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CHAPTER 1
AIMS AND OBJECTIVES

In the present report, an investigation concerning the application
of a numerical method for the solution of boundary value problems is des-
cribed. The particular method is based on a relaxation procedure where
the convergence is accelerated by means of the multigrid method. It con-
sists in approximating the same continuous problem by a succession of

discretizations on different grids.

This method has been proposed by Brandt (1) and an excellent and
through discussion is found in references (1) and (2). 1In effect this
report is a repetition these references where the explanation and demons-
trations have been recast in terms closer or more readily accessible to
a user with typically a mathematical background acquired in an engineering
school. The objective was to explain the multigrid method and supply a
software package to allow the solution of engineering applications in
fluid mechanics. It was felt that this could be done in a less abstract

if somewhat less rigorous and more restricted manner than the works of

references (1) and (2).

The final objective is the development of a software package
computationally efficient and very simple to apply by a user. An
application is usually reduced to the writting of two related subroutines

which are the discretization of the differential equation of the problem.



CHAPTER 2
THE BASIC APPROACH OF MULTIGRID

2.1 INTRODUCTION

The basic approach of multigrid consists in solving an equation
on a given discretized grid by an interaction between a hierarchy of
coarser grids. It is a combination of two classical processes namely
a relaxation procedure to reduce the residuals of an approximate solu-
tion and a technique of approximation the same problem on coarser grids.
The multigrid method is best motivated from the limitations of the clas-

sical relaxation methods.

The method of relaxation is the usual procedure used for the
numerical solution of boundary value problems. This consists in up-
dating an approximate solution iteratively in such a way as to reduce
the error at each node of the grid. A sweep is complete when every
node of the grid has been updated. When at any stage of the relaxation
procedure, the current approximate solution is substituted into the
discrete operator, one obtains a residual different from zero since the
solution has not been reached. The rate at which this residual tends
to zero is called the convergence of the relaxation procedure. It depends
on a variety of factors such as the type of equation, the particular
relaxation scheme (line relaxation, overrelaxation). This is of course
the most important characteristic of such procedure and has been extensively
analysed by Brandt (1). These findings are now summarized in a qualitative

manner. Let us suppose that after a number of relaxation sweeps, the



residual (for a one-dimensional problem) is as shown in Figure 1.

RESIDUAL

FIG. 1
This residual can be decomposed into its various Fourier components,

which for illustration purposes will be taken as shown in Figure 2.
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The purpose of a relaxation procedure is to reduce the residual
illustrated in Figure 1. Brandt (1) has shown that a given scheme does
so selectively, that is will reduce certain components more quickly than
others, and these are those which are of the same order as the mesh width of
the discretized grid. For instance, a relaxation procedure on a grid
whose spacing is of the order of half the wavelength, will be very
efficient in liquidating the component of the residual corresponding to
Figure 2.c, that is initially the convergence is very high. However when
this component has dissapeared, the same scheme becomes totally inefficient
in liquidating the other two components. This explains the general

behaviour of the convergence rate of relaxation scheme, sketched in Figure 3.

RESIDUAL

Number of iterations
FIG. 3
Quantitatively, the convergence is characterized by an initially steep
part during which the components of the order of the mesh width are smoothed

out, followed by a very slow decrease thereafter.

Hence the objective of multigrid is to maintain the initial rate
of convergence and it does so by relaxing simultaneously on several grid.
Thus several frequency components of the residual are liquidated simul-

taneously yielding a very efficient relaxation procedure.



This is in essence the basic approach of multigrid and this is
carried out by an interplay of relaxation sweeps and corrections from

coarser to finer grids.

2.2 DEFINITIONS AND NOTATION

Before proceeding with a detailled description of these basic
steps a number of definitions and notation convention are given. These
follow those of Brandt (1). This section can be omitted on a first

reading.

The computational domain @ is discretized by a set of grids
denoted by G°,Gl,...,GM with corresponding mesh sizes h0 >h ¥ sen hM'
In general the mesh is not square and the spacings in the coordinate

directions are de and dyK for the Kth grid, GK. The mesh ratio

¢ = hK./hK ] is for simplicity constant for any two consecutive grids but
this need not be so. The values for ¢ of %» and %- have been used in

the present investigation. Non-interger ratio can be used in principle
but this will complicate the interpolation procedures. The differential
equation to be solved is denoted by

LU(x) = F(x) 1in the region 1)

where L 1is a differential operator, linear or non-linear depending on
the particular problem. For examples one can refer to Section 4. U(x)

is a solution to (1) subject to the following boundary condition
AU(x) = ®&(x) on R (2)

This form is general and includes Dirichlet and Newmann conditions.



