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ABSTRACT Mesh networks are self-managing wireless systems with dynamic topology. These networks
differ from broadcast and mobile networks because their mesh nodes can directly exchange information
without the intervention of any other infrastructure. However, the radio propagation environment in urban
regions, characterized by dense building clusters and human-made structures, influences signal attenuation
and path loss. Therefore, deploying these networks brings distinct challenges from the more intensively
studied indoor or rural scenarios. In line with this, predicting radio signal propagation attenuation is crucial
for planning and deploying reliable networks. The literature on received signal strength indicator (RSSI)
prediction for mesh networks in urban areas is scarce. This paper proposes machine learning-based RSSI
prediction models for highly urbanized areas. We highlight the most influential features, including the
distance between the transmitter and receiver, obstruction details in the first Fresnel zone, and terrain
variability measures. Considering data from two mesh networks in the Metropolitan Region of São Paulo,
Brazil, owned by a power utility company, we trained a Random Forest and a Support Vector Regression
model for the RSSI prediction task. Comparative analysis indicates an improvement of up to 66% in the RSSI
prediction error using the Random Forest approach in comparison with classical and empirical models.

INDEX TERMS Feature importance, machine learning, mesh networks, network planning, RSSI prediction.

I. INTRODUCTION
Mesh networks are wireless networks with a dynamic
topology that changes based on network and ambient
conditions. Compared to conventional wireless networks,
mesh networks require low installation and maintenance
costs. These networks are increasingly present in our daily
lives with applications in home, corporate, and metropolitan
environments [1].

The radio propagation environment and the technological
parameters of the devices are essential to define the network
connectivity. In line with this, the terrain and its obstacles
largely influence the network’s functioning under any other

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

external conditions. As such, evaluating the transmission
path allows us to identify different propagation mechanisms
that cause signal attenuation, such as signal reflections or
diffractions. Particularly in urban areas, the obstructions
in the radio wave propagation path are occasioned mainly
by manufactured obstacles such as a region of dense and
tall buildings, a mixed area of houses and structures, and
residential or industrial areas.

Estimating the point-to-point signal strength considering
atemporal variables is fundamental to the planning of mesh
networks. There are classical and empirical approaches to
measure the attenuation of the radio signal occasioned by
these several obstructions in the propagation path. Classical
models are derived from electromagnetic theory, whereas
empirical models are based on field measurements of the
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received signal strength indicator (RSSI). For example,
the widely employed classical model Friis Equation [2]
considers parameters like the transmission power and the
gains of transmitting and receiving antennas to predict
RSSI. However, these models do not include the geographic
and environmental data that compose the radio propagation
environment.

Empirical models demonstrate high computational effi-
ciency in prediction due to the simplicity of their math-
ematical equations representing the statistical relationships
of measurements obtained in field tests [3], [4]. Moreover,
these models consider a few network parameters, such as the
distance from the transmitter to receiver antennas, height of
antennas, and frequency. The drawback of these models is
that they were developed in specific regions that may have
particularities in their geography and environment, such as
Japan for Okumura-Hata [5], [6] and the United States for
Egli [7]. Therefore, such models might not be efficient and
accurate when applied in scenarios different from those for
which they were developed in [8].

According to [9], machine learning (ML) strategies, pri-
marily supervised regressionmethods, have shown promising
results in path loss prediction, proving to be an alternative
to traditional models. For indoor localization of objects,
Guidara et al. [10] presented an RSSI predictor based on
deep learning to estimate the distance between the transmitter
and receiver. In their model, ambient conditions, such as
humidity, temperature and noise were instrumental features
to improve the model’s accuracy. The authors highlight the
importance of this investigation for indoor applications, for
which Global Positioning System (GPS) satellite signals fail.

Numerous ML approaches have been applied to predict
path loss in outdoor scenarios, primarily in urban and
suburban areas [4]. The path loss prediction through ML
approaches is mainly concerned with data-driven techniques
to learn the relationships between the characteristics in the
radio propagation environment (input) and the RSSI (output).
The learning process occurs through training data composed
of real-world RSSI measurements or simulation tools. The
inputs of these models, referred to as features, are based
on the parameters used in traditional models and on details
observed in each particular scenario where the network is
located, such as topographic data. Moreover, in the literature,
the prediction models based on machine learning have
demonstrated superior accuracy over classical and empirical
models [8], [11], [12], [13], [14], including International
Telecommunication Union - Radiocommunication Sector
(ITU-R). In particular, the studies presented in [3] and [15]
showed that the ML approaches outperformed the ITU-R
P.452 recommendation [16]. Also, the ML model proposed
in [17] achieved better prediction results than ITU-R P.1546
[18].

Despite the several studies, the literature on ML
approaches to predict RSSI in urban and suburban regions
has been mostly developed for cellular and broadcast
networks [4]. Notably, there have been applications in

radio [19] and television [17] systems, and in cellular
networks from 2G to 5G [9], [11], [20], [21]. Wireless
mesh networks, on the other hand, differ significantly from
broadcast and mobile networks because their mesh nodes can
directly exchange information without the intervention of any
other infrastructure. They are often located in existing poles
that limit their coverage conditions and operate at different
frequency ranges.

More specifically, the literature on machine learning
approaches dedicated to path loss prediction in mesh
networks is very scarce. To our knowledge, there is only one
ML model, but it focuses on mountainous areas [12]. How-
ever, the radio propagation environment in urban regions,
characterized by dense building clusters and human-made
structures, presents distinct challenges and complexities
compared to mountainous areas, where rugged terrains,
elevation changes, and natural obstructions predominantly
influence signal attenuation and path loss. Indeed, the authors
in [12] highlight that crucial features of their scenario, such
as tree canopy coverage, are not necessarily relevant for other
applications and that the developed model only applies to
the environment in which it was created. Thus, the criteria
to define the appropriate features that describe the region
where the network is located must be carefully chosen
to emphasize the characteristics regarding the propagation
environment. Additionally, as suggested in [9], disregarding
pertinent features or retaining unrelated ones can result in an
inaccurate predictor.

The objective of this paper is to propose a comprehen-
sive ML approach to predict the RSSI for urban mesh
networks to support its planning and design. In fact,
our RSSI prediction values enable the construction of a
middle-layer propagation grid, such as proposed in [22],
for future what-if studies from service providers. The
introduced methodology comprises the selection of features,
the determination of appropriate ML algorithms, and the
strategies to train and validate the model. Furthermore,
we provide a performance comparison between the suggested
ML approach and both classical and urban empirical
models. Lastly, we highlight a feature importance analysis,
indicating which features most significantly contribute to the
machine learning process. Performing the feature importance
enables understanding the impact and relationship of the
features representing the radio propagation environment with
the RSSI.

