POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE =50

PolytechniqUe Montréal D'INGENIERIE

Titre: Generation of body-fitted coordinates for cascade computations
Title: using multigrid

Auteurs:
Authors:

Date: 1979
Type: Rapport / Report

Ricardo Camarero, & Mohamed Younis

Référence: Camarero, R., & Younis, M. (1979). Generation of body-fitted coordinates for
" cascade computations using multigrid. (Technical Report n°® EP-R-79-23).

Citation: https://publications.polymtl.ca/6008

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) o
PolyPublie URL: https://publications.polymtl.ca/6008/

Version: Version officielle de I'éditeur / Published version

Conditions d’utilisation

Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: 79 53
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/6008/
https://publications.polymtl.ca/6008/

BIBLIOTHEQUE

JUIN 27 1979

ECOLE POLYTECHNIGUE
MONTREAL

Rapport Technique EP79-R-23

Classification: Library of Congress no

GENERATION OF BODY-FITTED COORDINATES
FOR CASCADE COMPUTATIONS USING MULTIGRID

RICARDO CAMARERO AND MOHAMED YOUNIS

May 1979

Ecole Polytechnique de Montreal

CAZPQ
UPL
79R23

Campus de |'Université
de Montréal -
Case postale 6079

Succursale A’
Montréal, Québec
H3C 3A7







-h‘)//

BIBLIOTHEQUE

JUIN 27 1979

ECOLE POLYTECHNIQUE
MONTREAL

GENERATION OF BODY-FITTED COORDINATES FOR CASCADE
COMPUTATIONS USING MULTIGRID

RICARDO CAMARERO
MOHAMED YOUNIS

AL COHSULTER
SUR PLAGE

MAI 1979

— BT Sy



1. INTRODUCTION.

TABLE OF CONTENTS

.............................................

2. THE TRANSFORMATION OF COORDINATES........iiiiiiiiinnnnn.

3, CHOICE OF A NUMERICAL SCHEME. ¢ ccovovnavesassemnsssnasssss

Bl DISCTEtIZALTION . o st o ® 96w s e 50008 80 56 &G0 5 & & o 50e 508 s

32 The Multierid MOTHOT . 56 o s mm s s miemmosi oo e s w s wes o s

4, RELAXATION SCHEMES. . s'conms s ansionsmn siowisns ias sssssss s e s

4.1 Point SOR
4.2 Line SOR.
4.2.1 SOR
4.2.2 SOR

---------------------------------------------

.............................................

implicit by COLUMMN.s v« wuiwne e s v inees waw s

IMPLICIE BY FOW« o s wimm v o mm oowm s o mmme e sms e

4.2.3 Direction of relaxation SWEEP...ecevecencsssscnn

4.3 Cases studies and COMPATISONS. ¢« s sni sonssonsssossssss

5. THE MULTIGRID

192 IO B B 2 B ¥ ¥ B V|
N OO AN

REFERENCES......

METHOD s smwo ans 56600 00w 6 5 nd 5050 o e a8 @ooai

The full approximation mode of multigrid..............
Correction equation for point with multigrid..........
Correction equation for line SOR with multigrid.......
Correction equation for row SOR with multigrid........
Applications: General considerations..................
Applicdtions: COMPATISONS w i e i s wiuis s s semsisd wearainss o

Applications: Coordinate stretChing...ceececeosnaseses

.............................................

---------------------------------------------

ii

page

11
11
12
13
14

16
16
18
19
19
20
22
23

25

26

to 47



1. INTRODUCTION

The governing element in the solution of a boundary value
problem is the treatment of the boundary conditions. This is par-
ticularly important in numerical computations where discretization
errors are introduced in the approximation of the boundaries. If
these are not adequately treated, the errors arising there will
spread and affect the entire computational domain. Numerous examples
are available in the field of computational fluid dynamics, where
such inadequate treatmeﬁt of boundary conditions yield a poor solution.
This is particularly frequent in practical engineering problems where
complex geometries make it difficult to represent accurately the
boundaries. A typical approach consists of representing a complex
domain by a rectangular grid. Such an example for the type of problems
investigated in this study is illustrated in Fig. 1. It is seen that
near the boundaries, some grid meshes are intersected by that curve.
Thus the numerical representation of these point cannot be carried out
with the same scheme as for interior points. Furthermore, it is noted
that the points on the boundaries rarely coincide with the nodes of the
grid. This requires complicated coding to detect the various local nodal
configurations and the writting of particular routines for the special
treatment of such points. In addition to this, interpolation will be

required, thereby increasing the discretization error.



