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RÉSUMÉ

Le but de la présente recherche est d’étudier deux structures périodiques 2D dans le

contexte des métamatériaux. Les métamatériaux sont des structures périodiques dont la pé-

riode est suffisamment plus petite que la longueur d’onde pour pouvoir considérer la structure

comme un matériau homogène effectif avec des paramètres effectifs εeff et µeff . La première

structure étudiée est une structure de fils métalliques plongés dans un milieu hôte diélectrique

homogène. Deux modèles théoriques différents sont présentés pour cette structure. Ces mo-

dèles permettent d’attribuer une permittivité effective à la structure de fils. Une méthode

numérique est ensuite employée pour extraire les paramètres effectifs εeff et µeff de la struc-

ture. Il est montré que les paramètres ainsi obtenus ne correspondent pas aux paramètres

εeff et µeff obtenus à partir des modèles théoriques. On tente alors de faire la distinction

entre les paramètres effectifs théoriques et les paramètres obtenus numériquement et d’éclair-

cir leur signification respective. Le concept des paramètres de Bloch est ainsi introduit et il

est montré que ce sont les paramètres de Bloch, et non pas les paramètres théoriques εeff et

µeff , qui sont significatifs pour la résolution de problèmes pratiques. Les paramètres de Bloch

sont des paramètres qui caractérisent les propriétés de transmission et de réflexion pour une

cellule unitaire et qui ne dépendent pas de la périodicité de la structure. Cette partie de la

recherche peut être vue comme une mise en garde quant à l’interprétation et l’utilisation des

paramètres effectifs attribués aux métamatériaux.

La présente recherche a aussi pour but de proposer des applications aux structures étu-

diées. Dans cette optique, la structure périodique de fils métalliques est utilisée pour conce-

voir un résonateur avec une distribution de champs uniforme dans la région occupée par la

structure de fils. Ceci est possible en opérant à la fréquence correspondant à la permittivité

effective nulle de la structure de fils, ce qui implique une longueur d’onde effective infinie.

La seconde structure périodique étudiée est une structure de fils métalliques entourés

d’une gaine diélectrique et plongés dans un milieu hôte constitué d’une ferrite magnétisée. Le

modèle théorique attribuant des paramètres effectifs εeff et µeff à la structure est brièvement

présenté. Ce modèle prédit que dans une certaine bande de fréquences, les deux paramètres

sont négatifs, ce qui donne lieu à la propagation de “backward waves”, caractérisées par le

fait que leur vecteur de propagation pointe dans la direction opposée au vecteur de Poynting,

qui représente la direction de transport de l’énergie. Certaines propriétés physiques d’un

matériau avec des paramètres négatifs sont présentées, notamment la propriété d’indice de

réfraction négatif. Le modèle théorique pour la structure périodique est validé à l’aide de

la même méthode numérique utilisée pour la première structure périodique. Le fait que les
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paramètres extraits numériquement sont différents des paramètres théoriques est à nouveau

souligné et les paramètres extraits numériquement sont interprétés à l’aide du concept des

paramètres de Bloch.

Puisque la propriété d’indice de réfraction négatif est une des propriétés les plus impor-

tantes des matériaux avec des paramètres εeff et µeff négatifs, une expérience est conçue

afin de valider cette propriété pour la structure de fils insérés dans une ferrite. Ainsi, la

structure périodique est fabriquée en laboratoire et un montage permettant la mesure de

l’indice de réfraction est conçu. Les résultats montrent clairement l’existence d’une bande de

fréquences pour laquelle l’indice de réfraction est négatif, validant ainsi le modèle théorique.

Des résultats sont obtenus montrant la dépendance de l’indice de réfraction en fonction de

la fréquence et aussi en fonction de l’intensité du champ magnétique DC H0 servant à ma-

gnétiser la ferrite. Deux applications de cette structure périodique basées sur la variation de

l’indice de réfraction sont proposées. La première un analyseur de spectre qui utilise la varia-

tion de l’indice de réfraction en fonction de la fréquence pour décomposer spatialement les

différentes composantes fréquentielles d’un signal. L’autre est un démultiplexeur qui utilise

la variation de l’indice de réfraction en fonction de l’intensité du champ magnétique DC H0

pour transmettre le signal d’entrée dans une direction particulière.
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ABSTRACT

The goal of this research is to study two bidimensional periodic structures in the context of

metamaterials. Metamaterials are periodic structures which have a period that is sufficiently

smaller than the wavelength to be considered as an effective medium with effective parameters

εeff and µeff . The first structure studied is a structure of metallic wires embedded in

an homogeneous dielectric medium. Two different theoretical models for this structure are

presented. These models assign an effective permittivity to the structure. A numerical

method is then used to extract the effective parameters εeff and µeff of the structure. It is

shown that these parameters obtained numerically do not correspond to the parameters εeff

and µeff obtained from the theoretical models. Therefore, we attempt to properly distinguish

the theoretical effective parameters from the parameters obtained numerically and to shed

light on their respective physical meaning. For this purpose, the concept of Bloch parameters

is introduced and it is shown that it is these Bloch parameters, and not the theoretical effective

parameters εeff and µeff , which must be used in solving practical problems involving the

periodic structures. The Bloch parameters are parameters which convey the transmission and

reflexion properties of a single unit cell, independently of the structure’s periodicity. This

part of the research can be seen as a warning according to which one should be careful in the

interpretation and use of the effective parameters derived for metamaterials.

This research also has for goal to suggest applications for the structures studied. There-

fore, the periodic structure of metallic wires is used in the design of a resonator having the

property of supporting a resonant mode with an uniform field distribution in the area oc-

cupied by the structure of wires. This is possible because the resonator is operated at the

frequency corresponding to zero effective permittivity of the wire structure, thus implying

that the effective wavelength is infinite.

The second structure studied is a structure of metallic wires surrounded by a dielectric

cladding and embedded in a magnetized ferrite host medium. The theoretical model from

which the effective parameters εeff and µeff are derived is briefly presented. This model

predicts the propagation of backward waves in a certain frequency band, these waves being

characterized by the fact that their propagation vector points in a direction opposite to the

Poynting vector, which corresponds to the direction of energy flow. Some physical properties

of a medium with negative parameters are presented, notably the property of negative re-

fractive index. The theoretical model for this periodic structure is validated using the same

numerical method used for the first periodic structure. The fact that the parameters extracted

numerically are different from the theoretical parameters is once again highlighted and the
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parameters obtained numerically are interpreted using the concept of Bloch parameters.

Since the negative refractive index property is one of the most important properties of

materials with negative εeff and µeff parameters, an experiment is devised to validate this

property experimentally for the structure of wires inserted in the ferrite medium. This

periodic structure is fabricated in our laboratory and inserted in a setup that allows the

measurement of the refractive index. The results clearly show the existence of a frequency

band where the refractive index is negative, therefore validating the theoretical model. The

results also show that the refractive index varies with the frequency and with the DC magnetic

fieldH0 used to magnetize the ferrite. Two applications of the periodic structure are suggested

which are based on this variation of the refractive index. The first one is a spectrum analyzer

which uses the variation of the refractive index with the frequency to spatially decompose the

different frequency components of a signal. The other application is a demultiplexer which

uses the variation of the refractive index with the applied magnetic field H0 to transmit the

input signal in a particular direction.
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Figure 2.7 Modèles HFSS pour une rangée de cellules unitaires de la structure

périodique de fils métalliques. Les guides d’ondes TEM entre les ports et

les cellules unitaires sont remplis par un métériau ayant le permittivité
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de permittivité ε2 = 0. Les autres régions ont des permittivités ε1 et ε3
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négatif. Ceci est dû au fait que la composante tangentielle à l’interface
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lettres A à F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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réfraction est négatif (région D dans les figures 3.4(c) et 3.6(c)). (a)

Diagramme de couleur montrant les paramètres Sk0 mesurés du port
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d’entrée 0 vers chacun des 12 ports de sortie. (b) Comparaison entre
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CHAPITRE 1

INTRODUCTION

1.1 Définitions et concepts de base

Les structures périodiques sont omniprésentes dans la nature. Par exemple, un cristal

de diamant est constitué d’un arrangement périodique tridimensionnel d’atomes de carbone.

Formellement, les structures périodiques sont la répétition d’une cellule unitaire dans l’espace

selon une matrice. Une matrice est un ensemble de points placés de manière périodique dans

l’espace. La cellule unitaire, quant à elle, définit la structure physique qui, lorsque répliquée

à chacun des points de la matrice, génère la structure périodique. Comme montré à la figure

1.1, les structures périodiques peuvent être à une, deux ou trois dimensions. Dans ce mémoire,

les structures périodiques considérées sont des structures à deux dimensions, ce qui veut dire

que la matrice associée est un ensemble de points localisés dans un plan.

Périodique dans

deux directions

Périodique dans

une direction

Périodique dans

trois directions

Figure 1.1 Illustration de la périodicité d’une structure dans une, deux ou trois directions.
Adaptée de ”EBGs and Metamaterials : Concepts, Structures and Applications”, EuCAP
2009, par C. Caloz.

Les structures périodiques trouvent de nombreuses applications dans le domaine des

micro-ondes. En effet, on les retrouve dans la conception de filtres et de certains types d’an-

tennes. Les structures périodiques sont aussi utilisées dans la conception de surfaces sélectives

en fréquence (“Frequency Selective Surfaces” ou FSS), qui sont des structures bidimension-

nelles dont les coefficients de réflexion et de transmission pour une onde électromagnétique

incidente varient selon la fréquence. Le comportement en fréquence de la structure est dû au



2

fait que les éléments de la cellule unitaire résonnent à une certaine fréquence, celle-ci pouvant

être ajustée en variant la taille des éléments [1].

Depuis le début des années 2000, une autre catégorie de structures périodiques fait l’objet

de beaucoup d’attention de la part de la communauté scientifique. Il s’agit des métamatériaux

ou matériaux artificiels. La plupart des métamatériaux sont caractérisés par une cellule uni-

taire contenant une inclusion métallique entourée d’un milieu homogène appelé milieu hôte.

Les métamatériaux sont des structures périodiques qui sont caractérisées par le fait que la

période de leur matrice est suffisamment plus petite que la longueur d’onde λh dans le milieu

hôte [2]. Dans la littérature, la condition pour qu’une structure périodique puisse être consi-

dérée comme un métamatériau est que sa période soit inférieure à environ λh/5 (e.g. [2, 3]). Il

est alors possible d’utiliser une procédure d’homogénéisation des champs électromagnétiques

selon laquelle le champ moyen dans une cellule unitaire est calculé et utilisé pour définir les

paramètres du matériau, c’est-à-dire une permittivité effective εeff et une perméabilité effec-

tive µeff . Ce sont ces champs homogénéisés et ces paramètres du matériau qui entrent dans

les équations de Maxwell et permettent de traiter la structure périodique comme un matériau

homogène (e.g. [4]). Bien entendu, certaines approximations sont nécessaires lors de l’appli-

cation de la procédure d’homogénéisation. De manière générale, plus la longueur d’onde est

grande par rapport à la périodicité et à la taille des inclusions, plus l’erreur introduite par

ces approximations est petite. Ainsi, pour un métamatériau où la période se situe près de la

limite λh/5, il faut choisir soigneusement la procédure d’homogénéisation et s’assurer de la

validité des approximations qui sont utilisées.

L’avantage des métamatériaux sur les matériaux conventionnels est que par la concep-

tion de la cellule unitaire et de la périodicité de la matrice, il est possible de contrôler les

paramètres effectifs du matériau selon les besoins de l’application. De plus, bien souvent les

paramètres des métamatériaux sont dispersifs, c’est-à-dire qu’ils varient en fonction de la fré-

quence. Parfois, cette propriété est indésirable car il serait souhaitable d’obtenir un matériau

ayant des paramètres électromagnétiques fixes sur une large bande de fréquence. Cependant,

pour certaines applications il est possible de tirer profit de la dépendance en fréquence des

paramètres du matériau et d’ajuster cette dépendance selon les besoins. La propriété des mé-

tamatériaux qui a toutefois suscité le plus d’intérêt est la possibilité de réaliser des structures

périodiques ayant à la fois une permittivité et une perméabilité effective négative, ce qui rend

la propagation de “backward-waves” possible.

L’histoire des métamatériaux remonte à bien avant les années 2000. Dans un article publié

en 1968, Veselago [5] analyse les conséquences d’une permittivité et d’une perméabilité toutes

deux négatives. Il montre qu’une onde plane se propageant dans un tel milieu serait caracté-

risée par le fait que les champs ~E et ~H et le vecteur de propagation ~k formeraient un système
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de vecteurs satisfaisant la règle de la main-gauche, d’où le nom “left-handed medium”. Il

montre aussi qu’un tel milieu aurait un indice de réfraction négatif. Dans son article, Vese-

lago mentionne que certains milieux comme les substances gyrotropes et les plasmas ont une

permittivité ou une perméabilité négative et donc qu’il ne serait pas impossible de trouver

un jour un matériau ayant à la fois une permittivité et une perméabilité négative. À cette

époque, les structures périodiques étaient déjà connues et étudiées mais n’étaient pas consi-

dérées comme des matériaux effectifs dont on pourrait contrôler les paramètres. Par exemple,

un article de Rotman [6] publié en 1962 compare les propriétés d’une structure périodique

de fils métalliques avec celles d’un plasma gazeux sans toutefois attribuer des paramètres

effectifs à la structure périodique de fils. Ce n’est que plus tard que le concept de matériau

effectif a été utilisé pour représenter une structure périodique, avec par exemple l’article de

Pendry paru en 1996 [7] qui a étudié la même structure périodique de fils métalliques que

celle étudiée par Rotman.

En 1999, Pendry et al. [8] ont introduit une structure périodique dont la cellule unitaire

est constituée d’une boucle de métal résonante (“split ring resonators”) et à laquelle ils ont

associé une perméabilité effective qui peut être négative près de la fréquence de résonance.

En 2000, Smith et al. [9] ont proposé de combiner ces boucles de métal avec la structure

périodique de fils métalliques pour créer un matériau avec à la fois une perméabilité et une

permittivité effective négative. Ils ont démontré expérimentalement qu’une telle structure

avait une bande passante correspondant aux fréquences où la perméabilité et la permittivité

sont nulles. En 2001, le même groupe a publié un article dans Science [10] décrivant une

expérience qui valide la propriété d’indice de réfraction négatif de la structure combinant les

boucles de métal résonantes et les fils métalliques. Depuis ce temps, beaucoup d’efforts de

recherche sont dédiés à la découverte de nouvelles structures périodiques ayant des paramètres

effectifs contrôlables, à la caractérisation théorique et expérimentale de ces métamatériaux

et à leurs applications.

1.2 Problématique et objectifs de recherche

Le concept de métamatériau fait face à plusieurs défis. L’un de ces défis est de proposer

des applications qui permettraient d’utiliser les métamatériaux dans des dispositifs micro-

ondes réels qui auraient alors des performances meilleures que les dispositifs micro-ondes

employant des matériaux conventionnels. Par exemple, Pendry [11] a proposé une lentille,

qui, si elle était constituée d’un matériau avec un indice de réfraction n = −1, ne souffrirait

pas de la limite imposée par la diffraction dont souffrent les lentilles conventionnelles. Bien

que certaines expériences aient été tentées afin de valider ce phénomène (e.g. [12]), on est
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encore bien loin d’une lentille qui pourrait être utilisée dans des applications. Comme autre

exemple d’application ayant été suggérée, on mentionne l’implémentation d’une lentille de

Luneburg à l’aide d’un métamatériau bidimensionnel [13], la lentille de Luneburg étant une

lentille circulaire servant à focaliser en un point une onde plane incidente. Dans ce cas encore,

les performances du dispositif sont loin de ce qui serait requis afin d’être utilisé dans des

applications pratiques.

Comme mentionné dans [14], les limites associées aux dispositifs utilisant des métama-

tériaux proviennent du fait que l’approximation selon laquelle la période de la structure

périodique est beaucoup plus petite que la longueur d’onde est souvent grossière et que

puisque le métamatériau est nécessairement fini, les cellules unitaires sur le bord de la struc-

ture ne peuvent pas être modélisées de la même façon qu’une cellule unitaire placée dans une

structure périodique infinie. Ainsi, un autre défi des métamatériaux est de développer une

théorie basée sur l’attribution de paramètres effectifs à des structures périodiques qui définit

clairement les limites de cette approche. En effet, l’utilisation de paramètres effectifs pour

modéliser une structure périodique qui est alors considérée comme un matériau homogène a

de grands avantages sur le plan pratique mais il est primordial de bien comprendre la signi-

fication réelle de ces paramètres effectifs ainsi que les approximations et erreurs qui peuvent

découler de leur usage.

L’objectif de la présente recherche est d’étudier certaines structures périodiques pouvant

être considérées comme des matériaux effectifs. On cherche d’abord à bien comprendre la

procédure à suivre pour attribuer des paramètres effectifs à des structures périodiques en

étudiant les modèles théoriques que l’on trouve dans la littérature ainsi qu’en explorant une

méthode numérique permettant d’extraire les paramètres effectifs d’une structure. On tente

ensuite d’éclaircir la signification de ces paramètres effectifs et d’établir les limites de leur

validité afin d’en faire un usage correct dans la conception de dispositifs réels. On tente aussi

de proposer des applications potentielles pour les structures périodiques étudiées et de valider

leurs propriétés expérimentalement.

1.3 Plan du mémoire

Le mémoire est divisé en deux chapitres principaux, les chapitres 2 et 3. Dans le chapitre

2, il est question d’une structure périodique 2D consistuée de simples fils métalliques minces,

considérés infinis en longueur et plongés dans un milieu hôte non magnétique et homogène.

D’abord, les modèles théoriques établis dans la littérature pour cette structure sont décrits.

On introduit alors une méthode numérique permettant d’obtenir les paramètres effectifs de

la structure. Les paramètres ainsi obtenus sont comparés à ceux obtenus à l’aide des modèles
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théoriques. À ce point, la validité des paramètres effectifs pour une structure périodique 2D

en général et l’interprétation qu’il faut leur donner sont discutées. Pour terminer le chapitre,

un exemple d’application potentielle pour la structure de fils métalliques est proposé. L’étude

de cette structure relativement simple est une bonne première étape en vue de l’étude de la

structure considérée au chapitre 3.

Le chapitre 3 est consacré à l’étude d’une structure périodique 2D de fils métalliques

plongés cette fois dans un milieu hôte magnétique. Puisque cette structure peut avoir une

permittivité et une perméabilité toutes deux négatives, on présente les phénomènes qui en

découlent tels que l’indice de réfraction négatif. Cette structure ayant été analysée théori-

quement par Dewar [15], une brève présentation du modèle théorique est effectuée. Ensuite,

les paramètres effectifs du matériau homogène correspondant à cette structure sont présen-

tés et validés à l’aide de la méthode numérique d’extraction des paramètres. Dans certaines

conditions, il existe un régime de fréquence où la perméabilité et la permittivité effective sont

toutes deux négatives. Ceci donne lieu à des phénomènes intéressants dont le plus évident est

l’indice de réfraction négatif. Une expérience ayant servi à mettre en évidence le phénomène

d’indice de réfraction négatif pour la structure proposée par Dewar est décrite. Les résultats

obtenus à l’aide de cette expérience sont présentés et discutés.



6

CHAPITRE 2

Fils métalliques dans un milieu hôte diélectrique

La première étape de la recherche concerne une structure 2D de fils métalliques que l’on

suppose infinis en longueur et qui sont insérés dans un milieu hôte constitué d’un diélectrique

homogène. Lorsque la longueur d’onde est suffisamment grande par rapport à la période des

fils, cette structure périodique 2D peut être modélisée comme un matériau homogène ayant

une permittivité effective.

Ce chapitre débute par une présentation des modèles théoriques que l’on retrouve dans

la littérature pour la structure de fils métalliques plongés dans un milieu hôte diélectrique

homogène. À partir de ces modèles, il est possible de déterminer la permittivité effective

en fonction de la fréquence et des paramètres géométriques de la structure périodique de

fils. Une technique numérique permettant de calculer la permittivité effective est utilisée

pour valider les résultats obtenus à partir des modèles théoriques. La nécessité de restreindre

l’analyse numérique à un problème de dimension finie alors que l’analyse théorique assume

une structure périodique infinie pose naturellement la question de la validité des paramètres

effectifs dans le cas d’une structure de dimension finie. Cette question ainsi que la question de

la validité en général des paramètres effectifs sera abordée dans ce chapitre. Enfin, la dernière

partie du chapitre est dédiée à l’étude d’une application potentielle de ce matériau effectif.

Il s’agit d’un résonateur rectangulaire dont l’une des régions contient la structure périodique

de fils et qui opère à la fréquence où la permittivité effective est zéro. Ceci permet à la

taille physique du résonateur d’être arbitrairement grande, indépendamment de la fréquence

d’opération.

