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ABSTRACT

A new class of generalized stack algorithms for decoding convol­

utional codes is presented. It is based on the Zigangirov-Jelinek algorithm but

instead of extending just the top node of the stack at all times, a number of the

most likely paths are simultaneously extended. This number of paths may be

constant or may be varied to match the current decoding effort with the prevalent

noise conditions of the channel. Moreover the trellis structure of the convolutional

code is exploited by recognizing the convergence of the paths. As a result the 

variability of the computation can be reduced up to a limit set by the ideal stack 

algorithm. Moreover the error probability is upper bounded by that of the ordinary 

sequential decoder. These algorithms close the gap between the one-path sequential 

decoding and the all-paths Viterbi decoding.

By allowing the correct path to be extended while not at the top 

of the stack, the apparent size of the correct path metric dip is reduced and small

dips involve no search at all. Although the tail of the computational distribution

is still Pareto, it is shown and verified from simulation with short constraint length

codes ( Ks:9 ) of rate 1/2, that compared to sequential decoding, the distribution

of computations per decoded bit, the distribution of the metric dips and the maximum

computational effort are all reduced at a cost of a modest increase in the average

number of computations.
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SOMMAIRE

Une classe nouvelle d'algorithmes généralisés utilisant une pile 

pour le décodage des codes de convolution est proposée. Ces algorithmes dérivent 

de l'algorithme de Zigangirov et Jelinek, mais au lieu de prolonger seulement le 

sommet de la pile, on prolonge simultanément un sous-ensemble des chemins les

plus vraisemblables. Ce nombre de chemins peut demeurer fixe ou peut être varie' 

pour adapter l'effort de décodage courant a l'état actuel du bruit dans la voie de

transmission. De plus la structure en treillis des codes de convolution est mise en

valeur par la reconnaissance et l'exploitation de toute convergence entre les chemins 

explorés. La variabilité du nombre de calculs peut ainsi être réduite jusqu'à une 

limite théorique correspondant à l'algorithme idéal. De plus la probabilité' d'erreur 

est bornée (borne supérieure) par celle du décodeur séquentiel. Ces algorithmes 

font le lien entre le de'codeur séquentiel et le décodeur de Viterbi.

Le chemin correct étant prolonge' avant d'atteindre le sommet de la 

pile, la chute apparente de sa métrique cumulée est réduite. Bien que la queue de la 

distribution de l'effort de calcul suive la loi Pareto, on démontre et on observe par 

simulation avec des codes de taux 1/2 et de longueurs de contrainte courtes

(K ^ 9)(que comparées au décodeur séquentiel,les distributions du nombre de calculs

par bit décodé, et de la chute apparente de la métrique sont réduits ainsi que le

nombre maximum de calculs effectués. Ces améliorations sont obtenues pour un

accroissement modeste du nombre moyen de calculs. De plus certaines erreurs

du décodeur séquentiel sont corrigée?.
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CHAPTER I

INTRODUCTION

Communication is essentially the process of transmitting information

from one point to another through a noisy channel. In a general communication

system shown in Fig. (1.1), a message source generates messages that must be

transmitted to a user over the channel. A specific signal is assigned to each of

the possible M messages which the system can transmit, and the selection rule

that assigns a transmitted signal to each possible message is called the code.

Because of the channel noise the transmitted signal does not arrive at the receiver

exactly as transmitted, and hence errors are made in conveying the source message

to the user. The coding theorem of Shannon (1948) demonstrates the existence of

codes that achieve reliable communication if and only if the information transmission

rate R is less than some maximum rate C called the channel capacity.

Since Shannon's result appeared, a considerable amount of work has 

been concerned with the search of coding-decoding techniques that permit commun­

ication with low error probability, and which are simple to implement. The first code

investigated were called block codes. In these codes, a sequence of K information

symbols is encoded in a block of N symbols to be transmitted over the channel.

Block codes have been studied extensively (Berlekamp 1968, Gallager 1968).

Although Shannon proved that block codes exist for which the error probability 

decreases exponentially with the block length N, the long codes which are simply 

decoded yield a significantly greater error probability than predicted by the theory.
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ChannelSource Encoder Decoder User

Figure (1.1) General communication system.
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Convolutional codes are codes which are particularly suitable

when the information symbols to be transmitted arrive serially rather than in

large blocks. Randomly chosen convolutional codes are known which achieve

error probabilities decreasing exponentially with the constraint length of the

encoder. In general convolutional codes outperform block codes of the same

order of decoder complexity.

In 1957 Wozencraft (1957) proposed a decoding procedure called

sequential decoding whereby the tree-like structure of the convolutional code

is used in a step by step search of the most likely transmitted message. As long

as the rate does not exceed a quantity called R , which is less than the
comp

channel capacity, the average number of computations necessary to decode one

information digit is small and independent of the constraint length of the code.

There are two principal sequential decoding algorithms: the Fano

algorithm (Fano 1963) and the Zigangirov-Jelinek (Z-J) stack algorithm introduced

independently by Zigangirov (1966) and Jelinek (1969a). Regardless of the algorithm.

a major problem with sequential decoding is the variability in the number of computations

required per decoded digit. The cumulative distribution P ( c^ N ) of the number of

computations performed per decoded digit is upper and lower bounded for the discrete

memoryless channel by a Paretean distribution (Savage 1965, Jacobs and Berlekamp

1967).

The probability of error for sequential decoding decreases exponentially 

with the constraint length of the code whereas the coder complexity varies only
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linearly with the constraint length. Consequently, convolutional encoding and 

sequential decoding are among the most attractive means of achieving digital 

communication over memoryless channels at the low error probablility predicted

by the theory.

In the tree representation of a convolutional code, a path is

specified by the input message that entered the encoder. But in a convolutional

encoder of finite constraint length K, the encoder outputs depend only upon the

span of K', K' <K, past information input symbols. Hence the paths in the tree

periodically remerge after their input sequences have been identical over K

input symbols, and the tree collapses in a trellis. The trellis model for convolutional

codes was suggested by Forney (1967). Using this trellis model Viterbi (1967)

proposed and analyzed a non-sequential decoding algorithm where all possibly

distinct transmitted sequences are systematically examined in determining the

most likely transmitted message. Viterbi decoding was shown to be optimum

( Forney 1967, Omura 1969) but this optimality is obtained at a large decoding

effort. In contrast with sequential decoding the number of computations performed

per decoded digit is constant but increases exponentially with the constraint length.

Sequential decoding and Viterbi decoding are called "probabilistic"

because the decoded message is obtained by probabilistic considerations rather than

by a fixed set of algebraic operations. The error performance of sequential decoding

is lower bounded by that of Viterbi decoding, but asymptotically as K -» oo both

decoding techniques yield the same error performance.
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Given the received sequence from the channel, sequential and 

Viterbi decoding appear to be at the extremes for determining the most likely 

transmitted message. The prime motivation for this research has been the desire 

to alleviate the variability of the computational effort of sequential decoding 

by closing the gap between the single-path sequential decoding and the all­

paths Viterbi decoding.

Keeping the search properties of sequential decoding while using

some of the concepts of Viterbi decoding, we develop a class of generalized

stack decoding algorithms which unify these two seemingly different decoding

techniques. The variability of the computational effort of sequential decoding is

shown to be reduced without degrading the error performance.

The fundamental idea of the generalized stack algorithm is to avoid

back-searching for the most likely transmitted sequence through the simultaneous

extension of a subset of the most likely paths. Moreover some redundant and useless 

decoding effort is eliminated by using the trellis structure of the code. In the process.

events which could lead to errors for sequential decoding are shown to be corrected

by this technique. However, unless all distinct paths are constantly extended, a

search mode of operation similar to that of sequential decoding appears to be

asymptotically inescapable.

The generalized stack algorithm is further refined by exploiting the

information about past decoding behaviours and current state of the channel noise

in deciding on the actual number of paths that must be extended. Hence the decoding
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effort tends to be adapted to the particular requirements imposed by the channel

noise. As a consequence both the computational behaviour and error performance 

can be further improved. The limit to this adaptive procedure is shown to be given 

by an optimum unrealizable ideal stack algorithm which lower bounds the compu­

tational performance of any stack decoding algorithm (including Viterbi and

sequential decoding).

1.1 Outline of the Thesis

Chapter II is a review of the structure of convolutional codes. The

essential concepts,error performance and computational behaviour of the sequential

(Z-J) and Viterbi decoding algorithms are presented in Chapter III. The two

decoding algorithms are compared, and methods to alleviate the computational

variability of sequential decoding are introduced.

In Chapter IV first show that the Z-J and Viterbi decodingwe

algorithms are in fact only particular cases of a more general class of stack decoders.

We then proceed to bridge the gap between these two algorithms by generalizing the 

Z-J decoding algorithm. A new M-path stack decoding algorithm is described,

and its computational behaviour and error performance are analyzed. In this 

algorithm the useless computations of sequential decoding are eliminated by 

exploiting the reconvergence of the explored paths, and the variability of the 

computational effort is reduced by the simultaneous extension of the set of M, 

M ^ 1 most likely paths. Results of a simulation of the M-path algorithm with
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codes of constraint length K £ 7, over a discrete memoryless gaussian

channel are presented and compared to the Z-J algorithm .

The exploitation of some of the information imbedded in the stack.

to help reduce further the variability of the computational effort without unduly 

increasing the average amount of computation is examined in Chapter V.

Simulation results for variants of the M-path algorithm are presented in Section

5.1. An ideal adaptive stack decoding algorithm is proposed in Section 5.2 and

shown to be the best algorithm in the class of generalized stack algorithms. A

practical adaptive procedure is then described, modelled and its modes of operation

analyzed by Markov chain techniques. The chapter ends with a discussion of

simulation results for some implementations of the adaptive algorithm with short

constraint length codes ( K ^ 9 ).

Chapter VI contains final conclusions and suggestions for future

research.

Appendix I contains a brief description of the generalized stack 

decoding algorithm as we have programmed it. Massey's Markov Chain model of

the correct path metric differences is reviewed in Appendix II. This model is used

to determine the average separation between breakout nodes of the correct path.

In Appendix III a branching process model of the incorrect paths is used for a

new approach in upper bounding the average decoding effort of sequential decoding.

Appendix IV is an alternative method of determining the probability of entering

a search mode of operation presented in Section 5.4.
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1.2 Claim of Contribufions of this Research

Some specific contributions of this research are summarized below.

A new class of generalized stack decoding algorithms is proposed.

In this class, depending on whether the path extension decision rule is fixed or

variable we distinguish two important subclasses of algorithms.

(a) The M-path algorithm which unifies the Z-J and Viterbi decoding

algorithms.

The adaptive algorithm where a variable number of paths are extended(b)

depending on how much the maximum stack metric has dipped. In

this subclass the ideal algorithm is shown to be the best possible stack

decoding algorithm.

In these algorithms we developped .

A practical procedure to recognize and exploit the convergences of(a)

the paths.

A simple method of extracting the exact top node of the stack.(b)

We showed and verified through simulation with short constraint length

codes ( K ^ 9 ) that:

Compared to sequential decoding, the variability of the computational 

effort is reduced. However, the tail of the computational distribution

(a)

is still Pareto.
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(b) The error probability is upper bounded by that of the ordinary

sequential decoder and lower bounded by that of the Viterbi

decoder.

Using Massey's Markov chain model of the metric differences on

the correct path we established the expressions for

The average separation between breakout nodes on the correct(a)

path.

The effective reduction of this separation afforded by the(b)

generalized stack decoder.

The probability to enter a search mode of operation.(c)

Based on a branching process model of the incorrect paths, a

new approach to bounding the average number of computations for the ordinary

sequential decoding is presented.
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CHAPTER II

STRUCTURE OF CONVOLUTIONAL CODES

Convolutional Encoder2.1

A binary convolutional code of rate 1/V bits/symbol may be

generated by a linear finite-state machine consisting of a K-stage shift register.

V modulo-2 adders connected to some of the shift register stages, and a commu­

tator that scans the output of the modulo-2 adders. The machine is called a

convolutional encoder and is sketched in Fig. (2.1a).

Let us assume that the information to be encoded is a sequence

(2.1)U - (ui, u2, u3 , .... uL)

of binary letters, 0 or 1. Assuming the shift register to be initially filled with

an all-zero sequence (or any other known sequence), the first binary digit u
1

is fed into the first stage of the shift register. The V modulo-2 adders are then

sampled in sequence by the commutator, producing V output coded symbols

x^xi2). ...x!V> (2.2)
1

where the output of an adder is "1" if and only if the total number of 1's in

the shift register stages connected to the adder is odd. Otherwise the adder

(V)
x. is obtained, the secondoutput is "0". After the Vth output symbol 

input u2 is shifted into the first stage of the shift register causing the contents 

of all other stages to move one step to the right. The right-most digit leaving

1
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the encoder is lost. The V modulo-2 adders are again sampled, yielding V new 

output symbols x^/ / •

input digit u^ enters the shift register. In order to return the shift register to 

its initial zero state, with each shift of u^ a zero symbol is fed-in until u^ 

leaves the shift register. This terminating sequence of ( K-l ) zeros is called 

the tail of the message.

x(V) 
•* 2

. This procedure continues until the last

The L-bit message sequence U of Eq. (2.1) produces the output

sequence or codeword

.. x.(V)(1) (2) (V) (1) (2)
, X^ , . . . X.J , X£ , X£ , . ..xf1*(V)

) (2.3)x - ( K+L-T ‘ K+L-l

of length ( K+L-l ) V binary digits. The rate of the code is

R- L
K (L+K-l ) V (2.4)bits/symbol

and for L >> K

1 (2.5)R « Y7 bits/symbol.
V

Let the row vector

(2.6)) , i = 1, 2, ... KG. - ( g lj, 92j/ ••• 9Vj
-I

specify the connection between the stage j of the shift register and the V

is a 1 if the ith modulo-2 adder ismodulo-2 adders. The component g.. 

connected to stage j, otherwise it is a 0. For example, the rate 1/3



12

K stages M
u

V modulo-2 
adders+.-h

. •

X

Figure (2.1a) Convolutional encoder.

U

G, =111
1

= 110G2

= 101G3

X

Figure (2. lb) Convolutional encoder with K = 3, V = 3, d = 1 .
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convolutional encoder encoder shown in Fig. (2. lb) has the following connection

vectors

G, =(1, 1, 1 )

g2 = ( 1, 1, 0)

G3 = (l, 0, 1 )

(2.7)

x!1^ x.(2), ... x!V)
From the operation of the encoder, the V output digits

i '

produced when the input binary digit u. is first shifted in the shift register are

i i

i

(2.8)u. G © u
i — 1

g2 ©.. . ©u
—Ki-1 i-K+1

where the sign © represents the modulo-2 addition. Relation (2.8) is the

convolution of the vectors G’s and the K-bit long input sequence u., u. j, ... 

The term "convolutional" is taken from the form of the relation (2.8)Ui-K+T

and clearly the vectors G's specify the code. We observe that the V output

symbols corresponding to a particular input digit depend upon that digit and the

( K-l ) preceding digits that entered the encoder. The constraint length of the

code is defined as the number of shifts over which a single information symbol can

influence the encoder output. For the simple binary convolutional code, the

constraint length is equal to K, the length of the shift register.

Considering the input binary sequence as an L-dimensional row 

vector U, the ( L+K-l ) V - component output X can be written, using modulo-2

arithmetic, as
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X =U [G1 (2.9)

where

( L +K-1 ) V columns *-4

i L
G

—2 —3 °K-1

G —2 53 —K-

G ?2 '-1
EG] = L rows

,r (2J0)
—2 —3 •

The matrix [G] is called the generator matrix of the code, and the KV-

component vector

(2.11)—2' —3' ‘ ' ' —K ^

is called the generator of the code. The first row of the matrix [ G] is the

generator G* followed by ( L-l ) V zeros, and each succeeding row is the 

previous row shifted V places to the right, with all elements to the left of G-| 

equal to zero. The number of rows is the length L of the input sequence, and

the number of columns is ( K+L-l ) V. Every codeword X can be expressed as 

a linear combination of the rows of [ G] and the code may thus be seen as the

set of all 2^ linear combinations of the rows of [ G ] . For the example of

Fig. (2. lb), the generator of the code is

G* = ( 111 110 101 )
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and for the 4 bit long input sequence

U = ( 1011 )

the output is

x = ( in, no, oio, ooi, on, 101 )

One can generalize this binary convolutional encoder by

allowing the K-stage shift register to receive groups of d q-ary information

symbols of an input sequence whose components are elements of a finite Galois

field GF ( q ). Then the input to the encoder is the sequence

(2.12)-2' -3' •" VU = ( u-r

where

(1) (2)
( u. , u. , .

(d)),
“i

(2.13)
u^ e

GF (q ) , i = 1, 2, ... d, i = 1, 2, ... L

The V modulo-2 adders, V > d and their connections are replaced by V

inner product computers, each of which compute the inner product in GF ( q )

of the shift register contents and some specified vector. In other words, the 

elements of the generator matrix [G] belong to GF ( q ), and the operations

performed by arithmetic operations in GF ( q ). The lengthof Eq. (2.9) are

K is chosen to be a multiple of the integer d.
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K = kd (2.14)

and the constraint length of the code becomes the number k = K/d of groups of 

d shifts over which a single information symbol can influence the encoder output.

The rate of the code is

nats/symbol (2.15)
V

Following the encoding of the L groups of d information

symbols, a tail of ( k-1 ) groups of d zeros is shifted in to clear the shift

register.

In practice it may be simpler to consider the d-tuple input

sequences entering the encoder in parallel. The K-stage shift register is

replaced by a stack of d k-stage shift registers, each with its own kV-

component generator vector. The generator of the whole code is then a d x kv

matrix.
G?
-1

(2.16)[G*] = —2

— d

where G* , i = 1, 2, . . . d is the generator corresponding to the ith shift

register. The generator matrix [_G] of the whole code has the same form as that

of the simple binary code of Eq. (2.10), but with each row replaced by the matrix 

[G*l of Eq. (2. 16). For example the rate 2/3 code with generator vectors
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ç1 = ( in on ooi loo )

g* = ( ioi ooi in on )

is shown in Fig. (2.2). The input sequence starting with 11001001 ...,willbe

encoded as 010 010 001 001 . . . „

The Structure of Convolutional Codes2.2

From the above description of the operation of a convolutional

encoder, we observe that

The code symbols depend on past values of the inputs.(1)

The past dependency does not extend to the infinite past but is(2)

limited to the length of the shift register.

The code is linear since the output symbols are linear combinations(3)

of the past inputs.

We now show that the first two observations lead to two different

representations of the convolutional codes.

2.2.1 Tree Structure

The fact that at any time, an input may take q values hence 

leading to q output sequences, suggests representing the output of a convolutional

dn
possible sequences corresponding to n inputs. Theencoder by a tree with q
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0) (1) (1) 
u3 u2 U1

^X3

X2 X

zx /x 1

(2) (2) (2)
u3 u2 U1

Figure (2.2) Rate 2/3 convolutional encoder with K = 8, V = 3, d - 2.
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root node of the tree has no predecessor while every other node has one predecessor. 

There are q branches stemming out of each node, with the exception of the nodes 

corresponding to the tail of the message which have only a single branch extension. 

All branches carry V coded symbols. Fig. (2.3) depicts the tree representation

for the outputs of the encoder of Fig. (2.1b).

A path in the tree is traced from left to right according to the

input sequence that specifies it. For the binary tree of Fig. (2.3), a 0 input 

means taking the upper branch leaving a node, and a 1 means taking the lower

branch. Hence a message sequence u^, U2, u^, • ■ • traces a path through the

tree, and the corresponding coded symbols of the branches of the path are the

channel inputs that are transmitted. In Fig. (2.3), the input message starting

with the sequence 01100 determines the path indicated by the thick line having

the encoded sequence 000 111 001 011 101. The tree of Fig. (2.3) is said to have

five levels, one for each branching along a possible path. The number of levels in

a tree can be extended indefinitely, and naturally there is a one-to-one corres-

dl
information sequences of length dL and thepondence between the set of all q

set of paths through the L levels of the tree. A code that can be represented by

a tree is called a tree code. In general, tree codes are codes where coded symbols

depend on past input sequences and where paths may be represented as branch

choices on a tree.
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000000 cm000
noin
001000 s

~o 101no
010in s on-1 001 \ loo

s 000101—o
111no

s im-2 010
001Hi s 101-1 on

^ 010001Î s ono -3 100 100
Root node 000000 rTnii 101 s no—o Ü-4 001no

101-2 no oio010
ii on001 \ 100

000il 101 111on i2 no010 I 001001
i3 101on oio100 s on-3 100 \ 100

Figure (2. 3) Tree representation of encoder of Fig. (2. lb).
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2.2.2 State Diagram

In the causal transformation of the input sequence U into the

coded sequence X, at any given time the V output digits are completely

determined by the most recent k groups (including the present one) of d

information symbols that entered the encoder, and are residing in the shift register.

For every new shift of input symbols, the output will depend upon the previous

( k-1 ) shifts of input data, and clearly, if the first nd components of 2 or

more input sequences are equal, the corresponding output sequences will be identical

in their first nV components.

A convolutional encoder was defined as a finite state machine,

and since a finite state machine changes from one state to another according to the

input it receives, the state of a convolutional encoder is then simply the ( k-1 )

input data symbols preceding the current input. That is, the state is the content of

the first ( k-1 ) d shift register stages, and hence the encoder state together with

the new d input symbols uniquely specify the V output symbols. We can label

the states by the sequence

(2.17)S - ( s S2' • • • SK-d )r

where s. e GF ( q ), i - 1, 2, ... K-d , and where entered the encoder befores.
i

Vl '
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The total number of states is then

( k-1 ) d _ K-d
q - q

-J
to q other states. Naturally,and from one state the machine may move some

input symbols may cause the machine to stay in the same state.

This description suggests representing the encoder by a state

states or nodes and q branches leaving and entering eachK-d
diagram with q

state. These branches represent the transitions of the encoder from one state to

another, and therefore they carry the V coded symbols delivered by the encoder

in the transition. For example, the state diagram representation of the encoder

of Fig. (2. la) is shown in Fig. (2.4). It has 4 states and each branch is labelled

by the corresponding input (above) and output V-tuple (below).

The state diagram is a very compact representation of the encoder.

Starting from the initial state = ( 0, 0, ... 0 ), the coded output corresponding 

to the input sequence U = ( u-| , Uj, u^, • • • ) is readily obtained by writing the 

branch symbols corresponding to the transitions due to u^, ^2/ ug' • • • • For example, 

from Fig. (2.4), the output to the message 110100 is 111, 001, 011, 010, 110, 101 .

A potentially infinite tree has been reduced to a mere 4-state diagram1.

Regarding the state diagram as a signal flow graph, particular codes

can be analyzed via the transfer function of their diagram (Viterbi 1971). However, 

the great difficulty in finding the transfer function for long constraint length codes

limits the use of this technique to very short constraint length codes.
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Trellis Structure2.2.3

Using the definition of a state, to each node of the tree there

corresponds an encoder state. For an input sequence of dL symbols, there are

dl K-d
terminal nodes in the L-level tree, but only q different states. There-q

fore, for L s ( K/d ), the number of nodes in the tree exceeds the number of

states of the encoder. This means that several nodes must correspond to the same

encoder state, and hence the coded tree paths are not distinct over their entire

length. From our discussion on the state diagram we know that after the input

symbols have been identical for ( K-d ) consecutive symbols, the encoded

symbols are the same: the paths remerge. However, this fact is obscured in the 

tree representation of the code since the tree keeps on branching off with q^

branches from each node, as if the states were all different. This behaviour is

equivalent to considering an infinite number of states or a dependence over the

infinite past. Realizing that the number of states is finite, we see that the tree

contains much redundant information which can be eliminated by merging together.

at any same level, all nodes corresponding to the same encoder state. The

redrawing of the tree with remerging paths is called a trellis.

Taking the example of Fig. (2.3), let the four states by = ( 0,0 ) 

$1 = ( 0,1 ); S2= ( 1,0 ); Sg = ( 1,1 ) . After the third level, the data sequence 

100 a b c . . ., and 000 a b c ... generate the same code symbols, and hence both

nodes in the figure labelled S can be joined together. The same reasoning applies
^0

for the nodes labelled S^, Sg and Sg, and the tree collapses in the trellis of
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Fig. (2.5). More insight about the remerging of the tree paths in general is 

given by the following properties (Viterbi 1967).

Property 1:

If two sequences of information symbols are identical except for

n consecutive groups of d information symbols, the corresponding codewords

will be distinct over ( n+k-1 ) consecutive branches.

