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RESUME

Le but de la présente recherche est d’étudier deux structures périodiques 2D dans le
contexte des métamatériaux. Les métamatériaux sont des structures périodiques dont la pé-
riode est suffisamment plus petite que la longueur d’onde pour pouvoir considérer la structure
comme un matériau homogene effectif avec des parametres effectifs e.¢¢ et pi.ry. La premiere
structure étudiée est une structure de fils métalliques plongés dans un milieu hote diélectrique
homogene. Deux modeles théoriques différents sont présentés pour cette structure. Ces mo-
deles permettent d’attribuer une permittivité effective a la structure de fils. Une méthode
numérique est ensuite employée pour extraire les parametres effectifs €. et p.rs de la struc-
ture. Il est montré que les parametres ainsi obtenus ne correspondent pas aux parametres
Eeff €t pepp Obtenus a partir des modeles théoriques. On tente alors de faire la distinction
entre les parametres effectifs théoriques et les parametres obtenus numériquement et d’éclair-
cir leur signification respective. Le concept des parametres de Bloch est ainsi introduit et il
est montré que ce sont les parametres de Bloch, et non pas les parametres théoriques .5¢ et
Leff, qui sont significatifs pour la résolution de problémes pratiques. Les parametres de Bloch
sont des parametres qui caractérisent les propriétés de transmission et de réflexion pour une
cellule unitaire et qui ne dépendent pas de la périodicité de la structure. Cette partie de la
recherche peut étre vue comme une mise en garde quant a l'interprétation et I'utilisation des
parametres effectifs attribués aux métamatériaux.

La présente recherche a aussi pour but de proposer des applications aux structures étu-
diées. Dans cette optique, la structure périodique de fils métalliques est utilisée pour conce-
voir un résonateur avec une distribution de champs uniforme dans la région occupée par la
structure de fils. Ceci est possible en opérant a la fréquence correspondant a la permittivité
effective nulle de la structure de fils, ce qui implique une longueur d’onde effective infinie.

La seconde structure périodique étudiée est une structure de fils métalliques entourés
d’une gaine diélectrique et plongés dans un milieu hote constitué d’une ferrite magnétisée. Le
modele théorique attribuant des parametres effectifs e.sf et p.rr a la structure est brievement
présenté. Ce modele prédit que dans une certaine bande de fréquences, les deux parametres
sont négatifs, ce qui donne lieu a la propagation de “backward waves”, caractérisées par le
fait que leur vecteur de propagation pointe dans la direction opposée au vecteur de Poynting,
qui représente la direction de transport de 1’énergie. Certaines propriétés physiques d’un
matériau avec des parametres négatifs sont présentées, notamment la propriété d’indice de
réfraction négatif. Le modele théorique pour la structure périodique est validé a ’aide de

la méme méthode numérique utilisée pour la premiere structure périodique. Le fait que les
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parametres extraits numériquement sont différents des parametres théoriques est a nouveau
souligné et les parametres extraits numériquement sont interprétés a l'aide du concept des
parametres de Bloch.

Puisque la propriété d’indice de réfraction négatif est une des propriétés les plus impor-
tantes des matériaux avec des parametres e.ry et p.rp négatifs, une expérience est congue
afin de valider cette propriété pour la structure de fils insérés dans une ferrite. Ainsi, la
structure périodique est fabriquée en laboratoire et un montage permettant la mesure de
I'indice de réfraction est concu. Les résultats montrent clairement I’existence d'une bande de
fréquences pour laquelle I'indice de réfraction est négatif, validant ainsi le modele théorique.
Des résultats sont obtenus montrant la dépendance de I'indice de réfraction en fonction de
la fréquence et aussi en fonction de 'intensité du champ magnétique DC H, servant a ma-
gnétiser la ferrite. Deux applications de cette structure périodique basées sur la variation de
I'indice de réfraction sont proposées. La premiere un analyseur de spectre qui utilise la varia-
tion de l'indice de réfraction en fonction de la fréquence pour décomposer spatialement les
différentes composantes fréquentielles d’un signal. L’autre est un démultiplexeur qui utilise
la variation de I'indice de réfraction en fonction de l'intensité du champ magnétique DC H,

pour transmettre le signal d’entrée dans une direction particuliere.



ABSTRACT

The goal of this research is to study two bidimensional periodic structures in the context of
metamaterials. Metamaterials are periodic structures which have a period that is sufficiently
smaller than the wavelength to be considered as an effective medium with effective parameters
Eeff and piepp.  The first structure studied is a structure of metallic wires embedded in
an homogeneous dielectric medium. Two different theoretical models for this structure are
presented. These models assign an effective permittivity to the structure. A numerical
method is then used to extract the effective parameters e.¢ and jis¢ of the structure. It is
shown that these parameters obtained numerically do not correspond to the parameters e.¢s
and p.rr obtained from the theoretical models. Therefore, we attempt to properly distinguish
the theoretical effective parameters from the parameters obtained numerically and to shed
light on their respective physical meaning. For this purpose, the concept of Bloch parameters
is introduced and it is shown that it is these Bloch parameters, and not the theoretical effective
parameters e.¢; and ji.rr, which must be used in solving practical problems involving the
periodic structures. The Bloch parameters are parameters which convey the transmission and
reflexion properties of a single unit cell, independently of the structure’s periodicity. This
part of the research can be seen as a warning according to which one should be careful in the
interpretation and use of the effective parameters derived for metamaterials.

This research also has for goal to suggest applications for the structures studied. There-
fore, the periodic structure of metallic wires is used in the design of a resonator having the
property of supporting a resonant mode with an uniform field distribution in the area oc-
cupied by the structure of wires. This is possible because the resonator is operated at the
frequency corresponding to zero effective permittivity of the wire structure, thus implying
that the effective wavelength is infinite.

The second structure studied is a structure of metallic wires surrounded by a dielectric
cladding and embedded in a magnetized ferrite host medium. The theoretical model from
which the effective parameters e.;; and piss are derived is briefly presented. This model
predicts the propagation of backward waves in a certain frequency band, these waves being
characterized by the fact that their propagation vector points in a direction opposite to the
Poynting vector, which corresponds to the direction of energy flow. Some physical properties
of a medium with negative parameters are presented, notably the property of negative re-
fractive index. The theoretical model for this periodic structure is validated using the same
numerical method used for the first periodic structure. The fact that the parameters extracted

numerically are different from the theoretical parameters is once again highlighted and the
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parameters obtained numerically are interpreted using the concept of Bloch parameters.
Since the negative refractive index property is one of the most important properties of
materials with negative e.;y and pi.ry parameters, an experiment is devised to validate this
property experimentally for the structure of wires inserted in the ferrite medium. This
periodic structure is fabricated in our laboratory and inserted in a setup that allows the
measurement of the refractive index. The results clearly show the existence of a frequency
band where the refractive index is negative, therefore validating the theoretical model. The
results also show that the refractive index varies with the frequency and with the DC magnetic
field Hy used to magnetize the ferrite. Two applications of the periodic structure are suggested
which are based on this variation of the refractive index. The first one is a spectrum analyzer
which uses the variation of the refractive index with the frequency to spatially decompose the
different frequency components of a signal. The other application is a demultiplexer which
uses the variation of the refractive index with the applied magnetic field Hy to transmit the

input signal in a particular direction.
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CHAPITRE 1

INTRODUCTION

1.1 Définitions et concepts de base

Les structures périodiques sont omniprésentes dans la nature. Par exemple, un cristal
de diamant est constitué d’un arrangement périodique tridimensionnel d’atomes de carbone.
Formellement, les structures périodiques sont la répétition d’une cellule unitaire dans ’espace
selon une matrice. Une matrice est un ensemble de points placés de maniere périodique dans
I’espace. La cellule unitaire, quant a elle, définit la structure physique qui, lorsque répliquée
a chacun des points de la matrice, génere la structure périodique. Comme montré a la figure
1.1, les structures périodiques peuvent étre a une, deux ou trois dimensions. Dans ce mémoire,
les structures périodiques considérées sont des structures a deux dimensions, ce qui veut dire

que la matrice associée est un ensemble de points localisés dans un plan.

1-D

Périodique dans Périodique dans Périodique dans
une direction deux directions trois directions

Figure 1.1 Illustration de la périodicité d’une structure dans une, deux ou trois directions.
Adaptée de "EBGs and Metamaterials : Concepts, Structures and Applications”, EuCAP
2009, par C. Caloz.

Les structures périodiques trouvent de nombreuses applications dans le domaine des
micro-ondes. En effet, on les retrouve dans la conception de filtres et de certains types d’an-
tennes. Les structures périodiques sont aussi utilisées dans la conception de surfaces sélectives
en fréquence (“Frequency Selective Surfaces” ou FSS), qui sont des structures bidimension-
nelles dont les coefficients de réflexion et de transmission pour une onde électromagnétique

incidente varient selon la fréquence. Le comportement en fréquence de la structure est di au



fait que les éléments de la cellule unitaire résonnent a une certaine fréquence, celle-ci pouvant
étre ajustée en variant la taille des éléments [1].

Depuis le début des années 2000, une autre catégorie de structures périodiques fait ’objet
de beaucoup d’attention de la part de la communauté scientifique. Il s’agit des métamatériaux
ou matériaux artificiels. La plupart des métamatériaux sont caractérisés par une cellule uni-
taire contenant une inclusion métallique entourée d’un milieu homogene appelé milieu hote.
Les métamatériaux sont des structures périodiques qui sont caractérisées par le fait que la
période de leur matrice est suffisamment plus petite que la longueur d’onde \;, dans le milieu
hote [2]. Dans la littérature, la condition pour qu’une structure périodique puisse étre consi-
dérée comme un métamatériau est que sa période soit inférieure a environ A\, /5 (e.g. [2, 3]). 1l
est alors possible d’utiliser une procédure d’homogénéisation des champs électromagnétiques
selon laquelle le champ moyen dans une cellule unitaire est calculé et utilisé pour définir les
parametres du matériau, c’est-a-dire une permittivité effective .4y et une perméabilité effec-
tive piepp. Ce sont ces champs homogénéisés et ces parametres du matériau qui entrent dans
les équations de Maxwell et permettent de traiter la structure périodique comme un matériau
homogene (e.g. [4]). Bien entendu, certaines approximations sont nécessaires lors de I'appli-
cation de la procédure d’homogénéisation. De maniere générale, plus la longueur d’onde est
grande par rapport a la périodicité et a la taille des inclusions, plus l'erreur introduite par
ces approximations est petite. Ainsi, pour un métamatériau ou la période se situe pres de la
limite Ap/5, il faut choisir soigneusement la procédure d’homogénéisation et s’assurer de la
validité des approximations qui sont utilisées.

L’avantage des métamatériaux sur les matériaux conventionnels est que par la concep-
tion de la cellule unitaire et de la périodicité de la matrice, il est possible de controler les
parametres effectifs du matériau selon les besoins de ’application. De plus, bien souvent les
parametres des métamatériaux sont dispersifs, ¢’est-a-dire qu’ils varient en fonction de la fré-
quence. Parfois, cette propriété est indésirable car il serait souhaitable d’obtenir un matériau
ayant des parametres électromagnétiques fixes sur une large bande de fréquence. Cependant,
pour certaines applications il est possible de tirer profit de la dépendance en fréquence des
parametres du matériau et d’ajuster cette dépendance selon les besoins. La propriété des mé-
tamatériaux qui a toutefois suscité le plus d’intérét est la possibilité de réaliser des structures
périodiques ayant a la fois une permittivité et une perméabilité effective négative, ce qui rend
la propagation de “backward-waves” possible.

L’histoire des métamatériaux remonte a bien avant les années 2000. Dans un article publié
en 1968, Veselago [5] analyse les conséquences d'une permittivité et d’une perméabilité toutes
deux négatives. Il montre qu'une onde plane se propageant dans un tel milieu serait caracté-

risée par le fait que les champs E et H et le vecteur de propagation k formeraient un systeme



de vecteurs satisfaisant la regle de la main-gauche, d’ou le nom “left-handed medium”. 11
montre aussi qu'un tel milieu aurait un indice de réfraction négatif. Dans son article, Vese-
lago mentionne que certains milieux comme les substances gyrotropes et les plasmas ont une
permittivité ou une perméabilité négative et donc qu’il ne serait pas impossible de trouver
un jour un matériau ayant a la fois une permittivité et une perméabilité négative. A cette
époque, les structures périodiques étaient déja connues et étudiées mais n’étaient pas consi-
dérées comme des matériaux effectifs dont on pourrait controler les parametres. Par exemple,
un article de Rotman [6] publié en 1962 compare les propriétés d'une structure périodique
de fils métalliques avec celles d'un plasma gazeux sans toutefois attribuer des parametres
effectifs a la structure périodique de fils. Ce n’est que plus tard que le concept de matériau
effectif a été utilisé pour représenter une structure périodique, avec par exemple I'article de
Pendry paru en 1996 [7] qui a étudié la méme structure périodique de fils métalliques que
celle étudiée par Rotman.

En 1999, Pendry et al. [8] ont introduit une structure périodique dont la cellule unitaire
est constituée d'une boucle de métal résonante (“split ring resonators”) et a laquelle ils ont
associé une perméabilité effective qui peut étre négative pres de la fréquence de résonance.
En 2000, Smith et al. [9] ont proposé de combiner ces boucles de métal avec la structure
périodique de fils métalliques pour créer un matériau avec a la fois une perméabilité et une
permittivité effective négative. Ils ont démontré expérimentalement qu'une telle structure
avait une bande passante correspondant aux fréquences ou la perméabilité et la permittivité
sont nulles. En 2001, le méme groupe a publié un article dans Science [10] décrivant une
expérience qui valide la propriété d’indice de réfraction négatif de la structure combinant les
boucles de métal résonantes et les fils métalliques. Depuis ce temps, beaucoup d’efforts de
recherche sont dédiés a la découverte de nouvelles structures périodiques ayant des parametres
effectifs controlables, a la caractérisation théorique et expérimentale de ces métamatériaux

et a leurs applications.

1.2 Problématique et objectifs de recherche

Le concept de métamatériau fait face a plusieurs défis. L'un de ces défis est de proposer
des applications qui permettraient d’utiliser les métamatériaux dans des dispositifs micro-
ondes réels qui auraient alors des performances meilleures que les dispositifs micro-ondes
employant des matériaux conventionnels. Par exemple, Pendry [11] a proposé une lentille,
qui, si elle était constituée d’'un matériau avec un indice de réfraction n = —1, ne souffrirait
pas de la limite imposée par la diffraction dont souffrent les lentilles conventionnelles. Bien

que certaines expériences aient été tentées afin de valider ce phénomene (e.g. [12]), on est



encore bien loin d’une lentille qui pourrait étre utilisée dans des applications. Comme autre
exemple d’application ayant été suggérée, on mentionne I'implémentation d’une lentille de
Luneburg a 'aide d’'un métamatériau bidimensionnel [13], la lentille de Luneburg étant une
lentille circulaire servant a focaliser en un point une onde plane incidente. Dans ce cas encore,
les performances du dispositif sont loin de ce qui serait requis afin d’étre utilisé dans des
applications pratiques.

Comme mentionné dans [14], les limites associées aux dispositifs utilisant des métama-
tériaux proviennent du fait que I'approximation selon laquelle la période de la structure
périodique est beaucoup plus petite que la longueur d’onde est souvent grossiere et que
puisque le métamatériau est nécessairement fini, les cellules unitaires sur le bord de la struc-
ture ne peuvent pas étre modélisées de la méme facon qu’une cellule unitaire placée dans une
structure périodique infinie. Ainsi, un autre défi des métamatériaux est de développer une
théorie basée sur I'attribution de parametres effectifs a des structures périodiques qui définit
clairement les limites de cette approche. En effet, I'utilisation de parametres effectifs pour
modéliser une structure périodique qui est alors considérée comme un matériau homogene a
de grands avantages sur le plan pratique mais il est primordial de bien comprendre la signi-
fication réelle de ces parametres effectifs ainsi que les approximations et erreurs qui peuvent
découler de leur usage.

L’objectif de la présente recherche est d’étudier certaines structures périodiques pouvant
étre considérées comme des matériaux effectifs. On cherche d’abord a bien comprendre la
procédure a suivre pour attribuer des parametres effectifs a des structures périodiques en
étudiant les modeles théoriques que 'on trouve dans la littérature ainsi qu’en explorant une
méthode numérique permettant d’extraire les parametres effectifs d’une structure. On tente
ensuite d’éclaircir la signification de ces parametres effectifs et d’établir les limites de leur
validité afin d’en faire un usage correct dans la conception de dispositifs réels. On tente aussi
de proposer des applications potentielles pour les structures périodiques étudiées et de valider

leurs propriétés expérimentalement.

1.3 Plan du mémoire

Le mémoire est divisé en deux chapitres principaux, les chapitres 2 et 3. Dans le chapitre
2, il est question d’une structure périodique 2D consistuée de simples fils métalliques minces,
considérés infinis en longueur et plongés dans un milieu hote non magnétique et homogene.
D’abord, les modeles théoriques établis dans la littérature pour cette structure sont décrits.
On introduit alors une méthode numérique permettant d’obtenir les parametres effectifs de

la structure. Les parametres ainsi obtenus sont comparés a ceux obtenus a 1’aide des modeles



théoriques. A ce point, la validité des parametres effectifs pour une structure périodique 2D
en général et I'interprétation qu’il faut leur donner sont discutées. Pour terminer le chapitre,
un exemple d’application potentielle pour la structure de fils métalliques est proposé. L’étude
de cette structure relativement simple est une bonne premiere étape en vue de 1’étude de la
structure considérée au chapitre 3.

Le chapitre 3 est consacré a ’étude d’une structure périodique 2D de fils métalliques
plongés cette fois dans un milieu hote magnétique. Puisque cette structure peut avoir une
permittivité et une perméabilité toutes deux négatives, on présente les phénomenes qui en
découlent tels que l'indice de réfraction négatif. Cette structure ayant été analysée théori-
quement par Dewar [15], une bréve présentation du modele théorique est effectuée. Ensuite,
les parametres effectifs du matériau homogene correspondant a cette structure sont présen-
tés et validés a 'aide de la méthode numérique d’extraction des parametres. Dans certaines
conditions, il existe un régime de fréquence ou la perméabilité et la permittivité effective sont
toutes deux négatives. Ceci donne lieu a des phénomenes intéressants dont le plus évident est
I'indice de réfraction négatif. Une expérience ayant servi a mettre en évidence le phénomene
d’indice de réfraction négatif pour la structure proposée par Dewar est décrite. Les résultats

obtenus a l'aide de cette expérience sont présentés et discutés.



CHAPITRE 2

Fils métalliques dans un milieu hote diélectrique

La premiere étape de la recherche concerne une structure 2D de fils métalliques que 'on
suppose infinis en longueur et qui sont insérés dans un milieu hote constitué d’un diélectrique
homogene. Lorsque la longueur d’onde est suffisamment grande par rapport a la période des
fils, cette structure périodique 2D peut étre modélisée comme un matériau homogene ayant
une permittivité effective.

Ce chapitre débute par une présentation des modeles théoriques que 1'on retrouve dans
la littérature pour la structure de fils métalliques plongés dans un milieu hote diélectrique
homogene. A partir de ces modeles, il est possible de déterminer la permittivité effective
en fonction de la fréquence et des parametres géométriques de la structure périodique de
fils. Une technique numérique permettant de calculer la permittivité effective est utilisée
pour valider les résultats obtenus a partir des modeles théoriques. La nécessité de restreindre
I’analyse numérique a un probléeme de dimension finie alors que I'analyse théorique assume
une structure périodique infinie pose naturellement la question de la validité des parametres
effectifs dans le cas d’une structure de dimension finie. Cette question ainsi que la question de
la validité en général des parametres effectifs sera abordée dans ce chapitre. Enfin, la derniere
partie du chapitre est dédiée a I’étude d’une application potentielle de ce matériau effectif.
Il s’agit d'un résonateur rectangulaire dont 'une des régions contient la structure périodique
de fils et qui opere a la fréquence ou la permittivité effective est zéro. Ceci permet a la
taille physique du résonateur d’étre arbitrairement grande, indépendamment de la fréquence

d’opération.