2.1 Modèles théoriques

La structure de fils métalliques de rayon r et de période a est montrée à la figure 2.1.

On considère que la matrice est carrée de sorte que la période est a selon les directions x

et y. On assume que les fils sont minces par rapport à la longueur d’onde (r << λ). Pour

cette raison, on peut négliger l’interaction des modes TEz (champ électrique transverse à la

direction z) avec les fils (e.g., [16]). Ainsi, dans ce mémoire, on considérera uniquement les

modes TMz (champ magnétique transverse à la direction z). On note que bien que la figure 2.1

montre un champ électrique orienté uniquement selon z, en général il est possible d’avoir des

composantes en x et y du champ électrique pour un mode TMz, la seule restriction étant que
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Hz = 0. Cependant, pour des fils minces, on peut négliger l’interaction avec les composantes

x et y du champ électrique car elles créent des courants perpendiculaires à la direction z qui

sont négligeables par rapport au courant orienté selon z causé par la composante du champ

électrique orientée le long des fils. Pour des fils très minces par rapport à la longueur d’onde,

on considère donc en quelque sorte que les fils sont invisibles du point de vue des composantes

perpendiculaires aux fils du champ électrique.

a 2r

Ē

H̄

x

y
z

Figure 2.1 Structure périodique 2D constituée d’une matrice carrée de fils métalliques de
rayon r et de période a. Les fils sont orientés selon l’axe z.

Deux modèles théoriques différents seront présentés pour cette structure. L’un a été pro-

posé par Tretyakov [17] et l’autre par Pendry [7]. Avant d’introduire le modèle proposé par

Tretyakov, il convient d’introduire un résultat important : le théorème de Bloch-Floquet.

2.1.1 Théorème de Bloch-Floquet

Le théorème de Floquet est un théorème applicable aux équations différentielles dont les

coefficients sont des fonctions périodiques, comme par exemple

du(x)

dx
+ f(x)u(x) = 0 (2.1)

où on cherche à déterminer u(x) et où f(x) est une fonction périodique de x. Le théorème

de Bloch est une généralisation du théorème de Floquet pour des équations différentielles

à plusieurs variables. Une démonstration du théorème ne sera pas présentée ici et on se

contentera d’énoncer le résultat (voir par exemple [18] pour une démonstration). Le théorème

de Bloch dit que pour l’équation d’onde homogène en trois dimensions

∇2u(x, y, z) + f(x, y, z)u(x, y, z) = 0, (2.2)
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où f(x, y, z) est une fonction périodique de x, y et z, les solutions (les eigenfunctions) sont

de la forme

u(x, y, z) = e−j~q·~rψ(x, y, z) = e−j(qxx+qyy+qzz)ψ(x, y, z) (2.3)

où ~r = xx̂+yŷ+zẑ est le vecteur position, ~q = qxx̂+qyŷ+qz ẑ est la constante de propagation

de la solution et ψ(x, y, z) est une fonction ayant la même périodicité que f(x, y, z). Ainsi,

si la périodicité de f(x, y, z) est telle que f(x+ ax, y + ay, z + az) = f(x, y, z), alors on aura

ψ(x+ ax, y+ ay, z+ az) = ψ(x, y, z). Puisque ψ(x, y, z) est une fonction périodique, elle peut

être écrite sous la forme d’une série de Fourier à trois dimensions

ψ(x, y, z) =
∞
∑

l=−∞

∞
∑

m=−∞

∞
∑

n=−∞
cl,m,ne

−j2π
(

lx
ax

+my

ay
+nz

az

)

(2.4)

où les coefficients cl,m,n sont donnés par

cl,m,n =
1

axayaz

∫ ax/2

−ax/2

∫ ay/2

−ay/2

∫ az/2

−az/2

ψ(x, y, z)e
j2π

(

lx
ax

+my

ay
+nz

az

)

dxdydz. (2.5)

Ainsi, la solution donnée par l’Éq.(2.3) peut être écrite sous la forme

u(x, y, z) =
∞
∑

l=−∞

∞
∑

m=−∞

∞
∑

n=−∞
cl,m,ne

−j
[

(qx+ 2πl
ax
)x+

(

qy+
2πm
ay

)

y+(qz+ 2πn
az
)z

]

. (2.6)

Chaque terme de l’Éq. (2.6) est connu sous le nom d’harmonique de Floquet. L’harmonique

fondamentale pour laquelle l = m = n = 0 a une importance particulière pour l’analyse d’une

structure périodique en tant que matériau homogène. En effet, l’harmonique fondamentale de

Floquet a la même forme qu’une onde plane avec le vecteur de propagation ~q. Ainsi, lorsque

l’harmonique fondamentale est la composante dominante de la solution u(x, y, z), on peut

traiter cette solution comme une onde plane se propageant dans un milieu homogène effectif

[17, 19].

Le théorème de Bloch peut être appliqué pour la structure périodique de fils métalliques

de la figure 2.1. Considérons les modes TMz pour lesquels Hz = 0. Ces modes peuvent être

obtenus en considérant un potentiel vectoriel magnétique ~A pour lequel seulement la compo-

sante Az est non-nulle [16]. Puisqu’on considère le problème sans source, Az doit satisfaire

l’équation d’onde homogène

∇2Az + k2Az = 0 (2.7)

où k2 = ω2µε (ici comme dans le reste du mémoire, on assume implicitement une dépen-

dance par rapport au temps de la forme ejωt). Habituellement, l’Éq. (2.7) est résolue dans
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le domaine défini par et excluant les surfaces métalliques, celles-ci étant prises en compte

lors de l’application des conditions frontières. Cependant, pour l’application du théorème de

Bloch, dans le cas présent on considère les fils métalliques comme faisant parti du domaine

de solution [17]. On considère alors une conductivité σ pour les fils, le cas limite où ceux-ci

sont des conducteurs parfaits correspondant à σ → ∞. La présence des fils métalliques est

alors prise en compte directement dans l’Éq. (2.7) en considérant que ε = ε(x, y) est une

fonction de l’espace avec ε = εh− jσ/ω aux endroits où se trouvent les fils. Puisque ε est une

fonction périodique de x et y, k dans l’Éq. (2.7) est aussi une fonction périodique de x et y

et on a donc la forme de l’Éq. (2.2) qui permet l’application du théorème de Bloch.

Bien entendu, dans le problème des fils métalliques, la périodicité n’est que selon deux

directions, le problème étant invariant dans la direction z, soit le long des fils. Le théorème

de Bloch est applicable pour l’équation d’onde en deux dimensions

∇2u(x, y) + f(x, y)u(x, y) = 0, (2.8)

les solutions étant alors données par l’Éq. (2.3) avec qz = 0 et ψ = ψ(x, y). L’Éq. (2.7), qui

est une équation en trois dimensions, peut être amenée sous la forme de l’Éq. (2.8) par une

transformée de Fourier en z. Prenant la transformée de Fourier de l’Éq. (2.7), on obtient

∫ +∞

−∞
(∇2

tAz +
∂2Az

∂z2
+ k2Az)e

−jqzzdz = 0 (2.9)

où ∇t =
∂2

∂x2 +
∂2

∂y2
. Définissant la transformée de Fourier en z de Az par

Āz(qz) =

∫ +∞

−∞
Aze

+jqzzdz, (2.10)

l’Éq. (2.9) peut être écrite comme

∇2
t Āz + k2Āz +

∫ +∞

−∞

∂2Az

∂z2
e+jqzzdz = 0. (2.11)

En assumant que Az et sa dérivée première par rapport à z sont zéro lorsque z → ±∞, deux

intégrations par partie successives donnent

∇2
t Āz + k2Āz +

∫ +∞

−∞
−q2zAze

+jqzzdz = 0 (2.12)

ou encore,

∇2
t Āz + (k2 − q2z)Āz = 0. (2.13)
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Ainsi, en considérant qz comme un paramètre, Āz satisfait une équation de la forme de

l’Éq. (2.8). On peut alors appliquer le théorème de Bloch pour deux dimensions et les solutions

Āz ont la forme

Āz = e−j(qxx+qyy)ψ(x, y) (2.14)

où ψ(x, y) est une fonction ayant la même période que k2 − q2z , c’est-à-dire la même période

que ε(x, y). La solution Az peut être obtenue de Āz par la transformée de Fourier inverse

Az(x, y, z) =
1

2π

∫ +∞

−∞
Āze

−jqzzdqz. (2.15)

Puisque l’intégrale peut être vue comme la limite d’une sommation, l’Éq. (2.15) indique que

les solutions fondamentales (les eigenfunctions) de l’Éq. (2.7) pour la structure de la figure 2.1

sont de la forme

Az = e−j(qxx+qyy+qzz)ψ(x, y) (2.16)

où qz représente la variation en z et est considéré comme un paramètre dont on est libre de

fixer la valeur.

Il faut noter que sous la jauge de Lorentz, les champs électriques et magnétiques sont

obtenus de Az à l’aide de (e.g. [20])

~H =
1

µ
∇× ~A (2.17)

et
~E = −jω ~A− j

1

ωµε
∇(∇ · ~A). (2.18)

Avec les solutions données par l’Éq. (2.16) et en notant que la dérivée d’une fonction pério-

dique est aussi une fonction périodique, il est facile de se convaincre que chaque composante

de ~E et ~H peut être exprimée sous la même forme que Az donnée par l’Éq. (2.16). On peut

aussi faire la même affirmation pour les courants de surface induits sur les fils métalliques.

En effet, ces courants sont donnés par ~J = n̂ × ~H où n̂ est le vecteur unitaire normal à la

surface des fils. Pour les modes TMz obtenus à partir de Az, ~H et n̂ sont dans le plan xy et
~J a uniquement une composante Jz. Cette composante peut alors être écrite sous la forme

Jz = e−j(qxx+qyy+qzz)ψ′(x, y) (2.19)

où ψ′(x, y) est une fonction périodique ayant la même périodicité que la fonction ψ(x, y) de

l’Éq. (2.16). Ce résultat sera utilisé à la section suivante.
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2.1.2 Modèle proposé par Tretyakov

Dans cette section, le modèle théorique développé par Tretyakov pour la structure de

fils de la figure 2.1 est présenté. Ce modèle permet d’assigner une permittivité effective à la

structure de fils, qui est alors considérée comme un matériau homogène. On se contentera

ici d’énoncer les étapes clé du développement tel que présenté dans [17]. La démarche suivie

par Tretyakov est la suivante. La première étape consiste à résoudre le problème sans source,

c’est-à-dire à résoudre l’équation d’onde homogène pour la structure infinie de fils afin de

trouver les solutions naturelles. Ceci permet d’obtenir une équation de dispersion pour la

structure de fils. Cette équation de dispersion est alors comparée à l’équation de dispersion

pour un matériau homogène ayant une permittivité donnée. En faisant correspondre ces deux

équations de dispersion, il est possible d’attribuer une permittivité effective à la structure de

fil, qui peut alors être considérée comme un matériau homogène.

Le problème qui consiste à modéliser la structure périodique de fils métalliques est un

problème implicite en ce sens que l’on cherche à déterminer la réponse électromagnétique

d’un fil plongé à l’intérieur d’une structure infinie de fils alors que l’effet de tous ces autres

fils sur le fil étudié ne peut être connu que si on connait la réponse individuelle de ces autres

fils, ce qui nous ramène au problème de départ.

Pour résoudre le problème, on considère un fil en particulier de la structure infinie que

l’on place à la position x = 0 et y = 0, comme montré à la figure 2.2. On peut séparer le

champ électrique total ~Etot à l’intérieur de la structure de fils en deux composantes : le champ

local ~Eloc et le champ ~Efil produit par le fil considéré de sorte que

~Etot = ~Eloc + ~Efil. (2.20)

Pour bien comprendre la nature des champs produits par les fils, on fait appel à un principe

en électromagnétisme connu sous le nom d’équivalent physique (physical equivalent) [21].

Lorsque des sources de courant externes ~Jext rayonnent en présence d’un obstacle métallique

parfait conducteur (σ → ∞), les champs électromagnétiques totaux ~Etot et ~Htot à l’extérieur

de l’obstacle peuvent être décomposés selon

~Etot = ~Ei + ~Es (2.21)

~Htot = ~H i + ~Hs. (2.22)

où ~Ei et ~H i sont les champs incidents produits par des sources externes en l’absence de

l’obstacle et ~Es et ~Hs sont les champs dispersés (“scattered”) par l’obstacle. Selon le principe

de l’équivalent physique, les champs dispersés correspondent aux champs rayonnés par le
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a) b)

x

y

x

y

a

a

a

a

~Eloc
~Efil

Figure 2.2 Décomposition du champ électrique pour une structure périodique de fils (consi-

dérés infinis en z) du point de vue du fil placé à l’origine. a) Champ ~Eloc produit par tous les

autres fils. b) Champ ~Efil produit par le fil à l’origine.

courant de surface ~Js = n̂× ~Htot où n̂ est le vecteur unitaire normal à la surface de l’obstacle

et pointant vers l’extérieur de l’obstacle, ce courant rayonnant dans un milieu homogène sans

la présence de l’obstacle métallique (voir [21] ou [16]). Ce principe est illustré à la figure 2.3.

a) b)

~Jext
~Js~Js

σ → ∞

~Etot

~Htot

εh, µh

εh, µh

εh, µh

~Es

~Hs

n̂

Figure 2.3 Principe de l’équivalent physique. a) Problème réel avec l’obstacle métallique. b)

Problème équivalent avec le courant ~Js rayonnant en l’absence de l’obstacle et produisant les
champs dispersés ~Es et ~Hs.

Revenant au cas de la structure périodique de fils métalliques, on peut donc remplacer tous

les fils par des courants de surface qui rayonnent dans le milieu hôte homogène en l’absence

des fils métalliques. On note toutefois que la composante tangentielle du champ électrique

total ~Etot doit s’annuler à la surface des fils, condition utilisée dans le développement de
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Tretyakov. Cette condition, en combinaison avec la technique de l’équivalent physique, est à

la base de la technique de l’équation intégrale pour le champ électrique. En supposant que les

fils sont très minces par rapport à la longueur d’onde (r << λh), les champs rayonnés par les

courants de surface sur chacun des fils seront équivalents aux champs rayonnés par une ligne

de courant I localisée au centre de chaque fil. Aussi, puisqu’on est à la recherche des modes

naturels de la structure, c’est-à-dire des solutions non-nulles au problème sans source externe,

les champs incidents Ei et H i des Éqs. (2.21) et (2.22) sont nuls. Ainsi, les champs ~Eloc et
~Efil de l’Éq. (2.20) doivent être interprétés comme des champs dispersés qui sont rayonnés

par des lignes de courant aux emplacements des fils et rayonnant dans un milieu homogène

ayant les propriétés du milieu hôte, en l’absence des fils métalliques.

À présent, déterminons le champ électrique produit par une ligne de courant I(z) placée à

l’origine. Toujours pour les modes TMz, la composante Az du potentiel vectoriel magnétique

doit satisfaire l’équation d’onde non-homogène

∇2Az + k2Az = δ(ρ)I(z) (2.23)

où k2 = ω2µ0εh, ρ =
√

x2 + y2 et δ(ρ) est la distribution de Dirac. On utilise le résultat (e.g.

[16]) selon lequel la solution de l’Éq. (2.23) lorsque I(z) = I est une constante par rapport à

z est donnée par

Az = −j µ
4
IH

(2)
0 (kρ) (2.24)

où H
(2)
0 est la fonction de Hankel du deuxième type d’ordre 0. Cette solution ne dépend pas

de z et on peut donc considérer que c’est une solution de l’équation

∇2
tAz + k2Az = δ(ρ)I (2.25)

Pour le cas qui nous intéresse, où I(z) est une fonction de z, on peut utiliser ce résultat en

considérant la transformée de Fourier en z de l’Éq. (2.23). Par la même manipulation qui a

mené à l’Éq. (2.13), l’Éq. (2.23) devient

∇2
t Āz + (k2 − q2z)Āz = δ(ρ)Ī(qz) (2.26)

où Ī(qz) est la transformée de Fourier de I(z). L’Éq. (2.26), tout comme l’Éq. (2.25), est

indépendante de z. La solution de l’Éq. (2.26) est donc

Āz = −j µ
4
Ī(qz)H

(2)
0 (

√

k2 − q2zρ). (2.27)
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Considérant la transformée de Fourier inverse

Az =
1

2π

∫ +∞

−∞
Āze

−jqzzdqz, (2.28)

on voit qu’en considérant une seule valeur de qz à la fois, comme à la section précédente, la

solution de l’Éq. (2.23) est

Az = −j µ
4
Ī(qz)H

(2)
0 (

√

k2 − q2zρ)e
−jqzz. (2.29)

Comme mentionné en début de chapitre, on ne considère que l’interaction de la com-

posante Ez du champ électrique avec les fils. Le champ électrique est obtenu en utilisant

l’Éq. (2.18). Pour Ez on a

Ez = −jωAz − j
1

ωµε

∂2Az

∂z2
. (2.30)

En utilisant l’expression pour Az de l’Éq. (2.29), on obtient

Ez = − 1

4ωε
Ī(qz)e

−jqzz(k2 − q2z)H
(2)
0 (

√

k2 − q2zρ). (2.31)

Toujours en fixant qz dans la transformée de Fourier inverse de Ī(qz), on voit que Ī(qz)e
−jqzz

correspond au courant I(z). Ainsi, le champ Ez produit par une ligne de courant I(z) placée

à l’origine est

Ez = − 1

4ωε
I(z)(k2 − q2z)H

(2)
0 (

√

k2 − q2zρ). (2.32)

De manière plus générale, le champ Ez rayonné par une ligne de courant Iz placée à la position

(x0, y0) est aussi donné par l’Éq. (2.32) mais avec ρ =
√

(x− x0)2 + (y − y0)2.

L’équation de dispersion qui caractérise les modes supportés par la structure infinie de

fils métalliques est obtenue en imposant la condition Ez,tot = 0 à la surface du fil de référence

placé à l’origine. De l’Éq. (2.20), on a donc la condition Ez,loc = −Ez,fil à la surface du

fil de référence. Le champ Ez,fil produit par le fil de référence est donné par l’Éq. (2.32)

évaluée en ρ = r où r est le rayon du fil. Le champ Ez,loc est donné par la somme des champs

produits par tous les autres fils identifiés par la paire d’indices (m,n) et situés aux positions

(x0, y0) = (ma, na) où a est la période de la structure de fils. On peut donc écrire

Ez,loc =
∑

(m,n) 6=(0,0)

− 1

4ωε
I(m,n)(z)(k

2 − q2z)H
(2)
0 (

√

k2 − q2zρ(m,n)) (2.33)

où ρ(m,n) =
√

(x−ma)2 + (y − na)2 et I(m,n)(z) est le courant dans chaque fil (m,n). C’est

ici qu’intervient le théorème de Bloch-Floquet. Puisque le courant I(m,n)(z) associé à chaque
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fil est la limite lorsque r → 0 de l’intégrale calculée sur la surface du fil du courant de surface

Jz, de l’Éq. (2.19) on a que I(m,n)(z) peut s’écrire sous la forme

I(m,n)(z) = e−j(qxma+qyna+qzz)Ip(x0, y0) (2.34)

où Ip(x0, y0) est une fonction périodique des coordonnées x0 et en y0 des fils et ayant une

période a. Puisque la position des fils est donnée par (x0, y0) = (ma, na), Ip a la même

valeur pour tous les fils et peut donc être considéré comme une constante. Ainsi, à l’aide des

Éqs.(2.32), (2.33) et (2.34), la condition à la surface du fil de référence Ez,loc = −Ez,fil peut

s’écrire

∑

(m,n) 6=(0,0)

− 1

4ωε
e−j(qxma+qyna+qzz)Ip(k

2 − q2z)H
(2)
0 (

√

k2 − q2zρ(m,n)) =

1

4ωε
e−jqzzIp(k

2 − q2z)H
(2)
0 (

√

k2 − q2zr) (2.35)

où on a utilisé le fait que le fil de référence correspond à (m,n) = (0, 0) et où on approxime

ρ(m,n) ≈
√

(ma)2 + (na)2 . En annulant les facteurs communs aux deux membres de l’équa-

tion, on obtient

∑

(m,n) 6=(0,0)

−e−j(qxma+qyna)H
(2)
0 (

√

k2 − q2zρ(m,n)) = H
(2)
0 (

√

k2 − q2zr) (2.36)

ce qui correspond à l’équation de dispersion recherchée. L’équation de dispersion est en fait

une relation entre les composantes de ~q et k. Comme il a déjà été mentionné, ~q correspond

au vecteur de propagation de l’harmonique fondamentale de Floquet qui elle-même peut être

associée à une onde plane se propageant dans la structure périodique considérée comme un

matériau homogène. Ainsi, c’est en associant la relation de dispersion propre à une onde

plane se propageant dans un milieu homogène ayant une permittivité donnée avec la relation

de dispersion donnée par l’Éq. (2.36) qu’il est possible de définir une permittivité effective

pour la structure périodique de fils métalliques.

