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Validation of quantum advantage claims in the context of Gaussian boson sampling (GBS) currently
relies on providing evidence that the experimental samples genuinely follow their corresponding ground
truth, i.e., the theoretical model of the experiment that includes all the possible losses that the exper-
imenters can account for. This approach to verification has an important drawback: it is necessary to
assume that the ground truth distributions are computationally hard to sample, that is, that they are suffi-
ciently close to the distribution of the ideal, lossless experiment, for which there is evidence that sampling,
either exactly or approximately, is a computationally hard task. This assumption, which cannot be easily
confirmed, opens the door to classical algorithms that exploit the noise in the ground truth to efficiently
simulate the experiments, thus undermining any quantum advantage claim. In this work, we argue that
one can avoid this issue by validating GBS implementations using their corresponding ideal distributions
directly. We explain how to use a modified version of the linear cross-entropy, a quantity that we call the
LXE score, to find reference values that help us assess how close a given GBS implementation is to its
corresponding ideal model. Finally, we analytically compute the score that would be obtained by a lossless
GBS implementation.

DOI: 10.1103/PRXQuantum.5.040312

I. INTRODUCTION

Gaussian boson sampling (GBS) [1,2] is a model
of quantum computation with the possibility to demon-
strate quantum computational advantage [3], i.e., to show
that quantum devices are capable of significantly outper-
forming classical computers at specified computational
tasks. Broadly speaking, an ideal GBS experiment con-
sists of sending single-mode squeezed states into a Haar-
random lossless interferometer, i.e., a random network of
beam splitters and wave plates. The photon-number distri-
bution of the output light is then measured using photon-
number-resolving or threshold detectors [4]. It has been
shown that, under some reasonable conjectures [1,2,5], it is
computationally hard to sample exactly or approximately
from the probability distribution of the resulting experi-
mental outcomes (i.e., the distribution of the strings of non-
negative integers resulting from the measurement). Here,
approximate sampling is understood as sampling from a
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probability distribution that is close in total variation dis-
tance to the ideal GBS distribution [6]. The hardness of the
task of sampling is what gives this model of computation
the possibility of demonstrating quantum advantage.

Real-world implementations of GBS, such as those
reported in Refs. [7–10], suffer from losses and imperfec-
tions in preparation, transmission, and detection of light. It
is therefore expected that the theoretical probability dis-
tributions associated with these experiments, commonly
referred to as ground truth distributions, will differ from
the ideal distribution (which does not include any type
of losses in its definition). However, it is assumed that
the ground truth distributions are close in total variation
distance to the ideal distribution, sufficiently close as to
be able to invoke the hardness of approximate sampling
in order to claim that it is computationally hard to clas-
sically reproduce the outcomes of the experiment. This
assumption allows the experimenters to claim that their
implementations achieve a quantum advantage.

Presuming that the ground truth distributions are hard
to sample, a given GBS implementation must be followed
by a validation of its outcomes [3], i.e., a verification
that the experiment is operating correctly. This valida-
tion amounts to providing evidence that the experimental
samples closely follow the ground truth distribution. Since
the direct estimation of the total variation distance between
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the real distribution of the samples and the ground truth
requires exponentially many runs of the experiment [3,11],
the validation of GBS implementations usually relies on
other sample-efficient statistical measures (i.e., measures
requiring polynomially many samples [3]) that assess how
correlated are the experimental outcomes to the ground
truth distribution.

Among the current, most widely used techniques we can
find Bayesian hypothesis testing [12], which consists in
demonstrating how likely is the ground truth to explain the
experimental samples relative to an adversarial classical
model. Another strategy is to use the heavy output gen-
eration test and other cross-entropy measures [3,7], which
intend to verify if classically generated samples are able
to produce “heavier outputs” in the ground truth distri-
bution, i.e., events with higher ground truth probability,
than the experimental samples. A further technique is to
compare the correlations between modes present in the
photon-number-resolving or threshold detection samples
with those predicted by the ground truth model, and by
adversarial models or samplers [8,13,14]. A fourth vali-
dation method is based on binning the detectors in groups
of certain sizes, and then analytically computing the cor-
responding grouped probability distribution [15,16]. This
procedure is done for the ground truth and for adversarial
models. These analytical distributions are then compared
with those obtained using the experimental samples.

All of the previously mentioned techniques have their
own limitations. For instance, some rely on the com-
putation of probabilities of individual samples, a task
whose cost grows exponentially with the number of pho-
tons or clicks detected in different output modes of the
interferometer, thus making the techniques computation-
ally inefficient validation strategies. Moreover, one can
find situations in which these techniques reach contra-
dicting conclusions about the validity of a set of exper-
imental samples [17]. In addition, when verifying the
experimental outcomes against adversarial samplers that
do not have a well-defined probability distribution asso-
ciated with them, it is not even possible to perform some
of these tests (e.g., Bayesian testing) [18]. These issues
suggest that the current widely used GBS validation meth-
ods are not sufficient to readily tell if the experimental
samples unambiguously follow from the ground truth dis-
tribution and, consequently, they cannot readily validate a
quantum advantage claim. This also opens the door to clas-
sical algorithms that generate samples that outperform the
experimental outcomes at these validation tasks [17,18], or
classical strategies that “spoof” some of these validation
techniques [19].

Perhaps more importantly, the degree of confidence in
these methods for verifying quantum advantage claims is
strongly tied to the confidence in the hardness of the task
of sampling from the ground truth distribution. However,
at this time, there is not a reliable statistical measure

that allows us to determine whether any ground truth dis-
tribution is sufficiently close to the ideal model of its
corresponding experiment. This fact may allow classi-
cal algorithms to exploit the losses in the experiments in
order to generate samples that, by using the same tech-
niques for verifying GBS implementations, are found to
follow the corresponding ground truth distributions more
closely [20].

The current state of affairs of GBS validation differs
significantly from that of the field of random circuit sam-
pling (RCS) verification. It has been identified that the
linear cross-entropy benchmark (XEB) [3,21,22], a quan-
tity constructed from the linear cross-entropy between the
outcomes of a random circuit and its corresponding ideal
distribution, serves as a witness of quantum advantage
in RCS implementations. The reason behind the success
of this metric, despite having its own limitations [23], is
that random circuits are extremely sensitive to noise; the
presence of errors in experimental implementations leads
to samples whose real distributions are uncorrelated with
the ideal distribution [3,22,24], and, moreover, exponen-
tially close to the uniform distribution in the sample space.
The XEB for samples following the uniform distribution
identically vanish. When the experimental samples follow
directly from the ideal distribution, the XEB is equal to
1. Furthermore, obtaining an XEB different enough from
zero is considered to be a computationally hard task [3].
Quantum advantage is thus verified when this benchmark
is sufficiently different from zero.

GBS experiments are not as sensitive to loss as RCS
implementations are to gate errors, and this hinders the
definition of a validation metric as decisive as the XEB for
the verification of GBS quantum advantage claims. Never-
theless, there are two important features of RCS validation
that could be used to overcome several of the difficulties
surrounding the verification of GBS experiments. The first
of them is validating the experimental outcomes directly
against their corresponding ideal model. This relieves the
verification process from the assumption that it is computa-
tionally hard to sample from the ground truth distribution.
The second one is the determination of reference val-
ues (of a given statistical measure) associated with the
ideal distribution, as well as to other probability distribu-
tions that may differ from that of an ideal implementation.
These reference values can be used to assess how far the
experimental samples are from the ideal distribution.

In this work, we take the XEB as a blueprint for defin-
ing a figure of merit for GBS validation having the first
of the two previously mentioned features. We construct
this quantity, which we call the linear cross-entropy score
(LXE score), from a normalized version of the linear
cross-entropy between the ideal GBS distribution and a
test probability distribution (corresponding to the actual
distribution of the experimental outcomes, or the distribu-
tions of adversarial models or samplers), averaged over the
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Haar measure of the unitary group, and evaluated at the
limit of a large number of modes. We include the average
over Haar-random unitaries in the definition of the score in
order to study the behavior of the normalized linear cross-
entropy for a typical implementation of GBS. On the other
hand, we focus on setups with a large number of modes
because this is the regime in which the hardness of the task
of sampling is more manifest.

In addition, we propose a validation strategy that
exploits the second of the aforementioned features. The
technique consists of computing the LXE scores for the
most commonly used classical adversarial samplers or
models, as well as for the ideal GBS distribution, and using
them as reference values. We would then compare these
reference values to the estimated score of the experimen-
tal outcomes. In this way, we can assess how close a given
GBS implementation is to its corresponding ideal model,
and to its most challenging adversaries.

After discussing the details of the definition of the LXE
score, we set off to determine the first two reference val-
ues to be used in the validation strategy. To do this, we
focus on implementations using photon-number-resolving
detectors. The first of these reference values corresponds
to a model that leads to a uniform probability distribution
for each sector of the total number of detected photons, N ,
in the experimental samples. This value follows directly
from the normalization of the linear cross-entropy and is
equal to 1. The second reference value, the ideal score,
corresponds to a GBS implementation using single-mode
squeezed states as input of the first R modes of a lossless
interferometer, with the remaining M − R modes receiv-
ing the vacuum state. We consider two versions of this
GBS setup: the first uses input squeezed states with the
same squeezing parameter, while the second uses squeezed
states with different squeezing parameters.

By expressing the linear cross-entropy between two
GBS distributions as an integral over several real param-
eters (a technique that makes its computation independent
from the use of measurement outputs), and by using the
Weingarten calculus [25] in order to compute the average
over Haar-random unitaries, we were able to find an ana-
lytical expression for the ideal score as a function of N and
R. To the extent of our knowledge, this approach to the
analysis of cross-entropy measures in the context of GBS
has not been employed before.

We find that part of the dependence of the ideal score on
parameter R can be expressed as a polynomial of degree
2N , whose coefficients can be computed by counting the
number of undirected graphs with a certain number of
connected components. For setups that use input states
with different squeezing parameters, the coefficients also
depend on the lengths of the connected components of
the graph. This result is akin to the conclusions found by
Ehrenberg et al. [26,27] in their recent study on anticon-
centration in GBS. In their work, they computed the first

and second moments of the output GBS distribution in the
photon-collision-free limit, in which nearly all detection
patterns have at most one photon in each mode. In this
regime, the output distribution can be approximated by the
modulus squared of hafnians of Gaussian random matri-
ces [5,28,29]. The authors developed a graph-theoretical
method for computing the moments of this approximate
distribution, and found that the second moment can be
expressed as a polynomial of degree 2N in R, whose coef-
ficients are determined by counting the number of graphs
with a given number of connected components. Moreover,
they related the first and second moments to the LXE score
of an ideal model that uses input squeezed states with the
same squeezing parameter [27]. Even though their expres-
sion for the ideal score is very similar to our findings, the
definition and origin of the graphs involved in the compu-
tation of our results differ from those used in Refs. [26,27].
At this time, it is necessary to make a more thorough anal-
ysis of the computation of the coefficients in both cases in
order to find a clear relation between these two results.

Focusing on the case R = M , we find that the ideal score
has a particularly simple expression in terms of N , and it
is the same whether we use input squeezed states with the
same squeezing parameter or not. We compare this ana-
lytical expression with numerical estimations of the ideal
score for setups that are not in the limit of M → ∞. This
comparison allows us to investigate how good our results
approximate the estimated ideal score of real-world GBS
implementations. Additionally, we also make numerical
estimations of the score for a simple GBS model with
transmission losses, which allows us to study the behavior
of the LXE score in the presence of noise.

It is worth mentioning that determining probability
amplitudes for pure Gaussian states requires the compu-
tation of hafnians of matrices half the size of those used
in the computation of probabilities of mixed states. This
implies that the estimation of the LXE score can be done
for a range of detected photons approximately twice as
large as that used in the validation of recent GBS experi-
ments [7–10], thus representing a significant improvement
in the validation of these implementations.

We consider that the LXE score will be of significant
importance and utility to the field of GBS verification.
Moreover, our computation of the ideal score sets the stage
for an alternative approach to the validation of GBS imple-
mentations, one where we assert that verifying GBS should
require the evaluation of probabilities corresponding to
unitary models, not to mixed-state ground truths.

This paper is organized as follows. In Sec. II we describe
the GBS setup that we consider throughout the article, and
we introduce the concept of the model of a GBS implemen-
tation. In Sec. III we discuss how to use the LXE score to
validate GBS experiments. Section IV is devoted to the
detailed computation of the ideal LXE score for setups
that use input squeezed states with the same squeezing
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parameter, while Sec. V shows how to compute the score
for models that use different squeezing parameters. In
Sec. VI we bring attention to some interesting features of
the ideal score when R = M . Here, we also present the
numerical estimations of the score for GBS setups that are
not in the limit of M → ∞, and for some simple models
that include transmission losses. Finally, we conclude in
Sec. VII.

II. GBS SETUP

Consider a GBS setup (see Fig. 1) where M modes
are prepared in single-mode, nondisplaced Gaussian states.
The nature of these states need not be specified at this
point; they could be squeezed, thermal, squashed, etc. The
initial M -mode state is sent through an arbitrary linear,
lossless interferometer, which is mathematically described
by an M × M , Haar-random unitary matrix U. The out-
put light of the interferometer is then measured using
photon-number-resolving detectors, which can determine
the number of output photons in each mode; i.e., they
measure the output state of the system in the Fock basis.

The output state of the interferometer, ρ̂, which is
also an M -mode nondisplaced Gaussian state, is com-
pletely described by a 2M × 2M , complex Husimi covari-
ance matrix � [2,30], whose entries are computed as
�j ,k = 1

2 〈{ξ̂j , ξ̂ †
k }〉 + 1

2δj ,k. The {ξ̂k} are the components of
the operator vector ξ̂ = (â1, . . . , âM , â†

1, . . . , â†
M ), where â†

k
and âk are the bosonic creation and annihilation operators
of the output modes, which satisfy the canonical commu-
tation relations [âj , âk] = [â†

j , â†
k] = 0 and [âj , â†

k] = δj ,k.
Here {â, b̂} := âb̂ + b̂â stands for the anticommutator of

FIG. 1. Description of a general, ideal GBS setup. A set of
input single-mode, nondisplaced Gaussian states are sent into
a linear, lossless interferometer described by an M × M , Haar-
random unitary matrix U. The output of the interferometer is
measured using photon-number-resolving (PNR) detectors.

operators â and b̂, 〈â〉 = Tr(âρ̂), and δj ,k is the Kronecker
delta.

The result of the photon-number-resolving measure-
ment, i.e., the detection pattern, is an M string of non-
negative integers n = (n1, . . . , nM ), where each nk repre-
sents the number of photons detected at mode k (nk = 0
means that no light has been detected). By defining the
matrix

A = X(I2M − �−1), X =
(

0 IM
IM 0

)
, (1)

where IM is the identity matrix of size M × M , we can
compute the probability of detecting outcome n as [1,2]

Pr(n|A) = Pr(0|A)

n!
haf[An], (2)

where Pr(0|A) = √
det(I2M − XA) is the vacuum proba-

bility, n! = ∏M
k=1 nk!, and

haf[O] = 1
2mm!

∑
σ∈S2m

m∏
j =1

Oσ(2j −1),σ(2j ) (3)

is the hafnian of the symmetric 2m × 2m matrix O [31].
Here, Sm stands for the symmetric group of degree m, i.e.,
the group of all permutations of m objects.

Matrix An is constructed by taking the kth and (k +
M )th rows and columns of A and repeating them nk
times. If nk = 0, the corresponding rows and columns
are removed. Note that the size of this matrix is 2N ×
2N , where N = ∑M

k=1 nk is the total number of detected
photons in outcome n.

Equation (2) will also hold for descriptions of the GBS
setup that include Gaussian noise and losses (transmission
loss is a good example of this type of operation). In these
cases, the output state of the interferometer will remain
Gaussian [30], and we can readily define a matrix � or
A that completely describes the output state. On the other
hand, non-Gaussian noise will lead to output states that
cannot be completely defined by an A matrix.

Focusing on setups whose descriptions include only
Gaussian processes, we can consider matrix A to contain
all the relevant information about the theoretical descrip-
tion of a GBS experiment using photon-number-resolving
detectors. We therefore refer to A as the model of the
GBS setup, and we interpret Pr(n|A) as the probability of
obtaining outcome n given model A.

As mentioned before, for a GBS setup that uses input
single-mode squeezed states and a lossless interferometer,
it has been shown that, assuming that certain conjectures
hold, sampling from the distribution in Eq. (2), either
exactly or approximately, is a computationally hard task
whose cost increases exponentially with the size and rank
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of An [1,2,5]. We refer to the theoretical description of this
setup as the ideal squeezed state model, and we denote it
Asqz.

Any real-world implementation of GBS using squeezed
states will suffer from inevitable losses, and their presence
makes the experiment differ from the ideal model. Never-
theless, GBS experiments are designed to minimize noise
as much as possible, so the probability distribution of the
experimental samples is close enough to the ideal model
and, by invoking the hardness of approximate sampling,
it remains computationally hard to generate samples from
this distribution. Theoretical models of GBS experiments
using squeezed states that also include all the losses that
the experimenters can account for are called ground truth
models.

Verification of quantum advantage claims in the recent
implementations of GBS experiments has relied on demon-
strating that the real distribution of the samples genuinely
follows from the ground truth of the experiments [7–10].
The main strategy to do this is to use a number of statisti-
cal measures to rule out adversarial models or adversarial
samplers. An adversarial model is a theoretical descrip-
tion of a GBS setup that leads to a probability distribution
that can be sampled efficiently. These classical models
can be obtained, for instance, by using classical Gaus-
sian states (such as thermal, distinguishable squeezed, or
squashed states [9,10,17]) as input of the interferometers,
an approach that intends to represent the effect of losses
on the input squeezed states. On the other hand, an adver-
sarial sampler is any efficient algorithm (not necessarily
motivated by a physical model) that generates samples that
intend to “spoof” the ground truth distribution.

An important drawback of this approach is that ruling
out adversarial models and samplers with respect to the
ground truth gives no information about how close this
model is to the ideal squeezed state model. This opens the
door to classical algorithms that reproduce the results of
the experiments by exploiting the noise in the ground truth
[20]. This issue can be avoided by verifying GBS imple-
mentations using the ideal squeezed state model directly.
In the next section we argue how we could do this using
the linear cross-entropy between GBS models.

III. LINEAR CROSS-ENTROPY SCORE FOR GBS
VALIDATION

Let A and B be two different models for the same GBS
setup. We define the linear cross-entropy between A and
B, for a given total number of detected photons N , as

LXE(A, B; N ) =
∑

n∈K(N )

Pr(n|A) Pr(n|B)

Pr(N |A) Pr(N |B)
, (4)

where K(N ) = {n | ∑M
k=1 nk = N } and

Pr(N |A) =
∑

n∈K(N )

Pr(n|A) (5)

is the probability of detecting a total of N photons given
model A.

The linear cross-entropy belongs to a class of mul-
tiplicative measures of similarity between probability
distributions that are collectively referred to as cross-
entropy measures [3]. These sample-efficient measures
(i.e., measures that can be estimated using polynomially
many experimental samples) have been widely used for
verifying quantum advantage claims in the field of quan-
tum random sampling (see, for instance, Refs. [9,21]).
We are interested in using LXE(A, B; N ) to assess the
correlation between the ideal squeezed state model of
a GBS implementation and the real distribution of the
experimental samples.

The definition of LXE(A, B; N ) closely resembles the
definition of the linear cross-entropy benchmark [3,21],
a quantity that, despite having some limitations [23], has
been extensively used for the validation of RCS imple-
mentations. Roughly speaking, RCS consists of repeatedly
applying cycles of randomly selected one- and two-qubit
gates over a set of input qubits and then measuring their
final states. The action of all the gates is represented by a
unitary matrix U, which can be approximated by a Haar-
random unitary when the depth of the circuit (i.e., the
number of cycles) is sufficiently large. The outcome of the
measurement is a bit string, i.e., a sequence of 0s and 1s.
Sampling from the ideal probability distribution of the out-
comes s of an RCS implementation, PU(s), is considered to
be a computationally hard task whose cost grows exponen-
tially with the number of input qubits and the depth of the
circuit. Let QU(s) be the real distribution of the bit strings
s. Then, the XEB reads [3]

F(QU, PU) = 2N
∑

s

QU(s)PU(s) − 1, (6)

where N is the number of input qubits and the sum is over
the set of all possible bit strings of length N . Note that this
expression can be seen as a normalized, shifted version of
the linear cross-entropy between two models of the same
RCS implementation.

The definition of F(QU, PU) is such that we can
identify two reference values for a typical instance of
RCS: if QU(s) = PU(s), EU[F(QU, PU)] ≈ 1. If QU(s) =
1/2N (that is, the uniform distribution over bit strings),
EU[F(QU, PU)] = 0 [3,21]. Here, EU[·] indicates an aver-
age over the Haar measure of the unitary group. The
presence of errors in experimental implementations of
RCS leads to experimental samples with probability dis-
tributions that are uncorrelated with the ideal distribution,
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and that are exponentially close to the uniform distribu-
tion over bit strings [21,22,24]. This implies that noisy
implementations of RCS generally obtain values of the
XEB close to zero. Moreover, obtaining an XEB satisfying
F(QU, PU) > b/2N , with b > 1, is considered to be a com-
putationally hard task [3]. Thus, demonstrating quantum
advantage for RCS implementations amounts to show-
ing that the estimation of F(QU, PU) using experimental
samples is sufficiently different from zero.

There is no evidence that GBS architectures present the
same sensibility to losses as RCS implementations. This
makes the definition of a measure as decisive as the XEB
for the validation of GBS experiments elusive. Neverthe-
less, one can use the idea of identifying reference values
for typical instances of GBS as a tool for the verifica-
tion of quantum advantage claims. Indeed, in the spirit
of the XEB, it is possible to use the average values (over
Haar-random unitaries) of normalized versions of the lin-
ear cross-entropy between the ideal squeezed state model
and the most commonly used adversarial models and sam-
plers in order to obtain these reference values. We could
consider, among the most widely used adversarial models,
those associated with GBS setups using thermal, squashed,
or distinguishable squeezed states [8–10,17]. In addition
to these, we could use classical algorithms that mimic the
marginals, up to a certain order, of the ideal GBS distri-
bution as adversarial samplers [9,18]. The validation of
quantum advantage would then amount to comparing how
much a given GBS implementation scores with respect to
the other models and samplers. Note that this approach
makes no use of the ground truth distribution of the cor-
responding GBS experiment and, consequently, it is not
necessary to make any assumptions about the hardness of
sampling from it.

In the remainder of this section, we workout the details
of the definition of this normalized, Haar-averaged ver-
sion of the linear cross-entropy, which we refer to as the
linear cross-entropy score (LXE score). Only one addi-
tional feature will be included in this definition: we focus
on the asymptotic behavior of the linear cross-entropy as
M → ∞. We do this to take into account the fact that the
arguments justifying the complexity of GBS commonly
require the setups to have a large number of modes, grow-
ing quadratically with the mean number of photons in the
input squeezed states [5]. Moreover, by virtue of Levy’s
lemma [32], one would expect that, as M increases, typi-
cal instances of GBS will obtain values of the LXE score
closer to the mean.

