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EXACT ALGORITHMS FOR THE QUADRATIC ASSIGNMENT PROBLEM

■J
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Department of Industrial Engineering 
Ecole Polytechnique, Montréal (Canada)

80684

ABSTRACT:

The Quadratic Assignment Problem is a difficult combinatorial 
problem, special cases of which are the well-solved Linear Assignment 
Problem and the Time-Dependent Traveling Salesman Problem, which was 
recently studied by the authors. These two special cases allow the 
computation of bounds to be used in branch and bound algorithms for the 
general Quadratic Assignment Problem. Two distinct cost formulations 
are given for the general problem. They lead to different versions of 
the above approach and are illustrated with an example.
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INTRODUCTION

The Quadratic Assignment Problem is one of the most general and

difficult problem in Combinatorial Optimization. It differs from the

well-known Linear Assignment Problem in the addition of "quadratic"

which are incurred by the assignments in which activitycosts C
ijpq’

A^ is assigned to location simultaneously with activity A^ being 

assigned to location L^. 

problem was first described by Koopmans and Beckmann [l95?] , and inde­

pendently as the "Component Placement" or the "Backboard Wiring"

An important practical application of this

Problem (see, for instance, [Steinberg 196lJ ).

are products of a "traffic intensity" (or

(see [Los 1976J

for a recent survey and a comparison of existing algorithms).

In this formulation

the quadratic costs C
ijpq

"interaction") factor Q and a "distance factor D
ij

When

the distances are taken on a single dimension, this defines a gene­

ralized version of the "Optimal Linear Ordering" Problem (see [Àdolphson 

and Hu, 1973] ).

The general Quadratic Assignment Problem is a possible formula­

tion of sequencing and scheduling problems in which the costs are 

"sequence-dependent".

Salesman Problem, and one generalization called the Time Dependent Tra­

veling Salesman Problem defined by K. Fox [1973] and developed by the 

authors [1976 b] .

Some particular cases are the classical Traveling

In the first part of this paper, two distinct cost formulations are

given for the Quadratic Assignment Problem, and they lead to distinct
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versions of the two approaches to be developed. The first such approach

consists in approximating the Quadratic Assignment Problem by a related

It was described by Lawler [l963j for theLinear Assignment Problem.

first cost formulation. In the second part of the paper, this is recal-

K led and the use of the alternative cost formulation is also proposed. The

third part deals with the "Time Dependent Traveling Salesman" approach

to the Quadratic Assignment Problem, for both cost formulations. An exam­

ple is used to illustrate the four resulting methods. In the last part.

some specific topics for a branch and bound algorithm using this last

approach are discussed, in prospect of a possible computer implementation.
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1. Definition and cost formulations

The Quadratic Assignment Problem (QAP) is the problem of

assigning activities to locations, one activity per location, in

order to minimize a total cost function which is a sum of "linear"

costs and "quadratic" costs. The problem data are the number n of

activities (and locations), the linear costs a.
ip

incurred when activity is assigned to location and the qua-

= l,...,n) incurred when activity A^ 

is assigned to location L , and A. is assigned to L .
p i q

2
tical programming formulation involves the definition of n binary 

assuming the value one if A^ is assigned to 

zero otherwise . Thus QAP is stated as:

\
(i,p 1,...,n),

dratic costs C
ijpq

A mathema-

, andvariables xip’

£ I E I c
ijpq

- E Z a(1) minimize z(x) + ijpqXipXjqipXip
i P

(all p=l,.••,n)(2) subject to = 1
i ip 

x.
P IP

x. 
ip

L (all i=l,...,n)(3) = 1

= 0 or l(all i,p=l,...,n)(4)

(p^kj) and CAn immediate remark is that the entries C
ijqqüpq

(i-^j), need not be considered since the problem constraints imply

that the corresponding quadratic factor is always zero. Similarly

can be introduced into the linear terms athe entries C
ÜPP ip

I
I
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Consider the QAP with n = 4 and costs given by Table I.Example :

Theare given as the diagonal entries CThe linear costs a iipp*ip

cost of the assignment defined by

= 1X31 = X12 X43 X24

is the sum of the circled values, so z(n) = 32

l \
will be called the "symmetric" of C SinceThe entry C ijpq'

is incurred if and only if its symmetric is

jiqp

a quadratic cost C
ijpq

incurred, an equivalent formulation of the cost function (1) is

n n
= 1 Ii P aipXip + I E I

i j p=i q=p+i
(5) z(x) d. . x. x. 

ijpq ip jq

(all i,j,p,q with p<q)+ C- C. .
ijpq

(6) where d
jiqpijpq
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(j q)

