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L'EQUATION DE LA CHALEUR ET LE MOUVEMENT BROWNIEN

Gilles Deslauriers et Serge Dubuc

T - INTRODUCTION

La propagation de la chaleur est intimement li€e au mouvement
brownien. C'est Bachelier en 1900, [1], qui a observé le premier que
certaines fonctions rattachées au mouvement brownien satisfont a 1'équa-
tion de la chaleur. De multiples travaux ont consaéré cette liaison. On
peut méme dire en un sens que c'est le mouvement brownien qui ést la clef
de la théorie de la propagation de la chaleur. De fait, plusieurs proba-
bilistes ont montré que le mouvement brownien permettait une analyse trés
fine de 1'équilibre thermique. Le travail de Port et Stone, [8], en est

une illustration excellente.

Les problémes dont nous voulons traiter manifesteront ce jeu de
va-et-vient entre 1'€quation de la chaleur et le mouvement brownien. Soit
2 un ouvert de ﬁp, désignons par u(x,t) la‘probabilité que le mouvement
brownien issu du point x 3 1l'instant O demeure dans le domaine § pen-
dant tout 1'intervalle de temps (0,t); ici x appartient a Q. On sait
que la fonction u satisfait @ 1'€quation de la chaleur; 2 =~ = Au. utx t)
représente aussi la temp€rature @ l'instant t au point x, lorsque
était 3 1'instant O & la température 1 en chacun de ses points et lorsque
la frontiére de § est constamment maintenue a la température nulle. Cette

correspondance est valable au moins dans le cas o £ est un ouvert borné

régulier. Considérons. le ou les points les plus chauds,

C(t) = {x:u(x,t) = sup u(y,t)},
yESQ
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ce sont les points de probabilité maximale @ 1'instant t. Nous nous
intéressons aux variations de C(t), si elles-existent. En particulier,
nous &tudierons le comportement asymptotique de C(t) lorsque t tend
vers 1'infini ou lorsque t tend vers zé&ro. Nous montrerons que C(t)

se réduit en un seul point (&éventuellement variable en fonction du temps)
lorsque £ est un ouvert convexe borné non-vide. Ce dernier résultat

sera une conséquence de deux propriétés de la fonction wu(x,t), la premiére
est que le logarithme de u est une fonction concave.-de x et la deuxiéme
est que u est une fonction analytique de x. De toute fagon, nou; éta-
blirons le caractére spatialement analytique de toute solution d 1'équation

de la chaleur.

EQUATION DE LA CHALEUR

Nous résumons ici les aspects de la théorie de la chaleur, dont

nous nous servirons dans la suite. Soit § un ouvert non-vide de @p et

n+1
soit ¢ > 0, considérons le cylindre dans & :T = Q x (0,c). Nous nous

limiterons aux solutions classiques de 1'é€quation de la chaleur, il s'agira

3’ u

5;;5;;‘, 1<i <§n; 1 SZj <;]’1,

de fonctions u:T + &, telles que g%.,

existent, sont des fonctions continues et satisfont 3 1'€quation aux dérivées

partielles
5u _ D ?u
2= B =m g
ot i=1 axi

Nous utiliserons une terminologie particuliére. Nous dirons qu'une solution

1'&quation de la chaleur est du type A si elle se prolonge continfiment

Q7

V4

1'adhérence, T, du cylindre TI. Nous dirons qu'une solution a 1'€quation

de la chaleur est du type B si u est une fonction bornée sur I' et si u



se prolonge continfiment sur Q x (0,e) UQ x {0}. Si u(x,t) est le
prolongement, la restriction de u & la base du cylindre x'{O} sera
notée uo(x) = u(x,0) et sera appel€e la trace de' u sur la base ou
encore la distribution initiale de la température. La restriction de u
i la paroi latérale du cylindre, 99 x (0,c), sera notée ul(x,t) = wix,E)
et sera appelée la trace sur la paroi ou encore le régime de température

~ i la frontiere de 9.

Citons un cas particulier du principe du maximum pour 1'équation

de la chaleur. Ce cas est analysé avec simplicité dans Dennemeyer, [ 3].

Théoreéme 1.

Si § est un ouvert borné de ﬁn, si u est une solution &
1'équation de la chaleur sur § x (O,c) de type A, si m <§u0(x) <M,
XER, et si m <§u2(x,t) <M, xE 3 et t € (0,c) alors pour tout Xx

de Q et pour tout t de (0,c), m<u(x,t) SM

On obtient comme corollaire qu'une solution @ 1'€quation de la
chaleur de type A dont la distribution initiale de température est nulle
et dont le régime de température a4 la frontiére est nul donne lieu 3 la
fonction identiquement nulle. Ceci assure 1'unicité de la solution a

1'équation de la chaleur en fonction des données aux limites.

IT1 4'SOLUT10N’PROBABILISTE A L'EQUATION DE LA CHALEUR

Soit u(x,t) wune solution a 1'équation de la chaleur du type B:
sur le domaine £ x (0,c) dont la distribution initiale de température est
uo(x) et dont le régime de température & la frontidre est wuy(x,t). Nous

recherchons une représentation suffisamment explicite de u(x,t) en fonction
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de u et de Uy . Si x est un point de §, nous désigneroﬁs par

T = T(x,2) le premier instant de (0,*) ol le mouvement brownien X(t)
de & issu de x & 1'instant O lquitte 1'ensemble . Posons

Tt = min(T,t). Nous établirons dans les paragraphes qui suivront que

u(x,t) est 1l'espérance mathématique de la variation aléatoire u(X(Tt),t—Tt).

D'autre part, cette espérance peut se calculer en fonction de

u et de up. De fagcon plus précise, nous allons trouver un noyau sur
0

Q, pt(x,y) et une mesure dut x(y) portée par la frontiére de ,

[

af

3

0 <t <o, de telle sorte que

t
u(x,t) =-jr Py (x,¥) u (y) dy +J[. d(
Q

u, (y,t-1) duT,x(y) e - (1)
0 s .

En fait, on sait que la variable al&atoire X(Tt) induit une mesure sur

1'adhérence de §, V

sV = . 3
X,t x,t(A) Pr [X(Tt) € Al. La restriction de V

x,t

a Q donnera la mesure pt(x,y) dy et la restriction de Ve a 92 don-

nera juétement la mesure ﬁt; . La formure (1) sera appelée la formule
de représentation intégrale de 1'équation de la chaleur pour le domaine £.
Pour €tablir la validité de cette formule, nous passerons par les Etapes
suivantes. Le premier cas analysé sera la solutioﬁ de 1'équation de 1la
chaleur pour n =1, Q = (a,b), le deuxiéme cas sera la solution de 1'équa-
tion de la chaleur pour un pavé § de ] (n 22, Q est un produit carté-

sien d'intervalles), le troisiéme cas sera pour un domaine § régulier et

borné, le cas général sera le quatriéme cas.

-

"PROPAGATION DE LA CHALEUR DANS UNE TIGE

Soit une tige (a,b), a <b, @ 1'instant 0 1la température de la

tige au point x est u (x) ol u est une fonction continue sur [a,b];
0 0




a 1'instant t, 0 <t <¢c, les extrémités de la tige sont a la température
a(t) et b(t), a(t) et b(t) sont deux fonctions continues sur [o0,c].

