POLYTECHNIQUE

PCLYPUBLIE

A [
UNIVERSITE)

Polytechnique Montréal D'INGENIERIE

Titre: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge
Title: Devices

Auteurs: Nizar El Zarif, Mohammadhossein Askari Hemmat, Théo Dupuis,
Authors: Jean Pierre David, & Yvon Savaria

Date: 2024
Type: Article de revue / Article

Référence: El Zarif, N., Hemmat, M. A., Dupuis, T., David, J. P., & Savaria, Y. (2024). Polara-
... Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices. IEEE Access,
Citation: 13, 171836-171852. https://doi.org/10.1109/access.2024.3498462

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) N
PolyPublie URL: https://publications.polymtl.ca/60315

. Version officielle de I'éditeur / Published version

Version: Révisé par les pairs / Refereed

Conditions d’utilisation

Terms of Use: CC BY-NC-ND

Document publié chez I’éditeur officiel
Document issued by the official publisher

Titre de la revue: \ope 1 o5 (vol. 12)
Journal Title:

Maison d’édition:
Publisher:

URL officiel: .
Official URL: https://doi.org/10.1109/access.2024.3498462

. Z . | ©2024 The Authors. This work is licensed under a Creative Commons Attribution-
Mention Ilega.le'. NonCommercial-NoDerivatives 4.0 License. For more information, see
Legal notice: phitps.//creativecommons.org/licenses/by-nc-nd/4.0/

Institute of Electrical and Electronics Engineers

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://doi.org/10.1109/access.2024.3498462
https://publications.polymtl.ca/60315/
https://doi.org/10.1109/access.2024.3498462

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 October 2024, accepted 31 October 2024, date of publication 14 November 2024, date of current version 26 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3498462

==l APPLIED RESEARCH

Polara-Keras2c: Supporting Vectorized Al Models
on RISC-V Edge Devices

NIZAR EL ZARIF~, MOHAMMADHOSSEIN ASKARI HEMMAT, THEO DUPUIS,
JEAN-PIERRE DAVID ', AND YVON SAVARIA™, (Life Fellow, IEEE)

Department of Electrical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada

Corresponding author: Nizar El Zarif (nizar.el-zarif @polymtl.ca)

This work was supported by CMC.

ABSTRACT The rise of edge computing has introduced unique challenges for deploying efficient Al
solutions in resource-limited environments. While traditional Al frameworks are powerful, they often fall
short in meeting the requirements of edge computing, such as low latency, constrained computational
power, and energy efficiency. This paper presents Polara-Keras2c, an optimized evolution of Keras2c
designed specifically for edge computing. Polara-Keras2c enhances compatibility with bare-metal systems,
incorporates RISC-V vector extension optimization, and is customized for the Polara architecture.
By converting pre-trained Keras models into optimized C code for bare-metal execution on edge devices,
Polara-Keras2c enables advanced Al models to operate efficiently in resource-constrained environments.
The framework supports fixed-point arithmetic, achieving a minimal accuracy impact of only 0.03% when
tested on the MNIST dataset, and offers a streamlined approach for rapid prototyping. Experimental results
reveal that Polara-Keras2c achieves up to 4.81 times faster convolution processing with a 64 x 64 input
size compared to scalar processing, significantly enhancing computational efficiency and reducing energy
consumption. These capabilities position Polara-Keras2c as a transformative tool in real-time, energy-
efficient Al processing for edge devices, pushing forward the evolution of edge computing.

INDEX TERMS Vector processor, artificial intelligence, bare metal, real-time, edge computing, embedded

systems.
I. INTRODUCTION of Al has been characterized by significant advances in
Artificial Intelligence (Al) has witnessed remarkable expan- neural network techniques and architectures for various
sion, marked by significant advances in neural network applications [2]. This includes developing gated recurrent
techniques and architectures for diverse applications. How- units (GRUs) [3], which have become a mainstay in natural
ever, integrating Al into edge computing, characterized by language processing tasks due to their efficiency in handling
data processing close to the data source, presents unique sequential data like text and speech. Another innovation is
challenges. Combining Al with edge computing leads to variational autoencoders (VAEs) [4], which have shown great
intelligent systems capable of real-time decision-making, promise in generative tasks such as image generation and

but they often grapple with hardware limitations, software anomaly detection, offering a novel way of learning complex
incompatibilities, and energy constraints. Polara-Keras2c, the data distributions. Lastly, generative adversarial networks
focus of this paper, addresses these challenges by optimizing (GANSs) [5] have revolutionized the field with their ability to
Al model deployment for resource-constrained edge devices. generate highly realistic images and videos, finding applica-
A key inflection point of Al growth was the unveiling tions in areas ranging from art creation to data augmentation
of Alexnet [1], a moment that marked a significant leap in and style transfer. Each architectural innovation has opened
the capabilities of neural networks. Since then, the evolution new possibilities and applications, significantly expanding
the scope and impact of Al technologies.
The associate editor coordinating the review of this manuscript and Edge computing, characterized by data processing close
approving it for publication was Mario Donato Marino . to the source rather than on distant cloud servers, has only
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
171836 P & Y VOLUME 12, 2024

https://orcid.org/0000-0001-6303-6201
https://orcid.org/0000-0002-7707-0483
https://orcid.org/0000-0002-3404-9959
https://orcid.org/0000-0001-8336-9150

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

intensified Al adoption. Intelligent systems combining Al
with edge computing are effective for real-time decision-
making using local data in which latency, bandwidth,
and data privacy are paramount, such as autonomous
vehicles, urban planning, and healthcare. The proliferation
of Al in edge computing stems from hardware, software,
and algorithmic advancements, facilitating optimal data
processing even on devices with stringent resource limits.
This convergence promises transformative applications
across industry, agriculture, energy, housing, healthcare, and
environmental monitoring [6].

However, using Al in microcontroller-based systems is
not without challenges. Constrained computing and memory
capacities limit the complexity of Al solutions these micro-
controllers can host. The field also grapples with standard-
ization issues, as microcontrollers might employ disparate
Al frameworks or languages, complicating cross-device
model deployment. Power consumption, vital for devices
like wearables and remote sensors, is another concern, given
Al’s intensive processing demands. Past solutions, such as
Quantization, pruning, distillation, and binarization, aimed
to facilitate Al deployment issues on microcontrollers [7].
Yet, the problem of model generalization remains, as models
trained on one dataset might falter on another due to
concealed biases in diverse data collection methodologies [8].

A. MOTIVATION AND CONTRIBUTIONS
The shift towards edge computing and processing data near
its source brings benefits like reduced latency, enhanced
reliability, and improved privacy. However, deploying Al
solutions on edge devices poses significant challenges
due to processing power, memory, and energy constraints.
Often designed for more robust environments, traditional
Al frameworks struggle in these settings. Polara-Keras2c
emerges as a solution, streamlining the deployment of Al
models on edge devices by leveraging the hardware’s full
capabilities without an Operating System (OS) overhead.
It is optimized for various applications and devices, making
it a versatile and powerful tool for edge AI. Notably,
Polara-Keras2c offers distinct advantages over traditional
machine-learning environments by prioritizing bare metal
support, optimizing for RISC-V vector extensions, and
enhancing rapid prototyping, especially when integrated
with custom hardware architectures like those proposed in
the Polara project [9]. Polara represents a code name for
an advanced research initiative focused on enhancing the
open-source Ara vector processor, as outlined in [10]. This
project aims to integrate bit-serial and other advanced vector
instructions into the processor. Notable advances in this
domain are evident in projects like Quark [11] and Sparq [12].
Both Quark and Sparq eschew floating-point vector units
to conserve area. Moreover, ongoing developments include
complete multi-core versions of the core, equipped with fully
enabled floating-point vector capabilities.

The growing demand for real-time Al applications in
healthcare, autonomous vehicles, and industrial automation

VOLUME 12, 2024

sectors has made edge computing increasingly important.
The ability to process data locally and make immediate
decisions is invaluable in these sectors. However, existing
Al frameworks are typically designed for environments with
abundant computing resources and fail to account for the
unique constraints of edge devices. Recognizing this gap,
Polara-Keras2c was developed to bring the power of Al to
edge computing. The framework supports deploying Al mod-
els in resource-constrained environments and optimizes their
performance by leveraging the unique features of the RISC-
V architecture. Its capability to run Al models on bare metal
systems without the overhead of an OS represents a signifi-
cant advancement in edge computing. Furthermore, Polara-
Keras2c’s design facilitates rapid prototyping and integration
with custom hardware platforms, making it an adaptable and
powerful tool for a wide range of edge Al applications.

Al frameworks and benchmarks tailored for bare metal
operation could circumvent these challenges [13]. By elim-
inating the need for an OS, such a framework can harness the
hardware’s full capabilities, resulting in superior performance
and energy efficiency. Furthermore, its lightweight and
adaptable nature can be optimized for various applications
and devices.

Conversely, Keras2c is a proposed framework for convert-
ing Keras deep learning models into simple static C code
[14]. Tt includes an assortment of library files and supports a
range of vital layers, including dense, convolution, recurrent,
pooling, normalization, and activation layers. More detailed
information about this framework will be provided in the
background section.

While Keras2c provides a rich set of tools to deploy Al
for several types of microcontrollers, it lacks support for
vector code and fixed-point implementation. It uses a few
high-level functions incompatible with the Polara runtime
environment. Thus, the present paper introduces ‘Polara-
Keras2c,” a derivative of Keras2c, with improvements on the
existing framework to address these limitations.

Vector processing, or vector extensions, enables processors
to conduct multiple calculations concurrently, a feature
beneficial for data-intensive tasks like scientific simulations
and machine learning. This motivated the development of
processors supporting vector extensions, such as the RISC-V
with Vector Extension, which offers a potent alternative to
packed SIMD and GPUs. Unfortunately, at this stage of
development, implementations of the RISC-V with vector
extensions such as ARA [10] lack full Linux support. Indeed,
ARA lacks a memory management unit that is needed to
support vector code execution on operating systems like
Linux.

Indeed, traditional operating systems utilize virtual mem-
ory, providing each process with a unique virtual address
space and simplifying application memory access while
introducing latency and overheads. Notably, the translation
look-aside buffer (TLB) can contribute up to 27% of the
energy consumption, while actual computation might use less
than 1% for ALU-centric instructions [15]. In bare metal

171837

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

environments, applications directly access physical memory,
bypassing additional translations, improving memory access
speed and efficiency, and reducing overheads, thus enhancing
execution speed and lowering energy consumption.