Proof:

i The paths in the tree code corresponding to the 2 codewords 

will be identical as long as the input sequences are the same (prior to the nd 

different symbols), and will diverge, i.e. will be different, for the nI
consecutive branches where the input symbols are different. Thereafter, although

the input symbols are the same for the two data sequences, the code symbols will

be different as long as the encoder states are different. Hence, ( k-1 ) additional

shifts are necessary before obtaining identical outputs, causing the paths to diverge

I total of ( n+k-1 ) branches.over a

Property 2:

If the information symbols of two paths agree at some point in

( k-1 ) branches, the subtrees extending from these two paths thereafter must be

identical.
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The trellis representation of a convolutional code is more

instructive than the tree representation for it explicitly uses the fact that the

d
encoder is a finite state machine. Each state of the trellis has q possible 

q possible predecessors, and from level to level the structure issuccessors.

repetitive.

This reduction of the tree structure of the code into a trellis

is credited to Forney, (1967) and the trellis structure is at the heart of an

optimum decoding technique for convolutional codes due to Viterbi (1967). 

This decoding technique will be presented in section 3.4.

I

I
\
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CHAPTER III

DECODING OF CONVOLUTIONAL CODES

3.1 Introduction

In a terminated convolutional code, the message input sequence 

U is encoded as a sequence X and is represented by a particular path through

the tree or trellis of the code. This codeword X (also called the transmitted

sequence) is sent through a noisy memoryless channel to a decoder and a user.

A discrete memoryless channel (DMC) is an idealized model of

a noisy channel with digital input and quantized or digital outputs. The input 

to a DMC is a sequence of letters from a Q-symbol alphabet, and the output is 

a sequence of letters from a J-symbol alphabet. During each channel use, a 

letter of the input sequence is transmitted, and the corresponding output letter

is received. A received letter j, j = 1, 2, . . . J is assumed to be statistically 

dependent only on the corresponding input letter i, i = 1 , 2, ... Q, and is 

determined by a fixed conditional probability assignment P ( j/i ). Successive

input-output transitions are random and statistically independent.

The decoder observes the output sequence of the DMC corres­

ponding to the transmitted sequence, and determines which of the possible q^" 

q-ary data sequences of length L entered the encoder. Fig. (3.1) shows a

communication system employing a convolutional code and a DMC.

The encoder simply maps the integers 1 to M = q^" onto the

m enters the encoder, X^ iscodewords X^ to X^)
. As message



T ransmitted 
sequence

Received
sequenceData

UserX YU Convolutional
Encoder

/rD.M.C. Decoder* U

8 outputs

binary
input DMC with 

Q = 2, J = 8
(0 = 2)

K3
00

Communication system and Discrete Memoryless channel.Figure (3.1)



29

transmitted, and on the basis of the corresponding received sequence Y, the 

decoder produces an integer m'. Decoding errors occur if

It is well known (Gallager, 1968) that for completely general

channels, the decoder, which, given Y chooses m' for which

(m1) (m)
p ( Y | X ), all m / m') > P ( Y I X (3.1)

minimizes the error probability of the sequence, if all input data sequences are

equally likely. This decoder which is optimum is called a "maximum likelihood

(•)
sequence decoder" and the conditional probabilities P( Y |X 

likelihood functions.

) are called the

Specializing the discussion to convolutional codes, the following

d
in general q branches leaving each node andnotation will be used. There are

V transmitted symbols per branch. A node on the tree level (or tree depth) t is

uniquely specified by the data sequence U^=: ( u^, Uj, • • • u^) which locates 

the encoder at that node. Each subsequence u. = (

GF ( q ) is the set of d symbols that entered the encoder at time i.

I

U<i> «
i

then we may writeIf U., 1 s i < £- is the initial sequence of length i of U-v

(3.2)U-t (^i' -Vi ' -i+2' • • ■ '

The V symbols on the last branch reaching node U are
'C

denoted by

X(U) = ( M , X(U) .. x^)) (3.3)
12 ' ‘-l IV
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Likewise let

- ( Xn/ X: (3-4)
j2' ’ii iv

is transmitted. Then from Eq. (3.1)represent the V received symbols when
“I

the likelihood function for the jth branch of that path is

V
Rfy.lxP)» U)

M P ( y,, | x- ) (3.5)

since the channel is assumed memoryless.

Generally it is more convenient to use the logarithm of the

likelihood function since the logarithm is a monotonely increasing function, and

therefore does not alter the final result . Defining the log-likelihood function

(U)
for the jth branch on the path specified by the input sequence U asy :

t V
(U) A x<y> log P ( y.. IxJV* )log P ( y. ) = (3 6)

i=l

the log-likelihood function rj^-^ for the first N branches of that path is

r(-} =1 N

N
(U)

N = 1, 2, 3, ... (3.7)^r
i=i

(In the sequel whenever there is no ambiguity as to which path is being considered.

the superscript U will be removed).

The log-likelihood function (or simply the likelihood) is used as

a metric, and for memoryless channels the metric is additive over the received

symbols. Because a metric can be computed for each path in the tree or trellis.
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likelihood decoding of convolutional codes may be simply regarded as 

the finding of the path with the largest accumulated metric, given the received

maximum

sequence. However, depending on whether the tree or trellis structure of the

code is used, the determination of this most likely path will lead to either an 

impractical or practical decoding technique.
!

3.2 Maximum Likelihood Decoding of Convolutional Codes

By definition, maximum likelihood decoding implies comparing 

the received sequence with all possible transmitted sequences before making a 

decision. Hence, in general for memoryless channels, the optimal decoding of

an L-bit long binary sequence requires comparing the 2^" accumulated metrics 

of the 2*" different codewords that could have been transmitted, and picking the

best one. Because of this exponential increase of the decoding effort with the

length L of the sequence, maximum likelihood decoding is usually difficult to

implement and therefore rarely used in practice. However, its importance lies in

its use as a standard with which other practical suboptimum decoding techniques may

be compared. Moreover, it is used to determine the performance of codes, since a

of performance for any code is the probability of error with the optimummeasure

decoder.

For the decoding of convolutional codes, either the tree or trellis

structure of the code may be used. In the tree representation of the code, the fact

thal the paths remerge is entirely ignored, and hence the decoding of an L-bit
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sequence requires the exhaustive comparison of 2^~ accumulated metrics.
Conse­

quently over the tree structure of the code, optimal decoding is not practical.

and given the received sequence, the estimation of the most likely data sequence

would call for a suboptimum but more practical decoding technique.

Consider now the trellis structure of the code where the redundancy

of the tree was eliminated through merging. In principle this redundancy could be 

exploited by a clever decoder which would consider only those paths that could

ever maximize the likelihood function over the whole set of paths. In the decoding

process, if at some point it is realized that a path cannot possibly yield the largest

metric, then that path would be ignored by the decoder. The decoded path would

then be chosen from among the set of remaining or "surviving" paths that reached

the last level L. Such a decoder would still be optimum in the sense that the

decoded path would be the same as the decoded path of a "brute force" maximum

likelihood decoder, but the early rejection of unlikely paths would reduce the

decoding effort. The objective is naturally to find a procedure that breaks the

exponential message sequence-length dependency of the decoding effort and yet

yields maximum likelihood decisions. We now show that the trellis structure of

the code allows such a decoding procedure.

Consider the set of all tree paths lying at level (or depth) l,

(l)
1 ^ ^ ^ L , whose end node correspond to the same encoder state S. ,

K-d
, where the superscript refers to the level of the tree. Thesei - 1, 2, . . . q

paths are distinct in the tree but converge into a single node in the trellis. In
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this set, the path having the largest accumulated metric is called the survivor at

(l) (l)
, and all other paths constitute the non-survivor set at S. . It isstate S

-i -i

readily shown that an optimum decoder can discard the non-survivor set of paths 

without altering the optimum decision.

Since the subtrees issued from a set of converging paths are

identical, the metric differences existing between the survivor and all non-

(l) will be maintained thereafter up to the last level L, forsurviving paths at S.
— i

all identical paths of these subtrees (see Fig. (3.2)). Therefore, among the paths

belonging to these subtrees, the path yielding the largest accumulated metric at

(l)
level L was the survivor at S . A maximum likelihood path cannot belong

-i

to any non-survivor set which can thus be discarded.

It is clear that a decoder that would compare the metrics of all

paths converging into a node, keeping only the survivor at that node will yield

a maximum likelihood decision if the operation is repeated for all distinct states

K-d
at each level. The natural structure to use is of course the trellis. There are q

K-d
survivors must be determined for each level, yieldingstates per level, hence q

K-d for a code of constraint length K/d.a decoding effort that would vary as q

Therefore, the exponential growth of the decoding effort is in the constraint

length of the code, not in the length of the input sequence as in maximum likeli­

hood decoding of tree codes. Whether or not this effort is tolerable will depend

on the particular application, but it may already be concluded that maximum

likelihood decoding of convolutional codes using their trellis structure will be 

limited in practice to codes of short constraint lengths.
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A very practical optimum decoding technique is the Viterbi

decoding algorithm invented by Viterbi (1967). This decoding procedure uses 

the trellis structure of the code, and is very efficient in the way the periodic

remerging of the paths is systematically exploited to determine the survivors.

The optimality of the Viterbi decoder was demonstrated by Forney (1967) and

Omura (1969). Forney showed that for any convolutional code, the output of 

the decoder is a sequence of estimated information digits which is maximum like­

lihood conditioned upon the received sequence, and Omura showed that the

Viterbi algorithm was in fact a forward dynamic programming technique.

3.3 Suboptimum Decoding

Since the number of states increases exponentially with the

constraint length, maximum likelihood decoding becomes very rapidly impractical.

However, given the received sequence, the search for the most likely path can be

attempted sequentially, one branch at a time, making tentative decisions (or

hypotheses) on successive branches of explored paths, in such a way that the path

being followed is the most likely among the subset of paths currently examined.

Whenever a subsequent choice indicates an earlier incorrect decision, this

decision is properly modified, and hence at each decoding step, the current most

likely path is chosen among different paths lying at different levels in the tree

(or trellis). Clearly the explored path is only locally most likely.
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This step by step procedure is facilitated by the tree (or trellis)

structure of the code, and by following only the current most likely path, unlikely

sequences are eliminated until a single sequence of length L remains^ this

sequence is accepted as the decoded path.

The elimination of an unlikely path based on the observation of

its first m branches, m < L, is of course equivalent to the elimination of every

path beginning with these m branches, i.e., a whole subtree of length ( L-m ).

The earlier the rejection, the larger (exponentially) the number of paths discarded,

reducing the decoding effort but also making the procedure clearly suboptimum.

This idea of extending only the current most likely path together with the con­

comitant path rejection is credited to Wozencraft (1957) who exploited it in a

particular decoding procedure for tree codes called "sequential decoding".

One could improve on this suboptimal search procedure by 

extending not just the most likely path, but the set of the M-most likely paths.

By increasing the set of paths considered in the determination of the most likely 

sequence, such a procedure "reduces" the suboptimality of sequential decoding at a 

cost of a larger decoding effort. Moreover, instead of the tree, the trellis structure

of the code could be used by allowing the decoder to recognize and exploit the

convergence of paths just like an optimum decoder.

Sequential decoding and Viterbi decoding are two powerful and 

practical decoding techniques. They are termed "probabilistic" because the
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decoded sequence is obtained by probabilistic considerations rather than by a 

fixed sequence of algebraic operations.

These two techniques are presented in the next section, whereas 

the new decoding technique that extends the M-most likely paths will be 

presented in the next chapter.

There exists also a number of non-probabilistic (or algebraic)

suboptimum decoding techniques for convolutional codes, for example Massey's

threshold decoding (Massey 1963), suitable for codes having certain algebraic

(orthogonal) properties. In general these decoding techniques lead to inferior

performance compared to Viterbi or sequential decoding, and will not be discussed

in this thesis.

Probabilistic Decoding Algorithms3.4

This section is a brief introduction to the two main probabilistic

decoding techniques introduced in the preceding sections: the tree search of

sequential decoding and the trellis search of Viterbi decoding.

For both decoding techniques, the decoder is assumed to have a 

replica of the encoder and hence is able to duplicate all possible transmitted 

sequences that constitute the code. Successive sequences of V channel output

symbols called “received branches" are received from the channel, and from

these the corresponding branch metrics can be computed. Assuming a DMC, the
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metric along the paths is cumulative and therefore, for both techniques, the 

objective of the decoder is to find the path that yields the largest accumulated 

metric, given the received sequence. Viterbi (or optimum) decoding represents 

an exhaustive search that takes advantage of the code topology, whereas 

sequential decoding uses an intuitive trial-and-error search method to reduce

the average decoding effort.

3.4.1 Tree Search: Sequential Decoding

The central idea of sequential decoding is the decoding of the

received message one symbol at a time rather than decoding all information

symbols simultaneously as in maximum likelihood decoding. Intuitively, one

could suspect that in many instances, the correct path has a larger metric than the

incorrect paths diverging from it, and hence could be accurately estimated by

considering only the succeeding few branches. Starting from the origin of th8

tree, the path selected to be searched one step further (i.e. , extended one level
ç|

deeper in its q branches) is the path that has the largest accumulated metric

among those already examined. Consequently, by extending only the path that

appears the most promising, most of the computations necessary for an optimum

decoding can be avoided. This idea is common to various algorithms known as

sequential decoding algorithms, the specific method of searching and selecting

the path to be extended depending on the particular algorithm. Among the subset
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of explored paths, the path that reaches the last level of the tree (including the 

tail) with the highest metric is accepted as the decoded path.

Jacobs and Berlekamp (1967) have given two conditions which

a decoding algorithm must satisfy in order to be a sequential decoding algorithm.

0) The branches of the explored part of the tree are examined

sequentially, and the decision on which path to extend is based

only on those paths already examined. Each new path is thus

extension of a previously examined one.an

The decoder performs at least one computation for each of every(2)

examined path.

Algorithms which do not have these two properties are not considered to be

sequential decoding algorithms.

The interesting feature of such a decoding procedure is that the

rejection of a branch is in fact the rejection of a whole subtree whose root node

is the end node of the rejected branch.

As the decoding proceeds, the number of paths in the subset of

explored paths grows, and occasionally the decoder goes back in the tree and

extend early and possibly incorrect paths. A fundamental idea of sequential is 

to bias the metrics (on which the search decisions are based) in such a way that

the backing-up and extension of unlikely paths is reduced to a minimum. For a
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(U) x!^ =
memoryless channel, the branch metric

xf“) ) of a path U is generally taken as

p< Vir >

of the branchy —
I “I

(xf^xfÿil
V

(U) _ V (3.8)[ log - B]f ( y:. )Li iii=l

) is the sequence of V received symbolswhere y. - ( y 
L\

corresponding to the transmitted branch x.—\ and where f ( j ) is the nominal
il' yi2' " • y:iv

-i
probability of output j fora DMC with an input probability assignment w ( i ), 

i = 1, 2, . . . Q and transition probabilities P ( j/i ), j = 1 / 2, ... J. That is

Q
w ( i ) P ( j/i ) (3.9)

L>
i=l

the bias term B is chosen in such a way that, on the average, the branch metrics

are positive along the correct path and negative along the incorrect paths. As 

the metric assigned to each node on a path is the sum of the branch metrics along 

the path leading to that node, the accumulated metric for node is

N , x 
r (U)r(-} = Y 1 n L (3.10)N = 1, 2, 3, ...y-
i=i

The metric of Eq. (3.8) is then a "tiIting" of a modified form of the log-likelihood

This biasing or "tilting" of the likelihood function is 

common to all sequential decoding algorithms, and the value of the bias which 

minimizes the average computational effort per decoded digit is equal to the rate

function of Eq. (3.6).
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of the code, (Fano 1963, Bucher 1970). Clearly then, the consequence of biasing 

the likelihood function is that along the correct path the accumulated metric tends to

increase, while along any incorrect path it tends to decrease. Therefore, although

the objective of any sequential decoder is to find the path that yields the largest

accumulated metric, the strategy is to search and follow the path of increasing

metric value.

There are two main sequential decoding algorithms: the Fano

algorithm (Fano 1963) and a search algorithm introduced independently by Jelinek

(1969a) and Zigangirov (1966). Although seemingly different, both algorithms

search the tree from its root node out, trying to "match" sequentially the beginning

segment Y., i - 1, 2, . . . L of the received sequence to the corresponding

initial segments of the various paths of the tree. The Fano algorithm introduced

by Fano in 1963 is a modification of the original algorithm presented by Wozencraft in

1957. A detailed description of the algorithm may be found in either Wozencraft

and Jacobs (1965) or Gallager (1968), and will not be given here. The Fano

algorithm is quite complex, the simplicity of the decoding principles being somewhat

lost in the details of the rules that govern the motion of the decoder. It is however.

quite popular, and has been used to derive most of the theoretical results on

sequential decoding.
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(a) The Zigangirov-Jelinek (Z-J) Algorithm

The Z-J algorithm is a very simple algorithm where the essential

concepts of sequential decoding are readily apparent. The decoder consists of a list

or stack of the already searched paths ordered in decreasing order of their metric

values. The "top" of the stack is the path of largest accumulated metric among

the paths in the stack, and will be searched further (extended one level further

branches) since it is the one which is the most likely to be the correctin its

path. As the stack is reordered after each extension, a path whose metric is ever-

increasing will continue to be searched further. Should the metric decrease and

drop from the top position, that path will be properly stored in the stack and the

top node will be extended.new

Denoting each explored path by the node of its extremity, the

stack can equivalently be considered as a list of nodes ordered according to their

metric values. The objective of the decoder is the finding of the top node, the

extension of its successors, and the proper reordering of the stack. After initially

loading the stack with the origin node whose metric is taken as zero, the decoding

algorithm consists of the following rules:

(1) Compute the metrics of all successors of the top node and enter

them in their proper place in the stack.

(2) Remove from the stack the node whose successors were just

inserted.
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(3) If the new top node is the final node, stop. Otherwise

go to (1).

When the algorithm gets out of the loop, the top node is the

end node of the decoded path. The whole path is then easily recovered from the

information stored in the stack.

A decoding example for a binary tree is illustrated in Fig. (3.3).

The paths are associated with their terminal nodes which are numbered in the

figure. The numbers written on top of the branches represent the corresponding

branch metrics for some received sequence of length 4 branches. Ordering 

the nodes from left to right, the contents of the stack during decoding is then:

Stack contents : node (metric)Step No.

0(0)

2 ( -1 ), 1 (-7)

5(-5), 6(-5), 1 (-7)

6 (-5), 11 (-6), 1 (-7), 12 (-12)

11 (-6), 1 (-7), 13 ( -9 ), 14 ( -9 ), 12 ( -12 )

1 (-7 ), 13 (-9 ), 14 (-9 ), 23 (-10 ), 24 (-10 ), 12 (-12 )

4 (-8 ), 13 (-9 ), 14 (-9 ), 23 (-10), 24 (-10), 12 (-12), 3 (-14)

10 ( -8 ), 13 ( -9 ), 14 ( -9 ), 23 ( -10 ), 24 ( -10 ), 9(-10 ),
12 ( -12 ), 3 ( -14 )

21 (-6 ), 13 ( -9 ), 14 ( -9 ), 23 ( -10 ), 24 (-10 ), 9(-10 ),
12 ( -12 ), 3 ( -14 ), 22 ( -18 ).

Initialization 1

2

3

4

5

6

7

8

9

The decoded path is thus specified by the data sequence terminating at node 21, that

is (0, 1, 1, 0).
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With the help of this example, the Z-J algorithm may be

regarded as the most natural way to extend that explored path having the largest

biased metric. By always extending the most likely path among those already

explored (that is, stored in the stack), the algorithm maximizes the probability 

that the next step will be taken along the correct path in the encoded tree.

The mechanics of the search are quite simple in principle. After 

the top node is eliminated, the 

the place assigned by their total metrics. The stack grows by ( q^-l ) entries 

at each decoding step, so that after j steps, it contains ( 1+j ( q^-1 ) ) paths 

of various lengths terminating in different nodes in the tree. Defining a compu­

tation as the execution of step 1 of the algorithm, the total number of computations 

to decode a binary tree is equal to (W-l ) where W is the size of the stack when

new successors are inserted in the stack at

decoding stops.

A graph of the metric values of the paths called the "received

value tree" may be constructed as in Fig. (3.4) for the example of Fig. (3.3). At 

the 4th level obviously the decoded path has the highest value. However, this is 

not the case for any other intermediate node level and by the rules of the algorithm, 

all paths whose metric is higher than the correct path metric must be eventually 

extended. A typical example of the plot of the correct path metric is shown in 

Fig. (3.5). A span of bad noise causes the metric to drop, and therefore some 

incorrect paths may occupy the top of the stack and be extended. Clearly, before

the correct path reaches the top of the stack and is extended anew (hence has
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passed the region of bad noise), all incorrect paths with a metric higher than the

smallest value of the correct path metric must have been extended. This obser­

vation is fundamental to understanding the computational behaviour of sequential

decoding. It is the occasional drop in the correct path metric and the concomitant

extension of incorrect paths that is responsible for the random nature of the decoding

effort.

Quantized Z-J Algorithm(b)

The simplicity of the Z-J algorithm is paid for by requiring a

large memory for storing all the information about the explored paths. However,

the real problem is keeping the stack exactly ordered. An exact ordering of the 

nodes is so time consuming that the algorithm becomes practically worthless. To

overcome this difficulty, Jelinek (1969a) proposed a quantized version of the 

algorithm in which the nodes are placed at random into substacks (also called

bins) according to their metric values. In each substack are stored all those nodes 

whose metric value lies within a certain range. That is, a node m of metric Fm 

is inserted at random into substack Q if

(3.16)( Q + 1 ) HQ H <; rm

where H is the substack spacing in metric value.

In this quantized version, the search for the top node reduces 

to the search for the highest non empty substack clearly a much simpler task.
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The node which is to be extended is then taken at random from this top substack, 

usually in the last-in first-out mode. This quantized version of the Z-J algorithm 

is sometimes called the Jelinek algorithm and the rules become:

Compute the metrics of the successors of any node from the(1)

highest non-empty substack and enter them in their proper

substack.

(2) Remove from the stack the node whose successors were just

inserted.

If any node in the highest non-empty substack is the final node.(3)

stop. Otherwise go to (1).

Under this quantized form, the Z-J algorithm becomes practical

and competitive with the older Fano algorithm. In a comparative study of the two

algorithms, Geist (1970) has shown that although quite different, both algorithms

essentially follow the same rules of path extension. Considering the decoding time

of the decoding effort, Geist observed by simulation that for cases ofas a measure

low noise, the Fano decoder performs better than the stack decoder, but the 

advantage goes rapidly to the stack décoderas the noise increases. Hence the 

stack decoder would be superior than the Fano decoder for periods of high channel

noise and vice-versa for periods of calm channel noise. The choice of the

particular decoder will depend on a trade-off between storage, speed and software

sophistication.
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The Computational Problem of Sequential Decoding(c)

Regardless of the algorithm used, sequential decoding involves a

random motion into the tree, where the exact moves of the decoder are determined

by the received sequence and the particular algorithm. Since any decoder move 

implies a computation, the number of computations to decode a given block of 

information symbols is a random variable. Consequently, the analysis of sequential 

decoding is not only concerned with the error probability but also with the distribution

of the computational effort. This variability of the computation is one of the draw­

backs of sequential decoding.

A combination of asymptotic results by Jacobs and Berlekamp (1967),

Savage (1965), Falconer (1967), and Jelinek (1969b) shows that the number of

computations required to decode one information symbol for any sequential 

decoding algorithm has a Pareto distribution (under the assumption of an infinite

constraint length code). Thus ignoring the convergences of paths.

P (C ^ N ) « k. N_a (3.12)

for large N. k, is a constant. The exponent a is called the Pareto exponent
1

and is given by the parametric equation

Eo (Q)
(3.13)R =

where R is the information rate of the code and Eq ( a ) is the Gal lager function 

(Gallager 1968) defined as
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1J Q
1+a ”1 1+a "I

J J[- l°g ^ u(i) P(i/i) (3.14)E„(a) = max L Lu i=1 i=i

for a discrete memoryless channel with Q inputs having a distribution u =

[u ( i ) , i - 1, 2, ... Q] , J outputs, and transition probabilities P ( j/i ). 

