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S U M M A R Y 

Electrical resistivity tomography inversion often encounters uncertainty stemming from two 

primary sources: epistemic uncertainty, arising from imperfect underlying physics and im- 
proper initial approximation of model parameters, and aleatory variability in observations due 
to measurement errors. Despite the widespread application of electrical resistivity tomography 

in imaging, the resistivity distribution of subsurface structures for various h ydro-geoph ysical 
and engineering purposes, the assessment of uncertainty is seldom addressed within the in- 
verted resistivity tomograms. To explore the combined impact of epistemic and aleatory 

uncertainty on resistivity models, we initially perturb the observed data using non-parametric 
block-wise bootstrap resampling with an optimal choice of the block size, generating different 
realizations of the field data. Subsequently, a geostatistical method is applied to stochastically 

generate a set of initial models for each bootstrapped data set from the previous step. Fi- 
nally, we employ a globally convergent homotopic continuation method on each bootstrapped 

data set and initial model realization to explore the posterior resistivity models. Uncertainty 

information about the inversion results is provided through posterior statistical analysis. Our al- 
gorithm’s simplicity enables easy integration with existing gradient-based inversion methods, 
requiring only minor modifications. We demonstrate the versatility of our approach through 

its application to various synthetic and real electrical resisti vity tomo graphy experiments. The 
results reveal that this approach for quantifying uncertainty is straightforward to implement 
and computationally efficient. 

Key words: Electrical resisti vity tomo g raphy; Inverse theor y; Numerical modelling; Hydro- 
geophysics. 
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1  I N T RO D U C T I O N  

Electrical resisti vity tomo graphy (ERT) is a non-inv asi ve and near- 
surface geophysical method widely employed for spatially contin- 
uous imaging of the subsurface. It finds e xtensiv e application in 
various geoscientific endeavors, including the exploration of sub- 
surface resources, environmental and engineering investigations and 
the imaging of h ydrogeoph ysical properties. From both determin- 
istic and probabilistic points of view, geophysical inversion aims to 
infer subsurface physical properties from limited and noisy data. 
Similar to numerous other nonlinear geophysical inverse problems, 
ERT data inversion frequently entails uncertainty (Tso et al. 2017 ). 
This uncertainty comprises a statistical component, termed aleatory 
uncertainty, which accounts for inherent noise or stochasticity in the 
observations, and a deterministic component, known as epistemic 
uncertainty, arising from incomplete knowledge about underlying 
physics (e.g. incorrect assumptions regarding isotropy , anisotropy , 
1576 
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homogeneity and numerical approximation) and initial approxima- 
tion of model parameters. Hence, to ensure reliable predictions of 
subsurface structures through the interpretation of electrical resis- 
tivity, it is imperative to quantify the uncertainty inherent in the 
inverted resistivity tomogram. In this study, our focus lies on un- 
certainties related to data errors and local variations in the initial 
model utilized for inversion. Despite the importance of uncertainty 
analysis, the majority of studies focusing on ERT data inversion 
hav e ne glected a crucial factor, which is assessing the uncertainty 
in the preferred inversion model. Recalling the ERT inversion proce- 
dures, uncertainty quantification can be classified into two primary 
g roups: deter ministic linearized inversion and stochastic inverse al- 
gorithms. In deterministic linearized inversion, uncertainty analysis 
relies on a single solution that primarily reflects model uncertainty 
attributed to data noise, but does not consider inherent solution non- 
uniqueness. Stochastic inverse algorithms, on the other hand, aim 

to construct an ensemble of solutions. The latter provide a set of 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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odels that suf ficientl y fit the observed data, resulting in statistical
istributions of model parameters. 

In regards to uncertainty estimation in ERT inv ersion, sev eral
tudies have been reported in the literature. For instance, Ramirez
t al. ( 1995 ) utilized the diagonal elements of the resolution ma-
rix as proxies for the spatial resolution of ERT images in cross-
ell dc—direct current-resistivity measurements. Through the ex-
mination of these diagonal elements, they could qualitati vel y as-
ess regions demonstrating satisfactory resolution. Friedel ( 2003 )
uggested the truncated singular value decomposition method to
alculate model resolution and model covariance matrices. Using
he resolution matrix, he computed metrics like the resolution ra-
ius and distortion indicator. These metrics were utilized to adjust
he diagonal elements of the resolution matrix, thereby identify-
ng possible geometric distortions in ERT tomograms. Slater et al.
 2000 ) took advantage of the diagonal values of the model res-
lution matrix to distinguish poorly and perfectly resolved parts
f the inverted conductivity model in a 2D resistivity cross-hole
easurements. Oldenburg & Li ( 1999 ) devised a depth of in-

estigation method, generating a series of distinct deterministic
odels from the same data set through repeated deterministic

nversions with varying regularization constraints. Features con-
istently present across all models are interpreted as being ef-
ecti vel y resolved b y the data. Unlike the model resolution ma-
rix, their method does not depend on the linearization assump-
ions. Later, Oldenborger et al. ( 2007 ) proposed an extension of
he depth of investigation method to 3D electrical imaging prob-
ems, expressed as a volume of investigation. Oldenborger & Routh
 2009 ) investigated the appraisal problem for 3D electrical resis-
ivity measurements using analysis of the point spread functions
f the linearized resolution matrix. The point spread functions rep-
esent the impulse response of the inverse solution and quantify
he parameter-specific resolving capability. A modified depth of
nvestigation method based on the computation of a scaled proba-
ility density function was developed by Deceuster et al. ( 2014 ).
alscheuer et al. ( 2010 ) calculated the reliability of 2D resis-

ivity models computed using smoothness-constrained single and
oint inversions of ERT and radio magnetotelluric (RMT) data
ets comparing the results of linearized analysis and most-squares
nv ersion. The y showed that equi v alent model domains can be
alculated using the partially nonlinear concept of pseudo-hyper-
llipsoids. 

Another approach to ERT image uncertainty analysis involves
he cumulati ve sensiti vity matrix, w hich enab les the examination
f how surface or borehole measurements are af fected b y the
arameters of the model cells (Kemna 2000 ). Typically, areas
haracterized b y low-sensiti vity v alues are regarded as less reli-
ble. According to Kemna ( 2000 ), Christiansen & Auken ( 2012 ),
guyen et al. ( 2009 ), and Beaujean et al. ( 2010 ), a significant

hallenge in utilizing the cumulati ve sensiti vity matrix is establish-
ng an objective and quantitative approach to selecting a thresh-
ld value that distinguishes between well and poorly resolved ar-
as, especially in scenarios where ground truth data is unavail-
ble. 

An alternative strategy is to cast the problem in a stochastic frame-
ork using Bayesian inference (Mosegaard & Tarantola 1995 ; Gou-
eia & Scales 1997 ). Bayesian inference provides a formal frame-
ork for incorporating data uncertainties, forward models, and a
riori information to quantify the uncertainty of model parame-
ers by sampling the posterior probability density function of each
odel parameter using techniques such as Markov chain Monte
arlo (McMC) methods. 
Within the context of ERT, several authors have utilized the
cMC sampling algorithm to quantify the uncertainty of parame-

er estimates (e.g. Ramirez et al. 2005 ; Rosas-Carbajal et al. 2014 ;
ouchedda et al. 2017 ; Galetti & Curtis 2018 ; de Pasquale et al.
019 ; Aleardi et al. 2021 ; Vinciguerra et al. 2021 ). 

Ho wever , solving in verse problems in the framework of stochastic
pproaches is computationally demanding in practice, primarily due
o the repeated computation of the forward prob lem, w hich must be
olved tens or hundreds of thousands of times, and extremely slow
onvergence speed (see Blatter et al. ( 2022a ) for more drawbacks
f McMC). Although the enhanced computational capabilities pro-
ided by modern parallel architectures have significantly spurred
he utilization of McMC methods in tackling geophysical chal-
enges, it remains essential to employ tailored methodologies to en-
ure precise and computationall y ef ficient sampling of the posterior
robability distribution. In addition, Bayesian methods essentially
ecessitate an explicit statistical representation of the model error
ia the formulation of a likelihood function. Ho wever , this can pose
 significant challenge for complex geophysical models, especially
hen there is limited or no information available to infer the prior
istribution of the error model. Within the realm of multisolution
ethods, another approach involves generating realizations of the

