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Article
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Abstract: The effective management of urban waste represents a growing challenge in the face
of demographic evolution and increased consumption. This study explores the impacts of mu-
nicipal strategic decisions on household waste management behaviours and sustainability perfor-
mance outcomes through agent-based modelling. Using data from Gatineau and Beaconsfield in
Quebec, Canada, the model is calibrated and validated to represent diverse urban contexts. Our
analysis demonstrates that reducing collection frequency leads to notable increases in participation
rates, reaching 78.2 ± 5.1% for collections every two weeks and 96.5 ± 8.3% for collections every
five weeks. While this reduction improves bin filling levels, it concurrently decreases the recovery
of recyclable materials by 2.8% and 19.5%, significantly undermining the environmental benefits of
the recycling program. These findings highlight a complex interplay between collection frequency,
citizen participation behaviour, waste stream characteristics, and overall environmental performance.
While reducing collection frequency initially appears beneficial, it leads to operational challenges and
increased CO2 emissions due to reduced material recovery. The research emphasises the need for
tailored holistic waste management strategies that optimise performance outcomes while minimising
environmental impacts. By understanding these dynamics, municipalities can develop more effective
waste management policies that promote sustainability.

Keywords: municipal solid waste; agent-based simulation models; household behaviours; sustainability
performance; sustainable urban waste management; municipal strategic decision

1. Introduction

Population growth and increased consumption amplify waste collection and pro-
cessing challenges. It is imperative to rethink approaches to preserve ecological balance.
Municipalities aim to create sustainable urban environments by promoting eco-friendly
practices and investing in modern waste management infrastructure. A household en-
gagement strategy seeks to shift individual behaviours towards sustainability, focusing on
source reduction, source separation, and collection participation. This strategy requires
citizens to separate waste and optimally use various collection methods, facilitating efficient
material recycling.

Effective implementation of source separation is a challenge. Factors influencing
such initiative success include design, collection infrastructure, and municipal incentives
affecting household behaviour. To assess the overall impact of these strategic decisions, it is
crucial to scrutinise policy performance using meaningful metrics and rigorous evaluations.

In this context, this study aims to thoroughly explore how municipalities can strategi-
cally adapt waste management systems to leverage source separation and increase partici-
pation in waste collection, recognising them as fundamental attributes that contribute to
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enhancing sustainability and environmental performance. The analysis aims to uncover
best practices by examining how municipal strategic decisions impact citizen behaviour,
utilising key performance indicators (KPIs) such as sorting quality—assessed through
recyclable material recovery and contamination rates—and durability metrics that evaluate
greenhouse gas emissions (CO2 equivalent), labour costs, and energy expenditures.

1.1. The Impacts of Municipalities’ Strategic Decisions

The more appealing material recycling is, the more likely citizens are to recycle [1].
Implementing an accessible collection infrastructure with well-distributed drop-off points
and efficient sorting systems simplifies the process for residents, reinforcing their inclination
to participate.

Several studies have observed a link between collection frequency and recycling
participation. Two Canadian studies [2,3] indicate that recycling participation rates are
higher with weekly collection compared to bi-weekly collection, primarily because citizens
tend to accumulate larger amounts of recyclable materials at home. The ease of recycling
should make it more compelling than disposing of materials. Reducing the collection
frequency of mixed waste compared to recyclables has allowed many municipalities to
achieve waste diversion goals [4]. This is particularly true for organic waste, as more
frequent collection helps manage nuisances effectively [5].

Questionnaires on citizens’ pro-environmental attitudes [6–8] indicate that insufficient
space in collection bins hinders effective sorting of materials. The lack of space in recycling
bins is listed as the second main reason (25.9%) discouraging recycling by Keramitsoglou
and Tsagarakis [6]. In the event of a full recycling container, Schilling [9] reports that most
individuals hold onto their material for additional collection, while others add it to mixed
waste collection. Furthermore, Binder [10] identifies that overflowing bins initially led to
littering and subsequently impacted waste sorting accuracy.

The presence of interactions among various elements of the waste management system
makes it challenging to assess the environmental impacts of such decisions. By analysing
the relationships between waste characteristics and GIS-based truck route planning,
Vu et al. [11,12] observed that truck travel distances depend on collection frequency, truck
capacity, compartment volume ratio, and waste density. The results suggest that increasing
waste density and decreasing the collection frequency significantly reduce travel dis-
tances, with respective decreases of 18.2% and 41.9%. However, the modification of the
number of truck passages can significantly impact CO2 emissions. Bala et al. [13] demon-
strated through a life cycle analysis (LCA) that a 25% and 100% increase in collection
frequency leads to an environmental performance deterioration of approximately 41%
and 120%, respectively.

The weight of materials, the number of stops, and the efficiency of the truck fleet
impact fuel consumption per 100 km. Frequent stop-and-start cycles can increase fuel
consumption as the vehicle expends more energy accelerating from a standstill [14].
By implementing measures to encourage citizens to participate in the collection only
when necessary and thus reducing the number of stops, the city of Beaconsfield reduced
its trucks’ fuel consumption per 100 km by 10.2% [15]. This demonstrates that citizen
participation in collection and a decrease in the number of bins placed curbside contribute
to reducing greenhouse gas emissions from waste collection. Waste density and collection
frequency can reduce truck travel distances. However, the overall environmental impact
must be assessed given the various interactions within the waste management system.

1.2. Sustainability and Environmental Performance Modelling

Numerous studies have focused on the environmental, social, and economic perfor-
mance of various stages in municipal solid waste (MSW) management. These models, en-
compassing all stages of an integrated waste management system, include collection [13,16],
transportation [17,18], materials handling [19,20], recovery [21,22], and disposal [23]. Ac-
cording to Campitelli and Schebek [24], 40% of the studies reviewed utilised life cycle-based
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approaches, alone or in combination with other assessment methods. This underscores the
predominance of the environmental aspect in analysing the performance of different stages
in municipal solid waste management.

Among the approaches used, the Environmental Protection Agency (EPA) has de-
veloped an optimised life cycle analysis (LCA) model called the waste reduction model
(WARM) to assist waste planners in modelling scenarios and calculating their impacts [25].
Widely used globally [26–30], this model provides crucial information for policymakers
and solid waste managers. This variety of approaches reflects the complexity of the field.
It underscores the need to simultaneously consider the multiple facets of performance to
achieve sustainable and balanced municipal solid waste management solutions.

1.3. Waste Materials Management System Modelling

When addressing the modelling of decision-makers impacts on waste collection, the
emphasis frequently revolves around waste mass forecasting models [31,32], GIS-based
optimisation models for collection routes [11,33], and the identification of post-collection
treatment solutions [34–36]. Very few studies directly delve into material sorting and citizen
behaviour. However, numerous studies [2,4,37,38] complain that neglecting the effect of
citizen behaviour limits the use of models and the interpretation of the studied phenomena.
This demonstrates the importance of considering waste management modelling as an
adaptive system. Such a system should incorporate social, economic, and environmental
aspects, as well as address the needs of the stakeholders involved.

To address these complexities, various modelling approaches, such as system dynam-
ics (SD) and agent-based modelling (ABM), are used. System dynamics is a method for
understanding the nonlinear behaviour of complex systems over time by utilising stocks,
flows, internal feedback loops, and time delays [39].

Pinha and Sagawa [40] use system dynamics to simulate waste generation and collec-
tion participation. The model primarily considers the economic repercussions of municipal
decisions and certain social impacts.

Others, like the model of Karavezyris et al. [41], represent behavioural changes as flows
determined by auxiliary variables of improvement and deterioration of behaviour. Thus, the
model allows for predicting solid waste generation and its impact on the system in response
to municipal regulations by tracking the evolution of the population’s environmental
behaviours over time. Environmental behaviour is viewed as a qualitative variable.