Il est possible de résoudre l’Éq. (2.36) analytiquement sous certaines conditions. Premiè-

rement, il faut que le rayon des fils soit beaucoup plus petit que la période a et que a soit

à son tour beaucoup plus petite que la longueur d’onde λh (r << a << λh). De plus, il

faut supposer que l’interaction entre les rangées de fils le long de la direction de propagation

se fait par la propagation d’ondes planes qui correspondent à l’harmonique fondamentale de

Floquet. Ceci est justifié par le fait qu’une rangée de fils transverse à la direction de propa-

gation peut être modélisée par une feuille de courant uniforme dont la valeur correspond au

courant moyen Ip/a et que cette feuille de courant produit une onde plane [17]. Les étapes de
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la résolution analytique de l’Éq. (2.36) ne seront pas reproduites ici et peuvent être trouvées

dans [17]. Le résultat est

q2x + q2y + q2z = k2 − k2p (2.37)

où

k2p =
2π

a2
(

ln a
2πr

+ 0.5275
) (2.38)

et k2 = ω2µ0εh.

Pour obtenir une permittivité effective pour la structure de fils métalliques à partir de

l’Éq. (2.37), Tretyakov compare cette structure avec un milieu homogène caractérisé par une

perméabilité µ = µ0 et une permittivité uniaxiale exprimée par la dyade

¯̄ε =







εt 0 0

0 εt 0

0 0 εz






(2.39)

où εt est la permittivité dans les directions transverses x et y et où εz est la permittivité

dans la direction z. L’équation de dispersion pour les solutions TMz se propageant dans un

tel milieu avec le vecteur de propagation ~q = qxx̂+ qyŷ + qz ẑ est

εz
εt
q2z + q2x + q2y = ω2µ0εz. (2.40)

La recherche d’une permittivité effective pour la structure de fils est motivée par le fait

que les courants induits dans les fils peuvent être associés à la polarisation électrique d’un

matériau. Puisque les fils n’interagissent qu’avec la composante z du champ électrique, on

s’attend à obtenir une permittivité transverse εt égale à la permittivité εh du milieu hôte. La

permittivité effective εz associée à la structure de fils est obtenue en comparant la relation

de dispersion de la structure de fils donnée par l’Éq. (2.37) avec la relation de dispersion du

milieu avec une permittivité uniaxiale donnée par l’Éq. (2.40) où on considère εt = εh. Pour

avoir l’équivalence entre ces deux équations, il faut avoir

εz(ω, qz) = εh

(

1−
k2p

k2 − q2z

)

(2.41)

ce qui correspond à la permittivité effective εz = εeff pour la structure infinie de fils métal-

liques. De l’Éq. (2.41), on voit que la permittivité effective est temporellement et spatialement

dispersive, c’est-à-dire qu’elle dépend de la fréquence temporelle à cause de k et de la fré-

quence spatiale puisqu’elle dépend de la composante qz du vecteur de propagation. Ainsi,

la permittivié associée à la structure de fil n’est pas la même pour différentes ondes ayant
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différents vecteurs de propagation et est donc un paramètre non local [17] dans le sens que

la permittivité en un point du milieu effectif représentant la structure de fils dépend en fait

de la distribution des champs ailleurs dans le milieu.

2.1.3 Modèle proposé par Pendry

En 1996, Pendry a proposé un modèle pour obtenir la permittivité effective de la structure

de fils métalliques de la figure 2.1 [7]. Il a plus tard détaillé son analyse dans une publication

parue en 1998 [22]. Son approche est différente de celle employée par Tretyakov et repose

sur une comparaison entre la structure de fils métalliques et un plasma puis sur la définition

d’une masse effective des électrons conducteurs présents dans les fils métalliques.

Selon la théorie des plasmas, ceux-ci peuvent être caractérisés par la permittivité

ε(ω) = 1−
ω2
p

ω(ω + jγ)
(2.42)

où γ est un terme de pertes et où

ω2
p =

ne2

ε0m
(2.43)

est la fréquence de plasma où n est la densité des électrons dans le plasma, e est la charge

d’un électron et m est la masse d’un électron.

Pendry propose de voir la structure de fils métalliques comme un plasma homogène pour

lequel la densité effective d’électrons neff correspond à la densité d’électrons dans une cellule

unitaire divisée par le volume de la cellule unitaire. Ainsi, la densité des électrons pour

la structure de fils est diluée par rapport au cas où le métal remplit tout l’espace. Selon

l’Éq. (2.43), on voit que cela a pour effet de diminuer la fréquence de plasma. Pour un métal,

ωp se situe généralement dans le domaine de l’ultraviolet tandis que grâce à la structure de

fils, il est possible d’abaisser ωp au domaine des micro-ondes. En considérant la portion du

volume d’une cellule unitaire occupé par un fil, la densité effective est

neff = n
πr2

a2
(2.44)

où n est la densité d’électrons dans le métal.

Pendry affirme que la structure périodique de fils fait en sorte que la masse effective des

électrons est augmentée par rapport à la masse réelle des électrons. Il explique cela par le

fait que pour déplacer les électrons et produire un courant, la force agissant sur les électrons

doit, en plus d’accélérer la masse réelle des électrons, travailler contre l’auto-inductance de la

structure de fils. Pour prendre en compte cette inductance de la structure de fil, il argumente
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que le potentiel vectoriel magnétique est donné par [22]

~A(ρ) = Az(ρ)ẑ =
µ0πr

2nvze

2π
ln(a/ρ)ẑ (2.45)

où ρ =
√

x2 + y2 et vz correspond à la vitesse des électrons dans la direction z (on note que

la quantité πr2nvze correspond au courant dans un fil). À la surface des fils, on a ρ = r et

donc
~A(ρ = r) =

µ0πr
2nvze

2π
ln(a/r)ẑ (2.46)

Du point de vue de la mécanique classique, le potentiel généralisé U d’un électron soumis à un

champ électromagnétique caractérisé par le potentiel vectoriel magnétique ~A et le potentiel

scalaire φ satisfaisant la condition de Lorentz est [23]

U = eφ− e ~A · ~v. (2.47)

où ~v est la vitesse de l’électron. Utilisant ~A tel que donné par l’Éq. (2.46) et la condition de

Lorentz [20]

φ =
j

ωεµ
∇ · ~A, (2.48)

on note que ∇ · ~A = 0 par la définition de la divergence en coordonnées cylindriques et on

obtient

U = −eAz
dz

dt
. (2.49)

Dénotant les composantes de la vitesse par ~v = vxx̂ + vyŷ + vz ẑ où par exemple vx = dx
dt
, le

Lagrangien s’écrit

L = T − U =
1

2
m(v2x + v2y + v2z) + eAzvz (2.50)

où T est l’énergie cinétique de l’électron. Le moment canonique associé à la composante z,

qui est la composante qui nous intéresse puisque les fils sont orientés selon z et donc que les

électrons se déplacent dans la direction z, est donné par

pz =
∂L

∂vz
= mvz + eAz. (2.51)

Pendry définit alors une masse effective meff telle que le moment meffvz soit égal au moment

pz donné par l’Éq. (2.51). Pour une structure de fils ayant une période a et un rayon des fils

r de l’ordre de quelques mm, ce qui permet de considérer la structure comme un matériau

homogène effectif et d’obtenir des propriétés intéressantes comme εeff = 0 aux fréquences

micro-ondes, le terme eAz est dominant dans l’Éq. (2.51). En négligeant le terme mvz, on
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obtient

meffvz =
µ0πr

2nvze
2

2π
ln
(a

r

)

(2.52)

et donc

meff =
µ0πr

2ne2

2π
ln
(a

r

)

. (2.53)

En utilisant neff telle que donnée par l’Éq. (2.44) et meff telle que donnée par l’Éq. (2.53)

dans l’Éq. (2.43) pour ω2
p, on obtient

ω2
p =

neffe
2

ε0meff

=
2π

ε0µ0a2 ln(a/r)
. (2.54)

À partir de l’Éq. (2.42), en tenant compte du fait que la structure de fil est plongée dans un

milieu homogène hôte de permittivité εh et en considérant des fils sans pertes avec σ → ∞,

la permittivité effective pour la structure de fils peut s’écrire

εeff = εh −
ω2
p

ω2
(2.55)

où ω2
p est donné par l’Éq. (2.54). On note que la solution proposée par Pendry suppose qu’il

n’y a aucune variation en z. La solution proposée par Tretykakov n’a aucune variation en z

si on pose qz = 0. Dans ce cas, la permittivité effective proposée par Tretyakov, donnée par

l’Éq. (2.41), peut s’exprimer par l’Éq. (2.55) avec ω2
p donné par

ω2
p =

k2p
µ0ε0

=
2π

µ0ε0a2
(

ln a
2πr

+ 0.5275
) . (2.56)

L’analyse de Tretyakov que l’on retrouve dans [17] et ayant été publiée en 2003 repose

sur une solution entièrement électromagnétique du problème. Pour l’auteur du présent mé-

moire, le résultat de Tretyakov est plus exact et obtenu de manière plus rigoureuse que le

résultat obtenu par Pendry. En effet, selon [24], le modèle de Pendry ne tient pas compte de

l’interaction entre les fils métalliques. Les permittivités données par les deux modèles seront

comparées entre-elles ainsi qu’avec la permittivité obtenue par une méthode numérique à la

section suivante.

2.2 Extraction de paramètres effectifs

Dans cette section, on présente une méthode numérique permettant d’extraire les para-

mètres effectifs pour une structure périodique. Le logiciel d’éléments finis commercial HFSS

est utilisé afin de calculer les coefficients de réflexion et de transmission pour la structure
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périodique. À partir de ces coefficients, il est alors possible d’obtenir certaines informations

sur les paramètres effectifs que l’on peut associer à la structure périodique. Depuis les années

2000, avec l’attention qu’ont reçu les métamatériaux, plusieurs travaux ont été réalisées sur

l’extraction numérique des paramètres effectifs [25, 26, 27]. La méthode présenté ici est basée

sur une méthode proposée par Smith [28], reprise par Chen et al. [29] et inspirée des travaux

de Nicholson et Ross [30].

2.2.1 Théorie de la méthode d’extraction

La méthode d’extraction des paramètres effectifs pour une structure périodique est basée

sur l’idée que si la structure périodique est considérée comme un matériau homogène, alors

il est possible d’extraire de l’information sur les paramètres effectifs à partir des coefficients

de réflexion et de transmission. Considérons le problème classique d’une onde plane incidente

sur un matériau d’épaisseur d et ayant les paramètres µ2 et ε2 (région 2). Deux milieux semi-

infinis de paramètres µ1 et ε1 se trouvent de part et d’autre de ce matériau (régions 1 et 3).

Ce problème est illustré à la figure 2.4.

Γ
d

T

µ1, ε1, η1µ1, ε1, η1 µ2, ε2, η2
x

Région 1 Région 2 Région 3

Figure 2.4 Onde plane incidente sur un milieu de paramètres µ2 et ε2 et d’épaisseur d (région 2)
avec deux milieux semi-infinis de paramètres µ1 et ε1 de part et d’autre (régions 1 et 3).

Le champ électromagnétique dans les régions 1 et 2 est donné par la superposition d’une

onde se propageant vers les valeurs croissantes de z et d’une onde se propageant vers les

valeurs décroissantes de z alors que dans la région 3 seule une onde se propageant vers les

valeurs croissantes de z existe. En appliquant les conditions de continuité des champs aux

interfaces entre les régions, on obtient le coefficient de réflexion global à l’interface entre la

région 1 et la région 2 (voir par exemple [20] ou [31])

Γ =
(1− e−2jβd)Γ1,2

1− Γ2
1,2e

−2jβd
(2.57)
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où β = ω
√
µ2ε2 est la constante de propagation dans la région 2 et où

Γ1,2 =
η2 − η1
η2 + η1

(2.58)

est le coefficient de réflexion local entre les régions 1 et 2 si ceux si étaient semi-infinis (pas

de région 3), les impédances d’onde étant définies par η1 =
√

µ1

ε1
et η2 =

√

µ2

ε2
. Le coefficient

de transmission global est donné par [20], [31]

T =
(1− Γ2

1,2)e
−jβd

1− Γ2
1,2e

−2jβd
. (2.59)

Supposons maintenant, toujours en considérant le problème de la figure 2.4 avec des

matériaux homogènes, que les paramètres µ2 et ε2 du matériau de la région 2 sont inconnus

alors que les paramètres µ1 et ε1 des régions 1 et 3 sont connus. Suivant [26], voyons comment

il est possible, connaissant Γ et T , d’obtenir µ2 et ε2. Les Éqs. (2.57) et (2.59) sont combinées

afin d’obtenir une équation quadratique en Γ1,2

Γ2
1,2Γ− Γ1,2(1 + Γ2 − T 2) + Γ = 0 (2.60)

ainsi que l’expression suivante pour e−jβd :

e−jβd =
Γ + T − Γ1,2

1− (Γ + T )Γ1,2

. (2.61)

La solution de l’Éq. (2.60) est donnée par

Γ1,2 =
1 + Γ2 − T 2

2Γ
±

√

[

1 + Γ2 − T 2

2Γ

]2

− 1 (2.62)

où, en général, le signe devant la racine carrée peut être déterminé en sélectionnant celui qui

donne |Γ1,2| ≤ 1. Connaissant Γ1,2, l’Éq. (2.58) peut être inversée afin d’obtenir

η2 =

√

µ2

ε2
=

(1 + Γ1,2)

(1− Γ1,2)

√

µ1

ε1
. (2.63)

À partir de l’Éq. (2.61) avec β = ω
√
µ2ε2, on peut obtenir l’expression suivante

n2

c
=

√
µ2ε2 =

−1

jdω

[

ln |e−jβd|+ j arg(e−jβd)
]

. (2.64)

où n2 est l’indice de réfraction dans la région 2 et c = 1/
√
µ0ε0 est la vitesse de la lumière
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dans le vide. En combinant les Éqs. (2.63) et (2.64), on obtient les paramètres recherchés

ε2 =
n2/c

η2
et µ2 =

n2

c
η2. (2.65)

En examinant l’Éq. (2.64) qui détermine l’exposant complexe de la fonction exponentielle

e−jβd, on voit qu’il y a une ambigüıté de 2mπ (m = ±1,±2, . . .) pour la fonction arg(e−jβd).

Ainsi, la partie réelle de
√
µ2ε2 est donnée par

Re (
√
µ2ε2) =

−1

dω

[

Arg(e−jβd) + 2mπ
]

. (2.66)

où Arg() est la fonction argument principal qui retourne une valeur entre−π et π. La longueur

d’onde dans la région 2 étant donnée par λ2 =
2π

ω
√
µ2ε2

, l’Éq. (2.66) peut être écrite comme

d

λ2
= −

[

Arg(e−jβd)

2π
+m

]

. (2.67)

Pour une longueur d donnée, il faut choisir la bonne valeur de m afin d’obtenir la partie

réelle de l’indice de réfraction. Le choix de m peut être fait si on connâıt à l’avance la valeur

approximative de l’indice de réfraction (par exemple à partir de modèles théoriques). Aussi,

si la longueur d est suffisamment petite, il est fort probable que m = 0 donne la bonne valeur

de l’indice de réfraction. En effet, de l’Éq. (2.67) on a que si la longueur d est plus petite que

λ2 / 2, il faut choisir m = 0.

2.2.2 Extraction par une méthode numérique

Il a été vu que si on peut effectivement considérer la structure périodique comme un

matériau effectif homogène, il est possible d’obtenir des paramètres effectifs µeff et εeff en

calculant le coefficient de réflexion et de transmission pour cette structure. Les coefficients de

réflexion et de transmission peuvent être obtenus numériquement en solutionnant un problème

analogue à celui de la figure 2.4.

La figure 2.5 montre le modèle d’un tel problème réalisé avec le logiciel commercial d’élé-

ments finis HFSS. Une rangée de cellules unitaires est excitée par une onde transverse élec-

trique magnétique (TEM) incidente depuis le port 1. L’onde TEM est caractérisée par une

distribution uniforme des champs électrique et magnétique dans un plan transverse à la di-

rection de propagation. Une telle onde peut être supportée à l’intérieur d’un guide d’onde

constitué de deux murs métalliques parfaits conducteurs (PEC) en haut et en bas et de

deux murs conducteurs magnétiques parfaits (PMC) sur les côtés. Le champ électrique est

alors orienté verticalement, perpendiculaire aux murs PEC, tel que montré dans la figure 2.5.
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L’onde TEM supportée par ces guides d’onde est équivalente à une onde plane restreinte au

domaine défini par le guide d’onde. Deux guides d’ondes TEM de longueur l sont placés de

part et d’autre de la structure périodique à exciter.

La périodicité de la structure dans la direction transverse à la direction de propagation

est modélisée à l’aide de conditions aux frontières périodiques sur les côtés de la structure

périodique (voir [32] pour une discussion des conditions frontières périodiques dans la méthode

des éléments finis). Sur les frontières en haut et en bas des cellules unitaires de la structure

périodique, la condition frontière PEC est utilisée. Ceci est justifiable par le fait qu’avec

l’excitation TEM décrite plus haut, seuls des modes TMz (on assume que la direction z

est la direction de polarisation du champ ~E dans la figure 2.5) avec aucune variation en z

seront excités. Pour ces modes, le potentiel vectoriel magnétique n’a qu’une composante Az

qui ne dépend pas de la coordonnée z. Alors, selon l’Éq. (2.18), le champ ~E n’aura qu’une

composante selon z et la condition frontière PEC permet de délimiter le domaine de solution

sans influencer la configuration des champs dans la structure. En d’autres mots, en utilisant

la condition frontière PEC, on obtient le même résultat que si la structure était infinie dans

la direction z.

d

PEC x

Port 1

Port 2

PMC

PBC

l

l

~E

Figure 2.5 Modèle d’une rangée de cellules unitaires de longueur totale d dans HFSS. La
périodicité dans la direction transverse est modélisée par des conditions frontières périodiques
(PBC). La structure est excitée par une onde TEM générée à l’aide d’un guide d’onde PEC-
PMC.

À l’aide du solveur HFSS et du modèle de la figure 2.5, il est possible d’obtenir les para-

mètres S11 et S21 par rapport aux ports 1 et 2. Les coefficients de réflexion et de transmission

Γ et T équivalents à ceux définis pour le problème de la figure 2.4 peuvent être obtenus à

partir de S11 et de S21 en tenant compte de la longueur l entre les ports 1 et 2 et l’interface

entre la structure périodique et les guides d’ondes TEM. En supposant que les guides d’ondes
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TEM sont remplis d’un matériau homogène ayant les paramètres µ1 et ε1, la constante de

propagation dans ces guides d’ondes est βg = ω
√
µ1ε1. Les coefficients Γ et T sont alors

obtenus par une simple correction de phase

Γ = S11e
jβg2l et T = S21e

jβg2l. (2.68)

Il est alors possible, en suivant la procédure décrite précédemment, de calculer des paramètres

µeff et εeff pour la structure périodique.

Concernant l’ambigüıté dans le choix dem dans l’Éq. (2.67), on note que dans le cas d’une

structure périodique, la longueur d du matériau dont on veut extraire les paramètres ne peut

évidemment pas être inférieure à la longueur a d’une cellule unitaire et dépend en fait du

nombre de cellules unitaires qui sont simulées. Ainsi, la longueur d ne peut pas être choisie

arbitrairement petite de sorte qu’on ne peut pas toujours supposer m = 0. Aussi, l’extraction

est en général effectuée sur une certaine bande de fréquence. Cette bande de fréquence est

discrétisée en plusieurs points de fréquence également espacés et les paramètres S sont calculés

pour chacun de ces points. En pratique, on s’assure de déterminer la bonne valeur de m pour

l’un de ces points et les valeurs de m pour les autres points sont choisis automatiquement en

imposant la continuité de l’indice de réfraction n en fonction de la fréquence. La bonne valeur

de m pour l’un des points de fréquence peut être choisie en s’appuyant sur les paramètres

prédits par les modèles théoriques. Une autre méthode est de visualiser les champs à l’intérieur

de la structure périodique obtenus de la solution numérique d’une rangée de cellules unitaires.

La figure 2.6 montre l’amplitude du champ électrique à l’intérieur d’une rangée de dix cellules

unitaires d’une structure de fils métalliques de période a = 10 mm et avec un rayon des fils de

r = 0.545 mm à 3.5 GHz. On peut clairement identifier les maxima et les minima à l’intérieur

de la structure. On peut alors déduire la longueur d’onde effective de l’onde se propageant

dans la structure et la valeur de m adéquate.

