POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Mouvement brownien dans un ensemble convexe

Auteurs: | . .
" Gilles Deslauriers
Authors:

Date: 1975
Type: Rapport / Report

Référence: Deslauriers, G. (1975). Mouvement brownien dans un ensemble convexe.
Citation: ' (Technical Report n® EP-R-75-57). https://publications.polymtl.ca/6107/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: .
. , ps://p .polymtl.ca/ /
PolyPublie URL: https://publications.polymtl.ca/6107

Version: Version officielle de I'éditeur / Published version

Conditions d Ut'l'sat'onf Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: o o 55 £
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/6107/
https://publications.polymtl.ca/6107/

%
2

Rapport Technique EP75-R-57
Classification: Library of Congress no
MOUVEMENT BROWNIEN DANS UN ENSEMBLE CONVEXE
GILLES DESLAURIERS

Octobre 1975

Campus de I"Université

de Montréal
Case postale 6079
Succursale A
Montréal, Québec
H3C 3A7






Aew

12 NOV. 1975



UNIVERSITE DE MONTREAL

MOUVEMENT BROWNIEN DANS UN ENSEMBLE CONVEXE

e 78059

GILLES DESLAURIERS

DEPARTEMENT DE MATHEMATIQUES
FACULTE DES ARTS ET DES SCIENCES

THESE PRESENTEE A LA FACULTE DES ETUDES SUPERIEURES
EN VUE DE L'OBTENTION DU
PHILOSOPHIAE DOCTOR (MATHEMATIQUES)

AOUT 1975



jii

TABLE DES MATIERES

pages

SOMMATRE . o ove s etndis ntssssssdsbsissd nussds uansenieisnnanes iass iv
INTRODUCTION. i vnucsvaons sossun nnasen saasss amannessss oanessisss 1
CHAPITRE 1 - PROBABILITE ET TEMPS PROBABLE DE SEJOUR............ 4
I - Marche al€atoire. ....oviiiiiiineenneenneenncsennnas 5
IT = Passage .12 1IMIteiuanc svnsnsnauns swusns savssssses 9
IIT - Mouvement Brownien dans une sphére deR"........... 12
IV - Mouvement Brownien dans un convexe de R™........... 19
CHAPITRE 2 - MESURES QUASI-CONCAVES..:..ecscsssncssiosssosscessscse 23
I - Les the&OT@meS. .vivitiineienneneeeennoenncennnnnnnns 26
II - Applications....cccciieincnersnnnncsancasonasncnnas 42

CHAPITRE 3 - LOG-CONCAVITE DE LA PROBABILITE DE SEJOUR ET TEMPS
PROBABLE MAXIMUM. . ...t eeeeevsnscseancscsoncscnnesns 48

I - Log-concavité de la probabilité de séjbur dans un
conpvexe quelconque de R™. ... .. iiiuieinninnnnnnennns 48

II - Temps probable maximum de s&jour dans un convexe

SYMCELLQUE. « i v vuis wisnii dosid oasged enss s baads bosss 53
REMERCTEMENTS . csannwsnasne siawnnm o omssn oueson siessn seesns oess s esss 57

BIBLIOGRAPHIE. . s vecis snnmneosnnd sanmensassse e vsannessssnsssss 58



iv

SOMMATRE

Dans ce travail, nous avons démontré que la fonction
x> f(x,t) =P[X(s) €KX ; 0<s<t|X(0) = x]

est log-concave ol {X(s)} est un mouvement Brownien sur R", K est
un convexe quelconque de R" et x est un point de ce convexe. De ce
résultat, nous déduisons que le temps probable de s&jour a 1'intérieur
d'un convexe symétrique est maximum si x est le centre de symétrie du

convexe.

Nous avons dfi, pour obtenir ces résultats, donner une démons-
tration d'un théoréme de Borell [ 2]. Cette démonstration nous permet

. . n
de reconnaitre les mesures strictement quasi-concaves de R . Une con-

dition suffisante sur deux fonctions est donn&e pour que leur convolution

soit une fonction quasi-concave.



INTRODUCTION

Le probléme 3 l'origine de cette thése &tait le suivant:
"Quelle doit &tre la position initiale d'un point mobile X(t), effec-
tuant un mouvement Brownien d l'intérieur d'un ensemble convexe K
de 'Rn, pour que la valeur probable du temps qui s'&coule jusqu'd ce

qu'il atteigne pour la premiére fois la frontiére de K soit maximum?"

Nous désignerons par 8X(T) la valeur probable du temps T
qui s'écoule jusqu'da ce que le point mobile, placé initialement en
X(0) = x, atteigne la frontiére de K pour la premiére fois. Cette
fonction du vecteur x, position initiale du point mobile, est liée 3
la probabilité que pendant 1l'intervalle de temps (0,s), le point mobile
X(t) soit resté constamment & 1‘'intérieur du convexe K. Cette proba-
bilité sera notée f(x,s). La relation qui existe entre 8X(T) et

f(x,s) est:

& (T =./F f(x,s) ds.
- 0

Indiquons les résultats généraux déja connus. Dans le livre
de P. Lévy [ 9], il est dit que la fonction 8X(T) est bornée et que la

fonction f(x,s) est une solution de 1'équation de la diffusion

Af(x,s) = ZE_%£§LEL

H]

qui s'annule sur la fronti&re de K. Nous verrons dans la derniére sec-

tion du chapitre 1, que 8x(T) satisfait 3 1'équation de Poisson, -

A& (T) = -2.



Parmi les résultats particuliers, citons un résultat que l'on
trouve dans le livre de Dynkin-Yushkevich [ 4]: Pour une sphére de 1Rn,

centrée 4 l'origine et de rayon r,
g
& =
o(T) n

Nous avons dans le premier chapitre caractérisé ces deux fonc-

tions pour une sphére de Rr".

Comme ces caractérisations n'apportaient que trés peu ''d'eau
d notre moulin'", nous avons décidé de procéder différemment aprés avoir
réalisé qu'il existait une certaine relation entre ce que 1l'on cherchait
et les probabilités des translatés d'un convexe. Nous voulions montrer
que la probabilité des translatés d'un convexe, prise comme une fonction
du vecteur de translation, est quasi-concave. Nous avons essayé, en vain,
de caractériser toutes les mesures de R", quasi-concaves sous les trans-

lations. Notre €tude sera donc limitée aux mesures quasi-concaves.

Nous donnerons, dans la premiére section du deuxiéme chapitre,
une démonstration d'un théorsme de Borell [ 2], théorgéme que 1'on a dé-
couvert tout derniérement, et qui nous permet de reconnaitre les mesures
qui sont strictement quasi-concaves. Les résultats de frékopa [11] et
de Zalgaller [13], que nous avons cités au début du deuxiéme chapitre,
sont des applications de nos théorémes. Finalement, nous terminerons
ce deuxiéme chapitre en donnant des conditions suffisantes sur deux fonc-
tions pour que la convolution de ces deux fonctions soit une fonction

quasi-concave.



Grice 3 cette €tude des mesures quasi-concaves, nous démontre-
rons dans le troisiéme chapitre que lalfonction f(x,s),‘pour s fixe,
est log-concave. Nous conclurons en disant que ce dernier résultat per-
met, dans le cas d'un convexe symétrique, de maximiser le temps probable

de séjour 3 1'intérieur de ce convexe.



CHAPITRE I

PROBABILITE ET TEMPS PROBABLE DE SEJOUR

I1 arrive trés souvent, lorsque l'on veut illustrer le mouve-
ment Brownien dans le plan, que 1'on prenne comme exemple la promenade
d'un ivrogﬁe dans un champ. Imaginons qu'un ivrogne commence 3 Sse pro-
mener, 4 1'instant t = 0 & partir d'un point Xy dans un champ cldturé
et qu'il espére sortir de ce champ. Nous voulons caractériser la proba-
bilité qu'il n'ait pas encore atteint (pour la premiére fois) la cldture
au temps t. Cette fonction dépend de Xg» de t et aussi de la forme
du champ. Nous voulons aussi caractériser, lorsque 1l'ivrogne essaye de
sortir du champ, la valeur probable du temps qui s'écoule jusqu'a ce
qu'il atteigne pour la premiére fois la cldture. Cette fonction dépend
de x, et de la forme du champ. On sait (P. Lévy [ 9]) que cette derniére

fonction posséde une borne supérieure finie indépendante du point X,

Notre but premier étant de maximiser ces deux fonctions par rap-
port d la variable X, mous rappellerons ici quelques définitions. On
dira qu'une fonction f est quasi-concave si f est définie sur une
partie convexe C d'un espace vectoriel réel E et si pour tout nombre
réel a, {x:xecC, f(x) = al est un ensemble convexe de E. Ceci
revient 3 dire que f(Axl + (1-)) x2) >=min(f(x1),f(x2)) lorsque X et

X, appartiennent a C, X, # x, et que A € (0,1). On dira que f est

2
strictement quasi-concave si f(kx1 + (1-2) xz) > min(f(xl),f(xz))



lorsque x, € C, X, € iC, X # X, et A€ (0,1). On dira que f est

1
Log-concave si f est une fonction non-négative définie sur un convexe C
de E et si f(Ax; + (1-2) xz) >=fx(x1) fl'x(xz) pour x; €C, x, €C,

X, # x, et A € (0,1). La log-concavité stricte aura lieu si 1'€galité

ne peut avoir lieu.