Following the definition of the XEB, we associate the
first reference value of the LXE score with the value
that would be obtained by the uniform distribution over
the sample space over which the linear cross-entropy is
defined. Unlike in RCS, the entire sample space of detec-
tion patterns in GBS is infinite dimensional. This is why
Eq. (4) is defined for sets of samples with the same total

number of detected photons. The first reference value of
the LXE score is related to a GBS model that leads to
a uniform probability distribution for each sector of N .
Let us call such a model Auni. We can readily note that
Pr(n|Auni) = f (|n|), where f (x) is a real-valued function
satisfying

∑∞
N=0 f (N ) = 1, and 0 ≤ f (N ) ≤ 1 for all N ,

while |n| = ∑M
k=1 nk. This implies that, for an arbitrary

model B,

LXE(Auni, B; N ) = f (N )

Pr(n|Auni)

∑
n∈K(N )

Pr(n|B)

Pr(N |B)

= f (N )∑
n∈K(N ) f (|n|)

=
( ∑

n∈K(N )

1
)−1

= |K(N )|−1, (7)

where |K(N )| is the number of elements in K(N ). This
value is equivalent to the number of weak M composi-
tions of N , i.e., the number of ordered partitions of N
having M parts (with some of the parts allowed to be zero).
It can be shown that |K(N )| = (M+N−1

N

)
[33,34]. We use

|K(N )|−1 as a normalization factor for the linear cross-
entropy between any two models, thus setting the first
reference value of the score to 1. It is worth mentioning that
this same normalization term was used for the definition of
other cross-entropy measures in Refs. [9,20].

Even though we defined Auni according only to the prop-
erties of its corresponding probability distribution, it is
important to keep in mind that this model can truly be asso-
ciated with a GBS setup. It can be shown (see Appendix A)
that GBS setups using identical thermal states at the input
of every mode of a lossless interferometer lead to proba-
bility distributions that are uniform for every sector of the
total number of detected photons.

With the normalization factor in place, we may now
express the LXE score for a model B as

s(B; N ) = lim
M→∞

(
M + N − 1

N

)
EU[LXE(Asqz, B; N )].

(8)

Although this definition is adequate for finding reference
values corresponding to some adversarial models, the val-
idation of a set of experimental or adversarial samples
requires an estimate of the LXE score rather than an ana-
lytical computation. This is due to the fact that not every
adversarial sampler has an associated GBS model and,
moreover, we have no information about the actual prob-
ability distribution that the experimental samples follow.
Consider a set of L samples {nk}L

k=1 with the same total
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number of detected photons N ; the estimated value of the
score can be computed as

s̄(N ) = C(Asqz, N )
1
L

L∑
k=1

Pr(nk|Asqz), (9)

where

C(Asqz, N ) =
(

M + N − 1
N

)
[Pr(N |Asqz)]−1. (10)

We can interpret the estimator s̄(N ) as the average of the
probabilities of each individual sample with respect to the
probability distribution of the ideal model, multiplied by a
normalization factor.

As mentioned before, the linear cross-entropy is a
sample-efficient measure, and thus s̄(N ) can be estimated
using polynomially many samples. Other sample-efficient
techniques, such as Bayesian testing or the heavy output
generation test, typically require 103 to 104 samples per
value of N to be determined [7–9,17]. Because of the sim-
ilarity between the computation of s̄(N ) and these other
validation techniques, we can expect that s̄(N ) can also be
estimated using this same number of samples range.

All the probabilities involved in the estimate of the score
should be computed using a unitary matrix that is closely
related to the actual subunitary matrix that describes the
action of the lossy interferometer used in the experiment.
If the GBS implementation is programmable, one can have
access to information about the ideal (lossless) configura-
tions of all the gates (i.e., all the beam splitters and phase
shifters) used in the experiment. One then determines s̄(N )

using the unitary matrix describing the action of all these
ideal, unitary gates.

If the experiment has limited programmability and we
only have access to the square subunitary matrix T describ-
ing the lossy interferometer, we can find a unitary matrix
associated with T using its singular value decomposition
[30]. Indeed, we can always write T = U1DU†

2, where U1,
U2 are unitary and D is a diagonal matrix whose entries are
the singular values of T, which, in turn, are related to the
transmission losses in the experiment. If we had no losses,
we would be able to replace D by IM and obtain the unitary
transmission matrix U1U†

2. On this account, we can inter-
pret U1U†

2 as the closest unitary matrix to T, thus making it
a reasonable choice for the computation of the LXE score.

However, it is important to mention that even if a
given GBS implementation is not fully programmable, the
authors of the experiment will be able to describe their
ideal intended computation, i.e., they will have knowledge
of the unitary U associated with their implementation.

The definition of the LXE score can be readily gener-
alized to include GBS models with non-Gaussian noise.
As mentioned in Sec. II, these models cannot be com-
pletely defined by a matrix of the form (1). However, if

we have complete knowledge of the probability distribu-
tion associated with a given non-Gaussian model, we can
still use Eq. (8) to compute the LXE score; we need only
replace Pr(n|B) and Pr(N |B) in the definition of the linear
cross-entropy by the adequate expressions of the probabil-
ity distributions of interest. If we do not have complete
knowledge of the probability distribution, but we have a
set of samples associated with the non-Gaussian model, we
can still use Eq. (9) to estimate the score.

We associate the second reference value of the LXE
score with the value that we would obtain if the real
distribution of the experimental samples were Pr(n|Asqz).
The analytical computation of this ideal score will be the
subject of the next section.

IV. LXE SCORE FOR THE IDEAL SQUEEZED
STATE MODEL

Consider a GBS implementation where the first R of
the M input modes of the interferometer receive identi-
cal single-mode squeezed states with squeezing parameter
r, while the remaining M − R modes receive the vacuum
state. The matrix Asqz describing this setup reads [1,2]

Asqz = tanh(r)V ⊕ V∗, (11)

where we define

V = UζUT, ζ = IR ⊕ 0M−R (12)

(we explicitly indicate the size of the null matrix for clar-
ity). The main result that we prove in this work states
that

s(Asqz; 2N ) = 4N (N !)2

(2N )!

[
(R − 2)!!

(R + 2N − 2)!!

]2 2N∑
�=1

c�R�,

(13)

where the {c�} are non-negative coefficients.
Unlike the ideal XEB reference value, which remains

constant no matter the number of qubits in the random cir-
cuit, the ideal LXE score varies for each sector of the total
number of detected photons. This, however, does not mean
that s(Asqz; 2N ) cannot be used as a tool for validation
of GBS implementations. Indeed, we need only deter-
mine how different the scores of other models or samplers
(which might also depend on N ) are from the reference
curve established by the ideal squeezed state model.

A few definitions must be set in place before expressing
how to compute the coefficients {c�}. Let j = (j1, . . . , j2N )

be a fixed sequence of different indices. We define the per-
mutation �k ∈ S2N (where we recall that Sm stands for the
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symmetric group of degree m) by its action on j as

�k[(j1, . . . , j2N )]

=
N⊕

a=1

ka⊕
p=1

ωa[(j2va−1+2a(p−1)+1, . . . , j2va−1+2ap)], (14)

where va = ∑a
p=1 pkp , v0 ≡ 0, and the permutation ωa ∈

S2a (with 2a ≤ 2N ) is defined by its action on a
sequence (g1, . . . , g2a) as ωa[(g1, g2, . . . , g2a−1, g2a)] =
(g2, g3, . . . , g2a, g1). Moreover, let 
 ∈ S4N , and, following
Ref. [35], let �(
) be an undirected graph whose vertices
are {1, . . . , 4N }, and whose edges are {(2k − 1, 2k) | k ∈
{1, . . . , 2N }} and {[
(2k − 1), 
(2k)] | k ∈ {1, . . . , 2N }}
(see Fig. 2 for an illustration of this definition). Then,

c� =
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

b�[j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)], (15)

where k(c) is a vector of N non-negative integers that
satisfy k1 + 2k2 + · · · + NkN = N (we define l(c) in an
analogous way), and

b�(g, h) = |{
 ∈ S4N | h = 
(g) and

�(
) has � connected components}|. (16)

Throughout the rest of this section, we explain in detail
how to obtain the result in Eq. (13), and we justify the
definitions in Eqs. (14) to (16).

We divide our calculation of the ideal score into the
following stages.

(1) Express the linear cross-entropy as an integral over
a number of real parameters. This form will have
the advantage of not depending on the measurement
outcomes n.

(2) Write LXE(Asqz, Asqz; N ) as a polynomial in the
entries of U. This will prove useful when comput-
ing the average over the Haar measure of the unitary
group.

(3) Compute the integral over the real parameters.
(4) Calculate the average over Haar-random unitaries as

M → ∞.

As a final stage, we gather all the results of the previous
steps and complete the computation of the ideal score

A. Integral form of the linear cross-entropy

Let A and B be two models for the same GBS setup.
Adding the probabilities of every possible detection pattern

FIG. 2. Illustration of the definition of the undirected graphs
�(
) for 4N = 8. The vertices of the graph are represented
by numbered black circles. Edges corresponding to {(2k −
1, 2k) | k ∈ {1, . . . , 2N }} are shown as black dashed lines, while
edges corresponding to {[
(2k − 1), 
(2k)] | k ∈ {1, . . . , 2N }}
are shown as red dashed lines. Each connected component
of the graph is highlighted with a light blue, thick line.
The top graph corresponds to the permutation, written in
cycle notation, 
 = (1 2)(3 4)(5 6 7 8). This permutation trans-
forms the set of indices g = (g1, g2, g3, g4, g5, g6, g7, g8) as

(g) = (g2, g1, g4, g3, g6, g7, g8, g5), and has a total of three con-
nected components. The bottom graph corresponds to the per-
mutation 
 = (1 2 3 4 5 6 7 8), which transforms g as 
(g) =
(g2, g3, g4, g5, g6, g7, g8, g1). In this case there is only one con-
nected component.

n we can see that
∑

n

Pr(n|A) =
∑

m

Pr(m|B) = 1,

which implies that
∑
n,m

Pr(n|A) Pr(m|B) = 1.

We can recast this expression in terms of the hafnian using
Eq. (2):

∑
n,m

haf[An]
n!

haf[Bm]
m!

= 1
Pr(0|A) Pr(0|B)

. (17)

Define the matrix

D(φ) = diag(eiφ1 , . . . , eiφM ), (18)

where φ = (φ1, . . . , φM ) is a vector of real parameters with
φk ∈ [0, 2π ] for all k, and let W(φ) = D(φ) ⊕ D(φ). Note
that W∗(φ) = W(−φ). Transforming matrices A and B
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in Eq. (17) according to A → αW(φ)AW(φ) and B →
βW∗(φ)BW∗(φ), where α, β ∈ [0, 1), we obtain (we drop
the explicit dependence of matrices on φ in order to shorten
the notation)

∑
n,m

haf[α(WAW)n]
n!

haf[β(W∗BW∗)m]
m!

= q(α, φ, A) q(β, −φ, B), (19)

where

q(α, φ, A) = [det(I2M − αXWAW)]−1/2

= [det(I2M − α�A)]−1/2 (20)

and �(φ) = W(φ)XW(φ) [36].
We can factorize the matrices inside the hafnian as

(WAW)n = W̄nAnW̄n, where W̄n is a diagonal matrix
obtained from W by repeating nk times the entry eiφk (see
Appendix A for a proof of this statement). For instance,
let M = 2 and W = diag(eiφ1 , eiφ2 , eiφ1 , eiφ2). If n = (1, 2)

then W̄n = diag(eiφ1 , eiφ2 , eiφ2 , eiφ1 , eiφ2 , eiφ2). Note that
W̄n has size 2|n| × 2|n|, where |n| = ∑M

k=1 nk.
This factorization, in turn, allows us to use the follow-

ing property of the hafnian [31]: for any symmetric m × m
matrix O and a diagonal matrix S = diag(s1, . . . , sm),

haf[SOS] =
( m∏

k=1

sk

)
haf[O]. (21)

We have

haf[α(WAW)n] = haf[αW̄nAnW̄n]

= α|n|
2|n|∏
k=1

(W̄n)k,k haf[An]. (22)

Noting that
∏2|n|

k=1(W̄n)k,k = ∏M
k=1 e2inkφk = e2in·φ , we

obtain

haf[α(WAW)n] = α|n|e2in·φ haf[An]. (23)

Using the same argument, it can be shown that
haf[β(W∗BW∗)m] = β |m|e−2im·φ haf[Bm]. Substituting
these expressions into Eq. (19), we obtain

q(α, φ, A) q(β, −φ, B)

=
∑
n,m

α|n|β |m|e2i(n−m)·φ haf[An]
n!

haf[Bm]
m!

. (24)

Integrating both sides of the last equation with respect
to dφ = dφ1 · · · dφM , and taking into account the fact that

∫ 2π

0
e2i(n−m)·φdφ = (2π)Mδm,n,

where δm,n = δm1,n1 · · · δmM ,nM , we can write

1
(2π)M

∫ 2π

0
q(α, φ, A) q(β, −φ, B) dφ

=
∞∑

N=0

αN βN
∑

n∈K(N )

haf[An]
n!

haf[Bn]
n!

, (25)

where we have taken into account the fact that we can
decompose the sum over all possible detection patterns as∑

n = ∑∞
N=0

∑
n∈K(N ).

By repeatedly differentiating with respect to α and β,
and then evaluating at α = β = 0, we can single out the
sum involving only the elements of K(N ). The result of
this procedure reads

1
(2π)M

∫ 2π

0

∂N q(α, φ, A)

∂αN

∂N q(β, −φ, B)

∂βN

∣∣∣∣
α=0, β=0

dφ

= (N !)2
∑

n∈K(N )

haf[An]
n!

haf[Bn]
n!

. (26)

We may readily observe that the previous expression
leads to the definition of the linear cross-entropy; we need
only include the vacuum probabilities for both models
and the term Pr(N |A) Pr(N |B). Putting all these pieces
together, we obtain the final expression of the integral
form:

LXE(A, B; N )

= 1
(2π)M D(A, B; N )

×
∫ 2π

0

∂N q(α, φ, A)

∂αN

∂N q(β, −φ, B)

∂βN

∣∣∣∣
α=0, β=0

dφ

(27)

with

D(A, B; N ) = 1
(N !)2

Pr(0|A) Pr(0|B)

Pr(N |A) Pr(N |B)
. (28)

Although it may seem that the determination of
Pr(N |A) Pr(N |B), and therefore D(A, B; N ), requires
knowledge of all detection patterns in K(N ), by using sim-
ilar arguments to those that led to Eq. (24), it can be shown
that

D(A, B; N ) =
[
∂N q(α, 0, A)

∂αN

∂N q(β, 0, B)

∂βN

∣∣∣∣
α=0, β=0

]−1

.

(29)

A detailed proof of this statement can be found in
Appendix A.
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We now turn our attention to the task of finding an
expression for q(α, φ, A) that allows us to readily com-
pute its partial derivatives with respect to α. We do this
by recasting q(α, φ, A) into a power series in α.

Note that I2M − α�A = exp[log(I2M − α�A)], and
recall the relation det[exp(A)] = exp[tr(A)] [we use tr(·)
to indicate the trace of a matrix, while Tr(·) indicates the
trace of an operator]. Using the Taylor series expansion
log(1 + x) = ∑∞

l=1(−1)l+1xl/l, we may write q(α, φ, A)

as

q(α, φ, A) = exp
[ ∞∑

l=1

yl
αl

l

]
, yl = 1

2
tr[(�A)l],

(30)

where the φ dependence of every yl is through � = �(φ).
Details about the convergence of this series expansion for a
wide number of GBS models, including the ideal squeezed
state model, can also be found in Appendix A.

In the form of Eq. (30), q(α, φ, A) becomes the generat-
ing function of the cycle index of the symmetric group Zn
[33,37,38], which leads to the expression

q(α, φ, A) =
∞∑

n=0

Zn(y1, . . . , yn)α
n, (31)

where

Zn(y1, . . . , yn) =
∑
k(c)

n∏
a=1

1
ka! aka

n∏
a=1

yka
a , (32)

and the sum extends over all possible k = (k1, . . . , kn)

whose non-negative, integer components satisfy the con-
straint k1 + 2k2 + · · · + nkn = n (we use the notation k(c)

to indicate the constraint over the components of k).
We can now readily see that

∂N q(α, φ, A)

∂αN

∣∣∣∣
α=0

= N ! ZN [y(φ, A)], (33)

where we have defined the vector y(φ, A) = (y1, . . . , yN )

in order to make explicit the dependence of the {yk} on
φ and A. Using this expression, we can recast the linear
cross-entropy as

LXE(A, B; N ) = 1
(2π)M D̄(A, B; N )

×
∫ 2π

0
ZN [y(φ, A)]ZN [y(−φ, B)] dφ

(34)

with

D̄(A, B; N ) = (N !)2D(A, B; N ). (35)

B. LXE as a polynomial in the entries of Haar-random
unitaries

Consider now the ideal squeezed state model Asqz. From
the definition of q(α, φ, A) we can see that

q(α, 0, Asqz) = {det[I2M − α tanh(r)X(V ⊕ V∗)]}−1/2

= {det[IM − α2 tanh2(r) ζ ]}−1/2

= [1 − α2 tanh2(r)]−R/2, (36)

where we remind the reader that the squeezed states are
sent in the first R modes of the interferometer. Expand-
ing this expression in a Taylor series about α = 0, we can
prove the relation

∂2N q(α, 0, Asqz)

∂α2N

∣∣∣∣
α=0

= (2N )! tanh2N (r)
(

R/2 + N − 1
N

)
.

(37)

Note that the derivatives for odd N identically vanish when
evaluated at α = 0. This is due to the fact that squeezed
states have support only over Fock states with an even
number of photons and, moreover, we are considering
a lossless (i.e., energy-conserving) interferometer. Using
Eq. (37), we reach the result

D̄(Asqz, Asqz; 2N ) = 1
tanh4N (r)

(
R/2 + N − 1

N

)−2

. (38)

For the general case of φ �= 0, we can write

q(α, φ, Asqz) = det[I2M − α tanh(r)�(V ⊕ V∗)]−1/2

= det[IM − α2 tanh2(r)D2VD2V∗]−1/2,
(39)

which can be recast in the form of Eq. (31) as

q(α, φ, Asqz) =
∞∑

n=0

Zn(u1, . . . , un) tanh2n(r)α2n, (40)

where uk = 1
2 tr[(D2VD2V∗)k]. Each uk depends on φ

through D = D(φ). Just as before, we can readily see
that the derivatives of q(α, φ, Asqz) are different from zero
when evaluated at α = 0 only if N is even. Defining the
vector u(φ, U) = (u1, . . . , uN ), these derivatives can be
expressed as

∂2N q(α, φ, Asqz)

∂α2N

∣∣∣∣
α=0

= (2N )! tanh2N (r)ZN [u(φ, U)],

(41)
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where ZN is given in Eq. (32). We can therefore compute
LXE(Asqz, Asqz; 2N ) using the relation

LXE(Asqz, Asqz; 2N )

= 1
(2π)M

(
R/2 + N − 1

N

)−2

×
∫ 2π

0
ZN [u(φ, U)]ZN [u(−φ, U)] dφ. (42)

The definition of the {uk} as traces of powers of
matrix D2VD2V∗ implies that they can be expanded
as polynomials in the entries of matrices V, D, and
their complex conjugates. Consequently, the integrand
in Eq. (42) will also be a polynomial in the entries
of these matrices. The dependence of each term in
the expansion on the entries of V will have the gen-
eral structure Vg1,g2 · · · Vg2l−1,g2lV

∗
h1,h2

· · · V∗
h2m−1,h2m

, where
g = (g1, . . . , g2l) and h = (h1, . . . , h2m) are sequences of
indices that take values in subsets of {1, . . . , M }. These
terms can be recast as polynomials in the entries of matrix
U:

Vg1,g2 · · · Vg2l−1,g2lV
∗
h1,h2

· · · V∗
h2m−1,h2m

=
∑
μ,ν

ζμζν U(g, μ̄ | h, ν̄). (43)

Here the indices in μ = (μ1, . . . , μl), ν = (ν1, . . . , νm)

take values in {1, . . . , M }, so
∑

μ ≡ ∑M
μ1=1 · · · ∑M

μl=1,
and μ̄ = (μ1, μ1, . . . , μl, μl), ν̄ = (ν1, ν1, . . . , νm, νm). We
conveniently write

ζμ = ζμ1 · · · ζμl (44)

with the {ζk} the diagonal entries of ζ , and

U(g, μ̄ | h, ν̄) = Ug1,μ1Ug2,μ1 · · · Ug2l−1,μlUg2l,μl

× U∗
h1,ν1

U∗
h2,ν1

· · · U∗
h2m−1,νm

U∗
h2m,νm

. (45)

Consider the sequences j = (j1, . . . , j2N ) and j′ =
(j ′

1, . . . , j ′
2N ), where jk, j ′

l ∈ {1, . . . , M } for all k, l. More-
over, consider the permutation �k ∈ S2N defined in
Eq. (14),

�k[(j1, . . . , j2N )]

=
N⊕

a=1

ka⊕
p=1

ωa[(j2va−1+2a(p−1)+1, . . . , j2va−1+2ap)],

where, let us recall, va = ∑a
p=1 pkp , v0 ≡ 0, and the

permutation ωa transforms the sequence (g1, . . . , g2a) as

ωa[(g1, g2, . . . , g2a−1, g2a)] = (g2, g3, . . . , g2a, g1). Then,
we can write (see Appendix B for details)

LXE(Asqz, Asqz; 2N )

=
(

R/2 + N − 1
N

)−2 ∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑
j,j′

I(j, j′)
∑
μ,ν

ζμζν

× U [j ⊕ j′, μ̄ | �k(j) ⊕ �l(j′), ν̄] (46)

with

I(j, j′) = 1
(2π)M

∫ 2π

0
exp

[ ∑
m∈j,n∈j′

2i (φm − φn)

]
dφ.

(47)

C. Integrating the phases away

By inspection of Eq. (47) we can recognize that I(j, j′)
will vanish whenever the sum inside the exponential is dif-
ferent from zero. Indeed, for this case, there must be at
least one term of the form e2izφp for some nonzero integer
z and some p ∈ j or j′ that is not canceled out and, when
integrated with respect to dφp , makes the whole integral
vanish. When the sum inside the exponential is equal to
zero, I(j, j′) = 1. We may then think of I(j, j′) as an indi-
cator function that, given a fixed j, allows us to keep track
of all the ways we can set j′ in order to make the sum
inside the exponential vanish. Furthermore, note that the
sum inside the exponential will be identically zero when-
ever j′ is a permutation of j. Since j might have indices
with repeated values, we must take into account the fact
that only the different permutations that take j into j′ should
be identified by I(j, j′).

In Appendix C we describe how to use the previous con-
siderations to write Eq. (47) in terms of Kronecker deltas.
The final result reads

I(j, j′) =
∑

�∈Q[j]

1
�!

F(j′, j[�, {jλ}])
[ ∏

λ∈�

∏
f ∈λ

δjλ,f

]

×
∏

(λ �=μ)∈�

(1 − δjλ,jμ). (48)

In this expression � represents a set partition of j, i.e.,
a collection of nonempty, mutually disjoint subsets of j
(which are usually called blocks), whose union is equal to
j; Q[j] is the set of all partitions of j. The set {jλ}, which
depends on a given partition �, is called the set of repre-
sentative indices of �, and is constructed by choosing one
element, any element, of each block λ ∈ �.

The sequence of indices j[�, {jλ}] is constructed from
j and � by using the following prescription: take a par-
tition � ∈ Q[j] and choose a representative index jλ for
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each block λ ∈ �; then replace all the elements in j that
belong to the same block λ by the corresponding repre-
sentative index jλ. For example, consider j = (j1, j2, j3, j4)
and � = {{j1, j3}, {j2, j4}}. Let {j3, j2} be the representative
indices of the partition; then j[�, {j3, j2}] = (j3, j2, j3, j2).