2.2.3 Validité des paramètres effectifs, résultats et discussion

Jusqu’à maintenant, la méthode d’extraction a été présentée telle qu’on la retrouve gé-

néralement dans la littérature (e.g. [33, 34, 35]). Certains points importants concernant la

validité des paramètres extraits et l’interprétation qu’il faut leur donner ont toutefois été

omis. Le but de cette section est de clarifier ces points et de les illustrer par des résultats

obtenus à l’aide de la méthode numérique d’extraction des paramètres.

La première question qui sera discutée est celle des effets de bord et du nombre de cellules

unitaires utilisées pour construire la rangée de la figure 2.5 qui sert à l’extraction numérique

des paramètres. De manière générale, les théories servant à assigner des paramètres effectifs
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Figure 2.6 Amplitude du champ électrique à l’intérieur d’une rangée de cellules unitaires
pour la structure de fils métalliques avec une période a = 10 mm et avec un rayon des fils de
r = 0.545 mm à 3.5 GHz. Les minima (en bleu) et les maxima (en vert-rouge) de l’onde se
propageant dans la structure servent à déterminer la longueur d’onde effective.

pour une structure périodique sont développées en considérant une structure infinie. Ceci est

le cas pour les théories d’homogénéisation des champs servant à attribuer une permittivité et

une perméabilité aux matériaux conventionnels constitués de structures périodiques d’atomes.

Ceci est aussi le cas pour le modèle de Tretyakov pour la structure de fils métalliques présenté

plus haut. Dans ces modèles, on considère une cellule unitaire entourée d’une infinité d’autres

cellules unitaires qui interagissent toutes entre-elles. Lorsqu’on considère une structure de

taille finie et une cellule unitaire sur le bord de la structure, on voit que cette cellule unitaire

n’est pas entourée par une infinité d’autres cellules unitaires et on s’attend à ce que le modèle

pour la structure infinie ne soit plus valide. Pour les matériaux conventionnels, où la période

correspond à la distance interatomique et est de l’ordre de quelques Å, cet effet est négligeable

aux fréquences micro-ondes. En effet, aux fréquences micro-ondes la longueur d’onde est de

l’ordre de quelques cm ou mm et on voit que pour une pénétration de l’onde correspondant

à une très petite fraction de la longueur d’onde, on aura atteint les atomes qui sont entourés

d’un très grand nombre d’autres atomes, comme dans une structure infinie. L’effet de bord est

alors négligeable. Cependant, comme il a été noté par Drude [36], lorsque la longueur d’onde

se rapproche de la période de la structure, l’effet de bord doit être pris en compte. Il est

alors possible d’utiliser les couches de transitions de Drude [3] qui permettent de passer des

propriétés du milieu extérieur à la structure aux propriétés de la structure infinie de manière

graduelle. La prise en compte des effets de bord est capitale dans l’analyse de la réflexion et

de la transmission à l’interface entre une structure périodique et son milieu environnant.

Considérons une structure périodique de fils métalliques. Pour fixer les idées, considérons

une période a = 10 mm et un rayon des fils de r = 0.545 mm plongés dans un milieu hôte

avec une permittivité εh = 10.2. On s’intéresse alors aux fréquences de l’ordre de 1 GHz où



26

se produisent des phénomène intéressants tels qu’une permittivité effective εeff nulle. Pour

cette fréquence, la longueur d’onde dans le milieu hôte est λh = 94 mm. Cette longueur

d’onde n’étant qu’environ dix fois la période a, on peut s’attendre à avoir un effet de bord

important. Dans ce cas, on s’attend à ce que l’impédance effective η =
√

µeff/εeff obtenue

à partir de la méthode d’extraction ne donne pas une juste représentation de la réflexion

à l’interface entre le guide d’onde TEM et la structure périodique. Puisque le calcul des

paramètres individuels µeff et εeff dépendent de η, ceux-ci perdraient leur sens physique

en tant que paramètres effectifs. De même, l’effet de bord aurait un impact sur la quantité

n/c =
√
µeffεeff . Puisque cette quantité est obtenue dans la méthode d’extraction à partir

de la constante de propagation moyenne le long de la structure périodique, on peut voir l’effet

de bord comme un effet qui contamine la valeur n/c obtenue. Ce problème pourrait donc être

contourné en utilisant une rangée contenant un grand nombre de cellules unitaires. Ainsi, la

majorité des cellules unitaires pourraient être considérées comme étant entourées d’un grand

nombre de cellules unitaires, le nombre de cellules sur les bords ne composant qu’une fraction

négligeable de la rangée. Dans ce cas, à défaut de pouvoir attribuer une impédance effective

η à la structure périodique, on pourrait obtenir un indice de réfraction effectif donnant une

juste idée de la constante de propagation dans la structure (du moins loin des bords). On

note que cet indice de réfraction ne serait en général pas représentatif de la constante de

propagation dans les cellules unitaires près du bord et ne pourrait donc pas servir à calculer

un angle de réfraction à partir de l’équation classique de Snell-Descartes.

Voyons si l’effet de bord a effectivement les conséquences suggérées plus haut en consi-

dérant un exemple. La méthode d’extraction numérique est appliquée à trois rangées de la

structure périodique de fils métalliques. Ces trois rangées, composées de une, deux et dix

cellules unitaires sont montrées à la figure 2.7. Les paramètres S pour ces structures sont

calculés sur la plage de fréquence de 2 à 4.7 GHz et l’indice de réfraction n ainsi que l’im-

pédance caractéristique η sont obtenus à l’aide des Éqs. (2.64) et (2.63) respectivement. Les

résultats obtenus sont montrés à la figure 2.8. La bande de fréquences peut être divisée en

deux. Pour les fréquences supérieures à environ 2.9 GHz, n et η sont essentiellement réels et

correspondent à une bande de fréquences où il y a propagation dans la structure périodique.

On remarque que les résultats dans cette bande de fréquence ne dépendent pas du nombre de

cellules unitaires dans la rangée. En-dessous de 2.9 GHz, n est imaginaire ce qui correspond

à une bande de fréquences sans propagation. Dans ce cas, il y a une ambigüıté sur le signe

de la partie imaginaire de n et η qui semble provenir de l’ambigüıté sur le signe de la racine

carrée dans l’Éq. (2.62). Cependant, on note que mise à part cette ambigüıté sur le signe de la

partie imaginaire, les valeurs n et η semblent indépendantes du nombre de cellules unitaires

dans la rangée. Ceci implique que les paramètres effectifs εeff et µeff qui sont extraits sont
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indépendants du nombre de cellules unitaires. À partir de la discussion précédente sur l’effet

de bord et des résultats de la figure 2.8, il est naturel de se questionner sur la nature des pa-

ramètres extraits et de se demander si on peut interpréter les paramètres extraits εeff et µeff

au sens classique, c’est-à-dire comme représentant la polarisabilité électrique et magnétique

moyenne dans le volume d’une cellule unitaire plongée dans une structure périodique infinie.

a) b) c)

Figure 2.7 Modèles HFSS pour une rangée de cellules unitaires de la structure périodique de
fils métalliques. Les guides d’ondes TEM entre les ports et les cellules unitaires sont remplis
par un métériau ayant le permittivité et la perméabilité du vide. La période de la structure est
a = 10 mm et le rayon des fils est r = 0.545 mm. La permittivité du milieu hôte est εh = 10.2.
Les guides d’onde TEM sont remplis d’un matériau homogène ayant les paramètres du vide
et ont chacun une longueur l = 15 mm. a) Une cellule unitaire. b) Deux cellules unitaires. c)
Dix cellules unitaires.

Pour illustrer ces questions, la figure 2.9 montre la valeur relative (par rapport aux para-

mètres du vide) des paramètres effectifs donnés par εeff = n/η et µeff = nη. On note qu’à

partir de 4 GHz, la partie réelle de la permittivité décrôıt. Ceci contrevient au principe de

causalité selon lequel la partie réelle des paramètres classiques pour les matériaux conven-

tionnels crôıt toujours avec la fréquence dans les régions de fréquences où les pertes sont

négligeables [3]. Aussi, on note que la perméabilité a une valeur différente de la perméabilité

du vide (perméabilité relative égale à 1). Or dans la structure périodique de fils, les modèles

théoriques ne prévoient aucune polarisabilité magnétique. De ce point de vue, la perméabilité

montrée à la figure 2.9 est aberrante. Ainsi, on voit que les paramètres effectifs extraits ne

représentent pas la permittivité et la perméabilité au sens classique et ne correspondent pas

aux paramètres calculés à l’aide des modèles théoriques. Cependant, même si on ne peut pas

interpréter les paramètres effectifs extraits comme les paramètres effectifs classiques, faut-il

pour autant complètement les rejeter ou est-il possible de leur donner une interprétation

et/ou une utilité ?

Cette question a été étudiée par Simovski dans une série de travaux publiés de 2007

à 2009 [3, 37, 38, 39]. Dans ces travaux, Simovski affirme que pour un type de structure

périodique qu’il appelle réseau de Bloch (“Bloch lattice”), des paramètres effectifs qu’il appelle

paramètres de Bloch peuvent être définis. Ces paramètres de Bloch sont l’indice de réfraction
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Figure 2.8 Résultats de l’extraction numérique pour les rangées avec une, deux et dix cel-
lules unitaires telles que montrées à la figure 2.7. a) Partie réelle de l’indice de réfraction
n tel qu’obtenu par l’Éq. (2.64). b) Partie imaginaire de n. c) Partie réelle de l’impédance
caractéristique η telle que donnée par l’Éq. (2.63). d) Partie imaginaire de η.

(équivalent à la constante de propagation) et l’impédance de Bloch, ZB. Ces paramètres

correspondent respectivement à l’indice de réfraction n et à l’impédance caractéristique η

obtenus par la méthode d’extraction des paramètres. Pour les réseaux de Bloch, les paramètres

de Bloch contiennent l’information sur la réflexion et la transmission pour une cellule unitaire

et sont donc en fait équivalents à la matrice de transfert ABCD de la théorie des lignes de

transmission pour une cellule unitaire. Même si il est possible de calculer les paramètres

individuels εeff et µeff à partir des paramètres de Bloch (n et η = ZB), il n’est pas possible

de leur attribuer une signification physique.

Examinons un à la fois les deux paramètres de Bloch en commençant par n. Avec l’approxi-

mation selon laquelle l’onde se propageant dans la structure périodique est une onde plane
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Figure 2.9 Permittivité et perméabilité relatives obtenues à l’aide des paramètres S calculés
avec une rangée d’une cellule unitaire (figure 2.7 a) en ne considérant pas que la perméa-
bilité est celle du vide. a) Permittivité obtenue en divisant l’Éq. (2.64) par l’Éq. (2.63). b)
Perméabilité obtenue en multipliant l’Éq. (2.63) avec l’Éq. (2.64)

avec la dépendance spatiale e−j~q·~r, correspondant à l’harmonique de Floquet fondamentale,

on voit que n contient l’information sur la constante de propagation ~q. Par exemple, pour une

propagation selon x, les deux sont liés par qx = wn/c où c est la vitesse de la lumière dans

le vide. La constante de propagation obtenue par la méthode numérique d’extraction corres-

pond à la même quantité que la constante de propagation qu’il est possible de déterminer à

l’aide des modèles théoriques. Pour démontrer ceci, on peut calculer une valeur εeff corres-

pondant à la permittivité requise pour obtenir la valeur extraite de l’indice de réfraction n

en considérant µeff = 1. On a alors n =
√
µeffεeff . Puisque les modèles théoriques prédisent

une perméabilité effective µeff = 1, on s’attend à avoir une correspondance entre la valeur de

εeff ainsi calculée et la permittivité prédite par les modèles de Pendry et de Tretyakov. Cette

valeur de εeff est comparée aux permittivités des modèles théoriques dans la figure 2.10 (pour

le modèle de Tretyakov, on considère aucune variation en z, c’est-à-dire qz = 0). On voit qu’il

y une bonne correspondance entre la permittivité obtenue numériquement et la permittivité

prédite théoriquement par le modèle de Tretyakov qui est plus rigoureux que celui de Pendry.

Il est important de noter que la valeur de εeff obtenue numériquement a ici une signification

physique uniquement parce qu’on sait à l’avance par les modèles théoriques qu’on a µeff = 1.

Si εeff est calculé à partir des paramètres de Bloch extraits numériquement en divisant n par

η = ZB, on obtient des valeurs différentes pour εeff , tel que montré à la figure 2.9.

Si le paramètre de Bloch n correspond exactement à l’indice de réfraction prévu par
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Méthode d’extraction numérique

Figure 2.10 Permittivité effective obtenue des modèles de Pendry et de Tretyakov et permit-
tivité obtenue en considérant l’indice de réfraction n de la méthode d’extraction numérique
(utilisant une rangée d’une seule cellule unitaire) avec µeff = 1 pour la structure périodique
de fils avec r = 0.545 mm, a = 10 mm et εh = 10.2.

les modèles théoriques, le cas de l’impédance de Bloch ZB nécessite plus de précaution. En

effet, il y a ici deux quantités en jeu. La première est ZB, qui correspond à l’impédance η

extraite avec la méthode numérique. La seconde est l’impédance caractéristique théorique

ηth =
√

µeff/εeff où µeff et εeff sont les paramètres effectifs obtenus théoriquement. Les

quantités ZB et ηth ont en général des valeurs numériques différentes et représentent deux

quantités conceptuellement différentes. Pour les matériaux conventionnels, ηth est utilisée

pour prédire la réflexion d’une onde à l’interface entre deux matériaux. Pour une structure

périodique dont la période est comparable à la longueur d’onde, cette approximation n’est

plus valide et la quantité ηth perd son utilité. Pour traiter le problème de la réflexion à un

interface, il faut utiliser la quantité ZB.

La quantité ZB ne correspond pas, comme on pourrait s’y attendre, au ratio de l’amplitude

des harmoniques de Floquet fondamentales du champ électrique et du champ magnétique

[37]. Simovski définit ZB comme le ratio de la moyenne du champ électrique et du champ

magnétique dans un plan transverse à la direction de propagation évalué à la frontière d’une

cellule unitaire. Par exemple, pour une direction de propagation selon x et une cellule unitaire
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s’étendant de x = 0 à x = a, l’impédance de Bloch est définie par

ZB =
ETA(x = 0)

HTA(x = 0)
(2.69)

où ETA et HTA sont la moyenne des champs électrique et magnétique dans le plan yz de

la cellule unitaire. En fait, ZB peut être associée à l’impédance définie pour les lignes de

transmission qui correspond au ratio de la tension sur le courant [2]. Il est intéressant de

noter que la définition de l’Éq. (2.69) pour ZB et le ratio des amplitudes des harmoniques

de Floquet fondamentales du champ électrique et du champ magnétique sont équivalentes

lorsque a/λh << 1 où λh est la longueur d’onde dans le milieu hôte [37]. Cette condition n’est

cependant pas satisfaite pour les matériaux effectifs tels que la structure de fils considérée

dans le présent chapitre.

Dans son article [37], Simovski montre que le coefficient de réflexion entre une région 1

constituée d’un matériau homogène caractérisé par l’impédance caractéristique η1 =
√

µ1/ε1

et une région 2 correspondant à un réseau de Bloch est :

Γ1,2 =
ZB − η1
ZB + η1

. (2.70)

Ainsi, à partir du paramètre de Bloch ZB = η extrait de la méthode numérique, il est

possible de calculer le coefficient de réflexion à l’interface avec un matériau homogène. Sur

le plan pratique, on voit donc que le paramètre ZB est très important et permet d’adapter

une structure périodique (si celle-ci est un réseau de Bloch). Considérons par exemple les

paramètres n et ZB = η extraits montrés à la figure 2.8. Ces paramètres sont obtenus à partir

des paramètres S obtenus numériquement avec des guides d’onde TEM de longueur l = 15 mm

remplis d’un matériau ε = 1 et µ = 1 et sont indépendants du nombre de cellules unitaires

utilisées dans la rangée. À 3.45 GHz, ces paramètres sont n = 1.869 et ZB = 0.8391+0.0012j.

Voyons si il est possible d’utiliser l’Éq. (2.70) pour prédire correctement la valeur du paramètre

S11 pour des guides d’ondes TEM remplis d’un matériau homogène avec des paramètres

arbitraires comme ε = 3 et µ = 8 et pour une rangée de deux cellules unitaires. On peut

alors calculer S11 à partir de l’Éq. (2.57) en tenant compte de la variation de phase dans les

guides d’onde TEM avec l’Éq. (2.68). Dans l’Éq. (2.57), β est la constante de propagation

dans la structure périodique associée à n, d est la longueur de la structure périodique, soit

20 mm pour une rangée de deux cellules unitaires, et Γ1,2 est donnée par l’Éq. (2.70). La

valeur calculée dans ce cas est S11 = −0.1827 − 0.2269j. La valeur obtenue de la solution

numérique de ce problème avec HFSS est S11 = −0.1845− 0.2369j.

Jusqu’à maintenant, il a été supposé que la structure de fils métalliques est un réseau
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de Bloch sans toutefois le justifier. Aussi, la définition d’un réseau de Bloch n’a pas encore

été donnée. Les réseaux de Bloch sont définis comme étant une structure périodique pour

laquelle l’interaction entre les cellules unitaires ne modifie par les caractéristiques de trans-

mission et de réflexion (c’est-à-dire les paramètres de Bloch) d’une cellule unitaire unique.

Pour montrer que l’interaction entre les cellules unitaires ne modifie pas les paramètres de

Bloch pour une structure périodique donnée et donc que cette structure périodique est un

réseau de Bloch, Simovski compare l’équation de dispersion de la structure périodique avec

l’équation de dispersion d’une ligne de transmission chargée périodiquement par une impé-

dance (“periodically loaded transmission line”) [37]. Pour une telle ligne de transmission, les

coefficients de la matrice de transfert ABCD d’une cellule unitaire ne dépendent pas de la

constante de propagation ~q de l’harmonique de Floquet fondamentale et ne sont donc pas

affectés par l’interaction avec les autres cellules unitaires. Lorsque la relation de dispersion

d’une structure périodique a la même forme que celle d’une ligne de transmission chargée

périodiquement, on peut conclure que les paramètres de Bloch ne varient pas à cause des

interactions et donc que cette structure est un réseau de Bloch. Simovski a montré [37, 39]

que si une cellule unitaire de la structure périodique peut être modélisée par un dipôle ou

une ligne de courant, alors la structure périodique est un réseau de Bloch. Dans ce cas, l’in-

teraction entre les cellules unitaires ne modifie pas les paramètres de Bloch et ceux-ci sont

constants, peu importe le nombre de cellules unitaires le long de la direction de propagation.

Puisque la structure de fils métalliques peut être modélisée par une ligne de courant au centre

de la cellule unitaire, il s’agit d’un réseau de Bloch et les paramètres de Bloch extraits par

la méthode numérique sont indépendants du nombre de cellules unitaires employé, tel que

montré à la figure 2.8.

Ayant montré que sur le plan pratique, lorsqu’on désire utiliser une structure périodique

dans un dispositif micro-ondes, celle-ci devant nécessairement être finie et avoir des interfaces

avec les autres matériaux constituant le dispositif, les paramètres à considérer sont les para-

mètres de Bloch n et ZB = η. On peut alors se demander quelle est la pertinence des modèles

théoriques qui considèrent une structure périodique infinie et lui attribuent les paramètres

effectifs εeff et µeff . En effet, on a vu que l’indice de réfraction n =
√
εeffµeff correspond

alors au paramètre de Bloch n mais que l’impédance ηth =
√

µeff/εeff ne correspond pas à

l’impédance de Bloch ZB et n’est d’aucune utilité pour résoudre les problèmes de réflexion

et de transmission aux interfaces. Un élément de réponse est que les modèles théoriques per-

mettent de déterminer l’indice de réfraction pour une structure périodique infinie et qu’en

négligeant les effets de bord (ou si on considère une structure périodique qui est un réseau de

Bloch), cette quantité est valide et utile. Un autre élément de réponse est que les paramètres

de Bloch sont des paramètres non-locaux, c’est-à-dire qu’ils dépendent de la constante de pro-
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pagation ~q effective dans la structure. Par exemple, les paramètres de Bloch seront différents

pour différents angles d’incidence d’une onde plane incidente sur la structure périodique. Les

paramètres théoriques εeff et µeff sont des paramètres locaux (en fait, le modèle de Tretya-

kov montre que pour la structure de fils, εeff est un paramètre local seulement si qz = 0) qui

relient la moyenne des champs électrique et magnétique dans le volume d’une cellule unitaire

avec la polarisabilité électrique et magnétique de la cellule unitaire. Ainsi, les paramètres ef-

fectifs locaux εeff et µeff ont un sens dans le contexte des équations de Maxwell, ce qui n’est

pas le cas pour les paramètres de Bloch. On note que Simovski a proposé une procédure pour

extraire des paramètres locaux à partir des paramètres extraits par la méthode d’extraction

numérique [3].