On recherche une fonction continue u(x,t) sur [a,b] x [0,c] telle que

du _ d'u

Bt ad Procédons comme si la formule (1) €tait
- 4

sur (a,b) x (0,c) 2

(a,b). Soit x € (a,b), considérons le processus

vraie pour n =1 et Q

de Wiener W(t) issu de x & l'instant t = 0; pour décrire 1'absorption

-

par les extrémités de 1'intervalle (a,b), posons X(t) &gal & a ou b

7

si la premiére sortie hors de l'intervalle (a,b) s'effectue avant ou a
1'instant t, X(t) sera alors le point de premiére sortie; si le processus
est demeuré constamment dans 1'intervalle (a,b) jusqu'd 1'instant t, on

pose X(t) = W(t). Il nous faut connaitre la loi de X(t), posons

At(x) = Prx [X(t).= a] , Bt(x) & Pr, LX(t) = Bl .

At(x) et 'Bt(x) sont les poids des deux atomes de la loi de X(t). La loi
de X(t) est trés bien connue, comme en fait foi le volume de Lévy, [7].
Néanmoins, nous présentons une nouvelle formule pour calculer At(x) et

Bt(x). Cette formule sera essentielle pour nous un peu plus tard.

Théoréme 2.

La loi de X(t) est absolument continue sur (a,b) et admet deux
atomes, 1'un & a, l'autre @ b, si pt(x,y) est la densité de la partie
absolument continue, si At(x) et Bt(x) sont les poids des atomes a et

b, on a les formules suivantes: -



[e2]

pt(x’Y) - (Zﬂt)—i ngam {e-(Y-x+2n(b—a))2/2t _ e—(2a—y-x+2n(b—a))2/2t} 2)

\

. b+ (2n+1) (b-a)
NI / " 0?2t (3)
n=-o /27t b+(2n-1) (b-a)
® a+(2n+1) (b-a) ~(y-x)? /2 ‘
- st
Bt(x) n=-e0 /E%E_/ﬁ ) N 5

a+(2n-1) (b-a)

Démonstration:

Pour évaluer Bt(x), partons de la fonction h(y), en escalier,
qui vaut 2n sur l'intervalle (a+(2n-1)(b-a), a+(2n+1)(b-a)). Si W(t)
est le proceésus de Wiener issu de x, alors que x € (a,b), évaluons
1'espérance de h(W(t)) de deux fagons différentes. W(t) suit une loi

normale de moyenne Xx et de variance t, d'ol

oo #(2 +1) (b-a)
&hW(t))) = I 2B fa " o --0?/2t ay
a

n=-o Y27t +(2n-1) (b-a)

Décomposons la variable W(t) selon le temps T de premidre sortie hors

de (a,b) et selon le point de sortie W(t). Si T > t, on a que h(W(t)) = 0.

Si T<t etsi W(t) = a, on a que &MW(t))|t <t , W(t) =a) =0 car

h est une fonction antisymétrique autour de y = a:h(2a-y) = -h(y) et
{w(t)|T <t , W(t) = a} est une variable aléatoire symétrique_par rapport

i la position a. D'autre part, si T <t et si W(t) = b, puisque
h(2b-y)+h(y) = 2 et.puisque {W(t)IT <t , W(t) = b} est une variable aléa-

toire symétrique par rapport d la position b, on aura que

-

EhWE))|T<t, W) =b) =1.

D'od &hw(t))) = Pr [t <t , WD) = p] = Bt@})

Ceci établit donc les formules pour At(x) et B (x).



On peut calculer pt(x,y) d'une fagon analogue. Soit I un
. : [o's) .
sous-intervalle de (a,b), posons J = U 2n(b-a) + I et soit J'

1'image de J par 1'antisymétrie y = 2a-y. Si 1'on introduit la fonc-
tion g(y) qui vaut 1 sur J, -1 sur J' et 0 ailleurs, on a que

g(2a-y) = g(2b-y) = -g(y). D'ol

&(g(W(1))) = &(g(X(t)))

(2me) "2 ?] o (y-x*2n(b-2))?/2t _ -(2a-y-x+2n(b-a))*/2ty 4
e JI

p, (x,y) dy .
J pets

On peut donc juger que la validité des diverses formules est

I

établie.

Remarques:

La formule (2) est donnée dans Lévy, [7]. I1 est maintenant

facile de vérifier que les fonctions de x et de t, pt(x,y), At(x) et

2
B, (x) satisfont a 1'équation de la chaleur 2 du_ E—E.
t ot - It

permet d'évaluer la dérivée partielle de At(x) et de Bt(x) par répport

Un calcul simple

a t,
oA (x) w 1 2
RU) = —t— = T -y Y (x-atniay) o X E-20lb-a)) 28 - gty
t at Sl .
BBt(x)
Une formule semblable tient pour Bé(x)4= T Les deux fonctions Aé(x)

et B;(x) sont également solution & 1'équation de la chaleur.

Revenons au probléme de la propagation de la chaleur dans une tige.

Si ub(x) est une distribution continue de température sur [a,b] et si



a(t) et b(t) sont des régimes continus de température que 1l'on veut

accorder aux extrémités de la tige, posons pour x € (a,b), t € (0,c),

b t rt
v(x,t) =—/r pt(x,y) uo(y) dy +“/~ a(t-1) A%(x) dt +J/- b(t-T1) B%(x) dt .
a 0 0

-~

I1 est facile de voir que v(x,t) satisfait a4 1'équation de la chaleur

2
d P . . _
2 g¥-= 5—;; Vérifions maintenant que v(x,t) converge uniformément sur
X
(a,b) vers uo(x) lorsque t tend vers zéro. On remarque d'abord que
t
v/ﬁ [a(t-1)-a(0)] A%(X) dT converge uniformément vers zéro; il en est de
0

t
méme pour.jf [b(t-1)-b(0)] B%(x) dt. 1I1 suffit donc de démontrer que
0

b
(Ppu ) () = fa P, (x,y) u (¥) dy + u_ (a) A_(x) +u (b) B (x)

converge uniformément vers u (x) sur (a,b). L'application u +—Ptu
0 [ [}

est précisément un opérateur de Korovkin, [6], de C [a,b] dans C [a,b];

c'est-a-dire que Ptl =1 et u=0= Ptu 2 0. Pour vérifier la convergence

uniforme de Ptu vers u, il suffit de 1'€tablir pour les fonctions u (y) =y
1

et uz(Y) =y’. Or Pu = u pour tout t > 0. En effet
1

b
EX[W(t)] = 5 =./£ pt(x?y) y dy + a At(x) + b Bt(x) .

D'autre part _ -

i

b : 1
/ Pt(x,y) (y-x)2dy +f [ (t-T) + (a-x)?] A;(X) dt
0

n

&L W)-x)%] =t
a

t
+f [(t-1) + (b-x)*] B (x) dt .
0

t
D'ol [(Ptgé)(x)—uz(x)] t —;4: (t-T) [A%(x) + B%(x)] dT &

On voit bien que le membre 3 droite converge uniformément sur (a,b) vers

z€ro lorsque t tend vers zéro.