The discrete representations of the continuous operators L and

. and UK respectively,

A, and the solution U are labelled LK, A
for the discretizations on GK. This gives the following difference
equations

o = (3)
for values of x on the grid GK, subject to

A = o) 4)

for values of x on the boundary BGK.

In the multigrid process a numerical approximation to the solution
UM on the fine grid is sought and denoted by uM. Substituting uM in

equations (3) and (4) yields the corresponding residual on the fine grid

M

G

MM - M = M (5)

and MM - Mo = oM (6)
We define a correction V' as

VM - UM _ uM (7)

Communication between grids is carried out by interpolating some

quantity, i.e. a correction or a solution. This is denoted by

K K-1
IK—lv
: . ; K-1 K-1 K
meaning the interpolation of V on G to G . In general
K-1_K K-1 K-1
Ly Tp oY #V

For non-linear problems, variational operators relative to an

approximate solution u are defined as

L(wWV = L(u+v) - Lu (8)



2.3 MULTIGRID CYCLES

Brandt (2) proposes a number of variations to carry out the
relaxation in the multigrid sense. In all cases an approximate solution
on a fine grid is corrected successively by relaxations on a number of
coarse grids. This series of relaxation sweeps is called a multigrid
cycle. Of the three cycles proposed by Brandt the simplest has been
chosen, i.e. cycle A. This choice was made in view of the particular
context in which these application are intented (see section 1).
Primarily, the overall programming required by the user should be res-
tricted mainly to that of his problem. Secondly, in practical engineering
problems it may not be possible to resort to very many levels of coarser
grids as required by cycle B. Finally some ideas of cycles B and C are
incorporated into the present version of cycle A. The theory is now

described.

We want to improve an approximate a given solution uM on a grid
GM of a problem described by equations (1) and (2). In most cases this
is an initial guess. The exact solution UM is obtained by adding a
correction VM to uM. As discussed previously this correction (or error
at this stage) is made up of several Fourier components which are most

efficiently obtained if computed individually on different grids. Thus,

¥ & h = M

(9
e« 7Y =

If the operators L and A are linear, then

Mty Moty - M

My + MMy = M



and one can solve the residual problem
fM

¢M

Meth
(10)
MM

where fM and @M are given in equations (5) and (6) respectively.
For non-linear problems, the correction VM will satisfy a more general

variational equation,
£y & By = 8

My + Mo

I
LS

which gives the following residual problem

£

M

iMath

(11)

MM - o

This is similar to the residual problem of the linear case with L and A
replaced by the corresponding variational operators relative to the
approximate solution uM as defined in equation (8). These operators L
and R may be quite tedious to obtain in general, and there is a variation
which allows the use, in the residual problem of the same operator as for
linear problems, thus simplifying considerably the task of the user. This
idea is called the full approximation mode and consists in working with

the full current approximation instead of the current correction. The
current correction is the approximation on GK to VM and is denoted

by VM. Similarly the full current approximation is the approximation to
uM on GK and is defined as the interpolation of uM on the grid GK

corrected by the current approximation, that is

K K M K (12)
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Writting equation (9) on GK,

U

"
Lo o |

(13)
ARy

1}
o

If the approximation uM and the current correction vK are sufficiently

smooth (and this can be easily be achieved) then

ok ~ ISUM & i (14)

and upon substitution into the operator one obtains

LK(IQUM + VK)

e

X’y

K

A% RS

1

which is rewritten as

LK(I;uM) ¢ o™ = e
(15)

Ay By = A%

The residual problem on the fine grid GM can be approximated

on coarser grids by

]

iK(vK) I;fM

By s 15@“

(16)

where VK is an approximation to VK. Substracting (16) from (15) and

rearranging, yields

K K KM
IMfM + L (IMu )

- K

et

(17)

K.M & AK(IKuM

NN s

]
—
©
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This is called the full approximation because one no longer solves the
residual on coarser grid but rather one obtain the full approximation
uK on the current grid. The main advantage is that the same operator
is used on all grids, thus avoiding the need to obtain the variational
operator, and this, even for non-linear problems. Consequently this

particular variation was chosen other advantage appear more evidently

at the programming stages and will be discussed then.

When expanding the right hand side of equation (17) one obtains

the following expression.