Looking at the construction materials management system, Ding et al. [42] argue that
this type of model cannot provide a deep explanation of the system’s micro-behaviours,
as it ignores the relationship between macroeconomic and microeconomic behaviour.
Furthermore, if the system is decomposed into simpler entities, these models are often
criticised for being based on a semi-quantitative method. The quality of the simulation
is then influenced by the assumptions made. Additionally, since differential equations
describe the system, changes in topology at the component level are not made trivially [43].
In reality, the system dynamics method presents a high level of abstraction and is primarily
used to solve strategic-level problems.

Conversely, agent-based modelling is a bottom-up approach that simultaneously
simulates the operations and interactions of multiple entities called agents to recreate and
predict the emergence of complex phenomena. Agents are entities that have rules and
states, and they act accordingly at each step of the simulation [44].

Agent models are particularly suitable when active elements such as humans, ani-
mals, or vehicles exhibit individual behaviours based on time or some event sequence [45].
This type of model can lead to a more natural and transparent description of the target
system by allowing for the presence of heterogeneous entities. Agent models can ex-
plicitly incorporate most social processes involving spatial or network attributes, as the
environment in which agents operate is central to the modelling.

Several agent-based models are used in waste management to identify facilities or op-
erations that limit supply chains to maintain market competitiveness [46–49]. The inclusion
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of incentive policies is also an essential phenomenon in these limiting operation models.
For example, Shi et al. [47] examined how adding an extra collection route limits effective
waste management by identifying infrastructures that cannot meet the new demand.

The theory of planned behaviour (TPB) serves as a robust framework for modelling citi-
zen decision-making processes, making it a common choice in waste sorting models [41,50,51].
This theory is often combined with agent-based modelling to effectively represent hu-
man entities as they make decisions and display individual behaviours related to waste
generation and sorting actions. For instance, using an agent-based model and the TPB,
Labelle et al. [51,52] demonstrate that the location of drop-off points chosen by decision-
makers directly impacts citizens’ glass bottle return behaviour, thereby influencing the
efficiency of reverse logistics networks.

Simultaneously, Walzberg et al. [53] adeptly integrate agent-based modelling, TPB,
material flow analysis, system dynamics, and LCA to assess the effect of interventions
(awareness and modification of the deposit system) on polyethylene terephthalate bottle
waste collection rates. Focusing on the scale of U.S. states, the study examines the reduction
in virgin plastic production and the avoided greenhouse gas emissions.

However, these two promising studies focus only on specific materials, and the defini-
tion of the contamination rate does not consider the risk that improperly discarded items
may contaminate the rest of the bin. Additionally, while both models operate at different
scales, they highlight the need to tailor such models for local communities.

The theory of planned behaviour has also been paired with agent-based models by
Ma et al. [54] and Tong et al. [55]. These studies explored effective ways to encourage
citizens to sort materials by simulating household participation. Tong et al.’s work also
confirms the effectiveness of various factors influencing recycling activities, such as op-
portunities and knowledge about recycling, time spent on recycling, distance to recycling
facilities, and in-person interactions between residents and collection teams.

Setting the parameters for these models mainly relies on community survey results and
assumptions about scenarios and policies. This means the models are heavily influenced
by the local context, making the results hard to generalize. Ma et al. [54] suggest that for a
more accurate model, the data sources need to be improved. They also emphasise the need
to find a way to adapt these models.

Waste management is a critical issue facing municipalities worldwide, especially as
urban populations grow and environmental concerns escalate. This study addresses the
pressing need for more effective waste management systems by developing an agent-based
simulation tool that captures the impacts of the relationships between municipal decisions
and individual household behaviours. Unlike previous works that primarily focused on
broad patterns of waste generation [56] and the integration of behaviour segments in waste
sorting [57], this study examines the social and environmental impacts of citizen behaviour
in response to changes in their environment.

While the existing literature highlights the importance of citizen engagement in waste
sorting, studies have yet to thoroughly investigate the impact of specific municipal actions.
Actions such as the types of collection containers and the frequency of pickups play a
crucial role in shaping individual waste generation. They also influence sorting behaviours
and participation in collection programs for different waste types. This study fills a critical
gap by simulating these interactions, equipping municipalities with data-driven insights to
enhance their waste management strategies.

Moreover, the simulation tool is designed to be modular and flexible, facilitating easy
updates and modifications based on evolving data and municipal policies. This adaptability
ensures the model’s ongoing relevance and capacity to meet future research needs, posi-
tioning it as a valuable resource for academics and practitioners.

2. Materials and Methods

This work aims to produce an agent-based simulation tool to track the impacts of
municipalities’ strategic decisions on individual household behaviours, particularly on the
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performance of the waste management system. To achieve this, the generation of waste
materials by citizens, their sorting actions based on available collection methods, and their
decision to participate in collections must be simulated. Additionally, various municipal
management decisions must be included as inputs to the model: the types of collection
containers provided to citizens, the types of available collections, and the frequencies of
each collection.

2.1. Model Overview

The agent-based model (ABM) aims to represent household source sorting behaviours, con-
sidering their environmental attitudes and demographic profiles. It is designed to be adaptable
to different geographic areas with diverse socio-economic and demographic distributions.

The general conceptual framework of the model is presented in Figure 1, with the
simulation implemented using AnyLogic (version 8.8.2, AnyLogic Company, Chicago,
IL, USA) and Python (version 3.10.9, Python Software Foundation, Wilmington, NC, USA).
As shown in Table 1, the data used for model construction and calibration comes from raw
databases and data produced by field studies and surveys. To ensure consistency in the
modelling, the collected data represent the same years prior to the COVID-19 pandemic.
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The raw databases contain detailed, geolocalised information collected directly from
systems or through tracking. These detailed databases allow for fine-tuned simulations,
giving the model a strong foundation based on real-world conditions. Additionally, the
model incorporates findings from environmental attitudes segmentation studies [58] and
socio-economic and demographic distributions [59], which provide insights into how
different population segments interact with waste management systems. Waste quantities
produced by the population [60,61] are also integrated into the model, allowing for an
accurate representation of material generation across various demographics. Furthermore,
material characterisations [62,63] are utilised to inform the model about the composition of
waste, which is essential for understanding its environmental impacts.

Table 1. Comprehensive list of data input for model construction and calibration.

Raw Databases Field Studies and Surveys

Geolocated addresses
(Data covering all households in the study area) [64]

Detailed characterisation of materials produced by collection
method and housing type [62,63]

Accounting of citizen collection container types
(Data covering all households in the study area) [60] Report on tagged bins implementation in Beaconsfield [15,61,65]

GPS tracking of collection trucks
(Data covering all trucks in the study area for one year) [66] Report on behaviours and attitudes of Quebec citizens [58]

Timestamped records of truck weights and discharge types
(Data covering all trucks in the study area for one year) [60,67]

Canadian census [59]
WARM databases [25]

Results from previous work [56,57]

Each agent represents a household and is initialised based on the socio-economic
knowledge of its residential area. It is then probabilistically assigned to an environmental
segment representing its proximity or distance to pro-environmental attitudes. When the
simulation begins, the agent generates waste materials based on its housing type.

At initialisation, agents are assigned fixed properties:

• Socio-economic attributes (E): salary, dwelling size, gender and age of the waste
management responsible party, education level, housing conditions;

• Type of residence: single-family (SF), multi-family (MF);
• Type of receptacles: bins (B), containers (C);
• Environmental attitudes segment (S): pro-environment (green [G]), sensitive to recy-

cling barriers (yellow [Y]), and less engaged in recycling (red [R]);
• Reported habit of recycling (H): systematically, a lot, occasionally/rarely;
• Waste volume limit (Vlim): Maximum available volume allocated to each individual

dwelling for waste disposal.