Vérifions maintenant que v(x,t) converge uniformément vers
a(t) 1lorsque x ‘s'approche de a par la droite. Il suffit de vérifier
que pour tout & > 0, v(x,t) converge uﬂiformément sur [8,c] vers
a(t) lorsque x s'approche de a par la droite. Puisque de fagon
uniforme en y, a<y <b, en t, § <§f <c, pt(x,y) et Bé(x) con-
verge vers z&ro lorsque Xx tend vers a, il suffit de montrer que de
facon uniforme sur [8,c], Jfﬂz[a(t—T)—a(t)] A%(x) dt tend vers zéro.
Ceci est vrai, parce que poug‘tout h >0, 1lim JgﬁzA;(x) dt = 0. En

xta

. | _
effet /}: A;(x) dt <A_(X) - A (x). Or iig A (x) = iig AL () =1

comme la formule (3) le montre.

La fonction v(x,t) satisfait donc au probléme posé au début

-~

de cette section. Si wu(x,t) est une solution 3 1'équation de la chaleur
sur le rectangle [a,b] x [0,c] répondant aux mémes conditions aux limites,
le théoréme 1, d'unicité nous assure que u(x,t) = v(x,t). REsumons sous

la forme d'un théoréme les derniers résultats que nous avons &tablis.

Théoréme 3.

2
La solution a 1'€quation de la chaleur 2 Ju  Jm
ot ax?

dans le rec-
tangle (a,b) x (0,c) prolongeable continfiment & [a,b] x [0,c] 3 une

distribution initiale de température uo(x) et 3 un régime de température
d la frontiére a(t) et b(t) est |

b t dA_(x)
u(x,t) =/; pt(x,YJ u (y) dy +j; a(t-1) —5-—dt

t 9B_(x)
+f b(t-1) —t—— dT1 ,
0 oT
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ol pt(x,y) dy + At(x) Ga(y) + Bt(x) Gb(y) est la loi de X(t), du processus

de Wiener issu de* x, modifié& par 1'absorption aux extrémités de 1l'intervalle

(a,b). , U

'PROPAGATION DE LA CHALEUR DANS UN PAVE DE &'

Soit § 1le produit cartésien de n intervalles finis de &,

n
Q=1 (ai,bi), soient uo(x) et uz(x,t) deux fonctions continues, 1'une
i=1
_ n
définie sur Q = _ni [ai’bi]’ 1tautre sur 92 x [0,c] de telle sorte que
1:

UZ(X,O) = UO(X) si X € 3Q. On recherche une fonction continue u(x,t)
définie sur @ x [0,c] telle que u(x,0) =u (x) si x€Q, u(x,t) = ug(x,t)
0

gi-x€ Mt E[0,cl - ot.--2 %%—= M si x€Q, t€ (0,c).

Soit x = (xl,x;,...,xn) un point de , considérons le processus
de Wiener W(t) issude x & 1l'instant O, de moyenne Xx et dont la matrice
de covariance est t fois la matrice identité a 1'instant t. Essentielle-
ment, il s'agit de n processus indépendants linéaires de Wiener
Wl(t),hg(t),...,wn(t) oll wi(t) est issu de Xy a 1'instant 0, chacun des
processus est de moyenne x; et de variance t a l'instant t. Nous modi-
fions le processus W(t) par absorption 3 la frontiére de Q. Soit T le
premier instant de sortie hors de 2, on pose X(t) = W(t) si t<T et

X(ﬁ) = W(T) si 't:>'F, Xi(t) sera la iéme composante de X(t). Détermi-
nons la loi de X(p), ce qui est aisé. Soit dy = dyl,dy'z,...,dyn un €lé-
ment de volume de &, si pt(xi,yi) dyi est 1'é1ément de probabilité que 1le

processus Xi(t) soit dans 1'élément linéaire dyi, alors 1'é€lément de pro-

_babilité que le processus X(t) soit dans 1'€lément dy & 1'instant t est

i -
= ' i =
Pe(x,y) dy = (I p (x;,7;)) dy. D'autre part si y = (¥ ,¥,5-...¥,) est
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un point de 92 qui n'appartient qu'ad une seule face extérieﬁre, (disons
que y, = a; , yj‘# ?j et yj # bj’ lorsque j # i), si dy est l'é}ément
de surface, dy = 'Qi dyj et si dt est 1'élément de temps, 1'€lément de
probabilité& que le processus X(t) atteigne 1'é1éﬁent de surface dy

durant la période de temps dt est

A 1 oA () A
oY) ay Adt = ILop (,y)) —p——dy Adt,

ol Ail)(x) est la probabilité que le processus Xi(t) ait été absorbé

par a, avant l'instant t.

Quant aux autres points de 09, ceux qui appartiennent @ simulta-

nément plus d'une face yi = a,

g ou Y = bi’ ils sont négligeables pour la

loi de X(t).

Les fonctions pt(x,y) et qt(x,y) satisfont toutes d 1'équation

de la chaleur pour y fixe.

Posons
t
v(x,t) = p, (x,y) u (y) dy +[/ u, (y,t-1) q_(x,y) dy dt .
t 0 2 T
Q 0 “93Q
En utilisant des techniques analogues d celles de la section précédente, on
vérifie que v(x,t) satisfait & 1'équation de la chaleur et se prolo;ge con-
tinGment 3 € x [0,c]; de plus le prolongement obtenu coincide avec u (x)
0

sur ' la base du cylindre t = 0 et il coincide avec ul(x,t) sur la péroi

latérale du cylindre x € 3Q et t €[0,c].

Le théoréme d'unicité permet de vérifier que v est 1'unique solu-
tion du probléme posé au début de la section 5 et la formule (1) est donc

valide pour tout pavé § de &,
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VI - PROPAGATION DE LA CHALEUR DANS UN DOMAINE BORNE REGULTER DE &

Soit © un ouvert de & et soit y un point de la frontiére
de Q, on dit que le point y est régulier (pour §), si pour tout h > 0,
%im ¢(x,h) = 0 ot ¢(x,h) est la probabilité que le mouvement brownien
ﬁféﬂ de x sorte de @ pour la prémiére fois aprés 1'instant h. On
retrouve dans Dynkin-Yuskevich, [4], une &tude de la régularité. Il y est
démontré en particulier que si la condition du cdne de Poincaré est satis-
faite au point y, alors y est un point régulier. Cette condition est
qu'il existe un cdne ouvert non-vide de sommet y situé hors de Q. On

dit qu'un ouvert est régulier si tous les points de la frontiére de

sont réguliers.

Théoreéme 4.

Soit §© un ouvert non-vide de ﬁp et soit uo(x,t) une fonction
continue bornée définie sur - Q xk{O} U 90 x fO,c], si W(t) est le processus
canonique de Wiener dans & issu de x a 1'instant 0, si Tt est le mini-
mum entre t et le premier temps de sortie du processus hors de £, alors la

fonction u(x,t) = &(u (W(Tt)’ t—Tt)) satisfait 3 1'€quation de la chaleur
[ .

dans @ x (0,c).