These drawbacks can be avoided if a proper coordinate system is
used. For practical problems arising from engineering applications such
systems can no longer be the simple classical coordinate system.
Furthermore, if the approach is to have some generality, the coordinate
system must have the same degree arbitrariness as the boundaries them-

selves.

The intended applications of these coordinate systems is to
solve fluid dynamics problems in turbomachinery applications. The
essential characteristic should be that the boundaries coincide with
one of the coordinate lines. These should be roughly aligned with
the flow. This is particularly important when a convective computation
scheme is required. An interesting feature of such coordinate systems
is the adaptiveness of the grid. That is the possibility of adjusting
the fineness of the discretization according to some local criteria.

Finally, it is noted that the orthogonality of the system is not essential.

Such systems are called body-fitted curvilinear coordinate sys-
tems and several methods have been proposed (Ref. 1 and 2). The approach
consists of solving a system of partial differential equations, which for
the general conditions envisaged can only be solved numerically. The
coordinate generation is the first step in the computation of a flow
problem, and it is important that this step be computationaly efficient,
that is a very small fraction the time required for the subsequent cal-

culations.



This will generally depend on the numerical technique used to
solve the differential equations. Ref. 1 has used a relaxation pro-
cedure whereas Ref. 2 used an A.D.I. method after introducing an
artificial time. No comparison is available for these two methods.
However past experience of these two method in.other areas tends to
favor the relaxation methods. It is easier to implement and can
easily be extended to three-dimensional transformations. Furthermore,
and this is the objective of this report, the convergence of relaxation
schemes can be increased by at least one or two orders of magnitude by
a novel technique called multigrid. This can be thought of as an
acceleration of the convergence and is not too dependent on various

parameters such as overrelaxation factors.

This has been applied to two basic relaxation schemes, point
SOR and line SOR. Comparisons show that the computing time is reduced
by factors of 2 and 3 respectively. Or the accuracy for a given com-

putational effort is improved by one and two orders of magnitude respectively.

2. THE TRANSFORMATION OF COORDINATES

In the present study one seeks a transformation for the
two-dimensional region bounded by the channel boundaris of a typical
cascade as shown in Fig. 2. The characteristics of the new coordinate
system is that the boundaries coincide with coordinate lines or that the
channel region maps into a rectangle. One simple analogy to illustrate

an extensible membrane on which a cartesian grid has been drawn. This



membrane is then streched in such a way as to make its boundaries

coincide exactly with the physical region. The grid lines will be
streched according to the properties of the membrane and the shape
of the region it is forced to match, and the resulting grid is the

sought coordinate system.

For the present application the physical coordinates (z,¢)
is transformed into a rectangular system (n,T) in the described manner.
Mathematically, the '"stretching" of the membrane is obtained by the

solution of the following system of elliptic equations.

2 2 =
o+ YO - 280+ Qo + FPRO = 0 (1)
2 2 =
aznn + YZTT - ZBZnT + J QZn +J RZT =0 (2)
= 2 2
where o = ¢T + ZT
Y = 2 2
¢n + Z
(3)
B = ¢>n¢T + anr
J = q)nzT - ¢rzn

This system is obtained by inverting Laplace's equation in the trans-
formed plane. This procedure is described in Ref. 1 and 2. The four

boundaries are denoted by Ly F2 I, and T, and coincide with n =n,

for I‘l, = T, for 1“2, =, for Fa and TeT, for 1"4. In

the physical plane
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The problem reduces to the solution of non-linear elliptic
differential equations (1) and (2) with Dirichlet conditions on the
boundary TI'. The unknowns for this problem are the physical coordinates
¢ and Z in terms of (n,T). The imposition of the boundary conditions
is to merely specify the values of the boundary shapes, i.e. values of
o and Z as a function of n and T along the appropriate coordinate
lines. It is noted that the correspondence of the physical points (¢,Z)

with (nl,T) say along the coordinate line n = n, 1is arbitrary.