Nous allons, dans ce premier chapitre, caractériser ces deux

fonctions pour des champs circulaires.

I - MARCHE ALEATOIRE

Un jeune garcon décide de se déplacer sur un trottoir entre deux
coins de rue, soit en reculant d'un pas ou en avangant d'un.pas. Pour
effectuer cette marche aléatoire, il possé@de un sac de billes blanches
et noires dans une proportion p,l-p ol 0 < p < 1. Prenant une bille
dans son sac, il avancera d'un pas si elle est blanché, sinon il reculera
d'un pas. S'il atteint un des deux coins de rue, il cessera sa marche
aléatoire. Nous supposons que la distance entre ces deux coins est a,
qu'il y a K pas d'une longueur & > 0 et qu'il prend une seconde pour
effectuer un p;s. Pour fixer les idées, disons qu'il débute sa marche au

point x = z§8 € (0,a)

I1 aimerait savoir ol débuter sa marche pour rester le plus long-

temps possible entre ces deux coins de rue?

Nous pouvons aussi nous demander ou il doit commencer sa marche
si nous voulons maximiser la probabilit& qu'il soit encore entre les deux

coins de rue aprés n pas ou n secondes?



On est en présence d'une marche aléatoire sur la droite réelle
avec absorption aux points x =0 et x = a. Cette marche aléatoire est
représentée par {X(n)}n=0,1’2,... ol X(n) est la position du jeune
garcon aprés n pas ou au temps n secondes. De plus, la probabilité
d'effectuer un pas vers les x positifs est p et celle d'effectuer un

pas vers les x négatifs est q = 1-p.

Nous noterons par:
£f(z8,n) = P [X(n) € (0,a)|X(0) = z8]
la probabilité de non absorption d 1l'instant n lorsque la marche débute
aﬁ point 268, pour z = 1,2,...,K-1 et par:

8ZG(N) « 3 nb [N = n|X(0) = z6]
n=1

ol N représente le nombre de pas ou le nombre de secondes nécessaire au
jeune garcon pour terminer sa marche lorsqu'il débute au point z6. C'est
la durée probable de cette marche aléatoire avec absorption aux points

x=0 et x = a.

i) Caractérisation de f(z§,n)
Ce résultat se retrouve dans le livre de Feller [5]. Cette fonc-

-~

tion satisfait a 1'équation:
f(z8,n+1) = p £(z6+8,n) + q £(z6-6,n) (1.1)

et doit satisfaire les conditions initiales f£(0,n) = f(a,n) = 0 et
[ee]
£f(z6,0) =1 si 0 < z < K. Si nous posons Fz(s) = I f(z8,n) s" 1a

n=0
fonction génératrice de f(z8,n), 1'équation (1.1) s'écrira:

Fz(s) - 1= ps Fz+1(s) +'qs Fz_l(s)



avec comme conditions aux limites Fo(s) = FK(s) = 0. Il est facile de
voir que la fonction T%E' est une solution particuliére et que la fonc-
tion A(s) Ai(s) + B(s) A;(s) est une solution de 1'équation homogéne

associée ol

2ps 2ps

4 2 4 2
>‘1(5) _1++1-4pgs ot )\2(5) _l= -4pqgs”

Finalement, la solution générale satisfaisant les conditions aux limites’

est: ' .

o A - AZs)) - A a - 226 - des) - AZes)
Z(S) - 1-

S K K
Al(s) - Az(s)
La détermination du coefficient de s" permettra d'écrire

£(z8,n) =1 -

I ™3
~
e
+
=
—

i
ol u ; oet w . représentent les probabilités partant initialement du
b 3

point z§, d'@tre respectivement rendu, pour la premiére fois 3 l'instant

i, au point 0 et au point a.

i . . K-1 :
o 2Y 1(i-z) 1(i+2) i-1 1y, . MV, . TVZ
Li“TP q vzl cos™ " () sin(y) sin( X )
i g ¥ % T
w . = g_'p2(1+K-z) qz(l K+z) Y cost 1(329 sin(%?ﬂ sin[ﬂV(K-z!]
z,i K v=1 K K
avec Uy . S Up g =W =W oS 0 pour i=1
uo,o = wl(,o =1
et wz,o=0 pour 0 <1z <K
et u =0 pour 0< z <K



On pourrait vérifier graphiquement que f(z8,n) n'est pas toujours une

fonction concave, mais est quasi-concave. En effet:
f(z8,n) = £(z8,n+1) = p £(z8+8,n) + q £(z8-8,n)

> min{f(z6+6,n), f(zG-G,ﬁ)}

ji) Caractérisation de &ZG(N)

Cette caractérisation se retrouve dans le livre de W. Feller [ 5]

lorsqu'il traite du probléme de la ruine d'un joueur. Nous savons que
&zﬁ(N) =p 8(z+1)6(N) +q 8(2-1)6(N) + 1 (1:2)

avec 0 <z <K et 80(N) = 8K6(N) = 0.

La solution de cette €quation est

2z _KI[1- (q/p)“]
TP (q-p) [1 - (@/m5

& ((N) = si pfaq (1.3)

= = 1 = =1
et &zd(N) = z(K-z) si p=gq=3.

Dans les deux cas nous sommes en présence de fonctions concaves définies
pour z = 0,1:2,...,K. Les maximums respectifs de ces fonctions seront
atteints lorsque 2z prendra: la valeur entiére la plus prés du nombre
réel

on {(g/g)K - 1}
gn (q/p) ¥
g¢n{q/p}

si p#q

et dans le cas p = q = }, cette valeur dépendra de la parité de K,
-4

c'est-a-dire %- lorsque K sera un nombre pair et Eél- lorsque K

sera un nombre impair.



II - PASSAGE A LA LIMITE

Nous aurions pu précédemment fixer & = 1, comme longueur d'un
pas, mais nous avons préféré tenir compte de la longueur du pas pour la
simple raison que maintenant nous poserons & = Ax et les relations pré-

cédentes seront utilisées sans modification.

Imaginons, ici, une petite souris qui se déplace dans un corri-
dor &troit ol on a placé @ chaque extrémité un fromage. Cette souris fait
des petits pas d'une longueur Ax. Si nous lui laissons une seconde pour
effectuer ce pas, elle devra faire un nombre de pas considérable si Ax
est petit. Supposons donc qu'elle prend At seconde pour effectuer un
pas Ax et définissons une variable aléatoire T représentant le temps
nécessaire pour attraper 1'un des deux fromages. Il est immédiat que
T=NAt ol N est le nombre de pas qu'elle fera pour atteindre son but.
Ainsi

&X(T) = 8x(N) At

et en remplagcant dans les &quations (1.1) et (1.2) & par Ax, et le

temps de parcours d'un pas par At seconde, nous obtenons:

f(x,t+At) = p f(x+Ax,t) + q f(x-Ax,t) (1.4)

et EX(T) = At 8X(N) = AM{p &

ax M+ a 8X_AX(N) + 1} (1.5)

Si p=gq la solution de 1.5 sera:

& (T) = == it (1.6)

e (R
Ax “Ax
et on voit que le passage 3 la limite sur Ax nécessite une condition sur

At
(8x)*

que nous choisirons égale a4 1. De plus, si p # q nous constatons
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& (T) = At x/Bx a/Ax 1 = (q/p)x/Ax]
x

(1.7)
TP gp (1 - (/™

que

existera 4 la limite sur Ax si nous prenons q-p de 1l'ordre de Ax.
Posons donc p =3 +cAx et q=13-cAx ol "c" est une constante
représentant une poussée vers la gauche ou la droite suivant que 'c"

est négatif ou positif. C'est en quelque sorte un plus gros morceau de

fromage mis 3 une des extrémités du corridor.
Ayant €tabli les conditions d'un passage 3 la limite, 1'é&qua-
tion (1.4) devient:

—'=2—+2C'—)—(‘ (1.8)

et si nous effectuons un changement de variables en posant u = x + 2ct,
la nouvelle fonction obtenue, disons g(u,t) = f(u-2ct,t), satisfera a

1'équation de la chaleur sur la droite, c'est-a-dire

2
g _ 2 og (1.9)
auz ot ¢

C'est 1'équation (1.8) lorsque la poussée est nulle.