resumed noise model and subsequently perturbing the data set with
hese realizations within a Monte Carlo framework. Each perturbed
ata set is then inverted using a least-squares inversion method
Aster et al. 2005 ; Tso et al. 2017 ). Nevertheless, this method often
ields conserv ati v e uncertainty estimates in the inv erted model, par-
icularly in regions of low-data sensitivity that are heavily influenced
y the regularization operator (Binley & Slater 2020 ). As an alterna-
ive to McMC methods, ensemble Kalman inversion combined with
evel-set parametrization has been proposed for ERT and induced
olarization data inversion and uncertainty quantification (Tso et al.
021 , 2024 ). Ho wever , despite its computational efficiency, it faces
he common limitations of ensemble Kalman filter methods. For
nstance, using a limited number of samples can lead to the collapse
f posterior samples, resulting in an underestimation of posterior
ncertainty . Additionally , the assumption of Gaussian-distributed
osteriors may break down in nonlinear scenarios. In the context of
eterministic inversion limitations, as demonstrated by Wei & Sun
 2021 ), various components of the regularization term influence the
ncertainty quantification of physical property models. Therefore, a
uestion that arises here is how to have a reliable uncertainty analy-
is in a relati vel y computationall y ef ficient deterministic frame work.
n this paper, by admitting that uncertainty in geophysical models
ainly stems from both the noise inherent within the observed data

nd the initial (prior) model, we introduce a hybrid approach that
ombines a variant of block bootstrapping, namely circular block
ootstrap (CBB) (Politis & Romano 1992 ) with a geo-statistical
ethod to address uncertainty in the regularized inversion of ERT

ata. The objective is to explore and sample the various solutions
ithin the equi v alence region, rather than opting solel y for the

implest, best-fitting maximum likelihood solution. Ho wever , it is
mportant to note that sampling the equi v alence domain using the
roposed method does not yield the desired Bayesian posterior dis-
ribution, which accounts for all significant sources of uncertainty,
ut rather serves as an approximation of it. Despite this limita-
ion, we cannot definiti vel y assert the superiority of one uncertainty
uantification method over another. It is essential to recognize that
ncertainty quantification is inherently local, not global and that
rior assumptions, such as implicit or e xplicit re gularization and
odel parametrization, will inv ariabl y have a significant impact on

osterior uncertainty (Blatter et al. 2022a , b ). 
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The bootstrap resampling algorithm has found widespread prac- 
tical applications in various fields, notably in statistical inference 
(such as distribution functions, hypothesis tests, and model detec- 
tion), as e xtensiv ely documented in the mathematical literature. 
Despite its proven ef fecti veness, its utilization for quantitati vel y 
assessing uncertainty in geophysical models has been relati vel y 
rare. Nevertheless, some studies have explored this avenue (see 
McLaughlin 1988 ; Tichelaar & Ruff 1989 ; Shearer 1997 ; Her- 
trich 2008 ; Campanya et al. 2014 ; Neukirch & Garcia 2014 ; Yang 
et al. 2014 ; Parsekian-and-Grombacher 2015 ; Schnaidt & Heinson 
2015 ). Ho wever , these studies primarily focus on addressing the 
uncertainty of geophysical models using conventional bootstrap re- 
sampling methods and, more importantly, none of them delve into 
the influence of epistemic uncertainty due to variability in the initial 
model. 

The proposed stochastic strategy is executed in two stages. First, 
we employ CBB to construct an ensemble of randomly resampled 
data. Unlike other block bootstrap methods, CBB offers the advan- 
tage of wrapping data around in a circular before b locking, ensur - 
ing that each observation has an equal likelihood of being selected. 
While the efficacy of a block bootstrap method heavily relies on 
the selection of block length, we adopt the approach suggested by 
Politis & White ( 2004 ) to estimate the optimal block size. In the 
second stage, a geostatistical approach employing ordinary kriging 
is conducted on each bootstrapped data realization to statistically 
produce an initial guess model. Ultimately, each bootstrapped data 
set and its corresponding initial model are inverted by utilizing a 
globally convergent homotopic continuation method. The homo- 
topic method, a longstanding element of topology, has been widely 
utilized in areas such as nonlinear functional anal ysis, dif ferential 
geometry and engineering (Rion & Brunt 1999 ; Liao 2004 ; Ax- 
elsson et al. 2015 ). The primary benefit of the Homotopic method 
lies in its global convergence, ensuring convergence irrespective of 
the initial point chosen (Watson & Haftka 1989 ; Han et al. 2005 ). 
The research presented in this study is, to the best of the authors’ 
knowledge, the first attempt to integrate the CBB method with Geo- 
statistics to address the combined effects of epistemic and aleatory 
uncertainty in ERT inversion. 

In the following sections, we provide a concise overview of the 
ERT forward modelling solution and the Homotopic continuation 
inversion method. This method is employed for the inversion of 
each data realization. Next, we delve into the fundamentals of the 
block bootstrap technique, with a particular focus on circle block 
bootstrapping. This is followed by an explanation of a geo-statistical 
approach used to stochastically generate a set of initial models for 
each bootstrapped data set. Then, we assess the performance of the 
proposed method through controlled synthetic experiments as well 
as practical applications using two distinct ERT data sets, illustrating 
the impacts of both data errors and initial models on uncertainty 
quantification in the tomographic inversion of electrical resistivity. 
Finally, concluding remarks are presented. 

2  M AT E R I A L S  A N D  M E T H O D S  

In this section, we outline the mathematical and computational 
framew ork of ho w the proposed uncertainty quantification algo- 
rithm works. To attain our objective, we combine the regularized ho- 
motopic inversion with the proposed random resampling approach. 
For the remainder of this paper, we adopt the following conventions: 
we denote scalar quantities in italics, vectors in boldface lowercase 
letters, matrices in boldface uppercase letters, and the q -norm of a 
vector is represented by ‖ . ‖ q . 

2.1 Bootstra p r esampling 

Bootstrapping is a computationall y intensi ve statistical method that 
offers a flexible alternative to traditional parametric inference by 
relaxing certain conditions and assumptions. As a subset of resam- 
pling techniques, bootstrapping enables the estimation of popula- 
tion statistical properties through sampling from an approximate 
or empirically constructed distribution, bypassing the necessity for 
prior assumptions. The idea of the standard bootstrap resampling 
w as introduced b y Efron ( 1979 ) as a strategy to estimate confidence 
intervals for model parameters. The traditional bootstrap method 
creates samples by randomly resampling the observed data, with 
or without replacement, under the assumption that the observations 
are independently and identically distributed, and then constructs 
the corresponding empirical distribution function. 

Suppose d ∈ R 

m ×1 = 

( d 1 , d 2 , . . . , d m 

) to be a sequence of in- 
dependent and identically distributed random samples (observa- 
tions) of size m from an unknown distribution. A bootstrap real- 
ization ˆ d = ( ̂  d 1 , ˆ d 2 , . . . , ˆ d m 

) is generated by randomly drawing 
p (where, p < m ) samples from d without replacement, for each 
bootstrapped data set. To create multiple bootstrapped data sets, the 
resampling process is repeated until a total of k realizations are ob- 
tained D = ( ̂ d 1 , ˆ d 2 , . . . , ˆ d k ) . Each of these realizations represents 
a subset of the original data set, formed by random sampling. Using 
partial data introduces ambiguity into the inversion results, enabling 
efficient sampling within the equivalent model domain (Fern ández- 
Mu ̃ niz et al. 2019 ). The conventional bootstrap method assumes 
that data are independent and identically distributed. Ho wever , in 
some cases, correlations between the data can be observed, where 
the block bootstrap method partially maintains the underlying de- 
pendence structure and creates more realistic pseudo-samples. As 
a result, the performance of the original bootstrap method can be 
af fected b y dependence and correlation of observ ations. A remedy 
to this problem is to use the block-wise bootstrap to enhance the 
accuracy of bootstrap resampling b y di viding the data samples into 
multiple b locks (subsets), w here the b locks may be made up of non- 
overlapping or overlapping subsets from the original observed data 
(see Valavi et al. 2019 ) for additional advantages of splitting the 
data into subsets for random resampling). 

In this paper, we follow the strategy of the overlapping blocks 
namely CBB which is an asymptotically equivalent variation of the 
moving block bootstrap (MBB) of K ünsch ( 1989 ) and Liu & Singh 
( 1992 ). The CBB as a model-free procedure represents a general 
non-parametric approach that can be used when no distributional 
assumptions are available and so it shows a behaviour close to the 
conventional bootstrap resampling. Fur ther more, as mentioned ear- 
lier, in contrast to MBB, CBB offers the advantage of wrapping data 
around in a circular before blocking, ensuring that all observations 
have the same drawing probability. In other words, this method re- 
moves the edge effect of MBB by wrapping samples on the circle 
(for a more detailed surv e y of block bootstrap methods see Lahiri 
1999 and Dudek 2015 ). The primary challenge in implementing a 
block bootstrap method lies in selecting an appropriate spatial block 
size, typicall y determined empiricall y (Efron & Tibshirani 1993 ). 
The optimal size of blocks varies depending on factors such as 
the length of the data, the data-generating process, and the specific 
statistics being considered. To automatically determine the optimal 
block size for the CBB method, we follow a data-driven approach 
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Algorithm 1 CBB resampling algorithm adapted for geophysical 
applications. 