To validate our proposal, a case study was created by
using real data extracted from two urban mesh networks
located in the Metropolitan Region of São Paulo, Brazil.
We gathered, among others, a dataset of 1,117 mesh links
(different transmitter-receiver pairs), terrain profile data, the
percentage of obstruction in the first Fresnel zone, and the
distance between the devices. As far as we know, this is a
novel proposal of an ML approach for RSSI prediction in
urban wireless mesh networks.

The primary contributions of this paper are summarized
next.
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• We introduce a novel approach based on machine
learning to predict the RSSI for urban mesh networks;

• We present a detailed analysis of feature importance on
urban mesh networks;

• The introduced approach outperforms empirical models
regarding prediction errors.

The rest of this paper is organized as follows. Section II
presents a literature review on machine learning for RSSI
prediction in urban scenarios. Section III shows the classical
and empirical path loss prediction models used in this
investigation. Section IV presents the machine learning
approach proposed to predict the RSSI. Section V reports
the results, feature importance analysis, and discussion.
Finally, Section VI presents the conclusions and future work
directions.

II. LITERATURE REVIEW
This section presents a literature review on ML for the RSSI
prediction in different environments and networks.

A. RSSI AND PATH LOSS PREDICTION IN URBAN AREAS
This section gives an overview of machine learning
approaches for predicting received signal strength indicator
and path loss in urban scenarios. We also suggest a compara-
tive analysis of recent literature onML approaches contrasted
with other algorithms, including ITU-R recommendations
and empirical models.

1) MACHINE LEARNING FOR RSSI PREDICTION
In urban and suburban areas, obstructions in radio wave prop-
agation are mainly caused by manufactured obstacles like
dense high-rises, mixed residential or industrial areas, and
houses and buildings. In rural or forest areas, obstacles are
primarily due to terrain complexity, vegetation coverage, tree
density, and seasonality [12], [23]. Several ML approaches
for RSSI prediction have been proposed, including the
use of Artificial Neural Networks (ANN), Support Vector
Regression (SVR), and Random Forest. In studies such
as [8], [9], and [20], ANN outperformed empirical models
like Egli, ECC-33, COST-231, and Okumura-Hata, showing
superior prediction accuracy. In [9], the authors demonstrated
that Random Forest, SVR, and ANN outperformed the
classical log-distance path loss model in predicting RSSI for
mobile networks. Studies like [11], [13], [15], [17], [19],
[21], [24], [25], [26], and [27] have explored various ML
approaches, including Random Forest, Elastic-Net Regres-
sion, Adaptive Boosting (AdaBoost), and ANN, showcasing
improved performance compared to traditional models and
recommendations.

2) COMPARATIVE ANALYSIS AND CONTRAST WITH OTHER
ALGORITHMS
Studies such as [11], [13], [15], [17], [19], [21], [24], [25],
[26], and [27] conducted comparative analyses against other
algorithms, including ITU-R recommendations and empirical

models. ML approaches consistently outperformed tradi-
tional models like COST-231, ITU-R recommendations, log-
linear regression, two-ray models, and more, as demonstrated
by reduced root mean squared error (RMSE) values. In [15]
and [17], the authors specifically compared ML approaches
to ITU-R recommendations, with ML models, particularly
ANN, consistently outperforming the literature algorithms.

3) LACK OF STUDIES IN URBAN MESH NETWORKS
Even though the machine learning approaches proposed in
the studies previously described are for networks located in
urban areas, to our knowledge, there are no similar proposals
for urban wireless mesh networks. This is despite the fact
that with the growing number of wireless services with
high performance demands, new type of architectures, such
as mesh architectures are going to be deployed. Therefore,
as indicated by [4], new propagation models are needed.
Thus, ML is a useful tool to address these demands.

That is why the primary contribution of this paper is to fill
such a gap. The next subsection details the only work in the
literature that deals with mesh networks, even though it is not
in an urban setting.

B. RSSI PREDICTION IN MESH NETWORKS
Traditional mobile and broadcast networks have a well-
defined structurewith a base station (transmitter) strategically
placed to cover a specific area where user equipment
(receivers) is located. This strategic placement ensures opti-
mal coverage. In contrast, mesh networks, while also planned
for coverage, face limitations due to the specific locations
of nodes, such as light poles or buses. Additionally, the
antennas used in mesh networks differ from those in cellular
or broadcast networks. These differences significantly impact
the evaluation of RSSI.

Despite these challenges, there is limited research on using
machine learning for RSSI prediction in mesh networks.
Only the work by [12] addresses this gap, focusing on
mesh networks in mountainous regions with distinct radio
propagation characteristics compared to urban areas. In their
study, the authors in [12] utilized a dataset comprising
2,218 links from mesh networks at the America River
Hydrologic Observatory, USA. These networks monitored
environmental indicators like soil temperature, snow depth,
and air temperature. The ML approach incorporated four
algorithms: Random Forest, AdaBoost, ANN, and K-nearest
Neighbors (KNN). The model input featured seven charac-
teristics tailored to mountainous areas, including transmitter-
receiver distance, average tree canopy coverage, terrain
and vegetation standard deviation, angle between line of
sight (LOS) and horizontal plane, and canopy coverage at
transmitter and receiver locations. Beyond ML algorithms,
the authors incorporated empirical models for forested
environments and models accounting for varying vegetation
(seasonality). These included Weissberger’s modified expo-
nential decay model, ITU-R recommendation, COST-235,
as well as models based on Friis Equation and the Plane Earth
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TABLE 1. A summary of the related literature.

model. Results indicated that the Random Forest algorithm
outperformed other ML algorithms (KNN, ANN, AdaBoost)
and empirical models, reducing the average prediction error
by 37%. In summary, the investigation in [12] demonstrated
the effectiveness of ML, specifically Random Forest, for
RSSI prediction in challenging terrain, shedding light on the
importance of specific features in the learning process.

Table 1 shows a summary of the literature review discussed
in this section.

III. CLASSICAL AND EMPIRICAL MODELS
The first reported prediction models were derived from
electromagnetic theory, which began in the 40s with the
significant contribution of the pioneering work of Harald
Trap Friis [2]. With the evolution and worldwide expansion
of VHF networks (broadcasting and TV) in the 60s and
70s, other models for predicting the received signal strength
were proposed and developed considering measurements

performed in cities such as New York and Tokyo. The
classical and empirical models for path loss prediction,
despite being dated, are still employed in recent studies as
the primary approach to solving grid planning problems for
networks [28] and in comparative analysis of the results with
ML algorithms [29].
In this paper, we chose empirical models considering

the characteristics of the urban region where the mesh
networks are located and the carrier frequency of 920 MHz.
Thus, the selected empirical models were those proposed
by Egli, Edwards-Durkin [30], and the Okumura-Hata.
We also consider in our study the classical models derived
from electromagnetic theory. More specifically, the Friis
Equation [2], the Free Space Path Loss (FSPL), and the
variant of FSPL that considers reflection (FSPL-R) [31].

