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Abstract: Numerical modeling of gas flows in rarefied regimes is crucial in understanding fluid
behavior in microscale applications. Rarefied regimes are characterized by a decrease in molec-
ular collisions, and they lead to unusual phenomena such as gas phase separation, which is not
acknowledged in hydrodynamic equations. In this work, numerical investigation of miscible gaseous
mixtures in the rarefied regime is performed using a modified lattice Boltzmann model. Slip bound-
ary conditions are adapted to arbitrary geometries. A ray-tracing algorithm-based wall function is
implemented to model the non-equilibrium effects in the transition flow regime. The molecular free
flow defined by the Knudsen diffusion coefficient is integrated through an effective and asymmetrical
binary diffusion coefficient. The numerical model is validated with mass flow measurements through
microchannels of different cross-section shapes from the near-continuum to the transition regimes,
and gas phase separation is studied within a staggered arrangement of spheres. The influence of
porosity and mixture composition on the gas separation effect are analyzed. Numerical results high-
light the increase in the degree of gas phase separation with the rarefaction rate and the molecular
mass ratio. The various simulations also indicate that geometrical features in porous media have
a greater impact on gaseous mixtures’ effective permeability at highly rarefied regimes. Finally, a
permeability enhancement factor based on the lightest species of the gaseous mixture is derived.

Keywords: rarefied regime; gas phase separation; lattice Boltzmann method; transition regime;
Knudsen diffusion; gaseous mixture; microscale flow

1. Introduction

Interest in small-scale fluid modeling has grown in the past decades with the devel-
opment of microelectromechanical systems (MEMS), with a wide range of applications
in various domains [1–9]. Studying fluid flow at a microscopic scale is also of great in-
terest in unconventional shale gas reservoirs [10–12] or in porous heat shields for the
aerospace industry [13–17]. However, the classical Navier–Stokes equations and its un-
derlying assumptions break down at this scale [18] and are unable to correctly predict the
fluid flow behavior. Discrete effects are no longer negligible and have an impact at the
macroscopic scale. Among them, one can report non-zero fluid velocity in the vicinity
of solid walls [19,20] and underestimation of the mass flow rate with the hydrodynamic
equations compared to the experimental observations [21,22]. The invalidity of the contin-
uum hypothesis occurs when the mean free path λ defining the mean distance traveled
by a gas particle between two consecutive collisions approaches the characteristic length
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H of the domain, generally defined by the surrounding obstacles. Rarefaction is usually
characterized by the Knudsen number, which relates these two quantities [23]:

Kn = λ/H. (1)

Flow regimes are generally classified according to the following ranges of the Knudsen
number [23]: hydrodynamic (or continuum) regime for Kn < 0.001, slip flow regime for
0.001 ≤ Kn < 0.1, transition flow regime for 0.1 ≤ Kn < 10, and molecular free regime for
Kn ≥ 10. Thus, a flow regime is considered as rarefied as soon as it enters the slip flow
regime (Kn ≥ 0.001).

Although extended Navier–Stokes equations can still be applied in the slip flow regime
by capturing slip effects with a modified boundary condition [24–28], the non-equilibrium
effects appearing at higher rarefied regimes require smaller-scale representation of the fluid.

Thanks to its mesoscopic nature, the Boltzmann equation is able to recover the whole
range of rarefaction [29] and is capable of modeling the discrete effects when Kn increases.
Among the different kinetic models, the lattice Boltzmann method (LBM) has proven its
capabilities in simulating fluid flows in the rarefied regime [30–36]. By solving a simplified
and discrete form of the Boltzmann equation, the standard LBM model has been adapted
to account for the rarefied regime. The Knudsen number has been introduced in the col-
lision operator to account for the decrease in intermolecular collision frequency [37–39].
Additionally, the convenient and linear BGK collision operator [40] has been replaced by
the more stable multi-relaxation time (MRT) collision operator, which allows for additional
tunable parameters to offset non-physical slip velocity [30,36,41,42]. Slip boundary condi-
tions have been implemented [43,44] with respect to LB discretization and tuned to match
the macroscopic slip models and experimental measurements [30,45,46]. In the transition
flow regime, the non-linearity between the shear stress and rate of deformation [11,18,20]
because of local non-equilibrium effects has been modeled by introducing a wall function
to obtain a local and effective value of the dynamic viscosity. This depends either on the
distance to the wall [47,48] or a mean value obtained by averaging the non-linearity over
the cross-section of the flow [30,36,49,50].

A direct observation of the rarefied effects on fluid flow occurs in porous media, where
the permeability value is no longer a constant value intrinsic to the porous media geometry
properties but a dynamic one depending on the flow conditions. This particular behavior
was first observed by Klinkenberg while measuring mass flow through glass beads [51].
The measurements showed that the permeability value of the gases decreased with mean
pressure. These observations led to the derivation of an apparent permeability expression
whose value was greater than the intrinsic permeability calculated in the hydrodynamic
regime because of rarefied effects. Rarefied gas flow in porous media has been extensively
studied within the LB framework to compute apparent permeability [42,46,52–56].

It is noteworthy that the vast majority of the studies mentioned above have been
performed by considering pure gases. However, the gas phase contains more than one
component, and the presence of different components (and thus different molecular masses
and diameters) within the same phase modifies the collisional behavior of the gas particles,
as interspecies collisions must be taken into account [57,58]. The statement of a gaseous
mixture being homogeneous remains valid in the hydrodynamic regime. It can thus
be treated as a pure component with mixture transport properties, and simulating each
component individually would add unnecessary degrees of freedom. This behavior is
caused by the magnitude of the friction force in the hydrodynamic regime, which is larger
than the viscous shear force, so homogenization among the mixture occurs first before
being transported by the pressure gradient [59]. However, the mixture becomes gradually
heterogeneous in the rarefied regime, as each component flows in an almost independent
fashion because of the decrease in molecular collisions and momentum exchange [59]. At
a macroscopic scale, this leads to the separation of the gas phase, where each component
follow a specific velocity. This phenomenon is particularly useful for micropumping [9]
and porous microfiltration [7,60] applications and must be adequately addressed in the
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numerical model. Specifically, in porous media, the mixture composition influences the
permeability enhancement factor [61–63].

Early work in single gas phase multicomponent modeling in the rarefied regime
focused on pure diffusion problems. In the absence of shear forces, the Maxwell–Stefan
diffusion equations are extended to take Knudsen diffusion into account. This leads to the
dusty gas model (DGM), where the additional Knudsen diffusion coefficient was treated
through an effective diffusion coefficient [64]. Paradis et al. [65] explored rarefied effects on
reaction–diffusion flows in porous media. Guo et al. [66] studied the impact of geometrical
features in microporous media on gas effective diffusivity. Zheng et al. [67] applied a
higher-order LBM model in rarefied regimes to assess the impact of oxygen diffusion
in porous catalyst layers. Another approach was developed by Ma et al. [68] through
an additional collision operator accounting for Knudsen diffusion, and it has also been
implemented to study reactive flows [69].