The functions Q and R are used to control the concentration

of the coordinates lines in the physical domain. This allows the possibility

of a finer discretization in certain parts of the domain where high variations

of a given property is expected. In the present problem this would be the

leading and trailing edges for example.

Finally it is noted that the mesh generated by the solution of (1)

and (2) arc not in general orthogonal and this is not essential in most

problems.



3. CHOICE OF A NUMERICAL SCHEME

3.1 Discretization

The solution of the present problem is in general possible
only by numerical methods. This consists of replacing the derivatives
in Equations (1) and (2) by their finite difference approximations
thus yielding an equivalent systems of algebraic equations. The dis-
cretization will use central differences for both first and second
order derivatives yielding second order accuracy. One thus obtains
for every point (ni,Ti) one algebraic equation for the nodal value of

¢ij and Zij' For the tangential coordinate

0@ = 2055 = 0y g5t + V9500 - 24y + 954 9]
= 2810500501 7 Oio5e1 7 Praggon * $yogyl /4AAT
+ QO g - 95, 3)/280 + FRLG S - ¢y l/28T =
and for the axial coordinate
P Bpegg = By * Bo g gl * W00y ~ By, + Bop ]
= 202500501 7 B, a1 T Baan,e1 By, gl /4ATAT
* PRy o » Byg 000 % TR Mgy = Ty g
where
o = (g5, - 055 0% * (245, - 24517/ ((@AD 7+ (An)?)
VU= (g, - 05,900 By - By, PP/ (M (0D)?)
B= (g5 = %500, @501~ 955-0) * (Gyan 5 - %ioa,5)
(Zg541 - 235,100/ (20nx28T)

0

(3)

)/2AT = 0 (6)



J = ((¢,

i+l,j ~ ¢

11,5 %441 = 24510

ij+l i+l,]

This yields for the entire problem a system of non-linear coupled
equations which must be solved iteratively, in a procedure where at each
step the coefficients of Equations (5) and (6) are frozen and updated

after new values of the unknowns are obtained. Essentially two approaches

have been used for this class of problems

i) Successive-overrelaxation (Ref. 1).

ii) The alternating-direction-implicit schemes (Ref. 2).

In the latter approach the elliptic problem is transformed into a parabolic
problem by the addition of a transient term. This can be thought of as

an artificial time and each time step may be associated to an iteration of
the SOR method. So both method are similar and the only criteria should

be the rate of convergence, and ease of programming. No formal comparison
between the two method is available and the chouice was made on an intuitive
basis and experience gathered by the present authorson prior application of
both of these methods. It is felt that a scheme based on relaxation will

yield a more efficient overall scheme.

But more importantly it is the method that lends itself best to
improvements. Thus the choice of the method of solution is a successive
relaxation scheme with a multigrid method to accelerate the rate of con-

vergence.



3.2 The multigrid method

The multigrid method has been proposed by Brandt (3) and
thoroughly detailled in that reference. The particular approach
and software used are essentially derived from (3) and are described

in detail in Ref. 4. A brief summary of the method is given here.

Examination of the rate of convergence of a classical
relaxation scheme shows that an initial rapid decrease in the residual,
is followed by a much slower rate of decrease. This indicates that a
relaxation procedure is efficient in eliminating the frequency components
of the residual which are of the same order of magniture as the mesh
width. After these have been smoothed out, the remaining wavelength are
slow to disappear as the scheme discretized on a given grid is not very
efficient on others. This disadvantage is overcome by multigrid by
carrying out the relaxation procedure on a series of grids representing
the same domain. In this manner a much wider range of wavelength in the

residual is eliminated thus increasing the efficiency of the method.

The particular version used is called the full approximation
mode where the approximate solution on a given grid is interpolated to
the need for relaxation on that grid. A particularly efficient algorithm
from the computational and storage point of view has been developped

(Ref. 4) and will be used in the present study.



4. RELAXATION SCHEMES

The multigrid method consists of applying any given relaxation
scheme to an operator discretized on several grids. Therefore the first
step in the development of the method is to devise the basic block which

is the relaxation routine. Two such schemes were investigated

i) Point SOR

ii) Line SOR

4.1 Point SOR

The simplest scheme is the point SOR. The defined correction
approach was used where provisional values of the variables are computed
by sweeping the computational domain in a lexicographic order, say. In
the calculation of these provisional values one uses corrected values

and old values as illustrated in Fig. 3.