2.1 Modeles théoriques

La structure de fils métalliques de rayon r et de période a est montrée a la figure 2.1.
On considere que la matrice est carrée de sorte que la période est a selon les directions x
et y. On assume que les fils sont minces par rapport a la longueur d’onde (r << \). Pour
cette raison, on peut négliger I'interaction des modes TEz (champ électrique transverse a la
direction z) avec les fils (e.g., [16]). Ainsi, dans ce mémoire, on considérera uniquement les
modes TMz (champ magnétique transverse a la direction z). On note que bien que la figure 2.1
montre un champ électrique orienté uniquement selon z, en général il est possible d’avoir des

composantes en x et y du champ électrique pour un mode TMz, la seule restriction étant que



H. = 0. Cependant, pour des fils minces, on peut négliger I'interaction avec les composantes
x et y du champ électrique car elles créent des courants perpendiculaires a la direction z qui
sont négligeables par rapport au courant orienté selon z causé par la composante du champ
électrique orientée le long des fils. Pour des fils tres minces par rapport a la longueur d’onde,
on considere donc en quelque sorte que les fils sont invisibles du point de vue des composantes

perpendiculaires aux fils du champ électrique.

Figure 2.1 Structure périodique 2D constituée d’une matrice carrée de fils métalliques de
rayon r et de période a. Les fils sont orientés selon I'axe z.

Deux modeles théoriques différents seront présentés pour cette structure. L’'un a été pro-
posé par Tretyakov [17] et 'autre par Pendry [7]. Avant d’introduire le modele proposé par

Tretyakov, il convient d’introduire un résultat important : le théoreme de Bloch-Floquet.

2.1.1 Théoréme de Bloch-Floquet

Le théoreme de Floquet est un théoreme applicable aux équations différentielles dont les

coefficients sont des fonctions périodiques, comme par exemple

du(z)
dz

+ f(z)u(x) =0 (2.1)

ou on cherche a déterminer u(z) et ou f(x) est une fonction périodique de z. Le théoréme
de Bloch est une généralisation du théoreme de Floquet pour des équations différentielles
a plusieurs variables. Une démonstration du théoreme ne sera pas présentée ici et on se
contentera d’énoncer le résultat (voir par exemple [18] pour une démonstration). Le théoreme

de Bloch dit que pour I'équation d’onde homogene en trois dimensions

Vulx,y, 2) + f(z,y, 2)u(z,y,2) =0, (2.2)



ou f(x,y, z) est une fonction périodique de z, y et z, les solutions (les eigenfunctions) sont

de la forme

ol 7 = xT +yy+ 22 est le vecteur position, ¢ = ¢,Z+¢q,y+¢q.2 est la constante de propagation
de la solution et ¢ (x,y, z) est une fonction ayant la méme périodicité que f(x,y,z). Ainsi,
si la périodicité de f(z,y, z) est telle que f(x + ay, vy + ay, 2+ a,) = f(x,y, 2), alors on aura
Y(r+ ay, y+ay, 2+ a,) = Y(x,y, 2). Puisque ¥(x,y, 2) est une fonction périodique, elle peut

étre écrite sous la forme d’une série de Fourier & trois dimensions

W)= 3 33 e EEE) (2.4)

l[=—00 m=—00 Nn=—00

ou les coefficients ¢, , sont donnés par

az/2 ay/2 az/2 ) e
Clomn = / U(z,y, 2 32”<az+a5+az>dxdydz. (2.5)

ApQyQz J_a,/2 J—ay/2 J—a./2

Ainsi, la solution donnée par 1’Eq.(2.3) peut étre écrite sous la forme

u(z,y,2) = Z Z Z Clann€ [(‘Iﬁm)”(qy#;ﬁ)y+(qZ+22r7n)z]. (2.6)

Chaque terme de I’Eq. (2.6) est connu sous le nom d’harmonique de Floquet. L’harmonique
fondamentale pour laquelle [ = m = n = 0 a une importance particuliere pour I’analyse d’une
structure périodique en tant que matériau homogene. En effet, I'harmonique fondamentale de
Floquet a la méme forme qu’une onde plane avec le vecteur de propagation ¢. Ainsi, lorsque
I'harmonique fondamentale est la composante dominante de la solution u(zx,y, z), on peut
traiter cette solution comme une onde plane se propageant dans un milieu homogene effectif
(17, 19].

Le théoreme de Bloch peut étre appliqué pour la structure périodique de fils métalliques
de la figure 2.1. Considérons les modes TMz pour lesquels H, = 0. Ces modes peuvent étre
obtenus en considérant un potentiel vectoriel magnétique A pour lequel seulement la compo-
sante A, est non-nulle [16]. Puisqu’on considere le probleme sans source, A, doit satisfaire
I’équation d’onde homogene

VA, + KA, =0 (2.7)

olt k?* = w?ue (ici comme dans le reste du mémoire, on assume implicitement une dépen-

dance par rapport au temps de la forme e/**). Habituellement, I'Eq. (2.7) est résolue dans



le domaine défini par et excluant les surfaces métalliques, celles-ci étant prises en compte
lors de I'application des conditions frontieres. Cependant, pour I'application du théoreme de
Bloch, dans le cas présent on considere les fils métalliques comme faisant parti du domaine
de solution [17]. On considere alors une conductivité o pour les fils, le cas limite ol ceux-ci
sont des conducteurs parfaits correspondant a ¢ — oo. La présence des fils métalliques est
alors prise en compte directement dans 1’Eq. (2.7) en considérant que ¢ = &(x,y) est une
fonction de I'espace avec € = ), — jo/w aux endroits ou se trouvent les fils. Puisque ¢ est une
fonction périodique de x et y, k dans I’Eq. (2.7) est aussi une fonction périodique de x et y
et on a donc la forme de 'Eq. (2.2) qui permet 'application du théoreme de Bloch.

Bien entendu, dans le probleme des fils métalliques, la périodicité n’est que selon deux
directions, le probleme étant invariant dans la direction z, soit le long des fils. Le théoreme

de Bloch est applicable pour I’équation d’onde en deux dimensions

Vu(x,y) + f(z,y)u(z,y) =0, (2.8)

les solutions étant alors données par 1'Eq. (2.3) avec ¢, = 0 et ¥ = Y(x,y). L'Eq. (2.7), qui
est une équation en trois dimensions, peut étre amenée sous la forme de I’Eq. (2.8) par une

transformée de Fourier en z. Prenant la transformée de Fourier de 'Eq. (2.7), on obtient

+o00 ) 82Az ) iges
(V7A, + 5.2 +k°A)e 7 %*dz =0 (2.9)

o0

. 2 2 PP , .
ou Vy = % + g—yQ. Définissant la transformée de Fourier en z de A, par

+o0
A(q.) = Aete2dy, (2.10)
PEq. (2.9) peut étre écrite comme
B B +oo 8214 )
VZA, + KA, + / a—;eﬂqzzczz = 0. (2.11)
o 02

En assumant que A, et sa dérivée premiere par rapport a z sont zéro lorsque z — 400, deux

intégrations par partie successives donnent

+oo
V2A, + KA, + / —¢2 A dy = 0 (2.12)

—0o0

ou encore,

VA, + (K> — A, = 0. (2.13)
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Ainsi, en considérant ¢, comme un parametre, A, satisfait une équation de la forme de
I’Eq. (2.8). On peut alors appliquer le théoreme de Bloch pour deux dimensions et les solutions

A, ont la forme

AZ — efj(qu“rqyy)w(x’ y) (214)

ot ¢ (z,y) est une fonction ayant la méme période que k* — ¢2, c’est-a-dire la méme période

que £(x,y). La solution A, peut étre obtenue de A, par la transformée de Fourier inverse

1 [t
A (z,y,2) = —/ A.e 7% dq.. (2.15)

2 J_
Puisque l'intégrale peut étre vue comme la limite d’une sommation, I’Eq. (2.15) indique que

les solutions fondamentales (les eigenfunctions) de 'Eq. (2.7) pour la structure de la figure 2.1

sont de la forme
A, = e I mtayta:2)y (p o) (2.16)

ol ¢, représente la variation en z et est considéré comme un parametre dont on est libre de
fixer la valeur.

Il faut noter que sous la jauge de Lorentz, les champs électriques et magnétiques sont
obtenus de A, a l'aide de (e.g. [20])

A=-1vxa (2.17)
"
et

. . 1 .

Avec les solutions données par 'Eq. (2.16) et en notant que la dérivée d’une fonction pério-
dique est aussi une fonction périodique, il est facile de se convaincre que chaque composante
de E et H peut étre exprimée sous la méme forme que A, donnée par I’Eq. (2.16). On peut
aussi faire la méme affirmation pour les courants de surface induits sur les fils métalliques.
En effet, ces courants sont donnés par J = h x H ou 7 est le vecteur unitaire normal & la
surface des fils. Pour les modes TMz obtenus a partir de A., H et 7 sont dans le plan zy et

J a uniquement une composante .J,. Cette composante peut alors étre écrite sous la forme
JZ — efj(qzx‘i’ny‘l’qzz)rl/}/(x’ y) (219)

ou ¢'(x,y) est une fonction périodique ayant la méme périodicité que la fonction ¢ (x,y) de

IEq. (2.16). Ce résultat sera utilisé & la section suivante.
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2.1.2 Modele proposé par Tretyakov

Dans cette section, le modele théorique développé par Tretyakov pour la structure de
fils de la figure 2.1 est présenté. Ce modele permet d’assigner une permittivité effective a la
structure de fils, qui est alors considérée comme un matériau homogene. On se contentera
ici d’énoncer les étapes clé du développement tel que présenté dans [17]. La démarche suivie
par Tretyakov est la suivante. La premiere étape consiste a résoudre le probleme sans source,
c’est-a-dire a résoudre 1’équation d’onde homogene pour la structure infinie de fils afin de
trouver les solutions naturelles. Ceci permet d’obtenir une équation de dispersion pour la
structure de fils. Cette équation de dispersion est alors comparée a 1’équation de dispersion
pour un matériau homogene ayant une permittivité donnée. En faisant correspondre ces deux
équations de dispersion, il est possible d’attribuer une permittivité effective a la structure de
fil, qui peut alors étre considérée comme un matériau homogene.

Le probleme qui consiste a modéliser la structure périodique de fils métalliques est un
probleme implicite en ce sens que 1'on cherche a déterminer la réponse électromagnétique
d’un fil plongé a l'intérieur d’une structure infinie de fils alors que l'effet de tous ces autres
fils sur le fil étudié ne peut étre connu que si on connait la réponse individuelle de ces autres
fils, ce qui nous ramene au probleme de départ.

Pour résoudre le probleme, on considere un fil en particulier de la structure infinie que
I'on place a la position z = 0 et y = 0, comme montré a la figure 2.2. On peut séparer le
champ électrique total Ejor 2 Vintérieur de la structure de fils en deux composantes : le champ

local Eloc et le champ E i produit par le fil considéré de sorte que
Eor = Eoe + Efil- (2.20)

Pour bien comprendre la nature des champs produits par les fils, on fait appel a un principe
en électromagnétisme connu sous le nom d’équivalent physique (physical equivalent) [21].
Lorsque des sources de courant externes Tont rayonnent en présence d'un obstacle métallique
parfait conducteur (0 — o0), les champs électromagnétiques totaux Etot et ﬁtot a Uextérieur

de l'obstacle peuvent étre décomposés selon

By = E'+FE° (2.21)
H., = H'+ H". (2.22)

ou E' et H' sont les champs incidents produits par des sources externes en [’absence de
obstacle et E* et H* sont les champs dispersés (“scattered”) par I'obstacle. Selon le principe

de I'équivalent physique, les champs dispersés correspondent aux champs rayonnés par le
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Figure 2.2 Décomposition du champ électrique pour une structure périodique de fils (consi-
dérés infinis en z) du point de vue du fil placé a l'origine. a) Champ Ej,. produit par tous les
autres fils. b) Champ E;; produit par le fil a Uorigine.

courant de surface J, = n X H,,; ou n est le vecteur unitaire normal a la surface de ’obstacle
et pointant vers I'extérieur de I'obstacle, ce courant rayonnant dans un milieu homogene sans

la présence de I'obstacle métallique (voir [21] ou [16]). Ce principe est illustré a la figure 2.3.

a) b)

Figure 2.3 Principe de ’équivalent physique. a) Probleme réel avec I'obstacle métallique. b)
Probleme équivalent avec le courant Jg rayonnant en I’absence de ’obstacle et produisant les
champs dispersés E° et H®.

Revenant au cas de la structure périodique de fils métalliques, on peut donc remplacer tous
les fils par des courants de surface qui rayonnent dans le milieu hote homogene en ’absence
des fils métalliques. On note toutefois que la composante tangentielle du champ électrique

total Etot doit s’annuler a la surface des fils, condition utilisée dans le développement de
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Tretyakov. Cette condition, en combinaison avec la technique de ’équivalent physique, est a
la base de la technique de I’équation intégrale pour le champ électrique. En supposant que les
fils sont tres minces par rapport a la longueur d’onde (r << Ap), les champs rayonnés par les
courants de surface sur chacun des fils seront équivalents aux champs rayonnés par une ligne
de courant [ localisée au centre de chaque fil. Aussi, puisqu’on est a la recherche des modes
naturels de la structure, ¢’est-a-dire des solutions non-nulles au probleme sans source externe,
les champs incidents E et H' des Eqs. (2.21) et (2.22) sont nuls. Ainsi, les champs Ey,, et
Efz’l de I’Eq. (2.20) doivent étre interprétés comme des champs dispersés qui sont rayonnés
par des lignes de courant aux emplacements des fils et rayonnant dans un milieu homogene
ayant les propriétés du milieu hote, en I'absence des fils métalliques.

A présent, déterminons le champ électrique produit par une ligne de courant /(z) placée a
I'origine. Toujours pour les modes TMz, la composante A, du potentiel vectoriel magnétique

doit satisfaire ’équation d’onde non-homogene
VA, +K*A, = 6(p)1(2) (2.23)

ot k2 = w?pen, p = /12 + y? et §(p) est la distribution de Dirac. On utilise le résultat (e.g.
[16]) selon lequel la solution de I'Eq. (2.23) lorsque I(z) = I est une constante par rapport a

z est donnée par

A, = =5 1H (kp) (2.24)

ol HSQ) est la fonction de Hankel du deuxieme type d’ordre 0. Cette solution ne dépend pas

de z et on peut donc considérer que c¢’est une solution de I’équation
VIA, + KA, =6(p)] (2.25)

Pour le cas qui nous intéresse, ou I(z) est une fonction de z, on peut utiliser ce résultat en
considérant la transformée de Fourier en z de I’Eq. (2.23). Par la méme manipulation qui a
mené a U'Eq. (2.13), I'Eq. (2.23) devient

V?Az + (k2 - qz)Az = 5(p)j(Qz> (226>

ol I(g.) est la transformée de Fourier de I(z). L'Eq. (2.26), tout comme I'Eq. (2.25), est
indépendante de z. La solution de I'Eq. (2.26) est donc

A, = =L ) Y (VE = ¢2p). (2.27)
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Considérant la transformée de Fourier inverse

1 [*e

A, ALe %3 dq, (2.28)

:% N

on voit qu’en considérant une seule valeur de ¢, a la fois, comme a la section précédente, la
solution de I'Eq. (2.23) est

A, = —jEa) B (VR = @p)e 2, (2:29)

Comme mentionné en début de chapitre, on ne considere que l'interaction de la com-
posante E, du champ électrique avec les fils. Le champ électrique est obtenu en utilisant
I'Eq. (2.18). Pour E, on a

1 0°A
B, =—jwA, — j— £ 2.30
Jwds =i (2.30)
En utilisant Iexpression pour A, de I'Eq. (2.29), on obtient
1 - )
B, = ——I(g)e 7 (K — ) H? (VI — ). (2.31)

dwe

Toujours en fixant ¢. dans la transformée de Fourier inverse de I(q.), on voit que I(gq.)e 7%
correspond au courant I(z). Ainsi, le champ FE, produit par une ligne de courant /(z) placée
a l'origine est
B = I8~ ) HP (/). (232
dwe N N

De maniere plus générale, le champ F, rayonné par une ligne de courant I, placée a la position

(0, yo) est aussi donné par I'Eq. (2.32) mais avec p = \/(z — 20)2 + (y — yo)2.

L’équation de dispersion qui caractérise les modes supportés par la structure infinie de
fils métalliques est obtenue en imposant la condition E, ;, = 0 a la surface du fil de référence
placé a l'origine. De I’Eq. (2.20), on a donc la condition E, ;.. = —FE, ¢y a la surface du
fil de référence. Le champ E, ;i produit par le fil de référence est donné par I’Eq. (2.32)
évaluée en p = r ou r est le rayon du fil. Le champ E, ,. est donné par la somme des champs
produits par tous les autres fils identifiés par la paire d’indices (m,n) et situés aux positions

(x0,Y0) = (ma,na) ou a est la période de la structure de fils. On peut donc écrire

1 2
Booe= Y~ lnm ()6 = ) H (VA = Epin) (2.33)
(m,n)#(0,0)

ol Pimmy = /(x —ma)? + (y — na)? et I, ,)(2) est le courant dans chaque fil (m,n). C'est

ici qu'intervient le théoreme de Bloch-Floquet. Puisque le courant I, ,)(2) associé a chaque
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fil est la limite lorsque r — 0 de l'intégrale calculée sur la surface du fil du courant de surface

J., de 'Eq. (2.19) on a que I(m.ny(2) peut s’écrire sous la forme
Loy (z) = eI t@mataunata=2 [ (3,0 4,) (2.34)

ou I,(zo,yo) est une fonction périodique des coordonnées z, et en y, des fils et ayant une
période a. Puisque la position des fils est donnée par (zo,yo) = (ma,na), I, a la méme
valeur pour tous les fils et peut donc étre considéré comme une constante. Ainsi, a l'aide des
Eqs.(2.32), (2.33) et (2.34), la condition a la surface du fil de référence E, ;,. = —FE, ;i peut

s’écrire

1 —j(qgzma na z 2
D g e AL — ) HE (VR = Epnam) =
(m,n)#(0,0)
IR
o L = ) (VA ) (2.35)

ot on a utilisé le fait que le fil de référence correspond a (m,n) = (0,0) et ou on approxime

Pimny & 4/ (ma)? + (na)? . En annulant les facteurs communs aux deux membres de I'équa-

tion, on obtient

> et OB (R = Epnm) = Hy (VE — ¢2r) (2.36)

(m,n)#(0,0)

ce qui correspond a lI’équation de dispersion recherchée. L’équation de dispersion est en fait
une relation entre les composantes de ¢ et k. Comme il a déja été mentionné, ¢ correspond
au vecteur de propagation de I’harmonique fondamentale de Floquet qui elle-méme peut étre
associée a une onde plane se propageant dans la structure périodique considérée comme un
matériau homogene. Ainsi, c’est en associant la relation de dispersion propre a une onde
plane se propageant dans un milieu homogene ayant une permittivité donnée avec la relation
de dispersion donnée par I’Eq. (2.36) qu’il est possible de définir une permittivité effective
pour la structure périodique de fils métalliques.