Démonstration:

Soient X EQ et t € (0,c), la variable aléatoire a valeur dans
+1 ’
& , (W(Tt)’ Tt) induit une mesure sur le cylindre 92 x (0,c) U Q x {t}.

Désignons par u_ _(y) la restriction de cette mesure 3 Q x {t} ol vy

t,x
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parcourt { et vx(y,r) la restriction de cette mesure 3 99 x (0,c) ol
y €9 et TE (0,c). Soit Q wun pavé ouvert contenant x, dont 1'adhé-
rence est contenu dans {2, décomposons les trajectoires du chaos de Wiener
selon le temps U de la premiére sortie hors de Q et posons Ut = min (U,t)
La variable aléatoire (W(Ut), Ut) induit une mesure sur 9Q x (0,c) UQ x {t}.
Cette variable admet la densité pt(x,y) dy sur Q x {t} et la densité

’

qT(x,y) dy dt sur 9Q x (0,t). D'ol

' t
due () = p (x,y) dy +// Qp_ (Y1) du, o, () dy? dt
> 0 E)Q H

pour y € Q. Il est sous-entendu ici que pt(x,y) =0 si yé&Q.

T
d\)x()’,T) =/;j;QqT_T:(X,Y') d\)y' (}’:T') d}" dt'

pour y €932 et 0 < T <t. Evaluons 1'espérance v(x,t) de uo(W(Tt), t—Tt)

da 1'aide des formules précédentes.

v(x,t) = &u (W(T,), t-T,))

t
[Q u G0y di, 032 +[0j;9uo (v, ) dv (y,t-1) dt
=/ u (y,0) p,(x,y) dy +/f[qt £ Xe¥') B (y50) dy () dy’ dr
ffffth(xy)u(y,w'r)dv (y,t') dy' dt' dw .

Ceci a €té obtenu aprés avoir change 1'ordre dans les intégrations successives

i

et aprés avoir fait le changement de variable w = T+T'.

Lés calculs de la section 5 permettent alors d'affirmer que v(x,t)

est une solution @ 1'équation de la chaleur.
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Comme corollaire, on obtient que la formule (1) de la section 3
est valide lorsque esf un ouvert borné régulier. En effet, si u(x,t)
est la solution de 1'€quation de la chaleur et v(x,f) est la solution de
1'équation telle que décrite précédemﬁent, la régularité de Q donne que

lim v(x,t) = u(y,t) si y € 9Q. Le théoréme d'unicité pour un ouvert
>, G
borné donne que u = v.

Pour &€tablir que la formule (1) de la section 3 est valide pour
n
un ouvert quelconque de & , on utilise une suite croissante Qn d'ouverts
bornés réguliers dont la réunion donne . Nous laissons au lecteur le soin

de vérifier les détails.

LE CARACTERE SPATTALEMENT ANALYTIQUE DES SOLUTIONS A L'EQUATTON DE LA CHALEUR

Comme Hilbert'1'avaitpressentidans son 19&me probléme présenté au
deuxiéme congrés international des mathématiciens en 1900, toute solution a
une €quation aux dérivées partielles du type elliétique a coefficientsranaly—
tiques est analytique. De plus, une €quation aux dérivées partielles 3 coef-
ficients constants qui n'est pas du type elliptique admet des solutions
non-analytiques. On retrouve ces résultats dans Hormander, [5], par exemple.
Ljéquation de la chaleur est du type parabolique. Ceci nous assure que toute

< 2 = . . ~
solution de classe C est de classe C , mais aucune garantie n'est donnée

sur 1'analyticité d'une telle solution.

" "Théoreéme 5.

-

Si u est une solution & 1'&quation de la chaleur dans 1'ouvert
e L . . _
de , € x (0,c), alors pour tout t de (0,c), la fonction x - u(x,t)

est analytique dans £.
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Démonstration:

Soit x  un point donné de {2, considérons un pavé ouvert Q de
& ot x€ Q, 6 C Q, quitte 3 considérer plutdt la fonction v(x,t) = u(x,e+t)
oi € > 0, on peut supposer que u est uniformément continue sur Q x (0,c). Y

Puisque
t
u(x,t) =“/ﬁ p, (x,y) u (y) dy +_/r-/r u, (y,7) q.__(x,y) dy dt ,
Q t 0 0 Jaq 2 t-T

pour vérifier 1'analyticité de x - u(x,t), il suffit de trouver un ouvert
Q, de Cn, des prolongements ahalytiques a Q, des fonctions x = pt(x,y)

et x> qt(x,y) de telle sorte que Q C Q,,

sup {|p, (z,Y)]:z €Q,, y €EQ} = G(t) < =

Sup {|qt(z,y)|:z € Q,, y € 30} = h(t)

e
alors que—/r h(t) dt = H(c) < o, Ces majorations seront d'autant plus utiles
0

qu'elles permettront de majorer le module du prolongement analytique de u(x;t)

Qi luC, )| < G(E) V(Q lu I, + H(t) S(Q lugl, od

Q7

V(Q) est le volume du pavé Q,

S(Q) est la surface de la frontiére de Q.

Attardbns-nous d'abord au cas n = 1. Revenons aux formules (Zj et .
(3') de la section IV. La sérié a droite dans la formule (2) converge pour
toute valeur complexe de x et de y, il y a convergence uniforme des séries
si y-x varie dans un compact du plan cqmplexe. pt(x,y) admet donc un pro-
lqngément analytique & € x €. Majorons cette fonction ainsi prolongée. Si
z=p+ic ol pe® oER,

Ie_(2+2n)2 /2t | < eO'2 /2t e—(p+2n)2 fat
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Si on fait varier z dans le rectangle |Re z| <& et |fm z| <eg, on

aura pour tout y € R,

A 2
§ €°/2t
= =2

De méme le membre de droite dans la formule (3') est une fonc-
tion entiére de x. D'ol on peut prolonger analytiquement 3 tout le plan

complexe, la fonction qt(x,a) = Aé(x).

q,(z,a) = ] (2nt3)_%(2n(b-a)+a_z) o~ (z-a-2n(b-a))* /2t .

Nn=-c
Quelques calculs d'inégalités font voir que

B
§ (e2-6%)/2t
<
la (z.a)| <= e .
c
Pour le cas n = 1, il suffit que € < § pour que-/r [qt(x,y)l dt < +» et
: 0
1'on a bien que Ipt(z,y)| pour t fixe est uniformément bornée pour y € &

et |Re z| <&, |tm z| <e.
Revenons au cas de ﬁp, si
Q, ='{(zl,zz,...,zn)|zi € C, |Re Zil <§ et |fm zi] Se, Aw L 3..m)

on peut trouver une constante ne dépendant que de § telle que pour tout
y € Q et pour tout z € Q,

-n/2 +ne? /2t
Ipt(Z:Y)l <A6 t / € n / *
De méme

2
fa,(z,y)| B t™2 -1 glne-87)/2t -

c
Si 1'on choisit € pour que € < &§/v/n alors]r Iqt(z,y)l dt. % e,
0
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VITT - PROPRIETES DU NOYAU p, (x,y)

AN

Nous désirons dégager certaines propriétés du noyau p?(x,y),
ol pg(x,y) dy serait 1'élément de probabilité que le mouvement brownien
parti du point x a 1'instant O demeure dans §, dans 1l'intervalle de

-~

temps (0,t) et soit localis€ & 1'instant t dans 1'élément de volume

dy.