The decision-making process for waste disposal and collection participation relies on
a probabilistic model rather than a predetermined threshold. The agent’s intention to place
materials in the appropriate bin and participate in the collection is calculated spontaneously
and individually for each type of material and collection day. When a collection day occurs,
the agent responsible for taking out the bin checks its filling level.

Whether the agent performs the action is determined by a probabilistic mechanism,
where the probability of action depends on the measured intention. This approach ensures
a dynamic and adaptive system in which the action likelihood is influenced by the agent’s
intention rather than being predetermined or guessed.

Waste (w) materials (m) tracked by the model are as follows:

• Recyclable waste (RW): Plastic, metal, fibres, glass;
• Error waste (ERR): Non-recyclable plastic, non-recyclable metal, non-recyclable fibres,

non-recyclable glass;
• Mixed waste (MW): Organic waste, others.

Properties subject to change during decision-making include the following:

• Waste generation rate (τW): Quantity of generated waste of type “W”;
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• Waste material density (ρbulk,m): Density of material (m) including void space;
• Waste volume: In the bin/container (Vn), generated during a specific day (Vw), already

present in the bin/container at the start of the day (V0);
• Filling level (FL): Filling level of the investigated bin/container;
• Behaviour intention: Waste sorting intention (IW) or participating in the waste collec-

tion process (Ip);
• Frequency of recycling habit ( fH): Randomly allocated value from frequency distribution.

The trucks used for the different collections compile several statistics as a function
of the number of households encountered along their route and the weights of collected
waste materials. Those statistics include participation rate, collection time (tcollection), col-
lected weight (Wt), and generated impacts (QImpact,total). The tracked impacts are the CO2
emissions, labour needs, and energy consumption generated by the material collection
(QImpact, collect), transportation (QImpact,transport), and disposal methods (QImpact,EoL).

The validation and training phases are conducted on separate populations to enhance
the model’s robustness, as detailed in Table 2. The validation phase utilised data from
the city of Gatineau, which encompassed 126,476 agents representing all dwellings in the
territory and reflecting a typical year of waste collection. In contrast, the training phase
utilised data from Beaconsfield, which included 6828 agents representing all households
within the city as a single training set. This dataset from Beaconsfield provided specific data
not available for Gatineau, enhancing the model’s comprehensiveness. Moreover, being
more homogeneous, the Beaconsfield population also offers a simpler and more uniform
dataset for model training.

Table 2. Description of the simulated populations.

Description Validation Training

Simulated population City of Gatineau City of Beaconsfield
Simulation time 1 year 1 year

Number of agents 126,476 agents separated into
41 geographical zones

6828 agents not separated into
geographical zones

Average agents per
simulated zone 3000 agents per zone 6828 agents

2.2. Mathematical Framework

In our previous work [57], we observed that the influence of environmental attitude
directly affects a household’s willingness to adopt source separation practices. Households
prioritising environmental preservation are more inclined to take concrete measures such
as waste separation at the source. The current study advances this understanding by incor-
porating a broader range of materials, allowing for a more accurate description of sorted
waste densities. This additional data provide a clearer understanding of the variations in
material properties and how they influence the effectiveness of waste separation efforts.

Furthermore, this study introduces the concept of bin size limitations, which signif-
icantly impact a household’s ability to participate in sorting. The size of the available
collection bins imposes practical constraints on how much waste can be sorted at home,
directly affecting the extent to which households can follow through with their sorting
intentions. As a result, bin size works in tandem with collection frequency to shape partici-
pation behaviours. To fully understand the influence of collection frequency on citizens,
participation in waste collection must be integrated into the model. This participation is
closely tied to the volume of waste available at the household and previous actions or the
actions of other agents sharing the same bin. Consequently, at this stage, agents gain a
clearer understanding of their environment and the timing of the collection trucks’ visits,
further refining their waste sorting decisions.

The relationship between households’ socio-demographic properties and their environ-
mental attitudes can be established by combining their socio-demographic characteristics
with an existing study on environmental behaviour [58]. The results defined three attitude
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segments (S): pro-environment (green [G]), sensitive to recycling barriers (yellow [Y]), and
less engaged in recycling (red [R]).

An agent’s affiliation to an attitude segment is fixed. However, their actions and
recycling intentions vary. On each simulation day and for each type of material, an agent
generates waste and decides the collection route. Two collection routes (WC) are modelled:
mixed material to the landfill (MC) and recyclable material to the sorting centre (RC).

Equations (1)–(3), derived from our previous work [57], determine the intention to
deposit the material in the appropriate collection route. In the proposed ABM, agents’ sort-
ing intention (Iw) is programmed for each dwelling type (single family dwelling with bin
collection (SF,B), multi-family dwelling with bin collection (MF,B), multi-family dwelling
with container collection (MF,C)) and each recycling waste habit profile (G, Y, R). This is
performed as a probability of participating in recyclable waste separation and mixed waste
separation. Based on this, Table 3 provides a comprehensive list of symbols associated with
sorting intention calculation and their descriptions.

Plastic, Metal, Fibers, Glass : IRW = fH × εRW, S × εRW, MF × εRW, C (1)

NR Plastic, NR Metal, NR Fibers, NR Glass : IERR = εERR, S × εERR, MF × εERR, C (2)

Organic Waste, Others : IMW = εMW, S × εMW, MF × εMW, C (3)

Table 3. Comprehensive list of symbols associated with sorting intention calculation and their description.

Symbol Variability Description (Number of Parameters)

Initialisation
PS Constant Probability of belonging to the segment “S” (3)
An Constant Random group assignment (1)

H Constant Reported action by the dwelling about their recycling
habit based on their segment “S” (3)

Waste generation
τW Variable Waste “W” generation rate for a specific day (3)

Sorting behaviour
IW Variable Intention to put the waste “W” in the recycling bin (3)

SBn,W Variable Random sorting behaviour assignment for each waste “W”
(3 per time loop)

fH Variable
Randomly allocated value from frequency distribution of
the agent habit modulating the recycling intention
“IRW” (1)

εW,S Calibrated constant Calibrated intention modulating parameter for the waste
“W” and segment “S” of agent (9)

εW,MF Calibrated constant
Calibrated intention modulating parameter for the waste
“W” to take into account the presence of multi-family
dwellings (3)

εW,C Calibrated constant Calibrated intention modulating parameter for the waste
“W” to take into account the presence of containers (3)

Additional information on the intention to separate recyclable materials is available
in the literature, which is why the IRW equation differs slightly. Not all dwellings in the
territory are in apartment complexes with waste containers. For these situations, εW, MF = 1
and εW, C = 1.

2.3. Municipal Solid Waste Generation

The methodology outlined in [56] served as the foundation for identifying the mass
distributions of materials generated across all collection routes studied. The process relies
on geolocated truck routing, weights, and geolocated addresses. This study uses these
distributions to assign each agent a random waste generation value based on their housing
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type. The resulting mass of materials is then segregated into ten material categories using
characterizations specific to the agent’s housing type.

The raw material density (ρm) for each material “m” can be found in the literature.
However, due to the item’s shape and function, its void fraction (voidm) and contamination
make bulk density (ρbulk,m) assessment more difficult when the materials end up in a
collection bin. Tanguay-Rioux et al. [68] suggest using Equations (4) and (5) to calculate a
usable bulk density. However, because of the material mix chosen in the different analyses,
the values obtained in [68] differ from those in [69–71].

