points (Fig. 4).



This response due to random pressure field is developed by Lakis
and Paidoussis (Ref. 13). Here we extend the theory by taking into
account the effects of the inertia, centrifugal and coriolis forces of

the moving fluid.

5.1 Representation of Pressure Field at Nodal Points

As previously mentioned, the shell is divided into N finite elements,
each of which is a cylindrical frustum. The position of the N+1 nodal

points may be chosen arbitrarily (Fig. 1).

Any pressure field is considered to be acting on an area Se surround-
ing the node e of coordinate Qe as shown in Figure 4 (a). We define the
pressure distribution acting over this area Se by two mutually perpendicular
forces per unit length. We may write, for the actual resultant force per

unit length,

(x,0,t) :E: fa (x,t) . cos n¢ + E: f (x,t) . sin n¢,

where fRn and an are at a distance Xo from the origin of the shell as

shown in Figure 4 (a).

These two forces acting at point A are transformed to two forces and

the moment, Mr’ acting at the node e, as shown in Figure 4 (b).

The external force vector associated with the nth circumferential wave

number at a typical node e can now be written in the following form:

26



kzlp Je (46)

where fRn and an are expressed in terms of the instantaneous pressure on

the surface, p(x,¢,t).

5.2 Mean Square Response

We proceed by first considering the free vibration of the conservative
system (30) and determining the natural frequencies w; and the eigenvectors
{@1}, i=1,2, ..., 4(N+1) -J, where J is the number of kinematic bounda-

ries.

We next form the modal matrix
[o] =[5 2 -5 9qer)-g] » and define v} = [o] 123 . (47),(48)

Finally the equations of motion (45) are decoupled and the mean square
values of the displacements of the shell are expressed in terms of the axial
and circumferential correlation functions of the pressure field, Wp(g,o,o)

and Wp(o,n,o) respectively; see equations (10)-(25) of reference [Iﬂ .

27
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In the case of subsonic boundary-layer pressure fluctuations, the
streamwise and lateral spatial correlation functions have been examined

theoretically and experimentally by Bakewell at al. [15] and Clinch [16].

Bakewell measured and derived expressions for the axial and circumfe-
rential correlation functions in experiments with air flowing in a cylin-
drical pipe. He found the following approximate expressions for the (real)

spatial correlations:

g {E0,0) = e'blsgl cos a S

pw g * (49)
. 2y-1 _=dS?7 -1
¥, (0:m,0) = (1+c S2) [2 e n] (50)
where Sg = &w/U cov. and Sn = nw/Ub are the axial and circumferential

Strouhal number, & = |xi - X;

and a, b, ¢, d are constants to be specified; UCO

[, n=|r(e, -¢j)|, w is the center frequency,
- and Ub are, respecti-

vely, the convection and the centerline velocities.

The values of the constants used in these two expressions for axial
and circumferential correlations depend on the fluid. For turbulent flow

in air, the values of a, b, ¢ and d are given in [Hﬂ.

(oY)
Il

8.7266, b =1.0, for Sg = Ew/Ub

t=20, d=100, ¥For Sn = gw/UE (51)
Clinch measurements in water proved that these constants are appro-

ximately the same for different fluids at the same Strouhal number, at

least for sufficiently high Reynolds number.
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Upon using the experimentally based relations (49)-(51), we obtain

the following expression for the mean square response of the shell [13]:

4(N+1)-J
Y P TR
Yq(t) = :E: %ar  T6m2wr M2
r=1 - rr
N+1  N+1 N+1  N+1
- :E: %irur 1u| hE :E: :E: ir kr il o
i=1  u=l
N+1 N+1 N+1  N+1
ol Z Z Jrkr ’+Z Z prvr pvI
j=1 k=1 (52)

where qu is the (qr)th element of the modal matrix [@], M. is the element

of the generalized mass matrix, W5 the rth

FooM MM
ju» Ty @ Ty

natural frequency and r is the
mean radius of the shell; T are derived analytically in

reference [1 3] .

Equation (52) is then the response of the shell to a subsonic boundary-
layer pressure field at the nodal points q(x,$). This response is associated
with a specific n, where n is the circumferential wave number. By repeating
the analysis for a sufficient number of n, the total response for any point
on the nodal circles may be obtained by superposition, in accordance with
the assumption that there is no coupling between the circumferential wave-

numbers.
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6. METHOD OF CALCULATION AND DISCUSSION

A computer program has been written in Fortran V Language for the

CDC Cyber 74 computer, using single precision arithmetic throughout all the

overlays.