In the case of pressure-driven mixture flows, each component must be treated using
active dynamics, i.e., the molar fraction of a given species is obtained by solving the species
equation of conservation, since its concentration within the mixture has a direct impact
on the mixture hydrodynamics. Using the active dynamics approach, Asinari et al. [70]
developed an LB model with a global collision operator related to both dynamic viscosity
as binary diffusion within the hydrodynamic regime. The two transport mechanisms are
decoupled within the operator by using a multiple relaxation time (MRT) form [71], which
enables them to tune both effects independently from each other and perform simulations
at arbitrary Schmidt numbers. Unlike early approaches for pressure-driven mixture flows
with binary diffusion [72–74], the indifferentiability principle is satisfied [70,75], i.e., the
binary mixture model reduces to a single fluid if both components are identical. The model
was later extended to the rarefied regimes by bringing the pure component adaptations to
gaseous mixture modeling [76]. The gas phase separation phenomenon was investigated
by looking at the deviation of the component concentrations compared to their hydrody-
namic behavior [77]. Based on different numerical simulations, the gas phase separation
phenomenon was mainly affected by the Knudsen number and the pressure ratio [50,77].

However, the phenomenon has not been assessed in terms of species flow rate. This is
because the kinetic approach upon on which the LB model was built recovers the mixture’s
macroscopic quantities but not necessarily the species’ ones [75]. Therefore, it may not be a
suitable approach when investigating the individual species behavior.

Recently, an alternative LB model for pressure-driven gaseous mixtures has been
developed for rarefied regimes [78]. The theoretical basis builds upon the local equilibrium
based on the species macroscopic quantities [79]. The local equilibrium accounts for self-
collisions (related to dynamic viscosity), whereas the interspecies molecular collisions
leading to binary diffusion are integrated in the LB algorithm as an external force whose
expression is based on the macroscopic Maxwell–Stefan diffusion equations [80]. The
coupling between the species through an external force removes the limit of a binary
mixture, and simulating an arbitrary number of components is straightforward [80]. In
the LB framework, it translates into N distribution functions for an N-component gaseous
mixture, and the hydrodynamic equations for each individual species are recovered through
a modified Chapman–Enskog analysis [79]. With appropriate adaptations to the rarefied
regime, numerical results exhibit similar results to the binary mixture approach [50,78].
The individual modeling of each species within the mixture also allows the gas phase
separation phenomenon to be studied in terms of species mass flow ratio, showing that the
degree of separation increases with the molecular mass ratio and rarefaction rate. However,
an empirical coefficient still remains for the wall function approach because the reported
data in the literature were only focused on pure component flows [49,50]. Also, Knudsen
diffusion has not been considered within pressure-driven flows with binary diffusion. The
increase in mass flow rate in the existing LB models is only attributed to slippage effects
and the viscosity non-linear behavior within the Knudsen layer, but they do not consider
Knudsen diffusion for pressure-driven flows with binary diffusion. However, this greatly
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contributes to the global flow rate as the regime becomes more rarefied [63,81] and should
be incorporated in the numerical model.

Yet, for pure component flows, Knudsen diffusion has not been included when per-
forming pressure-driven flows with the LBM. To the authors’ knowledge, the few mentions
in the literature compute pressure-driven flow in the hydrodynamic regime followed by
pure rarefied diffusion flow through porous media to compute the intrinsic permeability
and effective diffusivity coefficient to estimate the apparent permeability value from the
dusty gas model, respectively [52,82]. The main issue for pure component flows arises
from the direct relationship between the self-diffusion coefficient and the dynamic viscosity
with respect to the kinetic theory of gases [83,84]. Because the implemented adaptations
for rarefied effects on the dynamic viscosity also affect self-diffusion, it may be complicated
to dissociate the rarefied effects on viscous transport with diffusive transport and explicitly
express the Knudsen diffusion in the LBM algorithm. Recently, an LB model was developed
by Zhao et al. [53], built upon a modified Boltzmann equation with an additional term to
account for self-diffusion. The computed apparent permeability showed good agreement
with the different correlations for pure component flows up to the molecular free flow (up
to Kn ≃ 60), where Knudsen diffusion is the dominant transport mechanism.

The present paper aims to extend the LB model developed using the individual
species approach [78] to simulate mixture flows in the rarefied regime. The empirical aspect
of the wall function due to multicomponent flows in the initial model is replaced with
a deterministic method provided by a ray-tracing algorithm [85,86]. By separating the
ray-tracing algorithm from the structured discretization schemes commonly used with
the LBM, a more accurate mean free path, and thus rarefaction rate accounting for the
local geometry can be calculated. As there is a clear decoupling between diffusive and
viscous mechanisms in the case of mixture flows, Knudsen diffusion is taken into account
in the external diffusion force by computing an effective binary diffusion coefficient. Slip
boundary conditions for three-dimensional geometries are introduced. The rest of this
paper is organized as follows. Section 2 details the numerical model for mixture flows in
the rarefied regime with the latest modifications. Section 3 shows the numerical results
for model validation. The numerical results are compared to experimental measurements
of binary mixtures’ mass flow rates through long microchannels with trapezoidal and
rectangular sections. Then, the species permeability enhancement factors are studied for
a staggered arrangement of spheres. The influence of porosity, mixture composition, and
rarefaction rate is investigated and followed by a discussion. Section 4 draws general
conclusions based on the numerical results obtained.

2. Description of the Model

The present section extends a previous LB model for gaseous mixtures in the rarefied
regime to three-dimensional domains. The different improvements made on the model
are then discussed, including the implementation of a slip boundary condition, the use
of a ray-tracing algorithm for the effective calculation of the viscosity coefficient, and the
inclusion of Knudsen diffusion in the multicomponent model.

2.1. Individual Species-Based LB Model for Gaseous Mixtures

Following the early development of an individual species-based LB model for gaseous
mixtures [80], the discrete Boltzmann equation formulation to describe the distribution
function for a k-component fluid is as follows:

f k
i (x + ξiδt, t + δt) = f k

i (x, t) + Ωk( f k
i ) + δt Sk

i , (2)

where f k
i is the k-component discrete distribution function related to a discrete velocity

vector ξi at position x. Discrete distribution functions collide and stream on structured
grids referred as DnQm discretization schemes, with n denoting the dimensionality and m
denoting the number of discrete velocities. For three-dimensional simulations, the D3Q19
discretization scheme is used [87] and is given in Figure 1. The velocity vector components
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are expressed in terms of the lattice speed c = δx/δt. In LBM simulations, the time and
spatial steps δx and δt are usually unitary [50,88], so that c = 1.