Thus Equations (5) and (6) are rewritten to solve for ¢ and Z

at (i,j) surrounded by corrected and old values as shown in Fig. 3.

alld; g 5 = 255 * q);-l,j] F YOy - 20y q);j—l
= BULdy.0, 01 ~ ®1 01 - ¢;+1,j—1 * ¢;~1,j—1]
cQUog,y 5 - 0 gl PR -0 gl =0 (@)
e a2, 5 - 2L+ z;_l’j] $ Y2y, - 22,4 z;j_l]
= B 2500 gu1 7 %41 901 C Z;+1,j-1 * Z;-l,j-ll
+ Q'[z -zt 1 emrifz.., -2zt 1 =0 (9)

i+l,j i-1,j ij+l ij-1
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Where ¢ and Z are old values, ¢+ and Z+ are corrected

values, and ¢ and Z are provisional values. An old value is corrected

by the provisional value and a relaxation factor, w, as follows

+ -
¢ =¢ + w($-9)
+ = (10)
Z =17 + w(Z2-2)
Thus one obtains for the provisional values
d)ij = ¢1J + CFij/w
_ (11D
Zo. = Z.s ¥ CLs. /0
1) 1) 1]
where the corrections are defined as
+
CFij = 935 = ¥4
& (12)
CZ.. = 2. = Z..:

1) 1] 1)

Substituting Equation (11) into Equations (8) and (9) one obtains where

B' = 2B/4AnAT
Q' = J*/2An
R' = J?/2AT

N
Q
+
=<
p—
(]
i
n

1_0!" - R! -
® 1g = Mgy + @-Q0) B8y 5 5 = OO0 5ug = SR 5.0
1_p!
+ (Y'-R") CFy, (13)
2(a'+Y") C - At _ [ s
e Zy5 = RZgy + (@1-QM) €2y ) 5 = BY(CZy o - €2y )

-+

(Y'-R") CZ;_ (14)

1



11

where the, residuals are

RFg: = @' {h100,5 = %045 * 91,4
# Y (055, - 2055+ 0y )
(15)
=B 050,501 7 %51, 501 T Pien,go1 * %ue1,5-0)
* Qg5 7 05,y) P ROy 7 0y50)

Thus with Equations (13) and (14) successive corrections for ¢ and 2Z
and computed following the sweeping direction given in Fig. 3. The overall

algorithm for this scheme is given in Appendix 1.

4.2 Line SOR

In line or column relaxation, all the nodes are solved implicitly
at once. This yields a triadiagonal system of equations which is easily
solved. Solving n points implicitly requires about the same computations
as solving n times on point explicitly. The advantage lies in the fact
that boundary conditions which appear as the end points of an implicit
are felt immediately throughout the line, whereas, in an explicit scheme
it would require about as many sweeps as there are points in the line.
This makes implicit relaxation much more efficient. The correction algorithm
is now described for sweeps implicit in either of the two coordinate direc-

tions.

4.2.1 SOR Implicit by column

The configuration for a typical column relaxation implicit along

a T = const coordinate line is shown in Fig. 4. The difference equations,
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Equations (5) and (6) are written for the unknown points along the
column taking into account, as for point relaxation, the status of

the neighboring points, i.e. corrected or old.

Mhyag,g = Wiy * Vg, g * T e = Ty * Gipg]

+ +
- ! = i
SLUNEREL FRENEE FREELL TRR
& +

* Q'(é- - ¢_1’j) + R! (¢1j+1 - ¢ij_1

i+l,j i ) &0 (L7

Defining a corrected value in terms of the old and provisional values,

Equations (10) and (11), one obtains the correction equations.

! 1 1 1
©'-Q") g _20@YY) g, @Q)
W i-1,j3 W ij w i+l,]
= s % ' ' - 1
RF;; = Y'CFy g+ B'[CF ) 5 - CFy y 5 4] + R'CFy, 1 (18)
el gy, o - BBy oy B e
W i-1,3 w ij w i+l,J
o % ' ' - '
= —RZij Y Czij—l + B (Czi+l,j—l Czi—l,j-l) + R Czij-l (19)

where the residuals RFij and Rzij are defined by Equations (15) and (16).
Equations (18) and (19) differ from their counterpart, in point relaxation
Equations (13) and (14) in that they are implicit and each equation involves

three unknowns. Thus yielding a triadiagonal system.