The following sections briefly present the classical and
empirical models largely employed to evaluate the received
signal strength.
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A. FREE SPACE PATH LOSS
The FSPL is the loss of signal strength caused by the
natural propagation of radio waves, often referred to as beam
divergence [32]. The radio frequency signal power spreads
over large areas as the signal propagates from an antenna, and,
as a result, the signal strength is attenuated. The FSPL can be
calculated, in dBm, as in

FSPL = 20 log10

(
λ

4πd

)
, (1)

where d is the distance between the transmitter and receiver,
and λ is the wavelength. As stated by [31], it is possible to
consider reflections in the propagation path, and it can be
calculated using

FSPL-R = min
{
10 log10

[
(hTxhRx)2

d4

]
;FSPL

}
, (2)

where hTx and hRx are the height of the transmitter and
receiver in meters, respectively. Also, the FSPL is obtained
by (1).

B. FRIIS
The Friis Equation, developed by Harald Trap Friis, is a
fundamental equation based on electromagnetic theory. This
equation is used to calculate the received power level of the
radio signal propagated from transmitter to receiver, con-
sidering the transmitted power, the gain of the transmitting
and receiving antennas, the wavelength of the signal, and
the distance between the transmitter and receiver. Also, this
equation was based on the environment that does not consider
any obstacles or interference along the path between the
antennas, generally referred to as free space condition.

The Friis Equation can be defined as in

Friis = PTxGTxGRx

(
λ

4πd

)2

, (3)

wherePTx andGTx are the transmission power and transmitter
antenna gain, respectively; GRx is the receiver antenna gain;
and the term in-between parentheses refers to FSPL. The Friis
Equation can be calculated in dBm and is defined by applying
the log function as in

Friis = PTx + GTx + GRx +

[
20 log10

(
λ

4πd

)]
. (4)

C. EGLI
In [7], Egli performed several measurements on irregular
terrain, mainly in New York City, using systems with fre-
quencies between 40 MHz and 1000 MHz. Later, in [33], the
authors proposed a mathematical expression for calculating
the received signal strength based on Egli results. The Egli
model can be defined as in

Egli = 20 log10(f ) + 40 log10(d) − 20 log10(hTx) + k, (5)

where f is the frequency in MHz; hTx and hRx are the
heights in meters of the transmitting and receiving antenna,

respectively; and d is the distance between the transmitter and
receiver in kilometers. The term k refers to the height of the
receiver and is defined as:

k =

{
76.3 − 10 log10(hRx), if hRx ≤ 10
85.9 − 20 log10(hRx), if hRx > 10

. (6)

D. EDWARDS-DURKIN
The Edwards-Durkinmodel [30] was obtained frommeasure-
ments carried out in the United Kingdom by Durkin [34].
Later, with these measurements, Edwards and Durkin used
the FSPL equation to propose a correction factor due to
propagation loss, as in

Edwards-Durkin = 118.7 − 20 log10(hTx)

− 20 log10(hRx) + 40 log10(d), (7)

where hTx and hRx are the heights inmeters of the transmitting
and receiving antenna, and d is the distance between the
transmitter and receiver in kilometers.

E. OKUMURA-HATA
The Okumura-Hata model was developed based on measure-
ments taken by Okumura in Tokyo city [5], using systems
with frequencies ranging from 150 MHz to 2000 MHz [35].
Later, Hata [6] refined the model based on the results
obtained by Okumura. Hata introduced three mathematical
expressions to represent different environments where the
networks are located. Additionally, the author provided a
correction factor for small to medium-sized cities and another
for large cities. The Okumura-Hata model has becomewidely
known and is one of the most referenced models in the
literature [36].
In particular, we used the correction factor for large cities

and the equation for urban regions. The correction factor (α)
is calculated as in

α = 3.2[log10(11.75 hRx)]
2
− 4.97, (8)

where hRx is the height in meters of the receiver antenna. The
Okumura-Hata Equation is calculated as follows [31]:

Okumura-Hata = 69.55 + 26.16 log10(f )

− 13.82 log10(hTx) − α

+ [44.90 − 6.55 log10(hTx)] log10(d),
(9)

where f is the carrier frequency in MHz, hTx is the height in
meters of the transmitting antenna, and d is the distance in
kilometers from the transmitter to the receiver.

IV. MACHINE LEARNING APPROACH
This section introduces the proposed method for predicting
RSSI in urban wireless mesh networks. We provide an
overview of the employed machine learning algorithms,
details regarding the two mesh networks and their respec-
tive urban settings, strategies for data collection, and the
comprehensive data processing steps leading to the final
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FIGURE 1. Workflow of the machine learning approaches.

RSSI dataset. Additionally, we discuss the features utilized
as input for machine learning algorithms, the error metrics
employed to assess algorithm performance, the process of
hyperparameter tuning, and the methodology for training and
validating the algorithms. Fig. 1 illustrates the workflow of
the ML approach proposed in this paper.

The following sections describe the steps of the workflow
in Fig. 1. Section IV-B covers the Raw Data Collection and
Data Processing stages. Feature Engineering, as depicted in
the figure, is detailed in Section IV-C. Section IV-D discusses
the ML approach, including hyperparameter tuning, training
and testing strategies, and performance evaluation using
error measures. Section V presents a comparative analysis
between the results obtained by the proposed ML approach
and the classical and empirical models. Finally, Section V-A
reports the feature importance analysis in the prediction
process.

A. MACHINE LEARNING ALGORITHMS
According to [12], empirical and classical models face limi-
tations when dealing with the diverse scenarios encountered
in measuring received signal strength. In light of this, our
investigation focuses on machine learning-based propagation
models that have demonstrated promise in recent related
literature [4], [25], [37], [38].

Roughly, the RSSI prediction through machine learning
algorithms involves training a regression model. For this
model, the target variable (output) is the RSSI value, and
the features (input) may include the distance from the
transmitter to the receiver, the heights of the transmitter and
receiver antennas, and other values that represent the radio
environment propagation or antenna parameters.

Building on the extensive review provided in [9], we find
that the Support Vector Regression and Random Forest
algorithms have exhibited strong performance in predicting
received signal strength.

1) RANDOM FOREST
The Random Forest [39] is an ensemble technique that
effectively addresses regression problems by combining
multiple decision trees, leading to accurate predictions. In the
context of regression, where the goal is to predict continuous
numerical values, each decision tree in the Random Forest
considers input features to offer predictions, averaged to
obtain the final output.

Decision trees are non-parametric supervised learning
algorithms with a hierarchical structure that starts from the
root node (with no incoming branchings) to the bottom
levels. Internal nodes are non-terminal nodes, also known
as decision nodes, from which branches depart to two (or
more) children nodes. Internal nodes contain a split condition
formulated from a subset of features that divides the training
set into two (or more) subsets. The split aims to find the
best way to separate the training set according to the rule
formulated with the selected feature. Leaf or terminal nodes
represent the final predictions of the tree. The random forest
enhances the robustness of the decision tree algorithm by
combining multiple uncorrelated decision trees.