On the right-hand side of the equation, the collision operator Ωk defines the k-
component collision operator describing molecular collisions between particles of the
same component. Gas flows in the rarefied regime are simulated; thus, the D3Q19 multi-
relaxation time (D3Q19-MRT) operator is implemented and writes as follows [87,89]:

Ωk( f k
i ) = −∑

j

(
M−1Sk M

)
ij

(
f k
j − f k,(eq)

j

)
. (3)

Figure 1. D3Q19 discretization scheme.

Because of the individual species-based approach, there are as many MRT operators as
components in the gaseous mixture. The transformation matrix M projects the k-component
distribution functions f k

i into the k-moment space so that mk
i = ∑j Mji f k

i , which is given in
reference [90]. The relaxation matrix S is built as a diagonal matrix containing the different
relaxation times:

Sk = diag
(

τk
ρ , τk

e , τk
ϵ , τk

j , τk
q , τk

j , τk
q , τk

j , τk
q , τk

s , τk
π , τk

s , τk
π , τk

s , τk
s , τk

s , τk
m, τk

m, τk
m

)−1
, (4)

where each relaxation time is related to a physical quantity described by the different
moments [91].

The MRT operator allows the different physical moments to relax independently with
one another. Among the relevant relaxation times for rarefied gas simulations, the stress
tensor-related relaxation time τk

s is related to the k-component partial kinematic viscosity νk

as follows [50,76,78]:

τk
s = 0.5 +

νk

c2
s δt

, (5)

where cs = c/
√

3 is the LB speed of sound.
In addition, the energy flux-related relaxation time τk

q is adapted to offset numerical
slip [30,33,36]:

τk
q =

8 − 1/τk
s

8
(
2 − 1/τk

s
) . (6)

The rest of the relaxation times are tunable free parameters and are taken from [90] for
optimal stability.
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Equation (3) shows the relaxation of the discrete distribution functions f k
i towards

their equilibrium counterpart f k,eq
i calculated with the following species macroscopic

quantities [80]:

f k,(eq)
i = ωiρ

k

1 +
uk · ξi

c2
s

+

(
uk · ξi

)2

2c4
s

− uk · uk

2c2
s

. (7)

The weights ωi in Equation (7) are associated with the discrete velocities as follows [87]:
ωi = 1/3 for i = 0, ωi = 1/18 for i = 1 . . . 3, 10 . . . 12, and ωi = 1/36 for i = 4 . . . 9, 13 . . . 18.

The last term in Equation (2) accounts for the source term in the LB equation, which is
a discretized form of any applied external force F. The source term is included using Guo’s
forcing scheme with respect to the MRT operator [80,92]:

Sk
i = ∑

j

[
M−1

(
I − 1

2
S
)]

ij
ωj

 ξ j − uk

c2
s

+

(
ξ j · uk

)
ξ j

c4
s

 · F, (8)

where I is the 19 × 19 identity matrix.
With the individual species approach in the LBM, two external forces are included in

the external force F. The first external force, identified as Fk
B, accounts for a pseudo-speed

of sound to allow for simulations of species with different molecular masses on the same
discretization scheme [80]:

Fk
B(x) =

(
1 − mk

mref

)
c2

s∇ρk, (9)

where mk and mref are the k-th and reference molecular masses, respectively, and the
partial density gradient vector ∇ρk is computed with the nearest neighbors isotropic finite
difference [78,80,93].

In practical LBM simulations, the lighter component is the reference one, and the other
quantities are rescaled accordingly with respect to the molecular mass ratio. From this
rescaling, a species speed of sound ck

s is derived as follows [78,80]:

ck
s = cref

s

√
mk

mref = cs

√
mk

mref =
c√
3

√
mk

mref . (10)

The second external force identified as Fk
D on a given species distribution function

accounts for the interspecies friction force describing the binary diffusion phenomenon.
By recovering the Maxwell–Stefan diffusion equation at the macroscopic level [79,80], it
writes as follows:

Fk
D = −pmix

N

∑
l=1 , l ̸=k

χkχl

Dkl

(
uk − ul

)
, (11)

where pmix is the mixture (or total pressure) and Dkl is the binary diffusion coefficient
between k and l particles.

The macroscopic quantities for each component are recovered by calculating the zeroth
and first-order moments of the species distribution function [80]:

ρk = ∑
i

f k
i (12)

ρkuk = ∑
i

ξk
i f k

i +
1
2

Fk (13)
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with Fk = Fk
B + Fk

D. The mixture quantities are obtained with a simple mixing rule [80]:

ρmix = ∑
k

ρk , ρmixumix = ∑
k

ρkuk. (14)

Finally, the partial and total pressure pk and pmix and recovered using the classical LB
isothermal equation of state and the species speed of sound given in Equation (10):

pk = ρk
(

ck
s

)2
, pmix = ∑

k
pk. (15)

The macroscopic conservation equations for each species are recovered through a
modified Chapman–Enskog analysis [79]:

∂ρk

∂t
+∇ · (ρkuk) = 0,

∂
(

ρkuk
)

∂t
+
(

ρkuk
)
· ∇uk =−∇pk +∇ ·

{
ηk
[
∇uk +

(
uk
)T
]}

− pmix
N

∑
l=1 , l ̸=k

χkχl

Dkl

(
uk − ul

)
,

(16)

where ηk is the k-component partial dynamic viscosity.

2.2. Transport Coefficients and Rarefaction Rate

Owing to the kinetic theory of gases, a relationship exists between the mean free path
of a gas molecule and its dynamic viscosity [94]. In the case of gaseous mixtures, the
mean free path reduces due to the presence of the molecules of the other components [83].
Therefore, the species mean free path is introduced as follows:

λk =

 pk

kBT
π
(

dk
)2√

2 +
N

∑
l ̸=k

pl

kBT
π
(

dkl
)2
√

mk

mkl

−1

, (17)

where kB is the Boltzmann constant and T is the gas temperature. The reduced molecular
diameter dkl and mass mkl are expressed as a function of the individual species ones, dk

and dl , respectively, and mk and ml are represented as follows:

dkl =
dk + dl

2
,

1
mkl =

1
mk +

1
ml . (18)

The mixture mean free path is also retrieved from the mixing rule [83]:

λmix =
N

∑
k=1

χkλk. (19)

At the same time, the dynamic viscosity of a pure component ηk
0 using the rigid-sphere

model of gas particles writes as follows [94]:

ηk
0 =

5
16

√
πkBmkT

π
(
dk
)2 , (20)

and the species and mixture dynamic viscosities ηk and ηmix are recovered using Wilke’s
law for gaseous mixtures [59,78,95].
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In a previous study [78], the reference Knref was based on the lighter species (of
molecular mass mref) and leads to the following:

ηk
0 =

5
√

2
16

χk pmix

√
πmk

kBT

1 +
1√
2

N

∑
l=1 , l ̸=k

χl
(

dkl
)2

χk
(
dk
)2

√
mk

mkl

KnrefH, (21)

which can be applied to retrieve a Kn-related relaxation time for τk
s .