Il est possible de résoudre I’Eq. (2.36) analytiquement sous certaines conditions. Premie-
rement, il faut que le rayon des fils soit beaucoup plus petit que la période a et que a soit
a son tour beaucoup plus petite que la longueur d’onde A, (r << a << \3). De plus, il
faut supposer que l'interaction entre les rangées de fils le long de la direction de propagation
se fait par la propagation d’ondes planes qui correspondent a I'harmonique fondamentale de
Floquet. Ceci est justifié par le fait qu’une rangée de fils transverse a la direction de propa-
gation peut étre modélisée par une feuille de courant uniforme dont la valeur correspond au

courant moyen [,/a et que cette feuille de courant produit une onde plane [17]. Les étapes de
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la résolution analytique de I’Eq. (2.36) ne seront pas reproduites ici et peuvent étre trouvées
dans [17]. Le résultat est
2,2, 2 12 12
G +aq+a, =k —Fk, (2.37)

ou 5
™
k2 = 2.38
P a? (In 5% +0.5275) (2.58)

et k% = wlupep,.
Pour obtenir une permittivité effective pour la structure de fils métalliques a partir de
I’Eq. (2.37), Tretyakov compare cette structure avec un milieu homogene caractérisé par une

perméabilité p = pp et une permittivité uniaxiale exprimée par la dyade

Et 0 O
0 0 e,

ou &; est la permittivité dans les directions transverses x et y et ol ¢, est la permittivité
dans la direction z. L’équation de dispersion pour les solutions TMz se propageant dans un

tel milieu avec le vecteur de propagation ¢ = ¢,& + ¢,9 + ¢.% est
€z
—F 6+ 4y = W hos, (2.40)
t

La recherche d’'une permittivité effective pour la structure de fils est motivée par le fait
que les courants induits dans les fils peuvent étre associés a la polarisation électrique d’un
matériau. Puisque les fils n’interagissent qu’avec la composante z du champ électrique, on
s’attend a obtenir une permittivité transverse ¢; égale a la permittivité £, du milieu hote. La
permittivité effective e, associée a la structure de fils est obtenue en comparant la relation
de dispersion de la structure de fils donnée par I’Eq. (2.37) avec la relation de dispersion du
milieu avec une permittivité uniaxiale donnée par I’Eq. (2.40) ou on considere g, = g;,. Pour

avoir ’équivalence entre ces deux équations, il faut avoir

k2
_ P
e:(w,q:) = en (1 o q§> (2.41)
ce qui correspond a la permittivité effective €, = €.y pour la structure infinie de fils métal-
liques. De I’Eq. (2.41), on voit que la permittivité effective est temporellement et spatialement
dispersive, c’est-a-dire qu’elle dépend de la fréquence temporelle a cause de k et de la fré-
quence spatiale puisqu’elle dépend de la composante ¢, du vecteur de propagation. Ainsi,

la permittivié associée a la structure de fil n’est pas la méme pour différentes ondes ayant
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différents vecteurs de propagation et est donc un parametre non local [17] dans le sens que
la permittivité en un point du milieu effectif représentant la structure de fils dépend en fait

de la distribution des champs ailleurs dans le milieu.

2.1.3 Modele proposé par Pendry

En 1996, Pendry a proposé un modele pour obtenir la permittivité effective de la structure
de fils métalliques de la figure 2.1 [7]. Il a plus tard détaillé son analyse dans une publication
parue en 1998 [22]. Son approche est différente de celle employée par Tretyakov et repose
sur une comparaison entre la structure de fils métalliques et un plasma puis sur la définition
d’une masse effective des électrons conducteurs présents dans les fils métalliques.

Selon la théorie des plasmas, ceux-ci peuvent étre caractérisés par la permittivité

2

w
fwy=1—-—">=L— (2.42)
w(w =+ j7v)
ol vy est un terme de pertes et ou
W2 = (2.43)
P Eom )

est la fréquence de plasma ou n est la densité des électrons dans le plasma, e est la charge
d’un électron et m est la masse d'un électron.

Pendry propose de voir la structure de fils métalliques comme un plasma homogene pour
lequel la densité effective d’électrons n.sy correspond a la densité d’électrons dans une cellule
unitaire divisée par le volume de la cellule unitaire. Ainsi, la densité des électrons pour
la structure de fils est diluée par rapport au cas ou le métal remplit tout ’espace. Selon
IEq. (2.43), on voit que cela a pour effet de diminuer la fréquence de plasma. Pour un métal,
wp se situe généralement dans le domaine de l'ultraviolet tandis que grace a la structure de
fils, il est possible d’abaisser w, au domaine des micro-ondes. En considérant la portion du
volume d’une cellule unitaire occupé par un fil, la densité effective est

2
Neff = n% (2.44)
ou n est la densité d’électrons dans le métal.

Pendry affirme que la structure périodique de fils fait en sorte que la masse effective des
électrons est augmentée par rapport a la masse réelle des électrons. Il explique cela par le
fait que pour déplacer les électrons et produire un courant, la force agissant sur les électrons
doit, en plus d’accélérer la masse réelle des électrons, travailler contre I’auto-inductance de la

structure de fils. Pour prendre en compte cette inductance de la structure de fil, il argumente
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que le potentiel vectoriel magnétique est donné par [22]

LoTT2nu,e
———In

Alp) = A.(p)z = 5

(a/p)? (2.45)

ou p = /x? + y? et v, correspond a la vitesse des électrons dans la direction z (on note que

2

la quantité mr*nv,e correspond au courant dans un fil). A la surface des fils, on a p =1r et

donc )
Alp = r) = By ()2 (2.46)

2
Du point de vue de la mécanique classique, le potentiel généralisé U d’un électron soumis a un
champ électromagnétique caractérisé par le potentiel vectoriel magnétique A et le potentiel

scalaire ¢ satisfaisant la condition de Lorentz est [23]
U=ep—eA-. (2.47)

ol 7 est la vitesse de Délectron. Utilisant A tel que donné par I’Eq. (2.46) et la condition de
Lorentz [20]

b— v A (2.48)

on note que V - A=0 par la définition de la divergence en coordonnées cylindriques et on
obtient

dz
U= _eAZ%' (2.49)
Dénotant les composantes de la vitesse par v = v,2 + v,y + v.2 ol par exemple v, = ‘é—f, le
Lagrangien s’écrit
L=T-U= 1m(vfC + 02 4 02) + eALv, (2.50)

2
ou T est I'énergie cinétique de 1'électron. Le moment canonique associé¢ a la composante z,
qui est la composante qui nous intéresse puisque les fils sont orientés selon z et donc que les

électrons se déplacent dans la direction z, est donné par

L
D= = mu, + eA.. (2.51)

B v,
Pendry définit alors une masse effective m.sy telle que le moment m. v, soit égal au moment
p. donné par I’Eq. (2.51). Pour une structure de fils ayant une période a et un rayon des fils
r de 'ordre de quelques mm, ce qui permet de considérer la structure comme un matériau
homogene effectif et d’obtenir des propriétés intéressantes comme €.y = 0 aux fréquences

micro-ondes, le terme eA, est dominant dans I’Eq. (2.51). En négligeant le terme muv,, on
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obtient ) )
LT N e a
et fUy = —————1 <—> 2.52
MefrU o n , ( )
et donc .
LoTTr ne a
= 1T (0, 253
Mefy 5| (2.53)

En utilisant n.f telle que donnée par I'Eq. (2.44) et m.yy telle que donnée par IEq. (2.53)
dans 'Eq. (2.43) pour w?, on obtient

s neff62 B 21

W

— = . 2.54
P eomepr  eoptoa® In(a/r) ( )

A partir de 'Eq. (2.42), en tenant compte du fait que la structure de fil est plongée dans un
milieu homogene hote de permittivité e, et en considérant des fils sans pertes avec o — 00,

la permittivité effective pour la structure de fils peut s’écrire

w2

_ p
Eeff = En — E (255)
ol wf) est donné par 'Eq. (2.54). On note que la solution proposée par Pendry suppose qu’il
n’y a aucune variation en z. La solution proposée par Tretykakov n’a aucune variation en z
si on pose ¢, = 0. Dans ce cas, la permittivité effective proposée par Tretyakov, donnée par

I'Eq. (2.41), peut s’exprimer par I'Eq. (2.55) avec wﬁ donné par
2
2 ky 2

P Moo [j,(){:‘oaQ (lIl ﬁ + 05275) ( )

L’analyse de Tretyakov que l'on retrouve dans [17] et ayant été publiée en 2003 repose
sur une solution entierement électromagnétique du probleme. Pour 'auteur du présent mé-
moire, le résultat de Tretyakov est plus exact et obtenu de maniere plus rigoureuse que le
résultat obtenu par Pendry. En effet, selon [24], le modele de Pendry ne tient pas compte de
I'interaction entre les fils métalliques. Les permittivités données par les deux modeles seront
comparées entre-elles ainsi qu’avec la permittivité obtenue par une méthode numérique a la

section suivante.

2.2 Extraction de parametres effectifs

Dans cette section, on présente une méthode numérique permettant d’extraire les para-
metres effectifs pour une structure périodique. Le logiciel d’éléments finis commercial HFSS

est utilisé afin de calculer les coefficients de réflexion et de transmission pour la structure
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périodique. A partir de ces coefficients, il est alors possible d’obtenir certaines informations
sur les parametres effectifs que 'on peut associer a la structure périodique. Depuis les années
2000, avec 'attention qu’ont recu les métamatériaux, plusieurs travaux ont été réalisées sur
I'extraction numérique des parametres effectifs [25, 26, 27]. La méthode présenté ici est basée
sur une méthode proposée par Smith [28], reprise par Chen et al. [29] et inspirée des travaux

de Nicholson et Ross [30].

2.2.1 Théorie de la méthode d’extraction

La méthode d’extraction des parametres effectifs pour une structure périodique est basée
sur l'idée que si la structure périodique est considérée comme un matériau homogene, alors
il est possible d’extraire de 'information sur les parametres effectifs a partir des coefficients
de réflexion et de transmission. Considérons le probleme classique d’une onde plane incidente
sur un matériau d’épaisseur d et ayant les parametres iy et £9 (région 2). Deux milieux semi-
infinis de parametres u; et €1 se trouvent de part et d’autre de ce matériau (régions 1 et 3).
Ce probleme est illustré a la figure 2.4.

Région 1| Région 2 | Région 3
R

de T

M1, €1, Th | M2, €2, T2 | M1, €1, Th
T

Figure 2.4 Onde plane incidente sur un milieu de parametres i, et 5 et d’épaisseur d (région 2)
avec deux milieux semi-infinis de parametres p; et €1 de part et d’autre (régions 1 et 3).

Le champ électromagnétique dans les régions 1 et 2 est donné par la superposition dune
onde se propageant vers les valeurs croissantes de z et d’une onde se propageant vers les
valeurs décroissantes de z alors que dans la région 3 seule une onde se propageant vers les
valeurs croissantes de z existe. En appliquant les conditions de continuité des champs aux
interfaces entre les régions, on obtient le coefficient de réflexion global a l'interface entre la

région 1 et la région 2 (voir par exemple [20] ou [31])

(1 — 672j’8d)1_‘172

I'= A

(2.57)
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ou 8 = w,/lzes est la constante de propagation dans la région 2 et ou

:7]2—771
N2+ M

1,2 (2.58)
est le coefficient de réflexion local entre les régions 1 et 2 si ceux si étaient semi-infinis (pas
de région 3), les impédances d’onde étant définies par n; = , / Z—ll et ny = Z—j Le coefficient
de transmission global est donné par [20], [31]

(1- F%,z)e_jﬁd

ro (ot (2.59)

Supposons maintenant, toujours en considérant le probleme de la figure 2.4 avec des
matériaux homogenes, que les parametres jo et €5 du matériau de la région 2 sont inconnus
alors que les parametres p; et £1 des régions 1 et 3 sont connus. Suivant [26], voyons comment
il est possible, connaissant T et T, d’obtenir j et £5. Les Eqgs. (2.57) et (2.59) sont combinées

afin d’obtenir une équation quadratique en I'; o
[I0—Tio(1+T°=T%)+T =0 (2.60)

ainsi que I'expression suivante pour e 7% :

= . 2.61
[+ T)s 200
La solution de I'Eq. (2.60) est donnée par
1412 - 72 14127277
Mo=——7F—"= —_— -1 2.62
e 2T \/{ 2T ] (2.62)

ol, en général, le signe devant la racine carrée peut étre déterminé en sélectionnant celui qui

donne |I'; 5| < 1. Connaissant I'; 5, I’Eq. (2.58) peut étre inversée afin d’obtenir

po  (L+Thp) [
— = o he) P 2.63
" g2 (1-Ti2)V & (2.63)

A partir de I’Eq. (2.61) avec f = w,/fa€s, on peut obtenir I'expression suivante

1 , ,
% i = o [+ fargle ) (2.64)

ol ngy est I'indice de réfraction dans la région 2 et ¢ = 1/,/110gg est la vitesse de la lumiere
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dans le vide. En combinant les Eqgs. (2.63) et (2.64), on obtient les parametres recherchés

nQ/C et Mo = @772 (265)
T2 ¢

€9 =

En examinant 'Eq. (2.64) qui détermine I'exposant complexe de la fonction exponentielle
e84 on voit qu'il y a une ambiguité de 2mnm (m = 41, £2,...) pour la fonction arg(e=79%).

Ainsi, la partie réelle de ,/puse5 est donnée par

1

Re (\//i2e2) = d_—w [Arg(e™77") + 2mr] . (2.66)

ot Arg() est la fonction argument principal qui retourne une valeur entre —7 et 7. La longueur

2
wy/p2€2”’

d’onde dans la région 2 étant donnée par Ay = I’Eq. (2.66) peut étre écrite comme

d_ [Arg(e_jﬂd)

Aoy 27

% + m} . (2.67)

Pour une longueur d donnée, il faut choisir la bonne valeur de m afin d’obtenir la partie
réelle de I'indice de réfraction. Le choix de m peut étre fait si on connait a ’avance la valeur
approximative de l'indice de réfraction (par exemple a partir de modeles théoriques). Aussi,
si la longueur d est suffisamment petite, il est fort probable que m = 0 donne la bonne valeur
de 'indice de réfraction. En effet, de I’Eq. (2.67) on a que si la longueur d est plus petite que
Ay / 2, il faut choisir m = 0.

2.2.2 Extraction par une méthode numérique

Il a été vu que si on peut effectivement considérer la structure périodique comme un
matériau effectif homogene, il est possible d’obtenir des parametres effectifs ji.rr et ecpp en
calculant le coefficient de réflexion et de transmission pour cette structure. Les coefficients de
réflexion et de transmission peuvent étre obtenus numériquement en solutionnant un probleme
analogue a celui de la figure 2.4.

La figure 2.5 montre le modele d’un tel probleme réalisé avec le logiciel commercial d’élé-
ments finis HFSS. Une rangée de cellules unitaires est excitée par une onde transverse élec-
trique magnétique (TEM) incidente depuis le port 1. L’'onde TEM est caractérisée par une
distribution uniforme des champs électrique et magnétique dans un plan transverse a la di-
rection de propagation. Une telle onde peut étre supportée a l'intérieur d'un guide d’onde
constitué de deux murs métalliques parfaits conducteurs (PEC) en haut et en bas et de
deux murs conducteurs magnétiques parfaits (PMC) sur les cotés. Le champ électrique est

alors orienté verticalement, perpendiculaire aux murs PEC, tel que montré dans la figure 2.5.
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L’onde TEM supportée par ces guides d’onde est équivalente a une onde plane restreinte au
domaine défini par le guide d’onde. Deux guides d’ondes TEM de longueur [ sont placés de
part et d’autre de la structure périodique a exciter.

La périodicité de la structure dans la direction transverse a la direction de propagation
est modélisée a l'aide de conditions aux frontieres périodiques sur les cotés de la structure
périodique (voir [32] pour une discussion des conditions frontieres périodiques dans la méthode
des éléments finis). Sur les frontieres en haut et en bas des cellules unitaires de la structure
périodique, la condition frontiere PEC est utilisée. Ceci est justifiable par le fait qu’avec
I'excitation TEM décrite plus haut, seuls des modes TMz (on assume que la direction z
est la direction de polarisation du champ E dans la figure 2.5) avec aucune variation en z
seront excités. Pour ces modes, le potentiel vectoriel magnétique n’a qu’une composante A,
qui ne dépend pas de la coordonnée z. Alors, selon I’Eq. (2.18), le champ E waura qu’une
composante selon z et la condition frontiere PEC permet de délimiter le domaine de solution
sans influencer la configuration des champs dans la structure. En d’autres mots, en utilisant
la condition frontiere PEC, on obtient le méme résultat que si la structure était infinie dans

la direction z.

Figure 2.5 Modele d'une rangée de cellules unitaires de longueur totale d dans HFSS. La
périodicité dans la direction transverse est modélisée par des conditions frontieres périodiques
(PBC). La structure est excitée par une onde TEM générée a ’aide d’'un guide d’'onde PEC-
PMC.

A Paide du solveur HFSS et du modele de la figure 2.5, il est possible d’obtenir les para-
metres S1; et S91 par rapport aux ports 1 et 2. Les coefficients de réflexion et de transmission
[ et T équivalents a ceux définis pour le probleme de la figure 2.4 peuvent étre obtenus a
partir de Si; et de So; en tenant compte de la longueur [ entre les ports 1 et 2 et I'interface

entre la structure périodique et les guides d’ondes TEM. En supposant que les guides d’ondes
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TEM sont remplis d'un matériau homogene ayant les parametres py et €1, la constante de
propagation dans ces guides d’ondes est 8, = w,/me1. Les coefficients I' et T" sont alors

obtenus par une simple correction de phase
I'= Sllejﬁgm et T = S2lej/392l‘ (268)

Il est alors possible, en suivant la procédure décrite précédemment, de calculer des parametres
feff et ecpp pour la structure périodique.

Concernant ’ambiguité dans le choix de m dans I'Eq. (2.67), on note que dans le cas d'une
structure périodique, la longueur d du matériau dont on veut extraire les parametres ne peut
évidemment pas étre inférieure a la longueur a d’une cellule unitaire et dépend en fait du
nombre de cellules unitaires qui sont simulées. Ainsi, la longueur d ne peut pas étre choisie
arbitrairement petite de sorte qu’on ne peut pas toujours supposer m = 0. Aussi, 'extraction
est en général effectuée sur une certaine bande de fréquence. Cette bande de fréquence est
discrétisée en plusieurs points de fréquence également espacés et les parametres S sont calculés
pour chacun de ces points. En pratique, on s’assure de déterminer la bonne valeur de m pour
I'un de ces points et les valeurs de m pour les autres points sont choisis automatiquement en
imposant la continuité de I'indice de réfraction n en fonction de la fréquence. La bonne valeur
de m pour I'un des points de fréquence peut étre choisie en s’appuyant sur les parametres
prédits par les modeles théoriques. Une autre méthode est de visualiser les champs a 'intérieur
de la structure périodique obtenus de la solution numérique d’une rangée de cellules unitaires.
La figure 2.6 montre I'amplitude du champ électrique a I'intérieur d’une rangée de dix cellules
unitaires d’'une structure de fils métalliques de période a = 10 mm et avec un rayon des fils de
r = 0.545 mm a 3.5 GHz. On peut clairement identifier les maxima et les minima a l'intérieur
de la structure. On peut alors déduire la longueur d’onde effective de I'onde se propageant

dans la structure et la valeur de m adéquate.

2.2.3 Validité des parametres effectifs, résultats et discussion

Jusqu’a maintenant, la méthode d’extraction a été présentée telle qu'on la retrouve gé-
néralement dans la littérature (e.g. [33, 34, 35]). Certains points importants concernant la
validité des parametres extraits et I'interprétation qu’il faut leur donner ont toutefois été
omis. Le but de cette section est de clarifier ces points et de les illustrer par des résultats
obtenus a l’aide de la méthode numérique d’extraction des parametres.