ρm = N(µ, σ2) (4)

ρbulk,m = ρm(1 − voidm) (5)

A fixed waste mix linked to bulk density can complicate the assessment of bin filling
rates and lead to calculation errors during model calibration. For this reason, the results pre-
sented in these studies [68–71] were combined to establish a normal distribution (N(µ, σ2))
for each ρm.

More specifically, for each generation of materials by the citizen, a ρm is selected from a
distribution and a ρbulk,m is calculated. This approach enables the representation of the ma-
terial mix produced by each household, providing a more realistic variability for the model
at each time step. Figure 2 and the Supplementary Materials (Tables S1 and S2, Figure S1)
illustrates the set of possible ρbulk,m values for citizens resulting from this calculation.
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Figure 2. Waste material simulated bulk density (ρbulk,m) based on material density distribution (ρm)
in households (the black lines represent the standard deviation).

2.4. Modelling Household Participation in Waste Collection: Filling Level Calculation and
Intention Assessment

On a collection day, the agent will evaluate the filling level of his waste material
bin/container according to Equation (6). Vlim is a value specific to the municipality under
study, as detailed in Table 4. For example, for a single-family dwelling, this value may be
the volume of one bin or an infinite volume if the municipality imposes no restrictions.
Multi-family dwellings may have access to one or more bins/containers, which must be
shared between all households in the dwelling. V0 represents the quantity of material in
the bin at the start of the day.

FL = (Vw + V0)/ Vlim (6)
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Table 4. Comprehensive list of symbols associated with participation intention calculation and
their description.

Symbol Variability Description (Number of Parameters per Collect and Time Loop)

Ip,WC Variable Intention to participate in the “WC” collect (1)
PBn Variable Random participation behaviour assignment (1)
FL Variable Filling level of the investigated bin/container (1)
Vw Variable Waste volume generated during a specific day (1)
V0 Variable Waste volume already present in the bin/container at the start of the day (1)

Vn,t Variable Waste volume present in the bin/container at a specific time (1)
Vlim Constant Max available volume for a dwelling (1)

h f ill Variable Overall variable representing the likelihood of being in specific filling levels,
encompassing hv1,v2 parameter (1)

hv1,v2 Calibrated constant Calibrated parameter for a filling level situated between 2 values
(v1 and v2) (4)

εWC, S Calibrated constant Calibrated parameter for the collect “WC” and environmental attitude “S” (6)

On a collection day, households calculate their intention to participate (Ip,WC) in the
“WC” collection, knowing their receptacle filling level (Equations (7) and (8)).
If the receptacle is a container, the intention is automatically equal to 1, as the container is
always outside. Moreover, since materials are combined, a multi-family dwelling collected
by bin only needs one associated household to decide to participate, so all households au-
tomatically participate. Intention is bounded during calibration to remain between 0 and 1.
εWC, S parameters can exceed 1 as they can modulate behaviour positively or negatively.
However, they always remain positive.

Ip,WC = h f ill × εWC, S (7)

h f ill =


h0,25, 0 ≤ FL ≤ 0.25

h25,50, 0.25 < FL ≤ 0.50
h50,75, 0.50 < FL ≤ 0.75

h75,100, 0.75 < FL ≤ 0.100

(8)

A household can exceed the available volume limit (Vlim) due to inadequate municipal
services or because the citizen generates more waste than the average. Four actions are
commonly reported [9,72,73] in the case of overflow: retaining the waste for additional
collection, directly disposing of the waste in other pathways, littering, and compacting the
bins. Certain working assumptions were formulated to represent overflowing bins and are
presented in Table 5.

Table 5. Impacts of dwelling behaviours working assumptions.

Hypothesis Impacts

No littering and compaction by the citizen
Littering = 0
Compaction = 0

Due to insufficient data, the possibility that littering may extend
a household’s collection time, with consequential impacts on
the environment, citizen health, and water
contamination [72,73], is disregarded.

Vn,t =

{
V0,t + Vw,t , FL < 1

Vlim, FL ≥ 1

If it is a shared bin/container among multiple households, V0,t
will include the waste added by other agents before, but not
after, the current agent.
Vn,t is constrained by Vlim.

Upon observing a full bin, agents retain their waste until the
following collection and deposit the accumulated waste once
the bin is empty.

Over f lowt =

{
0, FL ≤ 1

(Vw,t + V0,t)− Vlim, FL > 1

Limited information is available on the behaviour. Therefore,
the sequence of actions is a hypothesis that may
introduce uncertainty.
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Table 5. Cont.

Hypothesis Impacts

V0,t =

{
Vn,t−1, Collect = False

Over f lowt−1, Collect = True
Tracks previously generated volumes.
If Over f lowt−1 = 0, V0,t = 0

Intention to participate in the current collection is 1 for an agent
with a full bin.
IPcollecte i = 1 if FL ≥ 1

Agents forgetting to place their bins out on the correct day
despite a full bin are disregarded.

After retaining waste for additional collection, if the bin still
overflows, the waste will be placed in another collection path.

The impact of bin overflow on the accuracy of Binder’s
sorting [10] is depicted. However, the sequence of actions is a
hypothesis that may introduce uncertainty.
Infinite accumulation of waste by a household is avoided.

2.5. WARM Model Integration

Evaluation of the environmental, social, and energy performance of municipalities’
strategic decisions is a crucial aspect of the model. By incorporating the effects of transporta-
tion and collection into the WARM model (Equation (9)), the model captures participation
impacts as well as the consequences of flow contamination and recyclable material recovery.

The end-of-life impacts (Equation (10)) refer to the effects of disposing of all materi-
als “m” in landfills or their treatment in recycling facilities. The data per waste material
(Qimpact,EoL,m) are directly extracted from the WARM model and multiplied by the material
weight (Wtm) obtained as the output of the ABM. The WARM database is used as an ap-
proximation of what happens to the materials after their collection and could be substituted
with specific values provided by an LCA.

An MFA approach is used for the specific case of Qimpact,EoL,m for recycling material
contaminants. This parameter takes into account the sorting of those materials, their
transport to the landfill from the sorting centre, and the WARM value for the disposal in
landfills of the specific materials. Therefore, it helps to understand the impact of recycling
waste contamination. This is true for CO2 emission (MtCO2eq), labour needs (h), and
energy consumption (BTU). Table 6 provides a comprehensive list of symbols utilised
during the calculation of impacts within our model.

Table 6. Comprehensive list of symbols used during the impacts calculation and their description.

Symbol Unit Description

Wtm ton Weight of waste material
n dwelling Number of dwellings collected
t h Time
d km Distance
v km/h Travel speed during the transport phase

C f uel,t unit/h/ton Fuel consumption per unit of time and waste during the collection phase
C f uel,d unit/km/ton Fuel consumption per unit of distance and waste during the transport phase

tCO2 f uel MtCO2eq/unit CO2 equivalent per fuel unit used
E f uel BTU/unit Fuel energy content

Collection times per dwelling were estimated using the methodology developed by
Lagneau et al. [74] (Table 7). These data, combined with participating dwellings, allow
collection time calculation and the needed collection labour (Equation (11)). With truck
specifications (C f uel,t, tCO2 f uel), collection labour facilitates environmental and energy
impact calculation (Equations (12) and (13)). Similarly, Equations (14)–(16) have been
developed to quantify impacts caused by the waste material transport phase.
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Table 7. Collection times per dwelling.

Dwelling Types Collection Time (Seconds)

Single-family homes (SF,B) 28.8
Multi-family buildings collected by bins (MF,B) 5.4
Multi-family buildings collected by container (MF,C) 76.4

The model also calculates the amount of truck discharge necessary per simulated day,
as well as the associated travel distance. Field data are used to establish a distribution
of average waste mass during unloading. Not using a fixed maximum allows a better
replication of field reality with worker’s breaks and other unforeseen events.