Eq ( a ) is a concave monotonie non-decreasing function of a and is determined 

by the channel statistics. This function has the properties that

Eq ( o ) = o

Eo ( 1 ) ^ R

d ( Eo ( a ))

(3.15)
comp

lim
d aa -> 0

- E ( 1 ) is called the 
o

Where C is the channel capacity, and the rate R
comp

computational cut-off rate of sequential decoding. For a discrete memoryless

s C/2.C , and for most of the channels, C > Rchannel R compcomp

Examination of the moments of the Pareto distribution shows that

if the exponent a is less than 2, the variance is unbounded, and for a ^ 1, the 

mean does not even exist: the average number of computations to decode one bit

becomes unbounded. The rate for which a - 1 is recognized as R , and is
comp

is an important parameterthe limiting rate for sequential decoding. Clearly R
comp

for sequential decoding systems.
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The theoretical values of the exponent a and ft/R may be
comp

obtained by a graphical construction on the graph of Eq ( a ) as shown in Fig. (3.6). 

Observing that Eq ( a ) is monotone non-decreasing, then

E ( a ) ^ R , 
o comp

(3.16)a s 1

and from Eq. (3.13) we obtain

R
comp (3.17)for R ^ Ra >
R comp

Similarly for a ^ 1

R
comp (3.18)for R > Ra £
R comp

Observe that a larger Pareto-exponent will make the tail of

the distribution of the computation P ( C s N ) decrease more rapidly. This is

a desirable situation which for a given DMC can be obtained only by decreasing

the information rate of the code.

Many experimental investigations (Jordan & Bluestein 1963,

Niessen 1965) confirm the Paretean nature of the distribution of the computation

for the coherent and incoherent discrete memoryless channel (Haccoun 1966,

Heller 1967), and the fading dispersive channel (Wright 1967). An intuitive 

simple argument may explain this behaviour. When the noise causes the correct 

path metric to dip, the decoder goes into a back search and enters a subset of 

incorrect paths. Since the number of paths in the incorrect subset grows exponentially
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with the penetration into the subset, the number of required computations will also 

grow exponentially with the length of the correct path metric dip. However, on 

the discrete memoryless channel, the interval of high noise that caused the correct 

path metric to dip, occurs with a probability that is exponentially decreasing with 

its length. The combined effect of these two exponential behaviours results in a 

distribution which decreases at most algebraically.

t1
Another unpleasant consequence of the variability of the compu­

tation is that incoming data may not be always immediately processed as it arrives.

and buffer storage must be provided. Regardless of the size of the buffer, there is

a non-zero probability that it may fill-up, leading to an overflow and complete 

communication breakdown. This overflow problem is the most serious problem with

sequential decoding on the discrete memory less channel. The probability of over­

flow has been bounded by Savage (1965) as

P ( overflow ) « F ( S, B ) (3.19)

where S is the decoder speed factor in computations per information digit inter­

arrival time, B is the size of the buffer and a is the Pareto exponent. The

probability of overflow is rather difficult to combat because of its relative

insensitivity to buffer size and decoder speed.

To overcome this major difficulty, data is sent in blocks, usually

in the order of 500 to 1000 branches, and known sequences (the tail of the

message) clear the shift register of the convolutional encoder after each block.
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I In case of an overflow, the entire block is lost, but the buffer is cleared and

decoding can be resumed in the following block.

The sequential decoder is said to have made an error if it makes

an incorrect decision on an information bit and never returns to correct it. The

error probability in sequential decoding decreases exponentially with the constraint 

length of the code and hence can be made arbitrarily small. Sequential decoding

being a suboptimal procedure, a true lower bound on its error probability is

obviously the lower bound on the error probability for the optimal decoding of

Viterbi (1967). Asymptotically the bound is

Eo<=)-K E (a )/R 
o

(3.20)P ( E ) > k2 e , R <

where is a constant, K the constraint length of the code, R the rate and 

Eq ( a ) the Gal lager function of Eq. (3.14).

Long constraint lengths present no problem in actual sequential 

decoders because the coder complexity varies only linearly with the constraint 

length and the probability of overflow is insensitive to it. Therefore, the real 

problems with sequential decoding are the variability of the computational effort

and the buffer overflow.

These difficulties have somewhat been alleviated by a hybrid

scheme due to Falconer (1967), where instead of using one sequential decoder.

a mixture of several sequential decoders working in parallel and an algebraic

block decoder are used. The system works in such a way that periodically the
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algebraic decoder helps those sequential decoders involved in long searches by

putting them in the right path. Compared to straight sequential decoding, the

i computational variability of Falconer's scheme is reduced, but the distribution

of the computation remains asymptotically of a Pareto-type. The increased

complexity of the hybrid scheme has so far prevented its implementation in

practice.

A new method to reduce the computational variability is to allow

the decoder to extend several paths simultaneously, and by using the trellis of

the code exploit the convergence of the paths and eliminate unnecessary 

computations and storage. This method which will be presented in the nextI
chapter, involves only a slight modification of the Z-J algorithm, and in

addition makes sequential decoding attractive for short constraint length codes.

8
Trellis Search: Viterbi Decoding3.4.2

The Viterbi decoding algorithm (Viterbi 1967) is a simple decoding

procedure, which delivers a sequence of estimated information digits, maximum- 

likelihood conditioned upon the received sequence. In contrast with sequential 

decoding, the Viterbi decoded sequence corresponds to the path having the largest 

accumulated metric of all possible distinct paths.

We recall from section 3.2 that of all the paths remerging at a

given node, only the survivor at that node needs to be retained by the decoder,

and consequently the trellis is the structure to use for decoding. At any trellis
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depth (or level) l further than one constraint length, the survivor for each of the

K-d
distinct states must be determined, which implies that all distinct paths ofq

length l branches must have been examined. Since none of the possibly valid

paths are discarded, there is no need to bias the likelihood function, and hence

the metric will be the log-1 ike I ihood function of Eq. (3.6).

In the trellis structure, a node is entirely specified by its state

s"* specifies a node at level l, £=1,2, ... , havingand its level. That is.
-i
K-d

. Given the survivor for each node at some level £,state S. , i = 1, 2, ... q
I (£+1) is easily obtained by considering only those q^

the survivor at any node S.
“I

1-branch extensions (emerging from the q survivors at level £ ) that merge

(£+1)(£+1)
is the extension of. Consequently, the survivor at node S.onto node S.

-Il
(£+1)

that survivor which yields the largest accumulated metric at node S. . For
-I

(£+1) '
is the extension of the survivorexample in Fig. (3.7), the survivor at

and not of the survivors at either S
(£)

or Sat node S -1-3

In case none of the extensions of a survivor yield a survivor at the

next level, then clearly that survivor cannot become part of the decoded path and

hence may be discarded. This situation is illustrated in Fig. (3.7), where none of

(£+1)(£)
were chosen, and hencethe successors of the survivors at nodes S and

-1

these survivors are eliminated. Summarizing we see that a surviving path at any

level is always a surviving path at all of its preceding levels, but it is not necessarily

a part of a surviving path at any following level. This observation is at the heart of

the Viterbi decoding algorithm which can be regarded as a set of rules for obtaining

the survivor at each state of every trellis level.
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Figure (3. 7) Surviving and non-surviving paths in the trellis.



58

The Viterbi Decoding Algorithm(a)

The Viterbi decoding algorithm operates as follows where we may

assume d - 1 without loss of generality. Given the first ( K-l ) branches of the

( = yj,y2, ••• y^ ^ ), start by examining, from the

paths of length ( K-l ) branches and compute their total metrics

. Since no merging takes place for the first ( K-l ) con- 

K-l

received sequence, Y
-K-l

K-l
origin out, all q

r(i)1 K-l
K-l

, i - 1, 2, .. . q

paths are distinct and identical for bothsecutive branches of the tree, those q

tree and trellis. Upon reception of the Kth branch y^, each path extends its q
—1\

single-branch to level K , where q branches converge into each node. The total

q of the q paths converging into each node0)metrics I"1' , i - 1, 2, . . .
K

=1, 2, ... qs!K), i K-l
are compared, and only the path with the largest metric 

(K)v ' ) is retained. The other ( q-1 ) single-branch extensions

-i

(the survivor at node S 

that converged on S

Now finding the survivors at level ( K+l ) involves only the extension of 
„ /*\ 

each survivor into its q successors, computing for each the branch metrics y^i /

i = 1, 2, . . . q , (given the received branch and comparing q-wise the

's of the converging paths.

-i
(K) K-l

survivors are determined in thisdiscarded. All qare
-i

way.

I total metrics F
K+l

The mechanics of the decoding are now apparent: at each step the

K-l
surviving paths are extended and the comparison is made among the paths 

which were generated by input sequences not previously discarded. Out of each 

comparison a single path is chosen, hence at each step the extensions increase the

q

number of paths by a factor of q while the comparisons reduce that number by a
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factor of q, resulting in a constant number of survivors. From our earlier discussion 

know that the paths eliminated in the reduction from q
K-l

paths to qnewwe

survivors do not affect the optimality of the final decision.new

A difficulty may arise in the case of ties: the survivor at a node is

not unique, that is, two or more paths yield the same highest accumulated metric.

Keeping all the contenders would not in any way help solve the ambiguity later.

!
since thereafter further received symbols would yield identical metrics. Therefore,

in the case of ties the sole survivor is picked at random.

To help in making a final decision as to which survivor should

be chosen as the decoded path, the trellis is terminated by a tail of ( K-l ) known

information symbols. In the tail, branching ceases, for only the branch corres­

ponding to the known transmitted symbols is extended from each state. Therefore,

the number of survivors is reduced by a factor of q by the comparison at each

step. Consequently, after the ( K-l ) tail branches are received and decoded, 

there is only a single path left in the entire trellis: this path is accepted as the 

decoded path, and given the received sequence, it corresponds to the most likely 

transmitted sequence. No other path has a larger accumulated metric.

Compared to sequential decoding, the operations of the Viterbi 

decoder are far less complex, and the motion of the decoder is always forward with

no backing-up. A decoding step involves only the determination of the branch

metrics, the total accumulated metric and the q-wise comparison and proper

selection. These operations are identical from level to level, and since they must
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be performed at every state, the complexity of the decoder is proportional to the

number of states, hence grows exponentially with the constraint length. To

decode a block of L information symbols the total number of Viterbi operations

K-l , and for L >> K it is far smaller than the total number —(q^-1 )
is L q

of operations that would be required to perform maximum likelihood decoding 

on a tree. However, as a practical decoding technique, clearly the exponential

growth of the number of states with K will limit Viterbi decoding to convdlutional

codes of short constraint lengths ( Ks 7 ).

The probability of error for the optimal decoding of a convolutional

code of rate R over a memoryless channel has been bounded by Viterbi (1967) as

I
L(q 1) e-N E ( R) (3.21)P ( E ) < -e/R
1-q

where L is the number of information symbols that are encoded, N - KV is

the symbol constraint length of the code and where

- e < R= e0(d 0 <r R = RR compcomp
(3.22)E ( R ) ~ Eo ( ° ) ~ e

CEo(P) R -e sR -
P

0 <p < 1

Eq ( p ) is the Gal lager function given by Eq. (3. 14), e - ( Eq ( p ) - p R ) > 0

and C is the channel capacity.

The bound shows that the error probability is exponentially decreasing

with the constraint length of the code and can be made arbitrarily small by increasing N.
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Using computer search techniques, good short constraint length

codes of rates 1/2 and 1/3 have been obtained by Odenwalder (1970) for

K ^ 9, and excellent decoding performance with these codes was reported (Heller

& Jacobs, 1971). More recently Larsen (1973) extended the list of good codes 

with constraint lengths up to K = 14 and rates 1/2, 1/3 and 1/4.

Practical Simplifications of the Algorithm(b)

The great advantage of the Viterbi decoder is that the number of

decoding operations performed per received branch is constant. These operations 

are always of the same nature and do not require a sophisticated logic. The main

disadvantage is the huge memory necessary to store all the paths. Moreover,

forcing the encoder into a known final state by using a tail of a known sequence 

of symbols is equivalent to waiting until all L information symbols have been 

decoded before starting the delivery of the first symbol to the user. In a real

system this delay may be operationally undesirable.

It is observed that all the surviving paths do not stay distinct over

their entire length but have a tendency to stem from a single node several constraint

lengths earlier (Heller & Jacobs, 1971). For example in Fig. (3.7) the survivors at

nodes S(t+2>, s/+2>
—o 1

all the survivors at the present decoding depth n merge together at some node

(l)(1+2)
merge together at node • Supposing thatand S . 

—4

S(n-M)
lying M levels back, M > K, then regardless of which path is finally-i

(n-M)
must bechosen as the decoded path, the surviving path leading to node S

-i



62

a part of it. Hence, it is not necessary to wait until the unique decoded path has

been obtained before starting to deliver the decoded symbols. A final decision may

be made on these branches prior to the point of common convergence, and the

decoder can safely deliver the information (with a small delay corresponding to

M) as it progresses in the trellis. With this procedure, clearly the decoder can

eliminate the tail altogether.

Getting rid of the tail in this way leads to a very attractive situation

with respect to the memory requirement. Clearly instead of storing the entire paths 

history for the total length L, the decoder needs to store only the history of the 

paths up to and including the point of common convergence. If the point of

convergence lies M levels back (M is called the memory of the decoder).common

then the total amount W of path storage required is

K-l (3.23)W = M q

A practical decoder has a given amount of storage available, so

that in fact M becomes fixed. A practical refinement of the above method of

symbol decision consists in deciding on the oldest symbol of the most likely of the 

K-l
retained paths. It has been shown theoretically by Forney (1967) that withq

this procedure, asymptotically the expected value of the error probability on that

oldest symbol is not increased if the memory M is large enough. It has been found

through simulation (Odenwalder 1970, Heller & Jacobs 1971) that a memory of

4 or 5 constraint lengths is sufficient to insure a negligible degradation from the

error probability of the optimum decoder. Should an error occur by this method it
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does nof lead to catastrophy, for although the Viterbi decoder was assumed to start

operating from a known starting state, it has been found through simulation (Heller

& Jacobs 1971) that it may in fact start decoding from any state. The first 3 or 4

constraint lengths of data symbols may be unreliable but normal operations will

prevail thereafter. Therefore, for a practical decoder the tail can be eliminated

and the memory reduced without altering the performance of a (theoretical) optimum

decoder.

Finally a quantized integer metric may be used instead of the 

exact log-likelihood function of Eq. (3.6) without much difference in error

performance: the Viterbi decoder is relatively insensitive to metric quantization.

3.4.3 Comparisons and Limitations of Sequential and Viterbi Decoding

To summarize, the two decoding techniques presented above, 

attempt to find the shortest path through a graph. The Viterbi algorithm was shown 

to be an exhaustive search growing naturally out of the code topology whereas

sequential decoding appears heuristically to be a natural method of reducing the 

average number of computations (but not the maximum) by trial and error search 

in the tree. Among the several sequential algorithms, the stack algorithm of 

Zigangirov and Jelinek is the simplest and most natural way to utilize the key

concepts of path rejection of sequential decoding.

As discussed previously, the computational cutoff rate R
comp

limits the rate at which sequential decoders can be used but the same Pareto
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distribution of the number of computations to decode one branch prevails regardless

of the rate (Falconer 1967). Storage requirements and decoding speed must be

traded in such a way that a decrease in buffer storage, must be compensated by

an increase of the decoding speed over the bit rate, thus limiting the maximum

if the number of computations that the decoderbit rate capability. Below R
comp'

can perform per unit time is greater than the mean value of the corresponding

Pareto distribution of computations, then on the average the decoder can keep-up

with the data, although buffering is necessary. Regardless of the buffer storage

occasional long searches do occurprovided and even for rates below R
comp'

resulting in a possible buffer overflow and the consequent erasing of long sequences.

For sequential decoders using long constraint lengths the probability of undetected

error is indeed very small, and usually the main contribution of errors comes from

the buffer overflow.

For the Viterbi decoder such a situation obviously does not occur

due to the fixed nature of the computational effort. Storage history and decoding 

speed requirements may be definitely set for a particular application.

Since both the number of operations per decoded branch and the 

total storage are proportional to the number of states, the complexity of the Viterbi 

decoder is proportional to the number of states, and therefore it increases exponentially 

with the constraint length of the code. Although the error probability decreases 

exponentially with the constraint length, clearly any improvement on the error 

performance by increasing K, is expensive in terms of computational effort and
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storage. Therefore, Viterbi decoders are limited to small ( K ^7 ) constraint

length codes, and consequently where very moderate error probability is sufficient.

However, the very simple nature of a Viterbi operation and its identical repetition

from level to level permits a parallel implementation of a decoder and hence 

decoding at very high data rates in the tens of Megabits/sec range.

Decoding delays are inescapable for both sequential and Viterbi

decoders. For sequential decoders the delay is a direct consequence of the

variability of the computational effort, and for Viterbi decoders it corresponds 

to the path memory storage of each state. Sequential decoders tend to have

buffers longer than the path memory storage of Viterbi decoders. However, in a

real-time situation where a fixed time delay is required for putting out data, the 

total number of computations required in one delay grows only linearly with the 

constraint length K for sequential decoders whereas it grows exponentially with

K for Viterbi decoders.

In general, performance and complexity combine in such a way

that sequential decoding is chosen over Viterbi decoding when high performance 

is required ( P ( E ) ^ 10 ^), provided the information rate is sufficiently low that

I is assured. Moreover, since sequential decoders will beoperation below R
comp

extremely sensitive to bursty noise patterns, they will usually be restricted to

well behaved memoryless channels such as the space channel.

Viterbi decoders may be preferred when the performance demanded

is more modest but the data rate very high. The crossover point occurs for bit error
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-3 -5
probability in the 10 to 10 range and constraint length between 6

and 8.

Most of the drawbacks of sequential decoding are the conse­

quences of the variability of the computational effort and improvements should

be directed at reducing this variability without undue increase in decoder

complexity. The shortcomings of sequential decoding could be alleviated by 

using some of the concepts of Viterbi decoding: exploitation of the remergers

by using the trellis structure of the code, and improvement on the suboptimality

of the decoding by the simultaneous exploration of the M, M > 1 currently

most likely paths.
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CHAPTER IV

MULTIPLE PATH STACK DECODING ALGORITHM

Introduction: Generalized Stack Algorithm4.1

The two algorithms presented in the preceding chapter appear to be

the extremes for determining the most likely transmitted sequence of a convolutional

code, given the received sequence. The Viterbi algorithm examines all distinct

paths at every level while a sequential decoding algorithm follows only that path

that appears to be the most likely. The step by step procedure of sequential decoding

tends to reduce to a minimum the average value of the number of computations to

decode one information digit. Unfortunately, the procedure makes this computational

effort variable with a Pareto distribution. By comparison, a Viterbi decoder carries

along the one correct path and all incorrect paths of the trellis. As a consequence

the computational effort becomes rather large but remains constant for the entire decoding.

We now turn our attention to improving the computational behaviour

of sequential decoding by reducing the variability of the computational effort without 

degrading the error performance. This variability will be reduced when the distribution

function P ( C 2: £ ) is itself reduced, mostly when £ becomes relatively large.

The fundamental idea is to keep the search properties of sequential decoding and 

the notion of a stack while using some of the features of Viterbi decoding.

Denoting each explored path by the node of its extremity, we recall 

that a stack can be considered as a list of nodes ordered (in decreasing order)
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according to their metric values. Allowing for the extension of several paths from

the stack we now generalize the concepts of the stack algorithm of Zigangirov

and Jelinek.

Let a path extension cycle consist of computing the metrics of the

successors of the extended paths, entering them in their proper place in the stack.

and removing from the stack the nodes just extended. In a path extension cycle.

the extension of the Jth node of the stack, J ^ 1, implies the simultaneous

extension of all nodes stored higher in the stack. In other words if J paths are

extended, they are the J most likely explored paths. The actual number of

extended paths in a path extension cycle is assumed determined by a decision

rule which is specified in the algorithm.

Following the path extension cycle a purging cycle eliminates from

the stack some unwanted nodes and reorders the stack. The purging cycle is

directed by some purging rule also specified by the user. The decision and purging

rules need not be kept fixed over the entire decoding, but may be varied according 

to any information pertinent to the decoding as it progresses (past stack contents.

metric behaviours, channel measurements, etc.).

The set of operations comprising a path extension cycle and a purging 

cycle is defined as a decoding cycle. An algorithm that uses this decoding cycle

at every step is called a generalized stack algorithm.

It is now easy to show that both the Z-J algorithm and Viterbi 

algorithm may be viewed as two particular cases of this generalized stack algorithm.
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In the Z-J algorithm the decoding cycle is degenerate since it contains no purging

cycle. The decision rule is the simplest possible as it directs the extension of only

the top node of the stack for each path extension cycle. (The quantized form of

the Z-J algorithm introduces only a practical detail in the path extension cycle).

Now suppose the Viterbi decoder uses a stack to store and order all

explored paths. For a binary code the decision rule is simply to extend the

2K-1
(4.1)M

highest metric paths (the survivors at any depth) in the stack at each path extension

cycle, whereas the purging rule is recognized as the elimination of all non-surviving

paths. All redundancy is eliminated from the stack whose size remains constant.

The M^-path extension together with the purging rule clearly guarantees the 

optimality of the decoding and the constancy of the computational effort. Therefore,

the Viterbi decoding algorithm is also a particular case of the generalized stack

algorithm.

In conclusion, we see that depending on the particular decision and

purging rules, the generalized stack algorithms allow a class of decoding algorithms

among which the Zigangirov-Jelinek and Viterbi are only two members. In keeping

with our objective of reducing the variability of the computational effort of sequential

decoding, we may modify the Z-J algorithm in the following way:

Use a purging cycle to exploit remergers and eliminate all redundancy(1)

from the stack.
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(2) Expand on the decision rule and allow the extension of the M,

M £ 1 most likely paths.

Exploitation of the Remergers4.2

By using the tree structure of the convolutional code, a sequential

decoder totally ignores the fact that paths corresponding to the same encoder state

and same tree level remerge. The redundant information imbedded in the tree is

not used by the decoder. Consequently when the decoder backs-up in its search for

a better path, it may follow a path that appears to be new, but because of remergers

it may have been already explored. By adding to the Z-J algorithm a purging cycle 

whose purging rule exploits the reconvergence of the explored paths, some duplicated 

computations may thus be avoided. Before introducing the procedure used in the 

purging cycle we first examine the computational behaviour of the sequential 

decoder when explored paths remerge.

Let 2 paths U - ( U^, u^, u^, ... ) and U ' " (U^, u^,^, ... ) 

emerge from some common node at level -L, and let F 

well known property of sequential decoding is that, given node LJ^ is reached,

U1 may be extended beyond level ( £+1 ) only if

>r<^)1 t+i • Then a

r(U')
ll+] > Min F., j £ £+1 (4.2)

l
I
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Conversely, if

(U)r(U')
i^,+l (4.3)< Min F.— , j 5 t + 1

I

then U' will not be extended by the decoder beyond ( /t+ 1 ).

In the absence of errors, the finally decoded path (i.e., the

maximum likelihood path) is the correct path. The above property then shows 

that a necessary condition for extending an incorrect path issued from the correct

path, is that its metric value must be larger than the minimum value, say F
min

of the correct path metric beyona the point of common convergence. Hence, an

incorrect path will be extended as long as it has a metric larger than F
min "

Consider the situation depicted in Fig. (4.1a) where 2 paths U

and U1 issued from node U , remerge at level m with metrics F — ^ >F— ^. 
— —c m m

Let the subsequent minimum of the metrics of these paths occur at level £,

£ > m, that is

rf = .'t' min
(U (4.3)Min FV- -L > m

Ï

and let

an (U)r.'- (4.4)> rmin ' c <; j <" m
I

Assume that node is reached by the decoder before node but after

node The decoder will extend both paths U and U1 beyond level m,

and path U1 will be extended as long as its metric value does not fall below



Eliminated computations on path U'.

Repeated computations on path LT.

Figure (4.1) Repeated and eliminated computations on remerging paths.
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r^r
mm

. Since paths U and U1 converge at level m, their metric increments

identical beyond level m. Therefore beyond level m the cumulativeare

metrics of paths U and U' will always differ by the constant amount

= r(y). r(y') (4.5)81 mm

Consequently any exploration of path U1 beyond level m is bound to fail.

The unnecessary duplicated computations on path U' can be avoided by a

generalization of the Z-J stack decoder that recognizes the convergence at

level m, and eliminates, in its purging cycle, the redundant node LJ^. Clearly,

the elimination of U' from the stack eliminates with it the potential subtree of 
—m

redundant paths issued from which can be explored. The same reasoning

applies to all non-surviving paths that may converge on node with a smaller

metric than F —
m

Consider now the case where U1 converges on U with a larger
—m —m

F — ^ > F —^ (see Fig. (4.1b)). Relations (4. 3) and (4.4) still hold 
m

and it is assumed that node U1 is reached by the decoder after node U . Now
—m —m

metric,
m

the metric values f/— \ i Sr m , are increased by the constant amount
Î

z m m
(4.6)

Clearly, any previous exploration of path U beyond level m is

entirely wasted and must be repeated, because there is no way for the decoder 

to increase by Sj all the metric values | s m, except by the normal
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path extension procedure of the algorithm. Applying this reasoning to all the

paths issued from node U , in general the subtree of explored paths issued from 

Um must be explored anew, but now the repetition yields a larger metric. In 

that case the introduction of a purging cycle reduces only the stack size of a 

Z-J decoder without affecting the computational effort. Summarizing we have 

the following theorem.