™y = ISFM - I;LMuM § LK(I:;UM)
(18)
ARy - 15@“ h I;AMuM v af g
The original problem when computed on the coarser grids is now modified
by the addition of the two terms
S TS NG At (19)

which clearly represent the difference of the discretization error of the
operator on the fine and coarse grids. This can be interpreted as a
forcing term which accelerates the convergence or overrelaxes in a manner
some what different from the classical overrelaxation factor. The latter
is related to the physical space whereas the effect of the forcing terms
of equation (19) is felt in the frequency spectrum of the residual of the

approximating solution.
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2.4 THE ALGORITHM

The following steps describe the final algorithm for the full
approximation mode of the multigrid relaxation. This differs slightly
with Brandt's version (2).

1) Start with an initial guess uM on the fine grid, GM,

2) This approximation solution is smoothed by s relaxation sweeps
” .
u = Relax u (20)

3) The residuals on GM are stored

fM = FM - LMuM

(21)
¢M _ QM ) AMuM
4) The residual equation (17) is solved on the coarsest grid @°
L' =
i (22)
A0 = g°

where the right hand sides of equation (22) are computed by inter-
polating the residuals, equation (21), and the solution equation (20)
from GM to G and substituting into equation (17). If equation

(22) are solved by relaxation sweeps over G°, one can start with

0

5) A correction V° is computed on G°

and interpolated to the next grid, &,
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6) The full approximation on Gk is solved by s relaxations sweeps

k Lt = B ~K K
u = Relax K N IK—lu (23)
A =0
\ . ~K K . .
where the starting solution IK—lu is obtained by
KK KM K-l
K-1 TM

7) A correction vK is computed on GK

and is interpolated to the next grid

K = K+1

8) If K <M, steps 6) and 7) are repeated,

9) If K =M, the original equation is solved on GM by relaxation in
step 2) and the result becomes the new approximation and one multigrid
has been completed. Additional cycles are obtained by carrying out

steps 2) to 9).

2.5 THE STARTING SOLUTION

For linear problem it is not necessary to spend much effort to obtain
a good first approximation, and setting uM = 0 will produce a convergent
overall algorithm. For the nonlinear problems which are presently inves-
tigated it was found that simplest procedure is to set g 0 and
execute a few relaxation sweeps on GM (this is step 2) of the algorithm).
This will result is a reasonnably smooth initial guess from which multigrid

can proceed. For highly nonlinear problem, a continuation technique may be

used. Such problems have been attempted so far in the present investigation.
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Relaxation procedure

The most important element in the multigrid method are the relaxa-
tion procedures which are used to solve the residual equation on the coarse,
fine and intermediate grids. To keep the programming to a minimum it is
suggested that the same procedure be used for all three steps. Further
this should be carried out by the same subroutine and varying the argu-
ments of the call statement. This is possible as the same operator is
used throughout. This is done quite efficiently in terms of computer
time and memory as shown in the next section where the software aspects

are discussed.

Two types of relaxations schemes are been used, line, column
relaxation as well as point relaxation, including an overrelaxation para-
meter. An alternating line and column relaxation scheme has been programmed
for a system of two equations. A discussion and references to these various

schemes is given in the section on applications.

2.6 RESIDUALS

It has been found practical and time saving to compute the residual
on a given grid GK resulting from a given approximate solution uf by a
distinct step from that of the relaxation sweeps. Here again the same sub-
routine is used in all cases with varying the arguments of the call state-

ment. And this is possible since the same operator is used on all grids.

2.7 INTERPOLATION

In the present algorithm interpolation of the approximate solution

and the correction is required. In the first case, the interpolation must
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be carried out from the fine grid GM to coaser grids GK; in the second
case the interpolation is always from a grid GK to the next, GK+1.

The most important characteristic of an interpolation is the order.

For the multigrid method Brandt (2) has shown that the order should at

least be equal to that of the differential equation being solved. As

the problems envisaged were described by second order equations, second

and third order interpolation schemes were written. The applications

were two dimensional problems but to simplify this step the interpolation
routines are respectively bi-quadratic and bi-cubic respectively. The

next most important parameter, is the mesh ratio £ which in principle

can have any value. Again to keep the interpolation manageable, simple
ratio of 2 and 3 (depending on the application) were used. This allowed
considerable simplification of the interpolation problem, but just as
important it allowed to write generalized relaxation as will be discussed

in the next section. The main advantage for the interpolation is that
simple injection for the step Iﬁ is possible. Furthermore, because

of the particular correspondence between the physical grids and the

storing matrices for the variables on these grids, this step required no
calculation and no programming statements and is more efficient than simple
injection. The step I§+1 is carried out by two distinct routines specialized
respectively for mesh ratios of 2 and 3. The disadvantage of this approach
is the resulting constraint on the number of nodes. For example, for & = 2
and second order interpolation, the number of nodes must be odd and further-

more satisfy the relation 2M+1 where M is the number of grids. For a

. . " 3 M
mesh ratio of 3, the constraint is that the number of nodes satisfy 3 +1.
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CHAPTER 3
PRACTICAL ASPECTS AND SOFTWARE