QImpact,total = QImpact, collect + QImpact,transport + QImpact,EoL (9)

QImpact,EoL = ∑m (Qimpact,EoL,m × Wtm) (10)

QLabor,collect = nSF,B × tSF,B + nMF,B × tMF,B + nMF,C × tMF,C (11)

QEnergy,collect = QLabor,collect × C f uel,t × E f uel (12)

QCO2,collect = QLabor,collect × C f uel,t × tCO2 f uel (13)

QLabor,transport = dtransport/vtransport (14)

QEnergy,transport = dtransport × Wt × C f uel,d × E f uel (15)

QCO2,transport = dtransport × Wt × C f uel,d × tCO2 f uel (16)

3. Model Calibration: Assessing Participation Dynamics in Two Urban Contexts

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

The model was calibrated for both material generation [56] and source sorting based on
housing types and environmental groups [57] using field data from the city of Gatineau [62].
This city was chosen due to its detailed and representative waste management data availabil-
ity. It exhibits significant material distribution diversity, facilitating a robust model calibration.

However, limited data are available for participation in the collection based on bin
filling rates. Therefore, data from another city in the same province, i.e., Beaconsfield, was
used [15,61]. This data utilisation transfer involves precisely adapting parameters to account
for potential variations in sorting practices and socio-economic and demographic characteris-
tics of the population. The goal is to ensure the relevance and accuracy of the calibrated model
while extending its applicability to other municipal contexts, despite possible differences in
available data, without necessitating a time- and resource-intensive recalibration.

To ensure the transferability of previous calibrations, adjustments are made to the
waste weight so that volumes and ρbulk,m align with the available bin filling level data.
Correction factors, derived from Equations (17) and (18), are created by comparing actual
data from the new city with simulated data. This simulation uses a combination of city-
specific parameters for the new city and constants from Gatineau-calibrated parameters, as
detailed in Table 8. These correction factors enable the calibration of a model to a new city’s
data without a complete recalibration. Consequently, the assignment of environmental
attitudes and the participation process remain unchanged, but adjustments are made
to collection frequency, bin size, geolocated parameters, and characterizations. Using
correction factors is more efficient and less resource-intensive than recalibrating the entire
model from scratch, leveraging existing calibrations for greater efficiency.
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Table 8. Framework to represent different cities in the ABM.

City-Specific Parameters Parameters Constant Across All Cities Adapted Parameters for New Cities
Bin size (Vlim) and type Probability of belonging to the segment “S” (PS)

calculation
Sorting intention (IW )

Collection Frequency
Waste generation rate (τW )Waste characterisation data εW,S, εW,MF, εW,C

Geolocated addresses εWC, S
(calibrated with this process)

Geolocated socio-economic and
demographic characteristics of

the population

Filling level (hv1,v2)
(calibrated with this process)

Qimpact,EoL,m
Qimpact,collect,m

Qimpact,transport,m
Frequency of recycling habit ( fH)

Waste material density distribution (ρbulk,m)

Equation (17) calculates the overall correction factor for the total waste weight, ensur-
ing that the total waste weight in the model aligns with the corrected value and maintains
consistency with actual field data. Equation (18) allows for fine-tuning the model to reflect
material-specific waste separation differences after the total weight correction provided
by Equations (17) and (18). It adjusts the simulated weight and the separation rate of
each material to match the field data, ensuring material-specific accuracy. These adjust-
ments are then applied to each sorting intention by Beaconsfield’s agents, as specified in
Equations (19)–(22).

corrWt =
WtActual value new city

WtSimulated new city no correction
(17)

corrW =
Wt W, Actual value new city

Wt W, Simulated new city with τw corrected
(18)

τTot, New city = τTot, Gatineau × corrWt (19)

IRW = fS × εRW, S × εRW, MF × εRW, C × corrRW (20)

IERR = εERR, S × εERR, MF × εERR, C × corrERR (21)

IMW = εMW, S × εMW, MF × εMW, C × corrMW (22)

Correction factors were obtained: 0.727 for corrWt, 0.387 for corrMW , and 0.870 for
corrRW and corrERR. Notably, similar values were observed for corrRW and corrERR, indicat-
ing that populations from different cities but with similar cultures may make similar errors
regarding non-recyclable materials. Table 9 highlights that applying the correction factors
accurately predicted Beaconsfield’s tonnages with minimal errors and without requiring
recalibration. The recovery of recyclable materials exhibits low error at 1.21%. However,
the model overestimates actual contamination by 1%.

Table 9. Simulated versus expected values after corrections for Beaconsfield territory.

Parameters
Actual Value

[58,62]
Simulated

%ErrorMean STD
Recyclable waste (t/year) 2299 2253 5 −2.01%
Mixed waste (t/year) 4694 4657 6 −0.79%
Recyclable waste recovery rates 78% 77.1% 0.2% −1.21%
Recyclable waste contamination 9.2% 10.18% 0.07% 10.7%

After the validation of Beaconsfield representation’s accuracy, it becomes possible to
calibrate the 10 parameters outlined in Equations (7) and (8), namely εWC,S for each collec-
tion type and attitude group, and hv1,v2 for each filling level. The calibration methodology
developed by Fontaine et al. [57] was adapted as shown in Figure 3. This methodology
streamlines the calibration process while ensuring that the calibration order does not impact
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the results. Since there are 2 collection routes, there are 2 calibration order loops with 2 sets
of calibrations, each comprising 10 repetitions, validations, and final simulations.
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3.1. Model Validation on Beaconsfield’s Data

Results presented in Table 10 reveal nuanced aspects in assessing waste management
in Beaconsfield. Firstly, a slight underestimation of overall participation in the collection
process in the region is observed. Additionally, the model adequately captures the pop-
ulation proportion having bins with FL < 50%. Challenges arise when examining the FL
ranges between 50% to 75% and 75% to 100%. Despite this, the total errors associated with
the sum of these two ranges are limited to −3.3%.

Table 10. Post-calibration participation results for Beaconsfield and Gatineau territories based on
calibrated parameters (* The calibration is not performed on the total sum).

Calibrated Parameters
Beaconsfield Gatineau

Actual Value
[15,58]

Simulated
%Error

Actual
Value [42]

Simulated
%ErrorMean STD Mean STD

Collect
participation

Mixed waste 68% 66.2% 1.2% −2.7% 74.5% 6.0%
Recycling waste 63.8% 61.7% 0.4% −3.2% 74% 71.8% 6.3% −3.0%

Recycling
Bin Filling
level (FL)

0% to 50% * 40% 41.0% 0.3% 2.5% 65.6% 4.7%
0% to 25% 21% 21.8% 0.2% 3.9% 39.9% 1.8%

25% to 50% 19% 19.2% 0.1% 1.0% 25.7% 2.9%
50% to 100% * 60% 59.0% 0.2% −1.7% 34.4% 1.1%

50% to 75% 26% 31.2% 0.1% 20.1% 25.8% 0.5%
75% to 100% 34% 27.8% 0.1% −18.3% 8.6% 0.6%

The model’s calibration for participation and filling levels involves a relatively low de-
gree of freedom. This means there are constraints on adjusting density variables associated
with participation and filling levels. This implies that the model is restricted in the range of
values these parameters can assume during calibration to achieve convergence. As a result,
there may be fewer opportunities to fine-tune or adjust the density within its uncertainty
value to better match real-world observations or data.