L'équation (1.5) devient, lorsque Ax =+ O,

d> & (T d & (T
. T . ST R
d)(2 dx

-~

et pour c¢c = 0, 8X(T) satisfait 3 1'équation de Poisson

da & (T
-2 = e i (1'10)
dx?
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Nous supposerons par la suite qu'une particule initialement placé&e au
point x se déplace suivant un mouvement Brownien lin€aire {x)}

d'une mani&re continue sous 1'effet d'une poussée.

i) Caractérisation de f(x,t)
Nous savons que cette fonction est solution de 1'équation de
la chaleur si la poussée est nulle. Cette fonction nous est donnée,

par exemple, dans les livres de Feller [ 5] et Dynkin Yushkevich [ 4] par:

. - (y-x+2na)? - (y+x+2na)?
f(x,t) = 1 X Jf e 4k - e 2t dy

\/Sﬂt N=-co

ou si nous utilisons un développement en série de Fourier (voir les livres

de Feller [ 5] et P. Lévy [ 9]):

4 5 1 _ (2n+1)? Tt .| (2n+1) mx
f(x,t) = : nzo T?;:TT'eXp { o sin (————:;————) (1.12)

Nous verrons dans le chapitre 3 que cette fonction de x pour t fixé
- . -~ a -
est concave, symétrique par rapport 4 l'axe x = 5 et atteint sa valeur

. _— a
maximum au point x = > -

Si la poussée est non-nulle, par les remarques précédentes nous

pouvons écrire:

£lx,t) = 4 og ._1__ exp {-(2n+1)2 ’n'2t> _r [(2n+1) 'n(x+2c£)i]

T n=0 (2t 2a? 2

ii) Caractérisation de &X(T)

On aurait pu caractériser &X(T) comme solution d'une équation

différentielle suivant qu'il y a une poussée ou non.
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Nous avons préféré utiliser les expressions (1.6) et (1.7) qui deviennent,

lorsque Ax =+ 0,

& (T) = x(a-x) si c¢=0
et
-4cx
= - ) ;
&X(T) = :%E- X - a 1 e-4ca si ¢ #0
(1=-¢ )

Ces deux fonctions sont concaves et les maximums respectifs sont:

a n{1 - e'4ca)/4ca}
et
-4c

N

III - MOUVEMENT BROWNIEN DANS UNE SPHERE DE R"

Considérons une particule d 1'intérieur d'une sphére
s2 = {y € R|ly-al <t}
qui effectue un mouvement Brownien
X))} = {x,(0),....x (O}

Supposons que X(0) = x appartienne 3 1l'intérieur de S:. Nous voulons
caractériser

f(x,t) = P [X(s) € s: 0<s<t|X@) = x

et EX(T) le temps moyen passé 3 l'intérieur de la sphére par la particule

avant de toucher la frontieére.

i) Caractérisation de f(x,t)

Sans perte de généralit&, supposons que le centre de la sphére
soit 3 1l'origine du systéme d'axes. Comme le mouvement Brownien est inva-
riant sous les rotations d'axes, nous pouvons affirmer que

St = glont) o p =yeal
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c'est-da-dire que f est une fonction radiale.

I1 est montré dans le livre de Paul Lévy [9 ] que cette fonc-

tion satisfait 1'équation de la chaleur

et satisfait les conditions aux limites suivantes:
£f(x,0) =1 pour tout x€ S

f(x,t)

I
o
w0
-
-
”

Il
Lo}

Par conséquent, la fonction g(p,t) doit satisfaire 1'équation:

2 . .
9°g . nog _ 9dg
2 8p2 + 5 3p T (1.13)

g(p,0) =1 si p<r et g(r,t) =0.

Appliquons la méthode de séparation des variables pour résoudre cette
équation aux dérivées partielles. Posons g(p,t) = h(p) k(t) solution

de (1.13), c'est-a-dire:

(h" + h' zi:o—) k =

N =

k' pour n = 2.

Cette séparation des variables nous améne 3 résoudre deux €quations diffé-

rentielles:

k' =2kA et h" + h' =—— = Anh.

: 2\t : iR :
La fonction e est solution de la premiére €quation.
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Pour la deuxiéme €quation, si nous posons

LS
4

h(p) = H(pVAX) (pVER) 5

N | =

on peut vérifier que la fonction H(u) satisfait a4 1'€quation de Bessel
sous sa forme la plus générale, c'est-a-dire
n 12
' ("'—)
R e L

u2

Nous savons [ 6 ] que la solution générale de 1'équation de Bessel peut
s'écrire:

H@) = A Jv(u) + B Nv(u)

S 1 s
avec ici v = -7 et n=2, A et B deux constantes et ol Jv est

e

la fonction de Bessel d'ordre Vv et Nv est la fonction de Neumann ou

fonction de Bessel de seconde espéce.

Ainsi la solution générale sera:

. Ll
h(p) = (VM) 1 2 A I (V) + BN (VD)) avec A =1 - %
s
Une solution de (1.13) sera la fonction
1.n
2t 4
g(p,t) = e TovM? (AT (V) + BN 0V

ry

4 2 :

N =

Mais la fonction de Neumann Nv(u) présente un point singulier a 1'origine
et conme g(p,t) est une fonction bornée, on doit donner a la constante B

la valeur zéro.

On sait que la solution cherchée s'annule sur la frontiére de la



.15

sphére, c'est-d-dire g(r,t) = 0, ce qui implique

J @A) = o.

n 1
32%7
On doit donc choisir r\AAk = X les racines de la fonction de Bessel
JE__I_(X),k=1,2,--- '
4 2 % 2
Posons Ak A - pour k = 1,2,... un nombre réel négatif

et la solution qui s'annule sur la frontigére de la sphére est:

1 2
t

I
e Xk

o i X, P —2(—
g(p,t) =k>3 Ak(o——-x;‘) J (—-—k e VT
=1

- (1.14)

N =

n_
4

Mais nous avons aussi la condition que g(p,0) =1 pour p < r

i.n

X 4 P

% k *x
o] a3
k=1 Ak T %_ T

n_
a4

Pour déterminer les constantes A, on utilisera les propriétés suivantes

de la fonction de Bessel:
Jrl
y X Ju(pmx) Jp(pnx) dx =0 si m#n

p_ et Py €tant des racines de Ju

1 " 5
2]0 x [3, ()17 dx = [3] (o]
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Finalement, nous pouvons écrire:

£(x,t) = P [X(s) € s:, 0<s <t|X(0) = x]
n 1 2
X 472 X 4xkt
[+ - —
= 3 Ak \A-XT—R J = x-xT e L
k=1 T n_lir
4 2

pour la sphére centrée a l'origine. Si la sphére est centrée au point a

il n'y a qu'a faire une translation.

Nous verrons dans le dernier chapitre que cette fonction est

log-concave.
ii) Caractérisation de 8X(T)

Nous supposons que X € S: CR" est le point de départ d'une
trajectoire effectuée par une particule qui suit un mouvement Brownien.
Nous nous limiterons sans perte de généralité au cas d'une sphére centrée
3 l'origine d'un systéme d'axe. La variable al€atoire T représente le

temps requis pour la premiére sortie @ 1'extérieur de la sphére.

Nous montrerons dans la section suivante que la fonction 8X(T)

satisfait 1'équation de Poisson:

" n * & (1)
(M) =-2= T —F— (1.18) .
i=1 i .
Nous pouvons, ici aussi, affirmer que
. " i 2
&x(T) = g(p) ol p = FREERRE

parce qu'il y a invariance du mouvement Brownien sous des rotations d'axes.
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C'est une propriété de la loi multinormale. La fonction -p® est une
solution particuliére de (1.15) et la fonction constante B est une so-

lution de 1'équation homogéne associée.

Nous pouvons écrire:

I

n
& (T) = C [B - -E

xi] =C[B - p?]
i=1

Il
o
7]
=
»
~

I

oi C est une constante. Nous savons que 8X(T) T, Ce

2 et

qui implique B =1
& (1) =C [¥* - ¢?]

r?, ce qui nous per-

=

Admettons, temporairement, que &O(T) =

mettra de caractériser complétement 8X(T)

1)z _ F
&X(T) A - i X

Pour une sphére quelconque de centre a = (al,...,an)

=Ll -
SX(T) o &

2
B T - )
. 1

N3

1
est une fonction strictement concave et son maximum est. atteint au centre
de la sphére.

Ce qui terminera cette section est indiqué dans le livre de

Dynkin-Yushkevich [ 4] .

r’ et ce, par induction sur

=N

Nous voulons montrer que &O(T) =

la dimension 'n".
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Dans le cas unidimensionnel, nous avons vu que &O(T) =r?,
2 3 . < n-1
Supposons que le résultat soit vrai pour une sphére de R . Nous
définissons une nouvelle variable aléatoire T2 qui représente 1'ins-

tant de la premiére visite de la particule 3 1l'ensemble
a, I
C ={y€eRrR'|ZI y»<1r* et y ER
n j=2 1 1

On peut écrire

& (T) = & (T,)) - & (T, - T) .

&o (T2) - 811 (Tz)

- . -y ok . o n
oi M est la mesure uniforme définie sur la frontiére de la sphére Sr CR,

disons asg et

&,(T,) = fa s & (T 1@

n-1

Par hypothése 8O(T2) i i r’, il nous reste 3 déterminer 8u(T2). Pour

cela, un passage aux coordonnées sphériques donnera

TI’ T (2 _p2 cin ._N-2 : <

% 60} = 1 j‘ [ (r"-r° sin 61) sin 61 sin 62...51n en-2 del,.,den_2
w2t n-1J,  Jg 26/M™/T(n/2) 21

n-2 fois

2 T T cos?6. sin 26, sin" 6,...sin 6_ _ dO_...d®
o o f . f 1 1 e n-2 “1°°"""n-2
n-1 Jg 0 Z+1

: 4 T /T(n/2)

Mais

™ n+l.

o Vi T

Sin X 4R & —weetine  POUE N = 1,255+
o g

m
2 . _n-2 o4 .. n-2
et j; cos 61 sin 61 del = nEsm 61 del,
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de sorte que

& (T,)) =
B % %-+1
(m /T(n/2)
2 T n2[Wrdh
= n(n-1) n-2 Hl r i+2)
Sk = (==
M 2 2
T
n(n-1)
r2 r2 r2
et B0 = g - n(n-1) n

IV - MOUVEMENT BROWNIEN DANS UN CONVEXE K DE R"

n
Nous savons, pour K un convexe ouvert de R, que

f(x,t) = P[X(s) EK, 0<s <t|X(0) = x]

est une fonction qui vérifie 1'équation de la chaleur Af = 2 %%, et les

conditions aux limites suivantes:

f(x,0)

1 pour x € K

£{x,t)

0 pour x € 3K 1la frontiére de K.