Theorem 4.1

Let [U } and [U1 } be the subset of explored paths that have

emerged from two converging nodes U and U 1 , and let U be reached by the
—m —m —m

sequential decoder before U^.

(a) If F - ) £ F / then the subset of paths [LT } constitute 
m m —m

fruitless redundant computations.

^ > F then the subset of paths {Um} are necessary(b) if r'-m
repeated computations .

We have shown that by ignoring remergers, any sequential decoder

performs useless computations and the Z-J increases unnecessarily the size of its

stack. The addition of a purging cycle (whose purging rule exploits the recon­

vergence of the paths) to the Z-J algorithm will eliminate all redundant storage

and fruitless computation. Clearly, exploitation of condition (a) above, is

equivalent to sequential decoding on the trellis structure of the code, whereas
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condition (b) leaves the decoder on the tree structure of the code. By adding

the purging cycle, the decoding of a node on the finally chosen path may require

fewer (but never more) computations, and hence both the average value and

variability of the Z-J algorithm may thus be reduced. Naturally, in practice these

improvements must be weighed against the cost (in added complexity and storage of

the decoder) of providing for the purging cycle. The purging cycle must therefore 

be the simplest possible.

4.2.1 Z-J Algorithm With a Purging Cycle

In order to eliminate the redundant computation and storage while

keeping the search properties of sequential decoding, the Z-J algorithm has been

modified to include a purging cycle in the following way: whenever two paths

converge, the convergence is recognized, the two accumulated metrics are compared

and only the path yielding the highest metric is stored in the stack. A new branch

extension converging onto a node already in the stack is discarded if it does not

increase the total metric at that node. However, if the total metric at the converging

node is increased, then the information of the newly converging branch replaces the

information of the node previously stored in the stack with the lower metric. With 

this procedure the purging cycle is conveniently imbedded in the path extension 

cycle. However it assures that all redundancy is removed from the stack since of

all the paths converging at a node, only the best one is retained.
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Looking at the flow diagram of the new algorithm depicted in Fig. (4.2),

see that after the top node is extended, a convergence test is performed in thewe

new branch ex­box "CONVERGENCE?" to check whether the end node of each

tension has ever been visited before. If the end node is a new node, it is stored in

the stack in the proper place defined by its total accumulated metric value. Every­

thing is exactly like the Z-J algorithm. On the other hand, if a convergence is

observed, the accumulated metrics of the two converging paths must be compared in

order to choose the survivor. The comparison is performed at the box labelled

"IMPROVEMENT?". If the comparison test is favorable to the new branch extension,

the new information is entered in the stack location determined by the convergence

test. But since the metric value for the node is now increased, its ordering in the

stack may have to be modified. This substitution of node information and stack

reordering takes place in the box labelled "MODIFY STACK". From that point on,

decoding follows the Z-J algorithm.

Finally, if the comparison test "IMPROVEMENT?" is not favorable

to the new branch extension, this new extension is simply discarded, in effect

purging the stack of one useless location and decoding is resumed. Clearly, the

elimination of the end node of a new branch extension eliminates with it all

possible successors that may be explored, at a saving of both computation and 

stack storage.

This new algorithm retains all the features of the Z-J algorithm but 

in addition tends to exploit the trellis structure of the code by keeping only the
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EXTEND PATH

N CONVERGENCE?I
YENTER IN 

STACK

N
IMPROVEMENT? 1

Y
DISCARD

MODIFY STACK

FIND TOP NODE

AND DELETE

N
FINAL NODE?

Y

STOP

Figure (4.2) Flow diagram of a Z-J algorithm exploiting the paths convergencf s
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best path (the survivor) at each visited node. Hence, it may be regarded as a

single-path generalized stack algorithm. Unfortunately, because of the single 

path extension cycle, the purging cycle removes the stack storage redundancy

but not the entire computation redundancy.

Unlike Viterbi decoding, the survivor at a node Is chosen from

among the subset of explored paths, not all converging paths. Consequently,

the survivor chosen by the decoder is not necessarily a true survivor. If a node in

the stack corresponds to a true survivor, the new algorithm will never explore

identical paths issued from that node. However for all the nodes in the stack,

until the true survivor is found, identical computations may have to be repeated.

Another fundamental difference with Viterbi decoding is that since

only the most likely path is extended, not all distinct states are visited at each

level. Consequently during a dip of the correct path metric, back-up searches

may be necessary, and hence the random nature of the computation still persists

with an asymptotic Paretean distribution. Because the amount of computations

is reduced while the probability of having a metric dip remains unchanged, 

intuitively we see that the Pareto exponent could increase. The improvement

will depend on the occurrences of remergers, but will be small because it will

be shown in Section 4.3.4 that the ensemble average probability of converging

with the correct path decreases exponentially with the constraint length K.
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4.2.2 Purging Procedure

To implement the above algorithm, some simple way must be found

to determine whether a new branch extension terminates in a node already stored

in the stack, and if so, to get all the data about that node. Using a label for

each node stored in the stack would be acceptable if the concomitant search for

convergence involved only a small segment of the stack. If a brute force scanning 

of the entire stack is required before each new-entry, then clearly the whole 

procedure would be worthless.

Before describing the method used we first present briefly the storage

operation of the Z-J algorithm. A more detailed description of the algorithm as it

was programmed is given in Appendix I. With each node stored in the stack,

enough information must be stored along to allow for its proper ordering in the

stack, and its possible extension should decoding resume from that node. In

addition information about the predecessor node must be saved, so that once the

entire path is decoded it may be easily recovered from the final node back to the 

origin. Therefore an entry in the stack consists of the following information

stored in contiguous words of computer memory.

The total accumulated metric (labelled "VALUE") needed for the(1)

proper ordering of the stack.

(2) The encoder state (labelled "STATE") to produce the code symbols on

the branches issued from the extended node.
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(3) The node depth level (labelled "DEPTH") to compare the code

symbols of the extended branches with the corresponding symbols of the received

branch.

(4) A back pointer (labelled "PATH POINTER") to recover the

information sequence when the final node is reached.

(5) Another pointer (labelled "STACK POINTER") needed to help

determine the top node of the stack.

Returning to the convergence problem, we recall that two branches

will converge if their end nodes lie at the same depth and correspond to the same

encoder state. Therefore, for two nodes lying at the same depth, a convergence

test reduces to a mere comparison between their states. The state and depth of

the end node of a new branch extension being obviously known, checking in the

stack the state of every node having the same depth should not be too time

consuming, because the number of nodes explored at any level, is in general

far smaller than the number of distinct states.

In order to exploit this observation, all nodes stored in the stack and

lying at the same depth, are linked together by a set of pointers labelled "LINK".

Therefore to the original five registers that constitute an entry in the stack, we add

the LINK register in which we store the address of the node previously stored in the

stack at the same depth. If a node is the first one to be stored at that depth, the

LINK contains zero. The LINK register is of course contiguous to the other registers.
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Given the node level or depth of a new branch extension, the search

for convergence is accomplished by the set of LINK pointers and an additional

auxilliary array labelled "NODE POINTER". This is an array of length equal

to the length in branches of the trellis, and whose first word contains the address

of the last new node of level 1 stored in the stack, the second word contains the

address of the last new node of level 2 stored in the stack, and so on. That is.

the beginning of the chain of LINK pointers at any given depth resides in the

NODE POINTER word specified by that depth. For penetrations not yet reached 

by the decoder, the corresponding NODE INDEX entry is zero. With this data

structure, we see that the addresses of all the explored nodes having a particular 

depth and stored in the stack, can be retrieved by following the chain of LINK

pointers whose starting point is contained in the NODE POINTER word specified

by that depth. Having the address of a node in the stack, the VALUE, STATE, etc.,

information is immediately available, and the test for convergence and metric

comparison readily performed. Details of the procedure is given in Appendix 1.

4.2.3 Speeding Up the Procedure

The convergence test must be carried out for each branch extended

by the decoder, and although quite small, the time spent in searching for conver­

gences should be kept to a minimum. In order to speed up the procedure we now

show that due to the following property of the trellis, repeating the search for each

and every branch issued from the same node is unnecessary. Regardless of the number

of successors to a node, only one search for convergence is sufficient for all of them.
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Property 4.1

If n nodes, n ^ 2 converge in one of their branch extensions, 

they converge in all q of them.

Proof:

Suppose n nodes Llf^, Llf^, ... U.^
n ^ 2, lying at the same-i '

in one of their q branch extensions

-I
(*)

depth j converge at some node U
-1+1

(see Fig. (4.3)). Recalling that converging paths have identical data over their

last ( k-1 ) branches, the paths ending in nodes u|^, u|^, ... 

identical data over their last ( k-2 ) branches, and the n converging branches

J
carry the same d information symbols. Hence each of the q

n nodes u!^, llf2\ ... ufn)
-I “I -I J

converge n-wise at a single node, and there are q

have

successors of the

having the same d information symbols will

such nodes.

Conversely:

If a pair of branches issued from two distinct nodes do not converge,

J

these two nodes do not converge in any of their q branch extensions.

The above property and its converse show that whenever a branch

extended from some node is stored in the stack as a new entry (no convergence), 

all other branches emerging from that nodes are also stored as new entires.

Consequently they are linked together in a continuous way by the LINK pointers, 

the last entry pointing towards the location of the preceding entry, the latter
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11 lustration of property (4.1) for n-5, q-d-2.Figure (4.3)
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towards its own preceding one, and so on. It follows that the search for conver-

j

gence for all the q extensions of a node reduces to searching for the convergence

J
of only that branch stored the last among the q . If there is convergence for that

branch, there is also convergence for all other branches emerging from the same

node whose locations in the stack are immediately obtained by the LINK pointers

without searching. However, if there is no convergence for the last branch.

there is no point in scanning the stack for the other branch extensions.

Z-J Algorithm With a Multiple Path Extension Cycle4.3

We have shown how the addition of a purging cycle to the Z-J

algorithm eliminates useless computations ana hence help reduces the variability

of the decoding effort. However, regarding the remerging of an incorrect path

with the correct path as being a possible error event for sequential decoding, as 

the constraint length of the code becomes large, the effect of the purging cycle

becomes minimal.

Keeping with our goal of reducing the variability of the decoding 

effort, we now examine the other main difference between the Z-J and Viterbi

algorithms: the multiple path extension cycle. The introduction of an M-path

extension cycle would close in some sense the gap between these two seemingly

different decoding algorithms. In this section we first review some of the search

properties of sequential decoding and then proceed to add a multiple path extension 

cycle to the Z-J algorithm.
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!

4.3.1 Search Properties of Sequential Decoding

The decoded path is the path ultimately chosen by the decoder, and 

in the absence of errors this decoded path coincides with the correct path. We 

recall that in finding this decoded path the sequential decoder uses a biased 

metric in such a way that on the average the metric increases on the correct path 

and decreases on all incorrect paths. A typical correct path metric is shown in 

Fig. (3.5), and to be decoded some of its node will require a single computation, 

and some other nodes will require several computations.

I

Let U., 1 ^ j ^ L be a node lying at level j on path U such
-I

that

r.* r. (4.7)j ^ i s L
I

Then U. is called a breakout node (Gallager 1968). If (4.5) is a strict inequality.
-I

then U. is called a strict breakout node. A node that is not a breakout node is
-I

called a non-breakout node. Fig. (4.4) shows a segment of a correct path metric

where the breakout and non-breakout nodes are indicated. From the definition of

a breakout node and with the help of Fig. (4.4) the following properties are obvious:

Property 4. 2

E A node on the correct path is a breakout node only if its correct

branch metric increment is non-negative. If this increment is negative the node

is non-breakout.
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Property 4. 3

Along any path, the metrics of all non-breakout nodes located

between two consecutive non-adjacent breakout nodes are not smaller than the

metrics of these two breakout nodes.

From these properties we see that a segment of the correct path

with a non-decreasing accumulated metric does not necessarily correspond to a

be labelled "breakout" withset of breakout nodes. In fact a node on a path can

certainty only after observing the metric of this path in its entirety.

Considering a Z-J algorithm, suppose a strict breakout node IJ.

path U reaches the top of the stack. Then for any other node storedon a

in the stack we have

i
(V)(U) (4.8)TV— 2: r —i n

Because U. is a strict breakout node, then regardless of whether or not its

is a breakout node we haveimmediate successor U-i+1

(V)
1i+i (4.9)> r-n

will also have a largeris ever extended then its own successors UIf yi+,
metric than F —\ and so on until the final node is reached. Therefore, V 

n —n

will never reach the top of the stack and cannot be extended. Moreover node

—-i+2

U. will belong to the decoded path.
—i
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O Breakout node.

Non breakout node.

Figure (4.4) Correct path metric

Incorrect paths.

—Correct path. •c
\ "
\\\

\
ë m-1i+1 i+2 mi

Correct and incorrect path metrics.Figure (4.5)
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Assume now that of all the branches emerging from a node, at most 

only one can have a positive branch metric. Then of all the branches emerging

from LL only the one leading to node U will yield a larger accumulated-i+1
metric than T1.—7 . All other branch extensions will yield smaller metrics than(U)

r.-) and hence will
be further extended by the algorithm. Consequently,neveri

will also be on the decoded path and is decoded at a cost of a singlenode U.^•+1
is itself a strict breakout node, the same situation iscomputation. If node U-i+1

repeated and clearly decoding consecutive adjacent breakout nodes of the decoded

path requires a single computation.

Now let node U.,,
—i + l

m > i + 1 is the next breakout node on path U. (See Fig. 4.5). Then

be a non-breakout node and suppose U
—m'

i® * r — > r.-* (4.10)
m

Assuming that will eventually be extended, all descendants of ]Jj+i whose

total metric is greater than will reach the top of the stack and will be

extended before breakout node U^. The situation is repeated for all non-breakout 

nodes U., i < j < m, and the decoder will extend all their descendants as long as 

their metric is larger than • Clearly then, the only incorrect paths ever

extended by the decoder emerge from previously extended non-breakout nodes on 

the decoded path, and these non-breakout nodes are always deeper in the tree than 

the last decoded breakout node. We have therefore the properties.
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Property 4.4

The only incorrect paths the decoder will ever explore before

extending a given node on the decoded path emerge from non-breakout nodes

on the decoded path. These non-breakout nodes are located between the last

decoded breakout node and that given node.

Property 4.5

A sequential decoder never backs-up beyond the level of the last

decoded breakout node.

These properties were established for the decoded path in general.

hence they also hold for the correct path in the absence of decoding errors. Any

discrepancy between correct and decoded path corresponds to decoding errors.

and in general the number of errors is small. Therefore unless otherwise specified,

there is no loss of generality in considering the correct path as being the decoded

path.

The above discussion shows that decoding proceeds smoothly when the

decoder moves along breakout nodes on the correct path. Each decoded breakout

node sets a limit to the depth of any future back-search. The decoding effort

increases and becomes variable only when the decoder enters a series of non­

breakout nodes on the correct path. Each of these non-breakout nodes becomes the

root node of a potential subtree of incorrect paths that must be explored as long 

as their metric value of the next breakout node, say Um. Only after this
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exhaustive exploration of incorrect paths has been performed can breakout node 

Um be extended and fast decoding 

the number of consecutive non-breakout nodes on the correct path and increase 

of the correct path metric dip, will increase the number of incorrect paths that 

must be explored, thus increasing the decoding effort. The distribution and

with little effort. Any increase ofresume

average value of the number of computations necessary to decode one branch

will depend on the distances (in number of branches) between consecutive break­

out nodes on the correct path.

Using the concept of a breakout node, a Markov Chain model 

of the metric differences ^ (or dip values) on the correct path.

p.) (4.11)

has been developped by Massey and others (1969, 1972). In this representation 

the states of the chain are the possible dip values, including zero. We show in 

Appendix II that the average distance dQ between consecutive breakout nodes 

on the correct path is the reciprocal of the stationary probability of state zero. 

Clearly, any procedure that tends to reduce this average distance d^, will 

convert in effect non-breakout nodes into breakout nodes. As these new

breakout nodes set new limits to the back-searchings, depending on the procedure

used, compared to sequential decoding, the resulting distribution of the computation

may thus be reduced.
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4.3.2 Multiple Path Extension

In order to reduce the variability of the decoding effort of the

Z-J algorithm we extend the path extension cycle of the algorithm and allow 

the correct path to be extended before it reaches the top of the stack.

Suppose some node U. on the correct path has just been extended 

by the Z-J algorithm, and let its correct path extension U 

the stack at the Mth position from the top. Thus there are in the stack ( M-l )

be stored in-i+1

incorrect nodes with a metric not smaller than F.^. By the rules of the algorithm, 

will move up to the ( M-l )th position in the stack only if none of tfienode U
-i+1

successors of the top node has a metric larger than F.^ . Following each extension, 

the relative position of node U vary anywhere from one place closer to thecan-i+1
d

top, to (q -1 ) places farther away. Clearly the absolute minimum number of

computations necessary to extend U.+j is M whereas the maximum is unbounded 

if the tree is infinite. Suppose now the decision rule allows the extension of the

M highest nodes in the stack for each path extension cycle. Then node U
-i+1

would be extended with certainty at a cost of exactly M computations. If the

correct path were always included in each path extension cycle, obviously there 

would be no back searching by the decoder and the computational effort would be 

fixed at M computations per decoded branch. Since the correct path would 

be extended, in that respect this M-path generalized stack algorithm 

would be similar to Viterbi decoding. Naturally, when the channel is quiet and 

the decoder is moving along breakout nodes, the correct path is at the top of the

never

cease to
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stack and hence ( M-1 ) computations are performed needlessly at every

decoding cycle. Although speeding the extension of the correct path in general.

compared to the Z-J algorithm, this new decision rule will entail a larger

average decoding effort.

When the channel gets noisier and the correct path metric drops.

the correct path may be located anywhere in the stack, and if M is not large

enough, only incorrect paths will be extended for some decoding cycles. How-

the extension of the correct path will be resumed as soon as it reaches atever

least the Mth position in the stack.

By including the purging cycle described in Section 4.3 to take

advantage of the remerging of the paths, it is clear that for M - this M-path 

generalized stack decoder becomes the optimum Viterbi decoder with a constant

computational effort. However, for any smaller values of M, back searches for the

correct path are possible and therefore a computational behaviour similar to that of 

sequential decoding is expected for periods of deep searches.

Since the average number of computations to decode one branch is

at least equal to M, for applications where sequential decoding is suitable, one

would choose M< M to keep the average computational effort small, and 

accept some variation of the actual decoding effort. Clearly a trade-off exists

between the variability of the computational effort and its average value.

In the class of generalized stack algorithms using a constant M-path

extension cycle and a purging rule that exploits the remerging of the paths, the single
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path Z-J and Viterbi decoding algorithms may be considered the two extremes.

One algorithm yields a variable but on the average small decoding effort while

for the other the decoding effort is rather large but constant. The M-path stack 

decoder stands between these two extremes and exchanges a reduction of the

variability of the computational effort for an increase of its average value.

Depending on M, the behaviour of this decoder is closer to either the Z-J or the

Viterbi decoder. An M-path stack decoder can be attractive in those applications

where it may be preferable to have smaller variations of the computational effort

than sequential decoding even if this implies a larger average number of compu­

tations per decoded digit.

4.3.3 An M-path Generalized Stack Algorithm

The M-path generalized stack algorithm may be looked on as the

parallel operation of M single path interdependent Z-J algorithms working on

Mth highest nodes of a unique stack. Since in generalthe top, second, .

M « M , the biasing of the metric is kept in order to reduce back searches to a 

minimum. The redundancy in the stack is eliminated by a purging cycle that 

exploits the reconvergence of the paths as described in Section 4.3 . The flow 

diagram of the generalized algorithm is given in Fig. (4.6) and the operations are

• • /

summarized below:

(0) Initialization.
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EXTEND PATH

N ENTER IN 
STACK
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N
IMPROVEMENT? 1
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DISCARD
MODIFY STACK

4 4
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4 Mth PATH?

Y
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N
FINAL NODE?

Y
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Flow diagram of the M-path algorithm.Figure (4.6)
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O) Extend the M top nodes of the stack and delete them from theI

stack.

Test and exploit the convergences. Enter the new nodes in their(2)

proper place in the stack.

Find the top M nodes of the stack. If the top node is the final(3)

node, stop. Otherwise go to (1).

In this algorithm we have conveniently imbedded the purging cycle

into the path extension cycle, just like the modified Z-J algorithm of Section 4.3. 

Hence this M-path generalized stack decoding algorithm is very similar to the single 

path Z-J algorithm. The main modification consists in finding in sequence the M

highest metric nodes in the stack (and deleting them) before proceeding to their

extension. As usual a computation is counted each time a node is extended into 

its successors. Consequently, the execution of step 1 of the M-path algorithm

involves M computations.

4.3.4 Computational Behaviour of the M-Path Algorithm

The M-path generalized stack decoding algorithm (which we call 

the "M-path algorithm") retains the essential features of the single paths Z-J 

algorithm. For M < M^, occasionally the correct path is not extended at every 

decoding cycle, and hence the number of computations necessary to decode one

branch remains a random variable.
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As long as the decoding of a node on the decoded path requires 

fewer computations with the M-path algorithm than with the single path Z-J

?

I
algorithm, the computational effort is improved. However since breakout nodes

on the correct path require a single computation for their decoding, no improve­

ment is possible for those nodes.

-v
When the correct path metric drops but the correct path is yet

extended at every decoding cycle, then for all purposes this metric dip may be

considered non-existent since it caused no back-searching. The corresponding 

non-breakout nodes behave as if they were breakout nodes, and hence the effective

average distance between breakout nodes is reduced, reducing with it the variability

of the decoding effort. The most interesting situation occurs when the first new

breakout node on the correct path is extended while being at the Mth position in

the stack. Ignoring the remergers, after the correct path is extended past the

bottom of the dip, its metric increases while it generally decreases for the incorrect 

paths. Hence the relative position of the correct path in the stack improves. 

Consequently some of the incorrect paths that would otherwise be explored by the 

single path Z-J algorithm before the bottom of the dip is reached will not be

extended by the M-path algorithm. This situation is illustrated in Fig. (4.7)

where several incorrect nodes are not extended although they qualify for extension

by a sequential decoder. Clearly with the usual sequential decoding, the entire

subset of incorrect paths of interest must be exhausted before the bottom of the

correct path metric may be reached whereas with the M-path algorithm, the nodes
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on the incorrect subset tend to be explored simultaneously, level by level. As

shown in Fig. (4.7) this exploration may not be exhaustive. Such a parallel

rather than serial exploration of the incorrect paths is in part responsible for

the improvement of the distribution of the computations. The simultaneous

multiple path extension may be seen as a method whereby, upon decoding a

node on the correct path, the total number of nodes in the entire subset of

incorrect paths is exchanged with that (smaller) number of incorrect nodes 

actually having a larger metric than the correct node. Consequently except

for large correct path metric dips, the maximum number of computations to

decode one branch will also be reduced by the M-path algorithm.

Another interesting feature of the M-path algorithm is that since

the correct path may be extended through the dip while not at the top of the

stack, the apparent minimum metric values of the top nodes does not correspond 

to the correct path minimum values, but to the set of nodes that occupied the top 

of the stack. In Fig. (4.7) the minimum metric value is F' for the 3-path
min

decoder. It is as if the 3-path decoder crossed over the dip, raising its minimum

metric value by the quantity

(4.12)63 = < Tinin - rm;n >

Obviously if the correct path is at the top of the stack during its extension 

through the bottom of the dip, there is no apparent reduction of the size of

measure of the facilitythe dip and 6^ = 0. Flence 8^ may be considered as a



99

with which the dip was crossed over. The larger 63 is, the better the M-path

decoder operates with respect to the single path sequential decoder.

Ignoring the reconvergence of the paths, an upper bound to the

average number of computations necessary to decode one branch may be obtained

for the M-path algorithm by following Gallager's derivation (1968) of the same

bound for the Fano algorithm.