4.2.2 SOR Implicit by row

Fig. 5 illustrates the configuration for a relaxation sweep implicit
along the n = constant coordinate direction. The difference equations are

written for every node along a given row and this yields,
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= + ;
. =25, + B,
+ +
1 s -
~ PP gt ™ W1, 001~ Phel, 5ea ¥ P, gt
' - il 1 (b - @ =
P Q' (85, 5 - 95 q ) * R Byge - By5) = 0 (20)
- + N - -
and a2y, 5 = 2235 * zi_l,j] # Y [zij+1 - 2y ¢ Zij-l]
+ +
- ! - -
B'02501, 501 = Z4-1,541 ~ Zae1,5-1 ¥ P41, 50

+Q'[z - z7 ]+ R'( ) =0 (21)

ie1,j ~ Zi-1,j 2ij+1 7 Eij-1

From which as previously one obtains the correction equations

_R! 14t 14R!
O'-RY e YD) e, O ep L RE.. - arcE, |, .
w ij-1 w ij w i,j+1 1] i-1,3
1 -
Rl R R W
1
$GUCEy 5 1 (22)
1_pt 1 14t
and LR o _20@4¥D) o L QPR o L Rz - a'CZ, . .
w ij-1 w ij w 00 o | o 145 i-1,j
1 -
68 g, ge1 = BBy g g
1
+Q CZi—l,j (23)

where the residuals are defined in Equations (15) and (16).

4.2.3 Direction of relaxation sweep

For a given relaxation scheme the marching direction affects the
rate of convergence. If the coefficients of the derivatives are of the
same order of magnitude, then the equation will exhibit no preferred marching
direction and it is best to use symmetric relaxation. In general, the

marching direction should be chosen to coincide with the direction of propagation
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of physical information. In this respect the boundary conditions and
their types should be taken into account. The rule proposed by
Brandt (3) is that every point should be relaxed either after or

simultaneously with its more heavily weighted neighbors.

If such directions are not readily apparent from either the
physics of the problem or when the weighting of the nodes (i.e. the
coefficients) changes in the domain then sweeps should be carried out
in alternating directions. This will speed up the convergence when
the marching direction coincides locally with that of information

propagation, and will have a neutral effect otherwise.

In the present study a line relaxation was chosen mainly to
speed up the effect of the boundary conditions. Secondly as it is not
known before hand how the information propagate locally, an alternating
direction is chosen. This is a two-step procedure. First with a column
(y) implicit scheme the entire field is relaxed marching in the positive
x-direction. This is followed by a row (x) implicit relaxation marching

in the positive y-direction.

4.3 Cases studies and comparisons

For the actual computations carried out in this study two typical
cascades were used and are shown in figures 2a and 2b. Using the two
methods described in this chapter, point and line SOR, body-fitted coor-
dinates were obtained for these two cascades. Aside from the number of
grid points, the only parameter to be varied in these calculations is the
overrelaxation parameter in order to optimize the rate of convergence for
the complete computation. Such evaluations were carried out by comparing

the error of the solution as a function of the work units. For the present
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purposes the measure of the error used is the root mean square value

of the residual

E =|2 Réj/no. of points

and the work unit is defined as the computing time required to complete
one full relaxation over the entire domain. It is noted that for the
line SOR, the time required to solve the tridiagonal system was estimated

to be 20% of the relaxation work.

Using point SOR, the relaxation factor was varied, between 1.0
and 1.8. The resulting relaxation histories are compared in fig. 6 and

it is seen that the optimum value for this case is 1.5.

With the same cascade, this procedure was repeated with the line
SOR method. The relaxation histories are compared in Fig. 7. Finally
a comparison between the optimum relaxations using the point SOR and line
SOR is shown in Figures 8 and 9 for the cascades shown in Figures 2a and

2b respectively. The coordinates lines are shown in Figures 10 and 11.