Vu les difficultés de caractérisation de cette fonction, nous

devons procéder différemment pour maximiser cette fonction.

Prenons une partition 2% de 1'intervalle de temps (0,t),

» < < - - S
t° 0 t1 t2 . tk t et définissons
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fpk(;,t) = P [X(t)) € K, X(t,) § K,ooouX(t)) € K|x(0) =

une fonction qui s'approchera de f(x,t), si nous nous choisissons une

partition de plus en plus fine de (0,t). Cette fonction peut s'écrire:

fpk(x,t) = P [X(tl) - X € K-x,...,X(t,) - x € K-x]
=-A;..J£ px(xl;tl) pxl(xz;tz—tl),...,pxk-l(xk;tk-tk_l) dx1 s dxk
T
i (xj—xi)-(xj—xi)
1 s o
ol ., (X:37) ®» =@
X500 (2™ 2

Effectuons un changement de variables. Posons

1 = %7
_yi = X=X pour 3= 2,3,,.:,K
fpk(x,t) =J[:':/” Py 5ty) Po(yysty-ty)se e sp (yysty -ty 1) dyy ... dy
C-X
oli X = (X,X,...,X) € Rkn
_ nk
et vm {y €ER Iyl € K, yZ € K-)’lx---,)’k € K—)’l—)’z,o--:-)’k_l}
nk
est un ensemble convexe de R .
Ainsi
fp (x,t) =J[~'-¢(y) dy
k C-X
k
ol v = I plysntsmty )

est une fonction log-concave.
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Nous allons donc &tudier dans le chapitre suivant les condi-

tions sur la fonction ¢ pour que la fonction X +—/~ ¢(y) dy soit

quasi-concave ou Log-concave.

Avant de terminer ce chapitre, montrons que pour un convexe

ouvert K, quelconque de R", 1a fonction &X(T) satisfait & 1'&quation
de Poisson. Soit x € K un point et S; une sphére de rayon p cen-
trée en x contenue complétement dans K. Nous représenterons par T

et Tp 1'instant ol la particule touche la frontiére de K et de Sg

respectivement pour la premiére fois. Nous savons que

=N

- 2 g
ax('rp) ==0p et 8X(T) = &X(Tp) + SX(T-TQ).

Par la propriété forte de Markov

& O-T) = j; X & (T) u(dy)
P

oi Y est la mesure uniforme sur la frontiére de la sphére Sz.

La fonction
o T
. hO) = E M + 1 X0

vérifie la relation

h(x) =f <« h0) uldy),
3s

p
et nous savons que toute fonction continue dans un ouvert K, ayant la

propriété de la moyenne dans K, est harmonique dans K. Ainsi EX(T)
défini sur un ensemble convexe quelconque satisfait & 1'équation de Poisson
Agx(T) = -2 et la condition aux limites 8X(T) = 0 pour Xx appartenant

d la frontiére du convexe.
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Nous verrons dans le chapitre 3 qu'il est possible pour cer-

tains ensembles convexes de localiser le maximum de cette fonction.
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CHAPITRE II

MESURES QUASI-CONCAVES

Certaines questions pos€es dans le chapitre précédent peuvent
connaitre des réponses partielles ou complétes si 1l'on s'appuie sur les
travaux de T.W. Anderson (1955), de V.A. Zalgaller (1967), de A. Prékopa
(1972) et de C. Borell (1974). Nous voulons exposer ici ces résultats
qui dégagent, en particulier, des propriétés fines de la loi multinormale.

De chacun de ces auteurs, citons les thé&oré&mes qui nous intéresseront.

Théor&me d'Anderson [1 ]:
Soit E un ensemble convexe de R, symétrique par rapport a

1'origine et soit f£(x) = 0 une fonction telle que

i) £(x) = £(-x),

ii) {x|f(x) =u} est convexe pour tout u de (0,®),
iii) -/; f(x) ;x < oo,

alors pour tout k de [0,1]

f f (x+ky) dx = f f(x+y) dx.
E E

Théoréme de Zalgaller [13]:
Soit xAxT une forme quadratique non négﬁﬁive de n variables
fé* i TivR

réelles, soit G un domaine convexe de dimension k (1 <k <n) de R",

on pose
T
eXAx dv

™ =
F G+M k
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pour M €R" et dv, est 1'élément de volume de dimension k de M+G,

k

alors le logarithme de p(M) est une fonction concave de M.

Théoréme de Prékopa [11]:
Si f(x) et g(x) sont deux fonctions non négatives, inté-
grables sur 'Rn, dont le logarithme est concave, alors le logarithme de

la convolution de f avec g est une fonction concave.

Théoréme de Borell [2]:
Soit f(x) wune fonction convexe positive définie sur un ouvert

- n - -~
convexe non vide  de R, on considére la mesure sur §:

wew = [ ==,
A (£00)

alors si A et B sont deux convexes de et si t € (0,1),
u((1-t) A + tB) Z min(u(A),u(B)).

Indiquons maintenant les problémes que nous voulons envisager
dans ce chapitre. Soit p une mesure sur ‘Rn et E un Borélien de 'Rn,
on considére Ia fonction ¢(x) = p(x+E). On peut songer que E est une
cible que 1'on déplace dans R par des translations, x #&tant le vec-

teur de translation.

A quelle position est-il avantageux de déplacer la cible? Est-ée
que la fonction ¢(x) admet un maximum M? Est-ce que la maximum est
atteint en un seul point? Si le maximum de ¢ est atteint en plus d'un
point, que peut-on dire de 1'ensemble {x|¢(x) = M} d'aprds les propriétés

de E et de u?
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Avant d'aller plus loin, ndus rappelons ou introduisons des
définitions. Si A et B sont deux pérties de E, la somme de Minkowski
de A avec B est A+B = {atb|a € A, b € B}. 1I1 est facile de vérifier
que A+B est un convexe si A et B 1le sont. Soit WY une mesure sur
un ouvert § de 'Rn, on dira que U est une mesuwre quasdi-concave si
pour tout couple de convexes compacts K., et K2 (K1 CQ et K2 c ),

1
et pour tout t € (0,1),

H((1-t) K + t K)) 2 min(u(K)),u(K,)).

On dira qu'une mesure Y sur R est quasi-concave sous Les trhanslations
si pour tout convexe compact K de 'Rn, la fonction x - p(x+K) est
quasi-concave. On vérifie facilement qu'une mesure quasi-concave est
quasi-concave sous les translations. De fagon analogue, on dit qu'une
mesure y définie sur un ouvert 2 de R est Log-concave si pour tout

couple de convexes compacts K1 et Kz de @ et pour tout t € (0,1),

MO(1-t) K+t K)) = uk) 0 ue)®,

Une mesure Yy définie sur R" st Log-concave sous Les thans-
Lations si pour tout convexe compact de 'Rn, la fonction x = p(x+K) est
log-concave. Enfin, si on remplace dans les définitions précédentes les
inégalités par des inégalités stnictes, on parlera de mesures Strnictement

quasi-concaves, de mesures strnictement Log-concave, etc.

La tdche que nous aurions aimé accomplir aurait &t€ de caracté-
: n :
riser de fagon commode toutes les mesures de R quasi-concaves sous les

translations. La solution de ce probléme est demeurée hors de notre
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portée. Puisque les mesures quasi-concaves sont quasi-concaves sous les
translations, nous avons par la suite 1imit& notre attention aux mesures
quasi-concaves. C'est @ ce moment que nous avons découvert le théoreme
de Borell. Nous voulons donner une démonstration de celui-ci, qui nous
permettrait entre autres de reconnaitre les mesures de r" qui sont

strictement quasi-concaves.

I - LES THEOREMES

Nous commengons par prolonger 1'excellent travail de Borell [2 ].
Si f(x), g(x) et h(x) sont trois fonctions non négatives définies sur
IJ& reliées entre elles par certaines inégalités, nous cherchons a minorer

de fagon suffisamment finie 1'intégrale de h(x).

Théonéme 1.

Soient f(x), g(x), h(x) trois fonctions définies sur 'Rn,
soient A, B et C trois corps convexes, on suppose que f(x), g(x) et
h(x) sont continues et positives sur A, B et C respectivement, on

supposera aussi que A+B C C et que

/n 1/n]-n

Wx € A) Wy € B), h(xty) =6 [ (/£ ™ + /g ()

ol a =f f(x) dx, b =f g(y) dy
A B

et 8 est un nombre fixe, alors

[ h(z) dz = §.
c
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Sous les mémes conditions, on ne peut obtenir J[‘h(z) dz = § que si
C
C = A+B, B est en homothétie avec A, et si x > qx + 6 est 1'homo-

= q " f(x) et

thétie de A sur B, alors g(qx + 6) = ba
h((q+l) x + 0) = (5a-1(1+q).n f(x); de plus f-l/n(x) est une fonction

convexe sur A.