In the present investigation the multigrid method was applied
to a number of engineering problems and in this context a particular
approach for the solution of the software problems has evolved. It
consists of a main program, an interpolation routine, and two user-supplied
subroutines. The main program sets the initial solution, the various
grids and makes the appropriate calls to the subroutines, in the sequence
described in the previous section. The function of the user-supplied
subroutine is, given an approximate solution to either compute the cor-
responding residual or to perform a number of relaxation sweeps. The
choice of the relaxation method rests with the user, however it must be

written in a particular form which is now described.

There are two arrays named U(I,J) for the solution and V(I,J)
for the correction. The solutions and corrections on all grids use
these arrays and no other are required. These are dimensionned for the
fine grid. In the discretization of the differential equation, the user

uses the following method. A first order derivative

U _ U + INCK, J) - U(I - INCK, J)
X 2 DXK

where DXK - mesh spacing of GK

INCK - number of nodes for the increment on GK

Similarly,
ou _ U(I, J + INCK) - U(I, J - INCK)

_— A

aY 2 DYK
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The values of INCK, DXK, and DYK are related and depend on the mesh ratio

between successive grids. For instance, if p = 2

INCK = 2**(KG)
DXK = DX*INCK
DYK = DY*INCK

where DX and DY are the mesh spacing on the fine grid, i.e. on GM, and KG
is the grid number. It is noted that the index KG does not correspond to
the variable K of the previous section. In fact it runs opposite, i.e.

KG = 1 corresponds to GM and KG = M+1 corresponds to G°.

Using these ideas, the finite difference for 3%U/0X* is written

as

U(I + INCK, J) - 2U(I,J) + U(I - INCK, J)
DXK+DXK

It is stressed that the operator L of the problem must be discretized
accordingly. In this manner, the computation of the residual, for instance,
can be carried out with the same subroutine with different values of INCK
and the same array U is used for all grids. This eliminates the need for
the interpolation, or injection, of UM to coarser grids, and the storage
of these interpolated or injected functions does not required any additional

variables.

In the present algorithm the array V(I,J) represents two quantities.
It is used to store the current full approximation and also to store the
current correction. It is possible to use the same array for both of these
quantities because after the full approximation is computed by the relaxation
routine, the correction is obtained by substracting it from the array U.
It is noted that this correction is calculated only at the nodes of GK, i.e.

at every INCK node, and stored in the array V. This correction is then
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interpolated to the next grid. A bi-quadratic interpolation is used and
essentially generates an additional value in between every two nodes
along a column, and a additional column between every two columns.

This is also stored in the array V, from which the full approximation

is computed on the new grid by adding V to U at the appropriate nodes,
now separated by the new value of INCK. Thus during the course of a
multigrid cycle the array U contains the approximate solution uM and
the array V contains, alternately the full approximation uk and the

: K
current correction Vv .

In the supplied routine called RELAX, the user writes a relaxation
procedure based on the operator of the particular problem to solve the full
approximation equation (17) or (23) where L is the same operator as in
problem and where F and A are modified forcing terms defined by the
right hand side of Equation (17). They contain the original forcing term
of the problem to which Equation (17) has been added. The quantities F
and K are stored in the array FRCING and are obtained by two calls to
the user supplied routine called OPERA for the computation of the operator.

A first call will yield the operator on the fine grid with the array U as

an argument.

A first call with the array U as an argument and INCK set to one

(i.e. the fine grid) will yield

LMuM

This quantity is stored in an array OPERI and is thus available for all the

following operations

KM M
IML u



A second call (repeated for every grid for a given multigrid cycle) with
the array U and the appropriate value of INCK as arguments will yield

the term
K .K M
L (IMu )

It is repeated that with the present approach none of the interpolations

~

or injections denoted by Iﬁ are actually performed. The quantities F

and L are passed to RELAX in the array FRCING.