Polara-keras2c enhances Keras2c by introducing several
key features. First, it supports conversion between fixed-point
and floating-point implementation layers, allowing for a
flexible approach to model accuracy and computational
efficiency - a feature crucial for edge devices with limited
computing power. This capability is particularly significant
as it enables the framework to adapt to various precision
requirements of different Al models, making it uniquely
versatile.

Polara-Keras2c also supports fixed-point computations
across various layers, such as dense convolutions, acti-
vation functions, and other basic operations essential for
efficient computing on microcontrollers and other resource-
constrained devices. This optimization is significant because
it reduces the computational complexity and power con-
sumption, critical factors in edge computing environments.
Lastly, the framework allows the generated code to run on
bare metal environments seamlessly and supports memory
rearrangement and various RISC-V vector kernels. This
feature is original and significant, as it ensures that Polara-
Keras2c can operate in the most resource-constrained envi-
ronments while fully leveraging the hardware capabilities
of RISC-V-based systems. These enhancements in code
generation and library files ensure that Polara-Keras2c
achieves its goal of efficiently running fixed-point and
vector code on Ara, demonstrating substantial advances
over existing frameworks. Such advances are original and
beneficial when deploying Al models in edge computing
scenarios, where resources are limited, and efficiency is
paramount.

Polara-Keras2c is designed to fully harness the RISC-V
vector extension, which has not been thoroughly integrated
into Linux. By tapping into this feature, our bare metal
system offers improved performance and efficiency for
Al operations, presenting a more flexible and optimized
performance than what a general-purpose OS might provide.

Polara-Keras2c prioritizes swift prototyping, more rapidly
accommodating newer instructions and features than conven-
tional OS. This rapidity is vital, especially as our framework
is tailored to sync well with Polara.

Our framework offers three main enhancements over
traditional machine learning environments like Tensorflow or
PyTorch:

« Bare Metal support: It uses direct physical memory
access to reduce memory overhead and can support a
broader range of microcontrollers.

o RISC-V Vector Optimization: It leverages the full
potential of RISC-V vector extensions for enhanced Al
performance.

« Enhanced Rapid Prototyping: It supports quickly
adopting new features and instructions while integrating
well with custom hardware.

171838

The paper unfolds as follows: Section II delves into the
backdrop and prior research in the field. The intricacies of the
Polara system on a chip (SoC) are unraveled in Section III.
Our software blueprint and performance intricacies are
elaborated upon in Section IV, followed by an exploration
of our testing framework and its outcomes in Section V.
The paper culminates with a discussion in Section VI and
then a summary and an outlook on prospective endeavors in
Section VIIL.

Il. BACKGROUND

Deploying Al functionalities on edge devices, particularly
microcontrollers, presents unique challenges, such as limited
computational power, constrained memory capacity, and
strict energy consumption requirements. Although no univer-
sal solution exists for Al execution on microcontrollers [16],
several strategies exist to address these challenges. Tech-
niques like quantization and quantization-aware training
ensure Al models operate within predefined time and energy
constraints. For instance, Hosseini’s QS-NAS [17] explores
optimal quantization and scaling factors for low-bit-width
neural networks, focusing on accuracy and energy efficiency
on hardware such as FPGAs.

A. THE NEED TO ACCELERATE Al

There are multiple ways to accelerate Al workload on
modern hardware. These often exploit SIMD processing
found in array processors, vector processors, and GPUs.
SIMD processors are specialized computing units designed
to handle multiple data elements concurrently, making them
exceptionally apt for vector, matrix, and tensor arithmetic
tasks ideal for Al inference. Historically, they have been
pivotal in scientific and engineering endeavors that grapple
with vast datasets, such as climate simulations, aerospace
modeling, and high-resolution image processing [18]. The
realm of Artificial Intelligence (AI), with its inherently
parallelizable computations, has reinvigorated interest in
Vector processors.

At the core of many Al operations are neural networks,
multi-layered constructs that process input data through
a series of mathematical operations. The Fused Multiply
Add (FMA) operation is a notable component of deep
learning computations. The efficiency of this operation often
determines the performance of neural networks, and the
Ara processor’s capability to handle FMA across extensive
vectors of diverse unit sizes (e.g., 8, 16, 32-bit) makes it
pertinent for edge Al tasks [19].

The growth in the complexity of Al models, as evidenced
by the parameter expansion from GPT to GPT-3 [20],
[21] which has grown from 117 million to 175 billion,
and the anticipated growth to over one trillion in GPT-4
[22], necessitates computational units capable of handling
large-scale computations efficiently with language models
like ChatGPT which bodes well with vector acceleration
on large servers. Some recent developments in smaller

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

language models can also be deployed on systems with less
computational resources like LLaMA [23].

Moreover, vector processors’ energy efficiency is crucial
for Al applications on energy-constrained devices. By opti-
mizing computational efficiency and minimizing energy
usage, vector processors are pivotal for battery-driven Al
implementations.

B. THE RISC-V VECTOR EXTENSION

With its open-source and modular attributes, the RISC-V
architecture has quickly emerged as a significant player
in modern computing design. A noteworthy feature of
this architecture is the RISC-V vector extension [24],
which introduces specialized instructions tailored for vector
operations. This set of instructions amplifies the potential of
RISC-V in executing data-heavy applications like machine
learning, image analytics, and computational simulations.

The vector extension enriches the core RISC-V instruction
set by enabling vector data processing. Facilitating simulta-
neous operations on diverse data elements dramatically accel-
erates computations, especially when handling expansive
datasets. A unique flexibility aspect is the support for varying
vector lengths, permitting tailored optimization depending on
application demands.

In Artificial Intelligence (AI), the RISC-V vector exten-
sion markedly elevates processing capabilities, which is
particularly beneficial for the parallel processing demands
of Al computations. This enhancement is crucial for effi-
ciently performing core neural network functions such as
matrix operations, convolutions, and activations, leading
to accelerated computational results and significant energy
savings. Such improvements are essential for Al systems
with stringent resource constraints. The effectiveness of
vector processing in boosting both performance and energy
efficiency is well-documented in studies like [25], [26],
and [27], showcasing the vector extension’s substantial
impact across various benchmarks.

C. BARE METAL Al RUNTIMES: AN OVERVIEW

Edge devices, particularly microcontrollers, are at the
forefront of a technological revolution, enabling Al func-
tionalities closer to data sources. However, deploying such
functionalities has unique challenges, historical solutions,
and evolving techniques.

Al applications on edge devices and microcontrollers
have predominantly utilized ARM Cortex-M series micro-
controllers. Notable examples include SAMDS51, Appolo3,
Spresense, XCORE.ai, and MAX78000 [28]. However, the
adoption of RISC-V architecture is rising in this domain.
Three primary frameworks are in focus: STM X-Cube-Al,
TensorFlow Lite for microcontrollers (TFLite Micro) [29],
and keras2c.

Developed by STMicroelectronics, STM X-Cube-Al pro-
vides an integrated solution for deploying Al on STM32
microcontrollers. Its distinguishing features include a com-

VOLUME 12, 2024

prehensive solution incorporating pre-trained models, sup-
portive libraries for leading AI frameworks, and a code
generator that translates trained models into deployable C
code. It is optimized for performance, specifically tailored
for the STM32 microcontroller series, and offers easy
integration, compatible with major Al frameworks. Its
primary limitation is its exclusivity to STM32 devices.
Notable research leveraging X-Cube-Al includes [30], which
assessed the tool’s efficiency, and [31], which employed it for
edge learning on STM32 Nucleo boards.

TFLite Micro [REF] is renowned for its minimal memory
footprint, tailored for environments with resource constraints
[29]. It is portable and flexible across a range of micro-
controllers, and it features optimized kernels designed for
efficient computation with support for model quantization.
However, it has limited operational support for specific
neural network models and it is incompatible with many
microcontrollers, especially most RISC-V processors.

Keras2c, a specialized framework, plays a critical role
in converting Python-based Keras models into static C
code, facilitating the deployment of neural networks in
environments where Python is impractical, such as embedded
systems and low-resource hardware, a scenario exemplified
by Polara’s requirements. This framework provides com-
prehensive support for a variety of layers, including Core
Layers (like Dense, Dropout, Activation), Convolutional
Layers (Conv1D, Conv2D), and Pooling Layers (MaxPool-
ing, AveragePooling). Additionally, it handles Recurrent
Layers (LSTM, GRU), crucial for time-series and sequential
data, along with Embedding, Merging, Advanced Activa-
tion, Normalization, Noise removal layers, and Wrapper
Layers. This extensive support ensures that Keras2c can
replicate various functionalities in Keras models. One of
the primary benefits of Keras2c is its ability to enable the
deployment of complex neural networks in C programming-
based environments, especially advantageous in embedded or
resource-constrained contexts where the overhead of Python
is a limitation. The framework potentially offers improved
execution speed and reduced memory usage compared to
Python implementations. In terms of operation, Keras2c
translates the high-level functionalities of a Keras model into
detailed C programming constructs. This intricate process
involves mapping each layer and its parameters from the
Keras model to equivalent C components, ensuring that the
original model’s computational flow and data structures are
precisely maintained in the C code version.

Other frameworks, such as MicroAl [32], focus on neural
network quantization for low-power 32-bit microcontrollers.
TinyIREE, another example, is a compiler and runtime
designed for bare metal CPUs and microcontrollers. Nonethe-
less, its compatibility with RISC-V processors remains
limited [33].

Various strategies have emerged to enhance ML workloads
on CPUs. Some integrate Nvidia’s NVDLA accelerator for
distinct ML operations in Linux [34], [35]. The max78000
microcontroller is noteworthy for its native Al accelerator,

171839

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

showcasing substantial performance improvements [36].
Unique methods like blending AI, mathematical models, and
firmware for phased array controls are elaborated in [37].
Furthermore, a keyword spotting algorithm on Max78000
highlighted a 40-fold energy efficiency boost using its
convolutional neural networks (CNN) accelerator in contrast
to its primary processor [38].

The field that focuses on optimization for embedded
systems microcontrollers and other embedded systems is
known as TinyML. TinyML is enabled by various techniques
such as hyperdimensional computing, swapping, attention
condensers, constrained neural architecture search, model
compression, quantization, once-for-all network, TinyML
benchmark, on-device accelerators, and in-processor learning
(federated learning) [39].

D. EMBEDDED PLATFORMS FOR Al

Embedded AI platforms are revolutionizing how Al is
integrated into compact, energy-efficient devices. This sub-
section delves into some of the leading platforms in the
market, showcasing their distinct features, capabilities, and
roles in advancing embedded Al technology.