Démonstration:

L'outil principal de cette démonstration sera une adaptation de
1'application de Brunn-Minkowski telle que décrite, par exemple, dans
Dinghas [ 3]. Nous déterminons une premiére application qui enverra A
sur le cube unité 1", Pour ce faire, on utilise les diverses intégrales

itérées de f:

fn(xl,xz,...,xn) = f(xl,...,xn)

40
fk_l(xl,xz,...,xk_l) =‘/:m fk(xl’XZ""’xk-l’v) dv

fo = a =‘A: f(xl,...,xn) dxl,...,dxn.

Soit 1'application

(xl,xz,...,xn) — (tl,tz,...,tn)

X
k
ol tk =-/:” fk(xl,...,xk_l,v) dv/fk_l(xl,...,xk_l)

Cette application est continue et elle €tablit une correspondance biunivo-

n

que entre A et I . La matrice jacobienne de cette transformation est

L
ieme _

une matrice triangulaire, le k €lément de la diagonale est:

3tk )

ax,

y fk(xl,...,xk)/fk_l(xl,.,.,xk_ly
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Désignons par ¢ : " > A 1'application inverse. De facon analogue, on
construit la suite {gk}z_o des diverses intégrales itéré€es de la fonc-

tion g; on considére 1'application (yl,yz,...,yn) -+ (ul,uz,...,un) ol

Yk '
Uy =[_m g pseeesYy V) Vg 1 Oryseneiyy )

ou

; k _
Ici 8yk gk(yl’.”’yk)/gk-l(yl,.“,yk-l)'

n

On désignera par Y 1'application inverse, ¥ : I - B. Par hypothése,

on a que

1 1
heo(e) + ¥(e) > 6 [(argeen)” +[vgren|]"
d'od [ iz 24" h(o(t) + ¥(t)) J(t) dt
C

|

1
+ (b/g(\y(t)))n ]-n J(t) dt

=}

> /1" ({27200t

ol J(t) est le jacobien de la transformation t - ¢(t) + ¥(t). Nous

allons montrer _que
1 1

[(a/f@p(t)))ﬁ + (b/gcwct)))a]'nJ(t) >1

pour tout t de I". En effet,

n [ fa @) g ()
1\ He®) g (FE)

J(t) = .

Or on sait que pour toute suite de nombres positifs, on a 1'inégalité:
1 1

n n n n
[il=11 (ai+bi)] >[i

n n n
a. + b. .

=E]
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1 1
< n n
- e 5@ 1| n g ()
insd O] 2 LG F e | e g 0my
1 1 1

[s]" = [argwen]” + [veran)]”,

c'est 1'inégalité que 1'on voulait €tablir. D'oll

f h(z) dz = 6.
C

Enumérons maintenant les cas oll J[-h(z) dz = §. Un certain
C
nombre de conditions nécessaires apparaissent. I1 faut, par exemple, que
C = A+B, et méme que 1'image de par 1l'application t > ¢(t) + ¥Y(t)

donne C 3 un ensemble de mesures nulles prés. I1 faut aussi que

1 1
[(arewen)]” + (e | Mom = 1.
Or 1'égalité
1 1 1
n n

n n n n
[.H (a.+b.)] = [_H a.] + [_ b.]
i=1 11 i=1 1 i=1 1

n'a lieu que si les nombres bi sont proportionnels aux nombres a;,

c'est-a-dire que bi =q a, pour i=1,2,...,n

g V() - £, @)
g ¥ty ~ VY TR em

La multiplication de ces n identités donne:

b _n a
gveey - M) Fean
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Montrons que q(t) est une fonction constante. Si IAI, |B| et ICI

représentent la mesure de Lebesgue de A, B et C, alors

” - _adt
1Al fAd" fIn £o(e)

- - [ dwa
2] jB ad /In oy & fn I I

|c| =f dz =[ Jr) 4t
C r
1 1
n

=f1,, [(a/f(«p(t)))n + (b/g(‘l’(t))) ]" dt

n a
=[1“ A+t Fpeyy 9

Pﬁisque C = A+B, 1'inégalité de Brunn-Minkowski [10] donne que
1 1 1
lc|™ = [a]™ + |B]"

" - . . n,.n _ _adt
D'autre part,, 1'inégalité de Minkowski pour Lo(I ) ou do(t) ?faizji

donne

<
11+ql_ <011+ lqll_,

c'est-a-dire que
1 1 1

lcI™ < [al™ + [8]"

D'ol l]1+ql|n = ﬂlﬂn + ﬂqﬂn. Si n =2, on obtient que q(t) est une cons-

tante et cette constante est
1 1

q=[B|" |a] ™.
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Considérons 1'application

L) = Y@ ' (x)
L) = (L) (X),1,09,...,L (X))
o
| i T
¥
L l
B
oty _ fl(X) oty B g, )
Gr ox, a ’ dy b
1 1
BLl b fl(x) B

= . ...q.
39Xy gl(y) a

D'ol Ll(x) =q X, + 61. On peut supposer sans perte de généralité que A

1
et B ont leur centre de gravité a 1l'origine.

' n
’0=[x dx=fy dy=f(qx+e)q dx
Al B 1 A+

vu que le jacobien de la transformation L est qn. Ainsi 61 = 0. On

peut donc affirmer que pour tout Xy

./ﬂg(qxl,vz,...,vn) dv2,...,dvn ‘/.f(xl,vz,...,vn) dvz,...,dvn

a b - a

Si on pose

f(x1:~--,xn) n g(qxlsqx2:°~-:qxn)

k(xl,...,xn) = “ - q -




O

on obtient sur tout hyperplan X = éonstante que 1'intégrale de k(x)
est nulle. En faisant varier les axes des coordonnées de 'Rn, on obtient
que la transformée de Radon est nulle. Ce qui nous assure que k(x) =0
presque partout [12] ou[8]. Ce qui montre que g(gx) = Efi%l pour
tout x de A et que B est homothétique & A selon le :gpport q.
D'autre part, un retour aux hypothé&ses sur h donne que

f(x)

h(x(1+q)) =& = 5
a(l+q)
L'intégration sur A donne que

[ > ) .
a+)"  (1+g"

§f(x)

Ainsi h(x(1+q)) = =
a(l+q)

Par la suite, des contraintes sont apportées a la fonction f

n
x; + xzq.< f (xl) + gf (xz)
1+q e 1+q

=
=1

f

. 1

Ce qui revient 3 dire que la fonction f n(x) est convexe sur A. La

démonstration est compléte, hors le cas n = 1.

Le cas n = 1 demande une attention spéciale. Considérons donc
trois fonctions continues f(x), g(y), h(z), définies respectivement sur

les intervalles [0,a]l [0,B] et [0,Y] telles que Y = a+B,

c < a + b
h(x+ty) f£(x)  g(y)




idd

alors que

o B Y
a =[ f(x) dx , b =[ g(y) dy et c¢ =f h(z) dz.
0 0 0

Nous voulons montrer que

glax) = EEEL et nex(eq)) = GO,

alors que Y = o+B et q = B/a et que l'inverse de f(x) est une fonc-

tion convexe.

I1 n'y a aucune perte de généralité & supposer que a =b =c =1

quitte 3 remplacer f, g, h par f/a, g/b et h/c.

Introduisons encore les deux fonctions ¢ et Y définies sur

[0,1] ot
Y(t) Y(t)
]f f(x) dx = J[. gly) dy = t,
0 0
a+B 1
f h(z) dz =f he(t) + Y {e'(t) + ¥' ()} dt.
0 0
or L - l __ _o') + ¥ ().

hw(t) + ¥(0) ~F@)) © 2¥()

Ce qui montre que Y = o+f et que
p(t)+¥(t)
J[ h(z) dz = t.
0

La fonction est convexe. Pour s'en rendre compte, il

1
h(z)

suffit de montrer que 1'on ne peut pas trouver de nombres 215 Z55 S et T
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tels que

<z <.
et pour z1 z 22

- sz >r,

h(z)

Supposons que 1l'on ait trouvé de tels nombres Zy, 2,, S et T.