La premiere question qui sera discutée est celle des effets de bord et du nombre de cellules
unitaires utilisées pour construire la rangée de la figure 2.5 qui sert a I’extraction numérique

des parametres. De maniere générale, les théories servant a assigner des parametres effectifs
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Figure 2.6 Amplitude du champ électrique a l'intérieur d'une rangée de cellules unitaires
pour la structure de fils métalliques avec une période a = 10 mm et avec un rayon des fils de
r = 0.545 mm a 3.5 GHz. Les minima (en bleu) et les maxima (en vert-rouge) de I'onde se
propageant dans la structure servent a déterminer la longueur d’onde effective.

pour une structure périodique sont développées en considérant une structure infinie. Ceci est
le cas pour les théories d’homogénéisation des champs servant a attribuer une permittivité et
une perméabilité aux matériaux conventionnels constitués de structures périodiques d’atomes.
Ceci est aussi le cas pour le modele de Tretyakov pour la structure de fils métalliques présenté
plus haut. Dans ces modeles, on considere une cellule unitaire entourée d’une infinité d’autres
cellules unitaires qui interagissent toutes entre-elles. Lorsqu’on considere une structure de
taille finie et une cellule unitaire sur le bord de la structure, on voit que cette cellule unitaire
n’est pas entourée par une infinité d’autres cellules unitaires et on s’attend a ce que le modele
pour la structure infinie ne soit plus valide. Pour les matériaux conventionnels, ou la période
correspond a la distance interatomique et est de ’ordre de quelques A, cet effet est négligeable
aux fréquences micro-ondes. En effet, aux fréquences micro-ondes la longueur d’onde est de
I'ordre de quelques cm ou mm et on voit que pour une pénétration de 'onde correspondant
a une tres petite fraction de la longueur d’onde, on aura atteint les atomes qui sont entourés
d’un tres grand nombre d’autres atomes, comme dans une structure infinie. L’effet de bord est
alors négligeable. Cependant, comme il a été noté par Drude [36], lorsque la longueur d’onde
se rapproche de la période de la structure, 'effet de bord doit étre pris en compte. Il est
alors possible d’utiliser les couches de transitions de Drude [3] qui permettent de passer des
propriétés du milieu extérieur a la structure aux propriétés de la structure infinie de maniere
graduelle. La prise en compte des effets de bord est capitale dans I'analyse de la réflexion et
de la transmission a l'interface entre une structure périodique et son milieu environnant.
Considérons une structure périodique de fils métalliques. Pour fixer les idées, considérons
une période a = 10 mm et un rayon des fils de » = 0.545 mm plongés dans un milieu hote

avec une permittivité ¢, = 10.2. On s’intéresse alors aux fréquences de 'ordre de 1 GHz ou
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se produisent des phénomene intéressants tels qu'une permittivité effective e.¢; nulle. Pour
cette fréquence, la longueur d’onde dans le milieu hote est A\, = 94 mm. Cette longueur
d’onde n’étant qu’environ dix fois la période a, on peut s’attendre a avoir un effet de bord
important. Dans ce cas, on s’attend a ce que I'impédance effective n = \/m obtenue
a partir de la méthode d’extraction ne donne pas une juste représentation de la réflexion
a l'interface entre le guide d’onde TEM et la structure périodique. Puisque le calcul des
parametres individuels p.rr et e.;y dépendent de 7, ceux-ci perdraient leur sens physique
en tant que parametres effectifs. De méme, l'effet de bord aurait un impact sur la quantité
njc= VHerrEerf- Puisque cette quantité est obtenue dans la méthode d’extraction a partir
de la constante de propagation moyenne le long de la structure périodique, on peut voir l'effet
de bord comme un effet qui contamine la valeur n/c obtenue. Ce probleme pourrait donc étre
contourné en utilisant une rangée contenant un grand nombre de cellules unitaires. Ainsi, la
majorité des cellules unitaires pourraient étre considérées comme étant entourées d’un grand
nombre de cellules unitaires, le nombre de cellules sur les bords ne composant qu’une fraction
négligeable de la rangée. Dans ce cas, a défaut de pouvoir attribuer une impédance effective
n a la structure périodique, on pourrait obtenir un indice de réfraction effectif donnant une
juste idée de la constante de propagation dans la structure (du moins loin des bords). On
note que cet indice de réfraction ne serait en général pas représentatif de la constante de
propagation dans les cellules unitaires pres du bord et ne pourrait donc pas servir a calculer
un angle de réfraction a partir de I’équation classique de Snell-Descartes.

Voyons si l'effet de bord a effectivement les conséquences suggérées plus haut en consi-
dérant un exemple. La méthode d’extraction numérique est appliquée a trois rangées de la
structure périodique de fils métalliques. Ces trois rangées, composées de une, deux et dix
cellules unitaires sont montrées a la figure 2.7. Les parametres S pour ces structures sont
calculés sur la plage de fréquence de 2 a 4.7 GHz et I'indice de réfraction n ainsi que 1'im-
pédance caractéristique 7 sont obtenus & I'aide des Eqs. (2.64) et (2.63) respectivement. Les
résultats obtenus sont montrés a la figure 2.8. La bande de fréquences peut étre divisée en
deux. Pour les fréquences supérieures a environ 2.9 GHz, n et 1 sont essentiellement réels et
correspondent a une bande de fréquences ot il y a propagation dans la structure périodique.
On remarque que les résultats dans cette bande de fréquence ne dépendent pas du nombre de
cellules unitaires dans la rangée. En-dessous de 2.9 GHz, n est imaginaire ce qui correspond
a une bande de fréquences sans propagation. Dans ce cas, il y a une ambiguité sur le signe
de la partie imaginaire de n et n qui semble provenir de 'ambiguité sur le signe de la racine
carrée dans I’Eq. (2.62). Cependant, on note que mise a part cette ambiguité sur le signe de la
partie imaginaire, les valeurs n et n semblent indépendantes du nombre de cellules unitaires

dans la rangée. Ceci implique que les parametres effectifs e.;¢ et perr qui sont extraits sont
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indépendants du nombre de cellules unitaires. A partir de la discussion précédente sur 'effet
de bord et des résultats de la figure 2.8, il est naturel de se questionner sur la nature des pa-
rametres extraits et de se demander si on peut interpréter les parametres extraits e.rr et piers
au sens classique, c’est-a-dire comme représentant la polarisabilité électrique et magnétique

moyenne dans le volume d’une cellule unitaire plongée dans une structure périodique infinie.

=

a) b) Q)

Figure 2.7 Modeles HFSS pour une rangée de cellules unitaires de la structure périodique de
fils métalliques. Les guides d’ondes TEM entre les ports et les cellules unitaires sont remplis
par un métériau ayant le permittivité et la perméabilité du vide. La période de la structure est
a = 10 mm et le rayon des fils est 7 = 0.545 mm. La permittivité du milieu hote est £, = 10.2.
Les guides d’onde TEM sont remplis d’un matériau homogene ayant les parametres du vide
et ont chacun une longueur / = 15 mm. a) Une cellule unitaire. b) Deux cellules unitaires. c)
Dix cellules unitaires.

Pour illustrer ces questions, la figure 2.9 montre la valeur relative (par rapport aux para-
metres du vide) des parametres effectifs donnés par e.;r = n/n et p.rr = nn. On note qu’a
partir de 4 GHz, la partie réelle de la permittivité décroit. Ceci contrevient au principe de
causalité selon lequel la partie réelle des parametres classiques pour les matériaux conven-
tionnels croit toujours avec la fréquence dans les régions de fréquences ou les pertes sont
négligeables [3]. Aussi, on note que la perméabilité a une valeur différente de la perméabilité
du vide (perméabilité relative égale a 1). Or dans la structure périodique de fils, les modeles
théoriques ne prévoient aucune polarisabilité magnétique. De ce point de vue, la perméabilité
montrée a la figure 2.9 est aberrante. Ainsi, on voit que les parametres effectifs extraits ne
représentent pas la permittivité et la perméabilité au sens classique et ne correspondent pas
aux parametres calculés a I’aide des modeles théoriques. Cependant, méme si on ne peut pas
interpréter les parametres effectifs extraits comme les parametres effectifs classiques, faut-il
pour autant completement les rejeter ou est-il possible de leur donner une interprétation
et/ou une utilité ?

Cette question a été étudiée par Simovski dans une série de travaux publiés de 2007
a 2009 [3, 37, 38, 39]. Dans ces travaux, Simovski affirme que pour un type de structure
périodique qu’il appelle réseau de Bloch (“Bloch lattice”), des parametres effectifs qu’il appelle

parametres de Bloch peuvent étre définis. Ces parametres de Bloch sont I'indice de réfraction
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Figure 2.8 Résultats de 'extraction numérique pour les rangées avec une, deux et dix cel-
lules unitaires telles que montrées a la figure 2.7. a) Partie réelle de I'indice de réfraction
n tel quobtenu par 1'Eq. (2.64). b) Partie imaginaire de n. ¢) Partie réelle de 'impédance
caractéristique 7 telle que donnée par I'Eq. (2.63). d) Partie imaginaire de 1.

(équivalent a la constante de propagation) et I'impédance de Bloch, Zg. Ces parametres
correspondent respectivement a l'indice de réfraction n et a 'impédance caractéristique n
obtenus par la méthode d’extraction des parametres. Pour les réseaux de Bloch, les parametres
de Bloch contiennent 'information sur la réflexion et la transmission pour une cellule unitaire
et sont donc en fait équivalents a la matrice de transfert ABCD de la théorie des lignes de
transmission pour une cellule unitaire. Méme si il est possible de calculer les parametres
individuels e.sf et s & partir des parametres de Bloch (n et n = Zg), il n’est pas possible
de leur attribuer une signification physique.

Examinons un a la fois les deux parametres de Bloch en commencant par n. Avec I’approxi-

mation selon laquelle 'onde se propageant dans la structure périodique est une onde plane



29

Y =t
s =
= 3
(S €
g I,
O ............................
-10 : : : : : -1 ‘ ‘ ‘ ‘ ‘
2 2.5 3 3.5 4 4.5 5 2 2.5 3 35 4 4.5 5
Fréquence (GHz) Fréquence (GHz)
a) b)

Figure 2.9 Permittivité et perméabilité relatives obtenues a ’aide des parametres S calculés
avec une rangée d’une cellule unitaire (figure 2.7 a) en ne considérant pas que la perméa-
bilité est celle du vide. a) Permittivité obtenue en divisant I'Eq. (2.64) par I'Eq. (2.63). b)
Perméabilité obtenue en multipliant I'Eq. (2.63) avec I'Eq. (2.64)

avec la dépendance spatiale e 797, correspondant & I’harmonique de Floquet fondamentale,
on voit que n contient I'information sur la constante de propagation ¢. Par exemple, pour une
propagation selon x, les deux sont liés par ¢, = wn/c ou c est la vitesse de la lumiere dans
le vide. La constante de propagation obtenue par la méthode numérique d’extraction corres-
pond a la méme quantité que la constante de propagation qu’il est possible de déterminer a
I'aide des modeles théoriques. Pour démontrer ceci, on peut calculer une valeur e.¢s corres-
pondant a la permittivité requise pour obtenir la valeur extraite de l'indice de réfraction n
en considérant p.ry = 1. On a alors n = | /ficsecss. Puisque les modeles théoriques prédisent
une perméabilité effective p.¢y = 1, on s’attend a avoir une correspondance entre la valeur de
Ecrr ainsi calculée et la permittivité prédite par les modeles de Pendry et de Tretyakov. Cette
valeur de e.7s est comparée aux permittivités des modeles théoriques dans la figure 2.10 (pour
le modele de Tretyakov, on considere aucune variation en z, ¢’est-a-dire ¢, = 0). On voit qu’il
y une bonne correspondance entre la permittivité obtenue numériquement et la permittivité
prédite théoriquement par le modele de Tretyakov qui est plus rigoureux que celui de Pendry.
Il est important de noter que la valeur de €.¢¢ obtenue numériquement a ici une signification
physique uniquement parce qu’on sait a I’avance par les modeles théoriques qu’on a jiepr = 1.
Si ecrs est calculé a partir des parametres de Bloch extraits numériquement en divisant n par
n = Zp, on obtient des valeurs différentes pour e.¢¢, tel que montré a la figure 2.9.

Si le parametre de Bloch n correspond exactement a l'indice de réfraction prévu par
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Figure 2.10 Permittivité effective obtenue des modeles de Pendry et de Tretyakov et permit-
tivité obtenue en considérant 'indice de réfraction n de la méthode d’extraction numérique
(utilisant une rangée d’une seule cellule unitaire) avec ji.ss = 1 pour la structure périodique
de fils avec r = 0.545 mm, a = 10 mm et ¢, = 10.2.

les modeles théoriques, le cas de I'impédance de Bloch Zp nécessite plus de précaution. En
effet, il y a ici deux quantités en jeu. La premiere est Zpg, qui correspond a I'impédance n
extraite avec la méthode numérique. La seconde est I'impédance caractéristique théorique
Nen = \/m ol ftefs et eqpf sont les parametres effectifs obtenus théoriquement. Les
quantités Zp et ny, ont en général des valeurs numériques différentes et représentent deux
quantités conceptuellement différentes. Pour les matériaux conventionnels, 7y, est utilisée
pour prédire la réflexion d’une onde a l'interface entre deux matériaux. Pour une structure
périodique dont la période est comparable a la longueur d’onde, cette approximation n’est
plus valide et la quantité 7, perd son utilité. Pour traiter le probléeme de la réflexion a un
interface, il faut utiliser la quantité Zp.

La quantité Zg ne correspond pas, comme on pourrait s’y attendre, au ratio de 'amplitude
des harmoniques de Floquet fondamentales du champ électrique et du champ magnétique
[37]. Simovski définit Zp comme le ratio de la moyenne du champ électrique et du champ
magnétique dans un plan transverse a la direction de propagation évalué a la frontiere d’une

cellule unitaire. Par exemple, pour une direction de propagation selon z et une cellule unitaire
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s’étendant de x = 0 a x = a, I'impédance de Bloch est définie par

ET(z =0)

Ip= -
B HTA(z =0)

(2.69)
ou ET4 et H™* sont la moyenne des champs électrique et magnétique dans le plan yz de
la cellule unitaire. En fait, Zg peut étre associée a I'impédance définie pour les lignes de
transmission qui correspond au ratio de la tension sur le courant [2]. Il est intéressant de
noter que la définition de I’Eq. (2.69) pour Zp et le ratio des amplitudes des harmoniques
de Floquet fondamentales du champ électrique et du champ magnétique sont équivalentes
lorsque a/A;, << 1ou Ay est la longueur d’onde dans le milieu hote [37]. Cette condition n’est
cependant pas satisfaite pour les matériaux effectifs tels que la structure de fils considérée
dans le présent chapitre.

Dans son article [37], Simovski montre que le coefficient de réflexion entre une région 1
constituée d'un matériau homogene caractérisé par I'impédance caractéristique n; = \/pl—/el

et une région 2 correspondant a un réseau de Bloch est :

Zp—m
= —. 2.70
Y Zg+m 270)
Ainsi, a partir du parametre de Bloch Zp = n extrait de la méthode numérique, il est

possible de calculer le coefficient de réflexion a l'interface avec un matériau homogene. Sur
le plan pratique, on voit donc que le parametre Zg est tres important et permet d’adapter
une structure périodique (si celle-ci est un réseau de Bloch). Considérons par exemple les
parametres n et Zp = n extraits montrés a la figure 2.8. Ces parametres sont obtenus a partir
des parametres S obtenus numériquement avec des guides d’onde TEM de longueur [ = 15 mm
remplis d'un matériau € = 1 et ;4 = 1 et sont indépendants du nombre de cellules unitaires
utilisées dans la rangée. A 3.45 GHz, ces parametres sont n = 1.869 et Zp = 0.83914-0.0012;.
Voyons si il est possible d'utiliser I’Eq. (2.70) pour prédire correctement la valeur du parametre
S11 pour des guides d’ondes TEM remplis d’'un matériau homogene avec des parametres
arbitraires comme ¢ = 3 et u = 8 et pour une rangée de deux cellules unitaires. On peut
alors calculer S, a partir de I’Eq. (2.57) en tenant compte de la variation de phase dans les
guides d’onde TEM avec I'Eq. (2.68). Dans I'Eq. (2.57), /8 est la constante de propagation
dans la structure périodique associée a n, d est la longueur de la structure périodique, soit
20 mm pour une rangée de deux cellules unitaires, et I'; o est donnée par I’Eq. (2.70). La
valeur calculée dans ce cas est S;; = —0.1827 — 0.22697. La valeur obtenue de la solution
numérique de ce probleme avec HEFSS est S;; = —0.1845 — 0.23697.

Jusqu’a maintenant, il a été supposé que la structure de fils métalliques est un réseau
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de Bloch sans toutefois le justifier. Aussi, la définition d’un réseau de Bloch n’a pas encore
été donnée. Les réseaux de Bloch sont définis comme étant une structure périodique pour
laquelle I'interaction entre les cellules unitaires ne modifie par les caractéristiques de trans-
mission et de réflexion (c’est-a-dire les parametres de Bloch) d’'une cellule unitaire unique.
Pour montrer que 'interaction entre les cellules unitaires ne modifie pas les parametres de
Bloch pour une structure périodique donnée et donc que cette structure périodique est un
réseau de Bloch, Simovski compare ’équation de dispersion de la structure périodique avec
I’équation de dispersion d’une ligne de transmission chargée périodiquement par une impé-
dance (“periodically loaded transmission line”) [37]. Pour une telle ligne de transmission, les
coefficients de la matrice de transfert ABCD d’une cellule unitaire ne dépendent pas de la
constante de propagation ¢ de I'harmonique de Floquet fondamentale et ne sont donc pas
affectés par l'interaction avec les autres cellules unitaires. Lorsque la relation de dispersion
d’une structure périodique a la méme forme que celle d'une ligne de transmission chargée
périodiquement, on peut conclure que les parametres de Bloch ne varient pas a cause des
interactions et donc que cette structure est un réseau de Bloch. Simovski a montré [37, 39
que si une cellule unitaire de la structure périodique peut étre modélisée par un dipole ou
une ligne de courant, alors la structure périodique est un réseau de Bloch. Dans ce cas, I'in-
teraction entre les cellules unitaires ne modifie pas les parametres de Bloch et ceux-ci sont
constants, peu importe le nombre de cellules unitaires le long de la direction de propagation.
Puisque la structure de fils métalliques peut étre modélisée par une ligne de courant au centre
de la cellule unitaire, il s’agit d’un réseau de Bloch et les parametres de Bloch extraits par
la méthode numérique sont indépendants du nombre de cellules unitaires employé, tel que
montré a la figure 2.8.