To build a decision tree in the Random Forest algorithm,
a subset must be obtained from the original training set.
This subset is obtained through the bootstrap method, that
is, by resampling with replacement from the original set.
In the first step, a feature must be chosen from this subset to
perform the first split, to define the decision rule of the root
node. For example, suppose that the feature antenna height
is under evaluation to guide such a splitting. The training
set is sorted in increasing order of the antenna height values
and the pairwise mean of consecutive values of this sorted
feature considered to define the splitting value. The splitting
value is the value that would define the branches from this
node, where the left branch would correspond to the samples
whose antenna height is lower than or equal to this threshold,
whereas the right branch would contain the data greater than
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it. The chosen threshold of a given feature is the pairwise
mean value with the minimum mean squared error (MSE).
The MSE is calculated considering the prediction of a given
input (from the training set) the average expected output
of all terminal nodes from the branch to which the rule it
applies. Besides, the feature picked for the splitting is the
one with the lowest MSE among all features in the subset.
After selecting the feature, the leaf nodes are evaluated for
splitting (following the breadth-first search order). Therefore,
the decision question of the root and decision nodes is based
on the feature from a new sampled set of features that better
splits the training data in the given iteration. The process
stops when a stopping criterion is reached. In general, the
stopping criteria are hyperparameters of the Random Forest,
such as the maximum depth of the tree, the minimum number
of samples to perform a split, and others. In the proposed RF
the stopping criterion is the minimum number of samples in
the node for splitting, which is 5. The tuning of this and other
hyperparameters are better discussed in Section IV-D2.

After reaching a stopping criteria, the final prediction
value, ŷ, of the Random Forest is obtained by averaging the
prediction value yi obtained in each tree i of the nT trees, as in:

ŷ =
1
nT

nT∑
i=1

yi. (10)

The preference of the Random Forest algorithm for
predicting RSSI was based upon different motivations. The
primary reason is that the Random Forest algorithm was
employed in the existing literature concerning the prediction
of RSSI in wireless mesh networks, proposed by [12]. The
authors showed that the best prediction results were achieved
through this approach when compared with alternative
well-established machine learning algorithms such as ANN,
KNN, and AdaBoost. Moreover, additional support for the
advantage of the RandomForest algorithm in RSSI prediction
is drawn from recent investigations presented by [9] and [11],
wherein it was evidenced that the Random Forest algorithm
achieved significant accuracy.

2) SUPPORT VECTOR REGRESSION
The SVR [40] is a technique that extends the principles of
Support Vector Machines (SVM) [41] from classification
to regression problems. The SVR can be formulated as an
optimization problem.

Let a training set be represented by {(xi, yi)} such that i is
the index of the samples ranging from 1 to n. Let xi ∈ Rm

be the input feature vector of the i-th sample and yi ∈ R the
corresponding target value. We aim to find a function f (xi)
that has at most ϵ deviation from the actual values yi, ensuring
that f (xi) is as smooth as possible. The ϵ deviation is one of
the hyperparameters of the SVR. The function f (xi) can be
defined as:

f (xi) = ⟨w, xi⟩ + bi, (11)

where ⟨w, xi⟩ is the dot product between the weight vector w
and the feature vector xi, and bi represents the bias. To ensure

that f (xi) is as smooth as possible for every i, the norm of the
weight vector must be minimized. This can be defined as an
optimization problem as follows:

min
1
2
∥w∥

2 (12)

subject to |yi − f (xi)| ≤ ϵ ∀i = 1, . . . , n. (13)

To avoid being too punitive and to handle cases where f (xi)
might not exist, we can introduce slack variables ξi and ξ∗

i
and add a constant C to determine the trade-off between the
smoothness and the deviations greater than ϵ. The constant C
is also a hyperparameter of the SVR. The new formulation of
the minimization problem can be described as follows:

min
1
2
∥w∥

2
+ C

n∑
i=1

(ξi + ξ∗
i ) (14)

subject to yi − f (xi) ≤ ϵ + ξi ∀i = 1, . . . , n (15)

f (xi) − yi ≤ ϵ + ξ∗
i ∀i = 1, . . . , n (16)

ξi, ξ
∗
i ≥ 0, ∀i = 1, . . . , n. (17)

One way to solve the above optimization problem is by
transforming the original formulation using the Lagrangian
formulation with the Lagrange multipliers αi, α∗

i , ηi, and η∗
i .

Thus, the original problem can be formulated as follows:

L =
1
2
∥w∥

2
+ C

n∑
i=1

(ξi + ξ∗
i )

−

n∑
i=1

αi[ϵ + ξi − yi + f (xi)]

−

n∑
i=1

α∗
i [ϵ + ξ∗

i + yi − f (xi)]

−

n∑
i=1

(ηiξi + η∗
i ξ

∗
i ). (18)

To find the optimal Lagrange multipliers αi and α∗
i , we can

obtain the dual problem, which can be represented as follows:

max
n∑
i=1

yi(αi − α∗
i ) − ϵ

n∑
i=1

(αi + α∗
i )

−
1
2

n∑
i=1

n∑
j=1

(αi − α∗
i )(αj − α∗

j )⟨xi, xj⟩ (19)

subject to 0 ≤ αi ≤ C ∀i = 1, 2, . . . , n (20)

0 ≤ α∗
i ≤ C ∀i = 1, 2, . . . , n (21)

n∑
i=1

(αi − α∗
i ) = 0. (22)

After obtaining the optimal solution for the dual problem,
that is, finding the optimal values for αi and α∗

i , the final
prediction function of the SVR is defined as follows:

f (x) =

n∑
i=1

(αi − α∗
i )⟨xi, x⟩ + b. (23)

VOLUME 12, 2024 165867



M. Jeske et al.: RSSI Prediction for Mesh Networks in a Real Urban Environment Using ML

Finally, the SVR can use kernel functions to map the input
features properly. The kernel function, denoted as K (xi, xj),
replaces the dot product ⟨xi, xj⟩. There are various kernel
functions; one way to choose one is by testing different
functions on the same training set. One well-known kernel
is the Radial Basis Function (RBF), which replaces the
traditional dot product as follows:

K (xi, xj) = e(−γ ∥xi−xj∥2), (24)

where γ is a parameter of the RBF. After defining the kernel
function, it can be replaced in the final prediction function of
the SVR as follows:

f (x) =

n∑
i=1

(αi − α∗
i )K (xi, x) + b. (25)

Similar to the reasons for selecting the Random Forest
algorithm, Support Vector Regression has been successfully
employed in the literature for path loss prediction. In [27],
the authors demonstrated that SVR exhibited superior
performance compared to outcomes achieved by ANN.