For these results, one can conclude that line relaxation is a
more efficient technique than point relaxation. This can be explained
by the fact that the former is an implicit scheme where all the points along
an entire line are relaxed simultaneously. This is particularly beneficial
to the relaxation process as the boundary values are felt instantaneously

by the interior points.



The choice of the direction of sweep is important

but was not

investigated thoroughly in this study. This is presently being study

using an alternating line and column relaxation and will be reported.

5. THE MULTIGRID METHOD

5.1 The full approximation mode of multigrid

The aim of this section is to apply the multigrid
the various relaxation procedures described in section 4.
approximation mode proposed by Brandt (3) is used with the
developed in Ref. 4. The method as applied to the present
equations (1) and (2) is first described in general and is

specialized to point SOR, line SOR and LADSOR.

Following the notation of References 3 and 4, the
equations (1) and (2) is denoted by the operator L.
2 2
[&¢nn + Y¢TT - ZbenT + J Qd)n + J R¢T
L =
Y - 2 2
L?Znn + Y2, ZBZnT # J QZn + JRZ_

where all coefficients are as defined in Equation (3). The associated

method to
The full
software
system of

then

system of

16

(24)

boundary conditions are of the Dirichlet type and given by Equation (4).

A hierarchy of grids ranging from the coarse, G° to the fine GM will

discretize the domain T in the (n,T) plane. The mesh ratio, that is

the ratio of a characteristic mesh size for two successive

= hk/hk+l is set to 2. We seek numerical solutions to

grids say

¢ and Z

denoted by UF and UZ that satisfy the discretized operator L on

the fine grid GM

e a2y = o

(25)
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The exact numerical solution UF, and UZ is approximated by uf and uz.
The multigrid algorithm will compute a correction VF and VZ on each
grid. These are used to correct the approximate solution. In the actual
procedure, the full approximation is relaxed on each grid until it is
sufficiently smooth and is then interpolated to the next grid. The
relaxation sweeps are carried out with the same scheme, only the fineness
of the discretization changes. The effectiveness of the multigrid method
to liquidate certain frequencies corresponding to the mesh size is related
to a forcing term which is added to Equation (25) on the coarser grids.
This term is the difference of the residual of the operator on the fine

and the current grid. Thus the 'residual' equation is

tR e ue®) = BK (26)
where * - IB];LM(UFM,UZM) . LK(I;;UFM,III;UZM) 27)

The algorithm of a complete multigrid cycle is as follows"

1) An initial solution (ufM,uzM) is found.

2) The residual of this approximate solution is computed on GM

LM(ufM,uzM)

3) Set the parameters for G° and solve the residual equation
L0 (uf®,uz’) = F° (28)
. . : 0 ufM M
As a starting solution for this step one can use Iu(u JUZ ) .

4) When (uf’,uz®) has been solved with sufficient accuracy, it is
interpolated to the next grid and used as a starting solution for the

next grid.
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5) Set parameters for GK
K = K+1
6) Computed the residual of (ufM,uzM) on GK+1 and obtain the forcing
term
o IELM(ufM,uzM) - LK(IgufM,IﬁuzM) (29)

7) Using the solution from the previous step as a starting point solve

K

¥t uXy = F (30)

8) When (ufK,uzK) has been obtained with sufficient accuracy, it is

interpolated to the next grid.

9) Repeat steps 5) to 8).

5.2 Correction equation for point with multigrid

The correction equation for point SOR is now modified to account
for the forcing term F, equation (27). This is carried out following
the same steps as in section 4.1 with F on the right hand side of
Equations (8) and (9). It is noted that the step size, An and AT now

depends on the grid. These become

Z!Ct""Y'} - - 1_0! - R! =
5 CFy, o Mhyy o Ry r (@0 CFy - BYCE g 5y 7 i,y
1_pt
* (Y'-R') CFy; g (31)
2 oc'+Y') - _ 1_QO¢ _ 1 -
T CZy, = Rigj - FZgg + (0'-Q") CZy ;o = B'(CZ; ) o - €2y 5 o)
1_pt
£ (-RY) CF (32)
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_ KM M K K M

where FFij = -IML (UF) + L (IMUF ) (33)
_ KM, .M K. _K _M

inj = —IML (UZ) + L (IMUZ ) (34)