Ayant montré que sur le plan pratique, lorsqu’on désire utiliser une structure périodique
dans un dispositif micro-ondes, celle-ci devant nécessairement étre finie et avoir des interfaces
avec les autres matériaux constituant le dispositif, les parametres a considérer sont les para-
metres de Bloch n et Zg = n. On peut alors se demander quelle est la pertinence des modeles
théoriques qui considerent une structure périodique infinie et lui attribuent les parametres
effectifs e,y et pepp. En effet, on a vu que l'indice de réfraction n = /Ecfriicry correspond
alors au parametre de Bloch n mais que I'impédance 7, = \/m ne correspond pas a
I'impédance de Bloch Zp et n’est d’aucune utilité pour résoudre les problemes de réflexion
et de transmission aux interfaces. Un élément de réponse est que les modeles théoriques per-
mettent de déterminer 'indice de réfraction pour une structure périodique infinie et qu’en
négligeant les effets de bord (ou si on considere une structure périodique qui est un réseau de
Bloch), cette quantité est valide et utile. Un autre élément de réponse est que les parametres

de Bloch sont des parametres non-locaux, c¢’est-a-dire qu’ils dépendent de la constante de pro-
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pagation ¢ effective dans la structure. Par exemple, les parametres de Bloch seront différents
pour différents angles d’incidence d’'une onde plane incidente sur la structure périodique. Les
parametres théoriques e.sf et p.ry sont des parametres locaux (en fait, le modele de Tretya-
kov montre que pour la structure de fils, e.fs est un parametre local seulement si ¢, = 0) qui
relient la moyenne des champs électrique et magnétique dans le volume d’une cellule unitaire
avec la polarisabilité électrique et magnétique de la cellule unitaire. Ainsi, les parametres ef-
fectifs locaux e. ¢y et pery ont un sens dans le contexte des équations de Maxwell, ce qui n’est
pas le cas pour les parametres de Bloch. On note que Simovski a proposé une procédure pour
extraire des parametres locaux a partir des parametres extraits par la méthode d’extraction

numérique [3].

Un autre phénomene dont il faut tenir compte lors de 'analyse d'une structure périodique
en tant que matériau homogene effectif est le régime de Bragg. Le régime de Bragg se produit
lorsque les ondes dispersées (“scattered”) dans chaque cellule unitaire interferent de maniere
constructive. Avant d’énoncer la loi de Bragg, on définit la notion de famille de plans d’une
matrice tridimensionnelle. Toute matrice tridimensionnelle peut étre décomposée en une fa-
mille de plans paralleles les uns aux autres contenant chacun une tranche des points de la
matrice. Tous les points de la matrice tridimensionnelle sont contenus dans une telle famille
de plan et chacun de ces plans forme en fait une matrice bidimensionnelle. Selon la loi de
Bragg, pour une structure tridimensionnelle et une famille de plans donnée, il y a interférence
constructive lorsque [18]

mA = 2d sin 0 (2.71)

ou d est la distance entre deux plans et 6 est I'angle que fait 'onde incidente avec les plans.
Pour des structures périodiques bidimensionnelles comme celles considérées dans ce mémoire,
au lieu d’avoir des familles de plans, on a plutot des familles de lignes, comme montrées a la
figure 2.11. Cependant, I’Eq. (2.71) demeure valide et pour une onde incidente perpendiculaire

a une famille de ligne donnée, la réflexion de premier ordre (m = 1) se produit lorsque
A = 2d. (2.72)

L'Eq. (2.72) avec la distance entre les lignes d correspondant a la famille de lignes ou les
lignes sont le plus espacées indique la plus grande longueur d’onde pour laquelle on aura une
interférence constructive ou réflexion de Bragg. Dans le cas d’une matrice carrée comme celle
de la figure 2.11, cette distance est d = a.

Le régime de Bragg est le phénomene dominant dans 'analyse de l'interaction d’une

onde électromagnétique avec une structure périodique lorsque la longueur d’onde est égale
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Figure 2.11 Deux familles de lignes pour une matrice carrée bidimensionnelle de période a.
La premiere famille correspond aux lignes verticales et la distance entre les lignes est d; = a.
La seconde famille correspond aux lignes obliques et la distance entre les lignes est ds.

ou plus petite que A telle que donnée par I’Eq. (2.72). La longueur d’onde a considérer
pour ce critere est en général Ay, la longueur d’onde dans le milieu hote, sauf si on peut
considérer la structure périodique comme un matériau effectif, c’est-a-dire si A\, est plus
petite que 2a, et que la longueur d’onde effective A.s¢ est plus petite que Aj, comme c’est
le cas par exemple pres de la fréquence de résonance des inclusions qui consituent certaines
structures périodiques [3]. Lorsqu’on est en régime de Bragg, les parametres effectifs perdent
leur signification. Lorsque la longueur d’onde A (A, ou A.sf, selon le cas) est plus grande
que 2a, on est en dehors du régime de Bragg et on peut attribuer des parametres effectifs
a la structure périodique. La figure 2.12 illustre le cas du régime de Bragg et le régime ou
I’on peut traiter la structure périodique comme un matériau effectif. Pour la structure de fils
métalliques de période a = 10 mm plongés dans un milieu hote de permittivité e, = 10.2, le
régime de Bragg commence lorsque A\, = 20 mm, ce qui correspond a la fréquence 4.7 GHz.
C’est pour cette raison que les résultats montrés aux figures 2.8, 2.9 et 2.10 sont limités aux
fréquences inférieures a 4.7 GHz. Au-dela de 4.7 GHz, la méthode d’extraction donne des

résultats aberrants.

2.3 Application : résonateur ¢ = 0 a taille indépendante

Dans cette section, on présente un résonateur micro-ondes qui contient une structure pé-
riodique de fils métalliques [40]. Cette structure périodique est considérée comme un matériau
effectif avec une permittivité effective e.;¢. La fréquence d’opération correspond a e.¢y = 0
ce qui fait que la longueur d’onde effective A sy dans la structure périodique est infinie. Ceci
permet d’utiliser une structure périodique de taille arbitraire et ainsi d’obtenir un résonateur

dont la fréquence de résonance ne dépend pas de la taille physique totale du résonateur.
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Figure 2.12 Régime de Bragg dans une structure périodique. a)Le régime de Bragg est le
phénomene dominant car a = A.ss. b)Pas de régime de Bragg car a << A.ss : la structure
peut étre considérée comme un matériau effectif. Adaptée de "EBGs and Metamaterials :
Concepts, Structures and Applications”, EuCAP 2009, par C. Caloz.

2.3.1 Principe du résonateur

Le résonateur a taille indépendante est montré a la figure 2.13. Il comprend 9 régions
diélectriques (non-magnétiques). La région du centre est constituée d’une structure périodique
de fils métalliques, telle que montrée a la figure 2.1 et opérant a la fréquence correspondant
a une permittivité effective eo = 0. Les régions sur les cotés sont constituées d’un matériau
diélectrique homogene de permittivité £; tandis que les régions dans les coins sont constituées
d’un diélectrique homogene de permittivité e3. Les permittivités €; et £3 sont choisies afin de

satisfaire la condition de séparabilité
g3 = 281 — E9. (273)

Cette condition, énoncée dans [41], permet d’obtenir la solution électromagnétique du pro-
bleme de la figure 2.13 par la méthode de séparation des variables. La condition de séparabilité
sera obtenue a la section 2.3.3 lorque la solution par séparation de variables sera présentée.
Comme il a été noté dans [42], cette condition peut aussi étre interprétée comme permettant
d’éviter la diffraction aux interfaces en coin du résonateur. Toutes les surfaces extérieures du

résonateur sont couvertes par un conducteur métallique parfait (PEC).

2.3.2 Propriétés de la structure périodique de fils

Pour la structure périodique de fils de la région 5, on utilise une période a = 10.9 mm,
un rayon des fils de » = 0.32 mm et un milieu hote de permittivité ¢, = 10.2. La figure 2.14

montre les permittivités effectives prédites par les modeles de Tretyakov et de Pendry, données
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b

Figure 2.13 Le résonateur est divisé en 9 régions. La région du centre est la région de per-
mittivité e5 = 0. Les autres régions ont des permittivités £, et 3 satisfaisant la condition de
séparabilité. Le résonateur a une épaisseur qui s’étend de z =0 a z = g.

par U'Eq. (2.55) avec les Egs. (2.56) et (2.54) respectivement, pour une telle structure de fils.
Le modele de Tretyakov, qui est plus rigoureux (et qui est plus proche de la permittivité
effective obtenue de la méthode d’extraction numérique, comme montré a la figure 2.10)
prédit une permittivité effective nulle a 2.29 GHz. Le modele de Pendry prédit une fréquence
inférieure a cette valeur de 0.47 GHz. Le fait que le modele de Tretyakov est bien le modele
qu’il faut utiliser sera montré a la section 2.3.4 ou des résultats numériques obtenus a l’aide

du solveur HFSS qui confirment le comportement e.¢y = 0 a 2.29 GHz seront présentés.

2.3.3 Analyse modale

Dans cette section, les expressions des champs pour les modes supportés par le résonateur
de la figure 2.13 sont obtenues. Tout d’abord, une analyse sera effectuée sans assumer de valeur
spécifique pour la permittivité de la région centrale 5. Les modes qui sont indépendants de
la taille physique de la région centrale sont alors obtenus en posant 5 = 0. Seuls des modes
TMz seront considérés pour lesquels il n’y a aucune variation en z ce qui implique que le
champ électrique a seulement une composante E,. Ces conditions sont nécessaires pour que
la permittivité effective de la figure 2.14 soit valide.

Pour obtenir des expressions pour les champs électriques et magnétiques, une approche
possible consiste a solutionner le probleme en terme du potentiel vectoriel magnétique A pour
ensuite déterminer E et H [16]. Sous la jauge de Lorentz, pour les modes TMz le potentiel

vectoriel magnétique a une seule composante A,

A= A, (z,y,2)2 (2.74)
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Figure 2.14 Permittivité effective de la structure de fils de la région 5 du résonateur selon les
modeles de Tretyakov et de Pendry. La structure de fils considérée a une période a = 10.9 mm,
un rayon des fils 7 = 0.32 mm et un milieu hote de permittivité ¢, = 10.2.

et les champs magnétiques et électriques sont donnés par

- 1 -

—,

4 L1
E=—jod—j V(v A) (2.76)

Dans un milieu homogene sans source, A satisfait I’équation d’onde
VA, (z,y,2) + K*A.(2,y,2) =0 (2.77)

ou k = w,/ue. Cette équation peut étre résolue par la méthode de séparation des variables
selon laquelle une solution de la forme A,(z,y,2) = X ()Y (y)Z(2) est supposée.

Pour chaque région i (i = 1,2,...,9) de la figure 2.13, on définit le potentiel vectoriel
magnétique A, = A2 En supposant que la séparation des variables peut étre utilisée dans
chacune des régions, on a

A = Xi(@)Yi(y) Zi(2) (2.78)

qui doit satisfaire I’Eq. (2.77) pour chaque i. Cependant, en général les conditions frontieres
entre les différentes régions du résonateur rendent le probleme impossible a résoudre par

séparation des variables. Malgré cela, comme il sera montré plus bas, sous certaines conditions
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le probleme peut étre rendu séparable.
En assumant pour le moment que le probleme est séparable, en insérant I’Eq. (2.78) dans

I'Eq. (2.77), on obtient pour chaque région i
Xi(x) | Yi'(y)  Z(2)

X0 Yy T Z0)

+ k=0 (2.79)

ou k; = w./pue;. Puisque chaque terme dans I’Eq. (2.79) doit étre une constante des coordon-

nées de 'espace (x,y, z), on pose

X(/ Y// Z”
! (l’) = —k'aQ:i’ ; (y> = _k,;iv ; (Z) = _kzz (280)
X;(z) Yi(y) Zi(z)
et VEq. (2.79) devient
kil + kzz + k,zz = kz2 (2.81)

Puisque la structure analysée est un résonateur, on s’attend a ce que les solutions A,; soient

des ondes stationnaires. Ainsi, les solutions générales des Eqs. (2.80) sont écrites sous la forme

Xi(x) = A;sin(kyx) + B;cos(kyix) (2.82)
Yily) = C;sin(kyy) + D; cos(kyiy) (2.83)
Zi(z) = E;sin(k,;z) + F;cos(k,2). (2.84)

De ces expressions pour ffi, il est possible de trouver des expressions pour E et H et
d’appliquer les conditions frontieres adéquates afin de déterminer toutes les constantes de A;

jusqu’a F;. D’abord, on trouve ’expression de la composante z du champ électrique a 'aide
de 'Eq. (2.76)

Jo— 8—2A-+k2A- (2.85)
zi — WE; 87:2 21 3 41zi .
d’ou on a .
—J 2 2
E, = Xi(2)Yi(y)Zi(2) (k] — k3;). 2.86
o, @Yiy) Zi(2) (k= ki) (2.86)

Par la condition selon laquelle la composante tangentielle du champ E doit étre continue aux
interfaces entre les 9 régions de la structure, il est possible de montrer que k,; doit étre continu
aux interfaces paralleles a la direction Z et que similairement, k,; et k.; doivent étre continus
aux interfaces paralleles a g et Z respectivement. Ce fait peut étre accepté intuitivement,
mais une démonstration est tout de méme proposée en annexe. A cause de cette condition de

continuité, les k,; de toutes les régions doivent étre égaux et on a k,; = k.. Aussi, on obtient
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les égalités suivantes pour les k,; et les ky;

kxl = ka:4 - kz? kyl = ky2 - ky3
kuo = kg5 = ks ky4 = kyS = kyG (287)
ka - ka - ka ky7 - ky8 - ky9-

En considérant ces relations dans I’écriture de I’Eq. (2.81) dans chaque région, on obtient

O kL + kL + k2 = wpees (2.88)
O k2 +ky + k2 = wpee (2.89)
O ks 4k + k2 = wPhoes (2.90)
O k3 + k§4 + k2 = wlpoe; (2.91)
O k2 + K+ k2 = wpees (2.92)
O kg + k2 + k2 = wpoe (2.93)
O k5 + ko + k2 = wpiees (2.94)
O k2 + ko + k2 = wpiee (2.95)
O ks 4kl + k2 = wloes (2.96)

En examinant ces équations, deux relations additionnelles reliant les différents k,; et ky;

peuvent étre obtenues. En effet, en soustrayant I'Eq. (2.90) de I'Eq. (2.88), on obtient

kz1 = k3. (2.97)
Similairement, en soustrayant I'Eq. (2.95) de I'Eq. (2.89), on a

k1 = kyr. (2.98)

Jusqu’a maintenant, il a été supposé que le probleme est séparable et que 1’Eq.(2.78) est
une expression valide pour les solutions A.;. Montrons sous quelle condition cette supposition
est valide (voir aussi [41]). Cette condition de séparabilité peut étre obtenue en considérant
les régions 1, 2, 4 and 5 formant un coin (ou tout autre ensemble de régions formant un tel
coin). En soustrayant I'Eq. (2.92) de 'Eq. (2.91) ainsi que I'Eq. (2.89) de 'Eq. (2.88), on



40

obtient
ko =kl = Wle(er — &) (2.99)
et
k2, — k2 = wlio(es —ey). (2.100)

La comparaison de I'Eq. (2.99) avec IEq. (2.100) montre que la condition suivante doit étre
satisfaite

€1 — €y =€E3—E] = £3=26; —¢€9. (2101)

Cette condition est appellée condition de séparabilité car elle découle du fait que le probleme
a été supposé séparable [Eq (2.78)] et elle doit étre satisfaite pour que les conditions aux
frontieres imposées par les équations de Maxwell puissent étre satisfaites.

Jusqu’a maintenant, on a considéré des solutions générales pour lesquelles il peut y avoir
des variations en z. La composante E, du champ électrique dans chaque région peut étre

obtenue & partir de I'Eq. (2.76) et peut étre écrite comme

j 0
S Az 2.102
wpe; 010z ( )
d’ou on a
J _ |
Bai = —— —kailAi cos(kax) — By sin(ka; sin(ky,;
xi Wi a:z[ zCOS( Jizx) ZSIH( xzx)][CZSIIl( yzy)
+D; cos(kyiy)]k. [ Ei cos(k.z) — F;sin(k,z)]. (2.103)

On voit qu’en général, en imposant la la condition E,; = 0 a z = 0, on obtient E; = 0. En

imposant la méme condition a z = ¢, on obtient

mm
k,=—— meZ. (2.104)

g
Dans le cas présent, on s’intéresse aux modes sans variation en z et on pose k, = 0. De

I’Eq. (2.103), on voit alors que E,; = 0. Similairement, F,; est donnée par

j o

Eyi=— Az
Y we; 0yoz

(2.105)

et est 0 lorsque k, = 0. Aussi, lorsque k, = 0, I'expression pour F,; donnée par I’Eq. (2.86)
devient
B = —jwXi(2)Y;(y) Zi(2) (2.106)
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oll on a utilisé la relation k; = w?pue;.

A présent, on considere le cas ou la région 5 du résonateur est occupée par une structure
de fils métalliques opérant a la fréquence correspondant a ey = 0. Dans ce cas, on peut écrire
gy =0 et de I’Eq. (2.81), on a ky5 = kys = 0. Aussi, dans ce cas la condition de séparabilité
devient e3 = 2¢;. Puisque k5 = 0 implique ky» = 0 par I'Eq. (2.87), on a que I'Eq. (2.88) et

IEq. (2.89) deviennent respectivement

k2 4 kL = w’hoes (2.107)
k2 = w’po€r (2.108)

En utilisant la condition de séparabilité e = 2¢; et en soustrayant 1’Eq. (2.108) de IEq. (2.107),
on obtient
k2, = wuoer . (2.109)

Par comparaison avec I’Eq. (2.108), on voit qu’en fait on a ky; = k1 que I'on note k,, pour
plus de simplicité. Ainsi, les composantes des vecteurs de propagation dans les différentes

régions ont toutes la valeur k,, ou 0 et sont données par

kml = k:p4 = km7 = kx?; = ka = ka = k:):y
kyl = k’yg = ]{fy3 = ky7 - kyg - ]{Iyg = ]{Zzy (2110)
ka:2 - km5 = krS - ky4 = ky5 - kyG =0.

A présent, il est pratique d’écrire les expressions pour la composante E,; du champ élec-

trique dans chaque région. En utilisant I’Eq. (2.106) et 'identité trigonométrique
Asin(kyyx) + B cos(kyyx) = G sin(kyyz + 0) (2.111)

ou f = arctan(B/A) et G = v/ A% 4+ B2, on peut écrire la composante E,; du champ électrique
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dans chaque région comme

E. = Gy sin(kyyx) sin(k.,y)

E.o = Gysin(kyyy)

E.5 = Gysin(kyyx + 05) sin(ky,y)
(

E., = Gysin(kyyx)
E.6 = Ggsin(kyyx + 0g)

E.g = Ggsin(kyy + 0s)

O o o0oodgoooogd

(2.112)

(2.113)

(2.114)

(2.115)

E.5 =G5 (2.116)
(k (2.117)

E.7 = Gy sin(kyy) sin(ky,y + 607) ( )
(k (2.119)

(k (2.120)

E.9 = Ggsin(kyyx + 09) sin(ky,y + 09)

ou les G, et les 6,, sont des constantes. Ces constantes peuvent étre déterminées en appliquant

les conditions frontieres pour les différentes régions. Par exemple, pour la région 3 on a

E.; = Gssin {kmy (x + :—3)} sin(kzyy). (2.121)

zy

En appliquant la condition frontiere E.3 = 0 a x = ¢ pour tout y de la région 3, on obtient
. 03
sin [kyy lc+-— || =0 (2.122)
Egy

0
kzy (C+ k;_3) =mnr = O3=mn—cky, meclZ. (2.123)
zy

et donc

Pour toutes les valeurs de m, on voit que I’Eq. (2.121 peut étre écrite comme
E.3 = Gssinlk,,(r — ¢)] sin(kyyy) (2.124)

ot la constante G3, pour le moment indéterminée, absorbe le signe — pour les valeurs impaires

de m. Procédant de la méme fagon pour chacune des autres régions, le champ F. peut étre
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réécerit comme

E.1 = Gy sin(ky,x) sin(kyyy) (2.125)
E.o = Gysin(ky,y) ( )
E.5 = Gssinlk,y, (v — )] sin(kzyy) ( )
E.y = Gysin(kyyx) ( )
v G (2.129)
E.6 = Ggsinlky, (v — ¢)] ( )
E.7 = Grsin(kyyx) sinfky, (y — f)] ( )
E.s = Ggsin ( )
E.9 = Ggsin ( )

Ky (x — c)] Sm[kxy(y - Nl

N A A A O

[
[
Le champ H correspondant dans chaque région peut étre obtenu de I'équation de Maxwell

—

H=-"LvxE, (2.134)
Wit

Pour la composante H,, dans chacune des régions on a

O Hy = ilew o8 (kyyx) sin(kyyy) (2.135)
0 Hp=0 (2.136)
O Hy= ing‘wy coslkyy(x — )] sin(kyyy) (2.137)
—J
0 Hy= EGU@W 08 (kyy) (2.138)
0 Hy=0 (2.139)
0 Hy= i%’% 08l (2 — )] (2.140)
0 Hy= iGﬂ%y c08(kyyx) sinfky, (y — f)] (2.141)
0 Hy =0 (2.142)
0 Hyo = o Gohey coslkiy (2 = )] sinlly(y — )] (2.143)

Des expressions similaires peuvent étre obtenues pour les composantes H,. Puisque H,; = H,

a x = a pour toutes les valeurs de y a l'interface entre les régions 1 and 2, on voit que

;—ZGl cos(kyya)sin(ky,y) =0 = cos(kyya) = 0.
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Ainsi, les valeurs admissibles pour k,,a sont

T 3w bw

hpya = 4~ 2T 2T
v = F5 90

(2.144)
L’application de la condition de continuité de la composante tangentielle de H aux interfaces
entre les autres régions mene a la conclusion que kyy(c — b), kyyd et ky,(f — e) doivent
satisfaire la méme condition que k,,a donnée par I’Eq. (2.144). Ainsi, pour que les modes
analysés jusqu’a présent existent, il faut que la longueur des régions entourant la région 5
dans la figure 2.13 soient un multiple impair de £7/(2k,,) ot kyy, = kz1 = ky1 est défini par
I'Eq. (2.108). En mots, cette condition exprime simplement le fait que la longueur des bords
du résonateur doit étre un multiple impair d'un quart de longueur d’onde afin que le champ
électrique puisse étre nul aux frontieres externes du résonateur et maximal aux interfaces
avec la région centrale ou le champ électrique est uniforme et le champ magnétique est nul.