Note that the number of representative indices is equal
to the number of blocks in �. Let |λ| denote the length
(i.e., the number of elements) of each block λ ∈ �; then
�! = ∏

λ∈� |λ|!.
For two sequences of indices g = (g1, . . . , gm) and h =

(h1, . . . , hm), F(h, g) is defined as

F(h, g) =
∑
σ∈Sm

m∏
a=1

δha,σ(ga), (49)

where the {σ(ga)} stand for the components of σ(g).
Combining Eqs. (46) and (48), and after a careful manip-

ulation of all the Kronecker deltas involved (see Appendix
C for details), we can express the LXE as

LXE(Asqz, Asqz; 2N )

=
(

R/2 + N − 1
N

)−2 ∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

�∈Q[j]

∑
diff.{jλ}

∑
σ∈S2N

1
�!

×
∑
μ,ν

ζμζνU [j� ⊕ σ(j�), μ̄ | �k(j�)

⊕ �l ◦ σ(j�), ν̄], (50)

where we introduce the short notation j� ≡ j[�, {jλ}], and
σ ◦ τ indicates the composition of permutations. The sub-
script diff.{jλ} indicates that the sum must be done over
representative indices taking different values in {1, . . . , M }.

D. Average over the Haar-random unitaries in the
asymptotic limit

Following the result in Eq. (50), we can see that comput-
ing the average value of LXE(Asqz, Asqz; 2N ) over Haar-
random unitaries amounts to calculating the expected value
of the polynomial

∑
μ,ν

ζμζν U [j� ⊕ σ(j�), μ̄ | �k(j�) ⊕ �l ◦ σ(j�), ν̄].

(51)

This task can be tackled by using Weingarten calculus
[25,39].

We use two key results concerning the Weingarten cal-
culus for the unitary group. The statements of these the-
orems, adapted to the notation we have used throughout

the article, can be found in Appendix D. The first of these
results can be found in Lemma 3 of Ref. [35], and allows
us to write

EU{U [j� ⊕ σ(j�), μ̄ | �k(j�) ⊕ �l ◦ σ(j�), ν̄]}
=

∑

,τ∈S4N

�{�k(j�) ⊕ �l ◦ σ(j�) | 
[j� ⊕ σ(j�)]}

× �[ν̄ | τ(μ̄)]Wg4N (
−1 ◦ τ ; M ), (52)

where �[g | h] = ∏m
a=1 δga,ha and Wgm(σ ; M ) stands for

the Weingarten function for the unitary group U(M )

[25,39].
Combining Eqs. (51) and (52) we obtain

∑
μ,ν

ζμζνEU{U [j� ⊕ σ(j�), μ̄ | �k(j�) ⊕ �l ◦ σ(j�), ν̄]}

=
∑

∈S̄�

∑
τ∈S4N

Wg4N (
−1 ◦ τ ; M )f (ζ , τ), (53)

where S̄� ⊆ S4N depends on �, σ , k, and l, and is defined
as

S̄� = {
 ∈ S4N | 
[j� ⊕ σ(j�)] = �k(j�) ⊕ �l ◦ σ(j�)}.
(54)

Let us note that S̄� is nonempty, since �k ⊕ �l ∈ S̄�. On
the other hand,

f (ζ , τ) =
∑

μ

∑
ν such that
ν̄=τ(μ̄)

ζμζν . (55)

Note that Wg4N (
−1 ◦ τ ; M ) does not depend on the
specific values of the indices in j�. Rather, through its
dependence on the permutations 
 ∈ S̄�, it is determined
by the structure of j�, i.e., by the number of different {jλ}
and their positions within the sequence.

Since we are interested in the expected value of the
linear cross-entropy as M → ∞, we can focus on the
asymptotic behavior of the Weingarten function, which
is the subject of the second key result that we use in
this section. According to Corollary 2.7 of Ref. [40], as
M → ∞, we can write

Wg4N (
−1 ◦ τ ; M ) = Moeb(
−1 ◦ τ)
1

M 4N+‖
−1◦τ‖

+ O(M−4N−‖
−1◦τ‖−2), (56)

where Moeb(σ ) is the Möbius function (see Appendix D
for its definition) and ‖σ‖ denotes the minimum number
of transpositions in which we can write σ .

Since ‖
−1 ◦ τ‖ ≥ 0, we can recognize that the lead-
ing order term in the asymptotic expansion in Eq. (56)
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decays at least as fast as M−4N . Taking into account
the facts that, when τ = 
, ‖
−1 ◦ τ‖ = ‖e4N ‖ = 0 and
Moeb(
−1 ◦ τ) = Moeb(e4N ) = 1, with e4N the identity
permutation in S4N , we can write the asymptotic form of
Eq. (53) as

∑
μ,ν

ζμζνEU{U [j� ⊕ σ(j�), μ̄ | �k(j�) ⊕ �l ◦ σ(j�), ν̄]}

=
∑

∈S̄�

f (ζ , 
)M−4N + O(M−4N−1). (57)

Bringing together the results in Eqs. (57) and (50) we
obtain the following expression for the average value of
LXE(Asqz, Asqz; 2N ):

EU[LXE(Asqz, Asqz; 2N )]

=
(

R/2 + N − 1
N

)−2 ∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

�∈Q[j]

∑
σ∈S2N

1
�!

×
∑

diff.{jλ}

( ∑

∈S̄�

f (ζ , 
)M−4N + O(M−4N−1)

)
, (58)

where we were able to move the sum over different {jλ}
past the sum over σ ∈ S2N and the term 1/�! because nei-
ther of them depends on the specific values that the {jλ}
take.

In fact, there are no longer any terms in Eq. (58) that
depend on the specific values of these indices. Indeed, as
we argued before, the sum over permutations in S̄�, as well
as the terms of order O(M−4N−1), will depend only on the
structure of j�, which is determined by �. Consequently,
we can make the replacement

∑
diff. {rλ}

→ M !
(M − N�)!

= M N� + O(M N�−1), (59)

where N� is the number of different {jλ}, i.e., the number
of blocks in �. This allows us to write

∑
diff.{jλ}

( ∑

∈S̄�

f (ζ , 
)M−4N + O(M−4N−1)

)

=
∑

∈S̄�

f (ζ , 
)M−4N+N� + O(M−4N+N�−1). (60)

Given that 1 ≤ N� ≤ 2N , with N� = 2N for � =
{{j1}, . . . , {j2N }}, we can see that the leading term in the
asymptotic expansion of the average LXE decays as M−2N .

On this account, and keeping in mind that �! = 1 for the
leading term, we may write Eq. (58) as

EU[LXE(Asqz, Asqz; 2N )]

=
(

R/2 + N − 1
N

)−2 ∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
( ∑

σ∈S2N

∑

∈S̄

f (ζ , 
)M−2N + O(M−2N−1)

)
,

(61)

where

S̄ = {
 ∈ S4N | 
[j ⊕ σ(j)] = �k(j) ⊕ �l ◦ σ(j)}. (62)

E. Final expression of the ideal LXE score

Recall that in the definition of the LXE score given in
Eq. (8) there is one extra term that depends on the number
of modes M , namely, the normalization factor

(
M + 2N − 1

2N

)
= �(M + 2N )

�(2N + 1)�(M )
.

For a fixed 2N , �(M + 2N )/�(M ) ∼ M 2N as M → ∞,
so we can write the following asymptotic expression for
the binomial coefficient:

(
M + 2N − 1

2N

)
∼ M 2N

(2N )!
. (63)

On these grounds, and noting that

(
R/2 + N − 1

N

)
= 1

2N N !
(R + 2N − 2)!!

(R − 2)!!
,

we are now able to write

s(Asqz; 2N ) = lim
M→∞

(
M + 2N − 1

2N

)

× EU[LXE(Asqz, Asqz; 2N )]

= 4N (N !)2

(2N )!

[
(R − 2)!!

(R + 2N − 2)!!

]2

×
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

∑

∈S̄

f (ζ , 
). (64)

At this point we may take into account the fact that the
entries of the diagonal matrix ζ satisfy ζa = 1 for 1 ≤ a ≤
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R, and ζa = 0 otherwise. This allows us to see that

f (ζ , 
) =
∑

μ∈[R]2N

∑
ν∈[R]2N

such that ν̄=
(μ̄)

1, (65)

where the symbol μ ∈ [R]2N indicates that each μa, a =
1, . . . , 2N , takes values in the set [R] = {1, . . . , R}.
According to Lemma 6 of Ref. [35], the sum in the last
expression satisfies the relation

∑
μ∈[R]2N

∑
ν∈[R]2N

such that ν̄=
(μ̄)

1 = R �(
), (66)

where �(
) is the length of the coset type of 
 [25,35].
In order to understand the meaning of �(
), let us

state the definition of the coset type of a permutation
given in Ref. [25] (see Fig. 3 for an example). Let σ ∈
S2m. We can assign to this permutation an undirected
graph �(σ ), whose vertices are 1, 2, . . . , 2m, and whose
edges are defined by {(2k − 1, 2k) | k ∈ {1, . . . , m}} and
{[σ(2k − 1), σ(2k)] | k ∈ {1, . . . , m}}. Note that there are
a total of 2m edges, and each vertex lies in exactly two
edges. This implies that the connected components of
the graph have an even number of edges [25]. Call the
lengths of such connected components 2η1, 2η2, . . . , 2ηl
and arrange them so that η1 ≥ η2 ≥ · · · ≥ ηl ≥ 1. Then,
η(σ ) = (η1, η2, . . . , ηl) is an integer partition of m, and is
called the coset type of σ . The length of the coset type of
σ will then be the length of the partition η(σ ), or, equiv-
alently, the number of connected components in graph
�(σ ).

According to the previous definition, we can see that 1 ≤
�(
) ≤ 2N , which in turn allows us to write

∑

∈S̄

f (ζ , 
) =
∑

∈S̄

R�(
) =
2N∑
�=1

b�R�, (67)

where

b� ≡ b�[j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)] (68)

is the number of permutations 
 ∈ S4N that take j ⊕ σ(j)
into �k(j) ⊕ �l ◦ σ(j), and whose coset type has length
� [or, equivalently, whose associated graphs �(
) have �

connected components].
Combining Eqs. (64) and (67), and defining [see

Eq. (15)]

c� =
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

b�[j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)], (69)

FIG. 3. Illustration of the definition of the coset type of
σ for σ = (1 2)(3)(4 7 6 8 5)(9 10 11 12 13 14). Note that
σ is an element of S2m with m = 7. The vertices of the
undirected graph �(σ ) are represented by numbered black
circles. Edges of the form (2k − 1, 2k), that correspond to
the set {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (12, 14)},
are drawn with black dashed lines. Edges of the form
[σ(2k − 1), σ(2k)] are obtained after the application of
σ over the pairs (2k, 2k − 1) and correspond to the set
{(2, 1), (3, 7), (4, 8), (6, 5), (10, 11), (12, 13), (14, 9)}. These
edges are shown as red dashed lines. Each connected component
of the graph is highlighted with a light blue, thick line. As can be
seen, there are a total of four connected components, all of them
cycles, with lengths 2ηb, b = 1, 2, 3, 4. This implies that the
coset type of σ is η(σ ) = (3, 2, 1, 1), and its length is �(σ ) = 4.
We can readily check that η(σ ) is an integer partition of m = 7.

we finally obtain the result stated in Eq. (13), at the very
beginning of this section:

s(Asqz; 2N ) = 4N (N !)2

(2N )!

[
(R − 2)!!

(R + 2N − 2)!!

]2 2N∑
�=1

c�R�.

V. LXE SCORE FOR THE IDEAL SQUEEZED
STATE MODEL WITH DIFFERENT SQUEEZING

PARAMETERS

We can readily generalize the methods presented in the
last section to determine the ideal score for GBS setups
that use input squeezed states with different squeezing
parameters.

Suppose that the first R modes of the interferom-
eter receive single-mode squeezed states with squeez-
ing parameters {rk}, k ∈ {1, . . . , R}, while the remaining
M − R modes receive the vacuum state. The matrix A′

sqz
describing this setup can be written as (see Appendix A)

A′
sqz = V ⊕ V∗, (70)
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where V = Uζ ′UT, with ζ ′ = tanh(r) ⊕ 0M−R and
tanh(r) = diag[tanh(r1), . . . , tanh(rR)].

Models A′
sqz and Asqz [which was defined in Eq. (11)]

differ only in the definition of the diagonal matrix ζ ′. This
suggests that we can compute the ideal score associated
with A′

sqz by making the replacement

tanh(r)ζ → ζ ′ = tanh(r) ⊕ 0M−R,

while keeping all the procedures shown in Sec. IV mostly
the same. Following this strategy, we can see that the
change from Asqz to A′

sqz will become manifest in two
terms: the factor D̄(A′

sqz, A′
sqz, 2N ) defined in Eq. (35), and

the function f (ζ ′, τ) defined in Eq. (55).
To compute D̄(A′

sqz, A′
sqz, 2N ), we note that, according

to Eqs. (33) and (41),

1
(2N )!

∂2N q(α, φ, A′
sqz)

∂α2N

∣∣∣∣
α=0

=
∑
k(c)

N∏
a=1

1
ka! aka

N∏
a=1

uka
a ,

(71)

where ua = 1
2 tr[(D2VD2V∗)a]. When φ = 0, we have

D = IM , and so

ua = 1
2

tr[(VV∗)a] = 1
2

tr[(ζ ′)2a] = 1
2

R∑
k=1

tanh2a(rk).

By defining

εa = 1
R

R∑
k=1

tanha(rk), (72)

where we note that 0 < |εa| < 1 for all a and R, we can
write ua = 1

2ε2aR, and

1
(2N )!

∂2N q(α, 0, A′
sqz)

∂α2N

∣∣∣∣
α=0

=
∑
k(c)

N∏
a=1

ε
ka
2aRka

ka! (2a)ka

=
N∑

�=1

d′
�R�. (73)

The last equality above is obtained by noting that the non-
negative integer components of k = (k1, . . . , kN ) satisfy
the constraint k1 + 2k2 + · · · + NkN = N . For each k, the
sum

∑
k(c) will include a term proportional to Rk1+···+kN ,

which can be at least R (for kN = 1 and ka = 0 for all
a �= N ) and at most RN (for k1 = N and ka = 0 for all
a �= 1).

From Eq. (73), and using Eq. (29), we may write

D̄(A′
sqz, A′

sqz, 2N ) =
( N∑

�=1

d′
�R�

)−2

. (74)

This expression leads to the following modified form of
Eq. (64):

s(A′
sqz; 2N ) = 1

(2N )!

( N∑
�=1

d′
�R�

)−2

×
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

×
∑

∈S̄

f (ζ ′, 
) (75)

with f (ζ ′, 
) now computed as

f (ζ ′, 
) =
∑
μ

∑
ν such that
ν̄=
(μ̄)

ζ ′
μζ ′

ν

=
∑

μ∈[R]2N

∑
ν∈[R]2N

such that ν̄=
(μ̄)

2N∏
a=1

tanh(rμa) tanh(rνa).

(76)

In Appendix E, we prove that Eq. (76) reduces to

f (ζ ′, 
) =
( ∏

b∈η(
)

ε2b

)
R�(
), (77)

where, let us remind the reader, η(
) stands for the coset
type of 
, and �(
) is the length of η(
) [or, equivalently,
the number of connected components in the undirected
graph �(
)].

If we recall that 1 ≤ �(
) ≤ 2N , we can define the
subset S̄� ⊂ S4N as

S̄� = {
 ∈ S4N | 
[j ⊕ σ(j)] = �k(j) ⊕ �l ◦ σ(j)

and �(
) has � connected components}, (78)

and write

∑

∈S̄

f (ζ ′, 
) =
2N∑
�=1

( ∑

∈S̄�

∏
b∈η(
)

ε2b

)
R�, (79)

thus verifying that
∑


∈S̄ f (ζ ′, 
) remains a polynomial of
degree 2N in R.
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FIG. 4. (a) Ideal LXE score as a function of the total number of detected photons, 2N . The purple dashed line shows the score for
an ideal squeezed state model with no vacuum input modes (as indicated by the label R → ∞). The black dashed line shows the score
for model Auni, which leads to a uniform distribution over the sample space. The score for this model is identically 1 for every N . The
remaining lines correspond to the ideal squeezed state model Asqz, where the first R modes receive identical single-mode squeezed
states and the remaining M − R modes receive the vacuum state. The red dashed line corresponds to R = 10, the orange dashed line
to R = 20, the green dashed line to R = 50, and the blue dashed line to R = 150. (b) Ideal LXE score as a function of the total number
of detected photons, 2N , for GBS setups using input states with different squeezing parameters. The dotted lines were obtained by
randomly selecting the squeezing parameters of the R input squeezed states. For each value of R, there are four sets of squeezing
parameters, each of them identified by their corresponding mean number of photons n̄ = (1/R)

∑R
k=1 sinh2(rk). The dashed lines show

the scores for the case of identical squeezing in the input modes. The red lines correspond to R = 10, the orange lines to R = 20, the
green lines to R = 50, and the blue lines to R = 150.

Combining Eqs. (75) and (79) we obtain the final
expression for the ideal LXE score for model A′

sqz:

s(A′
sqz; 2N ) = 1

(2N )!

( N∑
�=1

d′
�R�

)−2 2N∑
�=1

c′
�R� (80)

with

c′
� =

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

∑

∈S̄�

∏
b∈η(
)

ε2b. (81)

Again, in Appendix E, we prove that if rk = r for all k ∈
{1, . . . , R}, s(A′

sqz; 2N ) becomes independent of r and we
recover s(Asqz; 2N ) identically, showing the consistency
between Eqs. (13) and (80).

The main difference between scores s(Asqz; 2N ) and
s(A′

sqz; 2N ) is that the latter shows an explicit dependence
on the input squeezing parameters. In order to properly
account for this dependence, we need not only determine
the number of connected components in �(
), but also the
lengths of all connected components in the graph.

Figure 4(b) shows scores s(Asqz; 2N ) and s(A′
sqz; 2N ) as

functions of 2N for R ∈ {10, 20, 50, 150}, and for differ-
ent choices of the input squeezing parameters. Brute-force
computation of the coefficients {c�} and {c′

�} for values of
2N > 8 proves to be difficult due to the increasing num-
ber of elements in set S̄. In view of this, we only show the
exact computation of the scores for 2 ≤ 2N ≤ 8. For each
value of R, we randomly selected four sets of input squeez-
ing parameters, making sure that every set had a different
mean number of photons n̄ = (1/R)

∑R
k=1 sinh2(rk). For

R = 10, we obtained n̄ ∈ {0.4, 0.8, 2.2, 6.2}; for R = 20,
n̄ ∈ {0.4, 1.1, 2.3, 5.2}; for R = 50, n̄ ∈ {0.4, 1.0, 2.4, 5.4};
and for R = 150, n̄ ∈ {0.4, 1.1, 2.5, 5.6}. We computed the
coefficients {c�} and {c′

�} using the methods in the libraries
SymPy [41] and graph-theory [42].

As can be seen, when we increase the value of n̄,
s(A′

sqz; 2N ) approaches the score that would be obtained
by a model that uses input states with the same squeezing
parameter. Interestingly, s(A′

sqz; 2N ) appears to approach
s(Asqz; 2N ) more rapidly with increasing R. This suggests
that, in the limit of large R, s(A′

sqz; 2N ) will be approxi-
mately equal to the score of an ideal model with uniform
squeezing, no matter the choice of the input squeezing
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parameters. This behavior nicely connects with the results
of the next section.

VI. LXE SCORE FOR THE IDEAL SQUEEZED
STATE MODEL WITHOUT VACUUM INPUT

MODES

An interesting instance of the ideal squeezed state model
is obtained when R = M , i.e., when all the input modes
in the interferometer receive single-mode squeezed states.
The computation of the ideal score for this type of setup
can be done by taking the limit as R → ∞ of Eqs. (13)
and (80).

Let us consider first the case of s(Asqz; 2N ), given in
Eq. (13). For large R,

[
(R − 2)!!

(R + 2N − 2)!!

]2

∼ R−2N .

Thus, when taking the limit, the only nonvanishing con-
tribution from the polynomial

∑
� c�R� will be associated

with the term c2N R2N . This allows us to write the ideal
score as

s(Ãsqz; 2N ) = lim
R→∞

s(Asqz; 2N ) = 4N (N !)2

(2N )!
c2N . (82)

In the case of s(A′
sqz; 2N ), we have, from Eq. (80),

( N∑
�=1

d′
�R�

)−2

∼ (d′
N )−2R−2N ,

when R → ∞, which implies that the only nonvanish-
ing contribution from the polynomial

∑
� c′

�R� will be
associated with the term c′

2N R2N . Then,

s(A′
sqz; 2N ) ∼ 1

(2N )!
c′

2N

(d′
N )2 . (83)

We can see in Eq. (73) that the only contribution to
d′

N comes from a vector k satisfying k1 = N and ka = 0
otherwise. This means that

d′
N = ε

k1
2

k1! 2k1
= εN

2

2N N !
. (84)

Following Eq. (81), we see that c′
2N is determined by

computing the coset type of the permutations 
 ∈ S̄2N . By
definition, every 
 ∈ S̄2N has an associated graph �(
)

with 2N connected components, which implies that every
connected component in �(
) has length 2. This means
that all 
 ∈ S̄2N have coset type η(
) = (1, . . . , 1), where

1 appears a total of 2N times. Consequently,

∑

∈S̄2N

∏
b∈η(
)

ε2b =
∑


∈S̄2N

2N∏
a=1

ε2 = ε2N
2 |S̄2N |. (85)

Recalling Eq. (78) and the definition of the coefficients b�

given in Eq. (68), we can verify that

|S̄2N | = b2N [j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)], (86)

and, thus,

c′
2N =

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

ε2N
2 |S̄2N |

= ε2N
2

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

b2N

= ε2N
2 c2N . (87)

Combining Eqs. (83), (84), and (87), we conclude that

s(Ã′
sqz; 2N ) = lim

R→∞
s(A′

sqz; 2N ) = 4N (N !)2

(2N )!
c2N , (88)

i.e., the ideal score for a setup with no vacuum input modes
will have the same value, whether we use input squeezed
states with the same squeezing parameter or not.

The permutations 
 ∈ S4N whose associated undirected
graphs �(
) have 2N connected components constitute
the hyperoctahedral group of degree 2N , H2N [35] (see
Definition 1 in Appendix F). We may therefore say that the
coefficient b2N is the number of permutations in H2N that
take j ⊕ σ(j) into �k(j) ⊕ �l ◦ σ(j) for given k, l, and σ .

In Appendix F we prove that

c2N =
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

b2N = 1 (89)

for every N , which implies that

s(Ã′
sqz; 2N ) = s(Ãsqz; 2N ) = 4N (N !)2

(2N )!
. (90)

Figure 4(a) shows the values of scores s(Ãsqz; 2N ) and
s(Asqz; 2N ) as functions of 2N for R ∈ {10, 20, 50, 150}.
The computation of the coefficients {c�} becomes increas-
ingly difficult for values of 2N > 8 due to the sharp
increase in the number of elements in S̄. For this reason,
we only show the scores for 2 ≤ 2N ≤ 8. As can be seen,
the value of the score for finite R is greater than the score
of an ideal model with no vacuum input modes. For small
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values of R, s(Asqz; 2N ) quickly diverges from s(Ãsqz; 2N )

when we increase 2N . In contrast, for values of R ∼ 150,
s(Asqz; 2N ) seems to closely follow s(Ãsqz; 2N ). As shown
in Fig. 4(b), this behavior can also be expected for mod-
els that use input squeezed states with different squeezing
parameters.