Théoréme 6.

7 Soit § un ouvert de ﬂp, si W(t) est le processus de Wiener
dans & issu d'un point x de © & 1'instant 0, alors il existe une
fonction continue (x,y) - pt(x,y) de © x Q dans & telle que pour
toute partie mesurable A de K,

Pr [W(T) €Q, T € (0,t), W(t) € Al =f pt(x,y) dy .
A

Démonstration:

Considérons les trajectoires browniennes issues de x 4a 1'instant
0 ayant sorti hors de § dans 1'intervalle de temps (0,t), décomposons
ces trajectoires en se servant d'un pavé fixe Q ol x €Q, Q € 2. Notons
par T1 le_Premier temps de sortie hors de Q, par Y, 1'endroit de cette
sortie, par T2 le premier temps de sortie hors de § et par yé 1'endroit
de cette sortie. Si T est le premier temps de sortie hors de £, on peut

définir la mesure suivante sur ﬂp:
v, t(A) =Pr [T < t, W(t) € Al

, ~ly-y, 1?/2(t-1 )
(x,y ) quz =3 W, ¥, ) ©

[LTLLE
= dy dy dt dt dy .
A70 ofasz 3Q [2ﬂ(t—T2)]“/2 PR,
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Cette formule de représentation permet de voir que L admet une dérivée
b
’ . " . i i
de Radon-Nikodym qui soit une fonction continue ¢t(x,y):Q X & -+ ]
Comme W(t) suit une loi multinormale de moyenne x et dont la matrice
de covariance est t-fois la matrice identité&, alors
1 e—||y—xl|2/2t

pl(x,y) =
t? (2ﬂt)n/2

- v . (xy) . g

Théoréme 7.
Si fk(x,y,t) est le résultat de 1'intégration sur le domaine Qk

k
de ﬁp de la fonction

,
_nk/2 k;ll e_Ilyi-yi_lll / (2t/k+1)

[ 27t /k+1] s

ol y = X, Yie1 = Yo alors pour tout x de £ et tout y de K,
1in £, (Y1) = Py (x,Y)
k-)m k 3 3 t 3 3

la convergence est uniforme lorsque x et y varient dans un méme compact de .

Démonstration:

On remarque d'abord que

-n/2 e—“y—xﬂz/Zt )

0 < fk'(x,y,t) < (2mt)

Regardons fk(x,y,t) comme une fonction définie sur &" x ], posons

~

Vk(z,t) = fk(x,y,t) ot z = (x,y), vy satisfait 1'€quation de -la chaleur
ka .

4 =g Avk oi A est le laplacien dans & . Soit 0 wun ouvert de &

oi x€0, y€oO, 0 est une partie compacte de & et soit € > 0. Sur

le domaine 0 x 0 x (g, %J, les v, sont toutes des solutions uniformément .

bornées a 1'€quation de la chaleur: il existe une constante M telle que

(VK WX € 0) vy € O Wt € (e, 1) £ (x,y,t) <M.
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La démonstration méme du théoréme 5 nous assure que les fonctions vk(z,t)

se prolongent analytiquement sur un domaine U x (-g, %) ne dépendant pas
de k, oi U est un ouvert de " et tel que la trace de U sur &8"

soit 0. On sait de plus qu'il existe une constante M' telle que

Ivk(z,t)l <M si z€U, t € (e, %ﬂ; Or on sait que toute famille de
fonctions analytiques uniformément bornée sur un ouvert donne une famille
équicontinue de fonctions. Ainsi la famille de fonctions (x,y) - fk(x,y,t)
est relativement compacte. Montrons qu'elle n'admet qu'un seul point d'accu-

mulation. Soit Wl(x,y) et Wi(x,y) deux fonctions différentes telles que
1

Wt et Wi soient des points d'accumulation de ’{fk}:_l. On peut trouver un

pavé Q de 9, Q€ Q tel que

wi‘t(x,y) dy # quzt(x,y) dy .

or wi‘t(x,y) dy

lim Pr [W(=t) €0, 1<i<k et W(t) €ql
k._)m k+1
kKEA

Pr [W(T) € Q, 0 < T < t, W) €]

;jr Wi(x,y) dy vaut cette méme probabilité, ce qui est contradictoire. Ainsi
Q .
fk(x,y,t) converge vers pf(x,y) et ceci de fagon uniforme sur K x K ot K

compact de  (x €K, y € K, 't fixe).

Théoréme 8.

Q BRY
Pt(X,}’) pt(y,XJ "

La fonction pt(x,y) est une fonction définie positive sur Q.
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Démonstration:

Un changement d'ordre d'intégration dans 1'évaluation de fk(x,y,t)

donne que fk(x,y,t) = fk(y,x,t) d'oti p?(x,y) = p?(y,x). De méme,
'/Q‘fk_l(xazxt) fk_l(z:y,t) dz = f2k—1(x’y’,2t) >

. ‘ Q Q
d'oli PZtCX,)’) =[ pt(x,Z) pf(z,y) dz .
Q

Finalement, soit {Xi}§=1 k points de Q et soit {ci}]f_1 des nombres

complexes, alors

Kk .
%1351 ©165P¢ (X3 :%;) Z/g; 1%y 5Ly CiC5Peya(X30?) Pyyp (%) dz
k k _
=f52 121 3E CiC5Pr/2(Xi0?) Pyyp(xy.2) dz
k 2
=£ 5 CiPpyasm)| 220

Théoréme 9.

Soit £ un ouvert de @p, alors il existe un ouvert , de Cn,

une suite de fonctions analytiques définies sur Q. '{uk(z)}:;o et une

suite de nombres positifs .{Xk}:;o tels que
a) Auk(z) = -Ak uk(z),

b) {uk(x)};;o forment une base orthonormale de £?(Q),

-2_6
c¢) pour tout & > 0, e T < 4o

3

M8
o

n

5 —Ant
' X
d) +Zo e

vers pt(x,y),.

un(x) un(y) converge uniformément en x et en y sur
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e) 1la trace de Q, sur ﬁp est Q,

*

\

f) si a est un point régulier de 9Q alors pour tout k 1lim uk(x) =0,
b ia g
; ! P xeﬁ’ .
si de plus § est connexe et si les An sont ordonnés par ordre crois-

sant, alors u (x) ne s'annulle pas sur £ et y est donc de signe
0

constant.