In the limiting case of a pure component, the partial dynamic viscosity reduces to
the pure viscosity expression η0 without the superscript “k”, as there is only one single
component. Finally, Equation (20) can be approximated by the following widely used
relationship [30,36,50,76,77]:

η0 = p Kn H

√
2m

πkBT
, (22)

by noticing that 5
√

2π/16 ≃ 0.8 ≃
√

2/π, ensuring the indifferentiability principle for the
viscosity calculation.

The same theoretical derivation goes for the binary diffusion coefficient Dkl with
respect to the kinetic theory of gases leading to the following [78]:

Dkl =
3

16

√
2πkBT

mkl

χk
√

2

(
dk

dkl

)2

+
N

∑
l=1 , l ̸=k

χl

√
mk

mkl

KnrefH. (23)

More details on the derivation from the species mean free path in a mixture to the
species and mixture transport coefficients may be found in the original article [78].

2.3. Effective Viscosity Calculation with a Ray-Tracing Approach

The failure of the linear stress–strain relationship in the Knudsen layer [18,20,85] at
highly rarefied regimes is treated in the LBM by integrating a wall function Ψ to compute
an “effective” mean free path λe which takes the presence of solid walls into account [96,97].
Therefore, an “effective” dynamic viscosity ηe is obtained with respect to the kinetic theory
of gases and writes as follows [98]:

Ψ(x, λ) =
λe(x)

λ
=

ηe(x)
η

, (24)

where λ and η define the unbounded mean free path and dynamic viscosity, respectively,
and 0 ≤ ψ(x, λ) ≤ 1.

In this work, the effective mean free path is recovered through an integration procedure
using a ray-tracing approach [85,86] and is extended to gaseous mixtures.

Considering a gas molecule traveling from the position x in the direction (θ,ϕ) by
considering the spherical coordinate system (R,θ,ϕ), it is possible to compute the distance
to the wall R(θ,ϕ) through a line segment, also called a “ray”. The probability p that a
distance greater than R is traveled between two collisions is determined by a free path
distribution ψ(r):

p(R) =
∫ ∞

R
ψ(r)dr , ψ(r) =

1
λ

exp
(
− r

λ

)
, (25)

where r is the free path of the gas molecule. Along the free path of length r, the gas molecule
may either collide with a solid wall (r > R(θ, ϕ)) or with another molecule prior to the wall
(r < R(θ, ϕ)). The mean free path in the direction (θ,ϕ) becomes as follows:

λ(R(θ, ϕ)) =
∫ R(θ,ϕ)

0
rψ(r)dr +

∫ ∞

R(θ,ϕ)
R(θ, ϕ)ψ(r)dr. (26)
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When a ray does not cross a solid boundary, R = ∞ and λ(R(θ, ϕ) = λ. The effective
mean free path λe(x) is recovered through a spherical integral using Equation (26) [99]:

λe(x) =
∫ 2π

0

∫ π

0
λ(R(θ, ψ))g(θ, ϕ) sin(ϕ)dϕdθ, (27)

where g(θ, ϕ) = 1/(4π) is the uniform angular distribution function [99].
The ray-tracing approach, being initially designed for single component flows, is

adapted to gaseous mixtures by considering species wall functions Ψk(x, λk) based on
species quantities:

Ψk(x, λk) =
λk

e(x)
λk =

ηk
e (x)
ηk . (28)

The parameters listed below are set for all of the simulations performed in this work.
The angular steps for θ and ϕ were both set to ∆θ = ∆ϕ = 2π/32 to calculate Equation (27)
with the mid-point integration rule. A cutoff length of R = 10λk was chosen, after which R
was set to infinity. More details on the development and verification of this approach can
be found in the original article [85,86].

2.4. Knudsen Diffusion

Computing an effective and local viscosity value by considering the local geometry,
as described in Section 2.3, reflects on the binary diffusion coefficient as well. To perform
simulations in the rarefied regime with the same magnitude of viscous to diffusive effects,
the mixture Schmidt number (Scmix) is introduced:

Scmix =
ηmix

ρmixDkl . (29)

Therefore, an effective binary diffusion coefficient Dkl
e can be obtained by keeping

Scmix constant throughout the domain (i.e., Dkl
e = Dklηmix/Scmix). However, the effective

coefficient obtained still does not take Knudsen diffusion into account.
Knudsen diffusion is the transport mechanism when gas particles flow almost freely

without any gas–gas collisions. The only collisions affecting the motion of the gas particles
occur with the solid walls. In mixture flows, the diffusive transport mechanism is related to
interspecies interactions, and its magnitude is inversely proportional to the pressure [80,94].
In highly rarefied regimes, the expression for the binary diffusion coefficient no longer
holds true as interspecies collisions become rare, and the main diffusion mechanism is ruled
by Knudsen diffusion. Therefore, the k-component effective binary diffusion coefficient Dkl

e
must verify the following limiting values within the whole range of rarefaction:

lim
Kn→0

Dkl
e = Dkl ,

lim
Kn→∞

Dkl
e = Dk

K.
(30)

where Dk
K is the Knudsen diffusion coefficient, which is expresses as follows:

Dk
K =

H
3

√
8kBT
πmk . (31)

An interpolation model for Dkl
e verifying the limit values is proposed by Dongari et al. [84]:

Dkl
e =

[(
Dkl
)c

+
(

Dk
K

)c] 1
c
, (32)

with c varying between −2 and −1 according to reference [84], with comparable accuracy.
In the current LBM model, c = −2 was chosen to best fit the reference results.



Fluids 2024, 9, 237 10 of 26

2.5. Slip Boundary Conditions for Arbitrary Geometries

Among the existing slip boundary conditions in the LBM, the combined bounce-back
and specular reflection (CBBSR) has been preferred based on previous observations [78] to
maintain the related boundary condition coefficients within 0 and 1. A discrete distribution
function undergoing the CBBSR boundary condition is updated according to the following
expression [11,44,100]:

f k
i,CBBSR(x, t + δt) = rk f k∗

i,BB(x, t) + (1 − r) f k∗
i,SR(x, t), (33)

where rk is the boundary coefficient for the CBBSR scheme. Its value ranges from 0 to 1,
and it defines the given proportion of the post-collision distribution function coming from
bounce-back behavior (identified by f k∗

i,BB) or specular reflection behavior (identified by
f k∗
i,SR). The different distribution functions are related to one another with respect to their

discrete velocities as follows: 
ξi,CBBSR = −ξi,BB,

ξi,CBBSR · n = −ξi,SR · n,

ξi,CBBSR · t = ξi,SR · t,

(34)

where n and t are the normal and tangential vectors to the solid wall, respectively. Equation (34)
shows that the boundary condition is strongly dependent on the wall orientation, and gen-
eralizing it to arbitrary geometries is not straightforward. From this observation, a general
implementation of the CBBSR boundary condition is proposed. For ease of understanding,
the implementation is explained using the D2Q9 discretization stencil, but the approach for
three-dimensional geometries is similar.