B. REAL-WORLD DATASET
In this section, we explain the characteristics of the collected
RSSI data, describe the raw data, data preparation, and data
cleaning. The data preprocessing and manipulation were
conducted using the dplyr package [42].

1) MESH NETWORKS IN URBAN ENVIRONMENT
To develop the machine learning approach to predict the
RSSI, we collected data from two mesh networks, BVI and
SLU, located in a dense urban area in the Metropolitan
Region of São Paulo, Brazil. The region is characterized
by a mix of residential houses, commercial buildings, and
industrial factories.

These mesh networks are used to automate and monitor
a set of reclosers installed in utility poles from an over-
head electric power distribution system. The reclosers are
automatic devices that verify the existence of overcurrent
and promptly restore power to the line. According to [43],
about 70% of overhead electric distribution system faults
are temporary. Therefore, using reclosers in such types
of systems is crucial to ensure that temporary faults or
disturbances are swiftly addressed, minimizing disruptions in
the power supply and enhancing the overall reliability of the
electrical grid.

By integrating reclosers with mesh networks in elec-
trical distribution systems, real-time monitoring becomes
achievable, making it possible to identify and rapidly
respond to faults. This integrated system enables centralized
management that supports strategic decision-making and data
analysis, while direct communication between the reclosers
ensures autonomy and automation. As a result, there is a
significant decrease in the need for manual interventions,
reducing human efforts and saving time and resources for
electrical distribution companies.

FIGURE 2. A utility pole in the overhead electric distribution system with
a recloser (black arrow) and a mesh node with an omnidirectional
antenna (red circle).

In particular, the structure of BVI and SLU mesh networks
for the reclosers automation is composed of two types of
devices, the mesh nodes and concentrator. The mesh node
is installed in each recloser and is capable of sensing,
transmitting, and receiving data. The concentrator is unique
for each mesh network and acts similarly as a gateway,
responsible for receiving all data routed in the network and
then transmitting it to an external server. In Fig. 2, we show a
mesh node installed in a recloser in its respective utility pole
from a network used in this paper.

The BVI and SLU mesh networks are composed of 45 and
31 mesh nodes (reclosers), respectively. All mesh nodes and
concentrators from BVI and SLU have the same technical
specifications. Each device has an omnidirectional antenna
with the transmission power equal to 24 dBm, antenna gain
of 6 dBi, operating at 922 MHz, and the radio sensitivity
level is equal to −120 dBm. Additionally, the mesh nodes
are installed on utility poles at a height of 5 meters above
the ground, close to their respective reclosers, as shown in
Fig. 2. The concentrator’s antenna is positioned at a height of
25 meters above the ground on a dedicated tower.

In Fig. 3, the aerial views of the device distribution of the
BVI (Fig. 3a) and SLU (Fig. 3b) networks are presented.
In BVI and SLU mesh networks, after each mesh node

performs its sensing, the gathered data should be immediately
forwarded to the concentrator. Eachmesh node can act both as
a transmitter and a receiver. The data transmission can occur
via a single hop, where the mesh node sends data directly to
the concentrator, or via multi-hop, where data is sent through
intermediate mesh nodes before reaching the concentrator.
The path to successfully send data from a mesh node to
the concentrator depends on the signal quality between the
devices, referred to as link quality.

A link in the network is formed between a transmitter,
which is exclusively a mesh node, and a receiver, which can
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FIGURE 3. The aerial views of the BVI and SLU mesh networks located in
the Metropolitan Region of São Paulo. The red markers represent the
mesh nodes, and the green markers represent the concentrator.

be either another mesh node or the concentrator. The link
exists if the receiving device is in the neighborhood of a
specific mesh node. The neighbor nodes are those devices
that receive the minimal signal quality required, defined by
the radio sensitivity level, to establish communication.

2) DATA GATHERING
We obtained data from the networks described in the previous
section through the Supervisory Control and Data Acqui-
sition (SCADA) system to develop the machine learning
approach. In particular, every 5 minutes, each network node
identifies available neighbor nodes to transmit its data. Each
node then sends a data package containing information about
all its neighbors to the concentrator. Thus, through the
SCADA system, we obtained a log file from the concentrator
containing the list of neighbors from each mesh node.

Due to the complex urban propagation environment where
the mesh networks are located, the list of neighbors sent
by each node can change throughout the day. Typically,
neighbors with weak RSSI tend to appear and disappear from
the neighbor list. As a result, a specific neighbor node might

FIGURE 4. Raw log files from the SCADA system.

or might not consistently appear in a node’s neighbor list
across all the transmitted log files. Therefore, considering
these variations in the measured RSSI, we conducted an
18-day consecutive data collection campaign to measure the
RSSI for each link reliably.

Fig. 4 illustrates an example of a log file received from the
concentrator via the SCADA system.

The figure shows an example of information regarding
a particular mesh node and its neighbors. The number
189 serves as an identifier for the packet that the node
sent to the concentrator. The date and time this packet was
dispatched are described as 2020-09-16T00:07:08:176, that
is, on September 16, 2020, at 00:07:08:176 (hours, minutes,
seconds, milliseconds), the concentrator received this packet.
The ‘‘NBR STATS’’ means neighbor status and represents
the encoded information derived from the neighbor list in the
packet.

Each neighbor node in the network is identified
by its Media Access Control (MAC) address. In this
example, the MAC address of the first neighbor is
30:38:35:30:31:00:2a:00. Additionally, every neighbor has
metric values that represent its status and the quality of the
link. These metrics are:

• Expected Transmission Count (ETX): measures how
many transmission attempts are expected to deliver a
packet over that link successfully;

• Rank: represents the neighbor’s distance relative to the
concentrator;

• Received signal strength indicator: represents the RSSI
from the neighbor and the receiver;

• Last transmission (last-tx): provides information about
the time, in seconds, when the last packet was sent to
the neighbor.

Among these metrics, only the RSSI value is pertinent for
the introducedmachine learning approach. On the other hand,
the ETX, rank, and last-tx values are employed to determine
routing rules according to the defined routing protocol.

In addition to these log files, the energy company provides
pertinent details about each mesh network. This file contains
a label of the utility pole where a recloser is situated,
MAC address, port number, and the respective geographical
coordinates (latitude and longitude). Table 2 shows an
example of this file.

TABLE 2. Complementary data for the reclosers.
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In the first line of Table 2, a utility pole is identified by the
number 564312, which has an associated mesh node with a
MAC address of 30:38:35:30:31:00:2a:00. The port number
for this node is 10044, and its coordinates are −23.409,
−46.500.

3) DATA PROCESSING
In the first step of data processing, we extracted the
MAC address to identify the neighbor nodes and their
respective RSSI values from each node’s log files sent to the
concentrator. Since the information in the log file is encoded,
the following procedure is required to obtain the RSSI value
in dBm units:

RSSI (dBm) =

(
RSSI
2

)
− 130. (26)

For instance, if the RSSI value is 181 in the log file,
by using (26), we obtained an RSSI equal to −40 dBm.