SAMDS51 [40] is a general-purpose Cortex-M4 micro-
controller manufactured by Microchip. It has IMB of
flash memory and 256 kB of RAM and can operate at a
maximum frequency of 120MHz. This microcontroller is
a representative example of a widely used commercially
available family of microcontrollers on the market. Motivated
by its widespread acceptance and compatibility with CMSIS-
NN [41], TensorFlow Lite for Microcontrollers was used to
port various neural network models to the selected hardware
platforms.

Apollo3 [42] is an ultra-low-power microcontroller devel-
oped by Ambiq. Distinctively, it incorporates the propri-
etary Subthreshold Power Optimized Technology (SPOT) to
enhance energy efficiency. Its specifications include 1MB of
flash memory and 384 kB of RAM, with a top 96MHz clock
frequency. This device is compatible with TensorFlow for
Microcontrollers.

Spresense [43] derived from Sony’s CXD5602 chip [44]
offers a unique architecture. It encompasses a 6-core Cortex-
M4, complemented by a single-core Cortex-MO that operates
at a peak frequency of 156MHz. The Cortex-MO is primarily
responsible for system management, utilizing power gating
techniques on the Cortex-M4 cores to conserve energy. For
neural network computations, 1.5MB SRAM is allocated
for weights and activations, whereas another 256 kB system
SRAM is present for other tasks. The platform runs on the
NuttX real-time operating system (RTOS) and establishes
communication in a star topology between its 6 Cortex-M4
cores.

The PULP (Parallel Ultra Low Power) processor [45],
a joint initiative between the University of Bologna and
ETH Ziirich, has a commercial counterpart called GAP8
[46] that was developed by Greenwave Technologies. This

171840

9-core processor boasts a maximum frequency of 250MHz
for the fabric controller. Notably, there is a dedicated CNN
accelerator within the same interconnect. Neural networks
intended for this processor are trained using TensorFlow and
processed through the Greenwave Technologies’ AutoTiler
tool.

xCORE.ai [47], an innovation by XMOS, is designed
for high-throughput edge computing. The chip comprises
two distinctive tiles endowed with IMB SRAM, a Vector
Processing Unit (VPU), and a 5-stage pipeline that powers
eight logical cores. It can reach up to a frequency of 700MHz.
The VPU is adept at managing deep tensors, especially those
that possess depth multiples of 32. Neural networks for
this chip are primarily trained using TensorFlow and later
optimized with XMOS’s proprietary tools.

MAXT78000 [48] presents a dual-core architecture founded
on the Cortex-M4 and RISC-V. That platform comprises
a robust 64-core CNN accelerator engine that operates at
a top frequency of SOMHz as a peripheral to the primary
cores. Distinct memory banks are explicitly provisioned for
storing neural network weights and biases. Such networks
are sculpted on PyTorch, harnessing the custom operations
provided by Maxim Integrated.

SSID

| £ B
| = B
| £ B
L = B

D Results

FIGURE 1. Illustration of SIMD operations: processors execute multiple
operations simultaneously using identical instructions but on distinct
data, leading to a performance enhancement compared to SSID.

Instructions Data

Ill. POLARA

Ara is a distinct RISC-V processor that integrates the
CVAG6 component, formerly identified as Ariane with a
vector engine [49]. The CVAG6 is characterized by its 64-
bit, 6-stage processing capability with in-order decoding and
out-of-order execution. Furthermore, it supports multiply,
atomic, and compression extensions. Ara’s vector processor
is currently designed to function with CVAG to execute vector
codes. Configurations of Ara range from 2 to 16 lanes,
supporting vector instructions that can operate on data up to
4096 bits wide. These configurations result in a processor
with impressive throughput metrics.

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

Off-Chip NoC

A
(Tile 1 \ [Tile 2 \

CVAG6 ‘ CVAG6
+ L2 L2 | +
ARA ‘ ARA

N N I

L15 P-Mesh P-Mesh s
o Routers Routers o

P ——) [N S — Y
ﬁﬂ f? PLIC

P-Mesh P-Mesh

‘ — "_' Routers Routers ‘_.{ il l

11 PO T
CVA6 | CVA6
+ 2 2 | +

ARA ‘ ARA
FIGURE 2. System Architecture Overview. The architecture comprises four
interconnected tiles, each containing a CVA6 + ARA processing core,
L1.5 cache, L2 cache, and P-Mesh routers for inter-tile communication.
Tiles are linked to an off-chip Network-on-Chip (NoC) and JTAG + PLIC for
debugging and interrupt handling, respectively. The P-Mesh routers

manage data traffic within and between tiles, providing scalable,
low-latency communication.

Polara as shown in Figure 2, which our work aims to
support efficiently, is based on the CVA6-Ara combination.
Its efficacy and performance derive from this combination
and the SIMD (Single Instruction, Multiple Data) instructions
that it offers. Polara integrates a quad-core Ara connected via
OpenPiton for cache coherency. In the given architecture, the
L1 cache is bifurcated: data (8 kB) and instructions (/6 kB).
An intermediate L1.5 cache is 8 kB per core, followed by
an L2 cache of 64 kB. The Vector Register File (VRF) has
a capacity of 2 kB, subdivided into lanes, each 572 B.

SIMD represents a parallel processing approach wherein
one instruction operates on multiple data points in unison
instead of one data element per instruction, thus providing
better processing throughput as seen in Figure 1. Its
application in Al accelerates data processing, especially
for extensive datasets, optimizing algorithmic efficiency.
Prominent utilization areas include matrix computational
methods and CNNs. With SIMD, concurrent data point
processing reduces the time required to compute such
operations, from matrix dot products to CNN convolution
optimization.

To understand how Polara operates, we must first under-
stand the difference between array and vector processors.
Array processors such as x86 architectures with SIMD exten-
sions like Intel’s AVX follow a packed-SIMD architecture,
where multiple processing elements (PE) operate on data
simultaneously, paced by a single control unit, with a fixed
vector length determined by the number of PEs. Expanding
vector length requires new ISA extensions, with examples
including Intel’s progression from SSE (128-bit registers) to
AVX and AVX-512 (256 and 512-bit registers, respectively),
and ARM’s Neon (128-bit registers) [10].

Vector processors implement time-multiplexed vector-
SIMD instructions, allowing dynamic configuration of vector

VOLUME 12, 2024

Array processor Vector processor

PEO| |PE1||PE2| |PE3 LD | |ADD| MUL| | ST

Same operation executed
at the same time :

LDO LD1 LD2 |LD3 LDO

ADO AD1 AD2 |AD3 LD1 ADO Same

operation
executed at
the

Time MUO MU1 MU2 MU3 LD2 AD1 MUQ samespace

STO ST1 ST2 |ST3 LD3 AD2 MU1 |STO

Different different operation]
Instruction Stream operation | executed at the same time

at the H
LD VR<AB:0] e | AD3 MU2 |ST1
ADD VR <« VR,2 space !
MUL VR «VR,2 MU3 |ST2
ST A[3:0] < VR :

ST3
Space Space

FIGURE 3. Comparison of scalar or array processor with vector processor:
the former necessitates full data loading before execution initiation,
whereas the latter facilitates execution on the vector in parallel with data
loading, reducing execution delays.

lengths without the constraints of fixed-size PEs. This archi-
tecture is more energy-efficient for long vector operations
since it does not require subdividing data into smaller chunks.
It can maintain constant control signals throughout the
computation, reducing instruction fetch costs [10].

A notable distinction exists between executing traditional
CPU vector instructions such as Intel AVX [50] and RISC-V
vector instructions [24] and [51]. Figure 3 depicts a typical
array processor executing AVX instructions that mandates
sequential register loading for every instruction, followed
by simultaneous vector element execution. In contrast, the
RISC-V requires an initial vector load, which is succeeded
by program execution. An advantage of the RISC-V vector is
its support for variable-length vector instructions, optimizing
resource allocation for datasets of variable dimensions.
Utilizing vector instructions instead of fixed SIMD ones, such
as AVX, potentially leads to power and area conservation,
given the RISC-V vector’s reduced requirements for loading
compared to AVX [52]. The inherent flexibility of the
RISC-V vector also suggests that it might dynamically
adapt to available logic units without necessitating code
modifications for hardware adjustments.

Polara leverages the OpenPiton framework [53], developed
by Princeton University, to implement a multi-core version
of the Ara processor. OpenPiton is known for its scalability
and architectural versatility, supporting a broad range of core
counts from single to many-core configurations. It provides
a robust platform for SoC design, offering essential tools and
scripts for both ASIC and FPGA implementations.

In Polara, the OpenPiton framework is used to adapt the
Ara processor into a scalable multicore architecture. This

171841

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

adaptation involves integrating multiple instances of the Ara
core within a single SoC design, harnessing the scalability
offered by OpenPiton. The goal is to achieve a many-core
system that can effectively handle the demands of advanced
Al and edge computing applications.

The integration with OpenPiton expands core counts and
benefits from a comprehensive verification infrastructure and
compatibility with mature software tools. This integration
enhances the overall capabilities of the Ara-based SoC,
particularly in terms of processing power and memory
capacity. By employing OpenPiton, Polara aims to deliver a
robust, versatile, and scalable platform suitable for various
edge computing and Al applications.

P ™S Polara_Keras2c

/Generate a C code\

| from Keras .h5
Network

—_ | }

Input Keras network H Keras2c code gen

Hardcoded C code
network

Contains ML ops for.
supported layers
(conv2d, dense)
written in C

Keras2c library files

—— < NN binary

FIGURE 4. Polara-Keras2c system diagram: The code has two parts: a
Python code that generates the C code with the layers used, tensor sizes,
and library files in C that contain the executable code for supported
layers.

IV. SOFTWARE IMPLEMENTATION

To transform a Keras network into a C file, Keras2c requires
two positional arguments: 1) model,ath, which specifies
the file path to the saved Keras and.h5 model file, and
2) functionyame, which denotes the desired name for the
resulting C function that outputs the resulting file containing
the weight and library calls for the function. Keras2c only
supports floating point operation and has no concept of any
datatype except floating point.

Similarly, when using Polara-Keras2c, the user must
provide modely,ath and function,ame and pass it through
to the framework, along with an additional operation flag
that denotes the datatype for code generation. The default
mode of operation is float, and in that mode, Polara-
Keras2c will operate largely as Keras2c but with a few
modifications for library function compatible with the Polara
bare-metal environment. Polara-Keras2c was modified to
allow for the accepting, generating, processing, and executing
different datatypes, enabling us to add support for various
functionalities such as fixed-point arithmetic and vector
arithmetic without retraining a new network. Figure 4
showcases the architecture of Polara-Keras2c. Its source code
is available at https://github.com/nizarzarif/polara-keras2c.

