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COINCIDENCE DE CARRES NOIRS SUR UNE CGRILLE QUADRILLEE m x n

paI‘

w5 ) CONSULTER
p— SUR PLACE

Sur une grille quadrillée formée de m x n carrés, m en

hauteur et n en longueur, quelques-uns des carrés sont noircis et

d'autres laissés blancs.

On peut représenter une telle grille de m x n carrés noirs

: T %

et blancs comme une suite de n vecteurs colonnes VT’VZ""’Vn ou
. : - m

Vi pour i = 1,2,...,n appartient a 1'ensemble Em; E étant le

produit cartésien de 1'ensemble {0,1}, m fois avec lui-méme.
Dans cette représentation, la composante 1 d'un vecteur indiquera un

carré noir et la composante 0 un carré blanc.

On dira que deux colonnes consécutives sont liées si le produit
scalaire des vecteurs représentant ces colonnes est non-nul. On définira
un quasi-agrégat comme un ensemble de colonnes liées consécutivement et
si le nombre de colonnes liées consécutivement est k, on dira que le

quasi-agrégat est de taille k.

Nous voulons dénombrer les différents quasi-agrégats de taille k.
Nous donnerons une premiére relation permettant de calculer ce nombre.
Un peu plus loin dans le texte, nous tiendrons compte du nombre t, (k <t < km),
de carrés noirs dans un quasi-agrigat de taille k. Nous donnerons une rela-
tion permettant lc calcul du nombre de quasi-agrégats différents de taille k

le calcul du nombre ayant t carrés noirs.



Le cas m = 2 est en partie traité dans le livre de S.A. Roach
[1] sur le dénombrement d'agrégats aléatoires, mais on ne trouve pas de
relation simple donnant le nombre d'agrégats différents de taille k. Un
agrégat sur une grille est constitué en reliant entre eux les carrés
noirs adjacents, soit horizontalement, soit verticalement. Un agrégat
est un quasi-agrégat mais 1l'inverse est faux. Dans le cas m = 2,
c'est la méme chose, mais pour m > 2 il peut y avoir chevauchement

d'agrégats, ce qui explique la différence entre les deux termes.

11- NOTATION

Comme nous l'avons précédemment indiqué, une grille formée de
m x n carrés dont certains sont noircis peut €tre vue comme une suite
de n vecteurs colonnes de E". Nous pouvons définir d'une maniére
précise les différents quasi-agrégats que nous dénombrerons par la

suite.

Déginitions: 1) On désignera par A(k) 1'ensemble des quasi-agrégats

de taille k, c'est-a-dire
A(K) = {Vl’Vz""’Vk|Vi‘Vi+1 #0 pour i =1,2,...,k-1}.
La cardinalité de cet ensemble sera notée par a(k).

2) L'ensemble Aij(k) est constitué des quasi-agrégats de
taille k dont 1'extrémité gauche a 1 carrés noirs et
celle de droite j carrés noirs (1 <isS<m, 1<j<m.
On notera la cardinalité de cct censemble par uij(k).

3) L'ensemble des quasi-agrégats de taille k ayant t

carrés noirs (k <t < mk) sera noté A(k,t) et sa

cardinalité par a(k,t).



4) Finalement, Aij(k,t) est 1'ensemble des quasi-agrégats
de taille k ayant t carrés noirs (k <t <mk) dont
1'extrémité gauche a i carrés noirs et celle de droite
j carrés noirs. La cardinalité de cet ensemble sera

té " »
notée aiJ(k,t)

Nous voulons déterminer les quantités a(k) et a(k,t). 1I1
est immédiat que les ensembles Aij(k) constituent une partition de
A(k) de sorte que a(k) = igl jEl aij(k). Les ensembles A(k,t)
forment €galement une partition de A(k) et a(k) = :g; a(k,t). Les
ensembles Aij(k,t) constituent, quant a eux, une partition de A(k,t)
m m

de sorte que af(k,t) = aij(k,t).

i=1l j=1
Nous désignerons par M(k) et M(k,t) les matrices dont les

€léments sont respectivement aij(k) et aij(k,t).

ITI- CARDINALITE DE A(R)

Si un vecteur V appartenant a E" est 4 1'extrémité droite
d'un quasi-agrégat et que celui-ci contienne r carrés noirs, on pourra
augmenter la taille de ce quasi-agrégat de 1 si on ajoute un vecteur U
de E" tel que U-V # 0. Si on veut que ce nouveau quasi-agrégat se

termine a droite par j carrés noirs, le nombre total de vecteurs U

satisfaisant ces deux conditions est: ?} - Em;r; = G Notons par C
\ i \ ;I
la matrice m x m dont les €léments sont er' On peut vérifier que le
5 . . N malom : + -
déterminant de cette matrice est (-1) ¢&levé a la puissance (m l)(2+2) 10.