11 21 31 41 12 22 32 42 13 23 33 43 14 24 34 44(i p)

0 3 34 0 32 0 2611

1 425 02 0 14121

© © 0 313 2 231

1133 3 12 0 2541

1 © 0 

2 3

1 32 212

3 13 1 1222 31

40 1 11 12 132 1 1

4 4 26 10 22 2 242

3 113 0 2 10 0 313

0 201 2 21 3 223 1

1 2 

1 © 0

312 1 1 20 133

©© 0 343 3 1

21110 10 11114

©© ©224 2 11 0 0

2134 0 2 0 4 3 1 0 3

41 1 10 244 1 1 1 1

for Example 1Table I Values of C
ijpq
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So a QAP can be defined with about half the data of the first

for Example 1 are given in Table IIformulation. The values of d
ijpq

14 24 34 44(i,P) 12 22 32 42 13 23 33 43

5 2 6 2 3 43 1411

2 3 54 6 15 3 221

2 ®©© 2 42 3531

41 12 32 3 4 5 6 1

3 © © 5 4

6 2

412

24 5 122

2 1 532 1 2 3

12 3 5 4 342

4 1213

3 223 1

2 4 533

2 © 143

for Example 1.Table II: Values of d
ijpq

The quadratic terms in the cost of the assignment defined by

(5) are circled and

z(n) = 8 + 24 = 32

The choice between the cost formulations (1) or (6) will lead to

distinct bounding schemes within each of the enumeration algorithms that

will be described.
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2. Lower bounds by Linear Assignment

The classical Linear Assignment Problem LAP is a well-solved

case of the Quadratic Assignment Problem in which all the quadratic

costs are zero. It is tempting to define a LAP for providing bounds

for the QAP; these will be used in developing an implicit enumeration

algorithm.

The "linear" entries b of the LAP relaxation of QAP are
ip

defined in order that, for each feasible assignment defined by a

vector x satisfying (2),(3), (4) the corresponding LAP cost

= Z- _y(x) . — b. x.
i p xp ip

must be a lower bound for the "real" cost z(x).

Using the cost formulation (1), Lawler ^1963j derived a value

obtained by solving a (n-1) X (n-1) Linear Assignment Problem:of b
ip

define
+ Vb. = a. 

ip IP ip

where is the optimum value of the objective function of

L I
j^i qyp

LAP minimize C. . u .
ijpq jqip

s. u all q ^ Psubject to = 1j^i jq

S u all j^i= 1
q^p jq

all j^i, all q^p= 0 or 1u
jq



8.

Illustration: in Example 1, the computation of requires the solu­

tion of the 3x3 LAP defined by the cost
q

13 4

matrix in Table III. An optimal assignment© 2 4

1 2 © 

0 @ 3

2

is defined by the circled entries and
3j

= 4 + 2 = 6b
124

Table III: Values of Clj2q

The computation of all the values b^ 

to the 4x4 matrix given in Table IV. The cost

leadsP
12 3 4

8 6 5 (?)

@553 

7 © 4 5

7 10 © 6

1
of the assignment defined by (5) is

2i
b31 + b12+ b43 + b24 " 19

3

4

Table IV: Values of b
ip

For deriving a lower bound from the "triangular" cost formulation (6), 

it is necessary to define the Incomplete Linear Assignment Problem:(ILAP) this is

a LAP in which the number m of activities is greater than the number n of

locations, and consequently n-m activities will not be assigned.

n

I
m

L(8) minimize a. x.
xp ipp=li=l

/
III

I(9) all p=l,...,nsubject to = 1x.
IPi=l

(ILAP) < n

i(10) all i=l,...,n4 1x.
ip

p=l

(ID = 0 or 1 all i,px.
IP
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in the above example, the computation of b'^Illustration:

requires the solution of the 3x2 ILAP

defined in Table V, an optimal solution

of which is defined by the circled entries:

so b ' = 4 + 7 = 11
12

The computation of all the b' gives the
ip

12 3 4
matrix pictured in Table VI.

4 ©14 11
The cost of the assignement defined by (5)

©531 + b' + bT» = 9 A
24is b'+ b 12 4331

@3211
which is a better lower bound than the value

© 410 10
19 given by the other approach.

Values of b'
ip

The optimal assignments in Tables IV and VI are defined by the cir­

cled entries, and they are the same. Yet

while+ b_ + b. „ + b_ . =14b2l 32 1443

+ b'+ b'._ + b’k ' 21

and the cost of this assignment in QAP is 17.