Polara-Keras2c has two main parts: a library part and
a code generation part. The library part of Polara-Keras2c
provides a set of functions and data structures necessary for
executing the generated C code on the target microcontroller.

171842

This includes functions for loading the model’s weights
and biases, performing the required operations such as
neural network operations (Dense layer, convolutional layers,
recurrent layers .. .), activations functions, and core functions
(MatMul, additions, matrix multiplications), and outputting
the model’s predictions. The original Keras2c framework
only supports floating point operations. Polara-Keras2c adds
support for optimized custom RISC-V vector functions to
accelerate ML operations (convolution, MatMul, activations,
...); it also adds support for fixed-point operations for various
layers and functions necessary for end-to-end inference like
data type translations, fixed point scaling, overflow, and
underflow protection to ensure correct output among many
others.

The code generation part is responsible for converting the
Keras model into C code that can be executed on the targeted
microcontroller. This code includes the model’s architecture,
weights, and biases and is optimized for efficient execution on
resource-constrained microcontrollers. The code generation
part also provides options for optimizing the code for size,
memory usage. The code generation works by reading all
layers of the input keras network. Then, it writes the content
of these layers one by one in an output C file while calling
the appropriate function from the library file to operate.
The original Keras2c only supports floating point operations.
Polara-Keras2c adds the options to generate a network using
optimized vector features, and fixed-point options, this is
done by calling the correct version of the ML operations from
the updated library files and transforming the datatype as
needed based on the input flag.

These two parts of Polara-Keras2c provide a complete
solution for deploying deep-learning models on micro-
controllers. By converting Keras models into optimized
C code, Polara-Keras2c allows developers to leverage the
power of deep learning in resource-constrained environ-
ments. Additionally, by providing a library of functions and
data structures, Polara-Keras2c simplifies integrating deep
learning models into microcontroller-based applications. The
architecture of Polara-Keras2c allows for quickly extending
support for new functions and new datatypes in both library
files and code generations.

A. 2D CONVOLUTION

In deep learning and computer vision, the 2D convolution
operation, commonly called Conv2D, stands as a cornerstone.
This operation entails applying a compact kernel or filter
over an input matrix, such as an image, to yield a feature
map. Such an operation excels at discerning local patterns in
the input, be it edges or textures. Within CNNs, by stacking
multiple Conv2D layers, the network gains the capacity to
identify patterns of escalating complexity. The strength of
Conv2D is its adeptness at maintaining the spatial correlation
between pixels, which renders it exceptionally effective
for image recognition such as facial recognition [54] or
facial expression recognition [55]. Moreover, by leveraging

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

parameter sharing, Conv2D layers considerably curtail the
model’s parameter count, boosting computational prowess
and diminishing overfitting risks.

In this research, we present two implementations of
Conv2D. The first is a universal rendition, supporting a
variety of sizes, strides, and dilations, and that uses the
channel-last memory organization (NHWC), termed the
scalar implementation. The second version, crafted for
optimal performance on RISC-V architectures, is manually
written in assembly language compatible with the RISC-V
vector extension version 1.0. This vector implementation is
optimized explicitly for a stride and dilation of 1 and adheres
to the NCHW format—where ‘N’ stands for the batch size, ‘C’
for the number of channels (e.g., 3 for RGB, 1 for grayscale),
‘H> for the image’s height, and ‘W’ for its width. The
development of this vector implementation in handwritten
assembly derived from our previous work in [12], rather than
through auto-vectorization. This was done to ensure that the
code fully capitalizes on the capabilities of the RISC-V vector
extension for enhanced computational efficiency.

The Polara-Keras2c framework currently supports only
the NHWC memory layout. However, this structure is
incompatible with the NCHW Conv2D code, necessitating
input and output data transposition to ensure compatibility
with all subsequent layers.

The Polara-Keras2c framework supports the NHWC
(Channels Last) format while efficiently executing NCHW
(Channels First) convolutions when a vector core is available,
presenting a unique blend of flexibility and performance
optimization. This hybrid approach leverages the inherent
advantages of NHWC for scalar CPU operations, such as
improved data locality for per-pixel operations and straight-
forward implementation for algorithms that process images
at the pixel level. By accommodating NHWC, the framework
ensures compatibility with a wide array of high-level machine
learning and image processing APIs, which often default to or
support NHWC due to its natural alignment with how images
are stored and manipulated in memory. Such a framework
significantly simplifies the development and deployment
pipeline by eliminating the need for constant data format
transformations, streamlining workflows, and reducing the
computational overhead associated with format conversion.

On the other hand, for operations that benefit from
the parallel processing capabilities of vector cores, such
as convolutions, activation, and pooling prevalent in deep
neural networks, the framework can temporarily convert
data from NHWC to NCHW. This conversion allows it
to tap into the computational efficiencies of NCHW on
vector-optimized hardware, like RISC-V architectures, where
channel data’s contiguous storage enables efficient vector
register loading and processing. This strategy not only
capitalizes on the reduced latency and overhead offered
by NCHW for vectorized computations but also maintains
the broader applicability and ease of use facilitated by
NHWC in scalar processing contexts. By intelligently
managing data formats based on the underlying hardware

VOLUME 12, 2024

and the nature of the computation, the framework offers a
versatile solution that maximizes performance and energy
efficiency across a diverse range of computing environments,
from high-performance servers to energy-constrained edge
devices.

B. TRANSPOSITION

The function NHWCt oNCHW shown in Algorithm 1 converts
a tensor’s memory layout from the NHWC (Height-Width-
Channel) format to the NCHW (Channel-Height-Width)
format in-place. The function first retrieves the dimensions
of the tensor: its height, width, and channel count. It then
uses nested loops to iterate over the tensor elements. The
function calculates two indices for each element: the current
position in the NHWC format and the target position in the
NCHW format. Based on these indices, the tensor elements
are rearranged to align with the NCHW format. After this
transposition, the modified values are transferred back to the
original tensor array to complete the transformation. We reuse
the same buffer memory for all transpositions to maximize
memory efficiency. To do this effectively, we first scan the
entire network to determine the largest memory buffer size
needed and allocate the required amount. This approach is
necessary due to the lack of virtual memory support, which
makes dynamic allocation and deletion impossible with the
current implementation.

Algorithm 1 In-Situ NHWC to NCHW Conversion

1: procedure NHWCtoNCHW (k2c_tensor* tensor)
2: h <« tensor->shape[0]

3: w <— tensor->shape[1]

4: ¢ < tensor->shape([2]

5: for channel =0toc — 1 do

6: for height =0to 7 — 1 do

7 for width =0tow — 1 do

8: idx_lhs < channel x & x w + height x
w + width

9: idx_rhs <— height x w x ¢ + width x ¢ +
channel

10: buffer[idx_lhs] <«
tensor->array[idx_rhs]

11: end for

12: end for

13: end for

14: fori=0tohxwxc—1do

15: tensor->array[i] <— buffer[i]

16: end for

17: end procedure

In Algorithm 2, the TransposeKernel function trans-
poses the memory layout of convolutional kernels. Typically,
these kernels have a format represented by the order:
Height (H), Width (W), Input Channels (Cin), and Output
Channels (Cout). This function aims to adjust the kernel
data so the channel dimensions come before the spatial

171843

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

dimensions. It first retrieves the dimensions of the kernel. The
function transfers the data from the kernel to an intermediate
buffer using nested loops. During this operation, indices are
calculated to guide the data transposition. After reordering
the data in the buffer, the adjusted values are copied back to
the kernel tensor to finalize the change in memory layout.

Algorithm 2 Kernel Transposition

1: procedure TransposeKernel(k2c_tensor* kernel)

2: H, W, Cin, Cout < kernel->shape

3 forh=0to H — 1do

4. forw=0to W — 1do

5: for cin = 0to Cin — 1 do

6: for cout = 0 to Cout — 1 do

7: idx_lhs < cout x Cin x H x W +
cinxHXW+hxW+w

8: idx_rhs < h x W x Cin x Cout +
w x Cin x Cout + cin x Cout + cout

9: buffer[idx_lhs] <~
kernel->array[idx_rhs]

10: end for

11: end for

12: end for

13: end for

14: fori=0to H x W x Cin x Cout — 1 do

15: kernel->array[i] < buffer[i]

16: end for

17: end procedure

Finally, in Algorithm 3 TransposeOutput function
transposes the memory layout of an output tensor from
the NCHW format to the NHWC format. In the NCHW
format, the tensors sequence is organized by the Number of
Channels (Cin), Height, Width, and Output Channels (Cout).
The function aims to reorder this sequence to prioritize the
spatial dimensions (Height and Width) before the channel
dimensions. To achieve this, the function first extracts the
tensor’s dimensions. It then calculates two indices for each
tensor element: curr_index, which indicates its current
position in the NCHW format, and target_index, which
denotes its desired position in the NHWC format. Leveraging
these indices, tensor values are re-positioned and stored
temporarily in a buffer. Once the tensor has been entirely
transposed, the rearranged values are copied from the buffer
back to the tensor, completing the transposition.

C. FIXED-POINT IMPLEMENTATION

Fixed-point arithmetic, a method for representing and
calculating real numbers using integers, offers several
advantages in Al and edge computing. This method is par-
ticularly beneficial for systems without dedicated floating-
point hardware, which is common in microcontrollers and
other edge devices. By leveraging fixed-point operations,
the Polara-Keras2c framework ensures efficient execution
and reduced power consumption, essential in resource-

171844

Algorithm 3 Output Tensor Transposition From NHWC to
Custom Format
1: procedure TransposeOutput(k2c_tensor* tensor)
2: out_channels < tensor->shape[3]
in_channels < tensor->shape[2]
out_rows < tensor->shape[0]
out_cols < tensor->shape[1]
> Transposition into buffer
for k_out = 0 to out_channels — 1 do
for k_in = 0 to in_channels — 1 do
for r = 0 to out_rows — 1 do
for ¢ = 0 to out_cols — 1 do
0: curr_index <« k_out x
(in_channels x out_rows X out_cols) + k_in X
(out_rows X out_cols) + r x out_cols + ¢
11: target_index < r X (out_cols X
in_channels x out_channels) + ¢ x (in_channels x
out_channels) + k_in x out_channels + k_out

gk

LR

—_

12: buffer|target_index] <«
tensor->array[curr_index]

13: end for

14: end for

15: end for

16: end for

> Copy transposed data back into tensor

17: for i = 0 to out_channels x in_channels x
out_rows X out_cols — 1 do

18: tensor->array[i] < buffer|i]

19: end for

20: end procedure

constrained environments. This efficiency becomes crucial
in edge computing applications, where speed and energy
efficiency are paramount [56].