Require: Data d ∈ R 

m ×1 = 

( d 1 , d 2 , . . . , d m 

) , and k number of 
bootstrap iterations, � number of blocks (rows) participating 
in the construction of bootstrapped samples. 

Ensure: Ensemble of bootstrapped data realizations � 

1: Initialize: Calculate the optimal block size ζ from Politis & 

White ( 2004 ) 
2: for t ← 1 to k do 
3: Draw a uniformly distributed pseudorandom integer q ∼

U (1 , ζ − 1), where q represents the length of overlap between 
consecutive blocks. 

4: Construct ϑ blocks with ϑ ← ( m − ζ + 1) from d in a 
circular manner as follows (see Politis & Romano 1992 ) 

5: Set s ← ( ζ − q) and f ← 

{
( ϑ × s ) + ζ − 1 

}
� s is the 

length of shift 
6: r ← 0 
7: for i ← 1 to f do 

8: v ← 

{ 
i − ( ( m × r ) − { i × fix ( ( m × r ) / i ) } ) 

} 
� 

fix ( x) rounds x to the nearest integer toward zero 
9: b i ← d v 

10: if ( i/m ) ← r + 1 then 

11: r ← r + 1 
12: end if 
13: end for 
14: for j ← 1 to ϑ do 
15: J 1 ← 

{
( ( j − 1) × s ) + 1 

}
16: J 2 ← 

{
( ( j − 1) × s ) + ζ

}
17: J ← J 1 to J 2 

18: Put B 

∗
j, : ← b J 

19: end for 
20: where the jth block B 

∗
j×ζ with starting point 

b ( j−1 ) ×s+ 1 consists of ζ elements, i.e., B 

∗
j, : ← 

{ b ( j−1 ) ×s+ 1 , b ( j−1 ) ×s+ 2 , . . . , b ( j−1 ) ×s+ ζ } � 1 ≤ j ≤ ϑ . 
21: the matrix B 

∗ ∈ R 

( ϑ×ζ ) including the ϑ overlapping 
subseries (blocks) of length ζ is given as: B 

∗ ← ⎛ 

⎜ ⎝ 

b 1 · · · b ζ
. . . 

. . . 
. . . 

b ( ϑ−1 ) ×s+ 1 · · · b ( ϑ−1 ) ×s+ ζ

⎞ 

⎟ ⎠ 

ϑ×ζ

22: Select randomly � blocks (rows) without replacement from 

B 

∗. 
23: Sort the � blocks (rows) in the ascending order in terms 

of the number of each row, and then concatenate them to- 
gether, ensuring that repeated samples are removed, to form 

the bootstrapped data ˆ d ∈ R 

p×1 , where p may vary across each 
bootstrap iteration. 

24: Put ˆ d into a matrix � ∈ R 

p×k 

25: end for 

t  

n  

Table 1. Resistivity distribution of different regions associated with syn- 
thetic example 1. 

Region ρ ( 
 · m ) 

Topsoil 300 
Lens-like body 50 
Bedrock 1000 
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roposed by Politis & White ( 2004 ) (see also corrections in Patton
t al. 2009 ). This method relies on spectral estimation using flat-top
ag windows of Politis & Romano ( 1995 ). The resampling strategy
s summarized by Algorithm 1, while adapted for geophysical appli-
ations. Note that an important concept in the sampling process is
he randomness in generating each data realization. Consequently,
he length of overlap between consecutive blocks is randomly se-
ected during each iteration of random data creation. As a result,
t each iteration of the bootstrapping process, a variable number
f observed data is provided, depending on the length of overlap.
he blocks could be created with fixed or varying lengths at each
ootstrap iteration. We purposely opted for a fixed block length,
nsuring that the resampled subset of the original data comprises
0 per cent to 70 per cent of all samples. This sampling rate was
etermined through a sensiti vity anal ysis e v aluating the impact of
ariations in subsample size. 

.2 Geostatistical prior modelling 

o generate a prior (initial) model using the bootstrapped data ˆ d ,
e employ a geostatistical approach based on a 2D ordinary krig-

ng method to approximate the spatial distribution of the prior
odel cells ˆ m 0 . Essentiall y, b y utilizing the spatial correlation

nformation of the resampled data, we can predict the probable
 ariable v alues at unsampled locations. In geostatistics, the ini-
ial stage involves constructing a semi v ario gram to characterize
he spatial correlation of the parameter of interest. Assuming that

a ( x i , z i ) { i = 1 , 2 , . . . , m } represents a generic subsurface sparse
oint apparent resistivity, the experimental, isotropic semi v ario gram
t a distance � λ = ( λx , λz ) (where λ = ‖ � λ‖ l 2 is the Euclidean dis-
ance between sparse point estimates) in a plane is defined as half
f the average squared difference between two data points. This can
e expressed as (Stein 1999 ; Sarma 2010 ): 

 

( λ) = 

1 

2 N ( λ) 

N ( λ) ∑ 

i= 1 

(
ρa ( x i , z i ) − ρa ( x i + λx , z i + λy ) 

)2 
, (1) 

here N ( λ) is the number of pairs of sparse point estimates be-
ween data ρa ( x i , z i ) and ρa ( x i + λx , z i + λz ) . The experimental
emi v ario g ram ser ves as an initial estimate for the semi v ario gram
odel required for spatial interpolation via kriging. To compute the

emi v ario gram with irregularly spaced data points (as in this study),
 search technique is applied following Matheron ( 1971 ). By com-
uting the experimental semi v ario gram, a common semi v ario gram
odel such as exponential, spherical, or Gaussian is then fitted to

he observed data, represented by variance versus distance. In our
tudy, we found that the stable v ario gram model, a variant of the
aussian model, provides the best least-squares fit. This is defined

s (Wackernagel 2003 ): 

˜ 
 ( λ) = μ

(
1 − exp 

(
−

(
λ

a 

)α))
with 0 < α ≤ 2 and μ, a > 0 , (2) 

here μ and a represent the sill and range, respecti vel y. We used
he model for a power α equal to 1.5. After obtaining the semi-
 ario g ram function parameters, ordinar y kriging interpolation is
pplied to the sparse point resistivity values to estimate the sub-
urface prior resistivity distribution at each model cell M 

( p, q ) ,
here ( q = 1 , 2 , . . . , n x ) and ( p = 1 , 2 , . . . , n z ) . Here, n x and
 z are the number of cells in the horizontal and vertical directions,
especti vel y. The adv antage of kriging is that it requires no special
ssumptions regarding the distribution of the parameters (in this
ase, the measured resistivity values). Ho wever , when the spatial
istribution of the parameter follows a Gaussian pattern, kriging
erves as the best linear unbiased estimator. Thus, it is advisable
o apply kriging to variab les w hose histograms closely resemble a
ormal distribution (Chil ès & Delfiner 2011 ). Since resistivity data
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Figure 1. Synthetic Example 1 inspired by a real geological model: (a) true resistivity model featuring a topsoil layer, a conductive lens-like body and a 
resistive bedrock in the presence of topography. (b) Pseudo-section of apparent resistivity acquired using a collinear Dipole–Dipole array with the horizontal 
and vertical positions of measurements indicated by black dots. 
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often follow a lognormal distribution, they are typically transformed 
into their logarithms (Pryet et al. 2011 ). 

2.3 Forward modelling methodology 

We start with the assumption that the distribution of the electri- 
cal potential, denoted by u ( x , y , z) , is generated by a single point 
current source in an isotropic medium characterized by variable 
conductivity σ ( x , y , z) . Follo wing Ohm’s la w and the principle of 
conservation of electric charge, the electrical potential of the point 
source adheres to the following differential equation, referred to as 
Poisson’s equation, with generalized boundary conditions (Dey & 

Morrison 1979 ): 

− ∇ · ( σ ( x , y , z ) ∇u ( x , y , z ) ) = ∇ · J s in � ⊂ R 

3 . (3) 

In the above expression, ∇ · J s = I δ( x − x s ) δ( y − y s ) δ( z − z s ) ,
where J s is the current density, I indicates the input electrical cur- 
rent, and δ is Dirac’s delta function, � is the computational domain 
and x s , y s and z s are the point source coordinates. 