Equation (90) is consistent with the ideal score found in
a recent work by Ehrenberg et al. [26,27]. Their result was
obtained by computing the first and second moments of the
modulus squared of hafnians of random Gaussian matri-
ces, which, according to the hiding conjecture [5,28,29],
approximate the GBS distribution in the photon-collision-
free limit. We did not use the hiding conjecture in our
derivation of Eq. (90). However, defining the score in the
limit M → ∞ implies that our results are only valid in the
photon-collision-free regime.

The analytical computation of the LXE score for setups
that are not in the limit of M → ∞ is beyond the scope of
this work. However, we can study the behavior of the ideal
score in this regime by numerically computing s̄sqz(2N ),
as indicated in Eq. (9). Let us recall that s̄(N ) is an esti-
mator of the LXE score determined by computing the
probabilities of a given set of samples with respect to an
ideal squeezed state model. In the case of s̄sqz(2N ), the
samples correspond to the ideal model itself. The proce-
dure to determine s̄sqz(2N ) is the following. For a given
value of M , generate a Haar-random unitary matrix. Using
this unitary, generate a set of L samples from the proba-
bility distribution of the ideal squeezed state model, and
compute their corresponding probabilities. All the sam-
ples must have 2N detected photons. Finally, compute
estimator s̄sqz(2N ) using Eq. (9).

It is important to remember that sampling from the prob-
ability distribution of an ideal squeezed state model, as
well as computing the corresponding probabilities, is a
computationally hard task whose cost grows exponentially
with the total number of detected photons in the samples.
This means that the numerical computation of s̄sqz(2N ) is
restricted, in practice, to low values of 2N .

We numerically estimated s̄sqz(2N ) for GBS setups with
M ∈ {50, 100, 200}. We chose these values of M because
they are close to those used in recent experimental imple-
mentations of GBS [7–10]. We focused on ideal models
with no vacuum input modes so we can compare the
estimated scores with Eq. (90), which can be easily com-
puted for 2N > 8. We also considered input states with
the same squeezing parameter, which was set so that the
mean number of photons were n̄ = 20 for all three val-
ues of M . Therefore, r = 0.60 for M = 50, r = 0.43 for
M = 100, and r = 0.31 for M = 200. Note, however, that
the definition of Asqz makes s̄sqz(2N ) independent of our
choice of squeezing parameters. For each value of M , we
generated ten Haar-random unitaries, and for each uni-
tary, we generated L = 1000 samples per value of 2N . We
computed the scores for 10 ≤ 2N ≤ 26. The generation
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FIG. 5. Estimated score s̄sqz(2N ) as a function of 2N . The
violet dashed line corresponds to the score of an ideal model
with M → ∞. The black dashed line corresponds to a model
that leads to a uniform distribution over the sample space. The
remaining lines show the average estimated score 〈s̄sqz(2N )〉: the
red dashed line corresponds to M = 50, the green dashed line to
M = 100, and the blue dashed line to M = 200. Error bars show
the uncertainty in the estimation of the average score. The col-
ored circles shown in the small plots at the bottom indicate the
values of s̄sqz(2N ) for each of the ten Haar-random unitaries used
in the calculation of the corresponding average. The estimation
of each of these values was done using L = 1000 samples. The
shaded regions indicate how many unitaries obtain values of the
score within the error of the estimated average value.

of all Haar-random unitaries and samples, as well as the
computation of the probabilities of each individual sample,
were done using the methods in the library thewalrus
[43].

Figure 5 shows the results of the computation of
s̄sqz(2N ) as a function of 2N . The colored circles in the
small figures at the bottom represent the values of s̄sqz(2N )

for each of the ten Haar-random unitaries. The dashed lines
with error bars correspond to the average of these val-
ues, which we denote 〈s̄sqz(2N )〉. As was mentioned below
Eq. (9), the estimated score can be interpreted as the aver-
age of the probabilities of each individual sample (with
respect to the ideal model) multiplied by a constant. Con-
sequently, the error of each s̄sqz(2N ) corresponds to the
standard error of the mean. The uncertainty of 〈s̄sqz(2N )〉,
which leads to the error bars shown in Fig. 5, is computed
through error propagation.

We can see that the average estimated score, for all
the values of M considered, closely resembles the ana-
lytical result in the limit of M → ∞. Indeed, the relative
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difference between 〈s̄sqz(2N )〉 and s(Ãsqz; 2N ),

�(2N ) = s(Ãsqz; 2N ) − 〈s̄sqz(2N )〉
s(Ãsqz; 2N )

× 100%, (91)

satisfies 8.12% ≤ �(2N ) ≤ 13.57% for M = 50, 4.17% ≤
�(2N ) ≤ 10.82% for M = 100, and 0.58% ≤ �(2N ) ≤
8.16% for M = 200.

Interestingly, 〈s̄sqz(2N )〉 approaches s(Ãsqz; 2N ) more
rapidly for small values of 2N , while 〈s̄sqz(2N )〉 and
s(Ãsqz; 2N ) seem to diverge for large 2N . The divergence
is faster the smaller M is. This suggests that the range
of total detected photons for which s(Ãsqz; 2N ) will be
a good approximation of s̄sqz(2N ) depends on the num-
ber of modes considered. One condition to ensure that the
GBS distribution is in the photon-collision-free regime is
that the mean number of photons n̄ satisfies n̄ ∈ o(

√
M )

[5,28,29]. Since n̄ determines the range of 2N in which it
is more likely to find experimental samples, and consider-
ing that Eq. (90) is only valid in the collision-free limit,
we may say that s(Ãsqz; 2N ) will be a good approximation
of s̄sqz(2N ) for a range of total detected photons satisfying
2N ∈ o(

√
M ).

We can also see that most of the estimated s̄sqz(2N )

take values within the uncertainty of the average estimated
score, even for a number of modes as low as M = 50.
This confirms that typical GBS implementations obtain
ideal scores that are close to the average over Haar-random
unitaries.

To conclude this section, we numerically investigate the
score that would be obtained by GBS setups with trans-
mission losses. This study would give us an idea of how
sensitive the LXE score is to the presence of noise. To
do this, we consider a simple model in which the input
squeezed states are sent through single-mode loss chan-
nels before entering a Haar-random unitary interferometer.
We consider that there are no vacuum input modes, that
all input states have the same squeezing, and that all loss
channels have the same transmission parameter, η. When
the transmission losses are high, the state of the light after
the single-mode loss channel can be approximated by a
squashed state [17]. We use a squashed state model where
all input states have the same mean number of photons to
investigate the case of extreme losses. The details on how
obtain matrices Aloss and Asqs associated with the lossy
squeezed state and squashed state models can be found in
Appendix A.

It is worth mentioning that the squashed states are clas-
sical Gaussian states [17], and thus sampling from the
probability distribution of model Asqs can be done effi-
ciently. The lossy squeezed states used in model Aloss are
not classical states. However, it has been shown that sam-
pling from Aloss when transmission losses are high can
be done with reasonable classical hardware resources (for

models with hundreds of modes, millions of samples can
be generated in the order of an hour using contemporary
supercomputers) [20]. For both models, the calculation
of probabilities with respect to model Asqz is still com-
putationally hard. Therefore, the numerical computation
of the estimators will also be restricted to low values
of 2N .

We numerically estimated s̄loss(2N ) and s̄sqs(2N ) for
a GBS setup with M = 200. We considered transmis-
sion parameters η ∈ {0.5, 0.7, 0.9}, and set the squeezing
parameter of the input states to r = 0.31. The mean num-
ber of photons for the squashed state model was n̄ =
20. Here, we also find that the definition of model Asqs
makes s̄sqs(2N ) independent of our choice of n̄. For each
of these cases, we generated ten Haar-random unitaries,
and for each unitary, we generated L = 1000 samples per
value of 2N . We computed the scores for 2N between 4
and 24.

Figure 6 shows the computed values of s̄loss(2N ) and
s̄sqs(2N ) as functions of 2N . Just as before, the colored
circles in the figures at the bottom represent the values
of estimators for each of the ten Haar-random unitaries.
The dashed lines with error bars correspond to 〈s̄loss(2N )〉
and 〈s̄sqs(2N )〉. The error of each s̄loss(2N ) and s̄sqs(2N )

corresponds to the standard error of the mean, and the
uncertainty of the corresponding averages is computed
through error propagation.

As can be seen, the values of 〈s̄loss(2N )〉 are signif-
icantly lower than those corresponding to the estimated
ideal score. We find that the relative difference between
〈s̄loss(2N )〉 and 〈s̄sqz(2N )〉 satisfies 29.15% ≤ �(2N ) ≤
43.06% for η = 0.9, 51.31% ≤ �(2N ) ≤ 62.02% for η =
0.7, and 52.03% ≤ �(2N ) ≤ 69.07% for η = 0.5. For the
squashed state model, the difference is even more striking.
The relative difference between 〈s̄sqs(2N )〉 and 〈s̄sqz(2N )〉
satisfies 75.96% ≤ �(2N ) ≤ 82.53%, and we can read-
ily note that the estimated s̄sqs(2N ) take values close to
1 for all the unitaries used in the computation. Finally, we
confirm that most of the estimated s̄loss(2N ) and s̄sqs(2N )

take values within the uncertainty of the average estimated
score. This demonstrates that typical GBS implementa-
tions with transmission losses also obtain LXE scores that
are close to the average over Haar-random unitaries.

These results show that the presence of transmission
losses in GBS setups do not necessarily bring the LXE
score to values close to those obtained by models that
lead to a uniform distribution over the sample space.
Indeed, only for situations in which the transmission losses
are higher than 50% does the score of a lossy squeezed
state model approach the value of 1. However, we note
that losses as low as 10% seem to define a reference
value that is easily distinguishable from that of the ideal
model. This will prove useful at the moment of verify-
ing real-world GBS implementations, as we can define
clearly delimited regions associated with certain values
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FIG. 6. Estimated scores s̄loss(2N ) and s̄sqs(2N ) as functions of 2N . The violet dashed line corresponds to the score of an ideal model
with M → ∞. The black dashed line corresponds to a model that leads to a uniform distribution over the sample space. The dark blue
dashed line with error bars corresponds to the average estimated score of an ideal model with M = 200. The remaining lines show the
average estimated scores 〈s̄loss(2N )〉 and 〈s̄sqs(2N )〉: the teal dashed line corresponds to a lossy squeezed state model with η = 0.9, the
olive green dashed line to η = 0.7, the dark yellow dashed line to η = 0.5, and the dark red line to the squashed state model. Error bars
show the uncertainty in the estimation of the average score. The colored circles shown in the plots at the bottom indicate the values of
s̄loss(2N ) and s̄sqs(2N ) for each of the ten Haar-random unitaries used in the calculation of the corresponding average. The estimation
of each of these values was done using L = 1000 samples. The shaded regions indicate how many unitaries obtain values of the score
within the error of the estimated average value.

of the transmission loss and then determine in which of
them lies the score associated with a set of experimen-
tal samples. A more thorough study of the LXE score for
models with transmission losses, as well as other types of
Gaussian and non-Gaussian noise, is needed in order to
completely determine the reference values delimiting these
regions.

We also bring attention to the fact that the squashed
state model obtains estimated scores very close to 1. These
models have proven to be good classical adversaries of
recent GBS implementations, performing as good as, and
sometimes better than, the ground truth in a number of
validation tests [17]. Therefore, it would be valuable to
determine the analytical value of the LXE score for the
squashed model, and verify if it is identically 1.

The definition of analytical reference values correspond-
ing to noisy models will be of central importance for the
use of the LXE score as a GBS validation metric. However,
we also need determine if obtaining a score greater than a
given reference value is a computationally hard task or not.
In this way, we would be certain that the LXE score is a
good witness of quantum computational advantage. Future
studies on the LXE score also need to focus on this subject.

VII. DISCUSSION

In this work, we proposed using the LXE score as a
tool for validating quantum advantage claims in the con-
text of GBS. Taking inspiration from the definition of the
linear XEB used for the validation or RCS implementa-
tions, we defined the LXE score as a normalized version of
the linear cross-entropy between two GBS models, one of
them being the ideal squeezed state model, averaged over
the Haar measure of the unitary group, and evaluated at
the limit of a large number of modes. The key idea of the
verification strategy consists in finding reference values of
the LXE score (corresponding to the ideal squeezed state
model, known classical models, and adversarial samplers)
and compare them with the estimated score obtained by the
outcomes of a given GBS experiment. Using this compari-
son, we can assess how far a GBS implementation is from
its corresponding typical, ideal model.

Following the definition of the LXE score, we identified
two of its reference values. The first one corresponding to
a GBS setup leading to a uniform probability distribution
for each sector of the total number N of detected photons
in the experimental samples. The second one is associated
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with a GBS implementation using a lossless interferometer
that receives single-mode squeezed states in the first R of
its M input modes, and the vacuum in the rest of them. The
first reference value follows directly from the normaliza-
tion of the LXE score and is equal to 1. In addition to this,
we found two expressions for the second reference value
as a function of R and N : Eq. (13) for the case of input
states having the same squeezing parameter, and Eq. (80)
for input sates with different squeezing parameters. It is
worth mentioning that even if the ideal value of the LXE
score is not constant with N (unlike its RCS counterpart),
the validation strategy remains sound; we need only com-
pare the estimated score of the experimental outcomes with
respect to the reference curve set by the ideal squeezed
state model.

An important feature of the expression we found for
the ideal LXE score is that part of its dependence on R
can be written as a polynomial of degree 2N in this vari-
able. The corresponding coefficients can be computed by
counting the number of undirected graphs, associated with
certain permutations, with a given number of connected
components. When we consider setups that use input states
with different squeezing parameters, the coefficients also
depend on the lengths of the connected components of the
graph. This property of the ideal score closely resembles
a recent result by Ehrenberg et al. [26,27] concerning a
study on anticoncentration in GBS. In their work, they
developed a graph-theoretical technique to compute the
first and second moments of the output GBS distribution
in the photon-collision-free regime. They found that the
second moment of the distribution can be expressed as a
polynomial of degree 2N in R, with coefficients computed
by counting how many graphs have a specific number of
connected components. Moreover, they found an expres-
sion for the LXE score of an ideal squeezed state model
that uses input states with the same squeezing parameter in
terms of the first and second moments [27].

Our expression for the ideal LXE score, in the case of
equal squeezing, and that of Ehrenberg et al. are very sim-
ilar. The main difference is that their results rely on the
GBS hiding conjecture [5,28,29], which states that, in the
photon-collision-free regime, the distribution of the sym-
metric product of Haar-random unitary matrices closely
approximates the distribution of the symmetric product of
complex Gaussian random matrices. In contradistinction,
our results rely on the distribution of Haar-random uni-
taries in the asymptotic limit. Additionally, the definition
and origin of the graphs pertinent to our computation of
the ideal score differ from those used in Refs. [26,27]. At
this time, more work is required in order to find the rela-
tion between the graph-theoretical technique of Ehrenberg
et al. and the computation of the coefficients defined in
Eq. (15). While our results provide a complete description
to determine the ideal LXE score, we must also acknowl-
edge that a more detailed analysis of Eqs. (15), (16), and

(81) is needed in order to make the computation of the
score better suited for the validation of real-world GBS
implementations.

When considering setups with no vacuum input modes,
i.e., setups with R = M , we found a simple expression for
the ideal score as a function of 2N [see Eq. (90)]. We
also proved that this equation holds whether we use input
squeezed states with different squeezing parameters or not.
We compared this result, which was obtained taking the
limit as M → ∞, with numerical estimations of the ideal
score for setups with M ∈ {50, 100, 200}. We found that,
for all M , the analytical expression closely approximates
the estimated scores in a range of 2N between 10 and 26.
However, we noted that this approximation worsens for
increasing 2N . We argue that the reason behind this is that,
being defined for M → ∞, our expression for the ideal
score is only valid in the photon-collision-free regime.
Since in this limit the mean number of photons satisfies
n̄ ∈ o(

√
M ), we expect Eq. (90) to be a good approxima-

tion of the estimated score, for a given M , for a range of
2N satisfying 2N ∈ o(

√
M ).

We also computed the estimated score for a squashed
state model, and for a simple GBS model that includes
transmission losses. We found that the presence of these
types of loss does not necessarily lead to scores that rapidly
approach the value of 1. However, transmission losses as
low as 10% lead to an estimated score that is notably dif-
ferent from the reference value set by an ideal model. On
the other hand, we found that the estimated score of the
squashed state model is surprisingly close to 1. These find-
ings suggest that computing the score for different values
of the transmission loss, as well as for classical models
such as the squashed state model, is a viable way of defin-
ing reference values that will allow us to assess how far a
given GBS implementation is from its corresponding ideal
model.

Additional work is required to analytically determine
the score of noisy and classical GBS models, as well as
to prove whether the score of the squashed state model is
identically 1 or not. It would also be highly relevant to
provide sufficient evidence to decide if obtaining a score
sufficiently close to that of the ideal model (or sufficiently
different from those of classical models) is a computation-
ally hard task or not. Our future studies of the LXE score
will follow these directions.

The use of the LXE score will greatly benefit the field
of GBS verification. Since we have defined the score using
an ideal model instead of the ground truth, the validation
of GBS implementations using this metric will not rely on
providing evidence that the outcomes of the experiment
follow its expected theoretical distribution (of which, addi-
tionally, we do not know if it is computationally hard to
sample). Verifying directly against the ideal model will
also shield the validation procedure from classical tech-
niques that directly intend to simulate the ground truth. In
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view of this, we believe that obtaining a high LXE score
constitutes a stricter test that current and future GBS imple-
mentations should consider when providing evidence in
support of quantum advantage claims.

In addition, since the computation of probability ampli-
tudes for pure Gaussian states requires the calculation of
hafnians of matrices half the size of those used in the com-
putation of probabilities of mixed states, the estimation of
the LXE score can be done for a range of N that is approx-
imately twice as large as those considered in the validation
of recent GBS implementations [7–10]. This represents
a considerable improvement on the verification of GBS
experiments.

Moreover, given that estimating the LXE score relies on
the computation of probability amplitudes of pure states,
our validation technique is protected against “spoofing”
attacks that rely on efficiently simulating lossy GBS imple-
mentations, postselecting samples with high probabilities
in the ground truth (i.e., with heavy outcomes), and then
computing cross-entropy measures that are also defined
with respect to the ground truth [19] (thus obtaining higher
scores than the experimental samples). A direct simulation
of an ideal GBS experiment is computationally as hard
as the computation of the LXE score [44], so “spoofing”
our validation strategy using heavy outputs in the ideal
distribution is unlikely.

Note added. After publication of a first version of this
work on arXiv, we became aware of a second article by
Ehrenberg et al. [27], which included an expression for the
ideal LXE score in terms of moments of the GBS distribu-
tion. We now include references to this work in the main
text.

All data used in the computation of the results shown
in Figs. 4 to 6 are available from Zenodo [45]. The
corresponding code is available online [46].
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APPENDIX A: COMPILATION OF RESULTS FOR
THE COMPUTATION OF THE INTEGRAL FORM

OF THE LXE

In this appendix we present the proofs of some of the
results used in the computation of the integral form of the
LXE. We also show that a GBS setup using identical ther-
mal states as input of all modes of a lossless interferometer

leads to a probability distribution that is uniform for each
sector of the total number of detected photons.

We begin by proving, in a slightly more general fash-
ion, the factorization (WAW)n = W̄nAnW̄n used in the
derivation of Eq. (22).

Proposition 1. Let M = (Mj ,k)
P
j ,k=1 be a complex P ×

P matrix, and let n = (n1, . . . , nP) be a vector whose
entries are non-negative integers. Define matrix M(n) as
the matrix obtained from taking the kth row and column
of M and repeating it nk times. This matrix is an N ×
N block matrix (with N = ∑P

k=1 nk) of the form M(n) =
(Bp ,q)

P
q,p=1, where the blocks Bp ,q have size np × nq and

their corresponding entries are all equal to Nq,p . Fur-
thermore, let R, L be P × P complex diagonal matri-
ces of the form R = diag(r1, . . . , rP), L = diag(l1, . . . , lP).
Then (LMR)(n) = L̄(n)M(n)R̄(n), where R̄(n) = ⊕P

k=1 rkInk

and L̄(n) = ⊕P
k=1 lkInk with Ink the identity matrix of size

nk × nk.

Proof. The entries of LMR can be written as
(LMR)j ,k = lj Mj ,krk. Also, suppose that D is an S × T
matrix whose entries are all equal to xCy, where x, y, C
are complex numbers. We can see that such a matrix can
be written in the form D = (x IS)C(y IT), where C is an
S × T matrix whose entries are all equal to C. Accord-
ing to the definition, (LMR)(n) = (Kp ,q)

P
p ,q=1, where the

entries of the np × nq blocks are all equal to lpMp ,qrq,
which implies that Kp ,q = (lpInp )Bp ,q(rqInq). From this
expression, we can define the block diagonal matrices
R̄(n) = ⊕P

k=1 rkInk and L̄(n) = ⊕P
k=1 lkInk and check that

(LMR)(n) = L̄(n)M(n)R̄(n). �

The relation (WAW)n = W̄nAnW̄n can be recovered by
observing that An = A(n⊕n).

We now prove that Pr(N |A) can be computed by
repeated differentiation of q(α, 0, A).

Proposition 2. For any GBS model A,

Pr(N |A) = 1
N !

Pr(0|A)
∂N q(α, 0, A)

∂αN

∣∣∣∣
α=0

, (A1)

where q(α, 0, A) = [det(I2M − αXA)]−1/2 is a specializa-
tion of Eq. (20).

Proof. Let us begin with the relation 1 = ∑
n Pr(n|A),

where the sum extends over all possible detection patterns.
In terms of the hafnian, this relation can be written as

1
Pr(0|A)

=
∞∑

N=0

∑
n∈K(N )

1
n!

haf[An]. (A2)
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Making the replacement A → αA, we can use the property
haf[αAn] = α|n|haf[An] to write

q(α, 0, A) =
∞∑

N=0

αN
( ∑

n∈K(N )

1
n!

haf[An]
)

. (A3)

By repeatedly differentiating with respect to α we find that

1
N !

∂N q(α, 0, A)

∂αN

∣∣∣∣
α=0

=
∑

n∈K(N )

1
n!

haf[An], (A4)

which implies that

Pr(N |A) = 1
N !

Pr(0|A)
∂N q(α, 0, A)

∂αN

∣∣∣∣
α=0

. (A5)

This completes the proof. �

From this result we can readily see that

D(A, B; N ) = 1
(N !)2

Pr(0|A) Pr(0|B)

Pr(N |A) Pr(N |B)

=
[
∂N q(α, 0, A)

∂αN

∂N q(β, 0, B)

∂βN

∣∣∣∣
α=0, β=0

]−1

.

(A6)

For the remaining demonstrations of this section, we need
to give a more detailed description of the GBS models
introduced in Sec. II.