The consistency and determinism of fixed-point arith-
metic provide uniform results across different platforms.
This aspect is vital in edge computing scenarios, where
applications often span diverse devices [57]. Additionally,
with their predictable precision, fixed-point numbers are
more memory-efficient than floating-point representations,
a significant advantage given the limited memory resources
of edge devices [58].

Moreover, fixed-point arithmetic in Polara-Keras2c allows
for precise control over the allocation of bits to the integer and
fractional parts. This control is beneficial for tailoring models
to specific application requirements, balancing precision
and computational resource usage [59]. The simplicity in
hardware implementation due to the absence of special cases
like Not a Number (NaN) or infinities and the lack of an
exponent and sign bit leads to reduced overhead and more
efficient hardware designs [60].

In Algorithm 4, the addition of fixed-point numbers a and
b is performed. These numbers are typically represented in
a format described by integer bits (m) and fractional bits

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

Algorithm 4 Fixed-Point Addition
Require: a, b: fixed-point numbers in Qm.n format, m:
integer bits, n: fractional bits
Ensure: Result of the fixed-point addition
. gFactor < 2"
result < (a <K n)+ (b K n)
maxVal <~ (1<K (m+n—-1))—1
minVal < —maxVal — 1
if result > maxVal x qFactor then
result < maxVal x qFactor > Handle overflow
else if result < minVal x gFactor then
result <— minVal x qFactor > Handle underflow
9: end if
10: result < result > n
11: return result

PN AR

(n). The function aims to calculate the result of adding
two fixed-point numbers while maintaining precision. It first
computes the scaling factor gFactor = 2" to convert the
fixed-point numbers to an integer-scaled representation by
left-shifting the values of a and b by n bits. The function then
adds these scaled values. During this operation, the algorithm
checks for potential overflow and underflow conditions,
determining if the result exceeds maxVal = (1 K (m +
n — 1)) — 1 or falls below minVal = —maxVal — 1. The
result is capped or raised to these limits if either condition
is met. Finally, the adjusted sum is right-shifted back by
n bits to convert it back to the original fixed-point format,
finalizing the operation and ensuring the result is within the
representable range.

Algorithm 5 Fixed-Point Multiplication
Require: a, b: fixed-point numbers in Qm.n format, m:
integer bits, n: fractional bits
Ensure: Result of the fixed-point multiplication
1: gFactor < 2"
2: result < axb
result < (result > n) + ((result & (gFactor — 1)) >
n)
maxVal <~ (1 <K (m+n—1))—1
minVal < —maxVal — 1
if result > maxVal then
result < maxVal
else if result < minVal then
9: result < minVal
10: end if
11: return result

[O8]

> Handle overflow

A A

> Handle underflow

The framework’s adaptability in automatically switching
between fixed and floating-point representations as needed
provides flexibility, ensuring compatibility with a broader
range of models. This flexibility is crucial for running layers
that do not yet support fixed-point processing [60].

To enable fixed-point operations, several functions
were added, such as fixed-point convolutions, matrix

VOLUME 12, 2024

multiplications, bias additions, and activations. However,
fixed-point operations are susceptible to overflow and under-
flow. To prevent these issues, the standard multiplication
and addition operations were replaced with safer alterna-
tives, multiplyFixedPoint and addFixedPoint, respectively.
Additional functions were also created to convert between
floating-point tensors and fixed-point tensors.

Another function k2c_bias_add_fixed _point adds bias to
a fixed-point convolution output, applying an integer-based
computation. Additionally, a fixed-point version of an activa-
tion function is invoked to apply non-linear transformations
to the fixed-point convolution results.

The code also includes numerous other functions that
manage different tensor operations, such as reshaping,
transforming data formats, padding, cropping, and upsam-
pling. These operations are essential for constructing neural
network architectures and do not inherently specify fixed-
point calculations, but they are vital components in prepro-
cessing and postprocessing within neural network layers.
This suite of functions is designed to support the development
of neural network inference mechanisms on platforms
where fixed-point computation is necessary or preferred
over floating-point due to hardware constraints. Finally,
testing indicates no significant loss of accuracy when using
fixed-point arithmetic in simple CNN models on datasets
like MNIST. This finding demonstrates that judicious use of
fixed-point arithmetic in edge computing may be performed
without compromising the model’s effectiveness, ensuring
that the models are not only efficient but also accurate [61].

V. EXPERIMENTAL RESULTS

In this section, we present a detailed analysis of three
experimental approaches and the results obtained, focusing
on three aspects: performance scaling of the Polara-Keras2c
framework, comparative performance and energy efficiency
against other established platforms, and the performance of
the fixed-point implementation of Polara-Keras2c.

Firstly, we evaluate the performance scaling of the Polara-
Keras2c framework, specifically on Conv2D. This test aims
to assess how the framework’s performance varies with
different input sizes and the number of filters, specifically
focusing on the impact of varying input sizes, namely 16 x
16, 32 x 32, and 64 x 64, and the number of filters
of 2 to 16. The results are examined to understand the
framework’s scalability under varying computational loads.
This performance scaling is crucial to demonstrate the
framework’s adaptability and efficiency in handling different
neural network architectures and data sizes, as highlighted
in the approach to estimate power/energy based on the
instruction used in the program [62].

Secondly, we focus on a comparative analysis, where the
Polara-Keras2c framework is compared with competitive
platforms to gauge its performance and energy efficiency.
This comparative test is designed to position the Polara
framework within the larger context of existing Al com-
putational platforms. By evaluating the framework’s energy

171845

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

consumption and processing capabilities compared to other
market leaders, we aim to provide a comprehensive view
of its operational efficiency and potential application scope.
This test not only highlights the strengths and limitations
of the Polara-Keras2c but also offers valuable insights into
the trade-offs between performance and energy efficiency
in embedded Al platforms, as task scheduling can have an
impact on the speed and efficiency of the program [63].

Lastly, implementing fixed-point arithmetic is critical to
deploying deep learning models on edge devices, where com-
putational resources and power efficiency are constrained.
In this part of our experiments, we explore the performance of
the Polara-Keras2c framework using fixed-point arithmetic,
which is pivotal for enhancing the operational efficiency of
Al models implemented with limited hardware capabilities.

Through these three tests, we aim to present a holistic
evaluation of the Polara-Keras2c framework, underscoring
its potential in the rapidly evolving landscape of Al and
embedded systems.

A. PERFORMANCE SCALING OF POLARA-KERAS2C

1) EXPERIMENTAL SETUP

Our experimental focus is on the Conv2D layer, which is
pivotal in Al applications, especially in computer vision.
We gauge performance by the number of clock cycles
required for various input sizes and filter numbers. Using
Keras, we generated Conv2D layers with random values for
weights and biases, varying filter counts (2 to 32), and input
sizes (16 x 16, 32 x 32, 64 x 64), all with a kernel size of 3
x 3. Each layer had a single input channel and default stride
and dilation of (1,1).

These layers were processed through Polara-Keras2c to
produce C code, which was then compiled using both
standard scalar and optimized vector cores for Polara
with the LLVM compiler version 14.0.0.1, generating a
RISC-V binary. Polara-Keras2c automatically handled data
transpositions for the vector setups. We executed the RISC-V
binary in Verilator version 4.214 to assess performance,
simulating a single-core variant of the Polara environment.
This simulation provided the number of clock cycles required
to complete each layer and verified the accuracy of the output
results. The configuration and toolchain of the simulation can
be found at https://github.com/PolyMTL-Gr2m/ara [64].

2) RESULTS

Figure 5 depicts the relationship between clock cycles (in
millions) and the number of filters for three different input
sizes: 16 x 16, 32 x 32, and 64 x 64.

Figure 6 illustrates the comparative performance of vector
and scalar computations across input sizes. The horizontal
axis represents the input sizes, ranging from 8 x 8 to 64 x 64.
The vertical axis represents the computational value, with
a scale reaching 1.75 x 107. The plot reveals that vector
and scalar computations exhibit relatively close values for
smaller input sizes. However, as the input size increases,

171846

1e6 16x16 Input Size

~

] —e— Vector
Scalar

[C e

IS

Clock Cycles (Million)
N w

e

0 10 20 30 40 50 60
Number of Filters

o

1e6 32x32 Input Size

W

Clock Cycles (Million)
N

2 4 6 8 10 2 14 16
Number of Filters

1e7 64x64 Input Size

Clock Cycles (Million)
w

0.5 /’—‘

2 4 6 8 10 12 1 16
Number of Filters

FIGURE 5. Clock cycles in millions versus the number of filters for
different input sizes.

scalar computations manifest a steep slope change, notably
surpassing the vector computations. Specifically, the scalar
value cycle count for an input size of 64 x 64 is significantly
higher than its vector counterpart. This divergence indicates
the inefficiencies inherent to larger-scale scalar computa-
tions, making vector computations preferable for enhanced
performance in such contexts. That is noteworthy, given that
the vector implementation needs to transpose the input and
kernel before and after the convolution.

1e7 Vector vs Scalar

o - = N I
S ° N % <
o 3 [S a

Clock cycles (Million)

o
«
o

0.25

8x8 16x16 32x32 64x64
Input Size

FIGURE 6. Comparison of vector and scalar computational in millions of
clock cycles for different input sizes.

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

B. PERFORMANCE AND ENERGY COMPARISON OF
POLARA-KERAS2C WITH COMPETITIVE PLATFORMS

1) EXPERIMENTAL SETUP

The Polara-Keras2c tool is optimized explicitly for the Polara
platform and is evaluated against other workflow frameworks
to gauge its comparative performance. Nonetheless, given
the diverse nature of deployment environments and hardware
capabilities, our strategy involves reducing variability by
carefully tailoring and optimizing the deployment of the same
network model across different tools, each chosen for its
compatibility with the respective hardware.

The Polara scalar core and vector core design are based
on the Ara core found in [10]. Therefore, we assume that
the peak power and scalar power consumption are like those
found in the paper which are based on the post-synthesis
simulations [10] under typical conditions. By leveraging
these detailed and validated measurements, we can provide
a reliable estimate of power consumption for the Polara
platform.