Figure 2 exhibits a simulation domain containing both fluid and solid nodes. Fluid
nodes undergoing the CBBSR boundary condition are highlighted in light gray. The vectors
of the surrounding solid nodes to the boundary fluid nodes are also displayed. Following
the D2Q9 discretization stencil, the unknown distribution functions in the red color pointing
towards the fluid domain are updated through the following steps:

1. The distribution functions pointing in the opposite direction to each solid wall are
unknown and undergo CBBSR treatment given by Equation (33);

2. In the case where a fluid node has only a solid node in the diagonal direction, e.g., the
“(b)” boundary fluid node (labeled in the top left corner in Figure 2), the unknown
distribution function is updated with bounce-back treatment;

3. The unknown distribution functions that have been calculated several times because
of the CBBSR boundary condition, e.g., for the “(a)” boundary fluid node, are averaged
by the number of times it has been updated.

For the “(a)” boundary fluid node, the discrete functions f k
1 , f k

2 , and f k
8 follow Equation (33)

because of n1, and the same goes for f k
2 , f k

3 , and f k
4 because of n2. As f k

2 is calculated twice, the
post-CBBSR distribution functions are obtained using Equation (34):

f k
1,CBBSR = f k∗

5 ,

f k
2,CBBSR = rk f k∗

6 +
(1 − rk)

2

(
f k∗
4 + f k∗

8

)
,

f k
3,CBBSR = f k∗

7 ,

f k
4,CBBSR = rk f k∗

8 + (1 − rk) f k∗
6 ,

f k
8,CBBSR = rk f k∗

4 + (1 − rk) f k∗
6 .

(35)
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Figure 2. Scheme of the CBBSR boundary condition for arbitrary geometries. Dark gray color
accounts for solid nodes, light gray color accounts for fluid boundary nodes, white color accounts for
fluid nodes in the bulk domain.

In rarefied regimes, the species slip velocity magnitude is described by the Maxwell
macroscopic slip model [19,78]:

uk
s = Ckλk ∂u

∂n

∣∣∣∣
wall

, (36)

where Ck is the k-component velocity slip coefficient, and ∂u/∂n|wall is the velocity gradient
tangential to the wall. As a first approximation, the species velocity slip coefficients Ck

are considered equal to the mixture velocity slip coefficient Cmix and calculated with the
linearized Boltzmann equation [78,101].

Finally, the rarefied coefficient rk is computed as follows [78]:

rk =
Cmixλk

Cmixλk + 3νk , (37)

where νk = ηk/ρk is the k-component kinematic viscosity.

3. Numerical Results

Simulation results for different cases are displayed in this section. For the sake of
simplicity, all the gaseous mixtures are only composed of two components (N = 2) and
restricted to monoatomic gases based on the available experimental data. Verification and
validation of the model are first performed through microchannels in the rarefied regime.
The inclusion of Knudsen diffusion and the relevancy of a geometry-based wall function
are highlighted by comparing the numerical results with the previous developed models.
The final case exhibits a simple porous media to investigate the geometrical effects on
mixture flow and gas phase separation phenomena in the rarefied regime.

3.1. Model Verification

The numerical model is initially verified for an equimolar He-Ar mixture flow in
a circular microchannel. For this aim, the species velocity profiles are compared to the
analytical solutions developed by Kerkhof et al. [59], obtained by solving Equation (16)
with a slip boundary condition. The molecular characteristics of interest are listed in
Table 1.
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Table 1. Molecular characteristics of the gaseous mixtures from the hard-sphere model [102].

Property Unit He Ne Ar Kr Xe

Mass [g/mol] 4.003 20.18 39.94 83.80 131.3
Diameter 1010×[m] 2.745 2.602 3.659 4.199 4.939

The simulated flow is pressure driven by applying the Zou and He pressure boundary
conditions [103] at the inlet and outlet of the domain to ensure a low pressure ratio to avoid
compressibility effects: Rp = pmix

in /pmix
out = 1.01. The rarefaction rate is set to Knmix = 0.1,

whereas the generalized CBBSR boundary condition described in Section 2.5 is applied at
the fluid–solid interface. The wall function and Knudsen diffusion are both implemented.
Finally, to avoid numerical defects that may occur in the rarefied regime, a regularization
procedure [104] is initiated at the pre-collision step of the LBM algorithm. The microchannel
is discretized by nx = 500 nodes along the x-direction where the pressure gradient is
applied. The radius of the microchannel is discretized by R = 10 nodes.

The normalized axial velocity profiles for He and Ar against the normalized radius
r∗ = r/R are displayed in Figure 3 against their analytical counterpart. The normalization
of the velocities is given by the following expression:

uk = uk∗
√

kBT
2mmix

∇pmix

pmix , (38)

where mmix = χHemHe + χArmAr is the mixture molecular mass.
The numerical profiles are in good agreement with the analytical solution obtained

with the extended macroscopic equations. The species velocity profiles are almost identical,
indicating almost no separation phenomenon. In the vicinity of the walls, there is a slight
deviation between the analytical solution and the numerical model because of the different
modeling of the slip boundary condition [59]. However, the present numerical LBM is able
to precisely capture the bulk velocities of each species.
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Figure 3. Normalized axial velocity of He and Ar of an equimolar He-Ar mixture in a cylindrical
microchannel at Knmix = 0.1. The analytical solution is extracted from Kerkhof et al. [59].

In addition, a convergence study is conducted to investigate the accuracy of the model.
Different mesh sizes are used by discretizing the radius of the microchannel from 5 to
40 nodes and by rescaling the pressure ratio accordingly to keep the velocities constant. The
relative error for the species velocity is computed with the L2-norm (see reference [33] for
detailed methodology on the convergence study). Figure 4 gives the relative error for the
species velocities at the different mesh sizes. The results exhibit a first-order convergence
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rate, consistent with the other observations in the literature when simulating flows in the
rarefied regime [31,33].

Figure 4. Velocity L2-norm relative error of He and Ar of an equimolar He-Ar mixture in a cylindrical
microchannel at Knmix = 0.1.

The numerical model is thus able to properly recover the respective velocities of each
species of the mixture and is consistent with the analytical solution in the slip flow regime.
The next test case investigates the capabilities of the model at higher rarefied regimes.

3.2. Mixture Mass Flow Rate Calculation

A validation test case is performed in long microchannels with different cross-section
shapes to assess the capabilities of the model at high Kn. The reference data are taken
from the experimental measurements of Pitakarnnop et al. [105] for the rectangular cross-
section and Szalmas et al. [106] for the trapezoidal one. In their work, the mixture flow
rate is measured for various binary mixtures at different compositions using the constant
volume method [106]. For this purpose, the outlet pressure pmix

out is imposed at 2, 8, and
15 kPa, whereas the pressure ratio Rp is varied. To validate the current numerical model,
the mixture flow considered is an equimolar mixture of He-Ar. The dimensions of the
rectangular and trapezoidal cross-sections are given in Table 2, and the length of the
microchannels is 5 mm.