As mentioned earlier, we recorded information from
all packets sent by each mesh node to the concentrator
every 5 minutes for 18 consecutive days. As the RSSI
measured for a particular link can vary throughout this period,
we calculated the median of the RSSI values, in dBm,
to determine the definitive RSSI of each existing link. The
median was chosen because it is less susceptible to extreme
values and provides a more centralized representation of
the RSSI distribution without being influenced by potential
outliers.

After calculating the RSSI medians, we combine the files
by theMAC address of the respective transmitter and receiver
for each link. We obtained 662 links from the BVI network
and 455 links from the SLU network. Then, we combine both
data in a unique dataset comprising 1,117 RSSI measures.
Finally, in the definitive RSSI dataset, we have the labels and
geographic coordinates of the transmitter and receiver and the
median of the RSSI for each link. Table 3 presents examples
of links and their respective information.

TABLE 3. Definitive RSSI dataset.

C. FEATURE ENGINEERING
In this section, we elaborate on the features utilized in
the proposed machine learning approach. The selection of
appropriate input features is pivotal in machine learning,
as the performance of the model hinges on the quality and
relevance of the input data. For RSSI prediction, it is essential
that the features distinctly capture the characteristics of the
radio propagation environment.

Furthermore, in [4], the authors underscored the poten-
tial of machine learning methods in simplifying input
requirements for developing path loss models in com-
plex environments. They argued that an increased number
of features (factors influencing signal attenuation) does
not necessarily guarantee improved accuracy in predic-
tion models. On the contrary, a large number of fea-
tures can diminish performance and add complexity to
the machine learning approach, particularly in terms of
computational time and efforts required for feature extrac-
tion. Although various factors impact signal attenuation,
their incorporation can make machine learning approaches
more intricate, both in extracting relevant information to
be used as features and in achieving optimal prediction
performance.

Addressing these challenges, in [21], the authors empha-
sized the difficulties encountered when comparing machine
learning approaches to deterministic propagation models
like ray-tracing models. The latter necessitates detailed
information about the environment, encompassing geometric
and material properties such as topography details or material
composition and their respective influences on signal propa-
gation, including absorption loss. This detailed information
significantly heightens the complexity of modeling. Notably,
several studies in the literature have demonstrated that even
utilizing a single feature in machine learning approaches for
predicting path loss, such as employing distance as the sole
feature, can yield results superior to traditional propagation
prediction models [9], [19].

Given these considerations, this paper approaches fea-
ture selection with an emphasis on achieving a balance
between comprehensiveness and practicality. The features
were chosen based on classical and empirical models
and the recent literature on machine learning for RSSI
prediction in urban contexts discussed in Section II. Addi-
tionally, we explored the features proposed by [12] for
predicting RSSI in mesh networks situated in mountainous
regions. Despite the differences in the regions, we drew
inspiration from features that could be relevant in both
scenarios.

For features extraction, we use the labels of the transmitter
and receiver and their respective longitude and latitude
for each of the 1,117 links from the dataset detailed in
Section IV-B2 and terrain data. The terrain elevation data was
obtained using the elevatr package [44], which provides a
series of repositories for geographical data. In particular, with
the function get_elev_raster, we obtained terrain elevation
data from the Amazon Web Services Terrain Tiles [45].
Therefore, combining these two data sources, we extract the
following proposed features for each link.

1) EFFECTIVE HEIGHT OF THE TRANSMITTER AND RECEIVER
ANTENNAS
For both the transmitter and receiver, we considered the
antenna height installed at the utility pole plus the terrain
elevation in its respective coordinates.
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2) DISTANCE FROM THE TRANSMITTER TO THE RECEIVER
To calculate the distance for each link, we use the transmitter
and receiver coordinates through the function geodist from
the package geodist [46].

3) TERRAIN ELEVATION STATISTICS
A set of statistical measures concerning the terrain elevation
in the path between the transmitter and receiver. Each of
the following measures represents an input in our approach:
the maximum and minimum terrain elevations and the mean,
median, and standard deviation of the terrain elevation along
the path.

4) PERCENTAGE OF OBSTRUCTION IN THE FIRST FRESNEL
ZONE
Given a radio link, the space between the transmitter and
receiver can be divided into a set of zones (ellipsoids)
called Fresnel zones, in honor of the physicist Augustin-Jean
Fresnel (1788-1827). The radius of the first Fresnel zone is
calculated according to:

r =

√
d1d2λ
d1 + d2

, (27)

where λ is the wavelength, d1 is the distance from the
transmitter to the highest obstacle in the path profile, and d2 is
the distance from the highest obstacle in the path profile to the
receiver.

According to [31], when the first Fresnel zone is obstructed
in more than 40%, attenuation caused by obstacles will
probably occur. Also, according to [25], the obstacles
are the most critical components in a radio propagation
environment. Therefore, including geometric patterns of
radio wave propagation suggests potential relevance for RSSI
prediction, specifically within urban regions as presented
by [17].

The proposed machine learning approach considers as a
feature the percentage of obstruction in the first Fresnel zone
varying from 0% to 100%. The percentage for each link is
calculated based on the highest obstruction in the path profile
and compared to the diameter (2r) of the first zone. For
example, if the highest obstacle in the path profile hits exactly
in the line of sight, then the obstruction in the first Fresnel
zone is equal to 50%.

The procedure used to calculate the percentage of obstruc-
tion has the following steps:

• Extract terrain elevation data between the transmitter
and receiver using their heights and latitude and
longitude coordinates;

• Draw a straight line between the transmitter and receiver
antenna, which represents the line of sight – which will
be one of the diameters of the ellipse of the Fresnel zone;

• Consider the first Fresnel zone using (27) to define the
other ellipse radius.

• Calculate the obstruction percentage of the first Fresnel
zone, considering the maximum altitude in the terrain

profile between the transmitter and receiver. Then,
calculate the radius using (27), considering d1 the
distance from the transmitter to the maximum altitude
and d2 the distance from the maximum altitude to the
receiver. Finally, the obstruction percentage is obtained
between the maximum altitude and the bottom of the
Fresnel zone two times the radius.

Fig. 5 displays the elevation profile in meters (black
curved line) to sea level rise (y-axis) and the distance from
the transmitter (T) to the receiver (R) in meters (x-axis).
Furthermore, the line of sight (straight dashed blue line) and
the first Fresnel zone (ellipse region) are shown in the same
figure.

FIGURE 5. Elevation profile (black), line of sight (blue), and the first
Fresnel zone (orange).

In the link example illustrated in Fig. 5, the percentage of
obstruction in the first Fresnel zone is equal to 0% since there
is no obstruction inside the ellipsoid.