Un autre phénomène dont il faut tenir compte lors de l’analyse d’une structure périodique

en tant que matériau homogène effectif est le régime de Bragg. Le régime de Bragg se produit

lorsque les ondes dispersées (“scattered”) dans chaque cellule unitaire interfèrent de manière

constructive. Avant d’énoncer la loi de Bragg, on définit la notion de famille de plans d’une

matrice tridimensionnelle. Toute matrice tridimensionnelle peut être décomposée en une fa-

mille de plans parallèles les uns aux autres contenant chacun une tranche des points de la

matrice. Tous les points de la matrice tridimensionnelle sont contenus dans une telle famille

de plan et chacun de ces plans forme en fait une matrice bidimensionnelle. Selon la loi de

Bragg, pour une structure tridimensionnelle et une famille de plans donnée, il y a interférence

constructive lorsque [18]

mλ = 2d sin θ (2.71)

où d est la distance entre deux plans et θ est l’angle que fait l’onde incidente avec les plans.

Pour des structures périodiques bidimensionnelles comme celles considérées dans ce mémoire,

au lieu d’avoir des familles de plans, on a plutôt des familles de lignes, comme montrées à la

figure 2.11. Cependant, l’Éq. (2.71) demeure valide et pour une onde incidente perpendiculaire

à une famille de ligne donnée, la réflexion de premier ordre (m = 1) se produit lorsque

λ = 2d. (2.72)

L’Éq. (2.72) avec la distance entre les lignes d correspondant à la famille de lignes où les

lignes sont le plus espacées indique la plus grande longueur d’onde pour laquelle on aura une

interférence constructive ou réflexion de Bragg. Dans le cas d’une matrice carrée comme celle

de la figure 2.11, cette distance est d = a.

Le régime de Bragg est le phénomène dominant dans l’analyse de l’interaction d’une

onde électromagnétique avec une structure périodique lorsque la longueur d’onde est égale
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a = d1
d2

Figure 2.11 Deux familles de lignes pour une matrice carrée bidimensionnelle de période a.
La première famille correspond aux lignes verticales et la distance entre les lignes est d1 = a.
La seconde famille correspond aux lignes obliques et la distance entre les lignes est d2.

ou plus petite que λ telle que donnée par l’Éq. (2.72). La longueur d’onde à considérer

pour ce critère est en général λh, la longueur d’onde dans le milieu hôte, sauf si on peut

considérer la structure périodique comme un matériau effectif, c’est-à-dire si λh est plus

petite que 2a, et que la longueur d’onde effective λeff est plus petite que λh, comme c’est

le cas par exemple près de la fréquence de résonance des inclusions qui consituent certaines

structures périodiques [3]. Lorsqu’on est en régime de Bragg, les paramètres effectifs perdent

leur signification. Lorsque la longueur d’onde λ (λh ou λeff , selon le cas) est plus grande

que 2a, on est en dehors du régime de Bragg et on peut attribuer des paramètres effectifs

à la structure périodique. La figure 2.12 illustre le cas du régime de Bragg et le régime où

l’on peut traiter la structure périodique comme un matériau effectif. Pour la structure de fils

métalliques de période a = 10 mm plongés dans un milieu hôte de permittivité εh = 10.2, le

régime de Bragg commence lorsque λh = 20 mm, ce qui correspond à la fréquence 4.7 GHz.

C’est pour cette raison que les résultats montrés aux figures 2.8, 2.9 et 2.10 sont limités aux

fréquences inférieures à 4.7 GHz. Au-delà de 4.7 GHz, la méthode d’extraction donne des

résultats aberrants.

2.3 Application : résonateur ε = 0 à taille indépendante

Dans cette section, on présente un résonateur micro-ondes qui contient une structure pé-

riodique de fils métalliques [40]. Cette structure périodique est considérée comme un matériau

effectif avec une permittivité effective εeff . La fréquence d’opération correspond à εeff = 0

ce qui fait que la longueur d’onde effective λeff dans la structure périodique est infinie. Ceci

permet d’utiliser une structure périodique de taille arbitraire et ainsi d’obtenir un résonateur

dont la fréquence de résonance ne dépend pas de la taille physique totale du résonateur.
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Figure 2.12 Régime de Bragg dans une structure périodique. a)Le régime de Bragg est le
phénomène dominant car a ≈ λeff . b)Pas de régime de Bragg car a << λeff : la structure
peut être considérée comme un matériau effectif. Adaptée de ”EBGs and Metamaterials :
Concepts, Structures and Applications”, EuCAP 2009, par C. Caloz.

2.3.1 Principe du résonateur

Le résonateur à taille indépendante est montré à la figure 2.13. Il comprend 9 régions

diélectriques (non-magnétiques). La région du centre est constituée d’une structure périodique

de fils métalliques, telle que montrée à la figure 2.1 et opérant à la fréquence correspondant

à une permittivité effective ε2 = 0. Les régions sur les côtés sont constituées d’un matériau

diélectrique homogène de permittivité ε1 tandis que les régions dans les coins sont constituées

d’un diélectrique homogène de permittivité ε3. Les permittivités ε1 et ε3 sont choisies afin de

satisfaire la condition de séparabilité

ε3 = 2ε1 − ε2. (2.73)

Cette condition, énoncée dans [41], permet d’obtenir la solution électromagnétique du pro-

blème de la figure 2.13 par la méthode de séparation des variables. La condition de séparabilité

sera obtenue à la section 2.3.3 lorque la solution par séparation de variables sera présentée.

Comme il a été noté dans [42], cette condition peut aussi être interprétée comme permettant

d’éviter la diffraction aux interfaces en coin du résonateur. Toutes les surfaces extérieures du

résonateur sont couvertes par un conducteur métallique parfait (PEC).

2.3.2 Propriétés de la structure périodique de fils

Pour la structure périodique de fils de la région 5, on utilise une période a = 10.9 mm,

un rayon des fils de r = 0.32 mm et un milieu hôte de permittivité εh = 10.2. La figure 2.14

montre les permittivités effectives prédites par les modèles de Tretyakov et de Pendry, données
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Figure 2.13 Le résonateur est divisé en 9 régions. La région du centre est la région de per-
mittivité ε2 = 0. Les autres régions ont des permittivités ε1 et ε3 satisfaisant la condition de
séparabilité. Le résonateur a une épaisseur qui s’étend de z = 0 à z = g.

par l’Éq. (2.55) avec les Éqs. (2.56) et (2.54) respectivement, pour une telle structure de fils.

Le modèle de Tretyakov, qui est plus rigoureux (et qui est plus proche de la permittivité

effective obtenue de la méthode d’extraction numérique, comme montré à la figure 2.10)

prédit une permittivité effective nulle à 2.29 GHz. Le modèle de Pendry prédit une fréquence

inférieure à cette valeur de 0.47 GHz. Le fait que le modèle de Tretyakov est bien le modèle

qu’il faut utiliser sera montré à la section 2.3.4 où des résultats numériques obtenus à l’aide

du solveur HFSS qui confirment le comportement εeff = 0 à 2.29 GHz seront présentés.

2.3.3 Analyse modale

Dans cette section, les expressions des champs pour les modes supportés par le résonateur

de la figure 2.13 sont obtenues. Tout d’abord, une analyse sera effectuée sans assumer de valeur

spécifique pour la permittivité de la région centrale ε2. Les modes qui sont indépendants de

la taille physique de la région centrale sont alors obtenus en posant ε2 = 0. Seuls des modes

TMz seront considérés pour lesquels il n’y a aucune variation en z ce qui implique que le

champ électrique a seulement une composante Ez. Ces conditions sont nécessaires pour que

la permittivité effective de la figure 2.14 soit valide.

Pour obtenir des expressions pour les champs électriques et magnétiques, une approche

possible consiste à solutionner le problème en terme du potentiel vectoriel magnétique ~A pour

ensuite déterminer ~E et ~H [16]. Sous la jauge de Lorentz, pour les modes TMz le potentiel

vectoriel magnétique a une seule composante Az

~A = Az(x, y, z)ẑ (2.74)
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Figure 2.14 Permittivité effective de la structure de fils de la région 5 du résonateur selon les
modèles de Tretyakov et de Pendry. La structure de fils considérée a une période a = 10.9 mm,
un rayon des fils r = 0.32 mm et un milieu hôte de permittivité εh = 10.2.

et les champs magnétiques et électriques sont donnés par

~H =
1

µ
∇× ~A (2.75)

~E = −jω ~A− j
1

ωµε
∇(∇ · ~A). (2.76)

Dans un milieu homogène sans source, ~A satisfait l’équation d’onde

∇2Az(x, y, z) + k2Az(x, y, z) = 0 (2.77)

où k = ω
√
µε. Cette équation peut être résolue par la méthode de séparation des variables

selon laquelle une solution de la forme Az(x, y, z) = X(x)Y (y)Z(z) est supposée.

Pour chaque région i (i = 1, 2, . . . , 9) de la figure 2.13, on définit le potentiel vectoriel

magnétique ~Ai = Aziẑ. En supposant que la séparation des variables peut être utilisée dans

chacune des régions, on a

Azi = Xi(x)Yi(y)Zi(z) (2.78)

qui doit satisfaire l’Éq. (2.77) pour chaque i. Cependant, en général les conditions frontières

entre les différentes régions du résonateur rendent le problème impossible à résoudre par

séparation des variables. Malgré cela, comme il sera montré plus bas, sous certaines conditions
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le problème peut être rendu séparable.

En assumant pour le moment que le problème est séparable, en insérant l’Éq. (2.78) dans

l’Éq. (2.77), on obtient pour chaque région i

X ′′
i (x)

Xi(x)
+
Y ′′
i (y)

Yi(y)
+
Z ′′

i (z)

Zi(z)
+ k2i = 0 (2.79)

où ki = ω
√
µεi. Puisque chaque terme dans l’Éq. (2.79) doit être une constante des coordon-

nées de l’espace (x, y, z), on pose

X ′′
i (x)

Xi(x)
= −k2xi,

Y ′′
i (y)

Yi(y)
= −k2yi,

Z ′′
i (z)

Zi(z)
= −k2zi (2.80)

et l’Éq. (2.79) devient

k2xi + k2yi + k2zi = k2i . (2.81)

Puisque la structure analysée est un résonateur, on s’attend à ce que les solutions Azi soient

des ondes stationnaires. Ainsi, les solutions générales des Éqs. (2.80) sont écrites sous la forme

Xi(x) = Ai sin(kxix) + Bi cos(kxix) (2.82)

Yi(y) = Ci sin(kyiy) +Di cos(kyiy) (2.83)

Zi(z) = Ei sin(kziz) + Fi cos(kziz). (2.84)

De ces expressions pour ~Ai, il est possible de trouver des expressions pour ~E et ~H et

d’appliquer les conditions frontières adéquates afin de déterminer toutes les constantes de Ai

jusqu’à Fi. D’abord, on trouve l’expression de la composante z du champ électrique à l’aide

de l’Éq. (2.76)

Ezi =
−j
ωµεi

(

∂2

∂z2
Azi + k2iAzi

)

(2.85)

d’où on a

Ezi =
−j
ωµεi

Xi(x)Yi(y)Zi(z)(k
2
i − k2zi). (2.86)

Par la condition selon laquelle la composante tangentielle du champ ~E doit être continue aux

interfaces entre les 9 régions de la structure, il est possible de montrer que kxi doit être continu

aux interfaces parallèles à la direction x̂ et que similairement, kyi et kzi doivent être continus

aux interfaces parallèles à ŷ et ẑ respectivement. Ce fait peut être accepté intuitivement,

mais une démonstration est tout de même proposée en annexe. À cause de cette condition de

continuité, les kzi de toutes les régions doivent être égaux et on a kzi = kz. Aussi, on obtient
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les égalités suivantes pour les kxi et les kyi

kx1 = kx4 = kx7 ky1 = ky2 = ky3

kx2 = kx5 = kx8 ky4 = ky5 = ky6 (2.87)

kx3 = kx6 = kx9 ky7 = ky8 = ky9.

En considérant ces relations dans l’écriture de l’Éq. (2.81) dans chaque région, on obtient

① k2x1 + k2y1 + k2z = ω2µoε3 (2.88)

② k2x2 + k2y1 + k2z = ω2µoε1 (2.89)

③ k2x3 + k2y1 + k2z = ω2µoε3 (2.90)

④ k2x1 + k2y4 + k2z = ω2µoε1 (2.91)

⑤ k2x2 + k2y4 + k2z = ω2µoε2 (2.92)

⑥ k2x3 + k2y4 + k2z = ω2µoε1 (2.93)

⑦ k2x1 + k2y7 + k2z = ω2µoε3 (2.94)

⑧ k2x2 + k2y7 + k2z = ω2µoε1 (2.95)

⑨ k2x3 + k2y7 + k2z = ω2µoε3 (2.96)

En examinant ces équations, deux relations additionnelles reliant les différents kxi et kyi

peuvent être obtenues. En effet, en soustrayant l’Éq. (2.90) de l’Éq. (2.88), on obtient

kx1 = kx3. (2.97)

Similairement, en soustrayant l’Éq. (2.95) de l’Éq. (2.89), on a

ky1 = ky7. (2.98)

Jusqu’à maintenant, il a été supposé que le problème est séparable et que l’Éq.(2.78) est

une expression valide pour les solutions Azi. Montrons sous quelle condition cette supposition

est valide (voir aussi [41]). Cette condition de séparabilité peut être obtenue en considérant

les régions 1, 2, 4 and 5 formant un coin (ou tout autre ensemble de régions formant un tel

coin). En soustrayant l’Éq. (2.92) de l’Éq. (2.91) ainsi que l’Éq. (2.89) de l’Éq. (2.88), on
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obtient

k2x1 − k2x2 = ω2µo(ε1 − ε2) (2.99)

et

k2x1 − k2x2 = ω2µo(ε3 − ε1). (2.100)

La comparaison de l’Éq. (2.99) avec l’Éq. (2.100) montre que la condition suivante doit être

satisfaite

ε1 − ε2 = ε3 − ε1 ⇒ ε3 = 2ε1 − ε2. (2.101)

Cette condition est appellée condition de séparabilité car elle découle du fait que le problème

a été supposé séparable [Éq. (2.78)] et elle doit être satisfaite pour que les conditions aux

frontières imposées par les équations de Maxwell puissent être satisfaites.

Jusqu’à maintenant, on a considéré des solutions générales pour lesquelles il peut y avoir

des variations en z. La composante Ex du champ électrique dans chaque région peut être

obtenue à partir de l’Éq. (2.76) et peut être écrite comme

Exi = − j

ωµǫi

∂2

∂x∂z
Azi (2.102)

d’où on a

Exi = − j

ωµǫi
kxi[Ai cos(kxix)−Bi sin(kxix)][Ci sin(kyiy)

+Di cos(kyiy)]kz[Ei cos(kzz)− Fi sin(kzz)]. (2.103)

On voit qu’en général, en imposant la la condition Exi = 0 à z = 0, on obtient Ei = 0. En

imposant la même condition à z = g, on obtient

kz =
mπ

g
, m ∈ Z. (2.104)

Dans le cas présent, on s’intéresse aux modes sans variation en z et on pose kz = 0. De

l’Éq. (2.103), on voit alors que Exi = 0. Similairement, Eyi est donnée par

Eyi = − j

ωµǫi

∂2

∂y∂z
Azi (2.105)

et est 0 lorsque kz = 0. Aussi, lorsque kz = 0, l’expression pour Ezi donnée par l’Éq. (2.86)

devient

Ezi = −jωXi(x)Yi(y)Zi(z) (2.106)
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où on a utilisé la relation ki = ω2µεi.

À présent, on considère le cas où la région 5 du résonateur est occupée par une structure

de fils métalliques opérant à la fréquence correspondant à εeff = 0. Dans ce cas, on peut écrire

ε2 = 0 et de l’Éq. (2.81), on a kx5 = ky5 = 0. Aussi, dans ce cas la condition de séparabilité

devient ǫ3 = 2ǫ1. Puisque kx5 = 0 implique kx2 = 0 par l’Éq. (2.87), on a que l’Éq. (2.88) et

l’Éq. (2.89) deviennent respectivement

k2x1 + k2y1 = ω2µoǫ3 (2.107)

k2y1 = ω2µoǫ1 (2.108)

En utilisant la condition de séparabilité ǫ3 = 2ǫ1 et en soustrayant l’Éq. (2.108) de l’Éq. (2.107),

on obtient

k2x1 = ω2µ0ǫ1. (2.109)

Par comparaison avec l’Éq. (2.108), on voit qu’en fait on a kx1 = ky1 que l’on note kxy pour

plus de simplicité. Ainsi, les composantes des vecteurs de propagation dans les différentes

régions ont toutes la valeur kxy ou 0 et sont données par

kx1 = kx4 = kx7 = kx3 = kx6 = kx9 = kxy

ky1 = ky2 = ky3 = ky7 = ky8 = ky9 = kxy (2.110)

kx2 = kx5 = kx8 = ky4 = ky5 = ky6 = 0.

À présent, il est pratique d’écrire les expressions pour la composante Ezi du champ élec-

trique dans chaque région. En utilisant l’Éq. (2.106) et l’identité trigonométrique

A sin(kxyx) + B cos(kxyx) = G sin(kxyx+ θ) (2.111)

où θ = arctan(B/A) et G =
√
A2 +B2, on peut écrire la composante Ezi du champ électrique
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dans chaque région comme

① Ez1 = G1 sin(kxyx) sin(kxyy) (2.112)

② Ez2 = G2 sin(kxyy) (2.113)

③ Ez3 = G3 sin(kxyx+ θ3) sin(kxyy) (2.114)

④ Ez4 = G4 sin(kxyx) (2.115)

⑤ Ez5 = G5 (2.116)

⑥ Ez6 = G6 sin(kxyx+ θ6) (2.117)

⑦ Ez7 = G7 sin(kxyx) sin(kxyy + θ7) (2.118)

⑧ Ez8 = G8 sin(kxyy + θ8) (2.119)

⑨ Ez9 = G9 sin(kxyx+ θ9) sin(kxyy + θ9) (2.120)

où les Gn et les θn sont des constantes. Ces constantes peuvent être déterminées en appliquant

les conditions frontières pour les différentes régions. Par exemple, pour la région 3 on a

Ez3 = G3 sin

[

kxy

(

x+
θ3
kxy

)]

sin(kxyy). (2.121)

En appliquant la condition frontière Ez3 = 0 à x = c pour tout y de la région 3, on obtient

sin

[

kxy

(

c+
θ3
kxy

)]

= 0 (2.122)

et donc

kxy

(

c+
θ3
kxy

)

= mπ ⇒ θ3 = mπ − ckxy, m ∈ Z. (2.123)

Pour toutes les valeurs de m, on voit que l’Éq. (2.121 peut être écrite comme

Ez3 = G3 sin[kxy(x− c)] sin(kxyy) (2.124)

où la constante G3, pour le moment indéterminée, absorbe le signe − pour les valeurs impaires

de m. Procédant de la même façon pour chacune des autres régions, le champ Ez peut être
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réécrit comme

① Ez1 = G1 sin(kxyx) sin(kxyy) (2.125)

② Ez2 = G2 sin(kxyy) (2.126)

③ Ez3 = G3 sin[kxy(x− c)] sin(kxyy) (2.127)

④ Ez4 = G4 sin(kxyx) (2.128)

⑤ Ez5 = G5 (2.129)

⑥ Ez6 = G6 sin[kxy(x− c)] (2.130)

⑦ Ez7 = G7 sin(kxyx) sin[kxy(y − f)] (2.131)

⑧ Ez8 = G8 sin[kxy(y − f)] (2.132)

⑨ Ez9 = G9 sin[kxy(x− c)] sin[kxy(y − f)]. (2.133)

Le champ ~H correspondant dans chaque région peut être obtenu de l’équation de Maxwell

~Hi =
j

ωµ
∇× ~Ei. (2.134)

Pour la composante Hy, dans chacune des régions on a

① Hy1 =
−j
ωµ

G1kxy cos(kxyx) sin(kxyy) (2.135)

② Hy2 = 0 (2.136)

③ Hy3 =
−j
ωµ

G3kxy cos[kxy(x− c)] sin(kxyy) (2.137)

④ Hy4 =
−j
ωµ

G4kxy cos(kxyx) (2.138)

⑤ Hy5 = 0 (2.139)

⑥ Hy6 =
−j
ωµ

G6kxy cos[kxy(x− c)] (2.140)

⑦ Hy7 =
−j
ωµ

G7kxy cos(kxyx) sin[kxy(y − f)] (2.141)

⑧ Hy8 = 0 (2.142)

⑨ Hy9 =
−j
ωµ

G9kxy cos[kxy(x− c)] sin[kxy(y − f)]. (2.143)

Des expressions similaires peuvent être obtenues pour les composantesHx. PuisqueHy1 = Hy2

à x = a pour toutes les valeurs de y à l’interface entre les régions 1 and 2, on voit que

−j
ωµ

G1 cos(kxya) sin(kxyy) = 0 ⇒ cos(kxya) = 0.
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Ainsi, les valeurs admissibles pour kxya sont

kxya = ±π
2
,
3π

2
,
5π

2
, . . . (2.144)

L’application de la condition de continuité de la composante tangentielle de ~H aux interfaces

entre les autres régions mène à la conclusion que kxy(c − b), kxyd et kxy(f − e) doivent

satisfaire la même condition que kxya donnée par l’Éq. (2.144). Ainsi, pour que les modes

analysés jusqu’à présent existent, il faut que la longueur des régions entourant la région 5

dans la figure 2.13 soient un multiple impair de ±π/(2kxy) où kxy = kx1 = ky1 est défini par

l’Éq. (2.108). En mots, cette condition exprime simplement le fait que la longueur des bords

du résonateur doit être un multiple impair d’un quart de longueur d’onde afin que le champ

électrique puisse être nul aux frontières externes du résonateur et maximal aux interfaces

avec la région centrale où le champ électrique est uniforme et le champ magnétique est nul.