Table 2. Dimensions and domain discretizations for rectangular [105] and trapezoidal [106] cross-
section microchannels.

Cross-Section Scheme
Physical LBM Discretization

Parameters nx × ny × nz

800 × 224 × 20
H = 1.88µm
W = 21.2µm

H = 1.90µm

800 × 21 × 55
B = 5.38µm
b = 2.69µm
β = 54.74o
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Some adaptations must be made to model the experimental setup numerically, as
simulating the entire microchannel would be computationally costly. Thus, the computa-
tional domain only simulates a subsection of the whole microchannel, and the simulation
parameters are rescaled accordingly to recover the same pressure gradient. The simu-
lated subsection of the long microchannel is taken at its center so that the mean simulated
pressure is equal to the mean pressure in the actual microchannel. The resulting domain
discretizations for the two microchannels are also given in Table 2.

In addition, simulations are performed with alternative versions of the developed
model to highlight the relevancy of the newly introduced developments. The first al-
ternative version removes Knudsen diffusion (i.e., Dk

K = 0 so that Dkl
e = Dkl), and the

second one keeps the Bosanquet-type wall function from a previous iteration of the nu-
merical model [78], without Knudsen diffusion again. The versions will be identified as
“LBM-noKD” and “LBM-Bosanquet”, respectively, in the subsequent figures, whereas the
original model will be labeled as “Present LBM”.

The mass flow rates for the He-Ar mixture are first plotted for the trapezoidal mi-
crochannel against the pressure ratio for an outlet pressure of 15 kPa in Figure 5 and 8 kPa
in Figure 6. The experimental results extracted from Szalmas et al. [106] exhibit error bars
to account for measurement uncertainty. As expected, the mixture mass flow rate increases
with the pressure ratio. When pmix

out = 15 kPa, the inclusion of Knudsen diffusion has
little effect on the mass flow rate calculation. This can be explained by the low rarefied
regime, as Knmix ≃ 0.27 at the outlet of the domain based on the hydraulic diameter
of the trapezoidal microchannel. In this regime, Knudsen diffusion does not contribute
significantly to the global flow rate. Thus, numerical results fall within the error margin of
the experimental measurements, even without considering Knudsen diffusion. However,
the implementation of a local wall function still remains relevant, as the mass flow rate is
underestimated with the Bosanquet-type wall function. At 8 kPa, the regime becomes more
rarefied (Knmix ≃ 0.51), and the deviation becomes significant when integrating Knudsen
diffusion or not. Despite the increasing difference in the mass flow rate calculation, the
numerical results from the original model are in good agreement with the experimental
data with or without Knudsen diffusion. To emphasize the increasing contribution of
Knudsen diffusion, we perform similar simulations at higher rarefied regimes but for the
rectangular cross-section microchannel.

Figure 5. Mass flow rates of an equimolar He-Ar mixture against the pressure ratio at an outlet
pressure of 15 kPa in a trapezoidal cross-section microchannel. Experimental results are extracted
from Szalmas et al. [106].



Fluids 2024, 9, 237 15 of 26

Figure 6. Mass flow rates of an equimolar He-Ar mixture against the pressure ratio at an outlet
pressure of 8 kPa in a trapezoidal cross-section microchannel. Experimental results are extracted from
Szalmas et al. [106].

Mass flow rates calculated using the different numerical models are plotted for the
rectangular cross-section microchannel against the pressure ratio for an outlet pressure
pmix

out = 15 kPa in Figure 7 and pmix
out = 2 kPa in Figure 8. We notice similar trends between

the two types of microchannels. With the Bosanquet-type wall function, the mixture mass
flow rate is largely underestimated for pmix

out = 15 kPa, whereas the two other models are
in good agreement with the experimental results. Again, the small influence of Knudsen
diffusion in mass flow rate is explained by the low rarefaction rate of the experimental
measurements (Knmix ≃ 0.35 based on the height of the microchannel). However, at
2 kPa, the inclusion of Knudsen diffusion becomes even more necessary, as the transport
mechanism is almost dominant at this rarefaction rate (Knmix ≃ 2.6). Numerical results
obtained using the “LBM-noKD” model deviate even more from the experimental data
than for the trapezoidal microchannel, as the rarefaction rate is even greater. Therefore, it
is crucial to include Knudsen diffusion as well as implementing a local wall function to
simulate mixture flows in the transition flow regime, which is achieved by the present LBM.

Figure 7. Mass flow rates of an equimolar He-Ar mixture against the pressure ratio at an outlet
pressure of 15 kPa in a rectangular cross-section microchannel. Experimental results are extracted
from Pitakarnnop et al. [105].
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Figure 8. Mass flow rates of an equimolar He-Ar mixture against the pressure ratio at an outlet
pressure of 2 kPa in a rectangular cross-section microchannel. Experimental results are extracted from
Pitakarnnop et al. [105].

3.3. Rarefied Multicomponent Flow in Porous Media

As rarefied flow in porous media has been investigated for pure component flows [52–56],
the present test case extends the study to gaseous mixtures. For this purpose, the numerical
model is applied for binary gaseous flows in the rarefied regime through a 3D porous geometry
built by arranging spheres of radius R in a staggered fashion, as displayed in Figure 9. Inlet
and outlet fluid buffers are joined to the porous structure to ensure a fully developed flow.
The gaseous mixtures flow through the porous media via a pressure gradient along the
x-direction imposed by pressure boundary conditions as in Section 3.1, whereas periodic
boundary conditions are applied on the remaining sides of the domain. The flow behavior
in microporous media for the species and the mixture in microporous media is evaluated
based on its permeability. In the hydrodynamic regime, permeability can be computed using
Darcy’s law as long as inertial effects are neglected [107]. For gaseous mixtures, the species
and mixture apparent permeabilities Kk and Kmix are related to their respective velocities,
so that:

Kmix = ηmixūmix ∆pmix

L
, (39)

Kk = ηmixūk ∆pmix

L
, (40)

where ūmix and ūk are the average streamwise mixture and species velocities, respectively.

Figure 9. Microporous geometry.
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A preliminary study is conducted to set the domain discretization so that permeability
values are mesh independent. Multicomponent and rarefied effects are first neglected.
Thus, gas permeability is computed at different mesh sizes in the hydrodynamic regime
and for a single component. Simulations are performed for porosities ϵ = 0.4, 0.6 and 0.8
by varying the radius of the spheres without changing their location. The permeability
values are displayed in Figure 10 and are compared with the reference data from Jeong
et al. [107] obtained for the same geometry. The subscript “0” in Figure 10 stands for the
intrinsic permeability computed in the hydrodynamic regime as opposed to the apparent
permeability. Its value is normalized with the diameter of the sphere D = 2R, so that
K∗

0 = K0/D2. The results are in good agreement with the correlation, even for the coarsest
grid, regardless of the porosity. When compared to the finest grid, the relative numerical
error on the permeability is smaller than 5% for the 100 × 100 × 100 discretization for all
the porosities. The width of the buffer fluid zone is set to 20 nodes, so the total simulation
domain has 140 × 100 × 100 nodes.