Consider some node U. on the correct path U and an arbitrary

which is l branches away on an incorrect path U1 that divergednode U—j+'t-

from the correct path at node U.. Let U , m > j, be the first breakout node
—I —m

following U. on the correct path, that is
-I

Min r/- = rA r 

i> i

Assuming that no decoding errors occur, then node will eventually be 

extended by the M-path stack decoder. We next observe that in general, for an 

arbitrary correct path metric dip, the M-path algorithm will explore the same subset

(4.13)
mini m

of incorrect paths as the single path sequential decoder. The exploration will be

performed M incorrect nodes at a time instead of one by one. Therefore incorrect

will be extended further ifnode U !-\+l

(4.14)s r
minj

) be a binary random variable defined asLet N ( U—\+t
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(U-)
1 if ( r.'f > r\+t min

(4.15)N<V) = otherwise0

Thus the number of computations C. performed for the decoding of correct node
I

U. and exploration of the subset of incorrect nodes is bounded by

ao

cis M + z. I 
-t=i u:

(4.16)N^iW
-l+l

where M corresponds to the number of computations for the decoding cycle that

extends the correct path, and the summation corresponds to computations on

incorrect paths.

From (4.15) we have

(U‘)
(4.17))N(u:+l) = Rr < ^ rminj +t

and hence

oo
(U1)

) (4.18)Pr ( r:-c. s m + * rL min\+l
t=i u:

-i

Over the ensemble of convolutional codes for which the branch symbols are

statistically independent, Gallager (1968) showed that for any j, j ^ 0 ,

and B £ E ( 1 ) , 
o

_V£(Eo (1) + B)

Pr[rir<!)armin]S(wi)e 2
(4.19)

where Eq ( 1 ) is defined in Eq. (3.14) and where B is the metric bias.
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involves fewer than q^-e^^ identical
The sum over U!—j +-L

terms and thus
£ (1) + B

-vt (-^T—)00
£VRI ^ (4.20)( T/+1 ) eC. ^ M +

I
1=]

Eo(1) + Bor
- Rl-V£ [ 200

r1
(4.21)C. ^ ( M-l ) + ) ( 1+] ) e

I ^
/L=0

1For R £ -jr ( E ( 1 ) + B ) the sum converges and we obtain
2 ° E ( 1 ) + B

. . , o
-V(— - R )I'2 (4.22)C. ^ (M-l ) + [1 - e

I

and for B = E ( 1 ) the bound is minimized to o
Eo O

■RV < —1 >

f2C. £ (M-l ) + [ 1 - e (4.23)
I

The expression in brackets is recognized (Gallager 1968) as the

bound on the average number of computations for the single path sequential

decoder, under the same conditions, i.e. , R < E (1) and B = E ( 1 ).o o

Let the random variables C represent theand C1-path

number of computations required to decode one branch for respectively the single

M-path

path and the M-path sequential decoder. Then from Eq. (4.23) we have

= (M-l ) + C (4.24)^M-path 1-path

simply as a translation by (M-l ) ofRegarding CM-path

^”1 -path ' then the distributions of C also a translated version ofareM-path
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a
In particular, for the finite moments C,the distributions of C 1-path 'l-path‘

a > 1, we can use the generalized Chebyshev inequality

-a
^ Cl-path ^ (4.25)P ( C 1-path

to obtain

( i-M+1 )"a+ M-1 ^ C°à ^) = P (CP (C 1-pathM-path 1-path
(4.26)

Since we want an asymptotic behaviour, then for large £, -{,>> M the bound

becomes

>1) « kM*."a , kM (4.27)P ( C - constant
M-path

The above expression indicates that if the reconvergences of the 

paths are ignored, the distribution of the computations for the M-path decoder

is asymptotically Paretean, with the same Pareto exponent as for the single path

sequential decoder. This asymptotic result is not unexpected, as we have observed

that if 1 < M < M , the M-path decoder may still enter into deep searches and 

explore an exponentially increasing number of incorrect paths before reaching the

correct path, just like a single path sequential decoder.

Although the Pareto exponent indicates no asymptotic improvement

of the M-path algorithm over the single path algorithm, the actual values of the

cumulative distribution P ( C ^ ^ ) will depend on the scale factor k. .
M

or k
1

of Eq. (4, 27) and (3. 12).
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A sequential decoder may be in either of two modes of operation:

a search mode where the correct path is not being extended, or a no search mode

where the correct path is being extended.

The transition to a search mode occurs when the number of

computations exceeds M. In order to compare the two algorithms in that mode of

operation, we recall that when the correct path is at the Jth position from the

top of the stack, each of the ( J-l ) incorrect nodes with a higher metric may

be regarded as root nodes of subtrees of incorrect paths. The single-path decoder

must explore these subtrees in a sequential fashion before getting to the correct 

path. Therefore even small dips of the correct path metric may require a relatively

large number of computations. Such a situation does not occur with the M-path

decoder because all dips that leave the correct path among the set of the M-highest

metric nodes are simply ignored. Clearly then, for the correct path, to be at the

( M+l )th position from the top of the stack is a far less likely event than requiring

( M+l ) computations before reaching the top of the stack. We have therefore

P ( C ^ M + 1 ) s P (C ï: M + 1 ) (4.28)
M-path 1 -path

Hence although asymptotically the same, for t> M the distribution of the

computation, P ( C ) is smaller for the M-path decoder than for the single

path decoder. The variability of the computational effort is therefore reduced

for -t > M.
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The superiority of the M-path decoder over the single path

sequential decoder is further compounded when the purging cycle is taken into

account. When a single-path sequential decoder exploits the convergences,

the order in which the converging paths reach the converging nodes determines

whether some computations may be eliminated or must be repeated. With the

M-path decoder, the paths may now converge simultaneously. The unique survivor

among these converging paths can be determined and no duplication of computations

among these paths is ever possible. However, because the survivor at a node is not

in general the survivor of all possible distinct paths converging at that node, the

repetition of identical computations can still occur. Clearly, as M increases.

the operation of the M-path algorithm approaches that of the Viterbi decoding

algorithm , but unless M - M , the computational effort will maintain its variable

nature.

4.3.5 Error Probability

The M-path sequential decoder being a sub-optimal sequence

estimator, its error probability is lower bounded by the error probability of the

optimal (Viterbi) decoder. We now show that it is upper bounded by the error

probability of the single path sequential decoder.

Regardless of the decoder, an error occurs when an incorrect path

is accepted when remerging with the correct path, that is when an incorrect path
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metric is larger than the correct path metric at the merging node. However,

because of the sequential nature of the path extensions, some events may cause 

decoding errors for a sequential decoder, but not for an optimal decoder.

Consideran incorrect path U' which remerges with the correct 

path U, -t branches, £ > k beyond the node U. from which it diverged. By
-I

the rules of sequential decoding, path U1 will be extended only if

(U)T(V') (4.29)s Min T — i 5 ii
j^n

As shown in Fig. (4.8a), if at the remerging node we have

> r(M)T\+i rj+-t ' (4.30)

then an error would occur with both the sequential and optimum decoder.

Now suppose we have

r(u,} (U)
(4.31)^ r.r?\+l\+l

If both paths LT and U reach simultaneously the converging node, the incorrect

path is eliminated and condition (4.31) entails no error. However, with the

single path decoder, the incorrect path IT may reach the remerging node

U.+^, before correct path U. Consequently, if node 

node, the decoder will never back-up to extend the correct path U to node

is a strict break out

Jand decoding errors will occur (see Fig. 4.8b). However, as shown inV'
Fig. (4.8c) if node 

not lead to decoding errors.

is not a break out node then condition (4.31) does
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(c) Correctable error event for both single and M-path algorithm.

Figure (4.8) Error events.
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Let a "proto-error event"(Forney — ) be the event in which

at the point of merger with the(U‘)some incorrect path U1 has a metric F

correct path such that

T(V') (U) (4.32)s Min F — n
n^l

\+t

Then from the above discussion on the error events, no error can

occur without a proto-error event whereas a proto-error event may not lead to an 

error. Therefore the error probability of sequential decoding is upper bounded by 

the probability of proto-error ( E ). Using the union bound, the ensemble 

average proto-error probability bound is

> Min F - ] n
n>|

(U')

Mi+,
(4.33)Pr [ F.'-rj+T.

d-L -LRV incorrect paths that remerge with the correctThere are less than q - e

path after diverging in ( K+-L ) branches. Using Eq. (4.19) we have
E (l) + 8

”( K+'L) (-^2------ )Voo
IRVr—i

, B<Eo(l)

(4.34)

P, ( E ) * ( K+'L+l ) ee1 L,
1=0

E (1)+B
-W(^_---------- R)

E (1) + B 
-KV(^------ ) CO

IP, ( E * e K e1
l=o

E (1)+B
---------- R)oo

+ Y ( -L+l ) e (4.35)

1-0
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1
For R < ^ ( Eq ( 1 ) + B ) both sums converge to give

E (1)+B
-KV(-~2—) r K

Pi ( E ) ^ e Eo(l)+B1
- R)-v( —

1 - e

1+
(4.36)E (1) + B

-v (-^—3 - R)
[1 -e

The bound decreases with increasing B, but is only valid for B ^ Eq ( 1 ) . For

B = E ( 1 ) the bound is minimized to o

-KV E (1) o 1K
P,(E) £ e + E 0)

-vR<^-n
Eo<'>1

]2[ 1 - e d-e1
(4.37)

-KV E (1) o K+lPi ( E ) se , R < Eo ( 1 ) (4.38)1 Eo(1 >
-VR ( “--------- 1 )

l2[1 - e

Because some of the proto-error events that lead to actual error

events for the single path decoder may be rejected by the M-path decoder we

have

P(E) s PTÊT < Pi (E) (4.39)M-path 1 -path 1
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Since none of the incorrect paths satisfying inequality (4.31) lead to decoding

errors for the optimal decoder, we have

(4.40)P < E Werbi "^M-patb S W»

Summarizing, we have proved the following theorem.

I
Theorem 4. 2

The error probability of the M-path sequential decoder is lower

bounded by the error probability of the optimum decoder and upper bounded by

the error probability of the single path sequential decoder.

To summarize, by improving the distribution of the computations

of the single path sequential decoding, the new M-path algorithm alleviates one

of the main drawbacks of sequential decoding. However if only a subset of the

distinct paths are extended in the search for the most likely transmitted sequence

2K-1
( M ^ M = 

v
) a Pareto distribution of the computation seems to be asymptotically

inescapable. By including a purging cycle, the trellis structure of the convolutional

code is exploited whenever possible and futile computations are avoided. The error

probability of the M-path decoder is upper bounded by the error probability of the

single path decoder, but the average decoding effort is larger for the M-path

decoder than for the single path decoder.
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Computer Simulation Results4.4

In order to compare the performances of the Z-J decoding algorithm

and the M-path algorithm, both algorithms were programmed in FORTRAN and run 

under identical conditions on the IBM 360/75 computer at McGill University. In

this section we describe the simulated system and present some of the results of the

simulation.

4.4.1 System Description

The simulated communication system consists of a rate 1/V

convolutional encoder, a modulator;a Gaussian noise channel, a demodulator 

and a sequential decoder. The input data was assumed to be a sequence of equally

probable and mutually independent binary symbols which the encoder maps into a 

binary code sequence. Antipodal signalling was assumed, with a signal energy 

given by

1
(4.41)E Eks V b

where is the energy per transmitted bit. The jth transmitted symbol is

s ( t ) = ± /Es V) ( t ) (4.42)

I

where ( t ) is a convenient unit energy pulse waveform.

To the transmitted signal, the channel adds a zero mean white

— watts/Hz. The optimum
N

Gaussian noise with power spectral density of
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demodulator (which is a filter matched to «o ( t )), delivers an output r! 

corresponding to the code symbol s. ( t ). Normalizing this output by dividing
I

by y Nq/2 yields

(4.43)

where n. is now a zero-mean, unit variance Gaussian random variable.
!

To facilitate the digital processing the continuous r.'s are 

quantized. Soft 8-level quantization with evenly spaced boundaries was used 

as it entails only a small (0.25 dB) degradation of ( ) compared with

an infinitely fine quantization (Jacobs 1967). The quantization intervals are

specified in Fig. (4.9).

With the received signal quantized, the modulator, channel and

demodulator can be considered as being a discrete memoryless channel with 2

equally likely inputs and 8 outputs. All the details of the mudulator, channel 

and demodulator are contained in the transition probabilities of this new channel. 

These transition probabilities are a function only of the signal-to-noise ratio 

E /No and for the quantization scheme of Fig. (4. 9) are given in Table 4.1 . 

Some other parameters of interest are given in Table 4.2.

In the simulation, in order to determine the actual quantized output

symbol of this new channel given the input symbol, the unit interval is segmented

in 8 sub-intervals, each of which has a length proportional to the corresponding

calculated transition probability. For each channel use, a pseudo- random number
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TABLE 4.1

Transition Probability
Transition 
from input 0 E./N = 4.0 dB 

b oE./N = 3,5 dB b o= 3.0 dBo

0.5345730.4992070.4658180

0.1867480.1915540.1948221

0.1401100.1501012 0.159057

0.0822870.0920723 0.101653

0.0378280.050853 0.0442084

0.0136100.0166130.0199125

0.0038320.006102 0.0048866

0.0010120.0013590.0017837

0 1 2 3 4 5 6 7♦♦ r
-1.5 1.5

Figure (4.9) Channel output quantization.
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uniformly distributed over the interval [0, 11 is generated, and the channel 

output symbol then corresponds to the subinterval which contains the value of

this pseudo-random number.

The best rate 1/2 convolutional codes of short constraint lengths

used. Short constraint length codes( K ^ 7 ) obtained by Odenwalder (1970) were

chosen to exhibit the effect of the reconvergence of the paths, and to permitwere

the comparison with simulation results of the Viterbi decoder reported by Heller

and Jacobs (1971).

Branch metric values are computed by adding the metric values of

the two symbols on the branch, according to Eq. (3.8), with a bias equal to the 

rate in bits/symbol. The metric values are rounded to integer values and are listed

in Table 4.3.

Since the simulated channel is symmetric from the input and since

the code is linear, the probability of decoding error is independent of the particular

input information sequence. Consequently, for convenience, an all-zero information

sequence was assumed to be transmitted and thus the coded sequence is also an all­

sequence. This eliminates the need for a convolutional encoder at the transmittingzero

end.

The data sequence was divided in blocks of 500 bits each, after

which a tail of zeros was inserted to clear all registers.
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TABLE 4.2

I R/RR ao compcomp(dB)

1.210.532 0.9393.0

1.540.8660.5773.5

0.623 0.8034.0 1.89

TABLE 4.3

Metric Values

Eb/No Received SymbolsSymbols
(dB)

1 2 30 54 6 7

4 3 -1 -9 -21 -36 -60403.0
1 -60 -36 -21 -9 -1 3 4 4

0 3 -1 -9 -23 -39 -64443.5
1 -64 -39 -23 -9 -1 3 4 4

0 3 0 -9 -24 -41 -684 44.0
1 0-68 -41 -24 -9 3 4 4
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In the quantized version of the Z-J algorithm (Jelinek 1969 a), the 

top node of the stack is chosen at random among the nodes stored in the highest 

non-vacant substack. In our simulation the true top node of the stack was 

determined by scanning the nodes stored in the highest non-vacant substack. 

However for the M-path algorithm , M > 1, the remaining ( M-l ) paths were

chosen at random as in the Jelinek's scheme.

Through preliminary simulation, it was observed that whenever

I the decoder ceased to advance deeper in the tree and was searching back, 

extending a single path instead of M paths in the path extension cycle would
V

improve slightly both the overall distribution of the computations and the average

decoding effort. This new decision rule does not alter the essential properties of

the M-path algorithm , and consequently all simulation runs were performed using

this decision rule on the path extension cycles. The elimination of the redundancy

was the purging rule for the purging cycles. No other purging rule was considered.

4.4.2 Results of the Simulation

In order to compare the performances of the new M-path algorithm

with the Z-J algorithm , both algorithms were run under strictly identical conditions,

using the same code and the same noise sequence.

The principal output of the simulation was a histogram of the number

of computations per search, from which the cumulative distribution could easily be

obtained. A search consists of all computations done between first reaching some
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depth N and first penetrating to depth ( N + 1 ). This method of collecting 

the data was used because it was simpler to implement than the counting of the

number of computations done in the subset of incorrect paths emerging from the 

correct nodes. Both methods however yield essentially the same result (Nlessen

1965, Heller 1967).

Along with the distribution of computations, at the end of each

the program also delivered the average number of computations per decoded bit.run

the total number of errors, the total number of converging nodes that were stored

(converging with a larger metric) and eliminated (converging with a smaller metric).

and the cumulative distribution of the metric dips encountered by the top nodes of

the stack.

The following data was also collected at the end of each decoded

block: number of errors, size of the stack, total accumulated metric of the decoded

path, number of converging nodes stored and eliminated, largest metric dip encountered

by the top nodes of the stack, and the search depth or maximum number of nodes

which the decoder backs up during a search.

Distribution of the Computations

Fig. (4.10a-d), show the empirical cumulative distributions of the

number of computations per search for M = 4, and K = 5, ( E./N ) = 4 dB>
b o

K=6, (E./N ) = 3.5 dB and 3.0 dB; K 
b o

7, ( E./N ) = 3.0 dB. 
b o
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Figure (4. 10a) Empirical distribution of computations per search for the M-path 

algorithm.
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/

Empirical distribution of computations per search for the 

M-path Algorithm.

Figure (4. 1 Ob)
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Figure (4.10d) Empirical distribution of computations per search for the 

M-path algorithm.
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As predicted the 4-path algorithm shows a marked improvement

over the Z-J algorithm run under the same conditions and the identical noise

sequence: the distribution curves of the 4-path algorithm are always below 

the corresponding curves of the single path stack algorithms for C > 4.

The no-search ( C ^ 4 ), and search ( C > 4 ) modes of operation

are well displayed. The sharp transition between the two modes of operation

supports the assertion that going from M to ( M+l ) computations, ( M>1 ), 

is a far less probable event for the M-path algorithm than it is for the single

path algorithm . In fact it demonstrates that even small dips of the decoded

path metric may cause a relatively large decoding effort for the single path

decoder while being entirely ignored by the M-path decoder. The ratios of

the observed values of P ( C ^ M + l ) for the Z-J algorithms and the M-path

decoder are listed in Table 4.4 for M = 3 and 4. This limited comparison shows
!

that for a given ( ) the ratio increases very fast with M and decreases

slowly with K. The dependence on M is obvious whereas the decrease with K 

indicates that the occurence of remergers is in part responsible for the superiority

of the M-path decoder. For a given K and M, the ratio increases with

( E|_/No ), which is intuitively satisfying since the probability of having large

dips (for which the M-path decoder is no better than the Z-J decoder) decreases

with increasing ( E./N ).
b o

When plotted on log/log paper, a Pareto distribution appears as a

straight line whose slope has a magnitude equal to the Pareto exponent. An
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TABLE 4.4

P(CSM+1 ) 

T(C>M+1}
Z-J

M-path< Eb/No ) K

M = 1M* = 3 M =4dB

3.574

4

8.12.525

6 4.732.03.5

6 1.013.45

3.0

7 1.48 2.88

i

* Different noise sequence from M-4 and Z-J.
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accurate estimate of the tail of the distribution was difficult to obtain within a

200 blocks of 500 bitsreasonable amount of computing time. For each run

each were decoded, and only very few events contributed to the data points

on the tail, hence reducing the reliability of these data points. However the 

respective comparisons with the Z-J algorithm are valid since both algorithms 

were run under strictly identical conditions. The initial advantage of the 4 path 

algorithm for small searches decreases gradually for longer searches and as

the curves for the 4-path and Z-J algorithms tend to runin Fig. (4.10 a-d),

parallel to each other in the tail, with the 4-path curve always below the Z-J

curve. A run with M = 1 ( Z-J algorithm with a purging cycle) does not show

much improvement for small searches, but the slope of the tail is slightly larger

than for the Z-J algorithm. This tends to support the conjecture that the Pareto

exponent is increased when the Z-J algorithm exploits the reconvergence of the

paths.

The average number of computations was observed to follow

approximately the relation

= ( M-l ) + C^"M-path Z-J

as predicted earlier (see Eq. (4.24)). Table 4.5 lists the average values obtained

for the simulation, and as expected, the average decoding effort is rather insensitive

to the constraint length.
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TABLE 4.5

Average 
Comp./bit 
Z-J

E,/N Average 
storage 
per block

b Average
Comp./bit

o
K M

(dB)

1.0827953.0223*4.04
i

29583.0293*
1.0834.05

38604.0284

30373.0633*
1.1473.5

6 4.049 40064

1.2603.0 4.074 40144

3.164 31393*

3.0 1.2927

4.108 40904

* different noise sequence from M = 4 and Z-J.
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The average number of nodes stored in the stack per decoded block

of 500 bits is listed in Table 4.5. For a Z-J decoder working on a binary tree.

this average number S is

S = ( 2L C + 1 ) (4.44)

where L is the block length in bits and C the average number of computations

per decoded bit. Table 4.5 shows the reduction in storage due to the exploitation

of the convergences.

Cumulative distribution of the metric dips of the top nodes of the

stack. We recall that one of the features of the multiple path extension is to

allow the correct path to cross over the bottom of its metric dip while not being

at the top of the stack. It was shown that this event may cut down on the number 

of incorrect paths to be explored. Consequently the apparent size of the metric

dip of the top nodes of the stack is smaller than that of the decoded path, by a 

quanitity (See Eq. 4.12). Fig. (4.11 a-d), give an empirical distribution

of the apparent decoded path metric dips for the Z-J algorithm and the 4-path

algorithm. It shows that the reduction in size may reach the equivalent of

several maximum values of the branch metric for relatively small dips, but the

improvement decreases as the size of the dips increases.

Path Remerging

A new branch extension is eliminated (stored) if it converges with a

smaller (larger) metric on a node previously stored in the stack. Table 4.6 lists the
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number of nodes eliminated and stored during the simulation. It shows that for

M = 1 the number of remerging events is not very large, but increases very fast

with increasing M, and decreasing both K and ( Ej;)/No ). Fixing K and

( E./N ), the number of remerging events should be an exponential function 
b o

of M, saturating at L2 

proto-error events decrease exponentially with K, fixing ( ) and M,

K-l
for M = M . Since the number of states and

the number of convergences also decreases exponentially with K.

Because the incorrect paths tend to have a decreasing cumulative

metric, as expected the number of nodes eliminated is larger than the number of

nodes stored.

From Theorem 4.1 we know that when a remerging node is

eliminated, redundant computations of the Z-J algorithm are eliminated by the

algorithm, whereas if the remerging node is stored, then previous computationsnew

may have to be repeated. This duplication of computations shows in some sense a

limitation of the new algorithm in its ability to reduce the variability of the

computational effort. In our simulation computations may be duplicated only

when a new extension converges with a larger metric on a previously extended

node. Table 4.6 lists the number of these events under the column "repeat". It shows

conclusively that only very few convergences are of the "repeaf" type. From the

data collected after each decoded block, it is observed that this number is sparsely

distributed among the various blocks. In fact, it occured only once, for K - 7

and ( E^/N^ ) - 3 dB that most (516 out of a total of 638) of the "repeat"
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TABLE 4.6

Eb Errors
M-path

Nodes
stored

Errors
Z-J

Nodes
eliminated

Repeat(rf) MK
No

1 44458668] **
494 4

3143514487299792**

81161156 7601*3.5

16352 230 5] **
225

35130 32988083**4

325737 12927 1674*

2141981317 959 393.0 1*

323 11 511 ** 447
6

3.5 313 43 562793 23153**

1967263 4497 454*

1286 35] ** 816 84

3.0 638 81 803** 2405 27077

(4*) 1789 1782575 77

200 blocks, 500 bits/block.NOTES:

Same noise sequence as for Z-J algorithm. 

** Different noise sequence from above.

( ) Unreliable because of erasures.

*
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convergences took place within a single block. Therefore it may be conjectured 

that the vast majority of the remergers occur among the end nodes of the explored 

paths and hence the extended paths are grouped together at about the same depth.

Error Probability

Results on the bit error counts listed in Table 4.6 amply verify our

assertion that the error probability for the M-path algorithm is upper bounded by 

the error probability for the Z-J algorithms (see Theorem 4.2). By using the same 

noise sequence on the Z-J and the M-path algorithms, M >1, the effect of the 

multiple path extension was demonstrated by observing that each block for which 

there was a reduction of the number of errors, the decoded path had a larger metric

value with the M-path algorithms than with the Z-J algorithm.

For M - 1 no theoretical modification of the error mechanism is

introduced, the decoded paths always have the same metric value as for the Z-J

algorithm. Hence for both algorithms the error probability bounds are the same.