Performance metrics are assessed using Verilator by the
number of clock cycles required to finish one inference.
At the same time, measurement is achieved by considering
the peak power consumption of the most energy-intensive
operation, which, in our case, is the convolutional 2D
(conv2d) operations utilizing the vector core. The total
estimated energy consumption for one inference, denoted as
E, is calculated using the equation:

Evector =P peak, conv2d X Finference (1)

where Ppeak, conv2d Tepresents the peak power consumption
observed during conv2d operations, and fipference 1S the time
required to complete one inference. By focusing on the
peak power consumption of the most demanding operation,
we estimate conservative energy consumption, encapsulating
the upper bound of power usage during the inference process.
Unless explicitly stated, we used a vector version of the code
in performance and energy testing in the upcoming tests.

A different approach is employed for calculating energy
efficiency for scalar operations. The energy consumption,
Ecalar, 1 estimated by calculating the power consumption
product for scalar operations, Pgcalar, and the corresponding
execution time, fscalar- This is expressed as:

Escalar = Pscalar X tscalar (2)

2) RESULTS

In our evaluation of different processors, we focused on two
main factors: energy usage and performance. To conduct this
assessment, we implemented the neural network described
in [28] and [65], a face recognition CNN. Using the data
provided by the authors, we compared the energy con-
sumption and performance with our software and hardware
platform. The model is depicted in Figure 7. Table 1 compares
how various Al platforms handle this application, detailing
processor type, memory capacity, operating frequency, speed,
and efficiency. We estimated the number of inferences

VOLUME 12, 2024

completed in one second. We calculated energy efficiency by
determining the number of inferences each processor could
perform per joule. The results of these calculations are plotted
in Figure 8 for processing speed and Figure 9 for energy
efficiency.

Figure 8 and Figure 9 show the overall performance and
energy of the Polara platform where the higher the number,
the better the result. In our comparative analysis, we first
consider the computational performance of the processors.
Figure 8 quantifies this by detailing the number of inferences
per second. The Polara platform result, reported in red,
delivers a competitive performance, as its positioning in
the graph suggests. It outperforms SAMDS51, Appolo3, and
Spresense but falls behind the leading trio of the MAX78000,
xCORE.ai, and GAPS.

Turning our attention to energy efficiency, Figure 9
provides insights by depicting the number of inferences
per joule for each device. Here, the MAX78000 excels,
achieving the highest energy efficiency among the evaluated
devices. The Polara platform yields moderate results between
the highest and lowest performers. Slight advantages are
observed for the GAP8 and xCORE.ai processors over
the Polara, suggesting their potential suitability for energy-
sensitive applications.

C. FIXED-POINT ACCURACY AND PERFORMANCE

To assess the implications of utilizing fixed-point arithmetic
in neural network operations, a straightforward CNN model
was developed using Keras, a high-level neural networks
API, and then deployed using the Polara-Keras2c framework.
This deployment aimed to compare the computational
performance and precision between models run in standard
floating-point precision and those converted to fixed-point
arithmetic.

1) EXPERIMENTAL SETUP

Initially, the CNN was trained in a typical floating-point
environment using Keras with the entire MNIST dataset
[66]. This approach is standard due to its robustness and
high accuracy in handling numeric calculations across a
wide dynamic range. However, floating-point computations
generally demand substantial computational resources, which
can be restrictive in resource-constrained environments like
embedded systems.

After training and deploying the model in floating-point
precision, it was converted to operate in fixed-point format.
The transition to fixed-point arithmetic is primarily motivated
by the potential gains in computational efficiency. Fixed-
point models streamline arithmetic operations by represent-
ing numbers at a fixed number of decimal places. This can
enhance execution speeds and reduce power consumption,
albeit possibly at the cost of introducing quantization errors.

To quantitatively measure the impact of this arithmetic
transformation, the performance of the CNN in both oper-
ational modes was compared. The focus was placed on the

171847

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

Input layer conv1 conv2 nexpzoling flatten dense 1 dense 2 softmax
+ conv3
>
! 1
30x40x1 : 11x16x24 1x1x24 1x32 1x16 1x5
30x40x32 28x38x24
FIGURE 7. Face recognition model used for testing [65].
TABLE 1. Comparison of Al platforms.
Platform Processor Memory Frequency Special Features
Polara Quad-core Ara L1: 8 kB data, 16 kB 750MHz Vector Register File (VRF), OpenPiton
instructions cache coherency
SAMDS5I1 [40] Cortex-M4 1IMB flash, 256 kB 120MHz CMSIS-NN [66], TensorFlow Lite
RAM compatibility
Apollo3 [42] Ambiq Apollo3 Blue ARM | IMB flash, 384 kB | 96MHz SPOT technology for enhanced energy
Cortex-M4 RAM efficiency
Spresense [43] 6-core Cortex-M4 1.5MB SRAM, 256 kB | 156MHz NuttX RTOS, star topology
system SRAM communication
PULP/GAPS [46] 9-core - 250MHz Dedicated CNN accelerator,
TensorFlow processing
xCORE.ai [47] 16-core (2 tiles of 8 logical | 2MB SRAM (IMB per | 700MHz VPU for deep tensors, TensorFlow
cores each) tile) optimization, 5-stage pipeline
MAX78000 [48] Cortex-M4 and RISC-V - 50MHz 64-core CNN accelerator engine

Inferences Per Second

714.29
666.67

Rate (Inferences/sec)

N w H w (2] ~
o o o o o o
o o o o o o

-
o
o

4.00
SAMD51

3.12 5.21
Apollo3 Spresense

GAP8 xCORE.ai MAX78000 Polara

FIGURE 8. Number of inferences per second.

accuracy of the model outputs and the execution speed,
crucial metrics that determine the practicality of deploying
fixed-point arithmetic in operational environments. This
analysis is vital for evaluating the trade-offs inherent in
fixed-point computation, mainly how it affects the overall
effectiveness of the neural network in real-world applications.

Figure 10 depicts a convolutional neural network (CNN)
used primarily for image classification. Below is a short
description of each layer within the network:

Input Layer: Accepts a 28 x 28 pixel image and serves as
the entry point for data processing.

171848

Inferences Per Joule (Cropped)
11.11

Rate (Inferences/Joule)
2o NN W W
o w o w o w

o
wn

SAMDS51

Apollo3 Spresense GAP8 xCORE.ai MAX78000 Polara

FIGURE 9. Number of inferences per Joule.

Convolutional Layer (Conv2D): Directly beneath the input
layer, it employs 16 filters of 3 x 3 to perform feature
extraction using the ReLU activation function, enhancing the
network’s ability to learn complex patterns.

Pooling Layer (MaxPooling): Reduces the spatial dimen-
sions of the data using 2 x 2 max pooling, which simplifies
the output and helps in reducing overfitting.

Flatten Layer: Converts the pooled output into a one-
dimensional vector, enabling the transition to fully connected
layers.

First Dense Layer: Processes the flattened data through
64 neurons with ReLU activation to further refine features.

VOLUME 12, 2024

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

Input Layer
28x28

Conv2D
16 filters, 3x3, ReLU

!

MaxPooling
2x2

!

Flatten

!

Dense
64 neurons, ReLU

!

Dense
10 neurons, Softmax

FIGURE 10. A schematic diagram of the CNN model layers, including the
input layer.

Output Layer (Second Dense Layer): Comprises 10 neu-
rons, each representing a class, and utilizes the Softmax
activation to output a probability distribution over the classes.

Arrows between the layers illustrate the direction of data
flow, emphasizing the sequential processing from input to
output, where each layer progressively abstracts and refines
information, culminating in classification.

2) RESULTS

The effectiveness of fixed-point arithmetic in neural net-
work operations was evaluated using a model -shown in
Figure 10- trained on the MNIST dataset. This dataset, which
includes handwritten digits, is widely used for benchmarking
classification algorithms in machine learning. Initially, the
model was trained in a standard floating-point environment
using Keras, achieving an accuracy of 99.7%. Following
the training, the model was converted to operate in a
fixed-point format using Polara-keras2c. This conversion was
implemented to explore potential gains in computational
efficiency that fixed-point arithmetic offers, especially on
platforms with limited hardware capabilities that do not
natively support floating-point operations.

The transition from floating-point to fixed-point involved
quantizing the model’s parameters, such as weights and
biases, from floating-point representations to integer rep-
resentations with a fixed number of decimal places. This
process was carefully managed to minimize the loss of
precision, ensuring that the quantization did not signif-
icantly impact the model’s ability to predict outcomes
accurately.

Upon converting the model to fixed-point arithmetic, it was
tested again using the same MNIST dataset to evaluate any
changes in performance. The fixed-point model achieved an

VOLUME 12, 2024

accuracy of 99.67%, only a slight decrease from the original
floating-point model’s accuracy. Regarding performance,
running the same network in fixed-point needed 27.7 million
cycles compared to 7.6 million cycles in the floating
implementation due to safe multiplication and accumulation
that prevents underflow or overflow.

VI. DISCUSSION

Summarizing our experimental exploration of the Polara-
Keras2c framework, we uncovered significant insights into
its performance scaling and energy efficiency. For example,
when processing 64 x 64 input sizes convolutions, Polara-
Keras2c demonstrated performance gains of up to 4.81 times
faster compared to scalar processing as seen in Figure 6.
The vector approach notably excels in managing larger input
sizes and a more significant number of filters, showcasing the
framework’s robust scalability.

In all tested scenarios, the vector approach consistently
outshined scalar systems, necessitating fewer clock cycles
for operation. This efficiency gap widens with an increasing
count of filters, underscoring the vector approach’s superior
performance in various situations. As illustrated in Figure 5,
there is an apparent linear progression in performance scaling
corresponding to the increase in the number of filters.

The Polara platform’s edge lies in its utilization of a vector
processor, providing a flexible computing approach in con-
trast to hardware-specific solutions like Max78000, xCore.ai,
and GAPS. While these platforms lead in energy efficiency
and overall performance, they are somewhat limited by
their reliance on fixed-function blocks. In contrast, Polara’s
vector processor supports dynamic optimization for various
tasks such as in high-performance computing [67], image
processing [68], highly-parallel workloads and anywhere
traditional vector extension like AVX or arm SVE2 can
be used [49], essentially anywhere SIMD can be used,
and not limited to specific type of neural networks. This
adaptability is crucial in situations that demand variable
workload characteristics or require algorithm updates post-
deployment. Moreover, unlike platforms that rely primar-
ily on quantized neural networks, Polara supports both
floating-point precision and quantized models, showcasing
the framework’s broad compatibility across computational
environments. This adaptability is essential for applications
where precision needs may vary, or where models require
post-deployment updates or modifications.