2’
On peut trouver deux nombres tl et t, tels que
¢(ti) + W(ti) =z (i=1 et 2)
et 1'on pose
x; = ¢(ti) et Y; = W(ti) (i=1 et 2).
On a les inégalités suivantes:

1 1 1
h(x+yy)  £(x))  g(y,)

1 &1 1
h(x,+y.)  f(x)) gy’
2°1 2 1

D'autre part

1 ___1 .1
h(zy)  £(x))  eglyy)
et
1 ___1 .1
h(z,)  £(x,) * g(y,)
d'ol 1 1 1 1

hG,ty,) | h(x fy,)  hzp) @ hizp)

s(x2+y1) +r + s(x1+y2) + T <sz; 4T+ sz, 4T

Ce qui améne une contradiction.
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Puisque la fonction hft) est convexe si z € (0,Y), on peut

trouver un m tel que

1 o1
h(z#n) ~ h(z) = ™

(m est un nombre entre la dérivée d gauche et la dérivée 3 droite de la
fonction %— au point z). Si z =¢(t) + ¥(t), x =¢(t), y = ¥(t), on a
1'inégalité

1 1 s 1 1 1
e T ) R D i T "

n

1 1
=
) - f M-

Ceci montre que la fonction %- est également convexe. De fagon semblable,

on peut voir que £ est convexe. Hors d'un ensemble dénombrable, on a

la relation

£' (x ) v( ___h'(z) X:ﬁ(t)
Foo S gm w1108 v,

Puisque f(p(t))-¢'(t) = 1, on peut donc admettre que ¢'(t) a des déri-

vées d gauche et 3 droite et hors d'un ensemble dénombrable

-flp (1)) ¢"(t)

£' (1)) (@' (1))?

g' (Y)Y (1))? = -g(¥(t)) ¥'(v)

\P" (t) _ 80" (t)

d'en V() ¢ (t)

Ainsi Y'(t) = Ce'"(t) et Y(t) = Ce(t) +D.
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Or 9(0) = ¥(0) = 0 et «p(l)'= o et ¥(1) =B
d'oll ¥(t) = Bo(t)/a et g(¥(t)) ¥'(t) = £(p(t)) ¢' (1)
g(qx) = £(x)/q
h((1+q) x) = £(x)/(1+q).

Soit p : (0,9)x(0,®) + [0,=) telle que p(kx,ky) = k p(x,y)
si k > 0, on a donc supposé que p est une fonction homogéne de degré
un, non négative, définie dans le premier quadrant, nous introduisons une

suite de fonctions homogénes:

p,(x,y) = sup{p(t"x, (1-t)"y) : t € (0,1)}

ici P, peut prendre la valeur «. Si p(x,y) =+Ay, alors pn(x,y) = Z'n‘vky

si p(x,y) = min(x,y), alors
l'n

=R

p0y) =|x ey

Soit {ui}ﬁEI une famille de mesures de R", on dira que ces
mesures sont en- homothétie, s'il existe un point ¢, une mesure u et une
suite de nombres positifs s tels que pour tout borélien B de R" et
pour tout i € I,

U(B) = Ui(c + pi(B'c)) L)

Inspirés par Borell, nous dégageons le résultat suivant:

Théonéme 2.
Soient f(x), g(x), h(x) trois fonctions positives continues,

définies respectivement sur des corps convexes de 'Rn, A, B et C, A+B € C,
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soit p(x,y) une fonction homogéne de degré un, non négative, définie

dans le premier quadrant du plan, on suppose que

h (x+y) >’pn(f(x),g(y)) pour x €A, y € B,

f h(z) dz = p [ £(x) dx,f gly) dy).
C A B

alors

Démonstration:

Borell a démontré ce résultat lorsque p(x,y) est une fonction
homogéne de degré un, continue et croissante selon chacune de ses varia-
bles [2]. Pour traiter du cas général de p(x,y), on se sert du théor&me

précédent aprés avoir observé que

h(x+y) = p_(£(x),g(y)) = p(t"£(x), (1-t)"g(y))
n

/£ Y™ @/ee) Y™ + wr/g)) ™

]

ol t

P
|
+
|

= /g Y1 are) Y™ + /g™

a=ff(x)dx 5 b=fg(y) dy.
A B

Do h(x+y) = p(a,b){(a/£)) ™ + /gy /™.

Theonéme 3.
Avec la mé€me notation et les m&mes hypothé&ses que dans le dernier

théoréme, si de plus,

fh(ZJ dz = p ff(X) dx,f gly) dy|,
C A B

si =f f(x) dx , b =f g(y) dy et c¢ =f h(z) dz,
A B C
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alors

f(x) dx g(y) dy h(z) dz
a ’ b ? c

sont des mesures en homothétie, C = A+B et si le rapport d'homothétie

de B avec A est q, alors.
p(a,b) = (1+q)" p(at”,(1-)" bg™) pour t € (0,1)

> (1+q)" pn(a,bq°")

L P (af(x)),bq 7" £(x,))
p(a,b)

et f

Démonstration:

On a déja vu que f(x)/a, g(y)/b et h(z)/c sont les densités

de trois mesures en homothétie. D'autre part, il faut aussi que

p(a,b) (1+q) " £(x)/a = h((q+l) x + 8)
h((q+1) x + 8) = p(t" £(x), (1-t)" bq™" £(x)/a), t € (0,1)
_p(a,b) = (1+q)" pat”, (1-6)" bg™), t € (0,1).

D'autre part, le présent théoréme impose alors des contraintes sur la fonc-
tion f(x).
Si Yo = qx, + 0,

X, + gqx
_c -n 1 2
h(x1+}’2) - a (1+Q) £ 1+q

=p, (£(x)),e(r,))

>p, (£(x)) bq ™" £(x,)/a)



9

n -Nn
X; + ax, >=(1+q) p,(@f(x;),bq = £(x,))

& 1+q p(a,b)

Nous indiquerons maintenant quelques conséquences de ces théo-

rémes. Si p(x,y) =+Xy, on a que pn(x,y) = 2" A&ky. D'oi si

h(xsy) = 2" EX) g0,

f h(z) dz = f f(x) dx[ g(ly) dy]-
A+B A

L'égalité n'est obtenue que si f(x)/a, g(y)/b et h(z)/c sont des den-

on aura que

[N

sités de mesure en homothétie ol le rapport d'homothétie de B avec A

est 1 (B est un translaté de A) et

1
> (£(x)) £(x,))%.

Si p(x,y) = min(x,y), on a que

A AT
P, (x;y) =|x eyl
D'ol, si )
-1 21 21
hixsy) "<E£x) T+ g T,
alors

[ h(z) dz = min /f(x) ‘dx,[ g(y) dy].
A+B A B

L'égalité n'est obtenue que si f(x)/a, g(y)/b et h(z)/c sont des den-

sités de mesure en homothétie. I1 faut aussi que
1 1 \-n

n ., . n
; a + b g
min(a,b) = T+q



I1 faut donc que a = b. I1 faudra que

-n
X, + qx —%i b

1 21> a+"| £

“n
f T (x;) +q f (Xz)

1

. . . n : ;
Ce qui revient 3 dire que f (x) est nécessairement une fonction convexe.

Un calcul simple établit également que si A et B sont deux
corps convexes de Rp, si p(x,y) est une fonction homogéne de degré un,
définie dans le premier quadrant, si o >0, B >0, si f, g et h sont

trois fonctions continues, positives, définies sur A, B et oA+BB =C

et si
h(ax+By) >p_ (¢ £(x),87" g(¥)), xEA et y€EB,
alors
[ h(z) dz = p f f(x) dx, [ g(y) dy|.
oA+B8B A B
On peut enfin introduire le cas oi A et B sont deux ouverts

convexes.

Théonéme 4. .
Si A et B sont deux ouverts non vides convexes de 'Rn, si
p(x,y) est une fonction homogéne de degré un, définie dans le premier

quadrant, si a >0 et B >0, si f, g et h sont trois fonctions con-

tinues, positives, définies sur A, B et C 2 aA+BB et si

h(ax+By) >p (¢ £(x),87" g(¥)), x €A, y € B,

f h(z) dz = p [ £(x) dx,[ g(y) dy|.
G A B

alors



Démonstration:

Etant donné les résultats antérieurs, il s

que pour tout € > 0, il existe deux corps convexes

_[ f(x) dx f g(y) dy
K L

1-£ < =

ff(X) dx fg(y) dy
A B

KCA et LCB,

On peut trouver deux corps convexes K1 et Ll’ K1
’/K» £(x) dx [g(y) dy
€ 1 1
1-= < <

= .
j;f(X) dx ];g(y) dy

De méme, on peut trouver deux corps convexes K2 et

[g(y) dy j(‘f(ﬂ dx
2 2

i & <

2 [ :
fB g(y) dy L f(x) dx

.41

uffit de démontrer

K et L tels que

D'ol il existe un nombre t € (0,1) tel que si K = (1-t) Kl + t K2 et si

L = (1-t) L1 + t L2

ff(X) dx [g(y) dy
K A

j; f(x) dx /; gly) dy

N
et L2 L, L2.

D'autre part K 2 K, N K

[ f(x) dx - f f(x) dx < [ f(x) dx
A Kﬁl(2 A-Kl

1

p:

+ [ f(x) dx.
A-K,
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D'oll f f(x) dx -f f(x)v dx < ef f(x) dx
A K A
[f(x) dx
ainsi , R P T
j;f(x) dx

IT - APPLICATIONS

Borell a indiqué diverses applications de ces théorémes. Soit
k(x,y) un noyau défini sur r" x‘an, supposons que k(x,y) est une fonc-
tion log-concave. Montrons que la fonction x *[k(x,y) dy est log-con-

cave. Soit Xy = ax1+8x2 oi a>0,B>0 et o+ =1 et posons

I
o]
i
)
n
=

£(y) = k(x;5y), g8(y) = k(xp,y), h(y) = k(x5,y) et A

o B

La fonction de deux variables p(x,y) = xy  est homogéne de

degré un et pn(x,y) = (OLOLBB)n xayB. On a
h(ay,+By,) = k(ax +Bx,,0y,+By,)

> K%,y Koy, = p @™ £)),87 g,))-

D'ol fk(ocx1+8x2,y) dy = [k(xl,y) dy [k(xz,y) dy

On obtient le théoréme de Prékopa, précédemment cité, lorsque
1'on pose k(x,y) = f(x-y) g(y) si f(x) et g(y) sont deux fonctions
log-concaves de R". D'autre part, le résultat de Zalgaller, que nous
avons également cité auparavant, est une conséquence du théoréme de Prékopa
en prenant pour f(x) 1la fonction indicatrice d'un convexe et pour g(x)

1'exponentiel d'une forme quadratique non positive.
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Vérifions maintenant un autre résultat de Borell.