As a consequence, if the model underestimates the portion of the population with
high filling levels, it will also underestimate participation in the collection. Therefore, the
cumulative errors, as shown in Table 10, suggest a tendency to overestimate material density,
potentially influenced by the choice of material blends used in determining densities.

The data collected in Beaconsfield [75] come from different seasons of the year, in-
troducing a temporal fluctuation that can influence material characterisation and the
observed densities. This seasonal variability should be considered and may explain
some observed divergences.
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3.2. Model Validation on Gatineau’s Data

Although filling levels are unavailable for Gatineau, certain details regarding par-
ticipation in recycling waste collection are known. The simulated participation rate for
recycling waste collection is 71.8 ± 6.3%, with a margin of error equal to −3.0% compared
to the actual value.

Through adjustments in population, bin size, frequency, and characterisation, the sim-
ulation indicates a higher participation rate in collections for Gatineau than for Beaconsfield.
Consequently, most bins are filled less than 50%.

Table 11 compares predicted values simulated by the ABM and estimated values
from different sources for several important waste management parameters. The av-
erage estimation of recyclable waste (26.9 1000 Mt/year) closely aligns with the simu-
lated value of 28.8 ± 0.4 1000 Mt/year. Similarly, the estimation for mixed waste shows
comparable proximity, with a value of 59.1 1000 Mt/year against a simulated figure
of 51.9 ± 0.7 1000 Mt/year. Moreover, when examining the values of recyclable and
mixed material streams and their quality (recovery and contamination), we observe an
overestimation of contamination by 14.7%. As a result, a portion of mixed materials ends
up in the recyclable material stream. This could explain why the model underestimates
the mixed material flow with a −12.2% error, while the recyclable material flow is overesti-
mated, showing a 7.2% error.

Table 11. Validation of waste management ABM—Simulated parameters versus benchmark data for
Gatineau’s territory.

Parameters Estimation Simulated %Error Sources

Recyclable waste (1000 Mt/year) 26.9 28.8 ± 0.4 7.2% [60]
Mixed waste (1000 Mt/year) 59.1 51.9 ± 0.7 −12.2% [60]
Recyclable waste recovery rates (%) 83.5 82.1 ± 5.0 −1.69% [62]
Recyclable waste contamination (%) 13.6 15.6 ± 0.3 14.7% [62]
Recycling waste density (kg/m3) 65 ± 22 65.3 ± 2.8 0.5% [68–71]
Mixed waste density (kg/m3) 131 ± 47 113.7 ± 4.6 −13.2% [68–71]
Trucks used per week (trucks/week) 144 ± 34 133 ± 5 −7.5% [66]
CO2 generated by the mixed waste stream
(1000 MtCO2eq) 91.7 94.3 ± 1.7 2.9% [76]

The relatively low standard deviation in the model indicates a high degree of stability,
which is essential for ensuring its reliability and predictive capabilities. By representing an
entire city, the agent-based model effectively averages the diverse behaviours of numerous
agents, reducing the potential for extreme fluctuations in the results. While this stability
is beneficial, it may obscure the inherent variability present at smaller scales, such as
individual neighbourhoods or streets. In these localised contexts, interactions among
agents can produce more pronounced fluctuations, emphasising the importance of careful
consideration regarding the model’s scaling. Additionally, although the low standard
deviations suggest stable estimations, they may not adequately capture the variability in
mixed waste generation. This highlights the need for further investigation into local factors
influencing waste generation variability, such as seasonal changes and population growth.

The simulated densities for recyclable materials in Gatineau are consistent with lit-
erature references, showing a value of 65.3 ± 2.8 kg/m3 compared to the literature’s
65 ± 22 kg/m3. The broader standard deviation of the literature value indicates significant
variability, likely reflecting differences in material composition. In contrast, the simulated
density for mixed waste, measured at 113.7 ± 4.6 kg/m3, diverges more notably from the
literature value of 131 ± 47 kg/m3. This discrepancy suggests a potential underestimation
of waste composition, possibly due to the dedicated collection of organic materials in the
region. Furthermore, while individual agents may generate waste differently, many of the
observed variations are seasonal, a factor not currently accounted for in the model.
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Gatineau’s mixed material management generated around 91 700 MtCO2eq annu-
ally [57]. The methodology employed differs from the WARM method, and it is challenging
to ascertain how collection and transportation were considered in both. Nevertheless, a
reasonably accurate estimation can be obtained as performance values are primarily com-
pared. The agent-based model predicted similar values as those benchmark estimations
from Gatineau’s with only a 2.9% error.

These findings confirm the robustness of the methodological approach. They under-
score the model’s ability to produce reliable predictions across varied geographical settings
after adjustments and fine-tuning of the agent’s attributes to match specific local conditions.
This resilience is significant because it demonstrates the model’s ability to consistently
capture and forecast household behaviours related to waste management. It does so despite
the diverse environmental and social factors present in different regions. This reliability
lays a strong foundation for extrapolating the environmental behaviours of households
based on their sociodemographic attributes.

Furthermore, by successfully predicting waste management behaviours in both Bea-
consfield and Gatineau, our model showcases its capability to generalise insights for an
entire city (Beaconsfield) or individual area (Gatineau). This suggests that the approach
accounts for key sociodemographic characteristics that influence environmental behaviours,
allowing for meaningful extrapolations to other communities with similar cultures but
varying socio-economic profiles.

4. Exploring Intervention Effects on Waste Collection Efficiency: A Gatineau Case Study

The following case studies aim to analyse the effects of three distinct interventions on
the waste collection system across all zones in Gatineau. The first series of experiments
focuses on the impacts of modifying the frequency of recycling bin collection. The second
explores the effects of a similar modification applied to mixed-material bins. All dwellings
in the city are modelled and grouped into 41 geolocated zones and simulated ten times for
uncertainty estimation.

The baseline parameters (Table 12), including bin size, collection truck type, Vlim, and
simulation time, remain constant throughout the simulation experiments. This approach
aims to highlight variations observed in participation, quality of collected waste streams,
carbon dioxide (CO2) emissions, energy consumption, and required workforce. The col-
lected data will be analysed by comparing their evolution (Equation (23)) to the baseline
case (frequency of 1/1 for both collections).

Evolution =
(Simulation results − Benchmark)

Benchmark
(23)

Table 12. Baseline parameters for waste collection simulation in Gatineau.

Case 1 Case 2

Collection frequency
(collect/week)

Mixed waste stream 1/1 2/1, 1/1, 1/2, 1/3,
1/4, 1/5

Recycling stream 2/1, 1/1, 1/2, 1/3,
1/4, 1/5 1/1

Receptacle size

Container: 1500 L to 6000 L—Based on
geolocalised data

Bins =



360L, 1 ≤ dwelling < 6
360L × 2, 6 ≤ dwelling < 9

360L × 3, 9 ≤ dwelling < 12
360L × 4, 12 ≤ dwelling < 15
360L × 5, 15 ≤ dwelling < 18
360L × 6, 18 ≤ dwelling < 21
360L × 7, 21 ≤ dwelling < 24

360L × 8, 24 ≤ dwelling
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Table 12. Cont.