5.3 Correction equation for line SOR with multigrid

Similarly, the correction equations (18) and (19) become after

the addition of the forcing term,

YD) U 1 1 '
a cp. . . - 2@V opoo, @HQY)
W i-1,j w ij w i+l,j
= FF.. - RF.. - Y'CF..
ij ij ij-1
1 s
+BCF g 51 7 CFyy a0
+ R'CFij_1 (35)
el 1 ' ' 1
5 3, . =SB o o LTS L
w i-1,j w ij w i+l,j
= FZ,. - RZ.. - Y'CZ, .
ij ij ij-1
1 -
*BMCF o1 7 CFig, )
1
+ R Czij—l (36)

5.4 Correction equation for row SOR with multigrid

The correction equations for row SOR equations (22) and (23) become

Y'-R! 2 G'*Y' Y'+R!
CF - CF,. + CF
W ij-1 w ij w i, j+1
= - - !
FFij - RFy5 - a'CFy )
' -—
*BUCE; a1 - CFyp, 50
+ Q'CF, (37)

i-1,j
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1_R? 1 ' ' '
LY_L)CZ.. —MCZ..+wCZ. .
w ij-1 w ij w i+l,]
=FZ.. - RZ.. - a'CZ. .
ij ij i-1,j
+ B'(Czi—l,j+1 - Czi-l,j-l)
+ Q'Czi_1 j (38)

5.5 Applications: General considerations

In applying and in developing a computer program to the solution
of differential equations of the type presented in this report there are
several parameters that can be varied. These are related to the multigrid
method and are the number of grid levels, the number of relaxation sweeps
on each, and the overrelaxation factor. The effect of these parameters
on the convergence of the solution is froblem dependent and this is best
assessed by an empirical approach based on computational experiments.

This was carried out in the present paper for the elliptic equations (1)
and (2) using the multigrid algorithm described in the present section and

Ref. (4).

Rumher of grid levels

The number of grid levels available in a given computation is
constrainded by the number of nodes of the discretization, the mesh ratio
of the multigrid technique, and the interpolation procedure. For ease
of programming, the interpolation in this study restricts the number of
intervals to a multiple of the mesh ratio. This in turn, although

arbitrary in principle, was chosen to be 2 or 3 and only the first value

was actually used. So that the number of grid levels available is obtained
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by dividing evenly the number of intervals by some power of the mesh ratic
It is suggested that this number be chosen beforehand and then the number
of nodes set accordingly. In practical terms this means that for a

17 x 33 mesh one is restricted to a maximum of 5 grid levels. This in
fact was found to be sufficient. Fig. 12 shows the relaxation histories
for the solution of the coordinate on cascade A using multigrid with line
relaxation. The computations were carried out with one, three and four
grid levels. The comparison indicates little difference between three
and four levels and suggests that there would be little advantage in

using more levels.

Hanbep of Sveeps

Ideally, the number of sweeps on each grid should be chosen so
that the residual equation is solved with sufficient accuracy. In practice
this required an elaborate stopping criteria which in the end is also

problem dependent. To avoid this, it was decided to set the number of

sweeps equal for all grids and to find what this number should be.

The objective of this is an attempt to establish some general
values for what could be termed an '"optimum'" strategy for the interplay

between the coarse grid corrections and the smoothing on the fine grid.

It is emphasized that during the course of experimentation with
multigrid, numerous trials were carried out using an interactive program
allowing great flexibility and control over the relaxation procedure and
it was found that varying thc number of sweep on each grid had little
effect on the overall convergence. This is illustrated in Fig. 13 showing
the relaxation histories with 3, 5, 4 and 3 sweeps, 4, 3, 3 and 3 sweeps,

and 3, 3, 3 and 3 sweeps on the fine to coarse grids respectively.



Therefore, it remains to find the optimum number of sweeps.
For multigrid with point relaxation this was found to be 3 as illus-
trated in fig. 14, whereas for multigrid with line relaxation this
was found to be 4, fig. 15. 1In fact the important factor is the number
of sweeps on the fine grid, where a smooth solution is essential because
it is interpolated to the coarser grid. This controls the coarse grid
corrections and hence the benefits of multigrid. This is illustrated

in fig. 16, where the sweeps on the fine grid were 1 and 4.