When we consider input single-mode Gaussian states
and a lossless interferometer represented by a Haar-
random unitary matrix, matrix A will have the general
structure

A =
(

V Y
Y∗ V∗

)
, (A7)

where V = UλUT is a symmetric matrix, and Y =
UμU† is Hermitian. Matrices λ, μ are defined as λ =
diag(λ1, . . . , λM ), μ = diag(μ1, . . . , μM ), where the {λk}
and {μk} are real parameters that can be written in terms
of the entries of the real covariance matrix of the input
single-mode Gaussian states as

λk = 1

1 + 2σ
(k)
p /�

− 1

1 + 2σ
(k)
x /�

, (A8)

μk = 1 −
(

1

1 + 2σ
(k)
x /�

+ 1

1 + 2σ
(k)
p /�

)
. (A9)

Recall that the entries of the real covariance matrix σ of
an M -mode, nondisplaced Gaussian state are computed as
σj ,k = 1

2 〈{r̂j , r̂k}〉, where the {r̂k} are the components of the

operator vector r̂ = (x̂1, . . . , x̂M , p̂1 . . . , p̂M ) with x̂k, p̂k the
quadrature operators of mode k. For a single-mode Gaus-
sian state, we can write σ (k)

x = 〈x̂2〉 and σ (k)
p = 〈p̂2〉. Note

that we can neglect the nondiagonal entries σ (k)
x,p = σ (k)

p ,x =
1
2 〈{x̂, p̂}〉 because these can be obtained from a diagonal
covariance matrix via a local rotation (i.e., a local phase
shift), which can be absorbed into the unitary operator
describing the interferometer [47]. Using σ > 0, it follows
that σ (k)

x , σ (k)
p > 0 for all k.

For a GBS setup that uses identical thermal states with
the mean number of photons n̄ as input of all the modes of
the interferometer, we have σ (k)

x = σ (k)
p = �(2n̄ + 1)/2 for

all k, which implies that λk = 0, μk = n̄/(1 + n̄) for all k.
This leads to the following form of matrix Athm:

Athm = n̄
n̄ + 1

(
0 IM
IM 0

)
= n̄

n̄ + 1
X. (A10)

We may now prove that this model leads to a uniform prob-
ability distribution for each sector of the total number of
detected photons.

Proposition 3. It holds that

Pr(n|Athm) = Pr(0|Athm)

(
n̄

n̄ + 1

)|n|
. (A11)

Proof. Note that

(Athm)n = n̄
n̄ + 1

(
0 (IM )(n)

(IM )(n) 0

)
, (A12)

where M(n) is the matrix obtained by taking the kth row
and column of M and repeating it nk times. In the special
case of IM it can be seen that (IM )(n) = ⊕M

k=1 1nk , where
1m is an m × m matrix whose entries are all equal to 1.

Taking into account Eq. (A12), we can write

haf[(Athm)n] =
(

n̄
n̄ + 1

)|n|
haf

[(
0 (IM )(n)

(IM )(n) 0

)]

=
(

n̄
n̄ + 1

)|n|
per[(IM )(n)]

=
(

n̄
n̄ + 1

)|n|
n!, (A13)

where per[·] stands for the permanent of a matrix, and we
have used the relation

haf
[(

0 G
GT 0

)]
= per[G] (A14)

for any m × m matrix G. Moreover, we have used the
relation per[

⊕M
k=1 1nk ] = ∏M

k=1 nk! = n! [31]. It directly
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follows that

Pr(n|Athm) = Pr(0|Athm)

(
n̄

n̄ + 1

)|n|
. (A15)

This completes the proof. �

We conclude this section by proving the convergence
of the series expansion that leads to Eq. (30). Recall
that q(α, φ, A) = [det(I2M − α�A)]−1/2. By noting that
I2M − α�A = exp[log(I2M − α�A)], and using the rela-
tion det[exp(A)] = exp[tr(A)], we can write

q(α, φ, A) = exp
{

− 1
2

tr[log(I2M − α�A)]
}

. (A16)

We now use log(1 + x) = ∑∞
l=1(−1)l+1xl/l, which con-

verges for |x| < 1, to write

q(α, φ, A) = exp
[

− 1
2

tr
( ∞∑

l=1

−αl

l
(�A)l

)]
. (A17)

This expression directly yields Eq. (30). We now focus on
the series inside the trace.

Proposition 4. The power series

∞∑
l=1

αl

l
(�A)l (A18)

converges for every GBS model A of the form (A7) pro-
vided that |α| < 1.

Proof. Let us take the spectral norm of the power series
and write∥∥∥∥

∞∑
l=1

αl

l
(�A)l

∥∥∥∥
2

≤
∞∑

l=1

∥∥∥∥αl

l
(�A)l

∥∥∥∥
2

=
∞∑

l=1

|α|l
l

‖(�A)l‖2

≤
∞∑

l=1

|α|l
l

‖�A‖l
2

=
∞∑

l=1

|α|l
l

‖WXWA‖l
2. (A19)

Note that WX = XW. Moreover ‖W2‖2 = 1 since W is
unitary. We therefore have

∥∥∥∥
∞∑

l=1

αl

l
(�A)l

∥∥∥∥
2

≤
∞∑

l=1

|α|l
l

‖W2XA‖l
2

≤
∞∑

l=1

|α|l
l

‖XA‖l
2. (A20)

According to Eq. (A7), we can recast XA as

XA = FGF†, F =
(

U∗ 0
0 U

)
, G =

(
μ λ

λ μ

)
,

(A21)

where F is also unitary. This allows us to see that ‖XA‖2 =
‖G‖2. Since G is real and symmetric, its singular values
are the absolute values of its eigenvalues. These, in turn,
can be proven to be

{
1 − 2

1 + 2σ
(k)
x /�

, 1 − 2

1 + 2σ
(k)
p /�

}
. (A22)

Because σ (k)
x , σ (k)

p > 0 for all k, these eigenvalues lie in
the interval (−1, 1), which implies that ‖G‖2 < 1. We
conclude that

∥∥∥∥
∞∑

l=1

αl

l
(�A)l

∥∥∥∥
2

<

∞∑
l=1

|α|l
l

. (A23)

For |α| < 1,
∑∞

l=1 |α|l/l converges to − log(1 − |α|).
Therefore, the series in Eq. (A18) converges for |α| <

1. �

The specific case of the ideal squeezed state model is
obtained for 2σ (k)

x /� = e2rk , 2σ (k)
p /� = e−2rk , with rk the

squeezing parameter at mode k, for 1 ≤ k ≤ R and σ (k)
x =

σ (k)
p = �/2 otherwise. This implies that μk = 0 for all k,

while λk = tanh(rk) for 1 ≤ k ≤ R and zero otherwise.
For single-mode squeezed states passing through single-

mode loss channels before entering the interferometer
(like those used in the transmission loss model of Sec.
VI), we have 2σ (k)

x /� = ηke2rk + (1 − ηk) and 2σ (k)
p /� =

ηke−2rk + (1 − ηk), with ηk the transmission parameter of
the loss channel at mode k, for 1 ≤ k ≤ R and σ (k)

x =
σ (k)

p = �/2 otherwise. This implies that

μk = ηk(1 − ηk) sinh2(rk)

1 + ηk(2 − ηk) sinh2(rk)
,

λk = ηk sinh(rk) cosh(rk)

1 + ηk(2 − ηk) sinh2(rk)
(A24)

for 1 ≤ k ≤ R, and μk = λk = 0 otherwise. Note that we
can recover the ideal squeezed state model from these
equations by setting ηk = 1 for all k.

Finally, the squashed state model (see also Sec. VI) is
obtained for 2σ (k)

x /� = 1 + 4n̄k, 2σ (k)
p /� = 1, with n̄k the

mean number of photons at mode k, for 1 ≤ k ≤ R and
σ (k)

x = σ (k)
p = �/2 otherwise. This implies that μk = λk =

n̄k/(1 + 2n̄k) for 1 ≤ k ≤ R, and μk = λk = 0 otherwise.
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APPENDIX B: INDEX STRUCTURE OF THE LXE

In this appendix we show how to obtain Eq. (46) and
we motivate the definition of permutation �k. Let us start
by recalling that LXE(Asqz, Asqz; 2N ) is expressed as an
integral of ZN [u(φ, U)]ZN [u(−φ, U)] with respect to dφ,
where

ZN [u(φ, U)] =
∑
k(c)

N∏
a=1

1
ka! aka

N∏
a=1

uka
a , (B1)

ua = 1
2 tr[(D2VD2V∗)a], V = UζUT, and ua depends on

φ through D = D(φ). In what follows, we express
ZN [u(φ, U)] in terms of the entries of V.

Note that the entries of D2VD2V∗ can be written as

(D2VD2V∗)j1,j3 =
M∑

j2=1

e2i(φj1+φj2 )Vj1,j2V∗
j2,j3 (B2)

with {jk} denoting a set of dummy indices. Using this
expression, we can readily see that

[(D2VD2V∗)2]j1,j5

=
∑

j2,j3,j4

e2i(φj1+φj2+φj3+φj4 )Vj1,j2Vj3,j4V∗
j2,j3V∗

j4,j5 , (B3)

or, for a general power l,

[(D2VD2V∗)l]j1,j2l+1

=
∑

j2,...,j2l

e2i(φj1+···+φj2l )Vj1,j2 · · · Vj2l−1,j2lV
∗
j2,j3 · · · V∗

j2l,j2l+1
.

(B4)

Taking the trace of (D2VD2V∗)l we obtain

tr[(D2VD2V∗)l]

=
∑

j1,...,j2l

e2i(φj1+···+φj2l )Vj1,j2 · · · Vj2l−1,j2lV
∗
j2,j3 · · · V∗

j2l,j1 .

(B5)

Let us gather all the dummy indices in the sequence
j1,2l = (j1, . . . , j2l). Note that the subscripts in j indicate the
labels of the first and last dummy indices. We define ωl ∈
S2l as the permutation that transforms (j1, j2, . . . , j2l−1, j2l)

into (j2, j3, . . . , j2l, j1): ωl(j1,2l) = (j2, j3, . . . , j2l, j1). Fur-
thermore, let us define V[j1,2l] ≡ Vj1,j2 · · · Vj2l−1,j2l and
V∗[ωl(j1,2l)] ≡ V∗

j2,j3 · · · V∗
j2l,j1 . Then, we can recast Eq. (B5)

as

tr[(D2VD2V∗)l] =
∑

j1,...,j2l

E(j1,2l)V[j1,2l]V∗[ωl(j1,2l)],

(B6)

where E(j1,2l) = exp[2i(φj1 + · · · + φj2l)].

Defining a second sequence of dummy indices j′1,2l =
(j ′

1, . . . , j ′
2l), we can readily see that V[j1,2l]V[j′1,2l] =

V[j1,2l ⊕ j′1,2l], with analogous relations holding for V∗[·]
and E[·]. These properties come in handy when computing
powers of tr[(D2VD2V∗)l]. Indeed, consider the expression

{tr[(D2VD2V∗)l]}2

=
∑

j1,...,j2l

∑
j ′
1,...,j ′

2l

E(j1,2l)E(j′1,2l)V[j1,2l]V[j′1,2l]

× V∗[ωl(j1,2l)]V∗[ωl(j′1,2l)]. (B7)

Renaming each dummy index j ′
k as j ′

k → j2l+k, and using
the direct sum properties of V, V∗, and E, we can write

{tr[(D2VD2V∗)l]}2 =
∑

j1,...,j4l

E(j1,4l)V[j1,4l]

× V∗[ωl(j1,2l) ⊕ ωl(j2l+1,4l)]. (B8)

Applying this same procedure a given number of times, say
kl times, we obtain

{tr[(D2VD2V∗)l]}kl =
∑

j1,...,j2lkl

E(j1,2lkl)V[j1,2lkl]

× V∗
[ kl⊕

p=1

ωl(j2l(p−1)+1,2lp)

]
.

(B9)

From the definition of ua, we can see that Eq. (B9) allows
us to directly express uka

a in terms of the entries of V for
an arbitrary value of a. The next step is to use Eq. (B9) to
compute the product

∏N
a=1 uka

a . The strategy is completely
analogous to that used to obtain Eq. (B9): we define a set
of primed dummy indices and make the product of two
different sums, then rename the primed indices, and finally
make the direct sum of the sequences of indices involved.

Consider, for example, the product uk1
1 uk2

2 :

uk1
1 uk2

2 = 1
2k1+k2

∑
j1,...,j2k1

E(j1,2k1)V[j1,2k1 ]

× V∗
[ k1⊕

p=1

ω1(j2(p−1)+1,2p)

]

×
∑

j ′
1,...,j ′

4k2

E(j′1,4k2
)V[j′1,4k2

]

× V∗
[ k2⊕

p=1

ω2(j′4(p−1)+1,4p)

]
. (B10)

040312-25



MARTÍNEZ-CIFUENTES, DE GUISE, and QUESADA PRX QUANTUM 5, 040312 (2024)

Changing the dummy indices j ′
b as j ′

b → j2k1+b, we can
rewrite Eq. (B10) as

uk1
1 uk2

2 = 1
2k1+k2

∑
j1,...,j2k1+4k2

E(j1,2k1+4k2)V[j1,2k1+4k2]

× V∗
[ k1⊕

p=1

ω1(j2(p−1)+1,2p)

×
k2⊕

p=1

ω2(j2k1+4(p−1)+1,2k1+4p)

]
. (B11)

Applying this same process for the remaining {ua}, we
obtain the general expression

N∏
a=1

uka
a = 1

2k1+···+kN

∑
j1,...,j2N

E(j1,2N )V[j1,2N ]

× V∗
[ N⊕

a=1

ka⊕
p=1

ωa(j2va−1+2a(p−1)+1,2va−1+2ap)

]
,

(B12)

where we have used k1 + 2k2 + · · · + NkN = N and
defined va = ∑a

p=1 pkp , v0 ≡ 0.
Write j ≡ j1,2N = (j1, . . . , j2N ). Moreover, let �k ∈ S2N

act on j as

�k(j) = �k[(j1, . . . , j2N )]

=
N⊕

a=1

ka⊕
p=1

ωa(j2va−1+2a(p−1)+1,2va−1+2ap)

=
N⊕

a=1

ka⊕
p=1

ωa[(j2va−1+2a(p−1)+1, . . . , j2va−1+2ap)].

(B13)

Then, we can express Eq. (B12) in the form

N∏
a=1

uka
a = 1

2k1+···+kN

∑
j

E(j)V[j]V∗[�k(j)], (B14)

where
∑

j ≡ ∑M
j1=1 · · · ∑M

j2N =1. This result allows us to
readily write ZN [u(φ, U)] in the form

ZN [u(φ, U)] =
∑
k(c)

N∏
a=1

1
ka! (2a)ka

∑
j

E(j)V[j]V∗[�k(j)].

(B15)

Going one step further, we can obtain the expansion of
ZN [u(φ, U)]ZN [u(−φ, U)] in terms of V and V∗:

ZN [u(φ, U)]ZN [u(−φ, U)] =
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑
j,j′

E(j)E∗(j′)V[j ⊕ j′]

× V∗[�k(j) ⊕ �l(j′)].
(B16)

Recall now that Eq. (43) allows us to write monomials in
the entries of V and V∗ as polynomials in the entries of U
and U∗:

V[g]V∗[h] = Vg1,g2 · · · Vg2l−1,g2lV
∗
h1,h2

· · · V∗
h2m−1,h2m

=
∑
μ,ν

ζμζνU(g, μ̄ | h, ν̄) (B17)

with the dummy indices in μ = (μ1, . . . , μl) and ν =
(ν1, . . . , νm) taking values in {1, . . . , M }, and μ̄ =
(μ1, μ1, . . . , μl, μl), ν̄ = (ν1, ν1, . . . , νm, νm). As per Eq. (44),
ζμ = ζμ1 · · · ζμl , with {ζk} the diagonal entries of ζ ; and

U(g, μ̄ | h, ν̄) = Ug1,μ1Ug2,μ1 · · · Ug2l−1,μlUg2l,μl

× U∗
h1,ν1

U∗
h2,ν1

· · · U∗
h2m−1,νm

U∗
h2m,νm

.
(B18)

We can now recast Eq. (B16) as

ZN [u(φ, U)]ZN [u(−φ, U)]

=
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
j,j′

E(j)E∗(j′)

×
∑
μ,ν

ζμζνU [j ⊕ j′, μ̄ | �k(j) ⊕ �l(j′), ν̄]. (B19)

Integrating the previous equation with respect to dφ, mul-
tiplying by

(
(R/2)+N−1

N

)−2
, and defining

I(j, j′) = 1
(2π)M

∫ 2π

0
E(j)E∗(j′) dφ

= 1
(2π)M

∫ 2π

0
exp

[ ∑
m∈j, n∈j′

2i (φm − φn)

]
dφ,

(B20)

we obtain the expression of LXE(Asqz, Asqz; 2N ) presented
in Eq. (46).
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APPENDIX C: INTEGRAL OVER PHASES

Consider the integral

I(j, j′) = 1
(2π)M

∫ 2π

0
exp

[ ∑
m∈j, n∈j′

2i (φm − φn)

]
dφ,

(C1)

where we see j, j′ as sequences of variables taking values
in {1, . . . , M }. Recall that φk ∈ [0, 2π ] for all k and dφ =
dφ1 · · · dφM .

Let us turn our attention to the term inside the exponen-
tial:

2i
∑
m∈j

φm − 2i
∑
n∈j′

φn. (C2)

As mentioned in the main text, if this sum is nonzero, there
must be at least one p ∈ j or p ∈ j′ such that

2i
∑
m∈j

φm − 2i
∑
n∈j′

φn = 2i zφp + other terms, (C3)

where z is a nonzero integer. This expression represents the
fact that the sum is unbalanced. Since the exponential can
be factorized, we can focus on the integral involving φp
only:

∫ 2π

0
e2izφp dφp = 1

2iz
e2izφp

∣∣∣∣
2π

0

= 1
2iz

[(e2iπ)2z − 1] = 1
2iz

(1 − 1) = 0.

(C4)

This means that the entirety of the integral is zero when-
ever the sum inside the exponential is different from zero.
If the exponent is zero, we can readily see that the integral
is equal to 1:

1
(2π)M

∫ 2π

0
exp(0)dφ = 1

(2π)M (2π)M = 1. (C5)

When considering the sum inside the exponential as a func-
tion of the variables j and j′, we can recognize that we
can make it vanish whenever j′ is a permutation of j (this
ensures the balance in the summations). This is the case
even if we find that some of the {jk} have repeated values,
which is allowed given the fact that all of them take val-
ues in the same set. The task now is to find a function of
j and j′ that is unity for any event that makes the sum in
the exponential equal to zero, and that vanishes identically
otherwise. The integral will then be equal to this function.

Let us start by considering that all the indices in j
take different values. Note that this makes the indices

in j′ take different values as well. Consider a permuta-
tion σ ∈ S2N . We can see that the function Fσ (j′, j) =
δj ′

1,σ(j1) · · · δj ′
2N ,σ(j2N ), with δj ,k the usual Kronecker delta,

vanishes whenever j′ �= σ(j), and is equal to one other-
wise. Summing over all the permutations in S2N , we obtain
a function that is equal to 1 whenever j′ is a permutation,
any permutation, of j, and vanishes otherwise:

F(j′, j) =
∑

σ∈S2N

Fσ (j′, j) =
∑

σ∈S2N

2N∏
a=1

δj ′
a,σ(ja). (C6)

This is the value of I(j, j′) when all the indices in j take
different values.

When some of the {jk} have the same values as others,
the situation becomes slightly more involved. To address
this problem, it is convenient to first translate the phrase
“there are some indices having the same value as others”
into a sequence of repeated dummy indices taken from j.
We can do this by considering the following procedure.
First, identify all the indices in j that have the same value
and gather them in individual sets, one for each differ-
ent value that the indices take. The result of this step is
a set of subsets of j. For instance, consider 2N = 6, so
j = (j1, j2, j3, j4, j5, j6), and let us suppose that we are in
a situation where j1 = j4 = j3, j2 = j5, and j1 �= j2 �= j6.
After gathering the indices that have the same values, we
obtain the set {{j1, j3, j4}, {j2, j5}, {j6}}. We may recognize
that this procedure is equivalent to finding a partition of
j (i.e., a collection of nonempty, mutually disjoint sub-
sets of j, usually called blocks, whose union is equal to
j), where all the indices within each block of the parti-
tion take the same value. Next, we select one index within
each block and replace all the indices in j that belong to
the same block by this representative index. In our exam-
ple, let us choose j1, j2, and j6 as representatives. After
the replacement of indices belonging to the same block,
we obtain the sequence g = (j1, j2, j1, j1, j2, j6). This pro-
cedure can be applied for any situation where we have
repeated indices. Note that selecting different representa-
tive indices leads to different g. However, no matter the
choice of representatives, the resulting g represent the
same situation.

Having found a sequence g associated with a specific
case of repeated indices, let us return to finding a func-
tion that vanishes whenever j′ is not a unique permutation
of g, and is unity otherwise. We could consider the func-
tion F(j′, g), but we can readily observe that the sum∑

σ∈S2N
is overcounting the different permutations of g,

i.e., there are multiple permutations in S2N that, when
applied to g, lead to the same result. This implies that if
j′ �= σ(j), we obtain F(j′, g) = 0, but when j′ = σ(j), we
generally do not obtain F(j′, g) = 1. Fortunately, we can
solve this issue in a simple manner: we normalize F(j′, g)

using the number of times the unique permutations of g
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are being overcounted. This number is the same for every
distinct permutation, and depends only on the multiplici-
ties of the indices appearing in g. Let {jk}k∈�, where � ⊂
{1, . . . , 2N }, be the different dummy indices that appear in
g, and let each jk appear tk times within the sequence. Then
the number of times each unique permutation of g is being
overcounted by

∑
σ∈S2N

is
∏

k∈� tk!.
On this account, we can see that the function

( ∏
k∈�

1
tk!

)
F(j′, g) =

∏
k∈�

1
tk!

∑
σ∈S2N

2N∏
a=1

δj ′
a,σ(ga) (C7)

vanishes whenever j′ is not a unique permutation of g, and
is equal to 1 otherwise. This is the result of I(j, j′) when we
have a situation of repeated indices represented by g.

We are now two steps away from finding a general
expression for I(j, j′). The first of these consists in find-
ing a systematic way of computing all the possible g, i.e., a
systematic way of identifying all the events with repeated
indices. We already gave a hint of how to do this when we
explained how to construct g; the key is to use the parti-
tions of j. Indeed, since the procedure of grouping indices
in j that have the same values naturally leads to a partition
of j, we can invert the process and assign to each possible
partition a sequence g representing an event with repeated
indices. The procedure is the following. Consider a parti-
tion � of j. We think of all the indices within each block
λ ∈ � as having the same value. The corresponding g is
constructed by choosing a representative index jλ for each
λ, and then replacing all the jk in j that belong to the same
λ by the corresponding jλ. For clarity, we introduce the
notation g ≡ j[�, {jλ}].

Now, note that the degeneracy of each {jλ} is equal to the
length, |λ|, of each block (i.e., the number of elements in
each block). This allows us to write the normalization fac-
tor of F(j′, j[�, {jλ}]) as �! = ∏

λ∈� |λ|!. Moreover, the
event where all the indices in j take different values is rep-
resented by the partition �0 = {{j1}, . . . , {j2N }} (one index
per block). For this partition, �0! = 1.

Since each partition � of j gives us a unique way of
grouping the indices {jk} in different blocks, each � leads
to a j[�, {jλ}] representing a unique event with repeated
indices. Note, however, that each � is associated with sev-
eral j[�, {jλ}] differing only on the choice of representative
indices {jλ}. Nevertheless, all of these sequences represent
the same unique situation where there are indices taking
the same value as others.