The input data for each finite element are the mean radius, r,

wall thickness, t, length of the individual element, %, material and fluid

density, p and Py respectively, and the elements pij of [P].

The necessary steps of the computational method may be outlined as

follows for each element:

a)

We first specify the imposed boundary conditions, their number,

J, and the values of n for which calculations should be done.

The shell is then subdivided into a sufficient number, N, of

finite elements.

The eight complex roots, Ap, of each characteristic equation
(9) are calculated by Newton-Raphson jterative technique, and

hence, we obtain k,,u1, K2, 12, o5 Bj (3=T15 2, <eas B}

The intermediate matrices [R], [A], and the mass and stiffness

matricés, [nﬂ and [k], of the shell in vacuo are determined.

The mass, damping and stiffness matrices of the moving fluid
[mf], [cf] and [kf], respectively, are computed by the rela-
tionships given by equations (39), (40) and (41).
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When the mass, damping and stiffness matrices have thus been computed
for each element, the global [ﬂ], [Md . [C], [Cf], [K] and [Kf] are cons-
tructed and reduced appropriately to take account of the boundary condi-

tions (Fig. 5).

For free vibration, the computer program proceeds to find the natural
frequencies, w_, where m=1, 2, ..., 4(N+1) -J for each n, and the corres-
ponding eigenvectors of a real square non-summetric matrix of the special
form [M] - [K], where both [M] and [K] are real, symmetric matrices and

M] is a positive definite.

Knowing the damping factor, the fluid velocity and its density at each
mode of the structure, equation (31) permits us to obtain the effects of
the inertia, coriolis and centrifugal for;es on these eigenvalues; and rela-
tion (52) is finally executed to obtain the response to a boundary-layer

pressure field.

6.1 Calculations

Some calculations were conducted to illustrate the theory. The first
set of calculations was to test the effects of inertia, coriolis and cen-
trifugal forces of the moving fluid on the natural frequencies of the ves-
sel. The inertial effects of a stationary fluid contained by the shell
were computed. This shell was first studied experimentally by Lindholm,
Abramson and Kana (Ref. 17). It is a simply-supported shell constructed

of 4130 steel tubing and filled with water. The pertinent data are as
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follows: r =3.77 cm, t = 0.229 mm, L = 23.4 cm, v = 0.29, Ci/o = 0.128.
In the experiments, the liquid depth, b, was varied such that the frac-
tional filling, b/L, took the value b/L =0, 4, 4, 3 and 1. For each b/L,
the natural frequencies and the W - component of the corresponding eigen-
vectors were measured, for a number of values of the circumferential wave-

number, n, and of the number of axial half-waves, m.

The effects of inertial force were calculated by this theory assuming
U= 0 in equations (42-44) and using 12 finite elements in the case of
b/L =0, %, 4, 3 and 1. Figures 6 and 7 show some frequencies computed by
Lindholm et al.; only those frequencies corresponding to combinations of n

and m for which experimental data is availabel are shown here. Agreement 'KL

between theory and experiment is quite good in most cases. /44 m= »;7 égngéi

We see that for m = 1 the frequency decrease rapidly with increasing
b/L in the range 0 < b/L < 1/3 approximately, and then decrease only slightly
for higher fractional fillings. For higher m, however, the frequencies de-
crease appreciably with increasing b/L over the whole range of b/L, as might

be expected.

The corresponding normalized eigenvectors for n =5 and m =1 and 2 are
shown in figures 8 and 9. It is recalled that x is measured downwards in
this theory, so that for partially filled shells the liquid-filled portion
of the shell is on the right-hand side of the figures. We observe that
small fractional filling produce the most pronounced distroting effect on

the eigenvectors, as compared to the eigenvectors of the empty shell, par-



ticularly for m= 1 and 2. This agrees with the corresponding effect on
the natural frequencies. We note further that, for partially filled shells,
the Tocation of the nodes shifts towards the centre of mass of the system,

i.e. towards the bottom; this is most noticeable for the case of b/L = }.