Assuming that the y direction is parallel to the strike direction of 
the model, eq. ( 3 ) reduces, in Cartesian coordinates, to 

− ∇ · ( σ ( x, z ) ∇u ( x , y , z ) ) = I δ( x − x s ) δ( y − y s ) δ( z − z s ) . (4) 

In practice, to take advantage of the 3D current source characteris- 
tics, a spatial Fourier-Cosine transform of the potential u ( x , y , z, ω) 
for a suf ficientl y large number of discrete w avenumbers ( k y ) is car- 
ried out along the medium invariant y -direction. By applying the 
Fourier-Cosine transform to eq. ( 4 ), we arrive at the following 2D 

Helmholtz equation: 

∂ x 
(
σ ( x, z ) ∂ x ̃  u 

(
x, k y , z 

)) − k 2 y σ ( x, z ) ˜ u 

(
x, k y , z 

)
(5) 

+ ∂ z 
(
σ ( x, z ) ∂ z ̃  u 

(
x, k y , z 

)) = − 1 
2 I δ ( x − x s ) δ ( z − z s ) , 

where ˜ u 

(
x, k y , z 

)
is the transformed electrical potential in the 

Fourier domain. Eq. ( 5 ) serves as the governing equation for 2.5D 

direct-current resistivity modelling. By applying a homogeneous 
Neumann boundary condition at the ground interface and a homo- 
geneous mixed boundary condition at non-air boundaries to solve 
eq. ( 5 ), a 2D distribution of electrical potential can be obtained for 
a range of wavenumbers. To obtain potential solutions in the spa- 
tial domain, an inverse Fourier-Cosine transform is then utilized. 
The integration of eq. ( 5 ) is numerically carried out using a finite- 
difference algorithm, following the discretization-by-area approach 
established by Dey & Morrison ( 1979 ). The computational domain 
is divided into quadrilateral meshes, with finer discretization ap- 
plied to the foreground and coarser discretization to the background. 
The foreground section consists of two cells (nodes) positioned be- 
tween adjacent electrodes horizontally, while the depth of these 
cells increases lo garithmicall y in the vertical direction. Conversely, 
cell sizes in the background re gion e xpand graduall y aw ay from 

the foreground to accommodate far-field boundary conditions. Fur- 
thermore, To address surface topography, we employ an efficient 
mapping technique called the Schw arz–Christof fel transformation 
approach. This method converts the problem from a plane with non- 
unifor m topog raphy (W-plane) into a plane with flat topography 
(Z-plane). By utilizing the Schw arz–Christof fel transformation pa- 
rameters obtained from the solution process (as described in Chuang 
et al. 1993 ), along with the inverse Schw arz–Christof fel transfor- 
mation (Costamagna 1987 ), we can adjust the model cells vertically 
to accommodate the topographic irregularities. The principles and 
applications of the Schw arz–Christof fel transformation in electri- 
cal resisti vity tomo graphy are thoroughl y discussed in Ghanati & 

Fallahsafari ( 2023 ). 

2.4 Inverse modelling methodology 

The inverse problem that we address involves estimating the re- 
sisti vity (or equi v alentl y, conducti vity) distribution of the Earth’s 
unknown subsurface model given measurements taken at the sur- 
face. This problem can be formulated as a nonlinear inverse problem 
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Figure 2. Example realizations of bootstrapped samples (a)–(e) with corresponding prior models generated using the geostatistical method (f)–(j), and the 
mean of prior model realizations (k) for synthetic example 1. 

Table 2. Total CPU time (in hour) required for implementing the proposed uncertainty quan- 
tification method across synthetic and real examples. It is important to note that following 
discretization, the vertical and horizontal dimensions of the model grid ( N z × N x ) for syn- 
thetic examples 1 and 2, as well as real cases 1 and 2, are 30 × 65 , 35 × 95 , 30 × 40 and 
30 × 40 , respecti vel y. 

Synthetic example 1 Synthetic example 2 Real case 1 Real case 2 
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hich theoretically relates the observations d ∈ R 

m ×1 to the subsur-
ace true conductivity ( σ ) m ∈ R 

n ×1 using a parametric statistical
odel of form, 

 = F 

( m 

) + V, (6) 

here F : R 

n ×1 → R 

m ×1 is the mapping function and V ∈ R 

m ×1 

s the measurement data error. Assuming that the data error V is a
aussian distributed random vector with mean zero and covariance
atrix D δ ∈ R 

m ×m , i.e., V ∼ N (0 , D δ) , the likelihood function is
efined as: 

p ( d | m 

) ∝ 

1 √ 

(2 π ) m | D δ| 
exp 

(
−1 

2 

∥∥∥D 

−1 / 2 
δ ( d − F 

( m 

) ) 
∥∥∥2 

l 2 

)
, (7) 

here | D δ| represents the determinant of the covariance matrix D δ .
aximizing the likelihood function is equi v alent to the minimiza-

ion of a misfit function that has the following canonical form: 

 

( m 

) = arg min 
m ∈ R 

n ×1 

1 

2 

∥∥∥D 

−1 / 2 
δ ( d − F 

( m 

) ) 
∥∥∥2 

l 2 
. (8) 
P  
he solution obtained by minimizing eq. ( 8 ) tends to be unstable and
ot physically realistic, primarily because of errors in the observed
ata and the ill-posed nature of the forward operator matrix. To
ddress this issue, one approach is to introduce a suitable stabiliz-
ng function into the minimization problem. This additional term is
esigned to incorporate prior knowledge into the inversion process,
iding in the filtration of undesired features and constraining the
odel within desired spaces. Therefore, we propose a regularized
omotopy continuation method, which either mitigates the numer-

cal impact of ill-conditioning or enhances the global convergence
roperties of the inversion algorithm. The fundamental concept be-
ind the homotopic method, a traditional element of topology, is to
ransform the original problem into a simpler one with a known so-
ution. Subsequently, the process involves continuously deforming
he simpler problem back into the original one, while monitoring
he sequence of zeros that connect the solution of the simpler prob-
em to that of the original problem. The fundamental concept of
omotopic optimization is broadly outlined in Ghanati & M üller-
etke ( 2021 ) as well as Roudsari et al. ( 2024 ). For the sake of
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Figure 3. Statistical metrics derived from the inversion of the synthetic model in Fig. 1 using the proposed algorithm: (a) arithmetic mean, (b) mode (most 
frequent value), (c) median, (d) inverted section from the unbootstrapped (original) data, and (e) standard deviation. Vertical dashed lines mark the locations 
of the posterior resistivity profiles displayed in Fig. 5 . 
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this discussion, we will succinctly recapitulate the key principles 
here. 

Let J : X → Y be a nonlinear conv e x operator between Hilbert 
spaces X ∈ R 

n and Y ∈ R 

n . We are interested in the problem of 
the form 

J 

( X 

) = 0 , (9) 

where X represents the unknown parameters X = { x 1 , x 2 , . . . , x n } 
in a set of nonlinear equations. Without an appropriate approxima- 
tion of the zero point, attempting an iterative solution such as the 
conventional Newton method for eq. ( 9 ) is prone to failure, as it is 
probable that inadequate initial values will be selected. As a rem- 
edy, we can turn the problem into a homotopic continuation function 
H( X , T ) : 

H 

( X , T ) ≡ C ( T ) J 

( X 

) + G 

( T ) L 

( X 

) = 0 . (10) 

In this equation, H : R 

n × R → R 

n , J 

( X 

) indicates target func- 
tion, L 

( X 

) is auxiliary homotopy function that must be known 
or controllable and easy to solve, and T ∈ [0 , 1] is embed- 
ding or continuation parameter such that C ( 0 ) = G 

( 1 ) = 0 and 
C ( 1 ) = G 

( 0 ) = 1 resulting in, respecti vel y, H 

( X , 0 ) = L 

( X 

) and 
H 

( X , 1 ) = J 

( X 

) , and C ( T ) > 0 , G 

( T ) > 0 whenever 0 < T < 

1 . By substituting C ( T ) and G 

( T ) with T and (1 − T ) , we rewrite 
eq. ( 10 ) as 

H 

( X , T ) ≡ T J 

( X 

) + (1 − T ) L 

( X 

) = 0 . (11) 

Our goal is to solve the homotopy function H 

( X , T ) = 0 instead of 
J 

( X 

) = 0 b y monotonicall y increasing the embedding parameter 
T from 0 to 1 as the auxiliary function L 

( X 

) = 0 is continuously 
deformed to the target problem J 

( X 

) = 0 . In the context of a least- 
squares problem, by substituting J 

( X 

) and L ( X ) with d and F( m 0 ) , 
respecti vel y, eq. ( 11 ) is formulated as 

H 

( m , T ) ≡ T d + 

( 1 − T ) F 

( m 0 ) , (12) 

where d indicates the measured data and F( m 0 ) is the forward re- 
sponse of the problem in terms of the initial solution. To trace the 
Homotopy curve numerically T = 0 to T = 1 , we utilize a con- 
tinuation scheme that e venl y di vides the interv al [ T = 0 , T = 1]
into G embedding parameters (see Ghanati & M üller-Petke 2021 ). 
Remembering the importance of the stabilizing functional and sub- 
stituting eq. ( 12 ) into eq. ( 8 ), the objective function in eq. ( 8 ) is
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Figure 4. Posterior distributions of resistivity for the points depicted in Fig. 3 , represented by (a) circle, (b) square, and (c) triangle. 
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tructured as an unconstraint optimization problem: 

˜ 

 