Case 1 Case 2

Truck fuel type Diesel

Simulation time 1 year

Geographical breakdown 41 zones with on average 3000 dwellings
(agents) per zones

Repetition 10 repetitions per zones and
variating parameters

4.1. Case 1: Effects of Recyclable Waste Collection Frequency

Figure 4 illustrates the predicted distribution of agents by recyclable bin filling level
subcategory, based on their collection frequency. The reference case (1 collect per week)
reveals that 55.5 ± 5.9% participate in the collection with a bin filled to less than 50%.
This value increases by 45% (reaching 80.2 ± 4.1%) when collection trucks operate twice a
week. This suggests that citizens continue to participate in waste collection, even though
the majority may only require one collection per week. When the collection frequency is
reduced, it becomes evident that the proportion of the population with bins filled to less
than 50% is now a minority, showing a 62% decrease compared to the baseline scenario
(reaching 21.3 ± 5.8%) for collections every two weeks. Additionally, there is a reduction of
over 87% for collections every three, four, or five weeks.
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By increasing the collection frequency to twice per week, a slight decrease in partic-
ipation of 6.1% (from 71.8 ± 6.8% to 67.4 ± 8.1%) is observed (Figure 5A), resulting in a
majority of bins being filled to less than 50%, as seen in Figure 4. However, this reduction
in participation does not offset the increase in CO2 emissions generated by collecting and
transporting materials (Figure 5D) that increased by 24.2%. This increase arises from the
extended collection time required for the trucks and the greater number of stops and starts
they must make to collect materials from a larger number of households. These additional
stops prolong the collection process’s overall duration and contribute to increased fuel
consumption and emissions due to frequent acceleration and deceleration. Without the
intervention of an awareness campaign and additional measures, this option appears
environmentally disadvantageous.
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Conversely, by reducing the collection frequency, most bins show a filling level ex-
ceeding 50%, with participation increasing to 78.2 ± 5.1% for a frequency of 1/2 and
96.5 ± 8.3% for a frequency of 1/5. However, a reduction in the recovery of recyclable
materials is observed (Figure 5B), decreasing, respectively, by 2.8% and 19.5% versus a
collection once per week. This decrease in the recovery rate is caused by a lack of space in
citizens’ bins, which forces them to divert some recyclable materials.

The losses of recyclable materials at the sorting centre offset the environmental gains
from recycling compared to landfilling. Figure 5D shows that collection frequencies 1/4
and 1/5 generate 2.7% and 9.5% more CO2 compared to a collection frequency of 1/1. Only
reducing collection frequency to once every 2 and 3 weeks decreases CO2 emissions by
8.0% and 2.9%.

Figure 5C illustrates a slight increase in contamination (12%) within the recyclable
material stream as collection frequency decreases. Although the mass of contaminants
per person diminishes, the concentration of contaminants per unit of recyclable material
increases. This effect is exacerbated by the overflow of certain waste bins across multiple
collection routes.

Figure 5E demonstrates that doubling the frequency of recycling waste collection
increases the labour demand for collection by 5.0%. In contrast, reducing the collection
frequency to every five weeks can decrease labour costs by up to 25.0%. Of this 25.0%
reduction, 82.7% is associated with the decrease in labour during the processing of materials,
and 17.3% is linked to the reduction in collection time. This shows that the majority of
labour savings actually result from poor waste separation by citizens. This trend is reflected
in the graph illustrating the evolution of total energy consumption (Figure 5F). As more
recycling waste is lost, there is a corresponding decrease in energy required at sorting
centres and recycling plants.



Resources 2024, 13, 151 19 of 27

4.2. Case 2: Effects of Mixed Waste Collection Frequency

Figure 6 depicts the evolution of participation in mixed waste collection, the recov-
ery of recyclable materials, and the contamination of recyclable materials based on the
frequency of mixed waste collection. Similar to case study 1, participation increases with
a decrease in collection frequency, reaching 96.9 ± 1.7% for a collection every 5 weeks
(Figure 6A). It is important to note that there will always be a segment of the population
that may not participate due to factors such as forgetfulness, absence during collection
days, or lack of awareness regarding the collection schedule.
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The average change in recycling waste recovery is only 0.45% (Figure 6B). However,
contamination levels have increased to 25.8 ± 2.8%, representing a 65.5% rise for a collection
frequency of once every five weeks (Figure 6C). This increase in contamination indicates
that residents are utilising the recyclable waste bin to dispose of overflow materials, which
not only diminishes the quality of the recyclables collected but also complicates the sorting
process at recycling facilities.

The analysis of CO2 emissions (Figure 6D) reveals environmental gains through
a reduction in the number of trucks collecting the mixed waste stream. Specifically, a
collection frequency of once every two weeks leads to a 13.8 ± 0.2% reduction in CO2
emissions compared to baseline. Furthermore, when the collection occurs every five weeks,
the reduction in CO2 emissions is even more significant, reaching 28.4 ± 0.4%.

However, contamination at the sorting centre level diminishes these gains for the
recycling waste stream (Figure 6E). There is an increase in CO2 emissions of 1.5 ± 0.1%
for mixed waste collections conducted every two weeks compared to the baseline and
an increase of 19.23 ± 0.2% for collections occurring every five weeks. This reduction in
total gains is significant, as it indicates that while less frequent collections initially seem
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beneficial, other factors offset the benefits. Additionally, the model does not account for op-
erational challenges caused by such contamination. Contamination diminishes the quality
of recovered recycling waste, lowering its value and raising processing costs [77,78]. This
suggests that the simulations underestimated actual emissions from the untargeted flow.

Overall, Figure 6F shows that the total CO2 emissions increase by 52.4 ± 1.6% for a
collection twice per week. While the contamination increases the recyclable steam emission
in Figure 6E, the total CO2 emissions of the system decrease with collection frequency. The
decrease appears to be linear until reaching a peak of 40.5 ± 1.1% at a collection frequency
of 1/4, after which the environmental gain begins to decline.

5. Discussion

Interactions between various parameters of the waste management system complexify
municipal strategic decision-making. A waste generation and source sorting model has
been developed to predict the impacts of municipal strategic decisions on the waste man-
agement system efficiency. The study’s findings emphasise the importance of adopting a
holistic approach to urban waste management, evaluating household behavioural aspects,
and considering the environmental implications of municipal strategic decisions.

Decision-support tools must account for population heterogeneity not only in terms
of sociodemographic profiles but also in terms of individual behaviour [79,80]. Numerous
studies, supported by empirical research and behavioural models, suggest that environmen-
tal attitudes significantly impact the quality of waste streams and should be considered in
models [2,4,37,38,81]. Similarly, in the work of de Labelle et al. [51,52], Walzberg et al. [53],
Ma et al. [54] and Tong et al. [82], the findings highlight the importance of incorporating
citizen behaviour into waste management models by demonstrating its influence on the
efficiency of these systems.

For instance, the model showed that incorrect sorting by citizens led to a significant
increase in CO2 emissions due to the loss of recyclable materials. When residents fail to
properly separate their waste, more materials end up in landfills or require additional
sorting, which increases transportation and processing efforts. This added strain on waste
management operations directly contributes to higher emissions. By accounting for these
behavioural factors, municipalities can develop targeted interventions, such as educa-
tional campaigns, to reduce contamination and lower overall CO2 emissions. Moreover,
these results are valuable not only for municipalities but also address issues raised by
Labelle et al. [51,52] and Walzberg et al. [53], highlighting the issue of contamination caused
by different types of materials improperly placed in recycling bins.

5.1. Constructing a Model Within a Local Context

Given the specificities of the waste management system and the population’s hetero-
geneity in terms of sociodemographic profiles and environmental attitudes, our agent-based
model remains adaptable to various municipalities. The model can effectively represent
two populations with similar cultures but access to different municipal services.

In fact, the complete tool is designed to adapt to different local contexts, provided that
researchers have access to the right databases. Ma et al. [54] highlight the need for a rigorous
approach to data collection and usage to ensure the relevance and reliability of waste sorting
models. This is why the databases used are readily available in a Canadian context for all
municipalities, addressing a significant need raised in the literature [52–54,82].