When the fluid is flowing, the shell will be subjected to centrifugal
forces and coriolis-type forces. The former have the effect of diminishing
the natural frequencies of the system, while the latter have a damping ef-
fect on vibrations in cases where one end of the shell is free. The magni-
tude of these effects depends on the dimensionless flow velocity Ui' Un-

less we are dealing with rubber shells, very heavy fluids or very high ve-

" Tocities, the values of'ﬂi will be small and the effect of these forces will

be correspondingly small. Thus for a steel cylindrical shell with L/r = 26
and t/r = 0.023 conveying air flow, Ui = 0.20 corresponds to UX = 1000 ﬁ/s.
For this magnitude of flow velocity, the natural frequencies of the shell

are found to diminish by only 3% as a result of the flow.

The second set of calculations undertaken was for a shell first studied
by Clinch (Ref. 18). It is a thin, simply-supported cylindrical shell con-
veying water with flow velocities in the range (6,3-13.2 m/s), (248-520 in/s).
The shell data are as follows: r = 0.0762m, L = 6.096 m, t = 6.35 x 10" " m,
E=1.965 x 10 Nn"?, v = 0.305, p = 8.0048 x 10 kg.m >. Clinch obtained

experimental data of the mean square radial displacement of the shell in the

il

frequency range of 100-1,000 Hz, approximately. Moreover, the experimental

values of the mean square radial displacements given by Clinch are mean va-

gork

lues of measurements taken at several locations on the shell. »/
/ )

INJJ
=ty
/,kﬂfﬁmﬂ}
U ?



This shell was analysed by this theory by subdividing the shell into 8
identical finite elements. The natural frequencies of the shell for n = 2
and n = 3 were below 100 Hz, indicating that the high frequency response as

measured by Clinch would Tikely differ appreciably from the total response.

Calculations of the response were confined to n =2 to 12 from which
the total response of this theory are shown in Figure 10 in terms of the
radial, axial and circumferential displacements. The results indicate that
the total R.M.S. radial displacement response is proportional to flow velo-

city raised to the 2.7 power.

The values of this total R.M.S. radial displacement response of the
shell at its axial mid-point are also shown in Figure 11. Also shown in
Figure 11 are values of the high-frequency response, as calculated by this
theory, obtained by taking into account only the modes whose natural fre-
quencies are in the range 93-1,000 Hz; also shown are Clinch's experimental

results.

It is evident from Figure 11 that the response at the high frequency
range is but a small part of the total. Thus, at the flow velocity of

6.3 m/s (248 in/s) the total mean square response is 2.0645 x lo_nm2

(3,2 x 10" %in%) whereas the high-frequency response is 5.161 x 107" m?

(8 x 10_111n2),approx1mate1y, giving a ratio of 20/1 for the corresponding
R.M.S. values; the difference at higher flow velocities is even more pro-
nounced. The second point of interest in figure 8 is that agreement between

this theory and experiment, in the frequency range of 100-1,000 Hz approxima-

tely, is quite good.
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7.  CONCLUSION

The theory developed in this paper is used to obtain the effects of
inertia, coriolis and centrifugal forces of the moving fluid on the vibra-
tion characteristics of anisotropic cylindrical shells; and to predict the
response to an arbitréry random pressure field. To this end the shell is
subdivided into a number of cylindrical finite elements, each with two no-
des, the nodal displacements being the axialy circumferential and radial
displacements and a rotation. The pressure field is similarly rendered

discrete and is represented by two forces and a moment at each node.

This theory was computarized so that if the dimensions and material
properties of each element, and the properties and the flow velocity of the
fluid, are given as inputs, the program gives as output the natural fre-
quencies and eigenvectors of the shell; the effects of inertia, coriolis
and centrifugal forces of the moving fluid and the R.M.S. values of the nodal

displacements.

The necessary time for the calculation of R.M.S. response for a typical
case involving six finite elements is approximately ten minutes. This CPU
time seems to be high. The time quoted above refers to the case where all
the computed natural frequencies are used in the calculation of response.
However if only a few of the lowest natural frequencies are used in the cal-
culation, the response may be computed to an acceptable degree of accuracy,
but with considerable saving in computational cost; thus, if only 20% of

the natural frequencies are utilized, then the time given above may be re-



duced by a factor of 1/11, approximately. Moreover the computer calcula-

tion involves the determination of (Gﬁ)%, (Q%)%, (dwp/dx)? Y oand (v%)%

at every nodal point. Accordingly, large savings in time may be realized

if the response is not required at every node, or if only the RMS radial dis-
placement is desired. Also, the computational difficulties in classical
analysis arising from the vanishing determinant of the boundary conditions,

which contains both large and small terms of the type G Be

, are not en-
countered here; difficulties due to such terms in this theory are easily

overcome either by increasing N or by matrix manipulations.