Figure 10. Normalized intrinsic permeability against porosity for different mesh sizes for the 3D
staggered sphere geometry. The 3D correlation is taken from Jeong et al. [107].

Previous studies have theoretically calculated the permeability enhancement factor
for gaseous mixture flows [61,62], but they mainly focused on the influence of the mo-
lar fraction or the addition of a third component. In this present study, the effects of
porosity and mixture composition on the species and mixture apparent permeabilities are
numerically investigated.

3.3.1. Influence of Porosity

As porosity changes, the characteristic length varies as well. Therefore, under the
same flow conditions, the rarefaction effects may have a different magnitude depending on
whether the solid structure has a low or a high porosity, affecting the species and mixture
permeability. Here, an equimolar He-Ar flow is simulated through the 3D staggered sphere
structure with a porosity ranging from 0.4 to 0.8. The simulations are performed for a
mixture Knudsen number Knmix ranging from 0.005 to 1.5 to cover a wide range of flow
regimes. Unlike microchannel flows, the characteristic length to compute Knmix must rely
on a relevant length that describes the porous media. We define the geometry based on its
mean pore diameter dp given by the following expression [108]:

dp =

√
8K0Co

τ2
orϵ

, (41)

where Co and τor are the constriction and the tortuosity of the porous media, respectively,
defined in the reference article [108].
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To assess the impact of rarefaction on the same scale for all geometries, the numerical
results are presented for the mixture permeability enhancement factor fc, which accounts
for the increase in permeability due to rarefaction:

fc = Kmix/Kmix
0 , (42)

where Kmix
0 is the mixture intrinsic permeability in the hydrodynamic regime.

Figure 11 shows the evolution of the mixture permeability enhancement factor fc for
the He-Ar equimolar mixture against Knmix for the different target porosities. The single
component correlation is also plotted for comparison [108]. We can see that fc increases
with Knmix for all porosities, which is expected, as rarefaction tend to offset the porous
media drag force with the slippage effects. The increase in Knmix results in a larger mean
free path, so the gas particles flow more freely and are less subject to gas–solid collisions
that might slow them down. Based on the numerical results, we can identify two distinct
behaviors for the mixture flow in porous media. When Knmix < 0.1, fc increases with Knmix

at the same rate, regardless of the porosity. This is in agreement with the single component
results [108], where porosity has no influence on the rate of fc with Knmix. Therefore, the
mixture behaves like a single component flow. When Knmix is greater than 0.1, the rate of
increase of fc decreases with porosity. This can be qualitatively explained by the increasing
presence of solid walls. Indeed, since the specific surface of the porous media increases
with porosity, more slippage occurs, so the rarefied flow deviates even more from the
hydrodynamic behavior, resulting in a greater fc. However, slippage effects also exist for
pure component flows, and is not sufficient to solely explain the mixture flow behavior in
the transition flow regime. Furthermore, the fc of the mixture flow is consistently lower
than the single component correlation, regardless of the porosity.

Figure 11. Mixture permeability enhancement factor for the He-Ar mixture against Knmix at differ-
ent porosities.

To further investigate the behavior at highly rarefied regimes, we look at the behavior
of each individual species of the mixture by displaying the species permeability ratio
RK = KHe/KAr in Figure 12. The ratio increases with Knmix, regardless of porosity, mean-
ing that the lighter species He flows faster than the heavier species Ar. This behavior
describing the gas phase separation is consistent with the observations made for simple
microchannels [78,109,110]. The two types of behavior seen in Figure 11 are also identified
here. Indeed, the homogeneous behavior of the mixture is validated, as the value of RK
approaches unity when Knmix < 0.1. An increase in RK with Knmix is observed above 0.1,
indicating an increase in the gas separation phenomenon. The degree of separation at a
given Knmix is greater at a high porosity, meaning that the presence of porous media has a
mitigating effect on gas phase separation. The observations made in Figure 12 may explain
the rate of fc with Knmix in Figure 11. Indeed, the lowest porosity (ϵ = 0.4) exhibits the
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lowest degree of separation, meaning that the mixture flow is less heterogeneous than for
the highest porosity (ϵ = 0.8). Therefore, the rate of increase in fc related to the mixture’s
apparent permeability could be related to the degree of heterogeneity of the mixture, as
shown in Figure 12.

Figure 12. Species permeability ratio for the He-Ar mixture against Knmix at different porosities.

Simulations at different porosities exhibit a dependency of the mixture permeability
enhancement factor on geometrical features for mixture flows, especially at high rarefied
regimes. Therefore, it is crucial to take multicomponent effects into account for gaseous
mixture flows in the rarefied regime to estimate the mixture’s apparent permeability.

3.3.2. Influence of Mixture Composition

Previous studies have reportedly noticed the increase in gas phase separation
with increasing molecular mass ratios at a given rarefaction rate for simple micro-
channels [77,78,109]. The present simulations extend the investigation to microporous
media. Equimolar mixtures of He-Ne, He-Ar, He-Kr, and He-Xe with molecular mass
ratios Rm ranging from 5 to 32 are simulated from the hydrodynamic to the transition flow
regimes. The molecular properties of the different components are listed in Table 1. The
porous geometry given in Figure 9 is set to ϵ = 0.7 and remains identical throughout the
different mixtures.

The evolution of the permeability enhancement factor is plotted against Knmix in
Figure 13. Like in Section 3.3.1, fc increases with Knmix for all mixtures, and its evolution
among the mixtures matches the previous observations. The rate of increase in fc is similar
for all mixtures when Knmix < 0.1. Thus, all mixtures are equally affected by the rarefied
effects, regardless of the molecular mass ratio. As rarefaction increases, mixtures gradually
undergo different values of fc at a given Knmix, which increases with Rm. However, the
molecular mass ratio seems to have less influence on the mixture’s apparent permeability
than porosity, as the values of fc at high Knmix are less spread for the different mixtures
despite a wide range of Rm.

We follow up the analysis by plotting the species permeability ratios (the permeability
of the lighter component is the numerator, which is KHe in all mixtures) for the different
mixtures in Figure 14. We notice that the gas phase separation is larger for mixtures with
greater molecular mass ratios. Also, the separation phenomenon seems to appear at a
earlier rarefaction rate for mixtures of species with disparate masses, which is in agreement
with mixture flow behavior in microchannels [78,109]. Again, the degree of separation
is almost negligible for all mixtures. When Knmix > 0.1, RK increases with Knmix at a
different rate, and the degree of gas phase separation is the greatest for the mixture with the
largest molecular mass ratio. One may notice that the trend between fc and RK observed
for the porosity is the opposite for the molecular mass ratio: at a given Knmix, the mixture
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with the greatest value of RK also has the greatest value of fc. The mismatching evolution
with the observation in Section 3.3.1 can be explained as we return in the physical domain.