The effectiveness of Polara’s fixed-point implementation
is further underscored by a minimal accuracy reduction of
only 0.03% on the MNIST dataset. This negligible impact
suggests that fixed-point arithmetic can be a practical and
efficient alternative to floating-point computations in certain
edge computing applications, where computational efficiency
and energy savings are prioritized.

Furthermore, these findings highlight the potential of
fixed-point arithmetic to enable the broader adoption of
advanced neural network models on edge devices. It opens

171849

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

up avenues for further research into optimizing quantization
strategies to minimize accuracy loss while maximizing com-
putational efficiency. This balance is crucial for expanding
machine learning capabilities in embedded systems, paving
the way for more sophisticated Al applications that are both
power-efficient and performant.

Polara-Keras2c exhibits a remarkable compatibility spec-
trum, extending from scalar processors to vector-accelerated
cores and traditional computing systems. This wide-ranging
applicability, encompassing both bare metal and OS-
controlled applications, firmly establishes its place in the
dynamic realm of Al and embedded systems. The modifi-
cation added in Polara-keras2c allows us to quickly expand
the capability of the framework with additional support for
different data types, hardware optimized version of various
deep learning operations for specific hardware and adding
preprocessing and postprocessing step for every layer if
needed, allowing for rapid prototyping.

The integration of RISC-V vector extension support and
optimization for the Polara architecture in Polara-Keras2c not
only addresses the technical challenges of edge computing
but also opens up new possibilities for Al applications in
this domain. By significantly reducing execution time and
power consumption, Polara-Keras2c enables the deployment
of more complex AI models on edge devices, fostering
innovation in real-time processing and decision-making
applications.

VII. CONCLUSION AND FUTURE WORK

This paper introduced ‘‘Polara-Keras2c,” a framework
designed to deploy AI models on edge devices efficiently.
Central to its innovation is the ability to translate Keras deep
learning models into optimized C code, facilitating operation
in resource-constrained environments. The framework lever-
ages the capabilities of RISC-V vector extensions, demon-
strating significant enhancements in processing power, which
is critical for applications in edge computing. Comparative
evaluations have highlighted the framework’s commendable
performance and energy efficiency, making it a noteworthy
contribution to the field.

Looking forward, there are several potential avenues
for improvement in Polara-Keras2c. Expanding support for
a more comprehensive array of Al models and datasets
could enhance the framework’s versatility, catering to a
broader spectrum of edge computing applications. Adding
quantization support allows fewer bits to represent infor-
mation, shrinks model size, and efficient deployment on
devices with limited memory. This also translates to faster
processing due to simpler calculations, boosting real-time
performance. Further, adapting the framework for a diverse
range of hardware platforms and processors could increase its
applicability, addressing the varied needs of edge computing
environments. Energy efficiency remains a crucial area for
improvement, especially for applications in battery-powered
and remote devices where power conservation is paramount.

171850

In essence, Polara-Keras2c is a promising solution
for the challenges of AI processing in edge computing.
It offers a solid foundation with multiple possibilities for
enhancements, reflecting the dynamic nature of research and
development in edge Al

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

[2] M.Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
B. C Van Esesn, A. A S. Awwal, and V. K. Asari, ““The history began from
AlexNet: A comprehensive survey on deep learning approaches,” 2018,
arXiv:1803.01164.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” 2014,

arXiv:1412.3555.

D. P Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,

arXiv:1312.6114.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”

Commun. ACM, vol. 63, no. 11, pp. 139-144, 2020.

[6] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey of recent
advances in edge-computing-powered artificial intelligence of things,”
1EEE Internet Things J., vol. 8, no. 18, pp. 13849-13875, Sep. 2021.

[7] 1. L. Orasan, C. Seiculescu, and C. D. Céleanu, “A brief review of

deep neural network implementations for ARM Cortex-M processor,”

Electronics, vol. 11, no. 16, p. 2545, Aug. 2022.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet

classifiers generalize to imagenet?” in Proc. Int. Conf. Mach. Learn., 2019,

pp. 5389-5400.

[9] OpenHW Group. (2023). CORE-V Polara APU. Accessed: Feb. 19, 2024.
[Online]. Available: https://github.com/openhwgroup/core-v-polara-apu

[10] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara:
A 1-GHz+ scalable and energy-efficient RISC-V vector processor with
multiprecision floating-point support in 22-nm FD-SOL,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 530-543, Feb. 2020.

[11] M. AskariHemmat, T. Dupuis, Y. Fournier, N. El Zarif, M. Cavalcante,
M. Perotti, F. Giirkaynak, L. Benini, F. Leduc-Primeau, Y. Savaria,
and J.-P. David, “Quark: An integer RISC-V vector processor for sub-
byte quantized DNN inference,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2023, pp. 1-5.

[12] T. Dupuis, Y. Fournier, M. AskariHemmat, N. El Zarif, F. Leduc-Primeau,
J.P.David, and Y. Savaria, “Sparq: A custom RISC-V vector processor for
efficient sub-byte quantized inference,” in Proc. 21st IEEE Interregional
NEWCAS Conf. (NEWCAS), 2023, pp. 1-5.

[13] F. Tonini, C. Natalino, D. A. Temesgene, Z. Ghebretensaé, L. Wosinska,
and P. Monti, “Benefits of pod dimensioning with best-effort resources
in bare metal cloud native deployments,” IEEE Netw. Lett., vol. 5, no. 1,
pp. 41-45, Mar. 2023.

[14] R.Conlin, K. Erickson, J. Abbate, and E. Kolemen, “Keras2c: A library for
converting Keras neural networks to real-time compatible C,” Eng. Appl.
Artif. Intell., vol. 100, Apr. 2021, Art. no. 104182.

[15] F. Zarubaand L. Benini, “The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-GHz 64-bit RISC-V core in
22-nm FDSOI technology,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 11, pp. 2629-2640, Nov. 2019.

[16] T. Sipola, J. Alatalo, T. Kokkonen, and M. Rantonen, ‘Artificial
intelligence in the IoT era: A review of edge ai hardware and software,” in
Proc. 31st Conf. Open Innov. Assoc. (FRUCT), 2022, pp. 320-331.

[17] M. Hosseini and T. Mohsenin, “QS-NAS: Optimally quantized scaled
architecture search to enable efficient on-device micro-Al,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 11, no. 4, pp. 597-610, Dec. 2021.

[18] J. Mielikainen, B. Huang, H. A. Huang, and M. D. Goldberg, “Improved
GPU/CUDA based parallel weather and research forecast (WRF) single
moment 5-class (WSMS5) cloud microphysics,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 5, no. 4, pp. 1256-1265, Aug. 2012.

[19] A.Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
“Al accelerator survey and trends,” in Proc. IEEE High Perform. Extreme
Comput. Conf. (HPEC), 2021, pp. 1-9.

[4

=

[5

—

[8

—

VOLUME 12, 2024

. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

IEEE Access

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33

—

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-
guage understanding by generative pre-training,” OpenAl, San Francisco,
CA, USA, 2018. [Online]. Available: https://www.openai.com/research
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, “Language models
are few-shot learners,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 1877-1901.

OpenAl et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and efficient foundation
language models,” 2023, arXiv:2302.13971.

OpenHW Group. (2024). RISC-V Vector Specification. Accessed: Jun. 6,
2024. [Online]. Available: https://github.com/riscv/riscv-v-spec/tree/v1.0
I. Al Assir, M. El Iskandarani, H. R. Al Sandid, and M. A. R. Saghir,
“Arrow: A RISC-V vector accelerator for machine learning inference,”
2021, arXiv:2107.07169.

P. Vizcaino, G. Ieronymakis, N. Dimou, V. Papaefstathiou, J. Labarta, and
F. Mantovani, “Short reasons for long vectors in HPC CPUs: A study based
on RISC-V,” in Proc. Workshops Int. Conf. High Perform. Comput., Netw.,
Storage, Anal., 2023, pp. 1543-1549.

J. K. L. Lee, M. Jamieson, N. Brown, and R. Jesus, “Test-driving RISC-V
vector hardware for HPC,” 2023, arXiv:2304.10319.

M. Giordano, L. Piccinelli, and M. Magno, “Survey and comparison of
milliwatts micro controllers for tiny machine learning at the edge,” in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2022,
pp. 94-97.

Tensorflow Lite for Microcontrollers. Accessed: Jun. 6, 2024. [Online].
Available: https:/github.com/tensorflow/tflite-micro

V. Falbo, T. Apicella, D. Aurioso, L. Danese, F. Bellotti, R. Berta, and
A. De Gloria, “Analyzing machine learning on mainstream microcon-
trollers,” in Applications in Electronics Pervading Industry, Environment
and Society. Berlin, Germany: Springer, 2020, pp. 103-108.

F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine learning on
mainstream microcontrollers,” Sensors, vol. 20, no. 9, p. 2638, May 2020.
P-E. Novac, G. Boukli Hacene, A. Pegatoquet, B. Miramond, and
V. Gripon, ‘“Quantization and deployment of deep neural networks on
microcontrollers,” Sensors, vol. 21, no. 9, p. 2984, Apr. 2021.

H.-I. Cindy Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, and
S. Laurenzo, “TinyIREE: An ML execution environment for embedded
systems from compilation to deployment,” 2022, arXiv:2205.14479.

D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, and L. P. Carloni,
“Accelerator integration for open-source SoC design,” IEEE Micro,
vol. 41, no. 4, pp. 8-14, Jul. 2021.

S.-C. Luo, K.-C. Chang, P.-W. Chen, and Z.-H. Chen, “Configurable deep
learning accelerator with bitwise-accurate training and verification,” in
Proc. Int. Symp. VLSI Design, Autom. Test (VLSI-DAT), Apr. 2022, pp. 1-4.
A. Moss, H. Lee, L. Xun, C. Min, F. Kawsar, and A. Montanari, ““Ultra-
low power DNN accelerators for IoT: Resource characterization of the
MAX78000,” in Proc. 20th ACM Conf. Embedded Networked Sensor Syst.,
2022, pp. 934-940.

R. Colella, L. Spedicato, L. Laqintana, and L. Catarinucci, “Inertially
controlled two-dimensional phased arrays by exploiting artificial neural
networks and ultra-low-power Al-based microcontrollers,” IEEE Access,
vol. 11, pp. 23474-23484, 2023.

M. G. Ulkar and O. E. Okman, “Ultra-low power keyword spotting at the
edge,” 2021, arXiv:2111.04988.

P. P. Ray, “A review on TinyML: State-of-the-art and prospects,” J. King
Saud Univ.-Comput. Inf. Sci., vol. 34, no. 4, pp. 1595-1623, Apr. 2022.
Mouser Electronics. (2019). SAM D5x/E5x Family Data Sheet.
Accessed: Feb. 15, 2023. [Online]. Available: https://www.mouser.
com/datasheet/2/268/60001507A-1130176.pdf

L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural network
kernels for arm Cortex-M CPUs,” 2018, arXiv:1801.06601.