Moreover, the tool demonstrates its ability to generalise knowledge across different
scales. Beaconsfield was fully represented in a single model, while Gatineau was modelled
as a combination of individual regions. The minimal disparities between expected and
simulated values for participation in recyclable waste collection highlight the accuracy of
the model. These observed variations can be attributed to factors such as demographic
differences, consumption habits, and local waste management policies, underscoring the
model’s capacity to adapt to diverse regional characteristics.
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For instance, Gatineau’s population participates in recycling waste collection at
74% [60], while Beaconsfield’s population participation stands at 63.8% [15]. At the
time of data collection, the two cities had yet to conduct any specific campaigns to in-
fluence their population’s participation. The ABM replicates those values without addi-
tional modification to the collection environment. Therefore, the difference between the
two cities can be associated with demographics, waste generation rates, city services, and
citizens’ environmental profiles. This underscores the importance of accurately representing
both the waste itself and the description of citizens with environmental attitudes.

Furthermore, the results obtained during model validation for the Gatineau context
confirm the model transferability, indicating that the patterns identified in Beaconsfield can
be extended to other urban contexts. This specificity of our approach addresses the issue
raised by other researchers [53,83,84] regarding the challenge of transferring local waste
management models from one municipality to another.

5.2. Modifying the Collection Frequency

Increased collection frequency to twice a week resulted in a slight decrease in partici-
pation. However, this decline in participation does not offset the increase in CO2 emissions
generated by material collection. A majority of the bins were found to be filled to less than
25%. Without the intervention of an awareness campaign and additional measures, this
option appears environmentally disadvantageous.

In contrast, reducing the collection frequency of recyclable material bins resulted in
increased participation. However, it is accompanied by a decrease in recyclable waste
recovery and an increase in contamination. The reduction in recovery aligns with studies
characterising citizens’ pro-environmental attitudes. Insufficient space in collection bins
hampers efficient sorting and discourages recycling [6,7,58]. These results suggest that
negative repercussions on the quality of recovered materials may counterbalance the
apparent advantage of increased participation.

These results also suggest that for these collection frequencies to decrease CO2 emis-
sions, cities should adjust the available bin volumes for citizens. However, this is not
always feasible due to limited space in many households.

Next, the impact of contamination on CO2 emissions from the recyclable material
stream is also revealed, with significant implications for the development of collection
strategies. Underestimating the number of participating bins and the poorly understood
contamination mechanisms underscore the need for more precise management to prevent
the reduction in collection frequency from nullifying environmental gains.

Finally, the consistency in material treatment, despite variations in collection frequency,
highlights the latter’s predominant influence on energy consumption and labour. However,
the impact of material contamination on sorting equipment and the effort required to
make the stream viable should not be underestimated. For municipalities not powered
by hydroelectricity, contamination could exacerbate CO2 emissions, underscoring the
importance of waste management strategies tailored to the available energy.

The importance of collection frequency and waste volume management has been
highlighted as factors influencing contamination and citizen behaviour. In this regard, the
use of a simulation model made it possible to explore the interactions between different
elements of the waste management system and to assess the potential consequences of
various source-sorting modulation strategies, addressing the needs raised by Weng and
Fujiwara [85].

5.3. Limitations

Despite the significant advancements the proposed model provides in understanding
waste management dynamics, several limitations must be acknowledged for an appropriate
contextual evaluation.

Firstly, the generalisation of results may be hindered by the specificity of local and
temporal characteristics. The model relies on demographic and socio-economic data from
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censuses and historical collection data, potentially introducing biases due to temporal
variations in these parameters. Household sorting behaviours may evolve in response to
awareness campaigns, changes in public policies, or sociocultural developments. Similarly,
seasonal changes in waste production still need to be fully integrated into the model,
potentially influencing result accuracy, particularly concerning waste density.

Without additional information, several assumptions have been made about citizen
management mechanisms for overflows. With their collection history, municipalities can
estimate the required bin volumes for their citizens. These working assumptions will
not heavily influence the volumes of bins and collection frequencies chosen to simulate a
standard municipality. However, due to the assumptions made, the model will be limited
in representing extremes.

Furthermore, the modelling of collection frequency and its environmental impact
should be interpreted cautiously. CO2 emissions and environmental performance can
be sensitive to various variables, such as the energy sources used in the collection and
processing process, methane recovery by the sorting centre, and the actual market outlets
for recyclable materials.

6. Conclusions

The study presented the development of a robust agent-based model to simulate the
complex dynamics associated with waste management in an urban context. The resulting
adaptive agent-based model takes into account interactions between several parameters of the
waste management system, providing a realistic representation of the impacts of municipal
strategic decisions on citizen behaviour and the municipality’s environmental performance.

The development of a flexible methodological framework has made it possible to accu-
rately predict solid waste generation among citizens by considering various demographic,
socioeconomic, and geographic factors. This approach not only enhances the reliability of
predictive models but also provides valuable insights for planning local waste management
policies. To further refine waste management strategies, it is essential for researchers to
improve methodologies by integrating interdisciplinary approaches, such as behavioural
economics, environmental psychology, and social sciences.

This research highlights the dilemma between collection frequency and waste stream
quality, providing an insightful perspective for balancing citizen engagement and sustain-
ability goals. These results contribute to optimising urban waste management policies,
offering practical recommendations to encourage responsible citizen behaviour while
maximising recyclable material recovery.

One promising strategy for improving the environmental performance of municipali-
ties like Gatineau is to reduce the frequency of waste collection while ensuring that citizens
have access to appropriately sized bins. This change would lead to fewer stops for collec-
tion trucks, resulting in lower CO2 emissions and reduced operational costs. Therefore,
cities should consider implementing larger-capacity collection bins alongside less frequent
pickups to optimise the environmental efficiency of their waste management operations.

The results obtained in the specific contexts of Gatineau and Beaconsfield have con-
firmed the model’s transferability to other urban environments, addressing a challenge
often raised by other researchers. Furthermore, they encourage further exploration of
model transferability to other urban waste management research areas, opening new per-
spectives for broader applications of these approaches. The work presented paves the way
for new research avenues in the field of urban waste management.

The decision support tool can be improved by pursuing two key objectives. First,
it is necessary to obtain a simulation model that is more representative of reality. For
instance, expanding the model to include a broader range of recyclable materials would
allow for better representation of source separation processes and waste management
dynamics. However, this will require additional efforts to collect and integrate data on
these materials. Furthermore, to achieve a more accurate representation, the tool could
be enhanced by incorporating the temporal variability of waste management behaviours,
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taking into account seasonal fluctuations, technological advancements, and changes in
public policies over time.

On the other hand, the development of the tool can be directed towards better meeting
the needs of municipalities. Increased collaboration between researchers, municipalities,
and practitioners could foster the development and implementation of innovative solutions
for more effective and sustainable waste management. For example, additional features
could be added to address a wider range of questions from municipalities, such as ex-
ploring different collection routes or introducing financial incentives to encourage source
separation. Moreover, it would be beneficial to develop awareness and communication
tools integrated into the decision support tool to help municipalities promote responsible
waste management behaviours within their communities.

In summary, by pursuing these improvement objectives, the decision support tool
could play a crucial role in the transition to more sustainable and effective waste man-
agement practices. However, this will require ongoing commitment from researchers,
policymakers, and municipal stakeholders to overcome current challenges and fully lever-
age the potential of agent-based models in this field. By working together, innovative and
tailored solutions can be created, contributing to a cleaner and more sustainable future for
urban communities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/resources13110151/s1, Table S1: Bulk density in kg/m3 information
adapted and integrated from various sources; Table S2: Mean of Table 1 results for bulk and material
density in kg/m3 (*Adapted for calibration convergence); Figure S1: Density distribution per material
in kg/m3.
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