J ( m 

) = arg min 
m ∈ R 

n ×1 

{
1 

2 

∥∥∥D 

−1 / 2 
δ ( H 

( m , T ) − F( m ) ) 
∥∥∥2 

l 2 

+ 

J 

2 

∥∥� 

(
m − m apr 

)∥∥q 

q 

}
. (13) 

r equi v alentl y 

˜ 

 

J ( m 

) = arg min 
m ∈ R 

n ×1 

{
1 

2 

∥∥∥D 

−1 / 2 
δ ( T d + 

( 1 − T ) F 

( m 0 ) − F( m ) ) 
∥∥∥2 

l 2 

+ 

J 

2 

∥∥� 

(
m − m apr 

)∥∥q 
q 

}
. (14) 

n the given equation, the term 

∥∥� 

(
m − m apr 

)∥∥q 

q 
represents the sta-

ilizing functional which is similar to the prior function p ( m 

) ∝
xp 

(
− J 

2 

∥∥� 

(
m − m apr 

)∥∥q 

q 

)
in the Bayesian inversion setting. The

tabilizing functional takes to account the distance to the prior
odel m apr , where q > 0 and ‖ x ‖ q q = 

∑ 

i | x i | q stands for the
 q -(quasi) norm of the vector x , J ∈ R 

+ , a set of real positive
alues, is the Lagrangian multiplier, which controls the balance
etween the data-fidelity and stabilizing term, and the matrix
 = ( a x � 

T 
x � x + a z � 

T 
z � z ) serves as the constraint matrix, where

t is defined by the discrete partial first or second-order deri v a-
ives in both the horizontal and vertical directions. The coefficients
 x , a z ∈ R 

+ are employed to enhance smoothness in either of these
irections. The minimization of ˜ Q 

J ( m 

) is significantly influenced
y the parameter q . Setting q = 2 leads to the generation of smooth
nd small models, whereas setting q = 1 results in sparse and blocky
odels. 
Assuming q = 2 and linearizing F( m ) via the computation of

r échet deri v ati ves ( J = ∂ F( m ) /∂ m ; see Ghanati & Fallahsafari
022 for details), the solution of eq. ( 14 ) leads to the following
terative numerical method, i.e., 

m p = μp 

{
J T 

(
m p−1 

)
D 

T 
δ D δ J 

(
m p−1 

) + J p ( a x � 

T 
x � x + a z � 

T 
z � z ) 

}−1 

× {
J T 

(
m p−1 

)
D 

T 
δ D δ

[
T p d + (1 − T p ) F( m 0 ) − F( m p−1 ) 

]
−J p ( a x � 

T 
x � x + a z � 

T 
z � z ) ( m p−1 − m apr ) 

}
, (15) 
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Figure 6. Synthetic example 2 inspired by a real geological model: (a) true resistivity model depicting a topsoil layer and a resistive bedrock on the left side of 
the fault, and a surface resistive layer and a conductive bedrock on the right side of the fault, considering topography. (b) Pseudo-section of apparent resistivity 
acquired using a collinear Dipole–Dipole array, with the horizontal and vertical positions of measurements denoted by black dots. 

Algorithm 2 IRLS-based homotopic continuation inversion algo- 
rithm (for the definitions of the symbols, see the text). 

Require: d , m 0 , D δ , T ∈ [0 , 1] ( T is e venl y di vided into G spaces), 
ε, � x , � z , η (lower boundary of m ), ϑ (upper boundary of m ), 
a x , and a z 

1: Initialize: Set ς ← 1 e − 6, � ← I n (Identity matrix), and 
J 0 ← 1 e − 6 

2: for p ← 1 to G do 
3: Calculate homotopy function H 

(
m , T p 

) = T p d + (
1 − T p 

)
F 

( m 0 ) 
4: ι ← 1 
5: Set the model update δm 

ι−1 ← 0 and δm 

ι ← 1 to enter the 
inner loop 

6: while ‖ δm 

ι − δm 

ι−1 ‖ l 2 > ε or maximum number of itera- 
tions is not met do 

7: Calculate δm 

ι using eq 17 
8: Update � using eq 18 
9: ι ← ι + 1 

10: end while 
11: Implement line search to find μp 

12: Update δm p ← μp δm 

ι

13: Impose constraint conditions to obtain m p using m p ← 

[ ϑ ( m p−1 −η) exp ( δm p ) + η( ϑ−m p−1 ) ] 
[ ( m p−1 −η) exp ( δm p ) + ( ϑ−m p−1 ) ] 

14: Update J p using the algorithm proposed by Roudsari et al . 
( 2024 ) 

15: end for 
Ensure: σ ← m p 
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where the parameter μp denotes the step length, taking on a positive 
value within the range ( 0 , 1 ] to ensure a reduction in the global 
objective function across successive iterations. 

When using the natural logarithm of the model parameters (re- 
sistivity or equivalently conductivity), the residual vector δd = 

T p d + (1 − T p ) F( m 0 ) − F( m p−1 ) needs to consider this adjust- 
ment: 

δd = log e ( T p d + (1 − T p ) F( m 0 )) − log e ( F( m p−1 )) . (16) 

Eq. ( 15 ) can be solved b y appl ying the Gauss–Ne wton iterati ve 
scheme, which leads to smooth solutions. 

By setting q = 1 , the system of equations to be solved is there- 
fore: 

δm 

ι
p = μp 

{
J T 

(
m p−1 

)
D 

T 
δ D δ J 

(
m p−1 

) + J p ( a x � 
T 
x � ( δm 

ι
p ) � x + a z � 

T 
z � ( m p−1 ) � z ) 

}−1 

× {
J T 

(
m p−1 

)
D 

T 
δ D δ

[
T p d + (1 − T p ) F( m 0 ) − F( m p−1 ) 

]
−J p ( a x � 

T 
x � ( δm 

ι
p ) � x + a z � 

T 
z � ( m p−1 ) � z ) ( m p−1 − m apr ) 

}
, (17) 

where 

�( δm 

ι
p ) = diag i= 1 , ... ,n 

((
� x δm 

ι
p 

)2 + 

(
� z δm 

ι
p 

)2 + ς 
)−1 / 2 

. (18) 

Here, �( δm 

ι
p ) represents the diagonal weighting matrix, where p

and ι denote the iteration indices for the regularized homotopy 
step and the iterati vel y re weighted least-squares (IRLS) iteration, 
respecti vel y. ς ∈ R 

+ represents a small positive value. We employ 
the IRLS method to solve eq. ( 17 ). The IRLS algorithm, aimed at 
finding a minimizer of ˜ Q 

J ( m 

) when q is set to 1, is outlined in 
Algorithm 2. Fur ther more, the penalty parameter J p is updated at 
each iteration of the homotopic continuation inversion according to 
the guideline introduced by Roudsari et al. ( 2024 ). In Algorithm 2, 
upper and lower bounds are imposed to prevent unrealistic solutions 
by using the constraint conditions defined in line 13. 
2.5 Algorithm implementation 

After establishing the framework for the inversion process, the sub- 
sequent stage involves detailing the implementation of the proposed 
uncertainty quantification method. The overall algorithm comprises 
three main steps: (1) perturbing the observed data using the CBB 
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Table 3. Resistivity distribution of different regions associated with syn- 
thetic example 2. 

Region ρ ( 
 · m ) 

Overburden layer (topsoil) 100 
Resistive bedrock 1000 
Surface resistive layer 500 
Conductive bedrock 50 
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Algorithm 3 Sketch of the proposed uncertainty quantification re- 
peatedly executed to minimize a stochastic cost function. 

Require: observed data d , number of iterations k 
Initialize k processes 

Ensure: 
1: Draw a bootstrapped data realization ˆ d using Algorithm 1 
2: Draw an initial (prior) model ˆ m 0 corresponding to the boot- 

strapped data using the geostatistical method 
3: Minimize eq.19 to find the model parameters ˆ m 

4: Check weather ˆ m meet the condition given by eq.20, otherwise 
go to line 1 

5: Put ˆ m into the matrix M e to construct the posterior distribution 
of the model parameters 
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lgorithm to generate a randomly bootstrapped data set ˆ d , where
he observations ˆ d are treated as a realization of random vector, (2)
tochastically generating an initial model ˆ m 0 for the corresponding
ootstrapped data set using the geostatistical method and (3) obtain-
ng the inverted model using the homotopic continuation method.
t is noteworthy that perturbing the data and generating the initial
odel transforms the deterministic optimization problem in eq. ( 14 )

nto a stochastic optimization problem, allowing for exploring and
ampling the different models of the equivalence region. With the
bove conditions, eq. ( 14 ) turns into the following form 

˜ 

 

J ( ̂  m 

) = arg min 
ˆ m ∈ R n ×1 

{
1 

2 

∥∥∥D 

−1 / 2 
δ

(
T ̂  d + 

( 1 − T ) F 

( ̂  m 0 ) − F( ̂  m ) 
)∥∥∥2 

l 2 

+ 

J 

2 

∥∥� 
(

ˆ m − ˆ m apr 

)∥∥q 

q 

}
. (19) 

s the optimization process in eq. ( 19 ) is stochastic in nature, its
olution ( ̂  m ) is also stochastic. Moreover, since there is generally
o prior information about the prior or reference model in real case
cenarios, we assign ˆ m apr to ˆ m 0 . Fur ther more, while the inver ted
odels of all bootstrapped data sets are computed independently, it

s feasible to parallelize the for-loop when sufficient resources are
ccessible. 