In fact from our discussion on the mechanism of the error events, the number of

stored converging nodes may be considered an upper bound on the number of

decoding errors. The observed reduction (see Table 4.6) of the error count with the

1-path algorithm comes from the way ties are resolved. We recall that nodes are

extracted from the stack in the first-in last-out mode. If two paths remerge with

the same metric value, the Z-J algorithm stored them both, but should one of them

be extended, the algorithm will extend the path stored the last. With the 1-path
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algorithm clearly in case of ties the most recent path is eliminated by the purging 

cycle. Since the correct path has a generally increasing metric it is normally 

ahead in the tree of the other explored paths. Therefore it appears that when

an incorrect path merges with the correct path, the correct path reaches the first

the merging point, and hence in case of ties the incorrect path is eliminated.

Clearly, such a tie is a proto-error event that may cause an error for the Z-J

algorithm but not for the 1-path algorithm.

To summarize, these simulation results verify the predicted improve­

ments over sequential decoding. Both the distribution of the computations and the

maximum number of computations per search were reduced by the M-path algorithm.

However the distribution of computations remain asymptotically Pareto. As predicted, 

the error probability was also improved and is nearly equal to that of an optimal 

decoder even when M is relatively small. The M-path algorithm is "closer" to 

the optimal decoding than sequential decoding, but remains asymptotically a 

sequential decoding algorithm. The modification of the Z-J algorithm is very 

modest, and the determination of the true top node of the stack was found to be 

quite practical.

All improvements on the performance were obtained at a cost of a 

larger average decoding effort and stack storage. Although the purging cycle tends 

to reduce somewhat these two parameters, the importance of the remergers decreases

very fast as K increases, and for K à 10 the exploitation of the convergences
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may be dropped. Unless some other purging rule (such as the elimination of the 

nodes stored at the bottom of the stack) is used, in practice the purging cycle 

may be removed from the generalized algorithm when K becomes large. However 

in all of our simulation we used the same purging rule. No other purging rule

was considered.

In order to reduce further the variability of the computation and/or 

the average decoding effort, several variants to the M-path algorithm were attempted:

Forced Convergence. The decision rule is modified in such a way(1)

that whenever a newly extended path is one branch short of a possible remerger, 

this path is further extended regardless of whether or not it qualifies for extension.

Compared to the M-path algorithm, this variant is more complex, the 

average decoding effort is slightly increased and the distribution of the computation

is not improved.

Varying the Number of Paths of successive path extension cycles.(2)

Regardless of the position of the correct path in the stack, the M-path algorithm

extends the same number of paths at each decoding cycle. But when the correct

path is at the top of the stack such a decision rule entails the extension of useless

paths. By using some of the available information contained in the stack the

decision rule could thus be modified to reduce the unnecessary decoding effort. 

These variants of the M-path algorithm are treated in the next chapter.
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CHAPTER V

ADAPTIVE SEQUENTIAL DECODING

In the M-path algorithm no information which could reduce the

unnecessary decoding effort is used to modify the decision rule. In this chapter 

we examine how to use the available information contained in the stack about

past decoding,to help improve further the distribution of the computation without

unduly increasing the average decoding effort. The object is thus to adapt the 

decoding effort to the current requirement of the correct path extension.

Variants to the M-path Algorithm5.1

We recall that with the simultaneous multiple path extension.

small dips of the correct path metric are effectively ignored by the decoder.

Consequently, when the channel is quiet and there are no dips (or only small

ones) of the correct path metric, fewer than M computations may be needed to

extend the correct path at each decoding cycle. However, severe noisy periods

induce large metric dips of the correct path, sending the decoder into a search

mode of operation regardless of M, M < Mv.

One way to reduce the average decoding effort C ofM-path

the M-path algorithm without altering the distribution of the computation is

simply to eliminate those futile extensions during calm periods of the channel.

When the channel is quiet the metric of the correct path increases while that of 

the incorrect paths decrease and in general the cumulative metric of the correct

path is much larger than that of the incorrect paths. By extending M paths.
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some Incorrect paths are extended although their metric values are far smaller than

that of the correct path. The likelihood of these incorrect paths contributing to

the extension of the correct path is thus very small. Extending these incorrect

paths needlessly increases the average decoding effort without helping much to

improve the distribution of the computation. Therefore, instead of extending

M paths regardless of their metric values, it may be preferable to extend up to

M paths, provided the metric difference between any of these paths and the top

of the stack is within some reasonable bound F.. With this decision rule un-
A

necessary computations are avoided during calm periods of the channel noise. 

However, when the correct path undergoes a large metric drop, its position in 

the stack also drops away from the top and the full complement of the M paths

If F is chosen in such a way that under these circumstances allis needed.

M paths are extended, then compared to the M-path algorithm, the distribution

of computation is not expected to be degraded. Naturally if F^ is too small, 

the average decoding effort C decreases but the benefit of the M-path extension

is reduced, whereas if it is too large, no improvement on C will be obtained.

We know that error events occur only when the correct path metric undergoes a

dip. Clearly, then by extending fewer than M paths when there is no dip.

this procedure should not degrade the error probability corresponding to the M-

path algorithm.

This variant to the M-path algorithm was programmed and tested

6; R = 1/2; ( E./N ) = 3.5 dB; M 
b o

-130. This valuefor K = 4 and F.
A
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of T was chosen arbitrarily and corresponds to the minimum branch metric value
A

of the correct path. In order to compare the results with the 4-path algorithm.

200 blocks of 500 bits were decoded and the same noise sequence was used.

The cumulative distribution of the number of computations per

search is plotted in Fig. (5.1). It shows hardly any difference with the distribution

obtained using the 4-path algorithm (see Fig. 4-10b). The probability of the

transition from the non-search mode to the search mode, P ( C ^ M + 1 ) varied

-3 -3 ,
only between 1.82 10 and 1.89 10 indicating that even with this decision

rule, small dips are also ignored. Most important, the average number of

computations C was reduced significantly while the number of errors remained

unchanged as expected. C was reduced from 4.049 to 3.532 which represents

a saving of over 250 computations (or over 500 stack locations) per decoded

block at no cost to the performance. Table 5. 1 below summarizes the results

obtained for the 4-path algorithm and its variant with = 130.

TABLE 5.1

Convergences
Average stack 
size/block Repeat ErrorsC

EliminatedStored

4.049 44974006 7263 196 45M = 4

variant
3.532 3483 3650 5763 169 45

= 130rA



Figure (5.1) Empirical distribution of computations per search for the 

variant r of the M-path algorithm.
A
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Although no attempt was made to optimize these results

demonstrate that a significant fraction of the computational effort of the M-path

algorithm is performed needlessly. These computations do not contribute much to

the improvement of neither error probability nor distribution of the computations

and hence may be avoided by the simple test on F^ •

Instead of reducing the average decoding effort without degrading

the distribution of computations, we may also want to improve upon the distribution

Clearlyof computations without affecting the average decoding effort C
M-path '

than M paths must be extended. But to p-event the resulting average decodingmore

, more paths must be extended only when the noiseeffort from exceeding C M-path

becomes severe and the correct path metric goes through a dip.

In order to implement this new decision rule, instead of monitoring

the correct path metric (which is unknown) the decoder monitors the metric values

of the successive top nodes of the stack. As long as these metric values do not

decrease, the rule is to extend M paths. Furthermore the restriction on F^ 

be added to help reduce the average decoding effort. Whenever the metric of the

can

top node falls below the maximum value ever reached previously, then M1,

M1 > M, paths are extended.

This new decision rule was implemented and tested, but in order to

simplify the procedure, instead of comparing the actual metrics of the top nodes.

the program compared the levels of the substacks containing these top nodes. As

long as the current top node belongs to the highest substack ever reached, the top
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node metric is not considered in a dip. If the substack containing the current

top node is lower than this highest substack, then the top node metric is con­

sidered in a dip and M' paths are extended. We call this variant of the M-path

algorithm the "variable ( M/M1 )-path algorithm".

In order to compare this algorithm with the M-path algorithm, 

a variable ( 4/6 )-path was run under strictly the same conditions as the 4-path

algorithm. The restriction was used on the (4/6)-path algorithm only when

no dip was detected. Again the same K - 6 code, same noise sequence and

200 blocks of 500 bits with E,/N
b o

- 3.5 dB were used.same

The distribution of the number of computations per search obtained in

this run is shown in Fig. (5.2), where the curve for the 4-path algorithm is also 

plotted for reference. The distribution for the (4/6)-path algorithm shows a 

substantial improvement over the 4-path algorithm where both algorithms are in 

the search mode (more than M' computations). Because 6 paths were always

extended when a dip of the top node metric is detected, the effect of the F^ 

restriction on the average number of computations is greatly reduced. Hence although

increased with the new algorithm, a fair comparison of the average decoding effort

with the 4-path algorithm using ^ ^ 's difficult. However, compared to the 

unrestricted 4-path algorithm, we see that the improvement on the distribution of

computation was achieved at only a minimal increase of the average decoding effort.

In order to test further this variable path algorithm , with 2/6a run

paths was also made under strictly the same conditions as above. The resulting
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distribution of computations also plotted in Fig. (5.2), shows again a marked

improvement over the distribution of the 4-path algorithm for searches involving

more than 10 computations. Most important, this improvement was obtained

at a significant reduction of the average decoding effort from 4.08 to 3.08.

Hence moderately long searches are definitely better resolved with the variables

( 2/6 )-path algorithm than with a constant 4-path algorithm.

Both ( 4/6 )-path and (2/6)-path algorithms give the same

value of P ( C > 6 ) which indicates that the occurences of metric dips for

the top node of the stack is not much affected by the number of paths regularly 

extended. The over all distribution of computation for the ( 2/6 )-path algorithm 

is only slightly worse than for the ( 4/6 )-path algorithms, but for very long

searches corresponding to large dips of the correct path metric, both algorithms

behave similarly, and asymptotically their distributions are identical.

In conclusion, by modifying the decision rule according to observed

values of the top node of the stack, and by properly varying the number of

extensions as the decoding progresses, we showed that the overall computational

behaviour of the M-path algorithm can be improved. Although increasing the

number of simultaneously extended paths will always reduce the variability of the

decoding effort, clearly most of these computations are wasted when the channel

is quiet. Therefore, always extending the same number of paths regardless of the 

location of the correct path in the stack induces an unnecessarily large average

decoding effort. Viterbi decoding is the limit of this procedure. Since the back
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searches must be reduced at the smallest possible cost, the above variations

of the M-path algorithm suggest that instead of using a fixed decision rule,

a clever decoder will use a rule that decides on just enough paths to include

the decoded path in the present and future path extension cycles. On what

information such a decision rule must be based, is examined in the next section.

5.2 Ideal Adaptive Stack Algorithm

= Mi,n r!^ for 
j^k |

were always known to a

Suppose the current breakout node value min 

all nodes U^, k = 1, 2, . . ., of the correct path jj 

stack decoder. Using this information, consider the decision rule whereby to

decode node U^, all nodes stored in the stack with a metric not smaller than 

Fk min are simultaneously extended. Clearly with this procedure the correct

path is extended at every decoding cycle, hence there is no backing up, and 

all extended paths lie at the same tree depth (see Fig. 5.3). Assuming a purging 

cycle exploits the reconvergence of the paths, we now compare this idealistic

algorithm with both the Z-J and Viterbi decoding algorithms.

We first observe that with this algorithm as with the Viterbi algorithm.

an error occurs only when the correct path is eliminated in favor of an incorrect

path that merged with it with a larger metric. No other error mechanism is

introduced by the algorithm, and the paths not extended do not contribute in any

way to the decoding of the correct path. Therefore the error performance is that

of the Viterbi decoder, and hence this algorithm is an optimum decoding algorithm.



Discarded incorrect node.

Extended incorrect node.

Figure (5.3) Path metric values showing the nodes that are discarded by the ideal stack algorithm.

4^
-tv
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As shown in Fig. (5.3) the number of computations to decode one

K-l
branch of the correct path is not constant. For a binary tree there are 2

distinct nodes lying at the same level, so the maximum number of computations

K-l
. On the other hand the minimum number ofper decoding cycle is also 2

computations is equal to 1 . Consequently the average number of computations

for decoding one branch of the correct path is

K-l (5.1)1 ^ C ^ 2
ideal

The ideal algorithm is optimum while requiring less computational effort than

wherethe Viterbi decoding algorithm. We now show that C <: Cideal

is the average decoding effort of the Z-J algorithm.

Z-J

C
Z-J

of Fig. (5.3) are twoAssume that nodes and U 

consecutive non-adjacent breakout nodes of the correct path U and assume

—k+-L

that node U,. was at the top of the stack when it was extended. As shown in 

Fig. (5.3), the horizontal line of metric value acts as an absorbing barrier,

and no node that crosses this line will be extended by either the sequential or the

I ideal algorithm. Clearly, assuming no decoding errors, all nodes located above 

the absorbing line and lying between tree levels £ and ( -t+k ) will be decoded 

by both algorithms. Flowever, beyond tree level ( l+k ), a sequential decoder will

keep extending these incorrect paths as long as they are above the horizontal absorbing

line (a possibly unbounded process), whereas the ideal algorithm will extend only

those nodes above the new current breakout node value, Tmin s , j = 1,2,. .
k+^+j k ^

• o
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Clearly, in the absence of errors, no computation made by the ideal algorithm

may be avoided by a sequential decoding algorithm, but some of the computations

of the sequential decoder may be avoided by the ideal algorithm» Specializing

for the Z-J algorithm we have

(5.2)^“Ideal £ C
Z-J

From the other properties we also have

(5.3)£ CMax C ideal Viterbi

P ( E ) “ P ( E ) (5.4)
Ideal Viterbi

Moreover this algorithm is non sequential since it uses information about nodes in

the unexplored part of the tree.

Summarizing, for this algorithm, both the average value and

distribution of the number of computations to decode one branch are upper

bounded by the corresponding values of sequential decoding. The maximum

number of computations is limited to M^, the number of computations per 

decoding cycle of Viterbi decoding. Furthermore the effective average distance

between breakout nodes on the correct path is reduced to 1, just like Viterbi

decoding. No other algorithm in the class of generalized stack algorithms can

perform better. Therefore we have the theorem.
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Theorem 5.1

The best generalized stack algorithm uses a purging rule that

exploits the reconvergence of the paths, and a decision rule that extends all

nodes stored in the stack with a metric at least equal to the current breakout

node value.

This decoding algorithm is of course impossible to implement

since the crucial information about the metric value of the current breakout node

is not available to any real decoder. However, this ideal algorithm may be

regarded as a bound on any decoding strategy using a stack. In fact the compu­

tational behaviour of real algorithms is the direct consequence of the particular 

way with which the uncertainty about the current breakout node value is resolved.

The Viterbi decoding algorithm removes all uncertainty about the

current breakout node value by taking a pessimistic point of view, and assumes 

that at any level, all distinct incorrect paths have a larger metric than the correct 

path. At each tree level then, the breakout node value is assumed to correspond

K-lK-l )th node stored in the stack. Therefore 2to the metric value of the ( 2

computations are required for each decoding cycle, leading to a maximum average 

decoding effort but no variability^ the decoder is always in a no-search mode of

operation.

Apart from not using a purging cycle, the Z-J algorithm takes

an opposite view and assumes that at any tree level, the current breakout node
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value corresponds to the value of the top node of the stack. Hence, only a 

single path is extended for each decoding cycle. This leaves a considerable 

uncertainty about the true current breakout node value which the decoder

removes by searching back and forth in the tree. With this assumption, the

sequential decoder tends to minimize the average decoding effort, but is not

prevented from exploring some incorrect paths over a considerable length and

the maximum number of computations to decode one branch of the decoded path 

is unbounded. With this procedure clearly the decoder is in the no-search mode 

of operation only when decoding breakout nodes of the correct path. All non­

breakout nodes correspond to the search-mode of operation.

The M-path algorithm stands between the two techniques above,

and assumes the current breakout node value to correspond to the metric of the Mth

K-l
the uncertainty about the true currentnode stored in the stack. For M < 2

breakout node value is not entirely resolved, but compared to sequential decoding

it is obviously reduced. The back and forth searching is therefore also reduced, 

reducing with it the variability of the computation. As shown in Fig. (5.3), if

at any level between 2 consecutive non-adjacent breakout nodes and 

there are no more than M nodes with metric values larger than , then

between these two nodes the M-path decoder is in no-search mode. (Equivalently,

the metric dip between nodes and U has been ignored by the M-path—k+f.

decoder). Clearly then, it is the search mode of operation that causes the

undesirable variability of the computational effort, and any procedure that keeps
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the decoder away from that mode of operation will reduce the variability 

of the computation.

In all of these practical algorithms no useful information imbedded

in the stack is used to reduce unnecessary computations. The effect of the constant

path extension is to exchange the variability with the average value of the decoding

effort. It appears that any stack algorithm which always extend the same number

of paths is bound to improve either the average decoding effort or its variability.

and as one parameter is improved, the other one is degraded. The variants of the

M-path algorithm represent one step toward the relaxing of the constant path

extension, and attempt to use some information about past stack behaviour to

improve the overall decoding effort.

In approaching the operation of the ideal stack algorithm, the

decision rule of any real stack algorithm cannot be based on the current breakout

node value. However, a practical decoder can use the available information

< imbedded in the stack to adapt each path extension cycle to the current require­

ment of the correct path metric extension.

!
An Adaptive Stack Algorithm5.3

Short of using the current breakout node values, we now present 

a practical adaptive algorithm (Haccoun & Ferguson, 1973) which determines the

number of paths to be extended according to the relative metric values of the top

nodes of the stack.
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It is observed that at any tree level, when the accumulated metric

of the correct path is maximum over its metric past, the correct path is usually

at the top of the stack. If we assume this top node to be a breakout node, then

only a single computation is necessary for its decoding. On the other hand, when-

the correct path metric drops, it corresponds to non breakout nodes and isever

usually not at the top of the stack. Depending on the size of the dip, a varying 

number of paths must be extended in the path-extension cycle to include the 

correct path.

The correct path is obviously not known by the decoder, but for 

the purpose of determining the number of paths to be extended in each path 

extension cycle, the values of the top node of the stack may be used instead.

As long as the top node metric is the largest over all preceding top node values.

a single path is extended. Whenever the metric of a new top node drops below 

the largest value ever reached, depending on the size of that drop, a variable 

number of paths is extended. This adaptive procedure is obviously not the ideal 

one, but is has the advantage of being simple to implement since monitoring the

metrics of the top nodes of the stack as the decoding proceeds presents hardly

any difficulty.

Let r(T°P), n 
n

of the stack for the current decoding cycle, and let T1''^ 

value ever obtained up to the present time.

-1,2, . . ., be the metric value of the top node

(max)
be the largest metric
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r(max) = (Top) n - 1, 2, ... (5.5)- Max r\
l

L n,

Define the current dip as

D = r(max) _ r(Top) (5.6)

If D ^ 0, there is no dip, only the top node is extended, and the

maximum metric value is updated

(max) = (Top) 
1 n+1 1 “ (5.7)

If D > 0, a correct path metric dip is assumed and the decoder

extends the M ( D ) highest nodes in the stack, where M ( D ) is a non­

decreasing function of D. The maximum metric value is then unchanged

(max) _ (max) 
rn+l ~ r- (5.8)

This algorithm is a very simple extension of the variable ( M/M1 ) - 

path algorithm. Taking for reference the maximum metric value observed over the 

entire past, the decoding effort is adapted to the size D of the apparent correct 

path metric dip (i.e. the dips of the top nodes). The exact number of paths to be 

extended will depend on the function M ( D ) which is recognized as the decision

rule. Since M ( D ) is non-decreasing with D, we expect the distribution of the

computation to be improved over sequential decoding without increasing too

severely the average decoding effort. Moreover, as a consequence of the large

number of paths simultaneously extended during large dips, the error probability 

should also improve over sequential decoding.
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The algorithm attempts to extend the correct path at every decoding

cycle, but the uncertainty about the true breakout node value is not entirely

removed. Therefore the algorithm is not expected to remain all the time in a

non-search mode of operation. Hence, occasionally the correct path will not be

included in the M ( D ) extended paths and the algorithm will enter a search-mode

of operation. Consequently, an asymptotic sequential decoding behaviour is

expected. If M ( D ) is subjected to some maximum value M a search
max'

computations to decode one branchmode could correspond to more than M
max

of the correct path. The average decoding effort will depend on the particular

function M ( D ) chosen, and the probability to enter a search mode of operation

will depend on both M ( D ) and M . Hence M ( D ) should be chosen to
max

yield the smallest search mode probability at the smallest average decoding effort.

Model of the Adaptive Stack Algorithm5.4

Consider the adaptive stack algorithm of the previous section using

some non-decreasing function M ( D ). Assume that M ( D ) is such that if

between two consecutive breakout nodes the dip of the correct path metric is

less than some value H, then the algorithm maintains a non-search mode of

operation. Under these conditions, between the two breakout nodes, all non­

breakout nodes of the correct path are decoded by a single decoding cycle. 

These nonbreakout nodes become "pseudo breakout nodes" and the whole correct 

path metric dip is ignored by the decoder. Whenever the correct path metric
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dips by more than H, then the decoder does not extend enough paths to guarantee 

the decoding of the correct path at every decoding cycle and thus enters in a

search mode of operation. Under these conditions the non-breakout nodes of the

correct path remain non-breakout nodes.

The nodes of the correct path may be classified in two categories:

the search nodes requiring possibly more than one decoding cycle to be decoded.

and the no search nodes requiring exactly one decoding cycle. As shown in

Fig. (5.4) the no-search nodes are the breakout nodes and pseudo-breakout nodes

of the correct path. Moreover, between two consecutive non-adjacent breakout

nodes, the nodes are either all pseudo-breakout (no-search nodes) or all non­

breakout (search nodes).

When decoding no-search nodes the decoder is in a no-search mode

of operation, and when decoding search nodes, it is in a search mode of operation. 

An important parameter is then the probability that starting from a breakout node, 

the decoder enters into a search mode of operation. We call this probability the

"search mode probability".

The average distance dQ between breakout nodes of the correct path 

was shown to be a measure of the variability of the decoding effort for sequential

decoding. With the adaptive sequential decoding algorithm, no-search nodes

behave like breakout nodes, and clearly the average distance between no-search

nodes will be smaller than dQ. The reduction will naturally depend on H.



0 Breakout node.

(non-search nodes)

® Pseudo-breakout node.

O Non-breakout node (search node).

i i

H

H

t1

Figure (5.4) Search and non-search nodes on the correct path.

Cn
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Using the Markov chain model of the correct path, we now establish

the expressions for the average distance between no-search nodes and for the

search mode probability of this model of the adaptive algorithm.

5.4.1 Average Distance Between No-Search Nodes

We recall that in the Markov chain model of the metric differences on

the correct path, the states are the metric differences between a node and its

smallest succeeding value on the correct path. Under the assumptions of our adaptive 

algorithm all no-search nodes have a state smaller than H. Consequently, if the 

decoder starts from the zero state (breakout node) and returns to it without ever

visiting any state at or beyond H, all states in the path are no-search nodes.

Let us partition the transition probability matrix of the Markov chain

into a submatrix T containing all states smaller than H, and let £ be the set of

all other states not in T.

0 12 3 H-l H H+l H+2

0

1

2 T

H-l

H

H+l
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Define

(n) = P C A =0, A.^0, A./X, i = 1,2, ... n-1 I A = 0]
n j j ofZ oo

(5.9)

as the first return probability to the zero state without every visiting any state

belonging to Z (the so-called taboo set).

Since all pseudo-breakout nodes between two consecutive breakout

nodes are adjacent, and since they require only one decoding cycle to be decoded.

the average distance between the no-search nodes is

coao
f(n) + V n . cf(n) (5.10)1d =

Ho u Z oo Li OO
n-1n=l

where Cf^ is the complement to „fv "/ , that is 
oo r £ oo

(n)

f(") = (n) cr(n)
f (5.U)f+

Z oooo oo

(n)where is the first return probability to state 0. Eq. (5.11) is valid since

the events of returning to state 0 can be classified into 2 disjoint sets depending

on whether all states visited "en route" belong to T or not.

Defining

co
(n)hP 1 f (5.12)Z oo

n=l
and

h = cf(n> , n > 1 (5.13)n oo
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Since H = 1, then the taboo set Z consists1-Path Sequential Decoding:

(") =
0 if n > 1. Hence fromof all non-breakout nodes and clearly

Eq. (5.17) we get

(5.18)d -,<1=0 o 1 °

as required.