La dernière étape de l’analyse consiste à relier les constantes Gi entre-elles. Ceci peut

être fait en appliquant la condition de continuité de Ezi aux interfaces entre les différentes

régions. Il est alors facile de vérifier que Gi = ±G où le signe dépend de la longueur de la

région en question et donc du multiple impair de ±π/(2kxy) qui est choisit pour a, (c− b), d

and (f −e). Ceci correspond simplement au fait que les champs ~E et ~H doivent être continus

partout à l’intérieur du résonateur.

2.3.4 Résultats numériques

Afin de valider l’analyse présentée à la section précédente, le solveur éléments finis HFSS

est utilisé afin d’obtenir la solution numérique des champs dans le résonateur de la figure 2.13.

Plus spécifiquement, le solveur eigenmode de HFSS qui donne les solutions du problème sans

source est utilisé. La figure 2.15 montre les distributions de champs obtenues numérique-

ment pour différentes configurations du résonateur. Les distributions de champs analytiques

données aux Éqs. (2.125) à (2.133) pour Ez et aux Éqs. (2.135) à (2.143) pour Hy ne sont

pas montrées mais il a été vérifié qu’elles correspondent très bien aux distributions de la

figure 2.15. La seule différence est que dans la région du centre où une structure de fils est

utilisée, les champs ne sont pas parfaitement uniformes ; seule la moyenne spatiale des champs

est uniforme. Pour tous les résonateurs, les régions composant les bords ont des permittivités

ε1 = 5.1 et ε3 = 10.2 qui satisfont la condition de séparabilité ε3 = 2ε1.

La figure 2.15 a) montre l’amplitude du champ Ez pour un résonateur pour lequel la région

centrale est constituée d’un matériau homogène fictif dont la permittivité est nulle. Pour les

autres figures, la région centrale est constituée d’une structure périodique de fils ayant les

même paramètres que ceux utilisés pour obtenir les permittivité effective de la figure 2.14, soit
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Figure 2.15 Amplitude des champs pour différents résonateur obtenues avec HFSS. Tous les
résonateurs opèrent à 2.27 GHz et ont des permittivité ε1 = 5.1 et ε3 = 10.2 pour les régions
sur les bords. Les paramètres des structures de fils sont a = 10.9 mm, r = 0.32 mm et
εh = 10.2. a) Ez pour un résonateur dont la région centrale est un matériau homogène de
permittivité nulle. b) Ez pour un résonateur avec une structure de fils 7 × 7 pour laquelle
εeff = 0. c) et d) Ez et Hy respectivement pour un résonateur avec une structure de fils 5×5.
e) Ez pour un résonateur ayant des bords de différentes tailles. f) Ez pour un résonateur avec
un seul fil dans sa région centrale. Toutes les figures sont à la même échelle.

a = 10.9 mm, r = 0.32 mm et εh = 10.2. Pour tous les résonateurs, la fréquence d’opération

est 2.27 GHz, ce qui est très près de la valeur de 2.29 GHz prédite pour εeff = 0 par le modèle

de Tretyakov (voir figure 2.14). La figure 2.15 b) montre l’amplitude Ez pour un résonateur

avec une structure de fils 7 × 7. On voit que malgré les fortes variations du champ autour

des fils, qui doit en fait s’annuler à la surface de ceux-ci, la moyenne spatiale du champ

est uniforme lorsque prise sur plusieurs périodes ce qui valide l’interprétation de la structure

périodique de fils comme un matériau homogène. Pour montrer l’indépendance de la fréquence

de résonance par rapport à la taille physique de la région centrale, la figure 2.15 c) montre

un résonateur avec une structure de fils 5× 5. On note que les résonateurs des figures 2.15 b)

et c) ont des bords qui sont de la même taille. La figure 2.15 d) montre le champ Hy pour le
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même résonateur que celui de la figure 2.15 c). On peut voir que la distribution du champ Hy

correspond bien aux Éqs. (2.135) à (2.143). De l’Éq. (2.144), on a que la largeur des bords

multipliée par le nombre d’onde kxy doit être un multiple impair de π/2. La figure 2.15 e)

montre un résonateur dont la taille des bords est kxya = kxy(c − b) = 3π/2, kxyd = π/2 et

kxy(f − e) = 5π/2.

Il a été mentionné à la section 2.2.3 que la structure périodique de fils est un réseau de

Bloch et que l’indice de réfraction effectif qui caractérise cette structure ne dépend pas de

l’interaction avec les autres cellules unitaires. Or en réalité, c’est la constante de propagation

ou, de manière équivalente, l’indice de réfraction qui détermine la distribution de la phase

des champs dans le résonateur et non la permittivité effective. Ceci explique qu’il n’y a pas

d’effet de bord pour la structure périodique de fils dans les résonateurs de la figure 2.15 et

que l’analyse selon laquelle on considère εeff = 0 et donc n = 0 dans toute la région centrale

est valide et prédit avec succès l’existence de modes dans le résonateur. On peut pousser cette

affirmation à la limite et considérer un résonateur avec une région centrale composée d’un

seul fil, comme montré à la figure 2.15 f). L’unique cellule unitaire est dans ce cas caractérisée

par n = 0 et donc une constante de propagation nulle tout aussi bien que les cellules unitaires

des résonateurs 7 × 7 ou 5 × 5. Ainsi, le champ ne subit aucun déphasage en traversant la

région centrale et l’analyse de la section précédente demeure valide.
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CHAPITRE 3

Fils métalliques dans un milieu hôte magnétique

Dans ce chapitre, on s’intéresse à une structure périodique de fils métalliques telle que celle

présentée au chapitre 2 mais cette fois plongée dans un milieu hôte magnétique constitué d’une

ferrite soumis à un champ magnétique DC. Cette structure a la propriété d’avoir à la fois une

permittivité et une perméabilité effective dans une certaine bande de fréquences. Ceci permet

la propagation de “backward waves” dont certaines propriétés dont l’indice de réfraction

négatif sont présentées à la section 3.1. La structure en question ayant été proposée par Dewar

[43, 15], le modèle théorique de Dewar qui permet d’assigner des paramètres effectifs à la

structure est présenté à la section 3.2. On applique ensuite la méthode d’extraction numérique

des paramètres à la section 3.3 afin de valider le modèle théorique. À la section 3.4 on présente

les résultats d’une expérience ayant servi à valider la propriété d’indice de réfraction négatif

de la structure. Enfin, à la section 3.5 deux applications potentielles de la structure de Dewar

sont proposées.

3.1 Matériaux main-gauche et indice de réfraction négatif

Les matériaux main-gauche ou matériaux aux paramètres négatifs sont caractérisés par

une permittivité et une perméabilité effective toutes deux négatives. Les propriétés d’un

tel matériau ont été décrites pour la première fois par Veselago [5] en 1968, alors que la

possibilité qu’un tel matériau existe était incertaine. Depuis la proposition d’une structure

périodique combinant des boucles de métal avec des fils métalliques en tant que matériau

aux paramètres négatifs par Smith et al. en 2000 [9] et de la démonstration expérimentale

de l’indice de réfraction négatif de cette structure [10], beaucoup d’efforts de recherche ont

été consacrés à l’étude des matériaux aux paramètres négatifs et de leurs propriétés (e.g.

[44, 45]).

Une onde plane se propageant dans un milieu homogène ayant les paramètres ε et µ

a une constante de propagation k = ω
√
µε. Si l’un des paramètres ε ou µ est négatif, k

est purement imaginaire et l’onde est evanescente. Dans ce cas il n’y a pas de propagation.

Cependant, lorsque ε et µ sont tous deux négatifs, k est réel et il y a propagation de l’onde

plane dans le milieu. La propriété fondamentale des matériaux aux paramètres négatifs est

que pour une onde plane e−j~k·~r, le vecteur de propagation ~k pointe dans la direction opposée

à celle du vecteur de Poynting ~S, dont la partie réelle correspond à la direction vers laquelle
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l’énergie associée à l’onde est transportée. Le vecteur de Poynting est défini par

~S = ~E × ~H∗ (3.1)

où ~H∗ dénote la valeur conjuguée complexe de ~H. Pour voir la relation entre la direction des

vecteurs ~k et ~S et le signe des paramètres ε et µ, considérons les deux équations de Maxwell

suivantes dans un milieu sans source ( ~J = 0)

∇× ~E = −jωµ ~H , ∇× ~H = jωε ~E. (3.2)

La dépendance spatiale des champs étant donnée par e−j~k·~r, l’opérateur rotationnel ∇× peut

être remplacé par l’opérateur −j~k× et les équations de Maxwell précédentes deviennent

~k × ~E = ωµ ~H , ~k × ~H = −ωε~E. (3.3)

On peut donc voir que lorsque les paramètres ε et µ sont positifs, les vecteurs ~E, ~H et ~k

forment un ensemble de vecteurs respectant la règle de la main droite, comme montré à

la figure 3.1 a). Lorsque ε et µ sont négatifs, ces vecteurs respectent plutôt la règle de la

main gauche, comme montré à la figure 3.1 b), d’où le nom matériaux main-gauche donné

aux matériaux ayant des paramètres négatifs. Dans ce dernier cas, on voit que le vecteur de

Poynting ~S et ~k pointent dans des directions opposées, d’où le nom de “backward waves”

donné aux ondes planes se propageant dans un tel médium [46].

a) b)

~E

~E ~H

~H

~k~k,~S

~S

Figure 3.1 Les vecteurs ~E, ~H et ~k formant un ensemble a) main droite et b) main gauche.

Pour l’ensemble main gauche, le vecteur de Poynting ~S pointe dans la direction opposée à ~k.

Une propriété qui découle directement de la direction opposée des vecteurs ~k et ~S est

l’indice de réfraction négatif. Supposons qu’une onde plane dans une région 1 composée d’un

matériau diélectrique conventionnel est incidente avec un angle θi sur une région 2, comme

montré à la figure 3.2. La loi de Snell-Descartes donne l’angle de transmission θt en fonction
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de θi et des indices de réfraction n1 et n2 des deux régions

sin θin1 = sin θtn2. (3.4)

L’angle d’incidence θi et l’angle de transmission θt correspondent à l’angle que fait le vecteur
~S avec la normale à l’interface. Ces angles sont donc définis par rapport à la direction de

propagation de l’énergie associée à l’onde. Dans la région 1 où les paramètres ε1 et µ1 sont

positifs, les vecteurs ~k et ~S pointent dans la même direction. Pour satisfaire la condition

de continuité des champs à l’interface entre les deux régions, la composante de ~k parallèle à

l’interface doit être la même pour les ondes dans les régions 1 et 2. De plus, l’énergie transmise

de la région 1 à la région 2 par l’onde incidente doit s’éloigner de l’interface et pénétrer dans

la région 2 et non pas provenir de la région 2 et se diriger vers l’interface. Ainsi, dans la

région 2, le vecteur ~S doit être orienté de l’interface vers la région 2. Lorsque la région 2 a

des paramètres ε2 et µ2 positifs, les vecteurs ~k et ~S de l’onde dans la région 2 ont la même

direction et l’angle de réfraction est défini comme étant positif. L’indice de réfraction est alors

positif. Le cas où les paramètres ε2 et µ2 sont négatifs est illustré à la figure 3.2. Dans ce cas,

les vecteurs ~k et ~S ont des directions opposées. L’angle de réfraction θt que fait le vecteur
~S avec la normale à l’interface est négatif et l’indice de réfraction du milieu est négatif, en

accord avec l’Éq. (3.4).

1

2

ε1, µ1 > 0

n1 > 0

ε2, µ2 < 0

n2 < 0

θi

θt > 0
θt < 0

~k, ~S

~k
~S

Figure 3.2 Une onde dans une région 1 aux paramètres positifs qui est incidente sur une
région 2 aux paramètres négatifs est réfractée avec un angle de réfraction θt négatif. L’indice
de réfraction de la région 2 est alors négatif. Ceci est dû au fait que la composante tangentielle
à l’interface du vecteur de propagation ~k doit être continue et que le vecteur de Poynting ~S
dans la région 2 doit s’éloigner de l’interface.

Jusqu’à maintenant, on a considéré un matériau parfaitement homogène ayant une per-



50

méabilité et une permittivité négatives. Puisque la structure discutée dans ce chapitre est

une structure périodique qui, comme on le verra, est un réseau de Bloch, il est préférable

d’analyser la structure en termes des paramètres de Bloch n et ZB plutôt qu’en termes des

paramètres effectifs εeff et µeff . Dans ce cas, pour montrer qu’une onde plane e−j~q·~r (l’har-

monique de Floquet fondamentale) se propageant dans la structure est caractérisée par un

vecteur de propagation ~q pointant dans une direction opposée à la direction du transport de

l’énergie, il faut utiliser le concept de vitesse de groupe, qui est définie par

~vg =

(

∂qx
∂ω

)−1

x̂+

(

∂qy
∂ω

)−1

ŷ +

(

∂qz
∂ω

)−1

ẑ. (3.5)

Le vecteur vitesse de groupe ~vg pointe dans la direction du transport de l’énergie [2, 20].

Considérons par exemple une onde se propageant dans la direction x pour laquelle ~q = qxx̂.

Dans ce cas, la vitesse de groupe est ~vg = (∂qx/∂ω)
−1 x̂ et on voit que si la dérivée (∂qx/∂ω)

a un signe opposé au signe de qx, alors ~q et ~vg pointent dans des directions opposées. Faisons

maintenant le lien entre cette condition et le paramètre de Bloch n (l’indice de réfraction).

Puisque pour une propagation selon x on a

qx =
ωn(ω)

c
(3.6)

où c est la vitesse de la lumière dans le vide et où n(ω) est une fonction de la fréquence ω,

on peut écrire
∂qx
∂ω

=
1

c

[

n(ω) + ω
∂n(ω)

∂ω

]

≡ 1

c
ψ(ω). (3.7)

Puisque c est évidemment positive, on voit que si le signe de la quantité

ψ(ω) =

[

n(ω) + ω
∂n(ω)

∂ω

]

(3.8)

est opposé au signe de qx et donc de n selon l’Éq. (3.6), alors l’onde se propageant dans la

structure périodique est une “backward wave”. Cette condition sera utilisée plus tard pour

montrer l’existence d’une “backward wave” à partir des paramètres de Bloch extraits par la

méthode numérique pour la structure de Dewar.

3.2 Structure et modèle théorique de Dewar

En 2002, Dewar a proposé une structure se comportant comme un matériau main-gauche

dans une certaine bande de fréquence. Dans une série d’articles publiés de 2002 à 2005

[43, 47, 48, 15], il fait l’analyse de cette structure et lui attribue des paramètres effectifs εeff
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et µeff . La structure proposée par Dewar est montrée à la figure 3.3. Il s’agit d’une structure

périodique de fils métalliques entourés par une gaine diélectrique et plongés dans un milieu

hôte constitué d’une ferrite homogène soumise à champ magnétique DC orienté le long des

fils. La période de la structure est a, le rayon des fils métalliques est r1 et le rayon de la gaine

est r2.

a

2r1 2r2

x

y

z

H0

E

H

ferrite fils métalliques
gaine diélectrique

Figure 3.3 Structure périodique aux paramètres négatifs proposée par Dewar. La structure
est constituée de fils métalliques entourés d’une gaine d’un matériau diélectrique plongés dans
une ferrite magnétisée par un champ magnétique DC H0 . La période de la structure de fils est
a tandis que la gaine diélectrique et les fils métalliques ont un rayon r1 et r2 respectivement.

La présence de la gaine diélectrique autour des fils métalliques est nécessaire à l’existence

d’une bande de fréquences pour laquelle les paramètres effectifs εeff et µeff sont négatifs.

Comme il est montré dans [49], lorsque les fils métalliques de la structure sont en contact

direct avec la ferrite caractérisée par une perméabilité négative, il n’existe pas de mode de

propagation et il n’est pas possible de définir une permittivité effective négative. Cependant,

en insérant un matériau diélectrique autour des fils, la réponse électrique des fils est en

quelque sorte découplée de la réponse magnétique de la ferrite et la permittivité effective de

la structure de fils peut à nouveau être négative [43].

Dans son modèle théorique, Dewar débute en assignant à la structure périodique une

perméabilité effective qui correspond à la perméabilité effective de la ferrite diluée par la

présence des fils qui peuvent être vus comme des trous dans la ferrite. La perméabilité effective

est donnée par

µeff =

(

1− πr22
a2

)

µf (3.9)

où µf est la perméabilité effective dans la ferrite magnétisée et qui sera décrite à la sec-

tion 3.2.1. Ainsi, la perméabilité effective correspond à la perméabilité de la ferrite multipliée

par la proportion du volume de la structure occupée par la ferrite. Connaissant cette per-
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méabilité, Dewar procède alors à une analyse similaire à celle de Tretyakov présentée à la

section 2.1.2. Il écrit le champ électrique total pour un fil de référence comme étant la somme

des champs dispersés (“scattered”) par les autres fils et le champ dispersé par le fil de référence.

Contrairement à Tretyakov, Dewar ne suppose pas des fils métalliques avec une conductivité

infinie. Ainsi il considère qu’un champ non-nul pénètre à l’intérieur du fil de référence et il

impose la continuité des champs électriques et magnétiques tangentiels à la surface du fil.

Cette analyse permet d’obtenir une relation de dispersion pour une onde plane se propageant

dans la structure qui tient compte de la perméabilité négative du milieu hôte [15]. À partir

de cette équation de dispersion, en faisant la moyenne du champ électrique à l’intérieur d’une

cellule unitaire, il obtient l’expression suivante pour la permittivité effective de la structure

[47]

εeff = εf



1− σeff

ωεf

{

j +
ωa2σeff

2π

[

µ0 ln
r2
r1
+ µf

(

ln a
r2
− 3+ln 2−π/2

2

)]}



 (3.10)

où εf est la permittivité de la ferrite (considérée fixe et indépendante de la fréquence sur

toute la gamme des fréquences micro-ondes) et σeff est donnée par

σeff = σ
πr21
a2

(3.11)

et correspond à la conductivité moyenne de la structure due aux fils métalliques de conduc-

tivité σ qui occupent une proportion πr21/a
2 du volume de la structure.

3.2.1 Perméabilité effective d’une ferrite magnétisée

Le but de cette section est de donner quelques informations générales sur les ferrites et

d’expliquer comment on peut définir une perméabilité µf pour ce type de milieu. Une ferrite

est un matériau ferrimagnétique qui possède des moments magnétiques pouvant être alignés

par un champ magnétique externe. Les ferrites sont des céramiques et ont par conséquent une

très faible conductivité. Ceci permet la propagation d’ondes électromagnétiques à l’intérieur

de la ferrite sans trop d’atténuation et est une propriété essentielle à l’utilisation des ferrites

dans les dispositifs micro-ondes.

Supposons qu’une ferrite est soumise à un champ magnétique externe H0 orienté dans la

direction z, comme montré à la figure 3.3. Lorsque l’intensité de ce champ est suffisamment

élevée, tous les moments magnétiques de la ferrite sont alignés selon z et la magnétisation du

matériau ~M , correspondant à la quantité de dipoles magnétiques par unité de volume, atteint

un maximum ~M = Msẑ appelée magnétisation de saturation. Lorsque la magnétisation est
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inférieure à Ms, les pertes dans la ferrite sont très élevées et donc en pratique la ferrite est

toujours utilisée avec une magnétisation saturée.