= 13
1432 43

The two methods provide lower bounds which are not necessarily the

The advantage of the second method is that it involves the solu-same.

tion of simpler, sometimes trivial, assignment problems and this could

result in a real saving in computer time.
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[1962] , ^1963] pointed out for the Koopmans-LawlerAs Gilmore

Beckmann problem, the solution of these assignment problems can be ob-

t1976] gives an effi-tained through a simple ranking technique. Los

cient way to perform the involved computation in a recursive and paral­

lel way. In that case, the computation of the 

the time of the computation of the b

will consume half

iP*
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Lower bounds by the Time-Dependent Traveling Salesman.3.

The bounds derived in the previous section may be refined by

considering not only the assignment of activity to location L^,

but the simultaneous assignment of A. to L and of A. to the next lo-
i P 3

The model called Time-Dependent Traveling Salesman Pre­

defined by, K. Fox ^1973 and developed by the authors

£l976 bj allows these manipulations.

3 t
Given about n transition costs (lengths) C_.

n and i^j; for t=0, with i=0 and j=l,..,n;

for t=n, j=n+l and i=l,..,n), the problem is to find a permutation w

cation LP+1' 

blem (TDTSP),

(defined for
ij

t=l,...,n-l and i,j=l,. • 9

of the integers l,..,n which minimizes the total length:

C° + C^" +
o,w(l) + w(l) ,w(2) + •

n-1 + c11c(w) = . . + C
w(n-l),w(n) w(n),n+l

This problem may be pictured by defining a multipartite network

with origin (0), n "phases" defined by the values t = l,..,n and each

containing n nodes (i,t), and the end node (n+1). The arcs

(0,(i,l),((i,t),(j,t+l)) and ((i,n), n+1) are defined if the correspon­

ding lengths cu , „n 
and C. are defined. A technique, based on

i ,n+l

shortest paths and the introduction of penalties, is described in

Picard-Queyranne 1976 b and provides good bounds on the cost of the

optimum permutation. The reader is referred to the above reference

for a description of this technique, which is used to define a branch

and bound algorithm for the exact solution of TDTSP.

We will now introduce two TDTSP's associated with the two

cost formulations of the QAD.

I
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The transition cost 

of the assignment of activity to location L^, when is assigned

When t=n, the cost C?

will be an evaluation of the contribution
ij

is defined onlyto the next location Lt+1' i,n+l

by considering the assignment of A to L , and so it is equivalent
i n

to the value b. (or b'^) defined in the previous section. The first

will be set to zero, and the diagonal terms

in

transition costs C°

C^.
11

o,i

are not defined.

With the first cost formulation (1), the length is derived
ij

from the expression of b^t by adding a constraint forcing the activity

A. to be assigned to location

+ ufc. (for t=l,...,n-l)+ C= ait i, j ,t,t, + 1 ij

where is the optimal value of the objective function of the

(n-2)x(n-2) LAP, denoted by LAP^ :

L IK3) minimize C u 
k^i,j q^t,t+l iktq kq

£ all q^t,t+l= 1subject
k^i,j kq<

L all k^i,j= 1q^t,t,+l \q

all q^t,t+l, all k^i,ju. = 0 or 1
xq

2
in the illustrative example, is computed by solving

the LAP defined Table VII,

?. = 4 + 0 + 2 = 6 
14

The resulting

Illustration:

q

1 4
so C

2 © 4

q 3 1 ©
are given in Table VIII.

ij

2
LAPTable VII:

14
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ji n+1j j

12 3 4 12 3 412 3 4 512 3 4

7 10 6 7 7 5 50 0 0 0 0 11 9 81

8 6 5 5 62 6 8 35 3
i

9 4 4 6 510 7 5 5 33

9 7 11 11 10 14 4 6 3 64

t = 4t = 0 t = 2 t = 3t = 1

Table VIII: Values of Ct
ij

The path length corresponding to the assignment defined by (5), that

is, by the permutation 3-1-4-2, is

2 3
. . + CT 41C = 25+ C + C+ C

31 14 2542

The shortest path in the above network is defined by 2-3-4-3, with

activity 3 appearing twice and activity 1 not at all. It is a simple

matter to show, for instance by introducing penalties, that the optimum

path which is also a permutation is 2-3-4-1, with length 17, and this is

exactly the cost of the corresponding assignment, so QAP is solved.