Théonéme 5. (Borell [21])

Soit k(x,y) wune fonction positive définie sur un ouvert con-
1

T |

vexe 2 de R" xR" telle que k " est une fonction convexe. Si |
A(x) = {yl(x,y) € Q}, alors 1la fonction x + f k(x,y) dy est quasi-con-

A(x)
cave.

Démonstration: 4

Soient X1s X5, X trois points de R™ tels que

2” 73

= (l_t) xl + tx t e (0,1),

Xs 2?

posons Ai = A(xi) pour i =1,2,3 et supposons que

§ = min [ k(xl,y) dy, / k(XZ,)') dy| € (0,%).
A1 AZ

Utilisons le théoréme 4 en posant A = Al’ B = AZ’ C= A3, f(y) = k(xl,y),

g(y) = k(xp,y), h(y) = k(x4,¥), @ = 1-t, B =t et p(x,y) = min(x,y).

. -n
Ici 1 1
n

Pn(x,y) =\x"+y

et 1'inégalité

1 -
h(ax+By) >p (@™ £(x),87" g(y)) =|a £ "(x) + B g ")
21
est vérifiée vu que k " est une fonction convexe. D'od

f k(x5,y) dy = 6.
Az
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Le théoréme de Borell, cité au début de ce chapitre, est un
corollaire du dernier théoréme. Nous nou$ servirons du deuxiéme théo-
réme de Borell pour déterminer des conditions suffisantes sur deux fonc-
tions f et g pour que la convolution de f avec g soit une fonction

quasi-concave.

Introduisons des classes de fonctions définies sur un espace
vectoriel V. Pour tout p € [-»,o], Cp(V) sera un ensemble de fonctions
f définies sur V 3 valeurs dans [0,0] ol {x|f(x) > 0} sera toujours
un convexe Nf de V. CO(V) sera 1'ensemble des fonctions log-concaves.
Si p € (0,»), Cp(V) = {f[fp est concave sur Nf}, si p € (-»,0),

Cp(V) = {£f|fP est convexe sur Nf}, C_(V) = {f|f est constant sur Nf}

et C__(V) = {f|f est quasi-concave sur Nf}.
On vérifie la relation d'inclusion:

Lemme 1.
Si < alors C CcC._.
P . q, q P

.

Démonstration:

Premien cas: 0 <p < q. Il s'agit de montrer que si £f4 est concave,
alors fP est comcave. Posons g = fq, o = p/q, £P = ga. Ici a € (0,1).

. o
La fonction x »- x est concave d'ol

o
g0y) + 0| g + g7 (xy)

-
2 .
X, + X g(x,) + g(x,)
" 122> 12g2

. . - a
La croissance de x* assure la concavité de g = £P



Deuxiéme cas: 0 =p < q. Il s'agit de montrer que si £f4 est concave,

fq, alors 1log f = 195_&
La fonction x = log x est croissante et concave, d'ol log g est con-

alors le log f est concave. On pose g =

cave comme le log de f.

Trhoisilme cas: p < q=0. Il s'agit de montrer que si 1log f est con-

cave, alors fP  est convexe. Posons g = log £, fP = ¢P8 La fonction
x + eX est convexe et croissante, la fonction pg est convexe, d'oill

fP  est convexe.

Quatrniéme cas: p < q < 0. Si £ est convexe, alors fP  est convexe.

Posons g = f1 et a= P/q, £P = ga. Ici o > 1, la fonction Xx - x>

est convexe et croissante. D'ol £P est convexe.

Cinquilme cas: p = - < q < 0. Si £f4 est convexe, si g = fp, alors
1/q

g est quasi-convexe, la fonction x - x est décroissante. Ainsi f

est quasi-concave.

o ; : - P iéme
Sixiéme cas: 0 < p < q = +»o, Une fonction constante €levée d une p

puissance est constante, donc concave.

Lemme 2.

Soit f(x) et g(x) deux fonctions positives, définies sur un

méme intervalle ouvert, si f est convexe, si g est concave et si a > 0,

f1+a -Q

alors la fonction g est convexe.

Démonstration:

Posons h(x) = f1+a(x) g—a(x). Supposons premiérement que £

et g existent en tout point.
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h'(x) = h(x){(a+1) £'(x)/£(x) - a g"(x)/g(x) + a(o+1) (f' (x)/£(x) - g' (x)/g(x)*}.
D'od h'"(x) = 0.

Si f(x) ousi g(x) n'est pas dérivable, on doit modifier
notre argumentation. Soit x un point de 1'intervalle. On sait que

1'on peut trouver deux nombres a et b tels que
f(x+h) = f(x) + ah
g(x+h) < g(x) + bh.

D'oli, sur un voisinage de x
3 3

1+a
f1+a(y) g—a(y) o (f(x) + a(y-x)) — .
(g(x) + b(y-x))

La fonction

(£(x) + a(y-x))H
(g(x) + bly-x))”

Yy —

est convexe prés du point x comme on vient de le voir précédemment. La

oy g7%

fonction f y) est donc minorée par une fonction convexe prés

du point x, d'oli la convexité de la fonction h.

Lemme 3.

Si fECp, si gECq pour p < 0 < p+q, alors ngCr ot

Démonstration:

La fonction fP est convexe et la fonction gq est concave.
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Posons o = -p/p+q, le lemme 2 donne que
+ 1+a -qo.
(e PV PH  PU) g
est convexe.

Théonéme 6.

Si g appartient a Cq(Rn) oi q >0, si f appartient a
Cp(Rn) oi p = —q(1+nq)'1, alors la convolution de f avec g est

quasi-concave.

Démonstration:

1 On considére le noyau k(x,y) = f(x-y) g(y). Le lemme 3 donne

que k n(x,y) est convexe. Le deuxiéme théoréme de Borell &€tablit le

résultat.

I1 est peut-&tre bon d'apporter un regard critique sur ce dernier
théoréme. Pour n = 1, nous avons montré que si g > 0, si g€ CqCR) et
.84 £E€ Cp(R) oi p = -q/q+l, alors f*g est quasi-concave. Ce dernier
résultat découle d'un théoréme d'Ibragimov [ 7] qui en 1956 fit voir que
la convolution‘a'une fonction log-concave sur R (Strong unimodal) avec
une fonction quasi-concave sur R (unimodal) donne une fonction quasi-con-
cave. Cependant, dans R", nous ne connaissons pas de version du théor&me
d'Ibragimov. Nous savons, par exemple, que dans Rr" (n = 2) il n'est pas

toujours vrai que la convolution d'une fonction log-concave avec une fonc-

tion quasi-concave donne une fonction log-concave.
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CHAPITRE III

LOG-CONCAVITE DE LA PROBABILITE DE SEJOUR ET TEMPS PROBABLE MAXIMUM

I - LOG-CONCAVITE DE LA PROBABILITE DE SEJOUR DANS UN CONVEXE QUELCONQUE
DE R"

Considérons un mouvement Brownien {X(t)}, invariant sous les
transformations orthogonales, qui partirait d'un point fixe x d'un
- n . - .
ensemble ouvert convexe, borné K de R et qui s'arr8terait lorsque

la trajectoire désordonnée toucherait la frontiére de K.

Désignons par
f(x,t) =P [X(s) €EK 0<s<t|X(0) =],

c'est la probabilité d'@tre toujours a 1'intérieur du convexe K & 1l'ins-
tant t, partant initialement du point x € K Qan. Cette fonction est

identiquement nulle pour tout x appartenant 3 la fronti&re de K.

Nous avons déjad caractérisé cette fonction lorsque K est une

boule de 'Rn.

Nous voulons montrer, maintenant, que pour un ensemble convexe

quelconque de R" 1a fonction x - f(x,t) est log-concave.

Théonéme 1.

La fonction f(x,t) est une fonction log-concave pour chaque t

fixe.
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Démonstration:

Prenons une partition p, = {to,tl,...,tk} de 1'intervalle de

temps (0,t), ol to =0<t, <...<t =1t et définissons une nouvelle

1 k

fonction fp (x,t) comme suit:

k

x —— P [X(t;) €K,...,X(t) € K|X(0) = .

Cette fonction peut s'écrire:

(yi—y-}_l) . (Yi-)’i_l)
2

k
-z

k i=1 2(t.-t. .)
£ (x,t) = [... 1 : e o dy, ..
n/2 "1
Py kK JK |i=1 [2m(t -t )]

ol Y, = X, ou encore, aprés avoir effectué le changement de variables

suivant:

Yi =Yy;-¥;q Ppour i-= 152550 %K
2
-

- 2

k i=1 2(t.-t. .)
£ ox,t) = /... I 1 e el g
P n/2 1
k &-X i=1 [2m(t;-t, )]

ol X k

Ly o v k) =)

et C

{y ennklylex,yzex-yl,...,y € K-Y,-Y, ... -Y, .}

nk
est un ensemble convexe de R .