Considérons une onde se propageant dans la ferrite magnétisée jusqu’à saturation par le

champ DC H0, cette onde étant caractérisée par les champs ~E et ~H. Si le champ ~H a des

composantes en x ou y, alors la magnétisation ~M de la ferrite sera perturbée et aura des

composantes en x et y. La perméabilité de la ferrite, définie par la relation entre la densité

de flux magnétique ~B, la magnétisation ~M et le champ magnétique ~H

~B = µ0( ~M + ~H) ≡ [µ] ~H (3.12)

est un tenseur de second ordre et est donné par [50]

[µ] =







µ jκ 0

−jκ µ 0

0 0 µ0






(3.13)

où

µ = µ0

(

1 +
ω0ωm

ω2
0 − ω2

)

(3.14)

et

κ = µ0
ωωm

ω2
0 − ω2

. (3.15)

et où ω0 = µ0γH0 et ωm = µ0γMs, γ étant une constante appelée rapport gyromagnétique.

Dans le cas qui nous intéresse, l’onde se propageant dans la ferrite est TMz (le champ ~H

n’a donc pas de composante en z) avec aucune variation selon z et le champ électrique ~E a

uniquement une composante Ez, comme montré à la figure 3.3. En suivant le développement

dans [50] et en supposant une dépendance spatiale de l’onde de la forme e−jβy, correspondant

à une propagation dans la direction y, on écrit les équations de Maxwell. Pour chacune des

composantes de l’équation ∇× ~E = −jω[µ] ~H, on obtient

x̂ : − jβEz = −jω(µHx + jκHy) (3.16)

ŷ : 0 = −jκHx + µHy (3.17)

ẑ : 0 = 0. (3.18)
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Pour l’équation ∇× ~H = jωεf ~E, on obtient

x̂ : 0 = 0 (3.19)

ŷ : 0 = 0 (3.20)

ẑ : jβHx = jωεfEz. (3.21)

De l’Éq. (3.21), on a

Hx =
ωεf
β
Ez. (3.22)

En combinant les Éqs. (3.22) et (3.17), on obtient

Hy =
jωεfκ

βµ
Ez. (3.23)

En insérant les Éqs. (3.22) et (3.23) dans l’Éq. (3.16), on obtient la relation

−jβEz = −jω
(

µωεf
β

− κ2ωεf
µβ

)

Ez. (3.24)

La constante de propagation est donc donnée par

β = ω

√

(

µ2 − κ2

µ

)

εf ≡ ω
√
µfεf (3.25)

où

µf =

(

µ2 − κ2

µ

)

(3.26)

correspond à la perméabilité associée à l’onde TMz se propageant dans la ferrite. Si on tient

compte des pertes dans la ferrite, l’Éq. (3.26) peut être écrite sous la forme

µf

µ0

=
(H̃0 +Ms)

2 −
(

ω
µ0γ

)2

H̃0(H̃0 +Ms)−
(

ω
µ0γ

)2 (3.27)

où on considère une valeur complexe du champ magnétique DC H̃0 dont la partie imaginaire

tient compte des pertes et qui est donné par

H̃0 = H0 − j

(

ω

µ0γ

)(

ξ

µ0γMs

)

, (3.28)

ξ étant la quantité proportionnelle aux pertes. Pour une ferrite, les pertes sont exprimées
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par une quantité appelée la largeur de ligne (“linewidth”) ∆H exprimée en unités du champ

magnétique (A/m ou Oe). La largeur de ligne ∆H dépend de la fréquence d’opération ω et

est reliée à ξ par l’expression

∆H =
−2ωξ

µ2
0γ

2Ms

. (3.29)

En pratique et par convention, la largeur de ligne ∆H est spécifiée à la fréquence 9.4 GHz.

En observant les Éqs. (3.22) et (3.23), on voit que le champ magnétique ~H a une polari-

sation elliptique dans le plan xy et a donc une composante dans la direction de propagation

y. Les ondes se propageant dans la ferrite ne sont donc pas des ondes TEM même si le champ

Ez se propage comme le champ électrique d’une onde plane avec la constante de propagation

donnée par l’Éq. (3.25). La polarisation du champ magnétique n’a pas une grande importance

dans l’analyse de dispersion de Dewar puisque celle-ci est basée sur l’analyse du champ Ez

dans la structure périodique. En fait, dans son analyse Dewar considère que l’interaction entre

les fils se fait par des ondes planes avec la constante de propagation donnée par l’Éq. (3.25).

3.3 Extraction de paramètres

Afin de valider le modèle théorique de Dewar, on utilise la méthode d’extraction numérique

décrite au chapitre précédent pour extraire les paramètres de Bloch de la structure proposée

par Dewar. Tous les résultats présentés dans cette section ainsi que dans la section suivante

sont obtenus avec une structure telle que celle montrée à la figure 3.3 ayant les paramètres

r1 = 0.127 mm, r2 = 0.545 mm et a = 2.7 mm. Les propriétés de la ferrite sont 4πMs =

1600 G, εf = 14.6 et une largeur de ligne ∆H = 10 Oe à 9.4 GHz. La ferrite utilisée pour

l’expérience est une ferrite de calcium dopée avec du vanadium avec les propriétés ci-dessus

spécifiées par le manufacturier.

Pour un champ magnétique DC H0 = 1500 G, la perméabilité et la permittivité effective

obtenues par le modèle de Dewar, données par les Éqs. (3.9) et (3.10) respectivement, ainsi

que l’indice de réfraction n =
√
µeffεeff sont montrés à la figure 3.4. On distingue 6 bandes

de fréquences dénotées par les lettres A à F. La région D est la région où les paramètres εeff et

µeff sont tous deux négatifs et où il y a propagation de“backward waves”. La région F est une

bande de fréquences où les paramètres sont positifs. Les régions A, C et E sont des bandes où

il n’y a pas de propagation puisque l’un des paramètres est négatif alors que l’autre est positif.

La région B est caractérisée par des paramètres positifs et supporte un mode de propagation.

Cependant, elle est très étroire et donc difficile à caractériser expérimentalement. Pour cette

raison, elle ne sera pas considérée dans ce qui suit.

Il a déjà été mentionné que la structure de Dewar est un réseau de Bloch. Tel que défini

au chapitre 2, un réseau de Bloch est caractérisé par le fait que l’interaction entre les cellules



56

4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

Fréquence (GHz)

P
er

m
ea

b
ili

té

 

 

Re{µ }
Im{µ }

eff

eff

fµr

fµp

(a)

4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Fréquence (GHz)

P
e

rm
it

ti
v

it
é

 

 

Re{ε }
Im{ε }

eff

eff

fεp1 fεr

fεp2

(b)

4 5 6 7 8 9 10
−6

−4

−2

0

2

4

Fréquence (GHz)

In
d

ic
e 

d
e 

ré
fr

ac
ti

o
n

 

 

Re{n}

Im{n}

A B C D E F

fεp1 fεr fεp2

fµr fµp

(c)

Figure 3.4 Paramètres effectifs obtenus du modèle théorique de Dewar et donnés par les
Éqs. (3.9) et (3.10). (a) Partie réelle et imaginaire de µeff avec la fréquence de résonance
magnétique fµr et la fréquence de plasma magnétique fµp. (b) Partie réelle et imaginaire de
εeff avec la fréquence de résonance électrique fεr et les deux fréquences de plasma électrique
fεp1 and fεp2. (c) Partie réelle et imaginaire de l’indice de réfraction n =

√
µeffεeff . La bande

de fréquences est divisée en 6 régions avec des propriétés de propagation distinctes et qui
sont dénotées par les lettres A à F.

unitaires ne modifie pas les propriétés de transmission et de réflexion d’une cellule unitaire.

Pour montrer que la structure est bien un réseau de Bloch, les paramètres de Bloch n et

η = ZB donnés par les Éqs. (2.64) et (2.63) sont calculés à partir des paramètres S obtenus

numériquement pour une, deux et dix cellules unitaires. Les résultats pour les fréquences de

7.5 à 8 GHz, qui font partie de la région D où les paramètres sont négatifs, sont montrés à la

figure 3.5. On voit que peu importe le nombre de cellules unitaires utilisées dans la solution

numérique, les paramètres de Bloch sont presque identiques.

Afin de valider les paramètres théoriques de la figure 3.4, la méthode d’extraction nu-

mérique est utilisée pour caractériser les bandes D, E et F, qui constituent les bandes de

fréquence d’intérêt puisque D et F sont les régions où il y a propagation. La figure 3.6 fait
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Figure 3.5 Paramètres de Bloch n et η = ZB obtenus numériquement pour la structure de
Dewar à partir d’une rangée de cellules unitaires telle que celle de la figure 2.5 avec une, deux
et dix cellules unitaires. a) Partie réelle et imaginaire de l’indice de réfraction n. b) Partie
réelle et imaginaire de l’impédance de Bloch η = ZB.

la comparaison entre les paramètres extraits numériquement et les paramètres obtenus du

modèle théorique. Comme discuté au chapitre 2, la méthode d’extraction numérique permet

d’obtenir les paramètres de Bloch n et η = ZB de la structure. Les valeurs extraites de la

perméabilité et de la permittivité montrées aux figures 3.6(a) et 3.6(b) sont obtenues à partir

des paramètres de Bloch par les équations µeff = nZB et εeff = n/ZB. Comme discuté au

chapitre 2, les paramètres µeff et εeff obtenus numériquement n’ont pas de sens physique

particulier et ne correspondent pas aux paramètres µeff et εeff obtenus du modèle théorique

de Dewar. En effet, on voit dans les figures 3.6(a) et 3.6(b) qu’il y a un écart entre les valeurs

numériques des paramètres théoriques et extraits numériquement, qui correspondent à des

quantités physiques différentes. En fait, puisqu’on s’attend à ce que la constante de propaga-

tion (et donc le paramètre de Bloch n) obtenue théoriquement soit la même que la constante

de propagation extraite numériquement, cet écart correspond au fait que l’impédance de

Bloch ZB ne correspond pas à l’impédance caractéristique
√

µeff/εeff calculée à partir des

des paramètres effectifs µeff et εeff théoriques. La figure 3.6(c) montre la comparaison entre

l’indice de réfraction ou paramètre de Bloch n obtenu du modèle théorique et obtenu de la

méthode d’extraction numérique. En principe, les deux devraient être identiques et on voit

qu’en s’éloignant de la région E, les deux quantités sont très proches l’une de l’autre. L’écart

observé est probablement attribuable aux approximations faites dans le modèle de Dewar

afin d’obtenir une solution analytique du problème.
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Figure 3.6 Comparaison des paramètres extraits numériquement avec les paremètres théo-
riques de la figure 3.4. (a) Perméabilité µeff . (b) Permittivité εeff . (c) Indice de réfraction
n.

Puisque la structure de Dewar est une structure de Bloch, on note qu’il est possible

d’utiliser le paramètre de Bloch ZB pour calculer la réflexion à l’interface entre une région

1, composée d’un matériau homogène caractérisé les paramètres µ1 et ε1 avec l’impédance

caractéristique η1 =
√

µ1/ε1, et une région 2 correspondant à la structure de Dewar. Dans ce

cas, le coefficient de réflexion Γ1,2 est donné par l’Éq. (2.70). Il est alors possible d’utiliser cette

équation pour prédire le paramètre S11 pour la structure de Dewar excitée par deux guides

d’ondes TEM comme montré à la figure 2.5. On utilise pour ce faire l’Éq. (2.57) en tenant

compte de la variation de phase dans les guides d’onde TEM avec l’Éq. (2.68). Démontrons

ceci par un exemple numérique. Les paramètres de Bloch montrés à la figure 3.5 sont obtenus

avec des guides d’onde TEM de longueur l = 5 mm remplis d’un matériau avec les paramètres

ε = 18 et µ = 1. Pour une rangée de la structure périodique comptant dix cellules unitaires,

à la fréquence 7.8 GHz, les paramètres de Bloch extraits sont n = −2.547− 0.057j et ZB =

0.129− 0.0002j. Avec l’Éq. (2.57), on calcule S11 pour la structure de la figure 2.5 avec une
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seule cellule unitaire et avec des guides d’ondes TEM de longueur inchangée l = 5 mm mais

remplis d’un matériau avec les paramètres ε = 10 et µ = 2, qui sont choisis arbitrairement.

On obtient alors S11 = −0.2383 + 0.7714j. La solution numérique de cette structure donne

une valeur de S11 = −0.2368 + 0.7715j, ce qui est très proche de la valeur calculée. Cet

exemple démontre l’importance du paramètre de Bloch ZB qui est le paramètre à considérer

pour concevoir l’adaptation de la structure périodique lorsque celle-ci est utilisée dans des

dispositifs réels.

À la section 3.1, on a énoncé un critère pour déterminer l’existence d’une bande de fré-

quences où il y a propagation de “backward waves” et où l’indice de réfraction est négatif.

Selon ce critère, le signe de la quantité ψ(ω) définie par l’Éq. (3.8) doit être opposé au signe

de l’indice de réfraction n. La figure 3.7 montre la quantité ψ(ω) pour la structure de Dewar

pour les fréquences de 7.5 à 8 GHz. On voit que ψ(ω) est positif alors que dans cette bande

de fréquences, selon la figure 3.6, n est négatif. On a donc bien des “backward waves” et un

indice de réfraction négatif dans cette bande de fréquences. La section suivante présente une

expérience démontrant la propriété d’indice de réfraction.
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ψ

Figure 3.7 Valeur de la quantité ψ(ω) définie par l’Éq. (3.8). Puisque la quantité ψ(ω) est
positive alors que l’indice de réfraction n est négatif, on a bien des “backward waves”.

3.4 Vérification expérimentale

Dans cette section, on présente une expérience ayant servi à démontrer la propriété d’in-

dice de réfraction négatif pour la structure de la figure 3.3 [51]. Certains travaux ont été

réalisés sur cette structure ou une structure similaire. Par exemple, Y. He et al. [52] ont me-

suré les paramètres S d’une structure similaire placée dans un guide d’onde rectangulaire et

ont utilisé ces données pour extraire les paramètres effectifs de la structure. Zhao et al. [53] ont
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extraits des paramètres effectifs à partir des paramètres S obtenus numériquement pour une

structure employant des tiges de ferrite au lieu d’une ferrite occupant tout l’espace du milieu

hôte. Ils ont aussi montré expérimentalement l’existence d’une bande passante aux fréquences

où les paramètres effectifs de la structure sont négatifs. G. He et al. [54] ont eux aussi extrait

les paramètres effectifs d’une structure similaire et montré l’existence d’une bande passante

où les paramètres sont négatifs. Cependant, aucune de ces études n’a démontré de manière

directe la propriété d’indice de réfraction négatif.

La structure proposée par Dewar est fabriquée à partir d’une pièce de ferrite mesurant

2.5×2.5 cm avec une épaisseur de 1 mm. Des trous de rayon r2 = 0.545 mm avec une période

a = 2.7 mm sont percés dans la ferrite à l’aide d’un laser femtoseconde. L’utilisation d’un

laser femtoseconde est nécessaire car un laser avec des pulsations plus longues a pour effet

de surchauffer la ferrite et de la détruire. Toujours à l’aide du laser femtoseconde, la pièce de

ferrite est découpée pour avoir une forme trapézöıdale tel que montré dans le coin inférieur

gauche de la figure 3.8(b). Les trous sont ensuite remplis avec de la colle epoxy. Des trous

de rayon r1 = 0.127 mm sont percés dans l’epoxy à l’aide d’un laser puis remplis de cuivre.

Cette procédure permet d’obtenir des fils de métal entourés d’une gaine diélectrique tels que

montrés à la figure 3.3. Enfin, les surfaces du haut et du bas de la ferrite sont plaquées

avec du cuivre afin de former un guide d’onde à plaques parallèles (PPWG, “Parallel Plate

Waveguide”) qui permet la propagation d’ondes TMz sans variation selon z (donc n’ayant

qu’une composante Ez du champ électrique). Cette métalisation des surfaces du haut et du

bas est analogue aux conditions frontières PEC de la structure de la figure 2.5 utilisée pour

obtenir les résultats numériques.

La structure périodique ainsi fabriquée est insérée dans le montage de la figure 3.8. Comme

montré à la figure 3.8(a), la structure périodique est excitée par une ligne micro-ruban d’im-

pédance 50 Ω qui s’élargit progressivement pour former un guide d’onde à plaques parallèles

(PPWG) ayant la même largeur que la structure périodique. Cette ligne micro-ruban sup-

porte la propagation d’une onde quasi-TEM qui excite le mode TMz voulu dans la structure

périodique. La ligne micro-ruban est elle-même excitée par un câble coaxial 50 Ω à l’aide

d’une transition câble coaxial à ligne micro-ruban. À la sortie de la structure périodique, il

y a un guide d’onde à plaques parallèles en forme de demi-cercle. À cause de la forme trapé-

zöıdale de la structure périodique, l’onde incidente fait un angle de 26 degrés avec l’interface

entre la structure périodique et ce guide semi-circulaire. Cet angle permet la réfraction de

l’onde incidente et l’onde réfractée dans le guide d’onde semi-circulaire est captée par 12

ports distribués autour du demi-cercle. Ces ports sont des guides d’ondes à plaques parallèles

qui sont rétrécis pour former des lignes micro-ruban qui sont adaptées à des ports coaxiaux

50 Ω. Afin de déterminer l’angle de réfraction, les paramètres Sk0 du port d’entrée 0 vers les
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k = 1, 2, . . . , 12 ports de sortie sont mesurés à l’aide d’un analyseur de réseau vectoriel. En

faisant une moyenne de l’angle associé à chacun des ports pondérée par la puissance incidente

sur chaque port (proportionnelle à |Sk0|2), il est en effet possible de déterminer l’angle de

réfraction.

On note que l’angle de réfraction est un concept défini dans le cadre de l’approximation de

l’optique géométrique selon laquelle l’onde se propage en ligne droite dans une seule direction.

Dans le cas présent, la longueur de l’interface entre la structure périodique et le guide d’onde

semi-circulaire à la fréquence 8 GHz est d = 2.5λg où λg = λ0/
√
εd est la longueur d’onde

guidée dans le guide d’onde semi-circulaire dont la permittivité du diélectrique est εd = 10.2.

Puisque d est de l’ordre de quelques longueurs d’onde guidées λg, l’onde sera diffractée et dans

ce cas l’approximation de l’optique géométrique est une approximation grossière. Cependant,

la longueur d de l’interface est suffisamment grande pour générer une onde réfractée assez

directive pour pouvoir mesurer l’angle de réfraction.
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Figure 3.8 Schéma du montage de l’expérience. (a) Schéma montrant le principe de mesure de
l’indice de réfraction. L’angle de réfraction θt, mesuré à partir de la normale à l’interface, est
positif dans la direction indiquée par la flèche et négatif dans la direction opposée. (b) Pho-
tographie du montage expérimental final avec dans le coin inférieur gauche une photographie
de la ferrite taillée en trapèze après que les trous de rayon r2 aient été percés.

La figure 3.9 présente les résultats expérimentaux correspondant à la bande de fréquences

où l’indice de réfraction est négatif (correspondant à la région D dans les figures 3.4(c) et

3.6(c)). Les données brutes pour les paramètres Sk0 sont montrées sous la forme d’un dia-
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gramme de couleurs à la figure 3.9(a). Ce diagramme montre les paremètres Sk0 correspondant

aux 12 ports de sortie pour différentes fréquences. L’axe horizontal du bas indique l’angle

de réfraction θt correspondant à chaque port de sortie. Pour calculer l’angle de réfraction de

l’onde réfractée pour différentes fréquences, on calcule la moyenne des angles associés aux

ports pondérée par la puissance |Sk0|2 incidente sur chaque port. La figure 3.9(c) illustre cette
opération de moyennage. Chaque graphe correspond à une fréquence différente et les points

bleus indiquent la valeur absolue des paramètres Sk0 pour les différents ports et leur angle

correspondant. La moyenne pondérée de l’angle, qui correspond à l’angle de réfraction, est

indiqué par une croix rouge. À la figure 3.9(b), l’angle de réfraction ainsi obtenu pour diffé-

rentes fréquences est comparé à l’indice de réfraction extrait de la méthode numérique pour

un champ magnétique DC H0 = 1300 G. Il est important de noter que l’indice de réfraction

extrait numériquement est seulement superposé à l’indice de réfraction obtenu expérimen-

talement afin de comparer leur variation en fonction de la fréquence. En effet, il difficile en

pratique de déterminer avec précision le champ magnétique DC H0 à l’intérieur de la ferrite

à cause de l’effet de démagnétisation. Ainsi, les données expérimentales de la figure 3.9(b) ne

correspondent pas nécessairement à un champ magnétique DC H0 = 1300 G.