The second associated TDTSP is derived from the cost formulation (5)

Defineand the expression for b' it’

+ wfc for t = 1,..,n-2
i * J

where W*". is the optimal value of the (n-2) x (n-t-1) ILAP:

+ d= ait i,j,t,t+l ij

ij
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I It
k^i,j q=t+2 dijtq \qminimizelLAPi:j

l all q=t+2,..,n= 1subject k^i, j \q
q^1:+2 Ukq all k^i,j< 1

= 0 or 1 all q=t+2,...,n 

all k^i,j

u
kq

n-ld + da
i ,n-l i,j>n-l,nij

nand di,n+l ai,n

2
Illustration: in the illustrative example, the computation of

requires the solution of a (trivial)

2x1 ILAP defined in Table IXq

2
=4+2+5= 11 

14

The resulting values of d^ 

Table X.

so d4

are given in62
ijk

©3

2
Table IX: ILAP

14

12 3 4 12 3 4 12 3 412 3 4 5

27 4 50 0 0 0 15 15 14 12 11 110 1

5 48 9 5 3 12 10 7 10

214 11 13 3 5 5 3 5 53

42 3 14 10 10 16 10 11 13

t = 0 t = 2 t = 3 t = 4t = 1

values of d^Table X:
ij
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The length of the illustrative assignment defined by (5) is 

+ d31 + dU + d42 + d25 ' 29<3

The shortest path is defined by the sequence 2-3-4-3 with length

15, and the optimal permutation is 2-3-4-1 (the same as previously) with

In solving the problem with thislength 16, while its cost in QAP is 17.

bounding approach, some enumeration would be necessary to check that

there is no other assignment with cost C* such that 16 ^ C* < 17
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4. Branch and bound structure for the TDTSP approach:

The Branch and Bound structure for handling the QAP via the

TDTSP approach is very similar to the one described by the authors

^1976 bj
for the standard TDTSP. The reader is referred to this paper

for its description. Below, only topics specific to the QAP will be

discussed.

At each node in the enumeration tree,it is necessary to recom­

pute the multipartite network in order to obtain tigher bounds. When

a permutation is found as a shortest path, it is necessary to compute

the corresponding cost in QAP. This assignment could possibly become

the best known solution. If the cost and the length are equal, then

backtracking occurs; otherwise, the length being less than the cost,

it is necessary to continue branching in order to reduce this gap. The

"dominance test" described for the TDTSP cannot be applied to the QAP,

since the cost corresponding to the activities assigned to locations

L^depends not only on the set of activities to be assi-LP+1, Lp+2,..

gned to the P first locations, but also on their mutual assignments.
* 9

While this dominance test can be applied for certain particular cases

of the QAP, such as the Traveling Salesman Problem, the TDTSP or the

Linear Ordering Problem, this is not the case for the Koopmans-Beckmann

It is likely that this restriction willProblem or the general QAP.

make the enumeration more extensive in these cases.

Some remarks pertain to the arbitrary numbering of the locations.

The branching being performed on the last location assignments, it appears
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advisable to select as the last one, a location whose effect is

significant for the total cost. Some empirical measures such as the total

weight or the variance of the weights associated with each location

However, a similar problemcould lead to more efficient algorithms.

(selection of the origin node) occured in a similar approach to the

Traveling Salesman Problem, but no significant result was found (See 

[Picard and Queyranne 1975 and 1976 a] ).

When the second bounding scheme is used, the costs appear to

The branching being guidedusually decrease as t goes from 1 to n.

by the length of the paths ending in each of the last phase nodes, it

seems advisable to perform the shortest paths iterations in reverse

order, that is from the right to the left, and to branch on the first

location assignment. This should lead to higher implicit bounds and

to earlier fathomings.

A final remark concerns the computational aspect of the defi-
3

Each one of the about n

or requires the solution of an assignment problem,

exact algorithms are available for solving an nxm LAP in

nition of the related TDTSP. entries

(c5 Since
ij

3
0(n ) time,

it appears that the construction of the multipartite network will re­

quire O(n^) time. This is very time-consuming, but advantage can be

taken of the special structure of the LAP involved. Consider the pro­

blems LAP^. and LAPt 
ij

k in LAP^j > and to j in LAP^

to the second problem from a solution to the first one. Since only

: they differ only in the row corresponding toik'

So, it is possible to derive a solution
ik"

some costs are modified, a primal or a primal-dual algorithm for LAP
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should easily perform this post-optimization. The Parametric Analysis

introduced by Srinivasan and Thompson 1972 for the Transportation Pro­

blem could also prove useful in providing faster bounds.

2
It appears that there are n distinct problems, each one re-

t
This is also true for the ILAP,.

ij

problems (but note that the computation of d^ becomes very easy for t 

close to n, and trivial for t > n-2).

quiring (n-1) post-optimizations.

For the Koopmans-Beckmann problem, the above reduction takes

(or d!’.) for the successive valuesthe computation ofa neat form:
ijij

of j involves only one exchange per new value of j, if the j's are intro­

duced according to the order of non-decreasing values of their interac­

tion Q.. with i. The recursive and parallel procedure given by Los
ij

£l976jwill again allow efficient computation.
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