La derniere étape de I'analyse consiste a relier les constantes G; entre-elles. Ceci peut
étre fait en appliquant la condition de continuité de E.; aux interfaces entre les différentes
régions. Il est alors facile de vérifier que GG; = =G ou le signe dépend de la longueur de la
région en question et donc du multiple impair de 7 /(2k,,) qui est choisit pour a, (¢ —b), d
and (f —e). Ceci correspond simplement au fait que les champs E et H doivent étre continus

partout a l'intérieur du résonateur.

2.3.4 Résultats numériques

Afin de valider I'analyse présentée a la section précédente, le solveur éléments finis HF'SS
est utilisé afin d’obtenir la solution numérique des champs dans le résonateur de la figure 2.13.
Plus spécifiquement, le solveur eigenmode de HF'SS qui donne les solutions du probléeme sans
source est utilisé. La figure 2.15 montre les distributions de champs obtenues numérique-
ment pour différentes configurations du résonateur. Les distributions de champs analytiques
données aux Eqs. (2.125) & (2.133) pour E. et aux Eqs. (2.135) a (2.143) pour H, ne sont
pas montrées mais il a été vérifié qu’elles correspondent tres bien aux distributions de la
figure 2.15. La seule différence est que dans la région du centre ou une structure de fils est
utilisée, les champs ne sont pas parfaitement uniformes ; seule la moyenne spatiale des champs
est uniforme. Pour tous les résonateurs, les régions composant les bords ont des permittivités
g1 = 5.1 et e3 = 10.2 qui satisfont la condition de séparabilité e3 = 2¢;.

La figure 2.15 a) montre I’amplitude du champ E, pour un résonateur pour lequel la région
centrale est constituée d’'un matériau homogene fictif dont la permittivité est nulle. Pour les
autres figures, la région centrale est constituée d’une structure périodique de fils ayant les

méme parametres que ceux utilisés pour obtenir les permittivité effective de la figure 2.14, soit



45

76.6 mm

547 mm 145 mm
—

Q000000
O000000]
O000000 |}
O000000
O0000O0O0
0000000 |}
000000 |

M

B
8§
O 1
o
29|

joo0000

00000
000C0
00000
00000

P
§ O0000
00000

Figure 2.15 Amplitude des champs pour différents résonateur obtenues avec HFSS. Tous les
résonateurs operent a 2.27 GHz et ont des permittivité ey = 5.1 et €3 = 10.2 pour les régions
sur les bords. Les parametres des structures de fils sont ¢ = 10.9 mm, » = 0.32 mm et
ep, = 10.2. a) E, pour un résonateur dont la région centrale est un matériau homogene de
permittivité nulle. b) E, pour un résonateur avec une structure de fils 7 x 7 pour laquelle
ceff = 0.¢) et d) E, et H, respectivement pour un résonateur avec une structure de fils 5 x 5.
e) E., pour un résonateur ayant des bords de différentes tailles. f) E, pour un résonateur avec
un seul fil dans sa région centrale. Toutes les figures sont a la méme échelle.

a =10.9 mm, r = 0.32 mm et £, = 10.2. Pour tous les résonateurs, la fréquence d’opération
est 2.27 GHz, ce qui est tres pres de la valeur de 2.29 GHz prédite pour e.¢5 = 0 par le modele
de Tretyakov (voir figure 2.14). La figure 2.15 b) montre "amplitude E, pour un résonateur
avec une structure de fils 7 x 7. On voit que malgré les fortes variations du champ autour
des fils, qui doit en fait s’annuler a la surface de ceux-ci, la moyenne spatiale du champ
est uniforme lorsque prise sur plusieurs périodes ce qui valide I'interprétation de la structure
périodique de fils comme un matériau homogene. Pour montrer I'indépendance de la fréquence
de résonance par rapport a la taille physique de la région centrale, la figure 2.15 ¢) montre
un résonateur avec une structure de fils 5 x 5. On note que les résonateurs des figures 2.15 b)

et ¢) ont des bords qui sont de la méme taille. La figure 2.15 d) montre le champ H, pour le
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méme résonateur que celui de la figure 2.15 ¢). On peut voir que la distribution du champ H,
correspond bien aux Egs. (2.135) & (2.143). De IEq. (2.144), on a que la largeur des bords
multipliée par le nombre d’onde k,, doit étre un multiple impair de 7/2. La figure 2.15 e)
montre un résonateur dont la taille des bords est k,ya = kyy(c — b) = 37/2, kyyd = 7/2 et
kwy(f - 6) = 57T/2.

Il a été mentionné a la section 2.2.3 que la structure périodique de fils est un réseau de
Bloch et que l'indice de réfraction effectif qui caractérise cette structure ne dépend pas de
I'interaction avec les autres cellules unitaires. Or en réalité, c’est la constante de propagation
ou, de maniere équivalente, l'indice de réfraction qui détermine la distribution de la phase
des champs dans le résonateur et non la permittivité effective. Ceci explique qu’il n’y a pas
d’effet de bord pour la structure périodique de fils dans les résonateurs de la figure 2.15 et
que I'analyse selon laquelle on considere e.s¢ = 0 et donc n = 0 dans toute la région centrale
est valide et prédit avec succes I'existence de modes dans le résonateur. On peut pousser cette
affirmation a la limite et considérer un résonateur avec une région centrale composée d’un
seul fil, comme montré a la figure 2.15 ). L’unique cellule unitaire est dans ce cas caractérisée
par n = 0 et donc une constante de propagation nulle tout aussi bien que les cellules unitaires
des résonateurs 7 x 7 ou 5 x 5. Ainsi, le champ ne subit aucun déphasage en traversant la

région centrale et I'analyse de la section précédente demeure valide.
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CHAPITRE 3

Fils métalliques dans un milieu h6te magnétique

Dans ce chapitre, on s’intéresse a une structure périodique de fils métalliques telle que celle
présentée au chapitre 2 mais cette fois plongée dans un milieu hote magnétique constitué d’une
ferrite soumis a un champ magnétique DC. Cette structure a la propriété d’avoir a la fois une
permittivité et une perméabilité effective dans une certaine bande de fréquences. Ceci permet
la propagation de “backward waves” dont certaines propriétés dont l'indice de réfraction
négatif sont présentées a la section 3.1. La structure en question ayant été proposée par Dewar
[43, 15|, le modele théorique de Dewar qui permet d’assigner des parametres effectifs a la
structure est présenté a la section 3.2. On applique ensuite la méthode d’extraction numérique
des paramétres A la section 3.3 afin de valider le modele théorique. A la section 3.4 on présente
les résultats d'une expérience ayant servi a valider la propriété d’indice de réfraction négatif
de la structure. Enfin, a la section 3.5 deux applications potentielles de la structure de Dewar

sont proposées.

3.1 Matériaux main-gauche et indice de réfraction négatif

Les matériaux main-gauche ou matériaux aux parametres négatifs sont caractérisés par
une permittivité et une perméabilité effective toutes deux négatives. Les propriétés d’un
tel matériau ont été décrites pour la premiere fois par Veselago [5] en 1968, alors que la
possibilité qu’'un tel matériau existe était incertaine. Depuis la proposition d'une structure
périodique combinant des boucles de métal avec des fils métalliques en tant que matériau
aux parametres négatifs par Smith et al. en 2000 [9] et de la démonstration expérimentale
de l'indice de réfraction négatif de cette structure [10], beaucoup d’efforts de recherche ont
été consacrés a I'étude des matériaux aux parametres négatifs et de leurs propriétés (e.g.
[44, 45]).

Une onde plane se propageant dans un milieu homogene ayant les parametres € et p
a une constante de propagation & = w,/ue. Si I'un des parametres € ou p est négatif, k
est purement imaginaire et ’onde est evanescente. Dans ce cas il n'y a pas de propagation.
Cependant, lorsque € et u sont tous deux négatifs, k est réel et il y a propagation de 'onde
plane dans le milieu. La propriété fondamentale des matériaux aux parametres négatifs est
que pour une onde plane e‘jE'F, le vecteur de propagation k pointe dans la direction opposée

a celle du vecteur de Poynting S , dont la partie réelle correspond a la direction vers laquelle
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I’énergie associée a l'onde est transportée. Le vecteur de Poynting est défini par

—

S=ExH* (3.1)

ot H* dénote la valeur conjuguée complexe de H. Pour voir la relation entre la direction des
vecteurs k et S et le signe des parametres € et p, considérons les deux équations de Maxwell

suivantes dans un milieu sans source (.J = 0)
VxE=—jwpH , VxH=jueE. (3.2)

La dépendance spatiale des champs étant donnée par e~/ E'F, I'opérateur rotationnel Vx peut

étre remplacé par I'opérateur —j kx et les équations de Maxwell précédentes deviennent

—

kx E=wuH |, kxH=—weE. (3.3)
On peut donc voir que lorsque les parametres € et p sont positifs, les vecteurs E , H et k
forment un ensemble de vecteurs respectant la regle de la main droite, comme montré a
la figure 3.1 a). Lorsque ¢ et p sont négatifs, ces vecteurs respectent plutot la regle de la
main gauche, comme montré a la figure 3.1 b), d’out le nom matériaux main-gauche donné
aux matériaux ayant des parametres négatifs. Dans ce dernier cas, on voit que le vecteur de
Poynting S et k pointent dans des directions opposées, d’ou le nom de “backward waves”

donné aux ondes planes se propageant dans un tel médium [46].

i E

=

a) b)

Figure 3.1 Les vecteurs E, H et k formant un ensemble a) main droite et b) main gauche
Pour I’'ensemble main gauche, le vecteur de Poynting S pointe dans la direction opposée a k.

Une propriété qui découle directement de la direction opposée des vecteurs k et S est
I'indice de réfraction négatif. Supposons qu’une onde plane dans une région 1 composée d’un
matériau diélectrique conventionnel est incidente avec un angle 6; sur une région 2, comme

montré a la figure 3.2. La loi de Snell-Descartes donne ’angle de transmission ; en fonction
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de 6; et des indices de réfraction n; et ny des deux régions
sin 0;n, = sin 6;n,. (3.4)

L’angle d’incidence 6; et I'angle de transmission 6, correspondent a ’angle que fait le vecteur
S avec la normale & linterface. Ces angles sont donc définis par rapport a la direction de
propagation de l’énergie associée a 'onde. Dans la région 1 ou les parametres €1 et pq sont
positifs, les vecteurs ket S pointent dans la méme direction. Pour satisfaire la condition
de continuité des champs a l'interface entre les deux régions, la composante de k parallele a
I'interface doit étre la méme pour les ondes dans les régions 1 et 2. De plus, I’énergie transmise
de la région 1 a la région 2 par I'onde incidente doit s’éloigner de I'interface et pénétrer dans
la région 2 et non pas provenir de la région 2 et se diriger vers l'interface. Ainsi, dans la
région 2, le vecteur S doit étre orienté de l'interface vers la région 2. Lorsque la région 2 a
des parametres €5 et g positifs, les vecteurs k et S de onde dans la région 2 ont la méme
direction et I’angle de réfraction est défini comme étant positif. L’indice de réfraction est alors
positif. Le cas ol les parametres €5 et uy sont négatifs est illustré a la figure 3.2. Dans ce cas,
les vecteurs k et S ont des directions opposées. L’angle de réfraction 0; que fait le vecteur
S avec la normale & l'interface est négatif et l'indice de réfraction du milieu est négatif, en
accord avec I'Eq. (3.4).

®

€1, 1 >0
n1>0

0

—

k, S

P

0, <0
€9, pia < 0 /t b, > 0
ny < 0

Figure 3.2 Une onde dans une région 1 aux parametres positifs qui est incidente sur une
région 2 aux parametres négatifs est réfractée avec un angle de réfraction 6, négatif. L’indice
de réfraction de la région 2 est alors négatif. Ceci est di au fait que la composante tangentielle
a I'interface du vecteur de propagation k doit étre continue et que le vecteur de Poynting S
dans la région 2 doit s’éloigner de l'interface.

Jusqu’a maintenant, on a considéré un matériau parfaitement homogene ayant une per-
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méabilité et une permittivité négatives. Puisque la structure discutée dans ce chapitre est
une structure périodique qui, comme on le verra, est un réseau de Bloch, il est préférable
d’analyser la structure en termes des parametres de Bloch n et Zp plutot qu’en termes des
parametres effectifs e.;; et p.;s. Dans ce cas, pour montrer qu'une onde plane e 4" (I’har-
monique de Floquet fondamentale) se propageant dans la structure est caractérisée par un
vecteur de propagation ¢ pointant dans une direction opposée a la direction du transport de

I’énergie, il faut utiliser le concept de vitesse de groupe, qui est définie par

L (0. \ "t (0g,\ . [0¢.\ .
U, = (8w> x+<a—j) 9+ R z. (3.5)

Le vecteur vitesse de groupe 7, pointe dans la direction du transport de l'énergie [2, 20].

Considérons par exemple une onde se propageant dans la direction x pour laquelle ¢ = ¢,2.
Dans ce cas, la vitesse de groupe est 7, = (9q,/0w) " & et on voit que si la dérivée (9q,/0w)
a un signe opposé au signe de g,, alors ¢ et ¥, pointent dans des directions opposées. Faisons
maintenant le lien entre cette condition et le parametre de Bloch n (I'indice de réfraction).

Puisque pour une propagation selon x on a

wn(w)

C

ou ¢ est la vitesse de la lumiere dans le vide et ot n(w) est une fonction de la fréquence w,

on peut écrire
dq, 1
=— |n(w)+w
ow ¢ [ (w)+

“h(w). (37)

o

Puisque ¢ est évidemment positive, on voit que si le signe de la quantité

on(w)
w) = |nw) +w—r—> 3.8
0 = [nw) + 5 (3.5)
est opposé au signe de ¢, et donc de n selon I’Eq. (3.6), alors 'onde se propageant dans la
structure périodique est une “backward wave”. Cette condition sera utilisée plus tard pour
montrer I'existence d'une “backward wave” a partir des parametres de Bloch extraits par la

méthode numérique pour la structure de Dewar.

3.2 Structure et modele théorique de Dewar

En 2002, Dewar a proposé une structure se comportant comme un matériau main-gauche
dans une certaine bande de fréquence. Dans une série d’articles publiés de 2002 a 2005

[43, 47, 48, 15], il fait analyse de cette structure et lui attribue des parametres effectifs .y
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et fters. La structure proposée par Dewar est montrée a la figure 3.3. Il s’agit d’une structure
périodique de fils métalliques entourés par une gaine diélectrique et plongés dans un milieu
hote constitué d’une ferrite homogene soumise a champ magnétique DC orienté le long des
fils. La période de la structure est a, le rayon des fils métalliques est r; et le rayon de la gaine

est rq.

U
f
VE
¥
(@
¥

.
:
:
@ @:
® @
@ @®

AHHY ) e @ @
|
Y | /
ferrite fils métalliques
T gaine diélectrique

Figure 3.3 Structure périodique aux parametres négatifs proposée par Dewar. La structure
est constituée de fils métalliques entourés d’une gaine d’un matériau diélectrique plongés dans
une ferrite magnétisée par un champ magnétique DC H . La période de la structure de fils est
a tandis que la gaine diélectrique et les fils métalliques ont un rayon r; et ry respectivement.

La présence de la gaine diélectrique autour des fils métalliques est nécessaire a 1’existence
d’une bande de fréquences pour laquelle les parametres effectifs .7 et fiery sont négatifs.
Comme il est montré dans [49], lorsque les fils métalliques de la structure sont en contact
direct avec la ferrite caractérisée par une perméabilité négative, il n’existe pas de mode de
propagation et il n’est pas possible de définir une permittivité effective négative. Cependant,
en insérant un matériau diélectrique autour des fils, la réponse électrique des fils est en
quelque sorte découplée de la réponse magnétique de la ferrite et la permittivité effective de
la structure de fils peut a nouveau étre négative [43].

Dans son modele théorique, Dewar débute en assignant a la structure périodique une
perméabilité effective qui correspond a la perméabilité effective de la ferrite diluée par la
présence des fils qui peuvent étre vus comme des trous dans la ferrite. La perméabilité effective

est donnée par
2
freff = ( - ?) if (3.9)
ol g est la perméabilité effective dans la ferrite magnétisée et qui sera décrite a la sec-
tion 3.2.1. Ainsi, la perméabilité effective correspond a la perméabilité de la ferrite multipliée

par la proportion du volume de la structure occupée par la ferrite. Connaissant cette per-



52

méabilité, Dewar procede alors a une analyse similaire a celle de Tretyakov présentée a la
section 2.1.2. Il écrit le champ électrique total pour un fil de référence comme étant la somme
des champs dispersés (“scattered”) par les autres fils et le champ dispersé par le fil de référence.
Contrairement a Tretyakov, Dewar ne suppose pas des fils métalliques avec une conductivité
infinie. Ainsi il considére qu'un champ non-nul pénetre a 'intérieur du fil de référence et il
impose la continuité des champs électriques et magnétiques tangentiels a la surface du fil.
Cette analyse permet d’obtenir une relation de dispersion pour une onde plane se propageant
dans la structure qui tient compte de la perméabilité négative du milieu hote [15]. A partir
de cette équation de dispersion, en faisant la moyenne du champ électrique a l'intérieur d’une
cellule unitaire, il obtient I'expression suivante pour la permittivité effective de la structure
47

Oe
Ceff = E&f 1= . waoeff r . a 3+In2—7/2 <310>
o T R re )

ou ¢5 est la permittivité de la ferrite (considérée fixe et indépendante de la fréquence sur

toute la gamme des fréquences micro-ondes) et oy est donnée par

2
ry

Ocff :O'? (311)
et correspond a la conductivité moyenne de la structure due aux fils métalliques de conduc-

tivité o qui occupent une proportion 77? /a* du volume de la structure.