The proposed algorithm’s implementation is found to be quite
traightforward and easily integrates with any regularized inversion
ethod, requiring minimal parameter tuning before applying the

esampling algorithm. One of these parameters is the choice of the
lock length that needs to be defined by the user. At each boot-
trap iteration, the blocks can have fixed or adjustable lengths. To
aintain consistency, we deliberately chose a fixed block length,

esulting in the resampled subset of the original data containing
0 per cent to 70 per cent of all samples. As alluded to earlier,
mploying partial information results in ambiguity within the in-
ersion outcomes, enabling the sampling of equi v alent solutions. In
he context of mathematics, uncertainty analysis in discrete inverse
roblems entails discovering an ensemble of models that are consis-
ent with the prior information and adequately fit the data within the
ame error bound δ (Grayver et al. 2016 ; Fern ández-Mu ̃ niz et al.
019 ): 

 e = 

{ 
ˆ m : ‖ ̂ d − F 

( ̂  m 

) ‖ l 2 < δ
} 

, (20) 

here the uncertainty space is defined by considering the equi v alent
odels ( M e ) that meet the above condition for a given noise level.
lgorithm 3 summarizes different steps of the implementation of the
roposed uncertainty quantification method. It is essential to note
hat Algorithm 3 does not require any extra adjustments beyond
hose necessary to execute a single deterministic inversion. 

 N U M E R I C A L  E X P E R I M E N T S  

n this section, we present a set of experiments using two synthetic
xamples and two real data sets with varying geological conditions,
ll of which include topographical variations. Our focus is on as-
essing the ef fecti veness of the proposed algorithm in quantifying
he variability in model predictions during the regularized inversion
f ERT data, considering the influence of uncertainty in observed
ata and initial model assumptions. It is noteworthy that the numeri-
al examples provided here primarily consist of nonlinear cases, due
o the inherent complexity of uncertainty analysis in such inverse
roblems. Nevertheless, the proposed strategy can be conveniently
dapted and extended to accommodate linear problems as well. It is
lso noted that in both synthetic and real data inversion, the weight-
ng coefficients a x and b x for horizontal and vertical boundaries were
et to one. All numerical computations are conducted on a desktop
omputer equipped with a 3.6 GHz dual-core Intel processor. Due
o the independence of each bootstrapped data realization’s inver-
ion, it is possible to distribute computations across different central
rocessing units (CPUs) using the parfor command in MATLAB.
his approach can significantly reduce processing time, especially
n multicore machines. 

.1 Theoretical examples 

e begin with the first synthetic example, which consists of an over-
urden layer and a resistive background containing a conductive
ens-like body intended to mimic a freshwater lens in a sedimentary
nvironment. Table 1 represents different regions of the first exam-
le in terms of resistivity values. Fig. 1 (a) shows the discretization
f the true synthetic model in the presence of topography. It is as-
umed that 28 electrodes with a minimum electrode spacing of 10 m
re deployed at the surface. A Dipole–Dipole scheme is conducted
o generate the apparent resistivity values up to eight levels leading
o a total of 172 measurements. The simulated data are perturbed
ith uncorrelated Gaussian noise using the standard deviation of
 per cent of each data amplitude. This represents the typical order
f data discrepancies calculated through the inversion of ERT field
ata. Note that in both synthetic examples, the forward modelling
esh is different from the inversion mesh to avert an inverse crime

Kaipio & Somersalo 2007 ). Fig. 1 (b) shows the pseudo-section of
pparent resisti vity deri ved from the forw ard calculation of the first
ynthetic model with surface topography. The apparent resistivity
seudo-section indicates the expected presence of the conductive
nomaly compared to the background medium in the middle of the
seudo-section. 

To obtain the posterior distribution of the model parameters, the
roposed strategy described in Algorithm 3 is performed for 100 it-
rations. In Fig. 2 , we display several randomly selected realizations
f the bootstrapped data alongside the corresponding prior models
enerated by the geostatistical method. 

All bootstrapped data realizations are inverted in the context of
tochastically perturbing the observed data and prior model using
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consistent inversion parameters resulting in multiple random so- 
lutions that adequately fit the resampled data. In essence, as per 
eq. ( 20 ), solutions that fulfill the given condition are considered 
equi v alent models. To enhance the resolution of sharp boundaries 
and blocky features, the inversion process is carried out using Al- 
gorithm 2, w hich inv olves setting q = 1 in eq. ( 19 ). It is worth 
noting that the inversion of each data realization converges to the 
final solution in 10 iterations according to the number of contin- 
uation parameters ( T ) . The CPU time required for implementing 
the entire inversion is reported in Table 2 . Figs 3 (a)–(c) display 
various statistical measures, such as the arithmetic mean, mode (i.e. 
maximum frequent value) and median, derived from the inversion 
of all bootstrapped data realizations. These measures provide in- 
sight into the estimation of the true resistivity distribution. The 
anal ysis re veals that the topsoil layer and the resistive background 
are relati vel y well resolved throughout the model. Ho wever , the re- 
covery of the lens-like body varies across the different statistics. 
For comparison, the inverted resisti vity tomo gram of the unboot- 
strapped (original) data is shown in F ig. 3 (d), w here onl y tri vial 
differences are observed between this section and, in particular, the 
mean and median sections. Fur ther more, Fig. 3 (e) illustrates the 
uncertainty map of the solution, presented in terms of standard de- 
viation. As expected, ele v ated uncertainty is e vident along the edges 
of the conductive anomaly. Moreover, uncertainty increases in areas 
characterized by inadequate data coverage. Significant uncertainties 
also arise between the overburden layer and the conductive anomaly. 
This arises from the electrical current’s propensity to traverse the 
resistive layer, resulting in a weakened signal from the resistive 
layer. 

To e v aluate the recovery of the resisti vity model, we choose three 
points representing the topsoil layer (circle), lens-like body (square) 
and bedrock (triangle). Fig. 4 displays the posterior distribution of 
resisti vity v alues corresponding to these locations. Regarding the 
resolved parameters, the distributions exhibit an approximate bell 
shape with a solitary peak. Nonetheless, certain marginal distribu- 
tions display slight skewness either to the right or left. 

We also provide a direct comparison of the resistivity distribu- 
tions, the mean model, and the true model along three vertical pro- 
files marked by black dashed lines in Fig. 5 . This comparison shows 
a relati vel y good agreement between the mean model (magenta 
line) and the true model (blue line). Ne vertheless, the v ariations in 
resistivity profiles tend to escalate with depth, attributed to the di- 
minishing resolving capability of electrical resisti vity tomo graphy 
data as depth increases. 

The second synthetic model incorporates a more intricate sce- 
nario, drawing inspiration from a genuine geological model. It fea- 
tures an inclined fault dividing the model into two distinct media. 
The left medium comprises a conductive topsoil overlying a resistive 
bedrock, while the right medium consists of a resistive surface layer 
resting on a highl y conducti ve medium. Additionall y, the model 
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Figure 9. Posterior distributions of resistivity for the points depicted in Fig. 8 , represented by (a) circle, (b) square and (c) triangle. 
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onsiders irregular terrain (Fig. 6 a). To generate synthetic apparent
esistivity data, a collinear Dipole–Dipole arrangement is utilized,
omprising 43 electrodes e venl y spaced at 5 m intervals, yielding a
otal of 292 data points. The current and potential dipoles maintain
n interval separation ranging from 5 to 40 m . This procedure is car-
ied out on the simulated Earth model, incorporating the resistivity
alues listed in Table 3 . To improve realism, Gaussian noise with
n uncorrelated distribution and a standard deviation equivalent to
 per cent of each data amplitude was incorporated into the data set.
n Fig. 6 (b), the forward response is presented as a pseudo-section,
ighlighting that the two distinct mediums resulting from the fault
an still be differentiated. 

Following the strategy used for the first synthetic example,
he proposed strategy described in Algorithm 3 is executed for
00 iterations. We present a few randomly selected example re-
lizations of the resampled data along with the corresponding
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prior models generated by the proposed geostatistical method in 
Fig. 7 . 