19
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CHAPTER 4

APPLICATIONS AND CONCLUSIONS

Multigrid has been applied to the solution of transsonic flow
problems by J.C. South and A. Brandt (3), semiconductor transport equa-
tions by S.P. Gaur and A. Brandt (4) and aeronautics by A. Roberts (5).
In the present study, the multigrid method was applied to a variety of
fluid mechanics problems. The small perturbation equation for the
transonic flow in a channel (Ref. 6) was solved using the Nurman approach
with multigrid. The problem is similar to that of Ref. 3 except that
the flow is within a channel rather than an airfoil. This was then
extended to the case of an the flow past a non-lifting cascade (Ref. 7).
The objective was to test multigrid with different types of boundary con-

ditions; namely periodic, Neumann and the Kutta conditions.

The solution of the Navier-Stokes was then attempted. The problem
solved is the unsteady viscous flow is a cavity with an impulsively started
wall. The vorticity stream function formulation is used, and yields to
equations. The first is the vorticity diffusion equation and is solved by
the A.D.I. method. The second is a Poisson equation where the forcing term
is the vorticity obtained from the first equation. This Poisson equation is

solved using multigrid (Ref. 8).

Finally, two problems concerning the generation of body fitted
coordinates were solved. The first is the generation of a computational grid

for cascade flows. This consists in solving two non-linear Poisson-type
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pquétions, one for each of the coordinates. This was solved by using a
line relaxation procedure alternating with a column relaxation procedure,
together with a multigrid cycle (Ref.9). A similar problem for the
generation of body fitted coordinates for multiply-connected regions

resulting from applications of estuaries with islands (Ref. 10).

The applications given in Ref. 5 to 10 all use the multigrid cycle
based on the full approximation mode and the software described in the
present report. A complete description of the problem and particularly

the associated boundary conditions is given in the appropriate reports.



SET PARAMETERS FOR FINE GRIDJ

> SET STARTING SOLUTION

COMPUTE OPERATOR USER SUPPLIED

I

SET PARAMETERS FOR COARSE GRIQJ

COMPUTER OPERATOR USER SUPPLIED

[&OMPUTE FORCING TERM

RELAX RESTDUAL EQUATION USER SUPPLIED




e

COMPUTE CORRECTION ON CURRENT GRID

INTERPOLATE CORRECTION TO NEXT GRID

SET PARAMETERS FOR NEXT GRID

OBTAIN CURRENT FULL APPROXIMATION

COMPUTE OPERATOR

COMPUTE FORCING TERM

RELAX RESIDUAL EQUATION

i

Lot IS THE MULTIGRID CYCLE COMPLET

YES

TEST RESIDUAL NORM

STOP

23



24

REFERENCES

1) A. BRANDT, '"Multi-level Adaptive Technique, I. The Multigrid Method",
IBM Research Report RC6026, 1976.

2) A. BRANDT, '"Multi-level Adaptive Solutions to Boundary Value Problems'",
IBM Research Report RC6159, 1976.

3) J.C. SOUTH and A. BRANDT, "Application of a Multi-level Grid Method to
Transsonic Flow Calculations', ICASE Report #76-8, March 1976.

4) S.P. GAUR and A. BRANDT, 'Numerical Solution of Semiconductor Transport
Equations in Two Dimensions by Multigrid Method', pages
327-329, Advances in computer methods for partial differential
equations, 1977.

5) A. ROBERTS, "Multigrid Systems for the Rapid Inversion of Partial Dif-
ferential Equations', Von Karman lecture series 1978-4, 1978.

6) 'R. CAMARERO, '"Application of the Multigrid Method to Transsonic Flow in
a Channel", Ecole Polytechnique, Report # 5 1979

7) R. CAMARERO and Y. BEGIN, '"Calculation of non-1lifting Transsonic Cascade
Flow with Multigrid", Ecole Polytechnique, Report #
1979.

8) D. PELLETIER and R. CAMARERO, '"Unsteady Viscous Flow Calculations Using
the Multigrid Method'", Ecole Polytechnique, Report #
1979.

9) M. YOUNIS and R. CAMARERO, "Generation of Body-fitted Coordinates for
Cascade Computation Using Multigrid'", Ecole Polytechnique,
Report #

10) R. CAMARERO, "Application of Body-fitted Coordinates to Hydrodynamical
Problems by the Multigrid Method'", Ecole Polytechnique, Report
#



ACONSULTER
SURPLACE



9

UE DE MONTREAL

0J189034

9334

ECOLE POLYTECHNI

|

3

oagpen