3.2.1 Perméabilité effective d’une ferrite magnétisée

Le but de cette section est de donner quelques informations générales sur les ferrites et
d’expliquer comment on peut définir une perméabilité ps pour ce type de milieu. Une ferrite
est un matériau ferrimagnétique qui possede des moments magnétiques pouvant étre alignés
par un champ magnétique externe. Les ferrites sont des céramiques et ont par conséquent une
tres faible conductivité. Ceci permet la propagation d’ondes électromagnétiques a l'intérieur
de la ferrite sans trop d’atténuation et est une propriété essentielle a 'utilisation des ferrites
dans les dispositifs micro-ondes.

Supposons qu'une ferrite est soumise a un champ magnétique externe Hy orienté dans la
direction z, comme montré a la figure 3.3. Lorsque 'intensité de ce champ est suffisamment
élevée, tous les moments magnétiques de la ferrite sont alignés selon z et la magnétisation du
matériau M , correspondant a la quantité de dipoles magnétiques par unité de volume, atteint

un maximum M = M,z appelée magnétisation de saturation. Lorsque la magnétisation est
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inférieure a M, les pertes dans la ferrite sont tres élevées et donc en pratique la ferrite est
toujours utilisée avec une magnétisation saturée.

Considérons une onde se propageant dans la ferrite magnétisée jusqu’a saturation par le
champ DC Hy, cette onde étant caractérisée par les champs E et H. Sile champ H a des
composantes en x ou ¥, alors la magnétisation M de la ferrite sera perturbée et aura des
composantes en x et y. La perméabilité de la ferrite, définie par la relation entre la densité

de flux magnétique B , la magnétisation M et le champ magnétique H
B=pu(M+H)=[pH (3.12)

est un tenseur de second ordre et est donné par [50]

poojge 0
W=1-jrk u O (3.13)
0 0 wo
ol
WoWm,
et
Wy,

et ot wg = poyHy et w,, = poyMs, v étant une constante appelée rapport gyromagnétique.
Dans le cas qui nous intéresse, I'onde se propageant dans la ferrite est TMz (le champ H
n’a donc pas de composante en z) avec aucune variation selon z et le champ électrique E a
uniquement une composante F,, comme montré a la figure 3.3. En suivant le développement
dans [50] et en supposant une dépendance spatiale de 'onde de la forme e~/ correspondant

a une propagation dans la direction y, on écrit les équations de Maxwell. Pour chacune des

composantes de I'équation V x E = —jw[,u]ﬁ, on obtient
t: —jPE, =—jw(uH, + jrH,) (3.16)
y: 0=—jrkH,+ pH, (3.17)

0=0. (3.18)

N>
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Pour I'équation V x H= Jjwe fE , on obtient

i 0=0 (3.19)
j: 0=0 (3.20)
Z: jBH, = jwesE,. (3.21)
De 'Eq. (3.21), on a
H, = WT?fE (3.22)

En combinant les Egs. (3.22) et (3.17), on obtient

_ JWEfR

B

H, E.. (3.23)

En insérant les Egs. (3.22) et (3.23) dans 'Eq. (3.16), on obtient la relation

—jBE. = —jw (“‘;gf _ “l“gf) E.. (3.24)

La constante de propagation est donc donnée par

MQ_,{2
B=w < ’ )gfzw\/m (3.25)

= (“2 ; “2> (3.26)

correspond a la perméabilité associée a 'onde TMz se propageant dans la ferrite. Si on tient

ou

compte des pertes dans la ferrite, I’Eq. (3.26) peut étre écrite sous la forme

~ 2
2 w
Rl )

- ; (3.27)
Ho - fio(Hy + M) - (3%)

ol on considere une valeur complexe du champ magnétique DC H, dont la partie imaginaire

tient compte des pertes et qui est donné par

= . w 5
Ho=Ho=J (uov) (ust> ’ (3:28)

¢ étant la quantité proportionnelle aux pertes. Pour une ferrite, les pertes sont exprimées
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par une quantité appelée la largeur de ligne (“linewidth”) AH exprimée en unités du champ
magnétique (A/m ou Oe). La largeur de ligne AH dépend de la fréquence d’opération w et

est reliée a & par 'expression

—2wé
AH = ——>.
gy M

(3.29)
En pratique et par convention, la largeur de ligne AH est spécifiée a la fréquence 9.4 GHz.
En observant les Egs. (3.22) et (3.23), on voit que le champ magnétique H a une polari-
sation elliptique dans le plan zy et a donc une composante dans la direction de propagation
y. Les ondes se propageant dans la ferrite ne sont donc pas des ondes TEM méme si le champ
E. se propage comme le champ électrique d’une onde plane avec la constante de propagation
donnée par I’Eq. (3.25). La polarisation du champ magnétique n’a pas une grande importance
dans I'analyse de dispersion de Dewar puisque celle-ci est basée sur I'analyse du champ F.,
dans la structure périodique. En fait, dans son analyse Dewar considere que l'interaction entre

les fils se fait par des ondes planes avec la constante de propagation donnée par I’Eq. (3.25).

3.3 Extraction de parametres

Afin de valider le modele théorique de Dewar, on utilise la méthode d’extraction numérique
décrite au chapitre précédent pour extraire les parametres de Bloch de la structure proposée
par Dewar. Tous les résultats présentés dans cette section ainsi que dans la section suivante
sont obtenus avec une structure telle que celle montrée a la figure 3.3 ayant les parametres
r1 = 0.127 mm, ro = 0.545 mm et a = 2.7 mm. Les propriétés de la ferrite sont 47 M, =
1600 G, €5 = 14.6 et une largeur de ligne AH = 10 Oe a 9.4 GHz. La ferrite utilisée pour
I’expérience est une ferrite de calcium dopée avec du vanadium avec les propriétés ci-dessus
spécifiées par le manufacturier.

Pour un champ magnétique DC Hy = 1500 G, la perméabilité et la permittivité effective
obtenues par le modele de Dewar, données par les Eqgs. (3.9) et (3.10) respectivement, ainsi
que l'indice de réfraction n = | /fiefs€ery sont montrés a la figure 3.4. On distingue 6 bandes
de fréquences dénotées par les lettres A a F. La région D est la région ou les parametres .75 et
Lef s sont tous deux négatifs et ou il y a propagation de “backward waves”. La région F est une
bande de fréquences ou les parametres sont positifs. Les régions A, C et E sont des bandes ou
il n’y a pas de propagation puisque I'un des parametres est négatif alors que I'autre est positif.
La région B est caractérisée par des parametres positifs et supporte un mode de propagation.
Cependant, elle est tres étroire et donc difficile a caractériser expérimentalement. Pour cette
raison, elle ne sera pas considérée dans ce qui suit.

Il a déja été mentionné que la structure de Dewar est un réseau de Bloch. Tel que défini

au chapitre 2, un réseau de Bloch est caractérisé par le fait que 'interaction entre les cellules
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Figure 3.4 Parametres effectifs obtenus du modele théorique de Dewar et donnés par les
Egs. (3.9) et (3.10). (a) Partie réelle et imaginaire de pios; avec la fréquence de résonance
magnétique f,, et la fréquence de plasma magnétique f,,. (b) Partie réelle et imaginaire de
erf avec la fréquence de résonance électrique f, et les deux fréquences de plasma électrique
fepr and fopo. (c) Partie réelle et imaginaire de I'indice de réfraction n = | /ficsécrs. La bande
de fréquences est divisée en 6 régions avec des propriétés de propagation distinctes et qui
sont dénotées par les lettres A a F.

unitaires ne modifie pas les propriétés de transmission et de réflexion d’une cellule unitaire.
Pour montrer que la structure est bien un réseau de Bloch, les parametres de Bloch n et
n = Zp donnés par les Eqs. (2.64) et (2.63) sont calculés  partir des paramétres S obtenus
numériquement, pour une, deux et dix cellules unitaires. Les résultats pour les fréquences de
7.5 a 8 GHz, qui font partie de la région D ou les parametres sont négatifs, sont montrés a la
figure 3.5. On voit que peu importe le nombre de cellules unitaires utilisées dans la solution
numérique, les parametres de Bloch sont presque identiques.

Afin de valider les parametres théoriques de la figure 3.4, la méthode d’extraction nu-
mérique est utilisée pour caractériser les bandes D, E et F, qui constituent les bandes de

fréquence d’'intérét puisque D et F sont les régions ou il y a propagation. La figure 3.6 fait
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Figure 3.5 Parametres de Bloch n et n = Zp obtenus numériquement pour la structure de
Dewar a partir d’une rangée de cellules unitaires telle que celle de la figure 2.5 avec une, deux
et dix cellules unitaires. a) Partie réelle et imaginaire de l'indice de réfraction n. b) Partie
réelle et imaginaire de I'impédance de Bloch n = Zp.

la comparaison entre les parametres extraits numériquement et les parametres obtenus du
modele théorique. Comme discuté au chapitre 2, la méthode d’extraction numérique permet
d’obtenir les parametres de Bloch n et n = Zp de la structure. Les valeurs extraites de la
perméabilité et de la permittivité montrées aux figures 3.6(a) et 3.6(b) sont obtenues a partir
des parametres de Bloch par les équations pi.rr = nZp et e,y = n/Zp. Comme discuté au
chapitre 2, les parametres ¢ et €.¢5 obtenus numériquement n’ont pas de sens physique
particulier et ne correspondent pas aux parametres fi.rs et .p¢ obtenus du modele théorique
de Dewar. En effet, on voit dans les figures 3.6(a) et 3.6(b) qu’il y a un écart entre les valeurs
numériques des parametres théoriques et extraits numériquement, qui correspondent a des
quantités physiques différentes. En fait, puisqu’on s’attend a ce que la constante de propaga-
tion (et donc le parametre de Bloch n) obtenue théoriquement soit la méme que la constante
de propagation extraite numériquement, cet écart correspond au fait que l'impédance de
Bloch Zg ne correspond pas a I'impédance caractéristique \/m calculée a partir des
des parametres effectifs pi.f et e.;y théoriques. La figure 3.6(c) montre la comparaison entre
I'indice de réfraction ou parametre de Bloch n obtenu du modele théorique et obtenu de la
méthode d’extraction numérique. En principe, les deux devraient étre identiques et on voit
qu’en s’éloignant de la région E, les deux quantités sont tres proches I'une de 1’autre. L’écart
observé est probablement attribuable aux approximations faites dans le modele de Dewar

afin d’obtenir une solution analytique du probleme.
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Figure 3.6 Comparaison des parametres extraits numériquement avec les paremetres théo-
riques de la figure 3.4. (a) Perméabilité ji.sr. (b) Permittivité e.¢s. (¢) Indice de réfraction
n.

Puisque la structure de Dewar est une structure de Bloch, on note qu’il est possible
d’utiliser le parametre de Bloch Zp pour calculer la réflexion a l'interface entre une région
1, composée d’un matériau homogene caractérisé les parametres py et €; avec I'impédance
caractéristique n; = \/Ml—/& , et une région 2 correspondant a la structure de Dewar. Dans ce
cas, le coefficient de réflexion I'y » est donné par I’Eq. (2.70). 11 est alors possible d’utiliser cette
équation pour prédire le parametre Si; pour la structure de Dewar excitée par deux guides
d’ondes TEM comme montré & la figure 2.5. On utilise pour ce faire I'Eq. (2.57) en tenant
compte de la variation de phase dans les guides d’onde TEM avec I’Eq. (2.68). Démontrons
ceci par un exemple numérique. Les parametres de Bloch montrés a la figure 3.5 sont obtenus
avec des guides d’onde TEM de longueur [ = 5 mm remplis d'un matériau avec les parametres
e = 18 et u = 1. Pour une rangée de la structure périodique comptant dix cellules unitaires,
a la fréquence 7.8 GHz, les parametres de Bloch extraits sont n = —2.547 — 0.057j et Zp =
0.129 — 0.0002;. Avec I'Eq. (2.57), on calcule Si; pour la structure de la figure 2.5 avec une
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seule cellule unitaire et avec des guides d’ondes TEM de longueur inchangée [ = 5 mm mais
remplis d’un matériau avec les parametres € = 10 et 1 = 2, qui sont choisis arbitrairement.
On obtient alors S7; = —0.2383 + 0.77145. La solution numérique de cette structure donne
une valeur de Sy; = —0.2368 + 0.77155, ce qui est tres proche de la valeur calculée. Cet
exemple démontre I'importance du parametre de Bloch Zg qui est le parametre a considérer
pour concevoir 'adaptation de la structure périodique lorsque celle-ci est utilisée dans des
dispositifs réels.

A la section 3.1, on a énoncé un critére pour déterminer l'existence d’une bande de fré-
quences ou il y a propagation de “backward waves” et ou 'indice de réfraction est négatif.
Selon ce critére, le signe de la quantité ¢ (w) définie par I'Eq. (3.8) doit étre opposé au signe
de l'indice de réfraction n. La figure 3.7 montre la quantité ¢)(w) pour la structure de Dewar
pour les fréquences de 7.5 a 8 GHz. On voit que ¥ (w) est positif alors que dans cette bande
de fréquences, selon la figure 3.6, n est négatif. On a donc bien des “backward waves” et un
indice de réfraction négatif dans cette bande de fréquences. La section suivante présente une

expérience démontrant la propriété d’indice de réfraction.
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Figure 3.7 Valeur de la quantité ¢ (w) définie par I'Eq. (3.8). Puisque la quantité i (w) est
positive alors que l'indice de réfraction n est négatif, on a bien des “backward waves”.

3.4 Vérification expérimentale

Dans cette section, on présente une expérience ayant servi a démontrer la propriété d’in-
dice de réfraction négatif pour la structure de la figure 3.3 [51]. Certains travaux ont été
réalisés sur cette structure ou une structure similaire. Par exemple, Y. He et al. [52] ont me-
suré les parametres S d’une structure similaire placée dans un guide d’onde rectangulaire et

ont utilisé ces données pour extraire les parametres effectifs de la structure. Zhao et al. [53] ont
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extraits des parametres effectifs a partir des parametres S obtenus numériquement pour une
structure employant des tiges de ferrite au lieu d’une ferrite occupant tout I’espace du milieu
hote. Ils ont aussi montré expérimentalement 1’existence d’une bande passante aux fréquences
ou les parametres effectifs de la structure sont négatifs. G. He et al. [54] ont eux aussi extrait
les parametres effectifs d’'une structure similaire et montré I'existence d’une bande passante
ol les parametres sont négatifs. Cependant, aucune de ces études n’a démontré de maniere
directe la propriété d’indice de réfraction négatif.

La structure proposée par Dewar est fabriquée a partir d’une piece de ferrite mesurant
2.5 x 2.5 cm avec une épaisseur de 1 mm. Des trous de rayon ro = 0.545 mm avec une période
a = 2.7 mm sont percés dans la ferrite a ’aide d’un laser femtoseconde. L’utilisation d’un
laser femtoseconde est nécessaire car un laser avec des pulsations plus longues a pour effet
de surchauffer la ferrite et de la détruire. Toujours a 1’aide du laser femtoseconde, la piece de
ferrite est découpée pour avoir une forme trapézoidale tel que montré dans le coin inférieur
gauche de la figure 3.8(b). Les trous sont ensuite remplis avec de la colle epoxy. Des trous
de rayon r; = 0.127 mm sont percés dans l'epoxy a l'aide d’un laser puis remplis de cuivre.
Cette procédure permet d’obtenir des fils de métal entourés d’une gaine diélectrique tels que
montrés a la figure 3.3. Enfin, les surfaces du haut et du bas de la ferrite sont plaquées
avec du cuivre afin de former un guide d’onde a plaques paralleles (PPWG, “Parallel Plate
Waveguide”) qui permet la propagation d’ondes TMz sans variation selon z (donc n’ayant
qu'une composante E, du champ électrique). Cette métalisation des surfaces du haut et du
bas est analogue aux conditions frontieres PEC de la structure de la figure 2.5 utilisée pour
obtenir les résultats numériques.

La structure périodique ainsi fabriquée est insérée dans le montage de la figure 3.8. Comme
montré a la figure 3.8(a), la structure périodique est excitée par une ligne micro-ruban d’im-
pédance 50 €2 qui s’élargit progressivement pour former un guide d’onde a plaques paralleles
(PPWG) ayant la méme largeur que la structure périodique. Cette ligne micro-ruban sup-
porte la propagation d'une onde quasi-TEM qui excite le mode TMz voulu dans la structure
périodique. La ligne micro-ruban est elle-méme excitée par un cable coaxial 50 €2 a l'aide
d’une transition cable coaxial a ligne micro-ruban. A la sortie de la structure périodique, il
y a un guide d’onde a plaques paralleles en forme de demi-cercle. A cause de la forme trapé-
zoidale de la structure périodique, I'onde incidente fait un angle de 26 degrés avec l'interface
entre la structure périodique et ce guide semi-circulaire. Cet angle permet la réfraction de
I'onde incidente et I'onde réfractée dans le guide d’onde semi-circulaire est captée par 12
ports distribués autour du demi-cercle. Ces ports sont des guides d’ondes a plaques paralleles
qui sont rétrécis pour former des lignes micro-ruban qui sont adaptées a des ports coaxiaux

50 Q. Afin de déterminer 'angle de réfraction, les parametres Sy du port d’entrée 0 vers les
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k=1,2,...,12 ports de sortie sont mesurés a ’aide d’un analyseur de réseau vectoriel. En
faisant une moyenne de ’angle associé a chacun des ports pondérée par la puissance incidente
sur chaque port (proportionnelle & [Syl?), il est en effet possible de déterminer I'angle de
réfraction.

On note que 'angle de réfraction est un concept défini dans le cadre de I’approximation de
I'optique géométrique selon laquelle 'onde se propage en ligne droite dans une seule direction.
Dans le cas présent, la longueur de 'interface entre la structure périodique et le guide d’onde
semi-circulaire a la fréquence 8 GHz est d = 2.5\, o \; = A\o/\/€4 est la longueur d’onde
guidée dans le guide d’onde semi-circulaire dont la permittivité du diélectrique est ¢4 = 10.2.
Puisque d est de I'ordre de quelques longueurs d’onde guidées A,, 'onde sera diffractée et dans
ce cas 'approximation de 'optique géométrique est une approximation grossiere. Cependant,
la longueur d de l'interface est suffisamment grande pour générer une onde réfractée assez

directive pour pouvoir mesurer ’angle de réfraction.

PPWG  rétrécissement vers

12 11 10 ligne p-ruban

élargissement,
vers PPWG

cable coaxial

04

structure de Dewar

(a) (b)

Figure 3.8 Schéma du montage de 'expérience. (a) Schéma montrant le principe de mesure de
I'indice de réfraction. L’angle de réfraction #;, mesuré a partir de la normale a I'interface, est
positif dans la direction indiquée par la fleche et négatif dans la direction opposée. (b) Pho-
tographie du montage expérimental final avec dans le coin inférieur gauche une photographie
de la ferrite taillée en trapeze apres que les trous de rayon 7o aient été percés.