Figure 13. Mixture permeability enhancement factor at ϵ = 0.7 against Knmix for equimolar binary
gaseous mixtures of different molecular masses.

Figure 14. Species permeability ratio at ϵ = 0.7 against Knmix for equimolar binary gaseous mixtures
of different molecular masses.

Simulations in LBM are conducted using lattice units, and a unit conversion procedure
is required to extract the macroscopic physical quantities. The LBM algorithm benefits
from the similarity law in fluid mechanics to simulate physical rarefied flows due to the
use of Knmix. However, based on the definition of Knmix, simulating rarefied gaseous
mixtures at the same Knmix does not mean that the physical flow parameters are identical
among the different mixtures. To illustrate this effect, we assume that the mean pore
diameter is dp = 10µm and the temperature is set to T = 300 K. To achieve Knmix = 1,
Equations (17) and (19) recover a total pressure pmix = 12.2 kPa for the He-Ne mixture
but only pmix = 7.9 kPa for the He-Xe mixture. As the He-Xe mixture flows through the
microporous media with a lower pressure, the flow is effectively more rarefied, resulting in
a higher permeability enhancement factor than for the He-Ne mixture. To recover the same
flow parameters when computing using the same dimensionless number, the results are
now displayed against KnHe

pure = λHe
pure/dp, where the Knudsen number based on the mean

free path of He as a pure component λHe
pure is defined as follows:

λHe
pure =

kBT
√

2π(dHe)
2 pmix

. (43)
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Thus, plotting the numerical results against KnHe
pure ensures the same flow parameters

for the same reference rarefaction rate. It is worth noting that this issue on Knmix does
not exist in Section 3.3.1, since the simulations are performed for the same mixture. The
numerical results in Figures 13 and 14 are now plotted against KnHe

pure in Figures 15 and 16,
respectively. This new display shows that all mixtures have a similar variation in the
permeability enhancement factor against KnHe

pure (directly related to flow pressure). Within
the frame of these simulations, it would mean that the mixture’s apparent permeability
increases with decreasing pressure, independent of the mixture composition. However,
all mixtures still exhibit different behaviors towards rarefaction as we look at the value of
RK in Figure 16. Indeed, gas phase separation is still observed, as the ratio increases with
rarefaction rate, and the degree of separation increases with Rm at a given rarefaction rate
(or pressure). By ensuring the same physical flow parameters for the same dimensionless
number, the mixture composition seems to have little effect on the evolution of the mixture’s
apparent permeability in rarefied regimes, although the species velocity difference still
increases with the molecular mass ratio. Following the single component works [46,56,108],
a second-order correlation for the permeability enhancement factor fc can be derived for
gaseous mixtures:

fc = 1 + aKnHe
pure + b

(
KnHe

pure

)2
(44)

With the present LBM results, the correlated coefficients are a = 2.75 and b = −0.37
with R2 = 0.995. One may notice that Equation (44) has been developed using He as
the lightest species. Thus, further work using another reference species may lead to
other coefficients.

Figure 15. Mixture permeability enhancement factor fc at ϵ = 0.7 against KnHe
pure for equimolar

binary gaseous mixtures of different molecular masses.

Figure 16. Species permeability ratio at ϵ = 0.7 against KnHe
pure for equimolar binary gaseous mixtures

of different molecular masses.
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4. Conclusions

An investigation of gaseous mixture flows in microporous media in the rarefied regime
was performed using a individual species-based lattice Boltzmann model. The algorithm
was improved from a former development by replacing the empirical consideration of the
effective viscosity in the transition flow regime with a geometrically based wall function
with a ray-tracing approach. The slip boundary conditions were also adapted to arbitrary
geometries to enable microporous media simulations, and Knudsen diffusion was included
using an effective binary diffusion coefficient to model the flow behavior in highly rarefied
regimes. Those improvements enabled us to perform three-dimensional simulations. The
numerical model was first verified through a long circular microchannel for an equimolar
He-Ar mixture in the slip flow regime. A first-order convergence rate was found for the
current LBM model compared to the analytical solutions obtained by solving the extended
macroscopic equations with slip boundary conditions. The model was then validated
by calculating the mixture’s mass flow rate through long rectangular and trapezoidal
microchannels. A comparison with previous iterations of the numerical model shows
that the mass flow rate is underestimated when Knudsen diffusion is not included. It is
noteworthy that model validation for gaseous mixtures in the rarefied regime has not been
previously reported in the literature within the LB framework to the authors’ knowledge.

Finally, a qualitative study investigated the influence of porosity and mixture com-
position on the species and mixture permeability in a structured arrangement of spheres.
The different behavior of a gaseous mixture compared to a single component flow in mi-
croporous media at highly rarefied regimes was exhibited. Numerical results showed that
gaseous mixtures flow like pure component flows at low rarefied regimes until Knmix ≃ 0.1,
regardless of the porosity or mixture composition. The reduction to a single component
flow was validated when looking at the species permeability ratio. Its value was near
unity, meaning that the mixture was homogeneous and the species velocities were equal.
At higher rarefied regimes, the permeability enhancement factor is affected by porosity.
It increases at a higher rate when the regime becomes more rarefied for a low-porosity
geometry. Also, at a given rarefaction rate, the gas phase separation is greater when the
porosity is low. Regarding the mixture composition, numerical results for different equimo-
lar mixtures at various molecular mass ratios showed that the gas separation phenomenon
increases with molecular mass ratio. This observation is in agreement with the ones made
for simple microchannels. The permeability enhancement factor increases at a higher rate
for the mixture with the largest molecular mass ratio, thus resulting in the greatest degree
of separation. This trend is inverted compared to the one observed while varying porosity.
However, the redefinition of the rarefaction rate to recover similar physical flow param-
eters shows that the composition of the mixture has almost no influence on the mixture
permeability enhancement factor, even though gas phase separation appears at highly
rarefied regimes.

The increasing species permeability ratio in the rarefied regime highlights the porous
media selectivity and could help the design of microporous media to control the magnitude
of the separation process. However, further investigation must be carefully conducted
to predict the mixture flow behavior in microporous media. One of the key issues to
address remains the slip behavior at the solid walls of each individual species, which was
approximated based on the mixture slip coefficient in the current model. Because gas–solid
interactions have an increasing contribution to the global flow at rarefied regimes, they
must be carefully modeled. Future work could focus on developing a boundary condition
to accurately recover the physical slip velocity of each species in gaseous mixtures and
extend the study to mixtures with more than two components. The effects of additional
degrees of freedom in polyatomic gas within rarefied flows of mixtures could also be
investigated to further improve the numerical model.
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