The overrelaxation factor was varied and again this was found
to have no noticible effect on the overall history. This can be
explained as follows. An overrelaxation factor greater than one has an
important effect when the solution is smooth. Usually in the initial
iterations a value of w = 1.0 gives better results, and this is precisely
how multigrid works. Only a few iterations are carried out on each grid,
and then the computation proceeds to the next, and thus the beneficial

effect of w would not be realized.

5.6 Applications: Comparisons

Having found the appropriate values of the pertinent parameters
for the multigrid method as applied to the problem of coordinate grid
generations, it remains to compare this method with the ordinary relaxation.
This was done for the cascade of fig. 2a with four grid levels. The
computations were carried out with the four methods described in this
paper, point SOR, line SOR, multigrid with point relaxation, and multigrid

with line relaxation. And each of these used the optimum parameters and
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factors as determined in sections 4.3 and 5.5. The comparisons of these
results are illustrated in fig. 17 for 9 x 17 grid points, fig. 18 for
17 x 33 grid points and fig. 19 for 17 X 65. 1In all instances the order
of increasing performance is from point SOR, line SORE, multigrid with
point relaxation and finally multigrid with line relaxation. So that

it can be concluded that multigrid with line relaxation is the best of

all four metheds investigated.

Furthermore examination of these three figures, reveals an
interesting feature of multigrid. The level of lowest error or residual
reached in these computations depends on the number of nodes, and this
is expected as this represents the fineness of the discretization.

This improvement is roughly one order of magnitude every time the number
of points are doubled. But the remarkable aspect is that this level of
accuracy is reached with much less work for the finer meshes. For
example, this level of accuracy at the R.M.S. value of 107™%, requires

31 W.U. for 153 nodes, 21 W.U. for 561 nodes and 13 W.U. for 1105 nodes.
Thus a fine grids can be solved more economically on an absolute basis as
well as on a relative (per node) basis. This is best summarized in Fig.

20 where the optimum multigrid line relaxation are.

5.7 Applications: Coordinate stretching

One of the basic characteristics of the coordinate transformation
described in this report is the possibility of stretching the grid by
introducing a forcing function in the Poisson equation of chapter 2.

These are the terms Q and R which act on the n and T coordinate
lines respectively. In the computations shown in sections 4.3, 5.5 and

5.6 these terms were set identically equal to zero. In this section
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these will be used to concentrate coordinate lines in a given region
either towards a boundary or a point. Typically these could be the

cascade boundary or a the leading or trailing edges.

The form of the forcing functions Q and R can be quite
general. A form which lends itself to a good physical interpretation
has been proposed by Ref. 1. It is as follows. To attract n-lines

to a given Y5 line,
Q = -A sgn(n-n,) exp [-B[n-n. ]

This involves the use of two parameters A and B which can be
interpreted as the strength and the range of the attraction respectively
A similar expression can be written for R where the variable n is

replaced by T. To attract n-lines towards a given point (ni,Ti)

Q = -A sgn(n-n,) exp(-B/(t-1)% + (n-n.)?)

The parameters are interpreted as for the previous expression. Similarly

one can write a forcing function for R to attract T lines.

The coordinate grid is very sensitive to the choice of these values.
Figures 21 to 24 show coordinate grids with attraction to the bottom
(n = 0) and to the top boundary (n = 1). The strength coefficient A
has been set to 150 and the decay factor B has been varied from .51 and
.53 in figures 22 and 23. In figure 24, two distinct values of A for the
bottom (100) and for the top (200) boundaries have been chosen. Figure 21

shows the grid without attraction for comparison.
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Figures 25 to 28 illustrate the attraction to the leading edge
on the top boundary (n = 1, T = leading edge) and to the trailing edgc
on the bottom boundary (n = 0, T = t.e.). The strength was set to 20

for both points and the decay factor was .2, .14, .13 and .10.

The results obtained with the forcing functions were extremecly
sensitive to the values of the parameters. To complicate things further
these depend very much on the particular problem. Under such circumstances
it is essential to have at one's disposal an interactive graphics display,

in order to assess the resulting grid.
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17 x 65

F16. 10 BODY-FITTED COORDINATES FOR CASCADE A USING
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