Viterbi Decoding: All nodes are no-search nodes, and the taboo set £ is

empty. Therefore,

(n) = f(n) 
oo (5.19)fZ oo

and hence

oo
(n) _ (5.20)1; f oo

n=l

Therefore, Eq. (5.16) becomes

co
(n)

d - d + 1 - 
oo o

(5.21)n f
o oo

n^l

or

d = 1d_ = dn + 1 o (5.22)
OO O o

As expected the average distance between the no-search nodes (that is all the

nodes) of the correct path is equal to 1 for the Viterbi decoder. The same 

result applies to the ideal decoder.
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Naturally, the average distance between no-search nodes ^dD

for our adaptive algorithm is bounded by 1 and dQ and the reduction over 

sequential decoding is given by the infinite sum of Eq. (5.17). We now show 

that this infinite sum can be evaluated from the set of transition probabilities

of the Markov chain of the correct path.

Suppose the Markov chain admits in general J transitions away

from the origin with probabilities p., i = 0, 1, ... J, and Q transitions

toward the origin with probabilities q. , i - 1, 2, . .. Q. Without loss ofi

generality let J > Q > H, then the transition probability matrix of the chain

P2
= - 0 135 1 . .65 7 7

= 9P |P |0 |13- |1
P85
]

- L P2 |4 |P |130 |13- |.3- T.
P85

0 L =2 |4|P |13h |130 |.30 |.3-
P80
]

135 L> |
P3135

e130 e13h xp |4P T5 |.31

]
1 eP e135 e130 ppp T5 |4

P81
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Writing the transition probabilities in general as

(5.23)= Pr ( An+) = i | An = i>

then from Eq. (5.9) we have the following relations

H-l
(n)(n+1) _ V (5.24)n - 1, 2, ...p . J:oj £ jof LZ oo

i=1
and

H-l
(n)(n+1) : (5.25)n 1, 2, •••/l, ^ l\ JCfiofZ lo

i=l

where

(n) = (5.26)n-1 | ^ = j] 
o

Pr [A =0, A./£, AJO, i = 1,2, 
n i i

f: • • •
Z |o

is the first entrance probability to state 0 from state j in exactly n steps, 

without every entering the taboo set Z “en route".

a? (n)\
f andThe use of Eqs. (5.24) and (5.25) in evaluating 

of Eq. (5.17) suggests the following matrix

L, £ oo 

representation.
go (n) n-1

f
Z oo

n=l
Define the vector

0) PfZ oo oo

(1) P10f£10

(5.27)(1) pr20F = f—o
£ 20

'(I)f PH-1,0£ H-l,0
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and let [A] be the H x H matrix whose 1st column is zero

0 Pi p2 PH-1

0 Po Pi PH-2

PH-3

PH-4

0 PoPi
CAl- tS. 28)

0 P2 Pi

0 Pi PoqH-2

than from Eqs. (5.24) and (5.25) we obtain

,(2)
£ oo
f<2>

Z 10
= [A] FF, - (5.29)-1 —o

F 2
C H-1,0

Likewise we obtain

f(3)
ü oo

£10 = [A] F] = [Al2 F
*2 = (5.30)—o

f(3)
£ H-1,0

and in general

Fn= [A]nfo
—n —o (5.31)
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Let the vector F be the ( n+l)th column of a matrix [B1 having H rows 
—n

and an infinite number of columns

f, :f2: (5.32)1
. —n .

or

[b]= [F : [aif : [A]2 F_ :
—o . —o .

: [A] n F (5.32)
—o . —o .

(n)
The elements of b,. of the first row of [Blare the f „f' 1 of interest.|l - £ OO

Consequently

ao oo
(n) ;

bi; (5.33)fL Ü oo L,
n-1 i=l

Factoring the common matrix [A] , Eq. (5.32) becomes

[B]-[(i: [A]: [a]2: : [A]n : ) fi (5.34)
—o

r\

The matrix power series I + [A1+ [A] + . . [A1 n + . . will

-1
converge to (I - [A]) if the eigenvalues of [A] are less than 1 . Since

[A] is the truncation of a stochastic matrix, the sum converges. Letting

.-1
X = [I- [Al] F (5.35)

—o

Then the sum of the elements of the first row of [ B] is the first element x, of
1

the vector X . Thus

ao
(n) =v f (5.36)X1L, Z oo

n-1
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œ
(n) is an element of theLikewise each element of the sum n £ ooL,

n=lfirst row of the infinite matrix

[B]* = [F : 2 [A] F : 3 rAl2F !
—o . —o .

= [(1: 2 [A]: 3 [a]2 :

: (n+i ) r a 3n f : ] (5.37)—o .

: (n+1 ) [A]n: ) FI (5.38)—o

The sum of the columns converges to the vector

Y = ( [I - [A]]"1 )2 F (5.39)—o

and hence

co
W : (5.40)n „ r S. oo y\

n-l

where is the first element of the vector Y.^1

Observing that F and [A] are known, and that H is finite, the—o

computations of Eq. (5.35) and (5.39) can easily be carried out on a computer.

We have therefore proved the theorem.

Theorem 5.2

If for an adaptive stack algorithm all non-search nodes have a metric 

dip smaller than some value H, the effective reduction of the average distance

between breakout nodes is

d - ud = y, - x , o H o ' 1 (5.41)
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-1 ,2
and x, are the first elements of the vectors ([I - [A] ]where > foi

-i
and [I - [ A]] respectively.

5.4.2 Search Mode Probability

Keeping the same assumptions for our adaptive stack algorithm, we 

now determine the probability P|_| that starting from a breakout node, the decoder 

enters into a search mode of operation. Partitioning the transition probability

matrix of the Markov chain into the sub-matrix T and the set of states Z whose

values are equal or larger than H, P,, is the probability of crossing over into the
n

set Z before returning to state 0, given the starting state was the zero state.

Lumping all states belonging to the set Z into a unique absorbing state, P|_| is 

then the probability of being absorbed before returning to state 0. Although P^ 

can be determined this way, its complement P^ ,

-PH

is readily obtained if we observe that it is the probability to return to state zero 

before every crossing over to the taboo set Z. This probability was encountered 

in the derivation of the average distance between no-search node, that is

PC
H

(5.42)= 1

CD
(n)PC =

n (5.43)f
L, Z oo
n-1

(n)
where f is given by Eq. (5.9). ThereforeZ oo

00
f(n)V- 1 - (5.44)PH L, C oo

n-1
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We can check this expression for the two extreme cases:

Sequential Decoding ( H - 1 )

f(n) = 0
n > 1, thenSince Z oo

Q
s—1

(5.45)P1 =1 ' [Po + L 1qi

i=l

which is the probability of not remaining at the zero state.

Viterbi Decoding ( H = oo )

In this case the taboo set Z is empty and clearly

co

P = 1 - (5.46)f =0
Loo oo
n=l

As expected the probability of entering a search mode is zero.

Consequently, using the closed form solution of Eq. (5.44) given

i
by Eq. (5.36), we have the theorem.

Theorem 5.3

Starting from a breakout node, the probability for the decoder to 

enter a search-mode of operation is given by

- 1 -PH (5.47)X1
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where x, is the first element of the vector
1

-1
X = [I- [AJ] F

—o

Observing that the probability of returning to zero from any state

H-l before reaching the taboo set £ is the ( j+1 )th element of the vector

X, a corollary to the theorem is.

Corollary

The probability to enter a search mode of operation from any no-search

node of state j s H-l is

(5.48)= 1 -Vi V1
where is the ( j+1 )th element of the vector X.V

Computation of P for different values of H was carried out for 
n

the D.M.C. using a 3 bit quantization described in Section 4.5.1 . For a rate 

1/2 code, the branch metric values and their probability assignment can be easily 

obtained from Table 4.1 and Table 4.3. The set of probabilities fq.} and [p.] 

of the associated Markov chain are given in Table 5.2 and Table 5.3 for 

Ej_/No =3.586 and 3.0 dB, respectively. The calculated search mode probabilities 

are shown in Fig. (5.5) for different values of H. From these curves, the probability 

P|_j appears to be exponentially decreasing with H. The probability to enter a 

search mode of operation increases as ( ) decreases, and as expected, the

curve of P^ for 3.0 dB appears above the curve for 3.5 dB.
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TABLE 5.2

Transition Probabilities E./N = 3.5 dB
b o

q8 =0.477151 

q7 = 0.207368 

q6 = 0.022530 

q3 = 0.127200 

q2 = 0.027640

p36 = -00M67 

p40 = ■ 000900 

p46 = * 000276 

p48 =4-32k10~4 

P60 = 1 ■077x1 Q~3 

P61 =4-08xl0~4 

p62 = 1-62x10'4 

P65 =2‘50xlo~4 

p73 = 1 • 2*10~4 

P78 =2.4xI0~5 

p87 =4.5xI0~5 

P103 = 1 • 32x10~5 

P128 ^Z-OxlO'6

T0 87==ontt 

Ti 8 7=a-=tn 

Ta 8 7=-h0t-

P1(j = . 008141

plg = .001954 

p19 = .022951 

p20 = .004987 

p24 = .003059

p32 = '001469 

P3<- = .006750
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TABLE 5.3

Transition Probabilities E,/N =3.0dB
b o

q8 = .4364452 

q7 = .2101586 

q6 = .0252991 

q3 =.1343121 

q2 =.032372

P32 = 8.062x10'3

= 1.941x1 o'3

L2405xl O'3

^ 3 ■ 965x10~4 

P45 ~ 6.206x1 O'4 

P56 = 2-3558x? o"3 

= 3-625x10~4 

p69 = 1-813x10~4 

= 3-72x1 O'5 

= 7.Ixl0~5 

= 2.18x10~5

Pl20=3-2*10'6

P33

p42

P2 =-0103333 

P5 = .0671917 

P6 =.016177 

P|0 = .010338 

P17 = .026309 

P]8 = .008920 

P22 = . 004048 

P30 = . 002025

P61

P72

P81

P96



169

-110

x
Q_

5
4

3

2

10-2

5

4

3

2

10-3

5

4

3

2

io'4

0 20 40 60 80 100 120 H
(Branch metric units)

Figure (5.5) Calculated search mode probabilities.
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The exponential dependency of P on H is not unexpected when
H

we consider P as the probability that the correct path metric dips by H or 

more. The Markov chain approach has the advantage of including in the calculation 

the particular quantization scheme and the actual set of branch metrics used.

Computer Simulation Results5.5

The adaptive stack algorithm described in Section (5.3) was pro­

grammed as an extension of the ( M/M1 )-path algorithm. The same purging rule

of exploiting the reconvergence of the paths was used on the purging cycle. The

decision rule is to extend M ( D ) paths at each path extension cycle, where

M ( D ) may be any function specified by the user. In order to simplify the

procedure, the current dip value D of Eq. (5.6) was quantized in substack units:

(max) (Top)
Instead of comparing the exact values 

program compared the levels of their corresponding substacks. The simulation

to determine D, theand F

runs were performed with only the following linear functions of D:

1 a £ 6, D > 0a + D,

{M ( D ) = (5.49)
1 D ^ 0

and

a + 2D, 0 £ a ^ 2, D>0

-{M ( D ) (5.50)
1 D ^ 0

For each case, M ( D ) was limited to a maximum number M
max
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The top node of the stock is determined exactly whereas the other 

nodes of a same path extension cycle are picked at random from the highest non-

vacant substacks.

In order to compare the results with those obtained with previous

algorithms, the same codes, channels and noise sequences were used over runs of

the same lengths, and again a single path was extended when the decoder failed

to penetrate deeper in the tree.

Fig. (5.6) - (5.9) show the empirical distributions of the number of 

computations per search obtained for the rate 1/2 code of constraint length

K = 6, ( E^/No ) = 3.5 dB and the functions M ( D ) of Eq. (5.49) and Eq. (5.50).

For convenience the distribution for the single-path sequential decoder 

run under identical conditions is also plotted in Fig. (5.6). As expected the 

adaptive algorithm shows a great improvement over the single path sequential 

decoding algorithm at a cost of a very modest increase of the average decoding

) and the search ( C > Meffort. For each curve the no-search ( C £ M )max max

modes of operation are well displayed. For ( C £ M ), the distribution decreasesmax

very steeply, whereas for ( C > M ) the straight line Pareto behaviour of
max

sequential decoding is quite apparent. The search mode probability of the model 

of the algorithm corresponds to the transition point between the two modes of operation.

From Fig. (5.6) and Fig. (5.7), note that the distribution of thewe

computation and the search mode probability both improve with the constant "a" 

of the function M ( D ). This is simply due to the fact that a given metric drop
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i

Figure (5.9) Empirical distribution of computations per search for the 

Adaptive algorithm. Effect of Mmin'/



176

triggers the extension of a larger number of paths when the constant "a" is

increased. In general for any choice of M ( D ), as soon as a metric dip is

detected, the decoder should extend some minimum number of paths regardless

of the size of the dip. Naturally as a consequence the average number of

computations increases, but as shown in Fig. (5.6) and Fig. (5.7) the

observed maximum number of computations is significantly reduced.

For K = 6, a Viterbi decoder requires 32 computations per

decoded branch. By comparison, with M ( D ) = ( 2+2D ) and M ( D ) = ( 6+D )

we obtained a maximum of 40 computations with an average of only 2.70 and

3.11 respectively. Although these computations are more complex than those

of the Viterbi decoder, such a large reduction of the average decoding effort

without an undue increase of the maximum, may make the adaptive algorithm

I
an attractive alternative for Viterbi decoding.

Fig. (5.8) shows that for a given M ( D ) - 4 + D, the distribution

of computation, search mode probability, maximum number of computations and

slope of the tail of the distribution all improve with increasing M . However,
max

these improvements seem to saturate at an M value of 20 computations.
max

Moreover, increasing ^mQX appears to have only a very small influence on 

the average decoding effort which increased only very slowly with M
max

Consequently, there is an optimal value of M at which an adaptive algorithm 

should operate.
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Fig. (5.9) shows that extending more than 1 path when no dip

is detected increases the average decoding effort with hardly any improvement

on the distribution of the computation. This tends to support the assertion that 

most of the time, when the metric of the top node of the stack is rising, the

correct path is at the top of the stack.(

Results for K - 7 and 8 with ( E./N ) - 3 dB, and K - 9 with
b o

( E./N ) = 2.5 dB are shown in Fig. (5.10) to (5.12). Again as expected the 
b o

two modes of operation of the algorithm are well displayed. The limited comparison 

between Fig. (5.10) and Fig. (5.11) indicates that for the same M ( D ), M 

and ( ) the distribution of the computation is rather unsensitive to K

for the non-search mode of operation, whereas the slope of the distribution for

max

the search mode of operation increases with a decreasing K. This may be

explained by the large increase of the number of convergences as K decreases. 

However, as shown in Table 5.4, for the same M ( D ), the search mode

probability and improvement over sequential decoding both decrease with

< Eb/No >•

The error probability P ( E ) and the average number of computations

C per decoded branch are indicated on each figure of the distribution curves. As

expected, C increases with the value of M ( D ), but for a given M ( D ) and

( E./N ) it is rather insensitive to either M 
b o

length K (see Fig. (5.10) and Fig. (5.11)). Naturally, it increases with the 

constant "a" of the function M ( D ), (see Fig. (5.6)) and with decreasing

(see Fig. 5.8) or the constraint
max
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TABLE 5.4

(dB) P (C>Mmax^M(D) P (C>M )7 .max Z-J ImprovementK

/
-5 4 16.73.5 4.93x10 7.71x106

-'t
<NI
II -3-4 2.25x10 6.453.0 3.48*107x

OE
S

-3-48 2.4,10 6.803.0 3.50*10V
a

-3 -39 3.321.66*10 5.5*102.5
5

i
-4-56* 7.71x10 21.63.5 3.6x10

o -3-4es 6 3.5 1.38x10 1.08x10 7.85
x
I

5 -3-47 3.0 8.26x10 2.74x10 3.42CNI +

-3-48 3.01x103.0 8.74x10 3.45û
2

* M(D) - (D+6), M - 24max
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( E./N ), (see Fig. (5.12)). However, in view of the improvement of the 
b o

distribution over sequential decoding, the increase in "C is very modest indeed.

The error probability P ( E ) is shown to decrease with K and

( Eb/NQ ), but when the constraint length is small many error events of sequential

decoding are corrected by the adaptive algorithm. As expected, for the same K

and ( E. /N ), more errors are corrected as more paths are extended (see Fig. 
b o

(5.6) to (5,9)). For K = 6, ( E,/N ) = 3.5dB, the minimum value obtained
b o

-4
P ( E ) = 2.6x10 , appears to be the limit for this code and this noise sequence.

whereas for K - 8 and K - 9, no improvement of the P ( E ) over sequential

decoding was observed.

Table 5.5 gives a limited comparison of the improvement achieved 

by the 4-path and adaptive algorithm over sequential decoding. As expected the 

adaptive algorithm is clearly shown to be superior to the 4-path algorithm, and

this superiority is obtained at a smaller computational cost.

All these results support our assertion that by using more information

about past stack behaviour , an adaptive procedure is bound to be computationally

superior to a fixed one. Of course the superiority of the adaptive algorithm

increases with the amount of information used in the decision rule, the limit

being the ideal algorithm where all the information for an optimum no-search 

operation is utilized. By basing its decision rule on the current breakout node

value, the ideal algorithm not only includes the correct path in each path extension

cycle, but guarantees that no future decoding cycle will require more than M
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TABLE 5.5

P (C>MmnJ7 I max Z.-J
P(E)Algorithm C)P (C>Mmax 'MCD)

-4
5.6X101.13Z-J

K ~ 6
-4

5.05 4.5x104.054-path
E./N = 3.5 dB 
b o

-45.06 4.5x101.73M(D) = 1+D

= 20Mmax

-4
1.13 5.6x10Z-J

K = 6
-5

4-path 4.67 4.05 4.5x10
E./N = 3.5 dB 
b o

-4
2.6x10M(D) = (6+D) 21.6 3.11

M =24 
max

-4Z-J 1.27 8x10

K = 7
-44-path 3.04 4.11 7.7x10

E./N = 3.0 dB
b o

7.7x10M(D) = 5+D 6.45 3.19

= 24Mmax
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compufaMons, regardless of the size of the correct path metric dip. Such is not

the case when the decision rule attempts to only include the correct path at each

path extension cycle; the maximum number of computations to decode one branch

becomes unbounded. Consequently, any practical adaptive stack algorithm

that uses only the information available in the stack together with a finite value

cannot be prevented from entering search modes of operation, andfor M
max'

therefore an asymptotic Pareto behaviour appears to be inescapable. In our

adaptive algorithm, the only direct information used in the decision rule was the

detection of a dip of the top node of the stack and the determination of its size.

Getting this information involved hardly any added complexity to the Z-J

algorithm. All our results were obtained with a linear function of the dip sizes and

no attempt was made to optimize M ( D ). However, it may be conjectured that

some other function M ( D ), which estimates better the number of incorrect

paths will further improve these results.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The results reported in this thesis show that the principal drawback

of sequential decoding can be alleviated by using some of the concepts of Viterbi

decoding: exploitation of the trellis structure of the convolutional code and

simultaneous extension of a subset of the most likely paths. The broad class

of generalized stack decoders was shown to unify the Viterbi and sequential ( Z-J ) 

decoding algorithms. We have proposed, analyzed and simulated several algorithms 

in this class. Compared to ordinary sequential decoding, the distribution of

computations was substantially improved, and some of the undetected errors

corrected, at a cost of a moderate increase of the average decoding effort. The

added complexity of these algorithms over the Z-J algorithm is very modest and

consists mostly in a larger memory requirement.

The M-path algorithm closes the gap between the single-path Z-J

algorithm and the all-paths Viterbi algorithm. Depending on the value of MI

relative to the number M of distinct states, the M-path algorithm is "closer" 

to either of these two algorithms, but unless M = M , the computational behaviour 

remains asymptotically that of a sequential decoder. As the decision rule is fixed, 

the average number of computations per decoded node varied linearly with M.

However because of the purging cycle the stack storage is reduced and all compu­

tations are not equally complex. Compared to the Z-J algorithm, we observe that

(1) A new entry in the stack involves a slightly more complex operation since it
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requires the setting of the LINK pointer, (2) The elimination of a converging

branch represents a far less complex operation. (3) A stored converging branch

may correspond to a more or less complex operation depending on whether or not

the original substack value is modified. Hence, as the number of convergences

increases, the computational complexity of the M-path algorithm will effectively 

increase slower than linearly with M.

The subclass of adaptive algorithms departs from either the Z-J , 

M-path or Viterbi decoding algorithms. It was shown that by modifying the path

extension decision rule according to the information contained in the stack, some

useless computations can be eliminated. The computational variability could 

thus be further reduced without unduly increasing the average decoding effort.

As more information about the correct path is included in the decision rule, the

overall performance improves, up to a limit set by the ideal algorithm. Of course.

in evaluating the real performance of the adaptive algorithm, the cost of getting

this information must be properly accounted for.

The algorithms presented here could be used with any constraint

length convolutional code. They may be particularly attractive in those applications 

where the reduction of the computational variability, hence the reduction of the

size of the input data buffer, is well worth the modest increase of the average

decoding effort. In some sense, these algorithms extend the range of application

of sequential decoding to relatively short constraint length codes, and may be an 

attractive alternative to Viterbi decoding for short to moderate constraint length

codes 6 £ K s 15.
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Among the class of generalized stack decoders, the adaptive 

algorithms appears to be the most promising. An interesting area for further

research is finding more efficient methods to adapt the decoding effort to the

top node metric dips. For instance the metric behaviour of the top node of the 

stack could be determined a few branches ahead, and this "prediction" could be 

used in the decision rule for the running decoding cycle. Efficient functions

M ( D ) for the adaptive algorithm may be determined by a combination of a 

theoretical analysis of the population of the incorrect paths and computer

simulation.

Most of the increased decoder complexity comes from the

exploitation of the trellis structure of the code in the purging cycle. This

particular purging rule may thus be dropped when the number of remergers does not

not warrant the required additional memory. (In our simulation the effect of the

remergers was negligible for K £ 8 ). Other purging rules and their consequences

on the error probability may thus be investigated. For example, eliminating from

the stack all nodes whose metric is below some threshold value below the current

maximum metric value.

Some other interesting problems for future research are:

(a) Metric bias. We have used the Fano metric with a bias value equal to the

rate of the code since it minimizes the extension of unlikely paths. However with

an unbiased metric, no path can converge with a larger metric on a node stored in

the stack. Hence, on the trellis structure of the code no computations can be
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repeated but the number of explored incorrect paths is expected to increase.

Therefore, with a purging rule exploiting the reconvergence of the paths, the

determination of the optimum bias value that would minimize the average decoding

effort of the particular M-path and adaptive algorithms would be interesting.

Waiting line behaviour. The effect of the reduction of the computational(b)

variability on the buffer storage reduction and buffer overflow probability was

not examined and warrants future research.

Dynamic behaviour of the incorrect paths. The search mode probabilities(c)

P were determined under the assumption the decoder can ignore all dips whose 
H

value is smaller than H. The problems of relating M or M ( D ) to H, and the 

bounding of C for the adaptive algorithm lie with the dynamic behaviour of the 

population of the incorrect paths. In analyzing this behaviour the branching

process model of Appendix III appears to be most promising.
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APPENDIX I

THE GENERALIZED STACK DECODER

In this appendix we briefly describe the operation of the generalized

stack algorithm as we have programmed it in Fortran. It follows in essence the

Z-J algorithm described by Jelinek (1969a) and Geist (1970).

As mentioned in Section 4.2.2, an entry in the stack consists of the

3 items (metric value, node depth, encoder state) necessary for a possible further 

extension of the node, and of 3 pointers necessary for the stack ordering, path

retrieval and convergence test. This information is stored in six contiguous words

of memory labelled respectively VALUE, DEPTH, STATE, STAKPT, PATHP and

LINK. In addition 2 auxilliary arrays called AUXPT and NODEPT are necessary

to scan the stack as explained below.

Initially all arrays are cleared, but the origin node (the first top

node) is assigned an arbitrary positive metric value to avoid encountering negative

total metric values during decoding. The information about new nodes is entered

in the stack in consecutive stack addresses, and once entered, this information

is never destroyed. All new entries whose accumulated metric, say F, yields the 

same integer part Q of r/H (see Eq. 3.16), belong to the same substack Q.

Moreover the algorithm always keeps track of the highest substack Q ever
Top

reached.

In a given substack say Q , all the nodes are linked in a continuous
m

fashion by their pointers STAKPT. The STAKPT of the first node in Q contains 0,
m
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the STAKPT of the second entry contains the address of the first entry, and so on.

The address of the last new entry in (i.e. the beginning of the chain) is

contained in the Qm^ word of the auxilliary array AUXPT. Suppose a new

extension yielding the metric value F and substack Q is about to be stored
m

in the stack at address N. The metric value,state/and depth are first

properly stored in their respective registers in the stack at address N. Then the

address contained in AUXPT ( Q ) is entered in STAKPT ( N ) and N is
m

entered in AUXPT ( Qm ). For any empty substack Q., the corresponding 

contents of AUXPT ( Q. ) is zero.
!