D. LEARNING PROCESS AND PERFORMANCE METRICS
This section describes the process of defining the hyper-
parameters of the Random Forest and Support Vector
Regression algorithms, the strategies for training and testing
the models, and the error metrics employed to validate the
accuracy of the regressors. The implementation of the ML
approach described in this section is publicly available on
GitHub [47].

1) ERROR METRICS
Considering the importance of accurate and reliable RSSI
predictions in urban mesh networks, we chose error metrics
that evaluate the performance of our models in terms of both
error magnitude (in dBm units) measured by the RMSE and
the error percentage by the Mean Absolute Percentage Error
(MAPE).

The RMSE is calculated as in

RMSE =

√√√√ 1
nl

nl∑
i=1

(
ˆRSSIi − RSSIi

)2
. (28)

The MAPE is calculated as in

MAPE =
1
nl

nl∑
i=1

∣∣∣∣∣RSSIi − ˆRSSIi
RSSIi

∣∣∣∣∣ 100. (29)

In (28) and (29), nl is the number of links, ˆRSSIi is the
i-th estimated value of the received signal strength indicator,
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and RSSIi is the i-th real value of the received signal strength
indicator.

2) HYPERPARAMETER TUNING
Hyperparameters, prevalent in most machine learning algo-
rithms, play a crucial role in determining their performance.

To implement the Random Forest algorithm in R language,
we used the randomForest function from the package ran-
domForest [48]. In RandomForest, we set the hyperparameter
mtry to integer numbers from 1 to 9. The parameter mtry
refers to the number of random variables chosen as candidates
for each split in the tree.

The optimal performance was determined using a grid
search combined with 10-fold cross-validation. The grid
search involved specifying a range of hyperparameters to be
tested and then systematically evaluating the performance
of the model for each combination of hyperparameters. The
data was repeatedly split into 10 folds, where 9 folds were
used for training and 1 fold for validation in each iteration.
This process was repeated 10 times, ensuring that each fold
was used exactly once for validation. The performance metric
used for evaluation was Root Mean Squared Error (RMSE).
The best result was achieved at an mtry value of 4. For
the other parameters, we assigned the default values of the
randomForest function, which include the number of trees
(ntree) set to 500 and the minimum number of samples in
a node required to split (nodesize) set to 5. Additionally,
nodesize serves as the stopping criterion of the algorithm
for splitting nodes.

The Support Vector Regression algorithm was imple-
mented in R language using the svm function from the
e1071 package [49]. In SVR, we tuned the following
hyperparameters:

• Epsilon (ϵ): specifies a threshold below which predic-
tion errors are not penalized. To tune ϵ we define a set
of values [0.1, 0.2, . . . , 1]

• Cost (C): determines the penalty for prediction errors.
A larger C will prioritize minimizing errors but might
increase the possibility of overfitting. To tune C we
define a set of values [20, 21, . . . , 29]

• Kernel function: both the RBF and sigmoid kernels were
considered for the kernel function.

Finally, considering the RMSE obtained in the tuning
process, the definitive values chosen for the hyperparameters
were 0.5 for ϵ, 128 for C , and RBF as the kernel function.

3) TRAIN AND TEST
To increase the reliability of the results obtained by the
predictive algorithms, we used the k-fold cross-validation
method. In this method, the dataset is divided into k
approximately equal-sized subsets, where k − 1 subsets are
used as training data, and the remaining subset is the test
set. This process is repeated k times, each of them using
a different subset as the test set. The final performance of
the algorithm is the average performance in each test subset.

In our dataset, we define k = 10. Therefore, the performance
of the SVR or Random Forest algorithm is the average of the
errors obtained in these ten tests.

V. RESULTS AND DISCUSSION
We present a comparison and the prediction results of RSSI
obtained by the classical, empirical, and machine learning
models. In Fig. 6 and Fig. 7, we depict the distribution of both
the real RSSI and the predicted RSSI from each model. For
better visualization, we sorted the 1,117 links from the real
RSSI dataset in descending order from strong to weak RSSI.

From Fig. 6a to Fig. 6c, which correspond to the
classical models, the Free Space Path Loss and its variation
considering reflection in the path underestimated mainly
the RSSI with strong signal, and both concentrated its
prediction RSSI in the range from −110 dBm and −80 dBm.
Furthermore, in our urban scenario, the FSPL-R slightly
increases the error prediction compared to the FSPL.
This result was counterintuitive, given that the links are
not predominantly LOS in such scenario. Regarding the
Friis Equation, almost all predictions were overestimated,
concentrating the predicted RSSI between −80 dBm to
−60 dBm. In conclusion, from the classical models, the best
prediction results are obtained from the original formula of
the Free Space Path Loss.

From Fig. 6d to Fig. 6f, which correspond to the urban
empirical models, there is a tendency in all models to
underestimate the real RSSI, mainly in the prediction results
obtained from the Okumura-Hata model. Also, different
from the prediction results in the classical models, the
range of the predicted RSSI from Okumura-Hata and Egli
exceeded the radio sensitivity level of the mesh nodes and
concentrator. The predicted RSSI values fromOkumura-Hata
are concentrated in the range of −160 dBm to −120 dBm,
while the Egli model is from −140 dBm to −100 dBm.
On the other hand, the Edwars-Durkin was the unique
empirical model that concentrated its prediction RSSI values
according to the radio sensitivity level and had the best fitting
distribution related to real RSSI.

As discussed earlier, the empirical models are still
frequently used. However, these models are influenced by
the unique characteristics of the regions where the data were
gathered. Even though the selected urban empirical models
consider the carrier frequency of our networks, the urban
characteristics found in theMetropolitan Region of São Paulo
may differ from the original urban scenario in which these
models were formulated. Furthermore, another reason that
might have influenced the high prediction error is that these
models are derived based on data obtained from mobile
networks, and as discussed in Section II, there are some
considerable differences from the wireless mesh networks.

From our proposed approach using the Random Forest and
Support Vector Regression algorithms, illustrated in Fig. 7a
and Fig. 7b, both algorithms had a similar performance.
However, the Random Forest exhibited a slightly more
accurate prediction than SVR. Additionally, both algorithms
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FIGURE 6. Comparison between the real RSSI and the prediction by classical and empirical models.

FIGURE 7. Comparison between the real RSSI and the prediction by machine learning models.

showed the same propensity to underestimate the RSSI values
between the range of −80 dBm and −50 dBm. In contrast,
in the −110 dBm to −90 dBm range, both algorithms
tended to overestimate weak RSSI values close to the radio
sensitivity level.

To quantitatively evaluate the performance, in Table 4,
we presented the RMSE andMAPE of the prediction models.