Démonstration:

’

Pour une valeur t > 0, utilisons la théorie de Fredholm pour

1'opérateur intégral

£~ f Py 0uY) £0) dy = () ()
Y/

. 2
“n/2 e—"y—xHI/Zt’ ko

Le noyau pi(x,y), puisqu'il est majoré par (2mt)
noyau de Hilbert-Schmidt lorsque  est de volume fini, c'est-3a-dire que

Jf (p?(x,y))z_dx dy < +o, Puisque le noyau est symétrique; le spectre
d221§2pérateur Pt ést situé a 1'intérieur de 1'axe réel.  Puisque le noyau
est défini positif, on peut méme dire que le spectre est contenu dans [0,«].
Nous allons montrer que le spectre est effectivement contenu dans 1'inter-
valle semi-ouvert [0,1). En effet si u est une valeur spectrale supérieure
ou égale a 1; on peut trouver une fonction de carré sommable ¢(x) telle que
fQ ©*(x) dx # 0 et /Q' p‘t’(x,y) e(y) dy = po(x). Si ¥(x) = le(x)],
J/ﬂ p?(x,y)'W(y) dy 2 u ¥(x) 2 ¥(x). D'autre part, si Q est de volume fini,

Q
il est impossible que presque toutes les trajectoires X(t), 0 < T < t, du

mouvement brownien issu de x soient situées dans {, -/f pt(x,y) dy <1
Q

pour tout x de Q. Ainsi




e

[ veo dx<ffpfcx,y) ¥(y) dy dx ff pe(y,x) ¥(y) dx dy
194 Q-0 2 -Q

<f‘1’(y) dy .
Q

Ce qui donne une contradiction.

On peut donc trouver une suite de nombres de [0,1), L et
E

une base orthogonale {un,t(x)}n=0 telles que

Q -
'/Q»pt(x,y) un,t(y) dy = H 4 un’t(X)

et pour tout y, {u

H = p} forme une base orthonormale de {f:Ptf = ufl.

n,t 0t

Sans perte de généralité, on peut supposer que les un(x) sont continues sur

Q. = " . - = - =
Posons u =u ; puisque PSPt Ptps P et Ant log un,t, on

n, t+s
Iy _)‘*ns 4 %
peut se convaincre que Psun = e u . Vérifions maintenant que

{f:Ptf = 0} = {0}. Si f est une fonction telle que.lghfz(x) dx # 0 et
Ptf = 0, alors on peut trouver une fonction continue 3 support compact dans £,

g(x), telle que J/‘g(x) f(x) dx # 0. On a que Pf=0,0<t <c. D'ol
’ Q
J[‘J/—g(x) p?(x,y) f(y) dy dx = 0, 0 < t Sc. D'autre part la fonction
QJQ
v(x,t) =-/r g(y) pt(y,x) dy satisfait a 1'€quation de la chaleur et
A ,

lim v(x,t) = g(x),
t~>0

1im [/g(x) ps,z(x:y) f(y) dy dx =f gly) f(y) dy # 0,
t¥0 Jq Jo Q , ‘

ce qui donne une contradiction.

Pour &tablir la partie d) de 1'@noncé du théoréme, déterminons
d'abord une majoration grossiére de un(x). Soit ¢§ un nombre tel que

Q 2,8
26 < t: pr(X’Y) un()’) d)’. = e Un(X),

Q 1

é (w, ) dy)

lns . Q 2 :
lu )] <e (/;(pdu,y)) dy)
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vu 1'inégalité de Schwartz. Or

foraan e [ afun o< en™ (fsz dy)

(car pylx,y) < (2m8) ™2

A8 :
lu ] <e® (2n8) ™2 dy | .
n
Q

). D'ol

-2t
[ee]
D'ol 20 g un(x) un(y) converge uniformément sur  x @ par le criteére
il =
[ee]
de Weierstrass. D'autre part, ZO e T un(x) un(y) au sens de £2(Q) est €gal
n= .

- =A%
Tu () u ).

a p?(x,y). D'ol pg(x,y) est égal presque partout a nEO e

La continuité de (x,y) = pg(x,y) €établit que
-2t

S n _ 0
oip ¥ W08 m ) = (Y)

Pour la partie e), on sait que

o IhE " ,
L. " =[/ (p, (x,y)) dx dy .
= Q70

w A6
D'oli, pour tout & >0, X e T < 4w,

n=0

Remarquons maintenant que p?(x,y) sont des solutions @ 1'équation
de la chaleur qui se prolongent analytiquement sur un ouvert § _x Q, ol

est un ouvert de ¢" dont la trace avec & est Q. On peut donc prolonger

analytiquement & §, 1les fonctions uk(x); ‘uk(z) = eAkt_/r pt(z,y) uk(y) dy. '
Q
Akt
Bu, (z) = e /s; A p, (z,y) w (y) dy
At
- e k‘fg 2 p ) u o dy,
. oo B At |
mais 0 = 5E'(e .Ag pt(z,y) uk(y) dy)
ML s '
= Ay (z) +e [9 3¢ P (Z5Y) vy (¥) dy
ainsi Auk(z) = —Akuk(z)
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Pour obtenir la propriété f), on observe que

. At
ly, )] <e ™ Iul, ( l; p, (x,y) dy) N

or lim'jf pQ(x,y) dy = 0, d'oll 1a conclusion f).
. pha t
xEN

Si §f est connexe, on sait que pt(x,y) > 0 pour tout x et
tout y de , ceci est suffisant pour assurer que la plus grande valeur
propre est de multiplicité simple et que la fonction propre qui lui est

associée ne change pas de signe. i3

Introduisons»quelques notations. Si {Ak}:;o est la suite ordon-
née par ordre croissant tel que décrite dans le théoréme 9, et si les uk(x)
sont les fonctions ?robres associées, si f E.£?(Q), 1'harmonique fondamentale
de f sera la premiére valeur Ak telle que./r f(x) uk(x) dx # 0.

oo

6%y = A]f=u u (x) u ().

sera appelé 1l'ensemble des harmoniques de . Nous poserons

Théoreéme 10.

Soit f(x) wune fonction de carré sommable sur £, oi N est un
n
ouvert de mesure finie sur ®& . Alors la fonction u(x,t) =_/r pf(x,y) f(y) dy
_ Q
est une solution @ 1'équation de la chaleur qui est analytique en x et en t

pour x€E€Q, t > 0. Si p est l1'harmonique fondamentale de £f(x), alors

lim u(x,t)'e+ut =.jrcﬁ(x,y) f(y) dy de facon uniforme en x. A
Q

£t



.25

IX - REFROIDISSEMENT D'UN OBJET CONVEXE

Si _f(xj est une fonction intégrable sur §, nous dirons que
u(x,t) =-/f p?(x,y) f(y) dy décrit le refroidissement de 1'objet  dont
la distrigztion initiale de température est f(x) & 1'instant 0. Nous
€tablirons une propriété de convexité du refroidissement d'un objet lorsque

celui-ci est convexe.

Théoréme 11.

Soit © wun ouvert convexe de Gp, alors pour tout t, la fonction
(x,y) » pf(x,y) est logconcave, c'est-a-dire que la fonction log pg(x,y)

est concave.