This theory does not take into account pressurization of the shell;
however, the theory can be extended to take this into account fairly easily.
The main advantage of this theory is that it may be used, without modifica-
tion, to obtain the effects of fluid pressures on the vibration characteris-
tics of anisotropic cylindrical shells, no matter how many property discon-
tinuities may be present, and for whatever boundary conditions. In this con-
nection, it should be noted that this theory is equally applicable to cases
where the shell is subjected to an external, as well as internal, pressure
field, including the case where the pressure field arises from an external

axial flow.
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APPENDIX III

NOTATION

a internal radius of the shell

a,b,c,d constants defined by equation (51)

b/L liquid depth ratio

¢ velocity of sound in fluid

E Young's modulus

e exponential

i iz = -1

Jn Bessel function of the first kind and of order n
L length of finite element

L - total length of shell

m axial half-wave number

n circumferential wave number

N ’N¢’Nx¢

M ’M¢’Mx¢ stress resultants for a circular cylinder
PisPe internal and external pressure

pij elements of elasticity matrix [P]

r mean radius of shell

ra mean radius of shell's element number one

Pl Sk expressions given by equation (38)

sg, Sn axial and circumferential strouhal number

t wall-thickness of shell

t, wall-thichness of shell's element number one

u,V,W axial tangential and radial displacements
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U centerline velocity

E

Uo’Ui’Ue expressions given by equations (42)-(44)

X axial coordinate

Yn Bessel function of the second kind and of order n
[A] defined by equation (17)

[B] defined by equation (19)

[Af ,[Bl] [cl] [DJ] j=1,...,4 defined by equation (24)

[E.', j=1,...,4 defined by equation (26)

[C1 ,[C] damping matrices defined by equation (45)

fl

{F} represent the internal random pressure field

(5] defined by equation (26)

[k] stiffness matrix for one finite element

:kf] stiffness matrix for one fluid finite element

:K] stiffness matrix for the whole shell

tKJ stiffness matrix for the whole fluid column

tm],[mf] mass matrices for the shell and fluid finite element, respectively

[M] mass matrix of the whole shell in vacuo

defined by equation (18)

=
[ -

elasticity matrix

T M
O o

defined by equation (19)

defined by equation (16)

L
——

defined by equation (26)
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[T] defined by equation (6)

{y},{z} displacement vectors defined by equation (1)
{61},{6j} nodal displacement vector defined by equation (6)
[@] modal matrix

{e} strain vectér

aj,Bj uj,Bj, j=1,...,8 defined by equation (15)

K505 j=1,2 real and imaginary parts of Ap
KX,K¢,EX¢ axial, circumferential and twisting strains
YisYea¥; = 33/ Yo = a,/r

8556, defined by equation (44)

n equal to |r(¢ - ¢')]

A roots of characteristic equation

v Poisson's ratio

g equal to |x - x'|

o density of material of the shell

P;Pg density of internal and external fluid

) circumferential coordinate

o] potential of the distrubances

v (£,0,0), ¥(0,n,0) 1longitudinal and lateral correlation functions of
P the fluctuating pressure

w r th natural frequency
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displacement vector di.
Ny

Whn
(dwn/dx);
Vnj

Wn,
(dwp/dX);

FIGURE 1 Definitions of the finite element used and of the
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FIGURE 3.
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FIGURE 4 (a) Transformation of the continuous pressure field to
a discrete force field
(b) The equivalent discrete force field acting at

the node, e, involving fR’ fC andW.r.
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ELEMENT MASS MATRICES]

Overlay #1
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SHELL

a) SUPERIMPOSE ELEMENT MATRICES TO OBTAIN
STIFFNESS MATRIX FOR AN UNCONSTRAINED

FIGURE 5,

Computational flow diagram.

b) DELETE APPROPRIATE ROWS AND COLUMNS #3
FROM THE STIFFNESS MATRIX TO SATISFY
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) ~ MASS MATRIX -
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The mean square response of the radial displacement

of a shell first studied by Clinch, as a function of

the centerline velocity.
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