La figure 3.9 présente les résultats expérimentaux correspondant a la bande de fréquences
ou l'indice de réfraction est négatif (correspondant a la région D dans les figures 3.4(c) et

3.6(c)). Les données brutes pour les parametres Syo sont montrées sous la forme d'un dia-
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gramme de couleurs a la figure 3.9(a). Ce diagramme montre les paremetres Sy correspondant
aux 12 ports de sortie pour différentes fréquences. L’axe horizontal du bas indique I'angle
de réfraction #; correspondant a chaque port de sortie. Pour calculer 'angle de réfraction de
I'onde réfractée pour différentes fréquences, on calcule la moyenne des angles associés aux
ports pondérée par la puissance |Syg|? incidente sur chaque port. La figure 3.9(c) illustre cette
opération de moyennage. Chaque graphe correspond a une fréquence différente et les points
bleus indiquent la valeur absolue des parametres Syg pour les différents ports et leur angle
correspondant. La moyenne pondérée de ’angle, qui correspond a l'angle de réfraction, est
indiqué par une croix rouge. Ala figure 3.9(b), 'angle de réfraction ainsi obtenu pour diffé-
rentes fréquences est comparé a l'indice de réfraction extrait de la méthode numérique pour
un champ magnétique DC Hy = 1300 G. Il est important de noter que 'indice de réfraction
extrait numériquement est seulement superposé a l'indice de réfraction obtenu expérimen-
talement afin de comparer leur variation en fonction de la fréquence. En effet, il difficile en
pratique de déterminer avec précision le champ magnétique DC H a l'intérieur de la ferrite
a cause de l'effet de démagnétisation. Ainsi, les données expérimentales de la figure 3.9(b) ne
correspondent pas nécessairement a un champ magnétique DC Hy = 1300 G.

Les paramétres effectifs théoriques fiosp et eqp; donnés par les Eqs. (3.9) et (3.10) dé-
pendent de l'intensité Hy du champ magnétique DC qui magnétise la ferrite. On s’attend
donc a ce que l'indice de réfraction de la structure périodique soit ajustable avec I'intensité
du champ Hy. La figure 3.10 montre I'indice de réfraction en fonction de la fréquence pour
différentes valeurs du champ magnétique DC Hy dans la bande de fréquences ou 'indice de
réfraction est négatif. L'indice de réfraction de la figure 3.10(a) est obtenu a l'aide de la
méthode d’extraction numérique alors que celui de la figure 3.10(b) est obtenu a partir des
parametres Sio mesurés. Pour la solution numérique du probleme, l'intensité du champ Hy
a l'intérieur de la ferrite est spécifiée explicitement dans la définition du probleme. Ainsi,
la figure 3.10(a) spécifie les valeurs absolues de Hy qui sont incrémentées avec un pas de
8000 A/m. Lorsque l'intensité du champ Hj est augmentée, la courbe de l'indice de réfrac-
tion subit une translation vers les fréquences plus élevées. Comme mentionné plus haut, il
est difficile de déterminer avec précision la valeur du champ Hy a lintérieur de la ferrite
expérimentalement. Il est cependant possible de connaitre la variation du champ H, interne
a partir de la variation du champ externe appliqué a la ferrite. Ainsi, la figure 3.10(b) spécifie
la valeur du champ Hj relativement a une valeur indéterminée Hy;. On voit que les variations
de T'indice de réfraction en fonction des variations de Hy montrées aux figures 3.10(a) et
3.10(b) sont similaires.

Ayant caractérisé expérimentalement la région D des figures 3.4(c) et 3.6(c) correspondant

a un indice de réfraction négatif, on s’intéresse maintenant a la région F ou il y a propagation
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avec un indice de réfraction positif. La figure 3.11(a) montre un diagramme de couleurs
représentant les parametres Siy mesurés. Sur ce diagramme, on peut voir ’émergence de la
bande de propagation avec un indice de réfraction positif a partir de la fréquence 10 GHz.
L’indice de réfraction est obtenu par la procédure de moyennage illustrée a la figure 3.9(c)
et est comparé avec l'indice de réfraction obtenu numériquement a la figure 3.11(b). Les
intensités du champ magnétique DC Hj utilisées pour obtenir les résultats des figures 3.9 et
3.11 sont les mémes. La différence entre les courbes de I'indice de réfraction mesuré et obtenu
numériquement de la figure 3.11(b) suggere que la bande E ot il n’y a pas de propagation est
plus large expérimentalement que ce qui est prédit par la solution numérique du probleme.
Avant de terminer cette section, revenons sur 'effet de bord discuté au chapitre 2. L’ana-
lyse théorique de Dewar prédit des parametres e.rf et p.rr négatifs et donc la propagation
de “backward waves”. En principe, ceci implique le phénomene d’indice de réfraction négatif.
Cependant, comme on I'a vu, ces parametres théoriques ne sont pas valides sur le bord de
la structure. Or, puisque la réfraction est un phénomene qui se produit a l'interface de la
structure périodique, les parametres théoriques ne permettent pas automatiquement de pré-
dire le phénomene d’indice de réfraction négatif. Dans le cas de la structure de Dewar, les
parametres théoriques sont adéquats uniquement car la structure périodique est un réseau de
Bloch. Dans ce cas, on a vu que le parametre de Bloch correspondant a I'indice de réfraction
correspond a l'indice de réfraction obtenu des parametres théoriques n = | /licrreery et que
celui-ci n’est pas affecté par l'effet de bord. Puisque le phénomene de réfraction négative
dépend uniquement de la constante de propagation dans la structure, on voit que dans le cas
présent, les parametres théoriques et les parametres de Bloch obtenus numériquement sont

équivalents en ce qui concerne la description du phénomene de réfraction négative.

3.5 Applications potentielles

Dans cette section, deux applications potentielles de la structure de Dewar sont présen-
tées. Ces deux applications sont basées sur le fait qu’il est possible de concevoir les parametres
de la structure de Dewar afin d’éliminer la région E qui sépare les bandes de propagation D
et F caractérisées par un indice de réfraction négatif et positif respectivement. Dans ce cas,
I'indice de réfraction passera des valeurs négatives aux valeurs positives de maniere continue,
comme c’est le cas pour les structures balancées main-droite/main-gauche [2]. L’onde inci-
dente pourrait alors étre réfractée dans une direction entre —90° to 90° en faisant varier la
fréquence de I'onde ou en ajustant l'intensité du champ magnétique DC Hj.

Le concept de la premiére application est montré a la figure 3.12(a). Il s’agit d’un analyseur

de spectre qui fonctionne grace a la variation de l'indice de réfraction avec la fréquence.
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Un analyseur de spectre utilisant le méme principe est décrit dans [55]. A cause de cette
variation de l'indice de réfraction en fonction de la fréquence, les différentes composantes
fréquentielles d’un signal incident seront séparées spatialement et transmises vers les différents
ports de sortie. La seconde application proposée est montrée a la figure 3.12(b). Il s’agit d’un
démultiplexeur qui exploite la dépendance de 'indice de réfraction sur 'intensité du champ
magnétique DC Hj. Si le signal d’entré est un signal a bande étroite centré sur la fréquence
fo, il est possible de diriger le signal vers I'un des ports de sortie en ajustant la valeur de H,

ce qui est facile dans le cas ou le champ Hj est créé par un électroaimant.
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Figure 3.9 Résultats expérimentaux pour la bande de fréquences ot 'indice de réfraction est
négatif (région D dans les figures 3.4(c) et 3.6(c)). (a) Diagramme de couleur montrant les
parametres Sio mesurés du port d’entrée 0 vers chacun des 12 ports de sortie. Chaque port
de sortie correspond a un angle de réfraction différent entre —82.5° et 82.5° avec un pas de
15°. (b) Comparaison entre l'indice de réfraction obtenu a partir des parametres Sio mesurés
et I'indice de réfraction obtenu a l’aide de la méthode d’extraction numérique. (c) Illustration
du processus de moyennage permettant d’obtenir I'indice de réfraction a partir des valeurs
mesurées des parametres Syg.
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Figure 3.10 Variation de la courbe de l'indice de réfraction en fonction de la fréquence avec
la variation du champ magnétique DC H,. (a) Indice de réfraction obtenu avec la méthode
d’extraction numérique. (b) Indice de réfraction obtenu a partir des parametres Syo mesurés.
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Figure 3.11 Résultats expérimentaux pour la bande de fréquences ou l'indice de réfraction
est positif (région F dans les figures 3.4(c) et 3.6(c)). (a) Diagramme de couleur montrant les
parametres Sk mesurés du port d’entrée 0 vers chacun des 12 ports de sortie. (b) Comparaison
entre 'indice de réfraction obtenu a partir des parametres Sio mesurés et I'indice de réfraction
obtenu a l'aide de la méthode d’extraction numérique.
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Figure 3.12 Applications potentielles de la structure de Dewar. (a) Analyseur de spectre
qui sépare spatialement les différentes composantes fréquentielles du signal d’entrée pour les
envoyer vers les différents ports de sortie. (b) Démultiplexeur permettant de diriger le signal
d’entrée vers un des ports de sortie en controlant 'intensité Hy du champ magnétique DC.
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CHAPITRE 4

CONCLUSION

Dans le cadre de la présente recherche, deux structures périodiques 2D ont été étudiées
dans le contexte des métamatériaux. La premiere consiste en une structure périodique de
fils métalliques plongés dans un milieu hote diélectrique homogene. Deux modeles théoriques
différents ont été présentés pour cette structure, I'un ayant été proposé par Pendry et 'autre
par Tretyakov. Selon ces deux modeles, il est possible de définir une permittivité effective qui
permet de traiter la structure périodique comme un matériau homogene. Quoique donnant
des résultats légerement différents, ces deux modeles prédisent une permittivité effective
négative a basse fréquence qui augmente avec la fréquence pour devenir positive au-dessus
de la fréquence de plasma. Ala fréquence de plasma, la permittivité est nulle ce qui implique
que la longueur d’onde effective est infinie. La deuxieme structure étudiée est une structure
périodique de fils métalliques entourés d’une gaine diélectrique et plongés dans un milieu hote
constitué d’une ferrite magnétisée. Le modele théorique développé par Dewar a été présenté
et il a été vu qu’on peut associer a la structure une perméabilité et une permittivité effective
qui sont toutes deux dispersives et potentiellement négatives. Lorsque ces deux parametres
sont négatifs dans la méme bande de fréquence, il y a propagation de “backward waves”
caractérisées par le fait que le vecteur de propagation et le vecteur de Poynting pointent dans
des directions opposées. On a vu que cette proprité donnait lieu a un indice de réfraction
négatif, qui est une propriété impossible a retrouver dans les matériaux conventionnels connus
jusqu’a ce jour.

Une partie importante de la présente recherche est 'utilisation d’'une méthode numérique
pour l'extraction des parametres effectifs d’une structure périodique. Cette technique, abon-
damment utilisée dans la littérature, permet d’assigner des parametres effectifs e.¢s et pesr a
partir des parametres S calculés numériquement pour la structure périodique. En comparant
ces parametres avec les parametres théoriques, il a cependant été vu que les parametres obte-
nus numériquement ne correspondent pas aux parametres théoriques et qu’il faut manipuler
le concept de parametre effectif avec beaucoup de prudence. La difficulté provient du fait
que pour les structures étudiées, la période est comparable a la longueur d’onde. Dans ce
cas, l'effet de bord du a la taille finie des structures périodiques utilisées pour la solution
numérique devrait en principe invalider la méthode d’extraction numérique. En effet, lorsque
la longueur d’onde est comparable a la période, il est inexact de modéliser les cellules uni-

taires sur les bords de la structure avec les mémes parametres effectifs définis pour les cellules
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unitaires au centre de la structure. Lorsque la longueur d’onde est beaucoup plus grande que
la période, comme c’est le cas pour les matériaux conventionnels aux fréquences micro-ondes,
cet effet de bord est négligeable. En fait, il a été vu que pour des structures dont la période
est comparable a la longueur d’onde, 'information extraite numériquement n’a du sens que
pour une classe particuliere de structures appelées réseaux de Bloch. Dans ce cas, 'interac-
tion entre les cellules unitaires n’influence pas les propriétés de réflexion et de transmission
d’une cellule unitaire et les parametres extraits numériquement qu’il faut considérer sont les
parametres de Bloch. Bien qu’il soit tout de méme possible dans ce cas de définir mathé-
matiquement des parametres e.¢¢ et j.s¢ a partir de la solution numérique, ces parametres
n’ont pas de signification physique. De maniere générale, une conclusion importante de la
présente recherche est que 'utilisation de parametres effectifs pour caractériser une structure
périodique implique certaines approximations qui ne sont plus nécessairement valides lorsque
la période se rapproche de la longueur d’onde. Il faut alors interpréter les parametres effectifs
avec beaucoup de prudence et étre bien conscient de leur signification réelle. La définition de
parametres effectifs ainsi que leur interprétation dans le cas des structures dont la période
est comparable a la longueur d’onde est un probleme complexe qui fait encore aujourd hui
I'objet de plusieurs efforts de recherche.

Malgré cette différence entre les parametres théoriques et les parametres obtenus numé-
riquement, il a été vu que pour la catégorie des réseaux de Bloch, dont les deux structures
étudiées font partie, il est tout de méme possible de faire un lien entre les deux types de
parametres. En effet, I'indice de réfraction (ou de maniére équivalente, la constante de pro-
pagation) associée aux parametres .5 et fi.rs théoriques correspond a l'un des parametres
de Bloch. L’autre parametre de Bloch, I'impédance de Bloch Zg ne correspond toutefois par
a 'impédance caractéristique \/m théorique. Pour résoudre les problemes pratiques,
il a été vu que les parametres a considérer sont les parametres de Bloch et non pas les para-
metres théoriques eqrr et perr. En effet, la capacité de prédire la réflexion a l'interface avec
un réseau de Bloch a partir de I'impédance de Bloch Zp a été démontrée a ’aide d’exemples
numériques. Aussi, la validité du parametre de Bloch correspondant a I'indice de réfraction
et le fait qu’il n’est pas affecté par 'effet de bord a été démontré par ’analyse du résonateur
employant la structure de fils métalliques plongés dans un milieu hote diélectrique.

Une contribution importante de la présente recherche est la validation expérimentale de
la propriété d’indice de réfraction négatif pour la structure proposée par Dewar. En effet, il
a été montré que la propriété d’indice de réfraction négatif peut étre interprétée uniquement
en terme de la constante de propagation et donc du parametre de Bloch correspondant. La
structure proposée par Dewar étant un réseau de Bloch, la propriété d’indice de réfraction

négatif n’est pas affectée par 'effet de bord et a donc pu étre observée expérimentalement.
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Le fait que 'analyse de Dewar pour une structure infinie ne permet pas automatiquement
de conclure la propriété d’indice de réfraction négatif, qui est un effet d’interface, ajoute a
I'importance de cette validation expérimentale.

Deux concepts pouvant mener a des applications de la structure de Dewar ont été pré-
sentés. Le premier est le principe de 'analyseur de spectre qui transmet les différentes com-
posantes fréquentielles dans différentes directions. Le second est un démultiplexeur qui tire
profit de la dépendance de I'indice de réfraction de la structure de Dewar sur I'intensité H,
du champ magnétique DC qui permet de diriger le signal d’entrée vers un port de sortie en
particulier en ajustant H.

En termes de travaux futurs, plusieurs questions demeurent ouvertes en ce qui concerne
les parametres effectifs attribuables aux structures périodiques 2D. Par exemple, il serait
intéressant d’énoncer des criteres généraux et faciles a vérifier que doit satisfaire une structure
périodique pour étre considérée comme un réseau de Bloch. Aussi, dans la présente recherche
seul le cas d'une onde avec un angle d’incidence normal a 'interface de la structure périodique
a été considérée. Il serait intéressant de déterminer si les parametres de Bloch demeurent
inchangés pour des angles d’incidence obliques. Puisque comme il a été vu, 'impédance de
Bloch Zp est un parametre important pour résoudre les problemes de réflexion a 'interface
de la structure périodique, il serait important d’étre capable d’extraire la valeur de Zp a
partir des modeles théoriques et de comparer cette valeur avec celle obtenue de la méthode
numérique d’extraction. Enfin, de maniere générale il serait important de trouver d’autres
idées d’applications innovatrices qui font usage des structures périodiques 2D et qui pourraient

encourager leur développement.
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ANNEXE A

Continuité du vecteur de propagation

A la section 2.3.3, on a utilisé le fait qu’a l'interface entre deux régions différentes, les
composantes tangentielles a I'interface du vecteur de propagation k doivent étre continues. Ici,
une démonstration de cette condition est proposée. Considérons l'interface entre les régions
1 et 2 du résonateur de la figure 2.13. Cette interface étant contenue dans le plan yz, on veut
montrer que les composantes k; et k, sont continues. On montrera la continuité de k,, la
méme démarche pouvant étre utilisée pour k.. En x = a, on doit avoir F.; = E.5 pour toutes

les valeurs de y et de z définissant l'interface entre les régions 1 et 2. Ainsi, de I'Eq. (2.86)

on a
X1(a)Y1(y) Z1(2) 81 = Xa(a)Ya(y) Za(2) 52 (A1)
ou on a défini f; = % et By = % qui sont des constantes par rapport aux

coordonnées de l'espace (x,y, z). En fixant z = «, on peut écrire

Yi(y)  Xo(a)Zz(a)Bs

Ny Y@ D T N =m) (A.2)

ol [ est une constante par rapport a la coordonnée y. Les termes Y;(y) et Ya(y) sont donnés

par I'Eq. (2.83) qui peut étre écrite sous la forme
Yily) = Gl + Dleihun (A3
ot C! = (D; — jC;)/2 et D} = (D; + jCy) /2. Ainsi, 'Eq. (A.2) devient
C’iejkyly + Dlle—jkyly _ ﬁoéejkyzy + 6Dé€_jky2y (A.4)

et est valide pour toute valeur de y sur U'interface considéré, ¢’est-a-dire pour tout y € [0, d].
On montre que ceci peut étre vrai seulement si ky; = kyo.

Supposons que I'Eq. (A.4) est satisfaite pour une valeur spécifique de y € [0, d], que I'on
note y,. Alors considérons y = y,, + 0y ou dy est une variation infinitésimale de la coordonnée

y. Alors, I'Eq. (A.4) doit toujours étre satisfaite et on peut écrire

Ciejkyl(ypwy) + Dfle—jkyl(yp+5y) — ﬁ[céejkyz(yﬁtsy) + Dée—jkyz(yﬁéy)}_ (A.5)
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En utilisant la définition de la dérivée d’une fonction

f’(y) _ élgf_{lo f(y + 5(35/; - f(y)’ (A6)

chaque terme de I’Eq. (A.5) peut étre réécrit en terme de la dérivée d'une fonction. Par

exemple, le premier terme peut étre écrit comme

. d . .
! dky1 (yp+oy) _ / Jky1y Jky1Yp
Cie =C1 a0 (e )!y:yp(Sy +e : (A.7)

En réécrivant chaque terme de I’Eq. (A.5) de cette facon, on s’apercoit que les termes
qui ne comprennent pas de dérivée correspondent exactement a I’Eq. (A4) avec y = y, et
s’annulent donc mutuellement. En divisant 1’équation résultante par le facteur commun oy

et en effectuant les dérivées, on obtient
/- jkyl ’ —jkyl /- iky2 /s —jky2
kYW — D ke IR = SO k0t Ve — BDY kg6 IRV,

En divisant par jk,i, on a

‘ ‘ kuo .
C’ie]kylyp _ Dlle—akylyp = 5ki[céeakyzyp _ Déejkyzyp (A.8)
yl

En additionnant I’Eq.(A.S) et I'Eq. (A.4) avec y = y,, on trouve

QCiejkylyp = B[Ch(1 + @)ejkyzyp + D4(1 — @)efjkyzyp] (A.9)
Fy1 Fy1

Enfin, la division des deux membres de 1’Eq.(A.9) par e/*v1% donne

k , k ,

20{ = ﬂ[Cé(1 + ﬁ)ej(kw*kyl)yp + Dé(l _ ﬁ)efj(karkyl)yp] \V4 Yp € [0’ d] (AlO)
k. k.

Dans I'Eq. (A.10), 2C est une constante indépendante du choix de y, tandis que le membre

de droite est une fonction de y,, sauf si ky; = k. O