The final step for finding an expression for I(j, j′) con-
sists in constructing a function of j and j[�, {jλ}] that is
equal to 1 only when we have a situation of repeated
indices represented by j[�, {jλ}], and vanishes otherwise.
We need this in order to single out the contributions of each
unique � to the integral. The event that we need to iden-
tify can be equivalently written as “when all the indices

in λ ∈ � are equal to jλ, and all the {jλ} are different from
each other.” This phrase can be readily written in terms of
Kronecker deltas as

[ ∏
λ∈�

∏
f ∈λ

δjλ,f

] ∏
(λ �=μ)∈�

(1 − δjλ,jμ). (C8)

We may now bring together Eqs. (C6) to (C8); sum over
all the possible ways of identifying events with repeated
indices, i.e., sum over the set of all partitions of j, Q[j];
and finally write I(j, j′) as [see Eq. (48)]

I(j, j′) =
∑

�∈Q[j]

1
�!

F(j′, j[�, {jλ}])
[ ∏

λ∈�

∏
f ∈λ

δjλ,f

]

×
∏

(λ �=μ)∈�

(1 − δjλ,jμ). (C9)

It is worth mentioning that in the subscript � ∈ Q[j],
j should be viewed as a collection of fixed indices, or
objects, whose sole purpose is to determine all the pos-
sible partitions of a set with 2N elements. Thus, in this
subscript, we must not replace any jk by one of its possible
values {1, . . . , M }. The reason behind this is that the sum
over partitions was included only as a way to index a series
of events concerning the variables {jk}.

To conclude this section, let us turn our attention to
the reorganization of sums that leads to Eq. (50). Let
h(j, j′) be an arbitrary function of j and j′, and consider
the expression

∑
j,j′

h(j, j′)I(j, j′) =
∑
j,j′

∑
�∈Q[j]

1
�!

h(j, j′)F(j′, j[�, {jλ}])

×
[ ∏

λ∈�

∏
f ∈λ

δjλ,f

] ∏
(λ �=μ)∈�

(1 − δjλ,jμ),

(C10)

where we recall that
∑

j = ∑M
j1=1 · · · ∑M

j2N =1.
Choose an arbitrary partition � ∈ Q[j], and let us focus

on the term

T =
∑
j,j′

h(j, j′)F(j′, j[�, {jλ}])
[ ∏

λ∈�

∏
f ∈λ

δjλ,f

]

×
∏

(λ �=μ)∈�

(1 − δjλ,jμ). (C11)

Following the definition of F(j′, j[�, {jλ}]) in terms of Kro-
necker deltas, we can replace the sum over indices j′ by
a sum over permutations σ ∈ S2N and, moreover, we can
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make the transformation j′ → σ(j[�, {jλ}]):

T =
∑

j

∑
σ∈S2N

h{j, σ(j[�, {jλ}])}
[ ∏

λ∈�

∏
f ∈λ

δjλ,f

]

×
∏

(λ �=μ)∈�

(1 − δjλ,jμ). (C12)

The term
∏

λ∈�

∏
f ∈λ δjλ,f allows us to make the transfor-

mation j → j[�, {jλ}], and to turn the sum over j into a
sum only over the values of the representative indices {jλ}.
We can write

T =
∑
{jλ}

∑
σ∈S2N

h{j[�, {jλ}], σ(j[�, {jλ}])}

×
∏

(λ �=μ)∈�

(1 − δjλ,jμ). (C13)

Finally, the product of deltas
∏

(λ �=μ)∈�(1 − δjλ,jμ) ensures
that we focus only on the terms where the representative
indices take different values. Then, T will read

T =
∑

diff.{jλ}

∑
σ∈S2N

h{j[�, {jλ}], σ(j[�, {jλ}])}. (C14)

Summing all the contributions from different partitions, we
reach the result

∑
j,j′

h(j, j′)I(j, j′) =
∑

�∈Q[j]

∑
diff.{jλ}

∑
σ∈S2N

1
�!

h{j[�, {jλ}],

σ(j[�, {jλ}])}. (C15)

Equation (50) is obtained by applying this result to

h(j, j′) =
∑
μ,ν

ζμζνU [j ⊕ j′, μ̄ | �k(j) ⊕ �l(j′), ν̄]. (C16)

APPENDIX D: WEINGARTEN CALCULUS

In this appendix we gather the two key theorems regard-
ing the Weingarten calculus that we used in Sec. IV D.

Proposition 5 (Lemma 3 of Ref. [35]). Let U be an
M × M Haar-distributed unitary matrix, and let j =
(j1, . . . , jn), μ = (μ1, . . . , μn), j′ = (j ′

1, . . . , j ′
m), and μ′ =

(μ′
1, . . . , μ′

m) be four sequences of indices in [M ] =
{1, . . . , M } (i.e., each index can take values from 1 to M).

If m = n,

EU[U(j, μ | j′, μ′)] =
∑

∈Sn

j′=
(j)

∑
τ∈Sn

μ′=τ(μ)

Wgn(

−1 ◦ τ ; M ),

(D1)

and it vanishes otherwise. Here,

U(j, μ | j′, μ′) = Uj1,μ1 · · · Ujn,μnU∗
j ′
1,μ′

1
· · · U∗

j ′
n,μ′

n
(D2)

and Wgn(σ ; M ) is the Weingarten function for the unitary
group U(M ) [25,35]. The sums extend over all permuta-
tions 
, τ in the symmetric group of degree n, Sn, such that
j′ = 
(j) and μ′ = τ(μ).

Note that we can write
∑

∈Sn

j′=
(j)

∑
τ∈Sn

μ′=τ(μ)

Wgn(

−1 ◦ τ ; M ) (D3)

=
∑

∈Sn

∑
τ∈Sn

�[j′ | 
(j)]�[μ′ | τ(μ)]Wgn(

−1 ◦ τ ; M )

(D4)

with �[j′ | 
(j)] = ∏n
a=1 δj ′

a,
(ja), which corresponds to the
form used in Eq. (52).

Proposition 6 (Corollary 2.7 of Ref. [40]). We have

M n+‖σ‖ Wgn(σ ; M ) = Moeb(σ ) + O(M−2), (D5)

where ‖σ‖ is the minimum number of transpositions in
which we can write σ and

Moeb(σ ) =
l∏

k=1

Cat(|χk| − 1)(−1)|χk |−1 (D6)

is the Möbius function. In this expression, the {χk} are
the disjoint cycles in the cycle decomposition of σ (i.e.,
we write σ = χ1χ2 · · · χl), |χk| denotes the length of cycle
χk, and Cat(n) = (2n)!/[n! (n + 1)!] stands for the nth
Catalan number.

APPENDIX E: COMPUTATION OF THE LXE
SCORE FOR THE IDEAL SQUEEZED STATE

MODEL WITH DIFFERENT SQUEEZING
PARAMETERS

In this appendix we complete the details of the com-
putation of the ideal score for GBS setups using different
squeezing parameters, and show that the resulting expres-
sion is consistent with the findings of Sec. IV.
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Our main goal in this section is to prove that

∑
μ∈[R]2N

∑
ν∈[R]2N

such that ν̄=
(μ̄)

2N∏
a=1

tanh(rμa) tanh(rνa)

=
( ∏

b∈η(
)

ε2b

)
R�(
). (E1)

In order to do so, let us first briefly recall the defini-
tions of all the terms involved in this relation. Here μ =
(μ1, . . . , μ2N ), ν = (ν1, . . . , ν2N ) are vectors whose inte-
ger components take values in the set [R] = {1, . . . , R}
(this is indicated by the symbols μ ∈ [R]2N , ν ∈ [R]2N ).
Vector μ̄ = (μ̄1, . . . , μ̄4N ) = (μ1, μ1, . . . , μ2N , μ2N ), and
ν̄ has an analogous definition. Let us remind the reader
that R is the number of modes with a squeezed state at the
input. The squeezing parameters of the input single-mode
squeezed states are {rk}R

k=1. We denote by η(
) the coset
type of 
 ∈ S4N , and by �(
) the length of η(
). Finally, εa
is defined as

εa = 1
R

R∑
k=1

tanha(rk). (E2)

Now, note that the second sum on the left-hand side of
Eq. (E1) runs over values of ν that satisfy the condition
ν̄ = 
(μ̄). Along with the definitions of ν̄ and μ̄, this
condition allows us to write the relations

μ̄2k−1 = μ̄2k = μk, k ∈ {1, . . . , 2N }, (E3)

μ̄
(2k−1) = μ̄
(2k) = νk, k ∈ {1, . . . , 2N }. (E4)

The second of these relations leads to two types of con-
straints: (i) a constraint that defines each νk in terms of μk
and 
; and (ii) a constraint between different {μk}, which
comes from the relation μ̄ρ(2k−1) = μ̄
(2k). This means that
the final sum in Eq. (E1) will run over only a number of
“free” {μ̃l}. In what follows, we determine how many of
these free indices there are.

Let us recall that each 
 ∈ S4N has an associated undi-
rected graph, �(
), whose vertices are {1, . . . , 4N }, and
whose edges are defined by the sets {(2k − 1, 2k), k ∈
{1, . . . , 2N }} and {[
(2k − 1), 
(2k)], k ∈ {1, . . . , 2N }}.
Combined with relations (E3) and (E4), this definition
implies that, for every edge in �(
), there will be an equal-
ity of the form μ̄2k = μ̄2k−1 or μ̄
(2k) = μ̄
(2k−1). This, in
turn, leads to the following result.

Proposition 7. Let a, b ∈ {1, . . . , 4N } and a �= b; then
μ̄a = μ̄b if and only if vertices a and b are connected in
�(
).

Proof. If vertices a and b are connected in �(
) then
there exists a sequence of vertices {v1, v2, . . . , vp}, with
v1 = a, vp = b, and 2 ≤ p ≤ 4N , where vk is adjacent to
vk+1, i.e., there is an edge connecting them, for all k ∈
{1, . . . , p − 1}. The presence of an edge between vk and
vk+1 implies that μ̄vk = μ̄vk+1 . Since these relations hold
for every k, we can conclude that μ̄v1 = μ̄vp , so μ̄a = μ̄b.

Suppose now that μ̄a = μ̄b. If there exists some k ∈
{1, . . . , 2N } such that a = 2k − 1, b = 2k or a = 
(2k −
1), b = 
(2k) (or the same relations but inverting the
places of a and b), then a and b are connected. In any other
case, we can find a new vertex v2 adjacent to a that satisfies
μ̄a = μ̄v2 , either by Eq. (E3) or Eq. (E4), and check if it is
connected to b. If not, we can find a second vertex v3 adja-
cent to v2 but not to a (because every vertex lies in exactly
two edges) that will satisfy μ̄a = μ̄v2 = μ̄v3 ; then we can
verify whether it is adjacent to b or not. We can repeat
this process until we find a sequence of adjacent vertices
{v2, . . . , vp−1} that satisfy μ̄a = μ̄v2 = · · · = μ̄b. The exis-
tence of this sequence implies that a and b are connected
in �(
). �

Following this proposition, we can see that if μ̄a �= μ̄b
then vertices a and b will belong to different connected
components in �(
). Since every μ̄a is equal to some
μk, with k ∈ {1, . . . , 2N }, this implies that there will be as
many different (or free) {μ̃l} as there are connected com-
ponents in �(
). Therefore, we may say that the number of
different {μ̃l} is equal to the length of the coset type of 
,
�(
).

In each connected component, an edge of the form (2k −
1, 2k) determines a single μk via the relation μ̄2k−1 =
μ̄2k = μk. Edges of the form [
(2k − 1), 
(2k)] determine
which {μk} are equal to others. This implies that the num-
ber of repetitions, i.e., the degeneracy, of every free μ̃l will
be equal to the number of edges of the form (2k − 1, 2k)
in its corresponding connected component. This number is
equal to half the length of the connected component.

Let us recall the definition of the coset type of 
 ∈ S4N .
Let 2η1, 2η2, . . . , 2η�, with η1 ≥ η2 ≥ · · · ≥ η� ≥ 1, be the
lengths of the different connected components in �(
). The
coset type of 
 is defined as η(
) = (η1, . . . , η�). As can be
seen, ηl is half the length of the lth connected component of
�(
), which, according to the argument given above, will
be equal to the degeneracy of the free μ̃l corresponding
to that component. This means that we can determine the
degeneracies of all {μ̃l} by computing η(
).

We are now in the position to prove Eq. (E1). Taking
into account the fact that each {νk} will be equal to some
free μ̃l, we may write

∑
μ∈[R]2N

∑
ν∈[R]2N

such that ν̄=
(μ̄)

2N∏
a=1

tanh(rμa) tanh(rνa)
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=
∑
{μ̃l}

�(
)∏
a=1

tanh2ηa(rμ̃a)

=
�(
)∏
a=1

R∑
μ̃a=1

tanh2ηa(rμ̃a). (E5)

Recalling the definition of εa, we obtain

�(
)∏
a=1

R∑
μ̃a=1

tanh2ηa(rμ̃a) =
�(
)∏
a=1

ε2ηaR =
( ∏

b∈η(
)

ε2b

)
R�(
).

(E6)

To conclude this appendix, we show that the result in
Eq. (80) is consistent with Eq. (13). Suppose that rk = r
for all k ∈ {1, . . . , R}; then εa = tanha(r) for every a. This
allows us to see that

∏
b∈η(
)

ε2b = tanh2η1+···+2η�(r) = tanh4N (r), (E7)

where we took into account the fact that, according to
its definition, η(
) is an integer partition of 2N for all 


(therefore, η1 + · · · + η� = 2N ). This allows us to recast
Eq. (81) as

c′
� =

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

∑

∈S̄�

tanh4N (r)

= tanh4N (r)
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

∑
σ∈S2N

|S̄�|. (E8)

Now recalling the definition of |S̄�| from Eq. (86),

|S̄�| = b�[j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)], (E9)

and the definition of b� from Eq. (68), we can then write

c′
� = tanh4N (r)

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

b�[j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)]

= tanh4N (r) c�. (E10)

On the other hand, we have

N∑
�=1

d′
�R� =

∑
k(c)

N∏
a=1

ε
ka
2aRka

ka! (2a)ka

=
∑
k(c)

N∏
a=1

tanh2aka(r)Rka

ka! (2a)ka

= tanh2N (r)
∑
k(c)

N∏
a=1

Rka

ka! (2a)ka
, (E11)

where we used the condition k1 + 2k2 + · · · + NkN = N .
In order to continue, we need the following proposition.

Proposition 8. It holds that

∑
k(c)

N∏
a=1

Rka

ka! (2a)ka
=

(
R/2 + N − 1

N

)
. (E12)

Proof. Note that

∑
k(c)

N∏
a=1

Rka

ka! (2a)ka
= ZN

(
R
2

,
R
2

, . . . ,
R
2

)
, (E13)

where ZN is the cycle index of SN [see Eq. (32)]:

ZN (y1, . . . , yN ) =
∑
k(c)

N∏
a=1

1
ka! aka

N∏
a=1

yka
a . (E14)

Using the generating function of Zn(y1, . . . , yn) [33,38],

exp
[ ∞∑

l=1

yl
αl

l

]
=

∞∑
n=0

Zn(y1, . . . , yn)α
n, (E15)

we can write

exp
[

R
2

∞∑
l=1

αl

l

]
=

∞∑
n=0

Zn

(
R
2

,
R
2

, . . . ,
R
2

)
αn. (E16)

Assuming that |α| < 1, we can write
∑∞

l=1 αl/l =
− log(1 − α), and obtain

exp
[

− R
2

log(1 − α)

]
= (1 − α)−R/2

=
∞∑

n=0

Zn

(
R
2

,
R
2

, . . . ,
R
2

)
αn.

(E17)
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Taking into account the fact that

(1 − α)−R/2 =
∞∑

n=0

(
R/2 + n − 1

n

)
αn, (E18)

we see that Eq. (E13) holds. �

From this result, it follows that

N∑
�=1

d′
�R� = tanh2N (r)

(
R/2 + N − 1

N

)
. (E19)

Combining this relation with Eqs. (80) and (E11), we
obtain

s(A′
sqz; 2N ) = 1

(2N )!

( N∑
�=1

d′
�R�

)−2 2N∑
�=1

c′
�R�

= 1
(2N )!

tanh−4N (r)
(

R/2 + N − 1
N

)−2

× tanh4N (r)
2N∑
�=1

c�R�

= 4N (N !)2

(2N )!

[
(R − 2)!!

(R + 2N − 2)!!

]2 2N∑
�=1

c�R�

= s(Asqz; 2N ). (E20)

APPENDIX F: COMPUTATION OF THE LXE
SCORE FOR THE IDEAL SQUEEZED STATE
MODEL WITHOUT VACUUM INPUT MODES

In this appendix we present the details of the computa-
tion of the score for the ideal squeezed state model without
vacuum input modes. Specifically, we prove that

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

b2N [j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)] = 1, (F1)

with b2N defined in Eq. (16). This leads to the result

s(Ã′
sqz; 2N ) = s(Ãsqz; 2N ) = 4N (N !)2

(2N )!
. (F2)

Let us recall that b2N [j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)] is the
number of permutations in the hyperoctahedral group of
degree 2N , H2N ⊂ S4N , that transform the sequence j ⊕
σ(j) into �k(j) ⊕ �l ◦ σ(j). Recall also that the indices
j = (j1, . . . , j2N ) are all different.

We begin by recasting b2N [j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)]
into an expression that is independent of j. Given two per-
mutations σ ∈ Sn and σ ′ ∈ Sm, their direct sum σ ⊕ σ ′ ∈
Sm+n is defined by its action on the sequence (1, . . . , m +
n) as

(σ ⊕ σ ′)(k) =
{

σ(k), k ∈ {1, . . . , n},
σ ′(k − n) + n, k ∈ {n + 1, . . . , n + m},

(F3)

i.e., σ ⊕ σ ′ acts as σ in the first n elements of a sequence,
and as σ ′ in the remaining elements. From this definition,
we can write the relations

j ⊕ σ(j) = (e2N ⊕ σ)(j ⊕ j), (F4)

�k(j) ⊕ �l ◦ σ(j) = (�k ⊕ �l) ◦ (e2N ⊕ σ)(j ⊕ j),
(F5)

where e2N is the identity permutation in S2N .
To shorten the notation, we denote the composition σ ◦

τ of two permutations σ , τ ∈ Sn as στ . Suppose now that

 ∈ S4N transforms j ⊕ σ(j) into �k(j) ⊕ �l σ(j). Then


 (e2N ⊕ σ)(j ⊕ j) = (�k ⊕ �l)(e2N ⊕ σ)(j ⊕ j), (F6)

which implies that

{[(�k ⊕ �l)(e2N ⊕ σ)]−1
 (e2N ⊕ σ)}(j ⊕ j)

= [(e2N ⊕ σ−1)(�−1
k ⊕ �−1

l ) 
 (e2N ⊕ σ)](j ⊕ j)

= j ⊕ j, (F7)

where (σ ⊕ τ)−1 = σ−1 ⊕ τ−1. This means that (e2N ⊕
σ−1)(�−1

k ⊕ �−1
l ) 
 (e2N ⊕ σ) is a permutation that leaves

the sequence j ⊕ j invariant.
Let S� ⊂ S4N be defined as

S�={ν ∈ S4N | ν(j ⊕ j) = j ⊕ j}. (F8)

Then, every permutation 
 that takes j ⊕ σ(j) into �k(j) ⊕
�l σ(j) can be written in the form


 = (�k ⊕ �l)[(e2N ⊕ σ) ν (e2N ⊕ σ−1)], ν ∈ S�.
(F9)

It can be easily shown that S� forms a subgroup of
S4N . Indeed, the identity permutation e4N ∈ S4N clearly
leaves the sequence j ⊕ j invariant, so e4N ∈ S�. Let
ν1, ν2 ∈ S�; we have ν1ν2(j ⊕ j) = ν1[ν2(j ⊕ j)] = ν1(j ⊕
j) = j ⊕ j, which implies that ν1ν2 ∈ S�. We can show that
ν2ν1 ∈ S∗ in a completely analogous way. Finally, for any
ν1 ∈ S�, j ⊕ j = ν−1

1 ν1(j ⊕ j) = ν−1
1 [ν1(j ⊕ j)] = ν−1

1 (j ⊕
j), which implies that ν−1

1 ∈ S�.
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The subset S�
σ ⊂ S4N defined by

S�
σ = {τ ∈ S4N | τ = (e2N ⊕ σ) ν (e2N ⊕ σ−1), ν ∈ S�}

(F10)

is also a subgroup of S4N for every σ ∈ S2N ; it is the group
of all permutations in S4N that leave invariant the sequence
j ⊕ σ(j).

The permutations in S� can only make the interchange
k ↔ k + 2N for k ∈ {1, . . . , 2N }. In this way we guarantee
that j ⊕ j remains invariant. Thus, an arbitrary permutation
in S� will take a subset B of {1, . . . , 2N }, make the inter-
change k ↔ k + 2N for all k ∈ B, and keep all the remain-
ing elements in {1, . . . , 4N } unchanged. We may then write
every ν ∈ S� as ν ≡ νB, where B ∈ P({1, . . . , 2N }) and

P(A) stands for the power set of A. Furthermore, we may
write the action of νB over the sequence (1, . . . , 4N ) as

νB(k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k, k �∈ B,
k + 2N , k ∈ B,
k, k − 2N �∈ B and k ∈ {2N + 1, . . . , 4N},
k − 2N , k − 2N ∈ B and k ∈ {2N + 1, . . . , 4N }.

(F11)

We can readily see that |S∗| = |S�
σ | = 22N for all σ ∈

S2N , since there are as many νB as there are subsets of
{1, . . . , 2N }. Moreover, we can write the action of permu-
tations τB ∈ S�

σ over sequence (1, . . . , 4N ) as

τB(k) = [(e2N ⊕ σ) νB (e2N ⊕ σ−1)](k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k, k �∈ B,
σ(k) + 2N , k ∈ B,
k, σ−1(k − 2N ) �∈ B and k ∈ {2N + 1, . . . , 4N },
σ−1(k − 2N ), σ−1(k − 2N ) ∈ B and k ∈ {2N + 1, . . . , 4N }.

(F12)

Having characterized the permutations in S� and S�
σ , let

us return to the expression for 
 given in Eq. (F9). In order
to compute b2N [j ⊕ σ(j), �k(j) ⊕ �lσ(j)], we require that

 = (�k ⊕ �l)τB = β for some β ∈ H2N . This implies
that τB = (�−1

k ⊕ �−1
l )β, or, equivalently, τB ∈ (�−1

k ⊕
�−1

l )H2N , i.e., τB must be an element of the left coset of
H2N corresponding to �−1

k ⊕ �−1
l . On this account, deter-

mining the adequate 
 amounts to finding the elements of
(�−1

k ⊕ �−1
l )H2N ∩ S�

σ . Then, we may write

b2N [j ⊕ σ(j), �k(j) ⊕ �lσ(j)]=|(�−1
k ⊕ �−1

l )H2N ∩ S�
σ |.

(F13)

This is the j-independent expression of coefficients b2N .
In the following we show how to compute |(�−1

k ⊕
�−1

l )H2N ∩ S�
σ | as a function of k, l, and σ . However, in

order to do so, we need to prove a number of important
intermediate results. The first of these results concerns the
following definition.

Definition 1 (Hyperoctahedral group). The hyperoctahe-
dral group of degree n, Hn ⊂ S2n, is the centralizer of
the permutation �� ∈ S2n that transforms the sequence
of indices (g1, . . . , g2n) as ��[(g1, g2, . . . , g2n−1, g2n)] =
(g2, g1, . . . , g2n, g2n−1) [48].