Similar to the synthetic example 1, the inversion of each boot- 
strapped data realization reaches convergence after 10 iteration. 
Table 2 reports the CPU time needed to execute the entire inver- 
sion. The resulting solution ensemble is then analysed using various 
statistical metrics, such as the arithmetic mean, mode and median. 
Figs 8 (a)–(c) illustrate the distribution of resistivity in the subsurface 
model, as represented by these ensemble metrics. It can be observed 
that the true resistivity str uctures, par ticularly the boundar y between 
the underlying layers and the surface layers, are ef fecti vel y repre- 
sented by each of these descriptive statistics, with the exception of 
the mode section to some extent. The greater discrepancy of the 
mode section compared to the mean and median sections is due to 
the fact that the mode is defined as the most frequent value and is not 
influenced by all the posterior model realizations. Ho wever , the fault 
geometry does not appear to be perfectly resolved in all statistical 
metrics. For comparison, Fig. 8 (d) presents the inverted resistivity 
tomo gram deri ved from the unbootstrapped (original) data, where 
onl y minor dif ferences are noted when compared to the mean and 
median sections. Visualization of uncertainty is represented by a 
map displaying the posterior standard deviation across realizations 
of the posterior estimates, depicted in Fig. 8 (e). The high standard 
deviation is notable in the bottom left and right corners of the to- 
mo gram, primaril y attributable to inadequate data coverage. The 
conductive topsoil displays low uncertainty, primarily due to its low 

resistivity and proximity to the surface electrodes. Ho wever , it is 
worth noting that the surface portions of the section beneath the hill 
area experience increased uncertainty due to topographical effects, 
and the model cells are not directly constrained by the measured 
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ata. Fur ther more, the standard deviation plot illustrates an increase
n uncertainty along the fault edge, showing that the precise slip of
he fault cannot be determined. 

In addition to visually analysing the uncertainty in the resistiv-
ty tomo gram, histo grams of the inverted resistivity values for the
hree locations represented by circle, square and triangle symbols
re depicted in Fig. 9 . In terms of the resolved parameters, the dis-
ributions show a bell shape with a single peak. Ho wever , some
arginal distributions exhibit slight skewness either to the right or

eft. 
Further insight can be gained through a comparison of the pos-

erior resistivity distributions, the mean model and the true model
ssociated with the three vertical profiles marked by black dashed
ines (see Fig. 10 ). As illustrated in Fig. 10 , a common feature
f these plots is the increasing variability of posterior resistivity
rofiles in deeper sections, primarily attributed to reduced verti-
al resolution. Additionally, for transect P 2 , the complexity of the
ault zone results in a significant discrepancy between the model
ealizations and the ground truth. This discrepancy arises from the
imitation of the ERT method in accurately recovering intricate ge-
logical structures. 
c  
.2 Real examples 

inally, we demonstrate the application of the proposed method to
wo real data sets with known geological information. The first case
ocuses on the capability of the ERT method in detecting the soil–
ock interface. In the second scenario, we address hydro geolo gical
hallenges by aiming to image the boundary between fresh and
aline water. To enhance the resolution of sharp boundaries in both
ases, we minimize the cost function (eq. 19 ) by setting q = 1 . 

ase 1 

he first case study presented here is located near the Ilam em-
ankment dam, within the western region of Iran. This study forms
art of a comprehensive geophysical and geological investigation
imed at visualizing the boundary between topsoil and bedrock, and
ssessing the potential for a water escape zone on the left bank of
he embankment dam. The primary challenge of this geophysical
tudy involves the low conductivity contrast betw een cla y and silt
verburden layers and the limestone bedrock, which is interspersed
ith shale and marl formations. Out of the four parallel electri-

al resistivity profiles measured within the geophysical prospection
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rea, one profile is considered in this case. The data acquisition was
onducted using the eight-channel GDD instrument, together with
 relay switching unit, along a profile comprising a total number
f 959 data points. To achieve good vertical and horizontal resolu-
ion, a combination of the Dipole–Dipole and Wenner-alpha arrays
as utilized with minimum electrode spacings of 5 and 10 m up

o s dd = 8 and s w = 12 levels (where s is the number of current-
otential dipole separation), respecti vel y. The topo graphy of the
tudy area is characterized by a gently sloping surface. Nonethe-
ess, we incorporate the topographical variations into the inversion
rocess. According to the available lithology information obtained
rom the borehole in the vicinity of the ERT profile, there is a 15 m -
hick overburden layer of silty clay above the limestone bedrock,
hich is interbedded with shales. Ho wever , the thickness of the over-
urden layer may exhibit slight variations along the profile line. To
educe the impact of noise on the inversion results, noisy data were
ltered out of the field measurements. Data with an injected current
f less than 10 m A or a standard deviation of electrical potential,
erived from the stacking error, greater than 0.5 were discarded
ased on the filtering criterion. Fig. 11 illustrates the pseudo-plot
epresenting the processed data with fewer data points for deeper
arts of the pseudo-section. Upon qualitative analysis, despite the
pparent resistivities increase with depth the demarcation between
he topsoil and bedrock remains indistinct. In addition, resistivity
alues on the left side of the pseudo-section are generally greater
han those on the right side. 

Following the strategy outlined for synthetic examples, 100 re-
lizations of perturbed data and prior models are created and used
s inputs for inversion (see Algorithm 3), then the posterior dis-
ribution of the inverted resistivity models is obtained. To provide
nsights into the characteristics of the resampled data and the prior
odels generated through the geostatistical method, Fig. 12 show-

ases five randomly selected realizations of the bootstrapped data
nd their associated prior models. 

As mentioned earlier, each realization is independently inverted
rom the others, allowing any number of CPUs to concurrently pro-
ess data and initial model realizations without depending on one
nother. Thus this approach reduces the computing time of the al-
orithm implementation. Note that inversion parameters have to be
dentical across all bootstrapped data realizations to facilitate com-
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Figure 17. Example realizations of bootstrapped samples (a)–(e) with corresponding prior models generated using the geostatistical method (f)–(j), and the 
mean of prior model realizations (k) for the real case 2. 
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parability. Ho wever , in this manner , the uncertainty quantification 
will, to some degree, depend on the choice of starting parame- 
ter. After inverting the bootstrapped data realizations, the statistical 
properties of the posterior models including arithmetic mean, mode, 
median and standard deviation maps derived from convergent so- 
lutions of the proposed algorithm are illustrated in Figs 13 (a)–(c). 
Just like in synthetic e xamples, conv ergence is achiev ed for each 
bootstrapped data realization after 10 iterations, depending on the 
number of continuation parameters ( T ). The CPU time required 
for executing the entire inversion process is detailed in Table 2 . 
The resistivity distribution displays horizontal layering, featuring a 
high-resistivity zone within the topmost two meters of the soil and 
a conductive middle layer with varying thickness along the profile. 
Additionally, the limestone bedrock is discernible as the most resis- 
tive layer at the bottom of the sections. When overlaying borehole 
information onto the posterior mean resistivity section, the interface 
between the topsoil and the bedrock aligns well with the borehole 
data. In the borehole lithology, white and black columns indicate the 
overburden layer and bedrock, respecti vel y. In addition, to provide 
a comparison, Fig. 13 (d) displays the inverted resistivity tomogram 

from the unbootstrapped (original) data, re vealing onl y negligible 
differences when contrasted with the mean and median sections. 
Fig. 13 (e) illustrates the posterior standard deviation, which mir- 
rors the uncertainty of the inversion results. Generally, uncertainty 
escalates with depth, particularly in regions where model cells are 
minimall y influenced b y data, and primaril y af fected b y regulariza- 
tion parameters. Notably, the high-density data set obtained through 
a combination of Wenner and Dipole–Dipole arrays results in the 
boundary between topsoil and bedrock not being depicted as a high- 
uncertainty zone. 

Also, to assess resistivity recovery, we choose three points within 
the topmost layer (represented by a circle), bedrock (represented 
by a square) and overburden (represented by a triangle). Fig. 14 
illustrates the posterior probability distribution of resistivity values 
associated with these model cells. 

A more ef fecti ve approach to scr utinizing potential uncer tainties 
involv es e xamining 1D posterior model realizations. We display 1D 

resistivity distributions along vertical profiles at points of interest 
in F ig. 15 . F rom F ig. 15 , it becomes apparent that the fluctuations in
the inverted geo-electrical profiles generally intensify with depth, 
especially notable for the lowest layer (bedrock), attributed to re- 
duced vertical resolution. In contrast to the depth of the resistive 
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opmost lay er, w hich lacks direct constraint by measured data, the
stimation of the overburden-bedrock interface demonstrates high
ccuracy and low uncertainty, which is also compatible with the
itholo gy lo g. 

ase 2 

he second set of real data was acquired in the Kashan Erg region,
hich is surrounded by sandy hills and salt pans. This area, lo-

ated approximately 40 km from Kashan city in central Iran, boasts
nique geo graphical features. Excessi ve groundw ater withdraw al
as caused a decline in the water table, leading to the intrusion of
aline water into the freshwater aquifer. To address this issue, the
resh-saline water interface is resolved using ERT measurements,
upplemented by a topographic surv e y to determine the profile’s
osition. In this study, a collinear Dipole–Dipole configuration is
mployed, utilizing 23 electrodes arranged with a regular spacing
f 5 m . This setup extends across eight levels ( s = 1 − 8) , resulting
n 363 data points to generate the apparent resistivity responses.
lthough the Dipole–Dipole configuration offers benefits like less

ensitivity to electromagnetic interference and minimal impact from
easurement distortions caused by electrode polarization during

urrent injection, this electrode setup often exhibits low-voltage
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strength when dealing with significant separations of current and 
potential dipoles. The data underwent filtering to eliminate outliers 
and measurements with low signal-to-noise ratios. The processed 
data are represented in Fig. 16 in the form of an apparent resistivity 
profile. 