Démonstration:

Reprenons la notation de 1'énoncé& du théoréme 7. I1 suffit de mon-
trer que le loéarithme de fk(x,y,t) est ‘'une fonction concave de (x,y).
Or ceci est vrai 3 cause d'un résultat de Borell, [2], que nous citons:
nsi £:& x &1 > [0,), si g:ﬂg x @ > [0,9) de telle sorte que log f

et log g. soient des fonctions concaves,. alors la fonction

10g(f f(x,2) g(z,y) dzl
gl . -

est concave sur 1l'ensemble convexe ol elle est finie'". On applique ce résul-

tat pour les fonctions
2
: olxyl?/2e/0e) g
‘pi(X,Y) = . '
si yé&a.

‘ k+1 :
La fonction de (yo,yk+1), J[-...J[.igi wi(yi,yi_l) dyldy'z.,.dyk est logconcave.
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Théoreme 12.

Soit € un ouvert convexe de ﬁp, soit f(x) wune fonction logcon-
cave et intégrable sur {, alors la fonction x > u(x,t) =-}r p?(x,y) f(y) dy

Q
est logconcave.

Démonstration:

Les fonctions (x,y) > p?(x,y) et (y,z) > f(y) sont logconcaves.
Le résultat de Borell qui vient d'@tre cité& montre que la fonction u(x,t)

est logconcave selon Xx.

Corollaire:

-~

La fonction propre positive ub(x) correspondant a la plus grande

harmonique du domaine § est logconcave. En effet

u (x) = lim e+Atq/ﬂ p. (x,y) dy
0 t-oo Q t

oi A est la plus grande harmonique de Q. T

iR

Théoréme 13.

n
Soit £ un ouvert convexe borné de & , soit f(x) une fonction
logconcave sur £, si u(x,t) =‘/i p?(x,y) f(y) dy, alors la valeur
: Q

Mt = sup{u(x,t):xGEQ} est atteinte en un seul point X, de Q.

Démonstration:

L'ensemble des x tels que u(x,t) = Mt est Un convexe. Si ce
convexe n'était pas réduit d un point, il contiendrait un segment S. Or

la fonction wu(x,t) est analytique sur , d'old u(x,t) prendrait la valeur



Mt sur tous les points de § alignés avec le segment de S. Soit a un

point de la frontiére de § aligné avec S. a est un point régulier de

o2. D'ol .
. < s -
Lim u(x,t) < I£l_ ,{i’;‘fgpx("’y’ dy = 0
xEN
Ceci donne une contradiction. g7
Remarque:

L'argument employ&, 1égérement modifié€, permet d'établir que la

x -0 .
fonction (x,y) > pt(x,y) est strictement logconcave.

Nous nous attarderons maintenant au refroidissement d'un objet de
& qui est a 1'instant initial 3 une température constante, nous prendrons
cette constante €gale a un. Soit ‘gg(i,t) =-4; pg(i,y) dy. Nous voulons
étudier cette distribution de tembérature pour de petites valeurs de t.
Citons d'abord une minoration simple suffisamment exacte de gg(x,t) lorsque

2 est convexe.

Théoréme 14.

Si § est un ouvert convexe borné. de ﬁp, si x € Q, alors

2
g O, 1) > 1-2f R e WA
afl-ﬂ s 5 e _‘ »

Démonstration:

Désignons par h(x,t) 1la probabilité qu'un vecteur multinormal
de moyenne x, dont la matrice de covariance est tI, I &tant la matrice
identit&, soit hors de , posons ¢(x,t) = g(x,t) - 1+2h(x,t). La fonction

¢ satisfait a l'équafion de la chaleur et est du type B. Si x € Q,
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lim ¢(x,t) = 0 et si a € 30, 1lim¢(x,t) =20 car h(a,t) =] pour tout t,
t¥0 x+a

Par le principe du maximum, ¢(x,t) = 0 pour tout x de et pour tout t.

Nous dirons qu'un ouvert  de & admet une fronti&re uniformé-
ment différentiable s'il existe une fonction N:9Q + & telle que pour tout

X € 39
a) IN)I =1,
b) pour tout € > 0, il existe un &§ > 0 tel que
{y € a|lly-xll < 8} C {y]|<y-x, N(x)>\$ - lly-xI}
et Lylly-xl < § et <y-x, N(x)> > € ly-xI} €@ .
Théoréme 15.

Si Q est un ouvert borné de & dont la frontiére est uniformé-
ment différentiable, alors lorsque t tend vers zéro, 1 - gQ(x,t) est

asymptotique &

2
an mt)y ™2 ly=xIT/2t 4
/-9

et 1'asymptoticité est uniforme sur Q.

Démonstration:

L'argumentation sera semblable d celle du th€oréme précédent.

Posons donc

. i - 2
h(x,t) = j‘;n (amty 2 oyl /2t
: Q

-

et p(x,t;k) = g(x,t) - 1+kh(x,t) .
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Nous allons montrer que si k > 2, alors il existe un nombre tk >0 tel

que ¢Y(x,t;k) >0'si x€E€N et 0< t< tk. On remarque que

¢ (x,0;k) = %18 ¢(x,t;k) = 0.. Soit x € 3, choisissons d'abord un € > 0

tel que si Ce(x) = {y|<y-x, N(x)> < -e ly-xll} alors

2
.jf (zﬂt)—n/Z e—"y-x" 12t dy » %_.
C.(x)

On peut remarquer que ce choix de € ne dépend pas de la valeur particuliére
de x ni de celle de t. Soit le § > 0 correspondant d la valeur € > 0
par la définition méme de différentiabilité uniforme de la frontiére de Q,

si BG(X) = {y|lly-xll < 6}, alors on peut trouver un t, tel que pour tout

k
t € (o,tk) .
-n/2 e—"y-x" 12t ;

(2mt) dy > X

C E(X)OBG (x)
D'oli si X € 3R et si t € (O,tk), alors kh(x,t) > 1 et ainsi ¢(x,t;k) > 0.
Par le principe du maximum, nous obtenons que ¢(x,t;k) 20 pour x € Q et

t e (o,tk).

De la méme facon, on montre que si k < 2, alors il existe un nombre

t, tel que ¢(x,t;k) S0 si x€Q, t € (0,t De sorte que

k k)'

1 . gQ(X,t)

1im =1

et cette convergence s'effectue uniformément en x.

Le prochain résultat nous dit qu'une petite source de froid proche
se fait plus sentir qu'une grande source de froid €loignée durant un inter-

vvélle de temps (0,€).
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Théoréme 16.

.