Les paramètres effectifs théoriques µeff et εeff donnés par les Éqs. (3.9) et (3.10) dé-

pendent de l’intensité H0 du champ magnétique DC qui magnétise la ferrite. On s’attend

donc à ce que l’indice de réfraction de la structure périodique soit ajustable avec l’intensité

du champ H0. La figure 3.10 montre l’indice de réfraction en fonction de la fréquence pour

différentes valeurs du champ magnétique DC H0 dans la bande de fréquences où l’indice de

réfraction est négatif. L’indice de réfraction de la figure 3.10(a) est obtenu à l’aide de la

méthode d’extraction numérique alors que celui de la figure 3.10(b) est obtenu à partir des

paramètres Sk0 mesurés. Pour la solution numérique du problème, l’intensité du champ H0

à l’intérieur de la ferrite est spécifiée explicitement dans la définition du problème. Ainsi,

la figure 3.10(a) spécifie les valeurs absolues de H0 qui sont incrémentées avec un pas de

8000 A/m. Lorsque l’intensité du champ H0 est augmentée, la courbe de l’indice de réfrac-

tion subit une translation vers les fréquences plus élevées. Comme mentionné plus haut, il

est difficile de déterminer avec précision la valeur du champ H0 à l’intérieur de la ferrite

expérimentalement. Il est cependant possible de connâıtre la variation du champ H0 interne

à partir de la variation du champ externe appliqué à la ferrite. Ainsi, la figure 3.10(b) spécifie

la valeur du champ H0 relativement à une valeur indéterminée H0i. On voit que les variations

de l’indice de réfraction en fonction des variations de H0 montrées aux figures 3.10(a) et

3.10(b) sont similaires.

Ayant caractérisé expérimentalement la région D des figures 3.4(c) et 3.6(c) correspondant

à un indice de réfraction négatif, on s’intéresse maintenant à la région F où il y a propagation
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avec un indice de réfraction positif. La figure 3.11(a) montre un diagramme de couleurs

représentant les paramètres Sk0 mesurés. Sur ce diagramme, on peut voir l’émergence de la

bande de propagation avec un indice de réfraction positif à partir de la fréquence 10 GHz.

L’indice de réfraction est obtenu par la procédure de moyennage illustrée à la figure 3.9(c)

et est comparé avec l’indice de réfraction obtenu numériquement à la figure 3.11(b). Les

intensités du champ magnétique DC H0 utilisées pour obtenir les résultats des figures 3.9 et

3.11 sont les mêmes. La différence entre les courbes de l’indice de réfraction mesuré et obtenu

numériquement de la figure 3.11(b) suggère que la bande E où il n’y a pas de propagation est

plus large expérimentalement que ce qui est prédit par la solution numérique du problème.

Avant de terminer cette section, revenons sur l’effet de bord discuté au chapitre 2. L’ana-

lyse théorique de Dewar prédit des paramètres εeff et µeff négatifs et donc la propagation

de “backward waves”. En principe, ceci implique le phénomène d’indice de réfraction négatif.

Cependant, comme on l’a vu, ces paramètres théoriques ne sont pas valides sur le bord de

la structure. Or, puisque la réfraction est un phénomène qui se produit à l’interface de la

structure périodique, les paramètres théoriques ne permettent pas automatiquement de pré-

dire le phénomène d’indice de réfraction négatif. Dans le cas de la structure de Dewar, les

paramètres théoriques sont adéquats uniquement car la structure périodique est un réseau de

Bloch. Dans ce cas, on a vu que le paramètre de Bloch correspondant à l’indice de réfraction

correspond à l’indice de réfraction obtenu des paramètres théoriques n =
√
µeffεeff et que

celui-ci n’est pas affecté par l’effet de bord. Puisque le phénomène de réfraction négative

dépend uniquement de la constante de propagation dans la structure, on voit que dans le cas

présent, les paramètres théoriques et les paramètres de Bloch obtenus numériquement sont

équivalents en ce qui concerne la description du phénomène de réfraction négative.

3.5 Applications potentielles

Dans cette section, deux applications potentielles de la structure de Dewar sont présen-

tées. Ces deux applications sont basées sur le fait qu’il est possible de concevoir les paramètres

de la structure de Dewar afin d’éliminer la région E qui sépare les bandes de propagation D

et F caractérisées par un indice de réfraction négatif et positif respectivement. Dans ce cas,

l’indice de réfraction passera des valeurs négatives aux valeurs positives de manière continue,

comme c’est le cas pour les structures balancées main-droite/main-gauche [2]. L’onde inci-

dente pourrait alors être réfractée dans une direction entre −90◦ to 90◦ en faisant varier la

fréquence de l’onde ou en ajustant l’intensité du champ magnétique DC H0.

Le concept de la première application est montré à la figure 3.12(a). Il s’agit d’un analyseur

de spectre qui fonctionne grâce à la variation de l’indice de réfraction avec la fréquence.
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Un analyseur de spectre utilisant le même principe est décrit dans [55]. À cause de cette

variation de l’indice de réfraction en fonction de la fréquence, les différentes composantes

fréquentielles d’un signal incident seront séparées spatialement et transmises vers les différents

ports de sortie. La seconde application proposée est montrée à la figure 3.12(b). Il s’agit d’un

démultiplexeur qui exploite la dépendance de l’indice de réfraction sur l’intensité du champ

magnétique DC H0. Si le signal d’entré est un signal à bande étroite centré sur la fréquence

f0, il est possible de diriger le signal vers l’un des ports de sortie en ajustant la valeur de H0,

ce qui est facile dans le cas où le champ H0 est créé par un électroaimant.



65

6.5

7

7.5

8

8.5

9
123456789101112

-40

-35

-30

-25

-20

-15
Sk0 (dB)Numéro de port

F
ré

q
u

e
n

ce
 (

G
H

z)

−90 −60 −30 0 30 60 90
Angle (deg)

(a)

7 7.2 7.4 7.6 7.8 8
−6
−5

−4

−3

−2

−1

0

1

2

Fréquence (GHz)

In
d

ic
e

 d
e

 r
é

fr
a

ct
io

n

 

 

Extraction −  Re{n}
Mesures − Re{n}

(b)

0

1

2

3

4

5

Angle (deg)

S
k0

 (
v

a
l. 

a
b

so
lu

e
) f = 7.55 GHz

0

1

2

3

4

5

Angle (deg)

S
k0

 (
v

a
l. 

a
b

so
lu

e
) f = 7.65 GHz

-90 -60 -30 0 30 60 90
0

1

2

3

4

5
x 10-3

Angle (deg)

S
k0

 (
v

a
l. 

a
b

so
lu

e
)

0

1

2

3

4

5

Angle (deg)

S
k0

 (
v

a
l. 

a
b

so
lu

e
) f = 7.85 GHz

0

1

2

3

4

5

Angle (deg)

S
k0

 (
v

a
l. 

a
b

so
lu

e
)

f = 7.95 GHz

f = 7.75 GHz

-90 -60 -30 0 30 60 90-90 -60 -30 0 30 60 90

x 10-3x 10-3

x 10-3 x 10-3

-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90

(c)

Figure 3.9 Résultats expérimentaux pour la bande de fréquences où l’indice de réfraction est
négatif (région D dans les figures 3.4(c) et 3.6(c)). (a) Diagramme de couleur montrant les
paramètres Sk0 mesurés du port d’entrée 0 vers chacun des 12 ports de sortie. Chaque port
de sortie correspond à un angle de réfraction différent entre −82.5◦ et 82.5◦ avec un pas de
15◦. (b) Comparaison entre l’indice de réfraction obtenu à partir des paramètres Sk0 mesurés
et l’indice de réfraction obtenu à l’aide de la méthode d’extraction numérique. (c) Illustration
du processus de moyennage permettant d’obtenir l’indice de réfraction à partir des valeurs
mesurées des paramètres Sk0.
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Figure 3.10 Variation de la courbe de l’indice de réfraction en fonction de la fréquence avec
la variation du champ magnétique DC H0. (a) Indice de réfraction obtenu avec la méthode
d’extraction numérique. (b) Indice de réfraction obtenu à partir des paramètres Sk0 mesurés.
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Figure 3.11 Résultats expérimentaux pour la bande de fréquences où l’indice de réfraction
est positif (région F dans les figures 3.4(c) et 3.6(c)). (a) Diagramme de couleur montrant les
paramètres Sk0 mesurés du port d’entrée 0 vers chacun des 12 ports de sortie. (b) Comparaison
entre l’indice de réfraction obtenu à partir des paramètres Sk0 mesurés et l’indice de réfraction
obtenu à l’aide de la méthode d’extraction numérique.
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Figure 3.12 Applications potentielles de la structure de Dewar. (a) Analyseur de spectre
qui sépare spatialement les différentes composantes fréquentielles du signal d’entrée pour les
envoyer vers les différents ports de sortie. (b) Démultiplexeur permettant de diriger le signal
d’entrée vers un des ports de sortie en contrôlant l’intensité H0 du champ magnétique DC.
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CHAPITRE 4

CONCLUSION

Dans le cadre de la présente recherche, deux structures périodiques 2D ont été étudiées

dans le contexte des métamatériaux. La première consiste en une structure périodique de

fils métalliques plongés dans un milieu hôte diélectrique homogène. Deux modèles théoriques

différents ont été présentés pour cette structure, l’un ayant été proposé par Pendry et l’autre

par Tretyakov. Selon ces deux modèles, il est possible de définir une permittivité effective qui

permet de traiter la structure périodique comme un matériau homogène. Quoique donnant

des résultats légèrement différents, ces deux modèles prédisent une permittivité effective

négative à basse fréquence qui augmente avec la fréquence pour devenir positive au-dessus

de la fréquence de plasma. À la fréquence de plasma, la permittivité est nulle ce qui implique

que la longueur d’onde effective est infinie. La deuxième structure étudiée est une structure

périodique de fils métalliques entourés d’une gaine diélectrique et plongés dans un milieu hôte

constitué d’une ferrite magnétisée. Le modèle théorique développé par Dewar a été présenté

et il a été vu qu’on peut associer à la structure une perméabilité et une permittivité effective

qui sont toutes deux dispersives et potentiellement négatives. Lorsque ces deux paramètres

sont négatifs dans la même bande de fréquence, il y a propagation de “backward waves”

caractérisées par le fait que le vecteur de propagation et le vecteur de Poynting pointent dans

des directions opposées. On a vu que cette proprité donnait lieu à un indice de réfraction

négatif, qui est une propriété impossible à retrouver dans les matériaux conventionnels connus

jusqu’à ce jour.

Une partie importante de la présente recherche est l’utilisation d’une méthode numérique

pour l’extraction des paramètres effectifs d’une structure périodique. Cette technique, abon-

damment utilisée dans la littérature, permet d’assigner des paramètres effectifs εeff et µeff à

partir des paramètres S calculés numériquement pour la structure périodique. En comparant

ces paramètres avec les paramètres théoriques, il a cependant été vu que les paramètres obte-

nus numériquement ne correspondent pas aux paramètres théoriques et qu’il faut manipuler

le concept de paramètre effectif avec beaucoup de prudence. La difficulté provient du fait

que pour les structures étudiées, la période est comparable à la longueur d’onde. Dans ce

cas, l’effet de bord dû à la taille finie des structures périodiques utilisées pour la solution

numérique devrait en principe invalider la méthode d’extraction numérique. En effet, lorsque

la longueur d’onde est comparable à la période, il est inexact de modéliser les cellules uni-

taires sur les bords de la structure avec les mêmes paramètres effectifs définis pour les cellules
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unitaires au centre de la structure. Lorsque la longueur d’onde est beaucoup plus grande que

la période, comme c’est le cas pour les matériaux conventionnels aux fréquences micro-ondes,

cet effet de bord est négligeable. En fait, il a été vu que pour des structures dont la période

est comparable à la longueur d’onde, l’information extraite numériquement n’a du sens que

pour une classe particulière de structures appelées réseaux de Bloch. Dans ce cas, l’interac-

tion entre les cellules unitaires n’influence pas les propriétés de réflexion et de transmission

d’une cellule unitaire et les paramètres extraits numériquement qu’il faut considérer sont les

paramètres de Bloch. Bien qu’il soit tout de même possible dans ce cas de définir mathé-

matiquement des paramètres εeff et µeff à partir de la solution numérique, ces paramètres

n’ont pas de signification physique. De manière générale, une conclusion importante de la

présente recherche est que l’utilisation de paramètres effectifs pour caractériser une structure

périodique implique certaines approximations qui ne sont plus nécessairement valides lorsque

la période se rapproche de la longueur d’onde. Il faut alors interpréter les paramètres effectifs

avec beaucoup de prudence et être bien conscient de leur signification réelle. La définition de

paramètres effectifs ainsi que leur interprétation dans le cas des structures dont la période

est comparable à la longueur d’onde est un problème complexe qui fait encore aujourd’hui

l’objet de plusieurs efforts de recherche.

Malgré cette différence entre les paramètres théoriques et les paramètres obtenus numé-

riquement, il a été vu que pour la catégorie des réseaux de Bloch, dont les deux structures

étudiées font partie, il est tout de même possible de faire un lien entre les deux types de

paramètres. En effet, l’indice de réfraction (ou de manière équivalente, la constante de pro-

pagation) associée aux paramètres εeff et µeff théoriques correspond à l’un des paramètres

de Bloch. L’autre paramètre de Bloch, l’impédance de Bloch ZB ne correspond toutefois par

à l’impédance caractéristique
√

µeff/εeff théorique. Pour résoudre les problèmes pratiques,

il a été vu que les paramètres à considérer sont les paramètres de Bloch et non pas les para-

mètres théoriques εeff et µeff . En effet, la capacité de prédire la réflexion à l’interface avec

un réseau de Bloch à partir de l’impédance de Bloch ZB a été démontrée à l’aide d’exemples

numériques. Aussi, la validité du paramètre de Bloch correspondant à l’indice de réfraction

et le fait qu’il n’est pas affecté par l’effet de bord a été démontré par l’analyse du résonateur

employant la structure de fils métalliques plongés dans un milieu hôte diélectrique.

Une contribution importante de la présente recherche est la validation expérimentale de

la propriété d’indice de réfraction négatif pour la structure proposée par Dewar. En effet, il

a été montré que la propriété d’indice de réfraction négatif peut être interprétée uniquement

en terme de la constante de propagation et donc du paramètre de Bloch correspondant. La

structure proposée par Dewar étant un réseau de Bloch, la propriété d’indice de réfraction

négatif n’est pas affectée par l’effet de bord et a donc pu être observée expérimentalement.
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Le fait que l’analyse de Dewar pour une structure infinie ne permet pas automatiquement

de conclure la propriété d’indice de réfraction négatif, qui est un effet d’interface, ajoute à

l’importance de cette validation expérimentale.

Deux concepts pouvant mener à des applications de la structure de Dewar ont été pré-

sentés. Le premier est le principe de l’analyseur de spectre qui transmet les différentes com-

posantes fréquentielles dans différentes directions. Le second est un démultiplexeur qui tire

profit de la dépendance de l’indice de réfraction de la structure de Dewar sur l’intensité H0

du champ magnétique DC qui permet de diriger le signal d’entrée vers un port de sortie en

particulier en ajustant H0.

En termes de travaux futurs, plusieurs questions demeurent ouvertes en ce qui concerne

les paramètres effectifs attribuables aux structures périodiques 2D. Par exemple, il serait

intéressant d’énoncer des critères généraux et faciles à vérifier que doit satisfaire une structure

périodique pour être considérée comme un réseau de Bloch. Aussi, dans la présente recherche

seul le cas d’une onde avec un angle d’incidence normal à l’interface de la structure périodique

a été considérée. Il serait intéressant de déterminer si les paramètres de Bloch demeurent

inchangés pour des angles d’incidence obliques. Puisque comme il a été vu, l’impédance de

Bloch ZB est un paramètre important pour résoudre les problèmes de réflexion à l’interface

de la structure périodique, il serait important d’être capable d’extraire la valeur de ZB à

partir des modèles théoriques et de comparer cette valeur avec celle obtenue de la méthode

numérique d’extraction. Enfin, de manière générale il serait important de trouver d’autres

idées d’applications innovatrices qui font usage des structures périodiques 2D et qui pourraient

encourager leur développement.
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ANNEXE A

Continuité du vecteur de propagation

À la section 2.3.3, on a utilisé le fait qu’à l’interface entre deux régions différentes, les

composantes tangentielles à l’interface du vecteur de propagation ~k doivent être continues. Ici,

une démonstration de cette condition est proposée. Considérons l’interface entre les régions

1 et 2 du résonateur de la figure 2.13. Cette interface étant contenue dans le plan yz, on veut

montrer que les composantes kx et ky sont continues. On montrera la continuité de ky, la

même démarche pouvant être utilisée pour kz. En x = a, on doit avoir Ez1 = Ez2 pour toutes

les valeurs de y et de z définissant l’interface entre les régions 1 et 2. Ainsi, de l’Éq. (2.86)

on a

X1(a)Y1(y)Z1(z)β1 = X2(a)Y2(y)Z2(z)β2 (A.1)

où on a défini β1 =
−j(k2

1
−k2z1)

ωµǫ3
et β2 =

−j(k2
2
−k2z2)

ωµǫ1
qui sont des constantes par rapport aux

coordonnées de l’espace (x, y, z). En fixant z = α, on peut écrire

Y1(y)

Y2(y)
=
X2(a)Z2(α)β2
X1(a)Z1(α)β1

= β ⇒ Y1(y) = βY2(y) (A.2)

où β est une constante par rapport à la coordonnée y. Les termes Y1(y) et Y2(y) sont donnés

par l’Éq. (2.83) qui peut être écrite sous la forme

Yi(y) = C ′
ie

jkyiy +D′
ie

−jkyiy (A.3)

où C ′
i = (Di − jCi)/2 et D′

i = (Di + jCi)/2. Ainsi, l’Éq. (A.2) devient

C ′
1e

jky1y +D′
1e

−jky1y = βC ′
2e

jky2y + βD′
2e

−jky2y (A.4)

et est valide pour toute valeur de y sur l’interface considéré, c’est-à-dire pour tout y ∈ [0, d].

On montre que ceci peut être vrai seulement si ky1 = ky2.

Supposons que l’Éq. (A.4) est satisfaite pour une valeur spécifique de y ∈ [0, d], que l’on

note yp. Alors considérons y = yp+ δy où δy est une variation infinitésimale de la coordonnée

y. Alors, l’Éq. (A.4) doit toujours être satisfaite et on peut écrire

C ′
1e

jky1(yp+δy) +D′
1e

−jky1(yp+δy) = β[C ′
2e

jky2(yp+δy) +D′
2e

−jky2(yp+δy)]. (A.5)
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En utilisant la définition de la dérivée d’une fonction

f ′(y) = lim
δy→0

f(y + δy)− f(y)

δy
, (A.6)

chaque terme de l’Éq. (A.5) peut être réécrit en terme de la dérivée d’une fonction. Par

exemple, le premier terme peut être écrit comme

C ′
1e

jky1(yp+δy) = C1′
[

d

dy
(ejky1y)

∣

∣

y=yp
δy + ejky1yp

]

. (A.7)

En réécrivant chaque terme de l’Éq. (A.5) de cette façon, on s’aperçoit que les termes

qui ne comprennent pas de dérivée correspondent exactement à l’Éq. (A.4) avec y = yp et

s’annulent donc mutuellement. En divisant l’équation résultante par le facteur commun δy

et en effectuant les dérivées, on obtient

C ′
1jky1e

jky1yp −D′
1jky1e

−jky1yp = βC ′
2jky2e

jky2yp − βD′
2jky2e

−jky2yp .

En divisant par jky1, on a

C ′
1e

jky1yp −D′
1e

−jky1yp = β
ky2
ky1

[C ′
2e

jky2yp −D′
2e

jky2yp ] (A.8)

En additionnant l’Éq.(A.8) et l’Éq. (A.4) avec y = yp, on trouve

2C ′
1e

jky1yp = β[C ′
2(1 +

ky2
ky1

)ejky2yp +D′
2(1−

ky2
ky1

)e−jky2yp ] (A.9)

Enfin, la division des deux membres de l’Éq.(A.9) par ejky1yp donne

2C ′
1 = β[C ′

2(1 +
ky2
ky1

)ej(ky2−ky1)yp +D′
2(1−

ky2
ky1

)e−j(ky2+ky1)yp ] ∀ yp ∈ [0, d]. (A.10)

Dans l’Éq. (A.10), 2C ′
1 est une constante indépendante du choix de yp tandis que le membre

de droite est une fonction de yp, sauf si ky1 = ky2.