When a node is extended, its "elimination" from the stack consists

simply in bypassing it in the chain of STAKPT pointers. Since the highest

encountered substack Qj0p 's always known, to determine the top node of the

stack, starting from Q , the first non-empty substack is found and then scanned
Top

for the maximum metric value. The chain of STAKPT pointers and the AUXPT array

are then properly modified to exclude this top node. In the quantized Jelinek 

algorithm no scanning is performed within the substack and the top node is

considered to be the last entry in the highest non-empty substack.

If the path extension cycle requires the extension of a number, say 

M nodes, these M nodes are extracted in sequence from the top node to the Mth, 

using the same technique. For the adaptive stack algorithm, the dip value D must

be first determined. Using the current value of Q after the top node is
Top'

extracted the dip value D and the number M ( D ) are readily obtained.



191

However only after all these nodes have been "deleted" from the stack will

the extensions be performed.

When the top node reaches the end of the tree, the information

symbols on the finally decoded path must be recovered. This is accomplished

by a chain of PATHP pointers. For every new entry in the stack, the stack address

of the parent node is stored in the PATHP register. Hence the chain of PATHP

pointers specify the decoded path from the final node back to the origin.

The purging cycle exploits the reconvergence of the explored paths.

As described in Section 4.2, all nodes in the stack having the same depth are

linked together by the chain of LINK pointers. The beginning of the chain of depth,

say N, (i.e. the last unmerged entry at depth N) is contained in the Nth word of

the array NODEPT. For the first entry at a given depth, the LINK contains 0,

and hence the test for convergence is easily performed by following the LINK

pointers, and comparing the state of the new extension with the states of the nodes

specified by the LINK pointers. If no convergence is detected the new extension

is properly entered in the stack. If there is a convergence the metrics are then

compared. Suppose the new extension has the larger metric of the pair. Then the

metric value and predecessor address of the new extension replace the corresponding

contents of the VALUE and PATHP registers of the older node. Moreover to keep 

the stack properly ordered, if the new substack value is increased, the chain of

STAKPT and AUXPT pointers must be modified accordingly. Finally, if the new

extension does not increase the metric value of the older node, the new extension
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is simply discarded. Therefore the redundancy in the stack is always 

eliminated and no storage is wasted.
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APPENDIX II

MARKOV CHAIN MODEL OF THE CORRECT PATH METRIC

In this appendix we present the Markov chain model of the correct

path metric, and some of its properties related to sequential decoding.

Consider some node on the correct or decoded path and let 

its metric be Then a fundamental quantity closely related to its decoding is

the metric difference given by

(1)^ = rK - Min r.
j >k 1

with
K

(2)T =ak Li

i=0

where {y.} are the correct branch metric values. From Eq. (1) we have

K = 1, 2, ... (3)

where the equality holds only for breakout nodes.

Breakout nodes on the correct path are decoded by a single 

computation, but as increases, the number of computations necessary for

decoding U,, increases exponentially. The distribution of A. is thus an 

important factor in determining the computational behaviour of sequential 

decoding.
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A recursive relation between consecutive values of may be

obtained as follows. From Eq. (1) and (2) and using + >

we have

\=-Mi" t0' ’'K+l' (rK+l +>,K+2)' (rK+l +yK+2+rK+3) ' ' ' ‘1 <4)

Hence,

yK+2) ...i if-Min [yK+1/(^+1+rK+2)-- - 1>0- Min [yK+1 ' ^ yK+l +

otherwisel 0 (5)

Likewise

(6)\+1 “■Min [0' ^K+2' (yK+2 yK+3 ), ••• 1+

and

(7)yK+2 )' • • • ^\+l yK+l =_Min CyK+r ( yK+l +

Substituting Eq. (7), in Eq. (8), we obtain

lf ^ ^K+l ~ yK+l ^ °^ \+l - yK+l ^

(8)\=1 otherwiseL 0

Equivalently we have

(9)[0, ( \+] ~ yK+l )1- Max
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Since the branch metrics y's are statistically independent 

distribution, the sequence ^+2' ^«+1 '

, defined by Eq. (8) inducesa queuing process. This queuing 

process is equivalent to a Markov chain where the states are the possible values 

of A,,, and the 1-step transition probabilities are the probabilities associated
l\

with the branch metrics y^'s , that isK.

random variables with a common

V p<r'K = -t> ' 0 ^ J

(10)

- p ( yK _ + ^ ) ' 0 < 'f Q

This set of probabilities is easily obtained from the channel transition probabilities

and the definition of the biased metric. The states Aj^. are integers since the 

branch metric values are always rounded to integers in practical sequential

decoders.

If a node has some value - j, then state j of the chain

is occupied. The next state to be occupied, say state L, will be determined by

the 1 step transition from state j, according to the set of probabilities of Eq. (10),

and Aj, j - £. For example, in Fig. (11.1 ),the set of the possible branch metrics 

is f+2, +1, 0, -3, -7} and the corresponding probabilities are {<^2' 9]' Pq'

Pg, p^} . As shown in Fig. (11.1),for this particular example, all states to the right

of state 2 exhibit the same transition pattern.
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A breakout node of the correct path locates the decoder at state

0 whereas a non breakout node will locate it at the corresponding non-zero state. 

Clearly decoding the correct path is executing an integer-valued random walk 

where a visit to any non-zero state corresponds to a search-mode of operation.

Since from state zero the decoder could either remain in that state or go into a

search, state zero acts as a reflecting barrier at the origin for the random walk.

There are Q possible transitions towards the zero-state and J possible transitions

away from the zero state, corresponding respectively to the possible Q positive

and J negative branch metrics values. The form of the probability transition

matrix for such a random walk with Q = 3 and 3=5 is given below

0 1 2 3 54 6 7/

3
0 P + ' q. 

o Lj
0Pi P2 P3 P4 P5 0 0 0

i=l

3

Is1 Po P1 P2 P3 P4 P5 0 0 0i
i=l

3

I s;2 Po^1 pl p2 p3 P4 P5 0 0
i=2

3 q2 P1 p2ql Po p3q3 P4 p5 0

04 q3 q2 Po P1ql P2 p3 P4 P5

5 0 0 q3 q2 ql po pl p2 P3 P4

6 0 q3 ql Poq2 pl p2 p3

0
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This Markov chain model for £ was first proposed by Massey andl\

al (1969, 1972) who considered the particular case in which only a single transition 

of unit length is permitted toward the origin state (i .e. , Q = 1, P ( y„ = + 1 ) = q ), 

but any finite number J of transitions away from the origin are permitted.

Regardless of the chain, when a node U,, on the correct path has 

a positive metric difference, > 0, there is a search associated with this node, 

and clearly the correct path metric must go through a dip at least equal to Aj^ 

before reaching the next breakout node. We can therefore associate the ^'s 

with the correct path metric dips. Of particular importance with this representation 

is the stationary probability distribution of the different states or dip values, and 

the average distance between breakout nodes.

Properties of the Markov Chain

We now interpret several well known properties of the Markov chain

(see for example Feller 1966) with respect to sequential decoding.

The average distance between breakout nodes of the correct path isProperty 1 :

equal to the mean recurrent time of the origin state.

Suppose state j can be reached from state i in n steps. Let T..
'I

be the waiting time (in number of transitions required) for the first entrance to state

j from the initial state i. Then
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(") :
P ( Tij = n )f (H)

ii

is the probability to reach state j for the first time from state i in exactly n

steps. The probability of eventually reaching state j in a finite number of steps

from state i is

ao
V f(n)- P ( !.. < oo ) = (12)f.. , V i,jii iiU
n=l

In particular !.. is the return time to state i or recurrence time of i, and if 

f.. = 1, then state i is said to be recurrent or persistent. If f.. < 1 , state i 

is said to be transient.

For a recurrent state i, the mean recurrence time (or mean return

time) is defined as

ao
(n)

(13)n f..
11

n=l

If p. - oo, state i is called a null state, and if < oo it is called a nonnull state.^i

For sequential decoding the probability that the first return to state 

0 (a breakout node on the correct path) takes n steps is

(n)
P (T = n ) = f (14)

oo oo

Hence the average number of steps to return to state 0, or equivalently the average

distance d (in branches) between consecutive breakout nodes of the correct path 
o
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is the mean recurrence time of state 0,

oo
(n)

n f 05)d - [J 
o o L-j OO

n-1

The average distance d^ is finite only if state 0 is recurrent 

nonnull. We know that for sequential decoding, the only incorrect paths of

interest emerge from non breakout node on the correct path. Therefore in

general both the average value and the variability of the computational effort

increase with the average distance between consecutive breakout nodes. A

decoding algorithm which effectively reduces the average distance dQ will 

also reduce the variability of the decoding effort, and if d^ = 1 this algorithm 

will never be in a search mode of operation.

for the sequential decoder, then state 0 isProperty 2: If R < R
comp

recurrent.

then the average number of computations toIf R< Rcomp'

decode one branch on the correct path is finite. Therefore the decoder always

return to a breakout node or zero state of the chain. Hence f - 1 and
oo

state 0 is recurrent.

Property 3: The Markov chain is irreducible.

Ther is no absorbing state in our Markov Chain, every state can 

be reached from every other state and therefore the chain is irreducible. Since
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in any irreducible Markov chain all states are of the same class (recurrent or

transient), if state 0 is recurrent, then all other states are recurrent and the

chain is said to be ergodic.

Stationary Distribution of the Chain

A probability distribution {v.} is called stationary if
i

CD

(16)i =0, 1, 2, ...V.

;=o

If a chain has a stationary probability distribution, then the unconditional

distribution of occupancy of the states becomes independent of time: the process

is in statistical equilibrium. When it exists, the stationary distribution is unique

and the v. are given by

1
(17)v. - — 

I H:
I

where p. is the mean recurrence time of state j.

If such a distribution exists for the states of our chain, then

p ( AK , 'T, > 0 (18)

Of special interest is the stationary probability v 

it represents the relative frequency of breakout nodes on the correct path which 

a sequential decoder will decode in a single computation. Furthermore from

of occupying state 0, since
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Eq. (15) and (17) the average distance between breakout nodes would be

given by

1
(19)d = — o vo

It is well known that an irreducible Markov chain has a stationary

distribution if and only if all states are recurrent nonnull. Hence from Property 2

and 3, if R < R the stationary distribution for our chain exists. Letcomp

Q J
(20)i q *z = L,L, i

i=l 1=0

be the average length or "drift" of a single step. Then Feller (1966, Vol. 1) shows 

that the chain has a unique stationary distribution if and only if z > 0.

The determination of the [v.} according to Eq. (16) is in general 

quite cumbersome. For the simple case where there are any finite number J of 

transitions away from the origin state, but where only a single transition of unit 

length towards the origin is permitted, Massey et al (1972) give a simple recursive 

technique to determine the stationary probabilities { v.} , given they exist. For 

such a chain

J
r—»

z-q - (21)lpli
i—I

1=0

and assuming z > 0, vq is given by

z
(22)Vo q
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Given vq and using Eq. (16) the stationary probabilities for all the other states 

are determined recursively.

v -v (q+p )+v,q 
o o ^ o 1 ^

+ v . p + v0 a 
1 ro 2V1 = Vo P1

(23)+ V + . . . + V . p + V
J ovj = Vo Pj 1 Pj-l J+l q

and
J

1
(24)p. v . 1, n > J 

ri n-iVl q U
i=0

For this chain the average distance between breakout nodes is then

_L = q (25)d =
o

Unfortunately for the general case where there are G, Q > 1 positive branch

metric values, this "drift balancing" technique cannot be used (Massey 1972). 

However it can be applied for the binary symmetric channel when all metric

values are normalized so that the positive branch metric has unit value.

The stationary probability v^ represents the proportion of the

nodes on the correct path that will be decoded by a single computation. Hence

a proportion ( l-vo ) of the nodes on the correct path are non breakout nodes

and are thus responsible for the varying of the computational effort of sequential

increases, d and the 
o o

decoding. Eq. (19) is intuitively agreeable since as v
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proportion of non breakout nodes both decrease, decreasing also the variability

of the decoding effort. Clearly a procedure which reduces the effective d^

will consequently reduce the variability of the computation.

P7 p7PZ
P / Po / Lp

Po+ql+'l2

(D—©0 1 2 3 4 7 8 9
1+W ql Y ql V qi

q2 q2

p3 p3

Figure (II. 1) Example of a Markov chain with Q = 2, J = 7.
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APPENDIX III

BRANCHING PROCESS MODEL OF THE

INCORRECT PATHS

In an ordinary discrete time branching process (see for example

Feller (1966), Vol. 1), a single particle (called the zeroth generation) produces

0, 1, 2, other particles with probability p^, p^ , p^, .... These particles

form the 1st generation and produce further particles independently, and distributed

as f p } , m - 0, 1, 2, . . . In general each of the particles of the nth generation 
m

can produce m descendants with probability p , m = 0, 1, 2, . . . . By considering

the particles as nodes and generations as tree depths, we see that a branching process

expands in a tree-like structure.

Consider now a special branching process where each particle gives

birth to the same number, say N, of descendants for the next generation. A

parent particle being at some amplitude level £, t- 1 , 2, ... H above a ground

level of amplitude zero, each of the N descendants moves away from the parent

and goes independently to an amplitude level ( -t+j ) with a fixed probability

assignment {p.} . If a particle moves to either an amplitude level greater than H
I

or smaller or equal to zero, it disappears. That is, the amplitude levels 0 and 

( H + l ) act as absorbing barriers for the process. Such a process is called a 

branching random walk with absorbing barriers (BRWAB). (See Gal lager 1974).

In the Markov chain representation of the metric differences { 

of the correct path, breakout nodes ( = 0 ) may be associated with a zero
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or ground level. Non-breakout nodes would then correspond to nodes whose

amplitude levels are the corresponding A. above the ground level. Each of 

these non-breakout nodes is a root node of a subtree of incorrect paths that 

must be extended by a sequential decoder as long as they lie above the ground

level. Hence the ground level acts as an absorbing barrier for the incorrect

paths.

Since the number of descendants of each node is constant, and

assuming the branch metrics to be statistically independent, we observe a close

connection between BRWAB and the subtrees of incorrect paths that must be

extended by a sequential decoder if we add another absorbing barrier of amplitude

level ( H+1 ) above the ground level. Then, any incorrect path that crosses (or

touches) either barrier will be absorbed. Although absorbing the incorrect paths

that cross the upper barrier is not very realistic, these crossings will be very rare 

occurences if H is high enough. The main reason of its introduction is analytical

convenience (Gallager, 1974). With this model of the incorrect paths emerging

from non-breakout nodes on the correct path, each incorrect node is a particle

and its metric above the ground level is the particle amplitude level. If a particle

moves from amplitude level i to j, the metric increment for the corresponding 

incorrect branch is ( j-i ), and this increment occurs with probability PK
These probability assignments are easily obtained from the channel transition

probabilities.
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As in any branching process, our BRWAB may grow without limit or

become extinct. Since it represents incorrect paths that must be explored by a

sequential decoder, we want our process to be eventually extinguished with 

certainty. Gallager (1974) has shown that the probability of extinction is 1 if

Nj2f(t)< 1 0)

Where N is the number of descendants per particle and where t minimizes the

moment generating function:

P. eS'
r—

0(s)= > (2)
L

I

If the process were to grow without limit, then the exploration of

an incorrect subtree may take an infinite amount of computation, leading to an

unbounded decoding effort with probability 1. Hence inequality (1) may be taken

as an alternative to R of sequential decoding.
comp

We now find a bound on the expected number of computations

performed by a Z-J algorithm to decode one branch on the correct path. We

recall that a computation is defined as the extension of a node into its N immediate 

descendants. The subtree of incorrect paths emerging from a non-breakout node being

modelled as a BRWAB, we assume the existence of an upper absorbing barrier. By 

using the branching process model of the incorrect paths and the Markov Chain 

model of the correct path, the following analysis departs from the traditional union 

or Chernoff bounding techniques. This analysis was inspired by a technique used
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by Gallager (1974) to determine the average number of nodes explored by a tree

encoding algorithm of source sequences.

Let c. ( L ) be the expected number of computations performed

by the algorithm in extending up to a distance L branches away, all incorrect

paths issued from a root node of amplitude level i, 1 ^ i < H. For L = 1 only

the root node is counted and (1 ) = 1.c.

For L ^ 2, as shown in Fig. (Ill.l) one of the branches of the

first generation has a probability P. . to be at amplitude level j. If this amplitude
I"'

level j is between the two barriers, the algorithm will extend it further. Hence this

node can be considered as the root node of amplitude j, 1 ^ j ^ H, of a new subtree

of incorrect paths whose termination length is ( L-l ). Given the amplitude level of 

the root node is j, the conditional average number of computations is c. ( L-l ), and
!H

the unconditional average is then ( L-l ). The same argument applies toP.. . c.
T' I

the remaining ( N-l ) other node's. Assuming statistical independence between the

U
i=1

incorrect paths we obtain the recursive relation

H

( l ) = i + n ; ( L-l ) , L > 2 (3)P.c. i-i ci
i=1

The above expression assumes all nodes to give birth to the same 

number of descendants. However, the first generation of nodes consists of one node 

on the correct path and ( N-l ) incorrect branches, whereas beyond the 1st 

generation all descendants of incorrect nodes are incorrect nodes (see Fig. III.2),
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H+l

i
■

i i

i
i II

I

0

L-l
<■

L
4

Figure (lll.l) BRWAB with N = 3 branches per node.

H+1

x
S

\\

V

0 \
-V \

correct path«■

incorrect paths- - O---

Figure (Ml. 2) BRWAB model of the incorrect paths.
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Consequently the average amount of computations performed on the incorrect paths 

diverging from a non-breakout node of amplitude level i is bounded by the right

side of Eq. (3). Hence

H
( L ) c 1 + N P.i-i ci < L-' > , ( L s 2 )C.

I

i=i (4)

Cj(l)=l

We now proceed to remove the conditioning on the amplitude

level i. Define the H-dimensional vectors

(L)C1

c ( L ) = c2(L) (5)

cH(L )

and

1

1 (6)1 =

1

Let the H x H matrix [ B 1 be defined as

pn P12 P13 P1H

P P21 r22 P23 pr2H[B] = (7)

P P PHI rH2 h3 PHH
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where f P..^ 
'I

(4) is then

the incremental probabilities f P. . The vector form ofare r

c ( L )<; 1 + N [B1 c ( L-l ) , l <.2

(8)
c (1 ) = 1

Recursively we then have for L > 2

c ( L ) si + N [ B]1 + N2 [B]2 1 + ... + N1-1 [B1L_1 1 (9)

Defining

C B. . ] = N [ B ] (10)N

we obtain

c(l.)S(I + tBNl+[BN12+...+[BN] L-l
) 1 (ID

Assuming the process will be extinguished for L large enough.

£ ( L ) does not diverge. If the largest eigenvalue of [ B^] is less than 1,

than as L -* oo the right hand side of (11) converges, to give

-1
c ( L ) s c (oo ) s FI - [BnH 1 (12)

Using the stationary probability distribution (v.) of the correct 

path metric differences, the unconditioned average decoding effort c on the 

incorrect paths is
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H
5 vth ( oo )• c ( œ ) (13)V. c.L

;=i

where

v2, ... vH] (14)r

Finally, counting the single computation performed on the breakout node (whose 

stationary distribution is vq), the average number of computations c to decode 

one branch on the correct path is upper bounded by

+ vT
o -H • c ( co ) 05)C £ V

For noiseless channels, all nodes on the correct path are breakout, 

vq = 1 and V|_| = 0. The computational effort is constant, c = VQ = 1, and the 

average distance between the nodes is dQ = 1. As the channel becomes noisier, 

vq decreases and >0. If c1 is bounded, then c is also bounded by a 

larger value than 1. Moreover dQ increases, increasing with it the variability of 

the computational effort. Naturally if c1 diverges, then obviously c also becomes 

unbounded.

The Average Population of Incorrect Paths

The above technique may also be used to determine the average 

number of incorrect nodes existing between the barriers at any depth away from 

the parent node.
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Suppose a parent particle has an amplitude level i, 1 < i <: H,

and let p. ( L ) be the average number of particles existing between the two

absorbing barriers, from the zeroth to the Lth generation. Assuming statistical

independence between the N immediate descendants of any particle, as in

Eq. (3) we have

H
p. ( L ) = 1 + N P: : P: ( L-l ) , L * 2

I
i=1

H

p. ( 1 ) 1 + N (16)ViI

i=1
)

Here again, for sequential decoding the root node is on the correct

path, hence for the first generation there are at most ( N-l ) incorrect nodes.

Therefore the right hand side of Eq. (16) is an upper bound to p. ( L )

H
p. ( L ) <: 1 + N ^ ( L-l ), L > 2)PH

i=i
H

p. ( 1 ) < 1 + N (17)P.
i-iL-j

Define the H-dimensional vector

Mi ( L )

Jf (L) = M2 ( L ) (18)

mh(l)
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The vector form of Eq. (16) is then

H ( L) < 2 + N [B1 M ( L-l ) , L 2? 2

(j ( 1 ) ^ 1 + N [B] 1 (19)

where 1 and [B] are given by Eq. (6) and (7) respectively. Using [B1

we then obtain

ii(L)s:(I+[BN] + [BN]2 - + rVL> 1 (20)+ .

Using the stationary probabilities [v.] for the nodes on the
i

correct path, the unconditioned average number of incorrect nodes is bounded

by
H

p ( L ) ^ • p ( L ) = ^ v. p. ( L ) (21)

i=l

where is given by Eq. (14).

Consequently the average number of incorrect nodes M (D) lying

between the barriers at a distance D, D s 1, branches away from the root node

is then

M(D) sp(D)-p(D-l )

^h' <[bniD 1»

(22)

(23)

where Eq. (20) used to obtain Eq. (23). The largest value of the averagewas

number of incorrect nodes lying at the same tree depth may thus be found by

scanning M ( D ) for maximum over D.
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APPENDIX IV

SEARCH MODE PROBABILITY

In this appendix we present a direct method of obtaining P , the
H

probability of entering a search mode of operation when starting from a breakout

node on the correct path. Since all states at or beyond state H correspond to

the search mode of operation, they can all be lumped together into an absorbing

state at H. The transition probability matrix of the chain becomes

0 1 2 . H-l H• •

Q
o A ^+ hPo P2 ••• PH-1 9o

M

Q
■T"

1 Po P! ... PH-2 gl

Q
H-l L ^i 

i=H-l
qH-2 qH-3‘ Po gH-l

0 • 0 10 0H

where
O H-L-l

'’i+ Lg. = 1 - ( p. ), i - 0, 1, .. H-l (1)L I
i=oi-i

P|_l is then the probability of being absorbed before returning to the zero state. 

Define

i=0, 1, ..H-l(n) _ P C H, A. / k, i - 1, 2, .. . n-1 | - j ],f
k jH

k = 0, 1, .. H-l

(2)
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is the probability of absorbtion at the nthThen, starting at the origin, o oH

step without visiting state 0 "en route", and hence

CD

p = Y f(n)L ooH
(3)

n=l

To solve this equation, we have

H-l
(n-1)(n) _ V (4)P . f.u oj o |Hf

o oH

and
H-1

(n-1)(n) = (5)p r 
jk o kHf Lo jH

k=l

Define the H-dimensional vector G

(1)f 9oo oH

(1)f 91o 1H
(6)G

(1)f 9H-1o H-1,H

and let [A] be the H x H matrix whose first column is zero

0 PH-1

PH-2
p2pl

0 plPo (7)[A 1 =

0 qH-2 qH-3 Po
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Then from Eq. (4), (5), (6) and (7) we have

f<2)
o oH

f(2)
o 1H = [Al G (8)G, =—1

f(2)
o H-l,H

Continuing in the same way we obtain in general.

(n)
f

o oH

(n)fo 1H -1= [ A] n ' G (9)G—n-1 -o

(n)fo H-1,H

We can arrange each vector G as the ( n+1 )th column of a matrix [B1
—n

• £i ; . . G ..........1[ Bl= [ G —n—o .

: [ai2 g : .... : [Ain g :
. —o . . —o .

- [i ' [Ai: r A]2 : .... : [Ain : .... ) g 1

= [g : [a] g 1
—o .

(10)

From the definition of the vectors G's and Eq. (3) we see that the sum of the

elements of the first row of [B] is P . Since [A] is the truncation of a
H

stochastic matrix we have
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1+ CA] + [A]2 + ... = [I- [A]] -1
(11)

and hence

P = xH 1 (12)

where x, is the first element of the vector1

-1
X= [I - [A]] G . (13)
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