Ambiq Micro. (2022). Apollo3 Blue MCU Data Sheet. Accessed:
Feb. 15,2023. [Online]. Available: https://ambiq.com/wp-content/uploads/
2020/08/Apollo3-Blue-SoC-Datasheet.pdf

Adafruit Industries. Product 4419 Datasheet. Accessed: Feb. 15,
2023. [Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/
Adafruit%20PDFs/4419_Web.pdf

Sony Semiconductor Solutions. CXD5602 User Manual. Accessed:
Feb. 15, 2023. [Online]. Available: https://www.sony-semicon.com/files/
62/pdf/p-28_CXD5602_user_manual.pdf

VOLUME 12, 2024

(45]

[46]

(47]

(48]

(49]

[50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

[62]

(63]

[64]

[65]

D. Rossi, F. Conti, M. Eggiman, A. D. Mauro, G. Tagliavini, S. Mach,
M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini,
“Vega: A ten-core SoC for IoT endnodes with DNN acceleration and
cognitive wake-up from MRAM-based state-retentive sleep mode,” /[EEE
J. Solid-State Circuits, vol. 57, no. 1, pp. 127-139, Jan. 2022.

GreenWaves Technologies. GAPS Datasheet. Accessed: Feb. 2,
2023. [Online]. Available: https://gwt-website-files.s3.amazonaws.
com/gap8_datasheet.pdf

Pawpaw Technology. XU316-1024-QF60B-PP24 Datasheet.

Accessed: Feb. 15, 2023. [Online]. Available: https://www.pawpaw.
cn/media/documents/2022-06/XU316-1024-QF60B-PP24_Datasheet.pdf
Analog Devices. (2021). MAX78000 Data Sheet. Accessed: Feb. 15,
2023. [Online]. Available: https://www.analog.com/media/en/technical-
documentation/data-sheets/MAX78000.pdf

M. Perotti, M. Cavalcante, N. Wistoff, R. Andri, L. Cavigelli, and
L. Benini, “A ‘new ara’ for vector computing: An open source highly
efficient RISC-V V 1.0 vector processor design,” in Proc. IEEE 33rd
Int. Conf. Application-Specific Syst., Architectures Processors (ASAP),
Jul. 2022, pp. 43-51.

Intel Corporation. (2023). Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual. Combined Volumes:1, 2A, 2B, 2C, 2D,
3A, 3B, 3C, 3D, and 4. [Online]. Available: https://cdrdv2.intel.
com/v1/dl/getContent/671200

E. Cui, T. Li, and Q. Wei, “RISC-V instruction set architecture extensions:
A survey,” IEEE Access, vol. 11, pp. 24696-24711, 2023.

D. Molka, D. Hackenberg, R. Schone, and M. S. Miiller, *“Characterizing
the energy consumption of data transfers and arithmetic operations on
x86-64 processors,” in Proc. Int. Conf. Green Comput., Aug. 2010,
pp. 123-133.

J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff, “Openpiton: An open source
manycore research framework,” in Proc. 21st Int. Conf. Architectural
Support Program. Lang. Operating Syst., New York, NY, USA, 2016,
pp. 1-16.

M. Coskun, A. Ugar, 0. Yildirim, and Y. Demir, “Face recognition based
on convolutional neural network,” in Proc. Int. Conf. Modern Electr.
Energy Syst. (MEES), Nov. 2017, pp. 376-379.

N. E. Zarif, L. Montazeri, F. Leduc-Primeau, and M. Sawan, ‘“Mobile-
optimized facial expression recognition techniques,” IEEE Access, vol. 9,
pp. 101172-101185, 2021.

M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2014, pp. 10-14.

S. Mittal, ““A survey on optimized implementation of deep learning models
on the NVIDIA Jetson platform,” J. Syst. Archit., vol. 97, pp. 428-442,
Aug. 2019.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295-2329, Dec. 2017.

Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantization
of neural networks for efficient inference,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. Workshop (ICCVW), Seoul, South Korea, 2019,
pp. 3009-3018, doi: 10.1109/ICCVW.2019.00363.

J. Lin, W. Chen, Y. Lin, and J. Cao, “Fixed point quantization of deep
convolutional networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2016,
pp. 2849-2858.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704-2713.

M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind,
T. M. Nguyen, K. Lim, Y. Zhou, and D. Wentzlaff, “Power and energy
characterization of an open source 25-core manycore processor,” in Proc.
HPCA, 2018, pp. 762-775.

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput CNN inference on embedded arm big.little
multicore processorss,” [EEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 10, pp. 2254-2267, Oct. 2020.
PolyMTL-GR2M. (2024). ARA: PolyMTL-GR2M. Accessed: Jul. 8, 2024.
[Online]. Available: https://github.com/PolyMTL-Gr2m/ara

M. Giordano, P. Mayer, and M. Magno, “A battery-free long-range
wireless smart camera for face detection,” in Proc. 8th Int. Workshop
Energy Harvesting Energy-Neutral Sens. Syst., Nov. 2020, pp. 29-35.

171851

http://dx.doi.org/10.1109/ICCVW.2019.00363

IEEE Access

N. E. Zarif et al.: Polara-Keras2c: Supporting Vectorized Al Models on RISC-V Edge Devices

[66] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],”” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141-142, Nov. 2012.

[67] F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon,
C. Rojas, R. Figueras, A. Ruiz, A. Gonzalez, and J. Mendoza,
“Vitruvius+: An area-efficient RISC-V decoupled vector coprocessor for
high performance computing applications,” ACM Trans. Archit. Code
Optim., vol. 20, no. 2, pp. 1-25, Jun. 2023.

[68] R.-S. Li, P. Peng, Z.-Y. Shao, H. Jin, and R. Zheng, “Evaluating RISC-
V vector instruction set architecture extension with computer vision
workloads,” J. Comput. Sci. Technol., vol. 38, no. 4, pp. 807-820,
Jul. 2023.

NIZAR EL ZARIF received the bachelor’s degree
in electronics and communications engineering
from Beirut Arab University, Lebanon, in 2011,
the master’s degree in electrical and computer
engineering from American University of Beirut,
Lebanon, in 2015, and the Ph.D. degree from
the Polystim Neurotech Laboratory, Polytechnique
Montréal, Canada, in 2022. He is currently a
Postdoctoral Fellow with Polytechnique Montréal.
His research interests include high-performance
computing, machine learning, embedded system design, computer vision,
and parallel computing.

MOHAMMADHOSSEIN ASKARI HEMMAT
received the Ph.D. degree from Polytechnique
Montréal, Canada, in 2023. He was involved in
designing hardware and algorithm for efficient
deep neural networks with Polytechnique Mon-
tréal. He is currently an Al Research Scientist with
Deeplite. His research interests include designing
efficient deep neural networks, computer architec-
ture, and machine learning.

THEO DUPUIS received the University Technol-
ogy Diploma degree in electrical engineering and
industrial computer science from the University de
Tours, in 2019, the Engineering degree (M.Sc.) in
electrical engineering from INSA Lyon, France,
in 2022, and the master’s degree in electrical
engineering, specializing in digital electronics,
low-level computing, processor architecture, and
machine learning from Polytechnique Montréal,
Canada, in 2023. He engaged in a research project
on mixed hardware/software acceleration of sub-byte operations on a
RISC-V vector processor for quantized neural networks applications,
showcasing skills in hardware/software acceleration.

171852

JEAN-PIERRE DAVID received the Ph.D. degree
from the Université Catholique de Louvain,
Louvain-la-Neuve, Belgium, in 2002. Following
that, he was an Assistant Professor with the
Université de Montréal, Montreal, QC, Canada, for
three years before transitioning to Polytechnique
Montréal, Montreal, in 2006. In 2021, he attained
the position of a Full Professor. His research
interests include digital system design, reconfig-
urable computing, high-level synthesis, dedicated
arithmetic, and practical applications, including signal processing, real-
time simulation, and network communications. Since 2014, he has delved
into low-precision arithmetic for neural networks. Notably, he authored
“Binaryconnect: Training Deep Neural Networks with Binary Weights
During Propagations,” a seminal contribution to the field of binary neural
networks.

YVON SAVARIA (Life Fellow, IEEE) received the
B.-Ing. and M.Sc. degrees in electrical engineering
from Polytechnique Montréal, in 1980 and 1982,
respectively, and the Ph.D. degree in electrical
engineering from McGill University, in 1985.
Since 1985, he has been with Polytechnique
Montréal, where he is currently a Professor with
the Department of Electrical Engineering. Since
June 2019, he has been the NSERC-Kaloom-
Intel-Noviflow (KIN) Chair Professor. He is the
Co-Director of the Regroupement Strategique en Microelectronique du
Quebec (RESMIQ) and a member of the Ordre des Ingenieurs du Quebec
(OIQ). He has been a consultant or was sponsored for carrying out research
with Bombardier, Buspass, CNRC, Design Workshop, Dolphin, DREO,
Ericsson, Genesis, Gennum, Huawei, Hyperchip, Intel, ISR, Kaloom,
LTRIM, Miranda, MiroTech, Nortel, Octasic, PMC-Sierra, Space Codesign,
Technocap, Thales, Tundra, and Wavelite. He has carried out work in
several areas related to microelectronic circuits and microsystems, such
as testing, verification, validation, clocking methods, defect and fault
tolerance, effects of radiation on electronics, high-speed interconnects, and
circuit design techniques, CAD methods, reconfigurable computing and
applications of microelectronics to telecommunications, aerospace, image
processing, video processing, radar signal processing, and the acceleration
of digital signal processing. He holds 16 patents, published 211 journal
articles and 495 conference papers, and the thesis advisor of 190 graduate
students who completed their studies. He is also involved in several projects
related to embedded systems in aircraft, wireless sensor networks, virtual
networks, software-defined networks, machine learning (ML), embedded
ML, computational efficiency, and application-specific architecture design.
He is a fellow of Canadian Academy of Engineering. In 2001, he was
awarded the Tier 1 Canada Research Chair on the design and architecture of
advanced microelectronic systems which he held until June 2015. He also
received the Synergy Award from the Natural Sciences and Engineering
Research Council of Canada in 2006. He was the Program Co-Chair of
NEWCAS’2018 and the General Chair of NEWCAS’2020.

VOLUME 12, 2024