Ainsi

£ fx,i) =’/" I(Y+X) #(Y) 4,
Py ) gk

dy

. dyk
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o Y = (YI’YZ""’Yk)’ IC est la fonction indicatrice de 1'ensemble C

et ¢(Y) est la fonction

2
Rt 2
k 1 i=1 2(ti-ti_1)

Y —3> I

i=1 [Zn(ti-ti_l)]n/z

La fonction K(X,Y) = IC(Y+X) ¢(Y) est une fonction log-concave et nous
avons vu dans le chapitre précédent que la fonction X +JfK(X,Y) dY est
log-concave. Donc fpk(x,t), pour t fixé, est une fonction log-concave
du vecteur x. En prenant une partition de plus en plus fine de 1'inter-

valle de temps (0,t), on peut affirmer que la fonction x - f(x,t) est

une fonction log-concave.

Les ensembles Ac(t) = {x|f(x,t) = c(t)} sont des convexes de

n

R . Posons

m(t) = sup{f(x,t)|x € K};

1'ensemble

; Ancey = XIE(1) = m(©)}

est convexe et correspond d 1'ensemble des points x tels que f(x,t)
soit maximum. Malheureusement, on a pu démontrer que 1l'ensemble Am(t)
contient un seul point pour chaque t > 0, c'est-a-dire qu'on a pu dé-
montrer que la fonction x -+ f(x,t) soit strictement log-concave. La

fonction f(x,t) posséde une autre propriété.

Théonéme 2.

La fonction f(x,t) est une fonction sur-harmonique par rapport

d la variable x.
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Démonstration:

Comme £(x,t) satisfait 3 1'équation de la chaleur,
Af (x,t) = 2 g—f—,z: comme nous voulons que Af <0, il suffit de montrer
que la fonctior t + £(x,t) est une fonction non croissante. Pour le

voir, supposonsque t <t' et comsidérons 1'événement
®(s) €EX pour 0 <s <t|X(0) = x}.
Cet €vénement et équivalent &

{X(s) EX pow O6<s<t et X@u) €R" pour t<u<t"'|X(0) = x}.

s

Mais ce dernier#€nement contient
X(syek ; a<s<t'|x) = x}.

On voit ainsi ge f£(x,t) = £(x,t") pour t <t'. Donc -g—ii< 0 et

f(x,t) est susfarmonique par rapport 3 la variable x.

Dans ¥ cas unidimensionnel, la fonction (1.12) est concave
2
par 2 E 2f< 0. % plus, Ies emsembles A; = {x|f(x,t) = 1} sont emboités,
. X
]

A; ) A; si #€t", c'est une conséquence de la non croissance de la

fonction f pw rapport 3 Ia variable t. Cependant, on n'a pu démontrer

qu'il existe wpoint unique, en 1'occurence, Xx = % et un temps t =t

tels que f(%,z}; > f(x,t) pour tout x # 321— et pour tout t = to’ c'est-a-dire

(o]

que f(x,t) s@& strictement concave par rapport d la variable x & par-
tir d'un certaimtemps to. Pourtant, on constate que si —I;— est suffi-
a

samment grand,

Tt

2
£(x,t) = % e 22" sin %




-

(par exemple pour —%—>=1, 1'erreur est de 1l'ordre de 10°6) est une fonc-
a
tion strictement concave et Am(t) = {%} pour tout t tel que J%- grand.
a
On a tracé les graphiques de f(x,t) pour i} variables et petits, et

la fonction est encore strictement concave (voir graphiques ci-joints).

~ n -~ -~
De méme dans le cas d'une boule de R, pour n = 2, centrée a

-~

1'origine, la fonction f(x,t), par rapport 3 la variable x, ne dépend
) ,
que du rayon p = (x-xT)2 et s'écrit lorsque t est choisi suffisam-

ment grand,
4

y 2
2 X, p -2(—) t
(—}1—- e \T (voir 1.15)

~s

Pxy

g(p,t) = Al T JP__}_
4 2

Ce sont des fonctions strictement log-concaves et Am( = {0} pour tout

t)

t assez grand, c'est-3a-dire que 0 est l'unique point rendant g(p,t)

maximum. Par exemple, si n =4 et t assez grand,

i
- pxl 15-1 le -2 T t
glp,t) = A (— Il e
X =T est la premiére racine et
J,(u) =4/ = sinu
) ~V mu :
On peut écrire
sin(@®) -2H%
glo,t) TAVE —F-¢ T
) l ™ (Fﬁ 3
: 4
. sin u : :
et la fonction =4 pour -T < u < +m est une fonction strictement

log-concave.



GRAPHIQUES

| &

- ; (2n1+1) e-(znﬂ)z‘"lt/200 sin {(2n+1)mx/10}
n=0

pour t = 1,2,3,4,10,20.




GRAPHIQUE

5

h(x) = (f(x+4.5,1) - 0.99999) 10

h,
1-
—
0.871
0.271
0 0.1 0.2 Q.3 0.4 0.5
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Dans le cas d'ensembles convexes symétriques K, supposons,
sans perte de généralité, que 1l'origine du systéme d'axes soit le cen-

tre de symétrie, A est aussi un ensemble convexe symétrique avec

m(t)

le méme centre de symétrie que 1'ensemble K. Ainsi 0 € A

m(ty POUT

tout t et f(x,t) < f(0,t) pour tout x € K quel qde soit t =2 0.

I1 est donc possible que dans le cas de convexes symétriques,
la fonction f£(x,t) soit strictement log-concave par rapport a la va-
riable x, pour tout t assez grand, et que 0, le centre de symétrie,

soit 1'unique point qui rende cette fonction maximum.

Pour des ensembles convexes quelconques, malheureusement, nous
ne pouvons pas caractériser le point "x(t)" rendant f(x,t) maximum,

ni indiquer si ce point est le méme pour tout t.

IT - TEMPS PROBABLE MAXIMUM DE SEJOUR DANS UN CONVEXE SYMETRIQUE

Considérons maintenant la variable aléatoire T représentant
le temps passé 3 l'intérieur du convexe K par le mouvement Brownien,
pour atteindré la frontiére de K, pour la premiére fois. Nous avons vu
dans le premier chapitre, pour la boule de rayon r, centrée a l'origine,

que le temps probable 8X(T) est égal a

C'est une fonction strictement concave ayant O comme point maximum,

c'est-a-dire que 8x(T) < & (T) pour tout x # 0 appartenant 3 la boule
n 2 bt o i po—

de R'. Nous avons un résultat similaire pour 1e cas des convexes symétri-

ques:
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Théonéme 3.

Soit K un ensemble convexe symétrique ayant comme centre de
symétrie 1'origine du systéme d'axes, alors 8X(T) <§80(T) pour tout

x € K.

Démonstration:

On peut écrire
o
& (T =‘jf fix,t) de
X
0
ol f(x,t) est la probabilité de s€jour @ 1'intérieur de K pendant la

période de temps (0,t), mais 0 € Am pour tout t = 0, c'est-a-dire

(t)
que f(x,t) < f(0,t) pour tout t = 0. Ainsi

& (T <[ £(0,t) dt = & (T).
& 0
On peut aussi affirmer:

Corollaire:
Si & :R R est une fonction croissante telle que ¢(0) =0
et 1lim &(t) f(x,t) = 0, K un convexe symétrique ayant 0 comme centre
1o

de symétrie, alors

& (&(T) <& (2(T)).

Démonstration:

& (9(T)) =[ o(t) dP [T < t]
0

I

f B(t) & £(x,t) dt
0

]

f ®'(t) f(x,t) dt <& (e(M).
0
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Nous ne pouvons pas dire si la fonction 8X(T) est concave ou
log-concave. Il serait peut-&tre intéressant de connaitre les conditions

supplémentaires sur la fonction f(x,t) pour que la fonction

X +-J[‘ f(x,t)
3 0

soit concave ou log-concave (strictement).

Dans le cas des ensembles convexes quelconques, on peut se demander

si 1'ensemble convexe

Am(t) = {xlf(x,t) = m(t)}

est réduit d un seul point pour t fix€& et positif et comment varie ce point
en fonction du temps t. On peut également se poser la question suivante:

Le maximum de la fonction,

x+ & (T) = [oof(x,t) dt,
. 0

est-il atteint en un seul point?

Oﬂ‘iaisse plusieurs questions en suspens, celles dont les réponses
semblent assez difficile 3 obtenir. Malgré cela, nous avons obtenu des
résultats que 1'on peut qualifier d'importants. En effet, on connait
trés peu de propriétés qualitatives pour des fonctions satisfaisant &
des équations telles que: 1'équation de la chaleur, 1'&quation de
Laplace et 1'équation de Poisson. Nous savons maintenant, grdce a notre
€tude des mesures quasi—concéch, que la fonction f(x,t), satisfaisant
1'équation de la chaleur, est log-concave. Elle est sur-harmonique en

utilisant des notions probabilistes. Pour la fonction &X(T) satisfai-



sant 1'équation de Poisson, on a montré 1'existence d'un point x

que &X(T) soit maximum, dans le cas de convexes symétriques.

o
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