On peut démontrer:



Relation 1: Pour k > 1, M(k) = M(k-1) C et M(1) =

m |
Ly ij)m xm

Cette relation permet de calculer aij(k) et a(k). On peut

obtenir une autre relation pour le calcul des a(k).

Relation 2: Pour k > m, on a

ol

la

Démonsthation:

Pour

ak) = T (-p™Hd A a(kei-m)

1

I o1
[

Xi est la somme des mineurs principaux d'ordre m-i de

matrice C.

Soit ¢(A) 1le polyndme caractéristique de la matrice C.

On sait par le théoréme de Cayley-Hamilton, que ¢(C) = 0
oi ¢(C) = 'ZO b.C

b= -D™ et by est égal 3 (-1)*'
1=

fois la somme des mineurs principaux d'ordre m-i de la

matrice C. Nous pouvons écrire que

(_1)m+1 bicl

()
I
el
e
—

i=0

et en multipliant & gauche par la matrice M(k-m), (k > m)
m-1

ona Mk-m) C" =z (-1)™! b.M(k-m) C'. La relation
< m-1 m+1
précédente donne M(k) = I (-1) biM(k-m+i). La somme
i=0

des €léments de la matrice M(k) est:

afky = E (-1f"He A, a(k-m+i)

1=0

e
—

ce qui termine la démonstration.

k <m, on doit utiliser la premiére relation, mais pour

k > m, la deuxiéme relation permet un calcul plus rapide de a(k).



Par exemple, on peut vérifier que pour m = 4,
a(l) = 2*-1 =15 , a(2) =175 , a(3) = 2,129 et a(4) = 24,793

et a(k) = 1la(k-1) + 14a(k-2) - 5a(k-3) - a(k-4)

Donnons également le résultat pour m = 2, ce qui permet de
calculer les différents agrégats de taille k beaucoup plus facilement

que dans le livre de S.A. Roach [ 1]

a(l) =3 , a(2) =7 et a(k) = 2a(k-1) + a(k-2)

V- CARDINALITE DE Alk,%)

Considérons un vecteur aléatoire V prenant ses valeurs dans

E™. La loi de ce vecteur aléatoire est

PL{V|]v-V = i}] = (T} pigni

~

pour i = 0,1,2,...,m ou p+q =1 et 0 < p <1, Ceci revient a noircir

un carré avec une probabilité p et 3 le laisser blanc avec une probabilité q.

Soit une suite de vecteurs aléatoires indépendants et suivant la

méme loi citée plus haut, Vo,Vl,...,Vk,... Nous dirons que Vl et Vk

sont les extrémités gauche et droite d'un quasi-agrégat al€atoire de taille

k si V.V =0, Vi-Vi+1 #0 pour i =1,2,...,k-1 et Vk-Vk+1 =0 .

Nous noterons par

B(k) = {V,,V ,...,V

1 AN A 0,V,-V,, , # 0 pour i = 1,2,...,k-1,V, -V, . = 0}

i+ k " k+1

et par

Bij(k) = {v. ¥

i 1""’Vk’vk+1|Vo‘V1 =0,V -V =i,V .V £ 0

s s+l

= 0}

W TS S [, S

pour s 1y = j,Vk-Vk+1



une partition de 1'événement B(k); leurs probabilités respectives secront

By = P [B(k)] et pij(k) = P [Bii(k)]° Nous désignerons 1'événement

Y # 0 pour 5 = 1,25..05k~1 6% vk-vk = j}

{v .,vk|v0-vl = 0NV, = 4,V V4

02 V12>

par Cij(k) et la matrice dont les €léments sont (pij(k)) par P(k). On

peut maintenant démontrer:

ijti

oi D est une matrice m X m dont les é€léments sont

l —
Refation 3: Pour k > 1, P(k) = P(k-1) D et P(1) = \6 m) i m+1)

m X m

prq™ I c.; fOt défini précédemment.

5 (0
J1 J1

Démonstration: Nous allons montrer que:

pri (k) =
En effet,

,vk+1|vk-vk_1 £ 0,V -V =i,V -V, . =0}

J

1]
nm~ms

P [Bri(k)] P [crj(k-lm{vk

1

I
E!

P [er(k-l)] p [{vk,vk+1|vk-vk_1 F O,V -V =i,

j=1

Vi Vi, = O}|er(k-1)].

D'autre part,

" . - = o)
P B (k-D] = P [C (k1] PLV-V, = OIer(k-lﬂ = @’P [Cp; (k-1)]

et P LV Ve Vi # 0V = LYYy, = 03]C (k-1)]
= P LV VeV # 00y vy = 3,V v )= 0}
Wy IVgoy Vg = 30
)
_ o /my  (m-j) im-i 1 im
“(lad 7Y g 1} PR = by

d'ol en remplagant dans la deuxiéme égalité on a montré le

résultat.



Cette formule permet de calculer Py et pij(k)’ mais on peut

obtenir une autre relation pour Py dont la démonstration est calquée

sur celle de la relation 2.