According to the values in Table 4, the machine learning
models outperformed the classical and empirical models.
In particular, the Random Forest algorithm had the best
performance with a prediction error of approximately 6 dBm,

TABLE 4. Error measurements from all prediction models.

followed by the Support Vector Regression with an error of
8 dBm.
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Regarding the classical models, the best performance
was obtained from the Free Space Path Loss model with
a prediction error of around 15 dBm, while the FSPL-R
achieved approximately 18 dBm and the Friis Equation equal
to 20 dBm.

Concerning the urban empirical models, the Edwards-
Durkin model outperformed the Egli and Okumura-Hata
models. The prediction error using the Edwards-Durkin was
around 16 dBm, while the Okumura-Hata had the worst
performance with an error of approximately 52 dBm.

In conclusion, the two machine learning algorithms
used in our approach to predict RSSI for urban mesh
networks outperformed all traditional models. The prediction
performance using Random Forest increased the accuracy
by 62% compared to the best results from classical models
(FSPL) and 66% compared to the best results from empirical
urban models (Edwards-Durkin). Moreover, the prediction
error of 6 dBm achieved using our proposed approach
with the Random Forest algorithm is considered acceptable
according to the literature for predicting the path loss in urban
environments [38].

A. FEATURE IMPORTANCE ANALYSIS
The analysis of feature importance provides insights into how
the features, representing distinct aspects of the propagation
environment, interact with each other and influence the
machine learning process.

We analyzed the feature importance from the results
obtained in RandomForest, which performed best. According
to [50], the most relevant measure to evaluate the feature con-
tribution in Random Forest is the percentage increase in mean
squared error (%IncMSE). The %IncMSE is calculated for
each input feature by measuring how much the mean squared
error increases when that feature is randomly permuted in
the test data. Thus, if the error increases significantly after
permuting a specific feature, this indicates that this feature
holds substantial importance for the prediction model. On the
contrary, if the increase in error is minimal or unchanged,
the feature has less influence or is potentially irrelevant to
the model. Therefore, based on the %IncMSE values, we can
evaluate which features have the most significant impact on
the prediction and that best describes the relationship between
signal attenuation along the path from the transmitter to the
receiver. Table 5 shows the %IncMSE for each feature used
in the Random Forest.

TABLE 5. %IncMSE values of the features in random forest.

According to Table 5, the feature with the highest
importance in the RSSI prediction was the obstruction
percentage in the first Fresnel zone, followed by the distance
from the transmitter to the receiver. These results showed
the importance of considering the geometric patterns of
radio wave propagation by quantifying the obstruction in the
Fresnel zone as input for the machine learning approach.
Although this feature is rarely considered in the literature,
in our ML approach to predicting the RSSI for urban mesh
networks, this feature has shown a substantial contribution.

Furthermore, as the second most influential feature, the
distance from the transmitter to the receiver still plays a
fundamental role in the RSSI prediction, even in urban
regions where signal attenuation factors extend beyond the
relation of decreasing the RSSI as the distance increases.
Similar to the distance feature, the effective height of the
receiver and transmitter antennas, present in classical and
empirical models, also contribute significantly to the RSSI
prediction.

The last feature group is the statistical features derived
from the profile terrain elevation. The feature that better
indicates the terrain complexity was the standard deviation
followed by themedian of the elevation along the path profile.

Our work pioneers the application of machine learning
for RSSI prediction in urban mesh networks. Unlike the
previous work presented by [12], our analysis incorporates
a broader set of features tailored to urban environments. For
a direct comparison, these features are presented in Table 6,
ordered by its importance. This comprehensive approach
highlights the unique factors influencing urban mesh net-
works, demonstrating the adaptability and specificity of our
machine learning model in addressing these challenges.

B. EXTENSION AND APPLICABILITY TO OTHER URBAN
MESH NETWORKS
Considering that this work introduces a machine learning
approach for RSSI prediction in urban mesh networks for
the first time, several points need discussion regarding
its application to all mesh networks embedded in similar
characteristics. As highlighted throughout the article, the
selected features were based on traditional models and
literature related to other networks, such as mobile, tele-
vision, and radio networks, with consideration for ease of
obtaining them in real-world scenarios. Consequently, the
approach presented here is potentially applicable to other
mesh networks in urban scenarios.

The chosen features account for the region’s particularities,
considering obstruction percentage in the line of sight, as well
as aspects of the network devices, such as antenna height and
distance between them. The results from the analysis of the
importance of each feature in the RSSI prediction process
demonstrate that certain features are as important in urban
scenarios as those in mountain conditions presented by [12].
Moreover, the results indicate that the proposed approach is

a superior alternative to traditional and empirical propagation
models, validated and applied to predict RSSI in two

165874 VOLUME 12, 2024



M. Jeske et al.: RSSI Prediction for Mesh Networks in a Real Urban Environment Using ML

TABLE 6. Comparison of features used in mesh networks in order of importance.

networks operating in real-world applications. This approach
for predicting RSSI in urban scenarios may be extended to
other mesh networks based on the expected error presented.

It is essential to note that predicting RSSI for other mesh
networks operating at significantly different frequencies may
however lead to variations not identified in this study.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced a pioneering machine learning
approach to predict RSSI for mesh networks situated in urban
areas. Our methodology was developed using real-world
RSSI measurements extracted from two mesh networks
in the Metropolitan Region of São Paulo. A review of
existing literature revealed that, while several studies have
developed machine learning approaches to predict path
loss and RSSI, their primary focus has been on broad-
cast and mobile networks. We underscored the significant
differences between these networks and mesh networks,
emphasizing aspects such as topology, architecture, and
antenna type. Based on this literature and the unique
characteristics of urban mesh networks, we defined a set
of features that describe the radio propagation environment,
serving as inputs for the introduced machine learning
algorithms.

To predict RSSI for the investigated urban mesh networks,
we adopted the Random Forest and Support Vector Regres-
sion, which have shown significant performance results
in RSSI prediction. Additionally, we selected appropriate
classical and empirical models for comparative prediction
results, such as the Free Space Path Loss and Okumura-
Hata. To evaluate the results from all these prediction models,
we used the RMSE and MAPE metrics. Based on the
RMSE analysis, quantifying the error in dBm units, the
Random Forest approach outperformed all models, achieving
a prediction error of 6 dBm.

Moreover, from the Random Forest results, we presented
a feature importance analysis describing the contributions
of the set of features in RSSI prediction for urban mesh
networks. From this analysis, we showed that the feature
not usually considered in the literature, representing the
percentage of obstruction in the first Fresnel zone, was
the most important for the introduced model, followed by the
distance from the transmitter to the receiver. Additionally, the
effective height of the transmitter and receiver antennas and
the terrain variation along the propagation path, measured

by the terrain elevation’s standard deviation, significantly
contributed to the prediction results.

Considering that this is the first time a machine learning
approach to predict RSSI was explored for mesh networks
in urban regions, for future work, we intend to include new
features, such as building information, that are present in the
radio propagation environment found in urban areas. We will
then compare the performance of these features with those
presented in the approach proposed in this paper.
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