Soit x wun point de . Gp,‘soit R >0, si K ' est un compact de
{y|ly-xI < R} dont 1'intérieur n'est pas vide, si K, ~est une partie fer-
mée de {y|ly-xIl =R}, si Q = ﬂn-Kl, Q = ﬁn—Kz, alors gq (x,t) < gq (x,t)
lorsque t est suffisamment voisin de 0. De fagon plus pr;cise, si ;y(r)
est une boule contenue dans K ol p = R-|ly-xll-r > 0, alors il existe un

< e .
nombre tr,p,R tel que ggl(x,t) gQZ(X,t) lorsque t (O’tr,p,R)

Démonstration:

Soit y un point de & et p un nombre tel que ly-xll + p <R
et F = {z|lz-yl <p} C K . Posons aussi = {z|lz-xl = R}, 9: = GP—FI,
= Gp—Fz. On a que gq (x,t) < gQ*(x,t), *(x t) < gQ (x,t). Faisons

1 1 :

appel au théoréme 15 pour montrer que Q,,((x t) < g % (%, 1) pour tout t

N~ x" /2t

suffisamment voisin de 0, il suffit d'etabllr que Jé: est

hz-xI® /2t :
petit par rapport ﬁﬁ/r i ke dz et ceci sur un intervalle 0 < t < €,
F

1

Si N est assez grand, on peut trouver N boules, BI,B R

3 N de rayon p

dont les centres sont situés sur la sphére {z|lz-xlI = ly-xI} telles que ’LE B,
1:
recouvre une couronne sphérique '{zlr < flz-xll < } Si j est un entier

non-négatif, si 1 < i <N, soit Bij la boule qui est 1'homothétique de la
T

boule Bi’ 1'homothétié utilisée €tant de centre x et de rapport cj = %—(;%53:
N o 1
Ainsi F € U U B.. et
2 i=1 j=0 1)
2 2
2 -5 haixl f2¢
/’ (me) ™2 laexlT /2t g, =/‘ (Zﬂzt)—n/z . 3 P
B: . B. o
1) 1 J
. i 2 2
4 2 - -c:llz-xII" /2t
J/‘ (zﬂt)—n/z e—“z—x"(/Zt dz N I J[.Cp e 3
F | =0 4g 4
Rt = 4 < 1

2 2
f (amt) -2 glzxl /2t g [ lz-xI® /2t
F1 F

1
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Si a = inf {llz+xl:z €F }, on a que

2 2
N -c.a" /2t 2
R <N %Io e I o /2t.

t " j=0 j

On voit que %13 Rt = O s

Soit §© wun ouvert borné de ﬁn, le hayon internieur de §  sera
par définition r, = sup inf {ly-xl} et le centre de Q sera
2 ye XEQ &
. . - 4 ; . :
{y1;2§2{ﬂy x|'} rQ}. On dira qu'une famille de parties de > {A(t)}t>0
est absonbée par une partie B de &" lorsque t tend vers zéro si pour

tout ouvert 0 contenant B on peut trouver un & > 0 tel que A(t) £0

lorsque t € (0,6).

Théoréme 17.

Soit @ un ouvert borné de & tel que tous les points de la
frontiére de § sont adhérents 3@ 1'intérieur du complémentaire de §, dési-

gnons par
C(t) = {x|gy(x,t) = sup {gy(y,t)|y € 01},

alors lorsque t tend vers zéro les C(t) sont absorbés par le centre de K.

Démonstration:

Soit 0 wun ouvert contenant le centre de £, on se convainc que ce
t . I‘Q—I"
centre est compact et que r' = sup inf {ly-x[} < T Soit € = ——y o
: : YEO xEQ

peut recouvrir la frontiére de § par un nombre fini de boules Bl’Bz""’BN’
de rayon €. Dans chacune de ces boules, Bi’ on peut trouver une boule, bi’

de rayon Ps telle que b, NQ =9, bosons P = min'{pi}. Choisissons un
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point X~ appartenant au centre dg Q et soitv x, un poiﬁt situé hors
de 0. Soit T +le rayon de la plus grande boule de centre X, cdntenué
dans , on peuf trouver un point y, de la frontiére de Q dont la dis-
tance a X est Egale a r,. Dans la boule de rayon 2€ centrée en y, ,
on peut trouver une des boules b:.1 dont le rayon, on le sait, dépasse p.
Dans la boule de centre X, de rayon T+ 2e, on peut donc trouver une
boulé b de rayon p située 3 1'extérieur de . On remarque que

r + 26 ST, - 2e. Si nous utilisons le théor&me 16, nous voyons que nous
pouvons trouver une valeur & > 0, 6' ne dépendant que de 0 et non de

x, et de X, , telle que gQ(xz,t) < gg(xl,t) lorsque t < §. D'ol

1

C(t) €0 si t < 8. Ft

EXEMPLES

Considérons le refroidissement de quelques objets convexes 2 de
ﬂn. On sait maintenant que la fonction x -+ gg(x,t) atteint son maximum

en un seul point X, - Si u(x) est une solution i 1'équation de Helmholz,

Au = -2Au oti u(x) >0, lim u(x) = 0 lorsque a € 3Q et si x_ est la
x>a
position du maximum de la fonction wu, alors 1lim Xy = X On sait d'autre
-t

part que lorsque t. tend vers z&ro .{Xt} est absorbé par le centre de Q. i

Si @ est symétrique par rapport a un point a, on obtient que

x, = a pour tout t. De facon plus générale, supposons que A est une

transformation orthogonale de & telle que A(f2) = @, on obtiendra que

A(xt) = xt.*’Si Zg est la totalité des transformations orthogonales de

& laissant Q invariant et si Fq = {x|Ax = x VA € Zh}'>est 1'ensemble

des points fixes communs a ZQ, on a que X, e FQ pour tout t..
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Si © est un simplexe de ﬂn dont tous les cdtés sont €gaux,
on aura que X  est toujours le barycentre du simplexe. Si @ est un
polygone régulier dans le plan, X, est toujours le centre de . La

méme conclusion tient pour un triangle de Reuleaux, etc...

Intéressons-nous maintenant 3 une situation ol les points X,
varient en fonction du temps. L'exemple le plus simple a& imaginer est

1'étude du refroidissement d'une plaque dont la forme est celle d'un trian-
gle rectangle isocéle. Prenons donc pour ='{(xl;x2)|x1>0,x2>0,xl+x2<1}.

. 2 - : s
On obtient une base orthonormale de £ (Q2) en utilisant des solutions a

1'équation de Helmholz Ap = -)p;
1 (x ,x ) = 2(sin mmx sin nmx_ - (-1)m+n sin nmx_ sin mmx_) .
m,n 1°72 1 2 1 2

D'oli, le noyau de la solution 2 1'€quation de la chaleur

20u _ ?u  d’u
+

ot 02 ax?
1 2

sera
2 2 2
. _ -m"t(m" +n")/2 .
P ((x »x ), (v Y, )) Oqul e . wm’n(xl »X) ‘Pm,n(yl »Y,)

2. -t (m?+n?)/2
D' = . : 8

ke gQ(X1’x2’t) 0<m<n m,n = wm,n(xl’xz)
ol am,n =JA; wm,n(yl,yé) dyldyi. La position x(t) = (xl(t),xb(t)) ol la

fonction (xl,xz) > gQ(xl,xz,t) atteint son maximum est sur la bissectrice

X =X des axes cartésiens. Lorsque t tend vers zéro, x(t) converge
1

vers le centre du cercle inscrit du triangle. Ce centre a pour coordonnées

cartésiennes (1 —'%? , 1 - !25. Lorsque t tend vers 1'infini, x(t)

converge vers la position du maximum de la fonction

(sin ﬂxl~sin 21Tx2 + sin 2mx sin mx ) .
1 2
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Ce point est (c,c) ol c = —11? arc cos\/% = 0.3041. Or 1 - "/fi' vaut 0.2929
a 107 prés. Ces deux derniers nombres différent donc par un centiéme

seulement.
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