Relation 4: P k > 2" gj el 3 d %
on 4: our m, Py = s iPreiom ©OU est la

somme des mineurs principaux d'ordre m-i de la matrice D.

On peut vérifier que le déterminant de la matrice D est:

(_1)(m+1)(m+2)—10V2 pm(m+1)/2 qm(m—l)/2 .

Par exemple, pour m = 3, on a comme relation
p = (pa* + 3p°q + p’) p,_; + (0’4’ + *¢*) p,_, - P’a’p,_; pour k>3

pq* (3 + 3pq + p’q*)

o
n

p, = p'q°(3 + 12p + 15p* + 6p’ + p*)

o]
w
I

= p’q°{3¢* + p(12¢* + 12q) + 9p* (2¢> + 4q + 1) + 3p° (4¢> + 13q + 6)

+ 3p"(q® + 6q +5) + 3p°(q+2) +p°l.
Le résultat pour m = 2 est:

= (pq + p*) p_; + p’ap,_, pour k> 2

'
=
I

p, = 2pqa’ + p'¢q’

p, = 2p*q" + 4p’q* + p*q’

Regardons maintenant, plus en détail, le coefficient de Prosi -z

dans la relation 4. Ce coefficient est un polyndme que nous noterons

Qi(p,q) et qui vaut



m+i(i-1)/2
1-1 s im-s
Qi(P:Q) = (_1) j j j p q
s=(i+1)i/2 e B & ]
1<j, <j, <... <ji<m
ol s =3 +j +...+j. et ou A. . : est le mineur principal
i, ¥, i By s veo allg : )

(jl,jz,...,j.) de la matrice C. On peut vérifier que

L+ det (D)

Qm(p,q) (-1)

2 2
_ (_1)(m—3)(m+2)/2 p(m +m) /2 q(m -m)/2

m ’
et Q(pa) = I % -

La relation 4 s'écrit en fonction des polyndmes Qi(p,q):

P = .

i Qi(p,Q) pk_i pour k >m (*)

n ™3

1
Mais si nous utilisons la cardinalité des ensembles Aij(k,t), aij(k,t)

nous pouvons écrire

mk m m : :
t km-t // i j
= I ( % a..(k,t *

~

m
pour k = 2,3,... et B, = tgl ptqm+tatt(1,t). Les relations =** et =*

montrent que Py est un polyndme en p et q ou les coefficients des

puissances de p et q donnent les nombres aij(k,t) pour i+j fixé.

Notons a,(k,t) = % a..(k,t). En €galisant les coefficients de
2 % o 8
i+j=2 1)
ptqkm_t+£ dans * et *%, on aura la relation 5.

Relation 5: Les nombres ag(k,t) pour 2 < g <2m et

2m
a(k,t) = aQ(k,t)
=2



satisfont la relation
m+r(r-1)/2

m
a (k) = £ (-DY" ig A . a_ (k-T,t-s)
% r=l Jyodyseeend b
S = (r+1)r/2

1<jl<j2<...<jr<m
ol s = j1+jz+"'+ji pour k = m+l, m+2,...

V- EXEMPLE

Dans le cas m = 2, on obtient une relation simple pour
dénombrer les agrégats de taille k ayant t carrés noirs. Les
matrices C et D sont:

r 1 (pq Iqu
C:! 1] D=i '

2 |
|

L J L®

p—

N
—

La relation 5 est:
a(k,t) = a(k-1,t-1) + a(k-1,t-2) + a(k-2,t-3)

pour k > 2 et

a(l,1) = 2
a(l,2) =1
a(2,2) = 2
a(2,3) = 4
a(2,4) =1

Dans ce cas simple, on peut mettre les différents nombres a(k,t)

sous forme d'un tableau un peu comme un triangle de Pascal:

-

2 1
2 4 1
z 8 6 1
2 12 18 8 1
2 16 a(5,7) 32 10 1
2 20 a(6,8) a(6,9) 50 12 1

a(7,10)



10

Pour m = 3, on peut vérifier que:

a(l,1) =3, a(1,2) = 3, a(1,3) = 1

a(2,2) =3, a(2,3) =12, a(2,4) =15, a(2,5 = 6, a(2,6) = 1
a(3,3) =3, a(3,4) = 24, a(3,5) =63, a(3,6) = 69, a(3,7) = 33
a(3,8) =9, a(3,9) = 1

et la relation 5 est:

a(k,t) = a(k-1,t-3) + 3a(k-1,t-2) + a(k-1,t-1)

+ 2a(k-2,t-4) + a(k-2,t-3) - a(k-3,t-6)

A cause du chevauchement des agrégats dans le cas m = 3, il
semble difficile de dénombrer les différents types d'agrégats. Les nombres
que 1'on obtient pour les quasi-agrégats sont des bornes supérieures pour

les nombres d'agrégats.
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