We adhere to the inv ersion strate gy outlined in Algorithm 3, 
employing the proposed bootstrap resampling method to generate 
multiple data realizations. Subsequently, a range of prior models is 
stochastically generated for each bootstrapped data set. Following 
the implementation of the CBB algorithm and the geostatistical al- 
gorithm, Fig. 17 depicts five randomly selected realizations of the 
resampled data and their corresponding prior models. Displayed in 
Figs 18 (a)–(c) are the descriptive statistics of the resulting solu- 
tion ensemble, including the arithmetic mean, mode and median, 
respecti vel y. The inverted sections reveal a heterogeneous distribu- 
tion of subsurface resistivity, encompassing an unsaturated silt/clay 
zone and a saturated layer composed of sand and clayey sand. The 
saturated zone is distinctl y di vided into a freshwater-bearing layer 
with the highest resisti vity v alues and a highl y conducti ve layer con- 
taining saline water. The interface between saline and freshwater is 
identifiable at a depth of approximately 5 m . In addition, litholog- 
ical information obtained from the available borehole is overlaid 
on the inversion results, revealing a relati vel y good agreement be- 
tween the ground truth and the mean resistivity section. Likewise, 
the inversion of the unbootstrapped data is shown in Fig. 18 (d) for 
comparison with the inverted tomograms of the resampled data. The 
difference between the unbootstrapped inversion and the mean and 
median sections is minimal. The standard deviation map, serving 
as a proxy for the uncertainty in the inverted subsurface model, 
is depicted in Fig. 18 (e). Following this representation, it becomes 
apparent that the highest uncertainty lies in the fresh-saline water 
interface. Ho wever , the uncertainty decreases at the right hand of 
the section, likely due to the deeper penetration of the boundary 
between saline and fresh w ater. Additionall y, plotting histo grams of 
the reconstructed parameters offers a quick quantitative analysis. 
Therefore, the distribution of inverted resistivity realizations cor- 
responding to three points marked by a circle, square and triangle 
is represented in Fig. 19 . 

Fur ther more, to e v aluate resisti vity recovery, the 1D posterior 
model realizations, along with the mean model associated with the 
three depth profiles depicted by black dashed lines in Fig. 18 (a), 
are shown in Fig. 20 . In these three plots, we depict the posterior 
resistivity distributions at different depths, represented in shaded 
colours, with the mean indicated by a solid magenta line. Upon 
examining the resistivity distributions of the first two transects (i.e. 
P 1 and P 2 ), it becomes evident that there is a greater uncertainty 
within the top 6 m of the profiles compared to the deeper depths. 
In the case of transect P 3 , we observe an increase in the variations 
of resistivity distribution with depth, attributed to the presence of 
a more resistive region along the corresponding vertical profile. In 
this example, the elapsed CPU time required for the entire inversion 
is provided in Table 2 . 

4  C O N C LU S I O N S  

Uncertainty quantification of electrical resistivity tomography mod- 
els, deriv ed from re gularized inv ersion methods is an active field of 
research in geophysics. These models often carry inherent uncer- 
tainty, which can be attributed primarily to epistemic uncertainty, 
arising from imperfect underlying physics and inaccurate initial ap- 
proximations of model parameters and aleatory variability, caused 
by measurement errors in observations. To address this issue, we 
propose a novel method in the framework of a stochastic optimiza- 
tion process for computing a meaningful uncertainty quantification 
for regularized inversion of ERT data. The proposed uncertainty 
quantification algorithm employs a hybrid approach, combining 
block-wise bootstrap resampling with a geostatistical method in 
the context of regularized inversion. To ensure that all data samples 
have an equal probability of being drawn during the bootstrapping 
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rocess, we utilized the CBB method. This method offers the ad-
antage of wrapping samples around in a circular manner before
locking. Next, we apply a geostatistical technique to stochasti-
ally generate a set of initial models for each bootstrapped data set.
inall y, a globall y convergent homotopic continuation method is
mployed on each bootstrapped data set and initial model realiza-
ion to explore the posterior resistivity models. We demonstrated
he application of the proposed algorithm on two synthetic exam-
les, inspired by real geological models, and on two real data sets
ith distinct regional geolo gy. The objecti ve w as to retrie ve statis-

ical estimates of the resistivity distribution in the subsurface and
o offer a quantitative analysis of the model uncertainty. From our
umerical experiments, some general conclusions are drawn: (1)
ncertainty tends to escalate in regions with fewer data constraints.
2) Areas exhibiting greater heterogeneity and complexity typically
xperience higher levels of uncertainty. (3) Uncertainty generally
mplifies with depth, attributed to diminished vertical resolution. 

In summary, the results showed that the proposed approach for
uantifying uncertainty is straightforward to implement and easily
ntegrates with any regularized inversion method within a speci-
ed set of (prior) assumptions. Practically speaking, the proposed
ethod suggests that obtaining uncertainty estimates is achie v able

y executing the inversion algorithm in a parallel for-loop when
ufficient resources are accessible. It is also noted that sampling the
qui v alence domain using the proposed method does not yield the
esired Bayesian posterior distribution, ho wever , from a practical
tandpoint, the estimated uncertainties hold significant value as they
rovide insights into the accuracy of the retrieved model features
nd enable the e v aluation of result precision. The proposed uncer-
ainty quantification method demonstrates computational efficiency
uitable for addressing 2D ERT problems and can also be applied
o 3D electrical resistivity inverse problems. However, one common
imitation of the proposed method is the impact of prior assump-
ions, such as model parametrization and regularization term, on
he posterior models and, consequently, on the resulting uncertainty
uantification. 

The inversion of ERT data inherently presents an imaging prob-
em characterized by non-unique solutions. Addressing this through
nsemble-based approaches, like our proposed algorithm, proves to
e not only viable and useful but also poised to become increasingly
ractical in the future. As part of our future endea vor, w e intend to
onduct a comparative analysis between our approach and Bayesian
nversion methods applied to ERT data. 
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matrix, Geophysics, 82 (3), E129–E141. 

ampanya , J . , Ledo, J ., Queralt, P., Marcuello, A. & Jones, A.G., 2014.
A ne w methodolo gy to estimate magnetotelluric (MT) tensor relation-
ships: Estimation of Local transfer-functions by Combining Interstation
Transfer-functions (ELICIT), Geophys. J. Int., 198 (1), 484–494. 
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hanati , R. & M üller-Petke, M., 2021. A homotopy continuation inversion
of geoelectrical sounding data, J. Appl. Geophys., 191, 104 356. doi:
10.1016/j.jappgeo.2021.104356 

http://dx.doi.org/10.1002/nsg.12133
http://dx.doi.org/10.1016/j.camwa.2015.07.024
http://dx.doi.org/10.1093/gji/ggac241
http://dx.doi.org/10.1093/gji/ggac242
http://dx.doi.org/10.1190/geo2015-0673.1
http://dx.doi.org/10.1093/gji/ggu147
http://dx.doi.org/10.1190/geo2011-0393.1
http://dx.doi.org/10.1016/0045-7825(93)90117-G
http://dx.doi.org/10.1109/TMTT.1987.1133592
http://dx.doi.org/10.1016/j.jappgeo.2014.01.018
http://dx.doi.org/10.1016/j.jappgeo.2019.103839
http://dx.doi.org/10.1111/j.1365-2478.1979.tb00961.x
http://dx.doi.org/10.1007/s00184-014-0505-9
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1016/j.jappgeo.2018.12.022
http://dx.doi.org/10.1046/j.1365-246X.2003.01890.x
http://dx.doi.org/10.1029/2017JB015418
http://dx.doi.org/10.1016/j.jappgeo.2021.104356


1596 Z. Tafaghod Khabaz, R. Ghanati and C. L. B ́erub ́e 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/239/3/1576/7778284 by Ecole Polytechnique de M
ontreal user on 29 O

ctober 2024
Ghanati , R. & Fallahsafari, M., 2022. Fr échet Deri v ati ves calculation for 
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