Let us recall that the centralizer of a permutation τ ∈ Sm
is the set of all permutations in Sm that commute with τ ,
i.e., {
 ∈ Sm | 
τ = τ
}. As a product of disjoint trans-
positions, �� reads �� = (1 2)(3 4) · · · (2n − 1, 2n). Note
that (��)2 = e2n. The following proposition gives us a
useful way of characterizing the elements of Hn.

Proposition 9. We have σ ∈ Hn if and only if, for
every p ∈ {1, . . . , n}, there exists a q ∈ {1, . . . , n} such
that σ(2p) = 2q, σ(2p − 1) = 2q − 1 or σ(2p) = 2q −
1, σ(2p − 1) = 2q.

Proof. Since Hn is the centralizer of ��, σ ∈ Hn if
and only if ��σ �� = σ . Let us consider an arbitrary p ∈
{1, . . . , n}. We have

σ(2p) = [��σ ��](2p) = [��σ ](2p − 1)

= �∗[σ(2p − 1)]. (F14)

Since σ is a bijection from {1, . . . , 2n} to itself, there
exists a unique q ∈ {1, . . . , n} such that σ(2p − 1) = 2q or
σ(2p − 1) = 2q − 1. In the first case we have

σ(2p) = ��[σ(2p − 1)] = ��(2q) = 2q − 1. (F15)

In the second case we obtain

σ(2p) = ��[σ(2p − 1)] = ��(2q − 1) = 2q. (F16)
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On the other hand, suppose that σ ∈ S2n satisfies the con-
dition that, for every p ∈ {1, . . . , n}, there exists a q ∈
{1, . . . , n} such that σ(2p) = 2q, σ(2p − 1) = 2q − 1 or
σ(2p) = 2q − 1, σ(2p − 1) = 2q. In the first case we have

[��σ ](2p) = ��[σ(2p)] = ��(2q) = 2q − 1, (F17)

[��σ ](2p − 1) = ��[σ(2p − 1)] = ��(2q − 1) = 2q,
(F18)

[σ��](2p) = σ [��(2p)] = σ(2p − 1) = 2q − 1, (F19)

[σ��](2p − 1) = σ [��(2p − 1)] = σ(2p) = 2q. (F20)

Thus, [σ��](2p) = [��σ ](2p) and [σ��](2p − 1) =
[��σ ](2p − 1). Since these relations hold for an arbitrary
p , we conclude that σ �� = ��σ and, consequently, σ ∈
Hn. For the second case, we may write

[��σ ](2p) = ��[σ(2p)] = ��(2q − 1) = 2q, (F21)

[��σ ](2p − 1) = ��[σ(2p − 1)] = ��(2q) = 2q − 1,
(F22)

[σ��](2p) = σ [��(2p)] = σ(2p − 1) = 2q, (F23)

[σ��](2p − 1) = σ [��(2p − 1)] = σ(2p) = 2q − 1.
(F24)

We conclude again that [σ��](2p) = [��σ ](2p) and
[σ��](2p − 1) = [��σ ](2p − 1) for every p; therefore,
σ�� = ��σ and σ ∈ Hn. �

A useful interpretation of the previous proposition fol-
lows from analyzing the undirected graphs �(σ ) associ-
ated with the σ ∈ Hn. As mentioned in Sec. IV E, these
graphs have n connected components with two edges (see
Fig. 7). Since the first set of edges of �(σ ) is of the
form {(2p − 1, 2p) | p ∈ {1, . . . , n}}, the only way we can
obtain n connected components is that the edges in the
second set {[σ(2p − 1), σ(2p)] | p ∈ {1, . . . , n}} be of the
form (2q − 1, 2q) or (2q, 2q − 1), with q ∈ {1, . . . , n}, for
every p .

Next, we show how to determine the coset type of per-
mutations �k ∈ S2N . From their definition [Eq. (14)] we
see that the �k are written as a product of disjoint cycles
of even length, where a cycle of length 2a appears a total
of ka times [note that the permutations ωa ∈ S2a defined
just below Eq. (14) are precisely these cycles]. Moreover,

FIG. 7. Structure of the undirected graphs �(σ ) for σ ∈ Hn.
The vertices of �(σ ) are represented by black circles. Edges cor-
responding to {(2p − 1, 2p) | p ∈ {1, . . . , n}} are shown as black
dashed lines, while edges corresponding to {[σ(2p − 1), σ(2p)] |
p ∈ {1, . . . , n}} are shown as red dashed lines. Each connected
component of the graph is highlighted with a light blue, thick
line. For �(σ ) to have n connected components, so that σ ∈ Hn,
σ must keep together pairs of the form (2q − 1, 2q). This is the
statement of Proposition 9.

all the elements within the cycles are consecutive. These
features of �k greatly facilitate the determination of its
corresponding undirected graph �(�k).

Proposition 10. Permutation �k has coset type η(�k) =
(N kN , . . . , 2k2 , 1k1), where aka indicates that a appears
ka times in the partition η(�k). For example, (32, 14) ≡
(3, 3, 1, 1, 1, 1). If ka = 0, the corresponding a does not
appear in the partition. It follows that the length of the
coset type of �k is �(�k) = ∑N

a=1 ka.

Proof. Let us consider one of the cycles of length
2a that appear in the definition of �k. This cycle
acts over a sequence of consecutive indices of the
form (2q + 1, . . . , 2q + 2a), where we use 2q to label
the beginning of this particular cycle. After apply-
ing �k, this sequence transforms as (2q + 1, . . . , 2q +
2a) → ωa[(2q + 1, . . . , 2q + 2a)] = (2q + 2, . . . , 2q +
2a, 2q + 1).

When constructing �(�k) for this subset of vertices,
we can see that the first set of edges of the graph
has the form {(2q + 1, 2q + 2), . . . , (2q + 2a − 1, 2q +
2a)}, while the second reads {[ωa(2q + 1), ωa(2q +
2)], . . . , [ωa(2q + 2a − 1), ωa(2q + 2a)]} = {(2q + 2, 2q +
3), (2q + 4, 2q + 5), . . . , (2q + 2a, 2q + 1)}. These edges
lead to a connected component of length 2a in �(�k)

(see Fig. 8).
Since all the cycles in �k are disjoint, each cycle of

length 2a leads to a different connected component of
length 2a in �(�k). Since there are ka cycles of length 2a
in �k, there will be ka connected components of length
2a in �(�k). This implies that a will appear a total of
ka times in η(�k), and thus η(�k) = (N kN , . . . , 2k2 , 1k1).
Note that, since k1 + 2k2 + · · · + NkN = N , η(�k) will be,
as expected, an integer partition of N . Finally, there will be
a total of k1 + · · · + kN connected components in �(�k),
so �(�k) = ∑N

a=1 ka. �
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FIG. 8. Illustration of the connected component of �(�k) corresponding to the vertices (2q + 1, . . . , 2q + 2a) (black circles).
Edges corresponding to {(2p − 1, 2p) | p ∈ {q + 1, . . . , 2q + 2a}} are shown as black dashed lines, while edges corresponding
to {[�k(2p − 1), �k(2p)] | p ∈ {q + 1, . . . , 2q + 2a}} = {[ωa(2p − 1), ωa(2p)] | p ∈ {q + 1, . . . , 2q + 2a}} are shown as red dashed
lines. The connected component is highlighted by a light blue, thick line. As mentioned in the proof of Proposition 10, a cycle of length
2a acting over (2q + 1, . . . , 2q + 2a) leads to a connected component of length 2a in �(�k).

From the previous proposition, we can see that �k and
�l will have different coset types whenever k �= l.

We move on to stating two important results, one of
them proved in Ref. [49], regarding coset types and left
cosets.

Proposition 11 (Theorem 2.1 of Ref. [49]). (i) Two per-
mutations σ1, σ2 ∈ S2n have the same coset type if and only
if σ2 ∈ Hnσ1Hn, that is, if and only if there exist τ1, τ2 ∈ Hn
such that σ2 = τ1σ1τ2.

(ii) Permutation σ ∈ S2n has the same coset type as σ−1.

Proposition 12. If σ1 ∈ σ−1
2 Hn then σ1 and σ2 have the

same coset type.

Proof. If σ1 ∈ σ−1
2 Hn, then there exists τ ∈ Hn such that

σ1 = σ−1
2 τ . Since Hn is a group, e2n ∈ Hn, and thus we

may write σ1 = e2nσ
−1
2 τ . This means that σ1 ∈ Hnσ

−1
2 Hn,

which implies that σ1 and σ−1
2 have the same coset type.

Given that σ2 and σ−1
2 have the same coset type, we

conclude that σ1 and σ2 have the same coset type. �

Equivalently, we may say that if σ1, σ2 ∈ S2n have dif-
ferent coset types then σ1 �∈ σ−1

2 Hn. Note that the converse

of Proposition 12 does not necessarily hold; the fact that
σ1 and σ2 have the same coset type does not imply that
σ1 ∈ σ−1

2 Hn. As a direct consequence of Propositions 11
and 12, we obtain the following result, which will be of
particular importance in our proof of Eq. (F1).

Proposition 13. Let σ1, σ2, τ ∈ S2n, and suppose that σ1
and σ2 have different coset types. Then τ ∈ σ−1

1 Hn implies
that τ−1 �∈ σ−1

2 Hn.

Proof. If τ ∈ σ−1
1 Hn, τ and τ−1 have the same coset

type as σ1. Since σ1 and σ2 have different coset types,
τ−1 and σ2 will have different coset types, consequently,
τ−1 �∈ σ−1

2 Hn. �

We are now in the position to compute |(�−1
k ⊕

�−1
l )H2N ∩ S�

σ | for the case k �= l. A permutation τB ∈
S�

σ , corresponding to a subset B ⊆ {1, . . . , 2N }, will be
an element of (�−1

k ⊕ �−1
l )H2N if (�k ⊕ �l)τB = β for

β ∈ H2N . This relation will set some constraints over B
and σ . In order to find them, let us combine Eqs. (F3) and
(F12), and express the action of β over pairs of the form
(2p − 1, 2p), with p ∈ {1, . . . , 2N }, as

β(2p − 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�k(2p − 1), 2p − 1 �∈ B and p ∈ {1, . . . , N },
�l[σ(2p − 1)] + 2N , 2p − 1 ∈ B and p ∈ {1, . . . , N },
�l(2p − 2N − 1) + 2N , σ−1(2p − 2N − 1) �∈ B and p ∈ {N + 1, . . . , 2N },
�k[σ−1(2p − 2N − 1)], σ−1(2p − 2N − 1) ∈ B and p ∈ {N + 1, . . . , 2N },

(F25)

β(2p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�k(2p), 2p �∈ B and p ∈ {1, . . . , N },
�l[σ(2p)] + 2N , 2p ∈ B and p ∈ {1, . . . , N },
�l(2p − 2N ) + 2N , σ−1(2p − 2N ) �∈ B and p ∈ {N + 1, . . . , 2N },
�k[σ−1(2p − 2N )], σ−1(2p − 2N ) ∈ B and p ∈ {N + 1, . . . , 2N }.

(F26)

According to Proposition 9, β ∈ H2N if, for every p ∈ {1, . . . , 2N }, there exists a q ∈ {1, . . . , 2N } such that β(2p) = 2q,
β(2p − 1) = 2q − 1 or β(2p) = 2q − 1, β(2p − 1) = 2q. Keeping in mind that Bc is the complement of B, this condition
allows us to draw the following conclusions.
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(1) Subset B must be nonempty because �k, �l are
not, in general, elements of HN , which would be
necessary in order to have β ∈ H2N .

(2) When p ∈ {1, . . . , N }, it is necessary that either
2p − 1, 2p ∈ B or 2p − 1, 2p �∈ B, i.e., the pair
(2p − 1, 2p) must remain together either in B
or in Bc. Indeed, if 2p ∈ B, but 2p − 1 �∈
B, then β(2p − 1) = �k(2p − 1) ∈ {1, . . . , 2N },
while β(2p) = �l[σ(2p)] + 2N ∈ {2N + 1, . . . ,
4N }, which breaks the condition for β to be in H2N .
The case 2p − 1 ∈ B, 2p �∈ B yields to a similar
conclusion.

(3) When p ∈ {N + 1, . . . , 2N }, it is necessary that
either σ−1(2p − 2N ), σ−1(2p − 2N − 1) ∈ B or
σ−1(2p − 2N ), σ−1(2p − 2N − 1) �∈ B. Just as
before, if σ−1(2p − 2N ) ∈ B, but σ−1(2p − 2N −
1) �∈ B, then β(2p − 1) = �l(2p − 2N − 1) + 2N ∈
{2N + 1, . . . , 4N }, while β(2p) = �k[σ−1(2p −
2N )] ∈ {1, . . . , 2N }, which implies that β �∈ H2N .
The case σ−1(2p − 2N − 1) ∈ B, σ−1(2p − 2N ) �∈
B leads to a similar conclusion.

(4) Assuming that the two conditions above hold, we
require that Bc contains the pairs (2p − 1, 2p),
with p ∈ {1, . . . , N }, for which �k(2p − 1) = 2q −
1, �k(2p) = 2q or �k(2p − 1) = 2q, �k(2p) =
2q − 1 for some q ∈ {1, . . . , N }. Moreover, we
require that Bc contains the pairs [σ−1(2p − 2N −
1), σ−1(2p − 2N )], with p ∈ {N + 1, . . . , 2N }, for
which �l(2p − 2N − 1) = 2q′ − 1, �l(2p − 2N ) =
2q′ or �l(2p − 2N − 1) = 2q′, �l(2p − 2N ) =
2q′ − 1 for some q′ ∈ {1, . . . , N }. In other words,
the elements in Bc must correspond to transposi-
tions in the cycle decomposition of both �k and �l.
Recall that permutations �k are defined as products
of cycles of even length. The only possible cycles
that naturally satisfy the condition described here
are those of length 2, i.e., the transpositions.

(5) We can guarantee that the elements in Bc correspond
to transpositions in both �k and �l by constructing

B using the following prescription. There are k1
transpositions (cycles of length 2) in �k and the
last element in {1, . . . , 2N } that belongs to a trans-
position in �k is precisely 2k1. Similarly, the last
element in {1, . . . , 2N } that belongs to a transpo-
sition in �l is 2l1. Let 2p∗ = min(2k1, 2l1); then
B = {2p∗ + 1, . . . , 2N } contains all the elements
in {1, . . . , 2N } that correspond to cycles of length
greater than 2 in both �k and �l. Note that B
will also contain elements that correspond to some
transpositions in �k or �l as long as k1 �= l1. This
construction ensures that the elements of Bc lead
only to transpositions in both �k and �l.

(6) The prescription given above is not the only way
to construct B. Indeed, the only condition that B
should satisfy is that it contains all the elements
in {1, . . . , 2N } that correspond to cycles of length
greater than 2 in both �k and �l. This means that
B can also contain any number of pairs of the form
(2p − 1, 2p) that correspond to transpositions in �k
or �l.

(7) Let B satisfy item (5) or (6) above, and suppose
that there is some p ∈ {N + 1, . . . , 2N } such that
σ−1(2p − 2N − 1), σ−1(2p − 2N ) �∈ B, but 2p −
2N − 1, 2p − 2N ∈ B. Then, in general, we can-
not guarantee that β(2p − 1) = �l(2p − 2N −
1) + 2N , β(2p) = �l(2p − 2N ) + 2N will satisfy
the conditions that let β ∈ H2N . This is because most
(or all) of the elements in B correspond to cycles of
length greater than 2 in �l. In order to avoid this, we
demand that σ−1(B) = σ(B) = B, i.e., the image of
B under σ , σ−1 is B itself. In this way, the condition
σ−1(2p − 2N − 1), σ−1(2p − 2N ) �∈ B will always
correspond to a transposition in �l. This constraints
σ to have the form σ = σ̄ ⊕ σ̃ , where σ̄ ∈ S2N−|B|
acts only over Bc, and σ̃ ∈ S|B| acts only over B.

Following these considerations, we can recast Eqs. (F25)
and (F26) as

β(2p − 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̄k(2p − 1), 2p − 1 �∈ B and p ∈ {1, . . . , N },
�̃l[̃σ(2p − 1)] + 2N , 2p − 1 ∈ B and p ∈ {1, . . . , N },
�̄l(2p − 2N − 1) + 2N , 2p − 2N − 1 �∈ B and p ∈ {N + 1, . . . , 2N },
�̃k[̃σ−1(2p − 2N − 1)], 2p − 2N − 1 ∈ B and p ∈ {N + 1, . . . , 2N },

(F27)

β(2p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̄k(2p), 2p �∈ B and p ∈ {1, . . . , N },
�̃l[̃σ(2p)] + 2N , 2p ∈ B and p ∈ {1, . . . , N },
�̄l(2p − 2N ) + 2N , 2p − 2N �∈ B and p ∈ {N + 1, . . . , 2N },
�̃k[̃σ−1(2p − 2N )], 2p − 2N ∈ B and p ∈ {N + 1, . . . , 2N },

(F28)
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where we used the decomposition of �k and �l as
�k = �̄k ⊕ �̃k, �l = �̄l ⊕ �̃l with �̄k, �̄l ∈ S2N−|B| and
�̃k, �̃l ∈ S|B| (�̄k, �̄l will be products of some of the trans-
positions of �k and �l, and �̃k, �̃l will be products of the
remaining cycles). Note also that �̄k, �̄l ∈ HN−|B|/2.

We can now see that finding a way for β to be in H2N is
equivalent to finding a σ̃ ∈ S|B| that satisfies the following
two conditions simultaneously.

(a) For every 2p − 1, 2p ∈ B, there exist 2q − 1,
2q ∈ B such that �̃k[̃σ−1(2p − 1)] = 2q − 1, �̃k
[̃σ−1(2p)] = 2q or �̃k[̃σ−1(2p − 1)] = 2q, �̃k
[̃σ−1(2p)] = 2q − 1.

(b) For every 2p − 1, 2p ∈ B, there exist 2q′ − 1, 2q′ ∈
B such that �̃l[̃σ(2p − 1)] = 2q′ − 1, �̃l[̃σ(2p)] =
2q′ or �̃l[̃σ(2p − 1)] = 2q′, �̃l[̃σ(2p)] = 2q′ − 1.

These statements are equivalent to having �̃kσ̃
−1, �̃lσ̃ ∈

H|B|/2, which may also be written as σ̃−1 ∈ �̃−1
k H|B|/2

and σ̃ ∈ �̃−1
l H|B|/2. However, Proposition 13 forbids the

existence of σ̃ . Indeed, �̃k and �̃l have different coset
types, and thus, according to Proposition 13, the conditions
σ̃−1 ∈ �̃−1

k H|B|/2, σ̃ ∈ �̃−1
l H|B|/2 cannot hold simultane-

ously.
To confirm that �̃k and �̃l have different coset types,

recall that B is defined in such a way that it contains all the
elements in {1, . . . , 2N } that correspond to cycles of length
greater than 2 in both �k and �l. Suppose for a moment
that k1 = l1. In order to have k �= l, there must be at least
one a �= 1 such that ka �= la, which implies that the num-
ber of connected components of length 2a in �(�̃k) will
be different form that of �(�̃l), and thus �̃k and �̃l will
have different coset types. If k1 �= l1, B will contain at least
one pair of elements that will correspond to a transposi-
tion in �k, but not in �l (or vice versa). This implies that
�(�̃k) and �(�̃l) will differ by at least one connected com-
ponent of length 2, and so �̃k and �̃l will have different
coset types.

The following proposition is a direct consequence of
the fact that conditions σ̃−1 ∈ �̃−1

k H|B|/2, σ̃ ∈ �̃−1
l H|B|/2

cannot hold at the same time.

Proposition 14. Let k �= l; then |(�−1
k ⊕ �−1

l )H2N ∩
S�

σ | = 0 for every σ ∈ S2N .

Proof. We have seen that in order for τB ∈ S�
σ , with B ⊆

{1, . . . , 2N }, to also be an element of (�−1
k ⊕ �−1

l )H2N ,
Eqs. (F25) and (F26), later transformed into Eqs. (F27)
and (F28), must hold. This can only happen if B contains
all the elements in {1, . . . , 2N } that correspond to cycles
of length greater than 2 in both �k and �l. This, in turn,
makes σ take the form σ = σ̄ ⊕ σ̃ , where σ̄ ∈ S2N−|B| and
σ̃ ∈ S|B|. Moreover, no matter the choice of B, σ̃ must sat-
isfy the conditions σ̃−1 ∈ �̃−1

k H|B|/2, σ̃ ∈ �̃−1
l H|B|/2 simul-

taneously. However, as proved in Proposition (13), this

cannot happen because �k and �l, and, consequently, �̃k
and �̃l, have different coset types when k �= l. Therefore,
there is no σ̃ ∈ S|B|, and thus no σ ∈ S2N , for which τB ∈
S�

σ and τB ∈ (�−1
k ⊕ �−1

l )H2N . It follows that |(�−1
k ⊕

�−1
l )H2N ∩ S�

σ | = 0 for every σ ∈ S2N . �

We now focus on the case k = l. Let us set B = {2k1 +
1, . . . , 2N }, so that the elements in Bc correspond to all the
transpositions in �k (recall that Bc is the complement of
B). We discuss possible modifications of B later on.

According to relations (F27) and (F28), in order to
have β ∈ H2N , we need �̃kσ̃ , �̃kσ̃

−1 ∈ HN−k1 . We will
see how these relations determine the possible σ̃ that
we can use. First, note that �̃2

k ∈ HN−k1 . Indeed, let the
sequence (2q + 1, . . . , 2q + 2a) correspond to a cycle of
length 2a in �̃k. After one application of �̃k, (2q +
1, . . . , 2q + 2a) maps to (2q + 1, . . . , 2q + 2a) �→ (2q +
2, 2q + 3, . . . , 2q + 2a − 1, 2q + 2a, 2q + 1). After a sec-
ond application of the permutation, we have (2q +
1, . . . , 2q + 2a) �→ (2q + 3, 2q + 4, . . . , 2q + 2a − 1, 2q +
2a, 2q + 1, 2q + 2), which brings pairs of the form (2p −
1, 2p), with p ∈ {1, . . . , a}, back together. Since this holds
for an arbitrary a, we see that �̃2

k satisfies the condi-
tions to be in HN−k1 . In view of this, we see that �̃−2

k ∈
HN−k1 , and thus �̃−2

k �̃kσ̃ = �̃−1
k σ̃−1 ∈ HN−k1 . Conse-

quently, the conditions that σ̃ must satisfy can be written
as �̃kσ̃ , σ̃ �̃k ∈ HN−k1 .

Another interesting property of �̃k is that every pair of
the form (2p − 1, 2p), with p ∈ {k1 + 1, . . . , N }, belongs
to the same cycle in �̃k. This is because all the elements
within the cycles of �̃k are consecutive and, moreover, all
of the cycles have even length. We use this fact to find the
structure of σ̃ .

Consider again the sequence (2q + 1, . . . , 2q + 2a), cor-
responding to a cycle of length 2a in �̃k. Every element
in this sequence can be written as 2q + 2l − 1 or 2q + 2l
with l ∈ {1, . . . , a}. Therefore, every pair of the form (2p −
1, 2p) with elements in this sequence can be written as
(2q + 2l − 1, 2q + 2l). This holds for every cycle in �̃k.

If �̃kσ̃ ∈ HN−k1 then, for all l ∈ {1, . . . , a}, �̃k[̃σ(2q +
2l − 1)] = 2q′ + 2l′ − 1 and �̃k[̃σ(2q + 2l)] = 2q′ + 2l′,
or �̃k[̃σ(2q + 2l − 1)] = 2q′ + 2l′ and �̃k[̃σ(2q + 2l)] =
2q′ + 2l′ − 1, with 2q′ + 1 being the first element in
another cycle of length 2a′ in �̃k. Here l′ ∈ {1, . . . , a′}.
We can use these relations to find the action of σ̃ over the
elements in (2q + 1, . . . , 2q + 2a). We analyze these two
possible conditions separately, and during this procedure
we keep in mind that σ̃ �̃k ∈ HN−k1 also holds.

Case 1: �̃k[̃σ(2q + 2l − 1)] = 2q′ + 2l′ − 1 and �̃k
[̃σ(2q + 2l)] = 2q′ + 2l′. The first of these relations
implies that σ̃ (2q + 2l − 1) = �−1

k (2q′ + 2l′ − 1). Conse-
quently, if l′ �= 1, σ̃ (2q + 2l − 1) = 2q′ + 2l′ − 2. If l′ =
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1, σ̃ (2q + 2l − 1) = 2q′ + 2a′. The second of these rela-
tions implies that σ̃ (2q + 2l) = �−1

k (2q′ + 2l′) = 2q′ +
2l′ − 1.

Moreover, we have σ̃ [�̃k(2q+2l−1)]= σ̃ (2q+2l)=
2q′ + 2l′ − 1, which, given that σ̃ �̃k ∈ HN−k1 , implies that

σ̃ [�̃k(2q + 2l)] = 2q′ + 2l′. If l �= a, σ̃ [�̃k(2q + 2l)] =
σ̃ (2q + 2l + 1) = 2q′ + 2l′. If l = a, σ̃ [�̃k(2q + 2l)] =
σ̃ (2q + 1) = 2q′ + 2l′. Therefore, σ̃ must have the struc-
ture

p : · · · 2q + 2l − 1 2q + 2l 2q + 2l + 1 · · ·
σ̃ (p) : · · · 2q′ + 2l′ − 2 2q′ + 2l′ − 1 2q′ + 2l′ · · · . (F29)

The first and last elements of the cycles can be included
in this structure by taking the addition and subtraction
modulo a or a′.

Case 2: �̃k[̃σ(2q + 2l − 1)] = 2q′ + 2l′ and �̃k[̃σ(2q +
2l)] = 2q′ + 2l′ − 1. The first relation implies that σ̃ (2q +
2l − 1) = �−1

k (2q′ + 2l′) = 2q′ + 2l′ − 1. The second
relation implies that σ̃ (2q + 2l) = �−1

k (2q′ + 2l′ − 1).
If l′ = 1, σ̃ (2q + 2l) = �−1

k (2q′ + 1) = 2q′ + 2a′; other-
wise, σ̃ (2q + 2l) = �−1

k (2q′ + 2l′ − 1) = 2q′ + 2l′ − 2.
Moreover, we have σ̃ [�̃k(2q + 2l − 1)] = σ̃ (2q + 2l).

Thus, considering that σ̃ �̃k ∈ HN−k1 , σ̃ [�̃k(2q + 2l)] =
2q′ + 2a′ − 1 for l′ = 1, and σ̃ [�̃k(2q + 2l)] = 2q′ +

2l′ − 3 for l′ �= 1. These relations lead to four results:

σ(2q + 2l + 1) = 2q′ + 2l′ − 3 for l′ �= 1, l �= a,
(F30)

σ(2q + 1) = 2q′ + 2l′ − 3 for l′ �= 1, l = a, (F31)

σ(2q + 2l + 1) = 2q′ + 2a′ − 1 for l′ = 1, l �= a,
(F32)

σ(2q + 1) = 2q′ + 2a′ − 1 for l′ = 1, l = a. (F33)

Gathering all these results, we find that σ̃ must have the
structure

p : · · · 2q + 2l − 1 2q + 2l 2q + 2l + 1 · · ·
σ̃ (p) : · · · 2q′ + 2l′ − 1 2q′ + 2l′ − 2 2q′ + 2l′ − 3 · · · , (F34)

where the first and last elements of the cycles can be
included by taking the addition and subtraction modulo a
or a′.

As we can see, the results of case 1 show that the image
of (2q + 1, . . . , 2q + 2a) under σ̃ corresponds to shifting
the elements in (2q′ + 1, . . . , 2q′ + 2a′) while maintain-
ing their ascending order. The results of case 2 show
that we are also allowed to make shifts using a descend-
ing order of the elements within the cycles. The value
of l′ determines by how much σ̃ shifts the elements in
(2q′ + 1, . . . , 2q′ + 2a′), while the value of q′ determines
which cycle corresponds to the image of (2q + 1, . . . ,
2q + 2a).

It is apparent that we need to have a = a′, so that
every element in the sequence (2q + 1, . . . , 2q + 2a) has
an image in (2q′ + 1, . . . , 2q′ + 2a′). We can show that this
is in fact a consequence of the relations σ̃ �̃k, σ̃−1�̃k ∈
HN−k1 (the second of these is obtained by noting that
�̃kσ̃ ∈ HN−k1 implies that σ̃−1�̃−1

k ∈ HN−k1 , which leads
to σ̃−1�̃−1

k �̃2
k = σ̃−1�̃k ∈ HN−k1 ).

Suppose that a > a′; then there must be some
l∗ ∈ {1, . . . , a} such that σ̃ (2q + 2l∗ − 1), σ̃ (2q + 2l∗) �∈
{2q′ + 1, . . . , 2q′ + 2a′}, but σ̃ (2q + 2l∗ − 3), σ̃ (2q + 2l∗
− 2) ∈ {2q′ + 1, . . . , 2q′ + 2a′}. Let σ̃ (2q + 2l∗ − 1) = r,
σ̃ (2q + 2l∗) = r′. After applying �̃k and σ̃ over (2q +
1, . . . , 2q + 2a), we have

p : · · · 2q + 2l∗ − 3 2q + 2l∗ − 2 2q + 2l∗ − 1 2q + 2l∗ · · ·
�̃k(p) : · · · 2q + 2l∗ − 2 2q + 2l∗ − 1 2q + 2l∗ 2q + 2l∗ + 1 · · ·

σ̃ [�̃k(p)] : · · · 2q′ + 2l′ + j r r′ · · · · · ·
,
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where j ∈ {1, . . . , a′}. We see that the image of the pair
(2q + 2l∗ − 3, 2q + 2l∗ − 2) is (2q′ + 2l′ + j , r) under
σ̃ �̃k, and this breaks the condition σ̃ �̃k ∈ HN−k1 because
the companion of 2q′ + 2l′ + j should be an element of
{2q′ + 1, . . . , 2q′ + 2a′}, but r is not. Consequently, we
must have a ≤ a′.

Suppose now that a < a′; then there must exist
m∗ ∈ {1, . . . , a′} such that σ̃−1(2q′ + 2m∗ − 1), σ̃−1(2q′ +
2m∗) �∈ {2q + 1, . . . , 2q + 2a}, but σ̃−1(2q′ + 2m∗ − 3),
σ̃−1(2q′ + 2m∗ − 2) ∈ {2q + 1, . . . , 2q + 2a}. Let σ̃−1

(2q′ + 2m∗ − 1) = s, σ̃−1(2q′ + 2m∗) = s′. After apply-
ing �̃k and σ̃−1 to (2q′ + 1, . . . , 2q′ + 2a′), we obtain

p : · · · 2q′ + 2m∗ − 3 2q′ + 2m∗ − 2 2q′ + 2m∗ − 1 2q′ + 2m∗ · · ·
�̃k(p) : · · · 2q′ + 2m∗ − 2 2q′ + 2m∗ − 1 2q′ + 2m∗ 2q′ + 2m∗ + 1 · · ·

σ−1[�̃k(p)] : · · · 2q + 2l + j s s′ · · · · · ·
,

where j ∈ {1, . . . , a}. Just as before, we see that the
image under σ̃−1�̃k of the pair (2q′ + 2m∗ − 3, 2q′ +
2m∗ − 2) is (2q + 2l + j , s), which breaks the condition
σ̃−1�̃k ∈ HN−k1 because 2q + 2l + j should be paired
with an element of {2q + 1, . . . , 2q + 2a}, not with s �∈
{2q + 1, . . . , 2q + 2a}. We therefore conclude that a = a′,
i.e., the image under σ̃ of any cycle of length 2a in �̃k must
correspond to another cycle of length 2a in �̃k.

Having found the structure of σ̃ , we can easily count
how many of them there are.

Proposition 15. There are
∏N

a=2(2a)kaka! possible σ̃ .

Proof. As we just showed, the image under σ̃ of the
elements within a cycle of length 2a in �̃k corresponds
to a shift of the elements within another cycle of length
2a in �̃k. For all of these cycles, there are a possible val-
ues of the shift [because there are a possible values of l′
in Eqs. (F29) and (F34)]. Additionally, we can make each
shift with the elements within the cycles having either an
ascending or descending order [as also shown in Eqs. (F29)
and (F34)]. Since there are ka cycles of length 2a in �̃k, we
have a total of (2a)ka ways of choosing the shift and order
of all of them. Moreover, as mentioned below Eq. (F34),
q′ determines the image of a given cycle. The number of
possible q′ is equal to the number of cycles of length 2a,
namely ka, which means that there are ka! ways of choos-
ing the images of all these cycles. This implies that there
are a total of (2a)kaka! ways of choosing the image under
σ̃ of all the cycles of length 2a in �̃k. Since a is arbitrary,
and we are only considering cycles of length greater than
2, we conclude that there are

∏N
a=2(2a)kaka! possible ways

of choosing the image of σ̃ . �

Having found the number of possible σ̃ and their struc-
ture, we can focus on σ̄ . This will also allow us to discuss
possible modifications to B. As shown in Eqs. (F27) and
(F28), once we choose σ̃ for B = {2k1 + 1, . . . , 2N }, we
have complete freedom in the choice of σ̄ ∈ S2k1 . This is
because σ̄ plays no role in the computation of β. Indeed,

we needed σ̃ to “break” all the connected components of
length greater than 2 in �(�k), while we “hid” the action
of σ̄ with our choice of B. We can now fix σ̃ , so that
σ = σ̄ ⊕ σ̃ keeps breaking the connected components of
interest, and see if we can “reveal” some of the structure of
σ̄ while keeping β ∈ H2N .

If we extend B to include a pair of points (2p −
1, 2p), with p ∈ {1, . . . , k1}, computing β amounts to cal-
culating �̄k[σ̄ (2p − 1)], �̄k[σ̄ (2p)], and �̄k[σ̄−1(2p −
1)], �̄k[σ̄−1(2p)]. Since �̄k consists only of transposi-
tions, in order to have β ∈ H2N , we need the image of
(2p − 1, 2p) under σ̄ to be of the form (2q − 1, 2q) or
(2q, 2q − 1), with q ∈ {1, . . . , k1}. Similarly, the image of
(2p − 1, 2p) under σ̄−1 must be of the form (2q′ − 1, 2q′)
or (2q′, 2q′ − 1), with q′ ∈ {1, . . . , k1}. This means that we
can extend B to include (2p − 1, 2p) as long as this pair
of points leads to a connected component of length 2 in
�(σ̄ ). Note that extending B to include (2p − 1, 2p) may
imply that σ(B) �= B, σ−1(B) �= B. However, since the pair
(2p − 1, 2p) leads to a connected component of length 2 in
�(σ̄ ), we can guarantee that it will also lead to connected
components of length 2 in �(�̄kσ̄ ), �(�̄kσ̄

−1), and thus
�(�kσ), �(�kσ

−1), making β satisfy the conditions to be
an element of H2N . Consequently, given an specific σ̄ , any
modification of B will consist in appending pairs of the
form {(2p − 1, 2p)} that correspond to connected compo-
nents of length 2 in �(σ̄ ). Note that the choice of including
a given pair is independent of the choice of including any
other pair.

The exact number of possible modifications of B, for
given σ̄ and σ̃ , will depend on the number of connected
components of length 2 in �(σ̄ ). Let η(σ̄ ) be the coset
type of σ̄ , and let η(1)(σ̄ ) be the number of 1s in η(σ̄ ),
which is equivalent to the number of connected com-
ponents of length 2 in �(σ̄ ). Each of these connected
components will correspond to a pair (2p − 1, 2p) with
p ∈ {1, . . . , k1}. For each pair, we can decide whether to
include it in B or not. This means that we can modify B in
2η(1)(σ̄ ) ways. This result allows us to state the following
propositions.
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Proposition 16. We have |(�−1
k ⊕ �−1

k )H2N ∩ S�
σ | =

2η(1)(σ̄ ) if σ = σ̄ ⊕ σ̃ ; otherwise, it vanishes. Here, σ̄ ∈
S2k1 acts over {1, . . . , 2k1}, and η(1)(σ̄ ) is the number of 1s
in the coset type of σ̄ . Permutation σ̃ ∈ S2N−2k1 acts over
{2k1 + 1, . . . , 2N } and has the form indicated by Eq. (F29)
or (F34).

Proof. We have seen that in order for τB ∈ S�
σ , with B ⊆

{1, . . . , 2N }, to also be an element of (�−1
k ⊕ �−1

k )H2N ,
Eqs. (F25) and (F26), later transformed into Eqs. (F27)
and (F28), must hold. By setting B = {2k1 + 1, . . . , 2N },
we found that these equations are satisfied if σ = σ̄ ⊕ σ̃ ,
with σ̄ acting over Bc and σ̃ over B. Moreover, σ̃ must
be defined by Eq. (F29) or (F34). Fixing σ̃ , we can mod-
ify B in order to include any number of pairs of the form
(2p − 1, 2p) ∈ {1, . . . , 2N } that correspond to connected
components of length 2 in �(σ̄ ). The total number of this
type of connected components is equal to η(1)(σ̄ ), the num-
ber of 1s in the coset type of σ̄ . For each pair, we can
choose whether to include it in B or not, which leads to
a total of 2η(1)(σ̄ ) possible modifications to B. Therefore,
there are 2η(1)(σ̄ ) possible τB for a given σ = σ̄ ⊕ σ̃ . �

Proposition 17. It holds that

∑
σ∈S2N

|(�−1
k ⊕ �−1

k )H2N ∩ S�
σ |=

N∏
a=2

(2a)kaka!
∑

σ̄∈S2k1

2η(1)(σ̄ ).

(F35)

Proof. The sum over all σ ∈ S2N reduces to a sum over
permutations of the form σ = σ̄ ⊕ σ̃ because the sum-
mand vanishes otherwise. For a given σ̄ , there are always∏N

a=2(2a)kaka! possible σ̃ , so we only need to sum over
σ̄ . �

Now that we have computed |(�−1
k ⊕ �−1

l )H2N ∩ S�
σ | as

a function of k, l, and σ , we are almost ready to attack
Eq. (F1). Combining all the results we have obtained so
far, we can see that

∑
k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

b2N [j ⊕ σ(j), �k(j) ⊕ �l ◦ σ(j)]

=
∑

k(c),l(c)

N∏
a=1

1
ka! la! (2a)ka+la

×
∑

σ∈S2N

|(�−1
k ⊕ �−1

l )H2N ∩ S�
σ |

=
∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)2

×
∑

σ∈S2N

|(�−1
k ⊕ �−1

k )H2N ∩ S�
σ |

=
∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)2 N∏
a=2

ka! (2a)ka
∑

σ̄∈S2k1

2η(1)(σ̄ )

=
∑
k(c)

( N∏
a=2

1
ka! (2a)ka

)(
1

2k1k1!

)2 ∑
σ̄∈S2k1

2η(1)(σ̄ ).

(F36)

In order to complete our proof, we need two additional
results.

Proposition 18. Let S2n be the symmetric group of degree
2n, and let η(1)(σ ) stand for the number of 1s in the
coset type of σ ∈ S2n. Moreover, let α be a real parameter
satisfying |α| < 1. Then,

∑
σ∈S2n

2η(1)(σ ) = 22nn!
dn

dαn [eα/2(1 − α)−1/2]
∣∣∣∣
α=0

. (F37)

Proof. Let Hη denote the set of permutations σ ∈ S2n
that have coset type η. Since every σ has a unique coset
type, it will belong to only one Hη. This allows us to write
the sum over σ ∈ S2n in Eq. (F37) as

∑
σ∈S2n

2η(1)(σ ) =
∑
η�n

|Hη|2η(1)
, (F38)

where η � n indicates that the sum is taken over all the
integer partitions of n (recall that the coset type of a per-
mutation in S2n is an integer partition of n) and η(1) is the
number of 1s in η.

Given a partition η of n, we can construct a vector
of non-negative integers k = (k1, . . . , kn) whose compo-
nents satisfy k1 + 2k2 + · · · + nkn = n. Indeed, we need
only define ka as the multiplicity of a in η, i.e., ka is the
number of times a appears in η. This implies that

∑
σ∈S2n

2η(1)(σ ) =
∑
η�n

|Hη|2η(1) =
∑
k(c)

|Hk|2k1 , (F39)

where η(1) = k1 has been used, and we write k(c) to indicate
that the components of k are constrained.
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According to Refs. [35,49], we have

|Hη| = |Hk| = (2nn!)2
n∏

a=1

1
ka! (2a)ka

, (F40)

which leads to the expression

∑
σ∈S2n

2η(1)(σ ) = (2nn!)2
∑
k(c)

( n∏
a=1

1
ka! (2a)ka

)
2k1

= (2nn!)Zn

(
1,

1
2

, . . . ,
1
2

)
, (F41)

where we recalled the definition of the cycle index of Sn
[Eq. (32) in the main text]:

Zn(y1, . . . , yn) =
∑
k(c)

n∏
a=1

1
ka! aka

n∏
a=1

yka
a . (F42)

Using the generating function of Zn(y1, . . . , yn),

exp
[ ∞∑

l=1

yl
αl

l

]
=

∞∑
n=0

Zn(y1, . . . , yn)α
n, (F43)

we can write

exp
[
α + 1

2

∞∑
l=2

αl

l

]
= eα/2 exp

[
1
2

∞∑
l=1

αl

l

]

=
∞∑

n=0

Zn

(
1,

1
2

, . . . ,
1
2

)
αn. (F44)

Assuming that |α| < 1, we can write
∑∞

l=1 αl/l =
− log(1 − α), and obtain

eα/2 exp
[

− 1
2

log(1 − α)

]
= eα/2(1 − α)−1/2

=
∞∑

n=0

Zn

(
1,

1
2

, . . . ,
1
2

)
αn.

(F45)

Equation (F37) follows from repeatedly differentiating
this expression with respect to α, and then evaluating
at α = 0. �

Proposition 19. Let x be a real parameter. Then,

∑
k(c)

( n∏
a=1

1
ka! (2a)ka

)
2k1xk1 = 1

n!

n∑
m=0

(
n
m

)
xmgn−m,

(F46)

where gm is defined by the relation

e−β/2(1 − β)−1/2 =
∞∑

m=0

gm

m!
βm,

gm = (−1/2)m
2F0(1/2, −m; ; 2), (F47)

with |β| < 1 and 2F0(a, b; ; z) the hypergeometric function
2F0.

Proof. We can readily note that

∑
k(c)

( n∏
a=1

1
ka! (2a)ka

)
2k1xk1 = Zn

(
x,

1
2

, . . . ,
1
2

)
, (F48)

and thus we can use the generating function of Zn to find
an new expression for the left-hand side of Eq. (F46). We
have

exp
[

xβ + 1
2

∞∑
l=2

β l

l

]
= exβe−β/2 exp

[
1
2

∞∑
l=1

β l

l

]

=
∞∑

n=0

Zn

(
x,

1
2

, . . . ,
1
2

)
βn. (F49)

Using the equality
∑∞

l=1 β l/l = − log(1 − β) for |β| < 1,
we can recast this expression as

exβe−β/2(1 − β)−1/2 =
∞∑

n=0

Zn

(
x,

1
2

, . . . ,
1
2

)
βn. (F50)

Consequently,

∑
k(c)

( n∏
a=1

1
ka! (2a)ka

)
2k1xk1

= Zn

(
x,

1
2

, . . . ,
1
2

)

= 1
n!

dn

dβn [exβe−β/2(1 − β)−1/2]
∣∣∣∣
β=0

. (F51)

Now, let us expand exβ and e−β/2(1 − β)−1/2 as

exβ =
∞∑

m=0

xm

n!
βm, e−β/2(1 − β)−1/2 =

∞∑
m=0

gm

m!
βm.

(F52)
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These expressions allow us to write

exβe−β/2(1 − β)−1/2 =
( ∞∑

m=0

xm

n!
βm

)( ∞∑
p=0

gp

p!
βp

)

=
∞∑

n=0

1
n!

[ n∑
m=0

(
n
m

)
xmgn−m

]
βn,

(F53)

where we used the Leibniz formula for the product of two
series [33,38] to obtain the last equality. Repeated differen-
tiation with respect to β, and evaluation at β = 0, leads to
Eq. (F46). �

Using Proposition 18, we can recast the last line in
Eq. (F36) as

∑
k(c)

( N∏
a=2

1
ka! (2a)ka

)(
1

2k1k1!

)2 ∑
σ̄∈S2k1

2η(1)(σ̄ )

=
∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)
2k1

dk1

dαk1
[eα/2(1 − α)−1/2]

∣∣∣∣
α=0

.

(F54)

This expression leads to the following result.

Proposition 20. It holds that

∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)
2k1

dk1

dαk1
[eα/2(1 − α)−1/2]

∣∣∣∣
α=0

= 1.

(F55)

Proof. Let us define the differential operator

Dα =
∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)
2k1

dk1

dαk1
, (F56)

which allows us to write

∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)
2k1

dk1

dαk1
[eα/2(1 − α)−1/2]

∣∣∣∣
α=0

= Dα[eα/2(1 − α)−1/2]
∣∣∣∣
α=0

. (F57)

Using Proposition 19, we can reorganize the sum that
defines Dα to obtain

Dα =
∑
k(c)

( N∏
a=1

1
ka! (2a)ka

)
2k1

dk1

dαk1

= 1
N !

N∑
m=0

(
N
m

)
gN−m

dm

dαm . (F58)

Expanding eα/2(1 − α)−1/2 as

eα/2(1 − α)−1/2 =
∞∑

p=0

ap

p!
αp ,

ap = (2p − 1)!!
2p 1F1

(
−p;

1
2

− p;
1
2

)
, (F59)

where 1F1(a; b; c) denotes the confluent hypergeometric
function of the first kind, we have

Dα[eα/2(1 − α)−1/2]
∣∣∣∣
α=0

= 1
N !

N∑
m=0

(
N
m

)
gN−m

dm

dαm

( ∞∑
p=0

ap

p!
αp

)∣∣∣∣
α=0

= 1
N !

N∑
m=0

(
N
m

)
amgN−m. (F60)

Now, note that

[eα/2(1 − α)−1/2][e−α/2(1 − α)−1/2]

=
( ∞∑

p=0

ap

p!
αp

)( ∞∑
m=0

gm

n!
αm

)

=
∞∑

n=0

1
n!

[ n∑
m=0

(
n
m

)
amgn−m

]
αn

= (1 − α)−1, (F61)

which, combined with the fact that (1 − α)−1 = ∑∞
n=0 αn

for |α| < 1, allows us to conclude that

Dα[eα/2(1 − α)−1/2]
∣∣∣∣
α=0

= 1
N !

N∑
m=0

(
N
m

)
amgN−m = 1

(F62)

for all N . �

This concludes our proof of Eq. (F1).
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