PCLYPUBLIE

Polytechnique Montréal D'INGENIERIE

POLYTECHNIQUE §

A [
UNIVERSITE
=

Titre: ' Design of minimal model-free control structure for fast trajectory
Title: tracking of robotic arms

Auteurs:
Authors:

Date: 2024

Baptiste Toussaint, & Maxime Raison

Type: Article de revue / Article

Référence:

Toussaint, B., & Raison, M. (2024). Design of minimal model-free control structure
for fast trajectory tracking of robotic arms. Applied Sciences, 14(18), 8405 (18

Citation: ' hages). https://doi.org/10.3390/app14188405

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/59441/

Version:

Conditions d’utilisation:
Terms of Use:

. Version officielle de I'éditeur / Published version

Révisé par les pairs / Refereed

ccBY

Document publié chez I’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:
Maison d’édition:
Publisher:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Applied Sciences (vol. 14, no. 18)

Multidisciplinary Digital Publishing Institute

https://doi.org/10.3390/app14188405

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://doi.org/10.3390/app14188405
https://publications.polymtl.ca/59441/
https://doi.org/10.3390/app14188405

friried applied
e sciences

Article

Design of Minimal Model-Free Control Structure for Fast
Trajectory Tracking of Robotic Arms

Baptiste Toussaint

check for
updates

Citation: Toussaint, B.; Raison, M.
Design of Minimal Model-Free
Control Structure for Fast Trajectory
Tracking of Robotic Arms. Appl. Sci.
2024, 14, 8405. https://doi.org/
10.3390/app14188405

Academic Editors: Yi Wang and Seong
Hyeon Hong

Received: 16 July 2024
Revised: 29 August 2024
Accepted: 5 September 2024
Published: 18 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Maxime Raison *

Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
baptiste.toussaint@polymtl.ca
* Correspondence: maxime.raison@polymtl.ca

Featured Application: Following straightforward guidelines, feedforward neural networks enable
to design an accurate model-free control structure for the fast trajectory tracking of robotic arms.

Abstract: This paper designs a minimal neural network (NN)-based model-free control structure
for the fast, accurate trajectory tracking of robotic arms, crucial for large movements, velocities,
and accelerations. Trajectory tracking requires an accurate dynamic model or aggressive feedback.
However, such models are hard to obtain due to nonlinearities and uncertainties, especially in low-
cost, 3D-printed robotic arms. A recently proposed model-free architecture has used an NN for
the dynamic compensation of a proportional derivative controller, but the minimal requirements
and optimal conditions remain unclear, leading to overly complex architectures. This study aims
to identify these requirements and design a minimal NN-based model-free control structure for
trajectory tracking. Two architectures are compared, one NN per joint (INN) and one global NN
(GNN), each tested on two serial robotic arms in simulations and real scenarios. The results show
that the architecture reduces tracking errors (RMSE < 2°). The INN is accurate for decoupled joint
dynamics and requires fewer training data than the GNN. A table summarizes the design process.
Future works will apply this control structure to low-cost robotic arms and micro-movements.

Keywords: three-dimensional printing; low cost; machine learning; uncertainties

1. Introduction

The transfer of robotics into everyday life is currently accelerating, with 20 million
robots expected to be in use worldwide by 2030 [1]. The ability of robotic arms to accurately
follow specified trajectories is important in a large field of applications.

Control structure methods for the successful tracking of such trajectories by robotic
arms represent a problem that has been studied for decades [2] and require either an
accurate dynamic model or aggressive tracking with high-gain feedback. However, for
most robotic arms, an accurate dynamic model can be difficult to obtain due to nonlinearities
(e.g., friction) and uncertainties (e.g., inertial parameters) in these dynamic systems [3],
making implementation on robotic arms difficult. Thus, the inability of these joint servo
controllers to address these nonlinearities and uncertainties can lead to the degradation
of accuracy in trajectory tracking [4]. Generally, in industrial robots, the solution consists
of finding a compromise between a reduction in the cycle time and an improvement in
tracking accuracy [5]. This situation is currently accentuated by the attempts to develop
3D-printed and low-cost robotic arms, which can have higher friction and cheaper motors.

The most common control architecture consists of a joint torque control using a lin-
ear controller, such as a traditional proportional-integral-derivative (PID) controller. To
compensate for the response time of the controller, a feedforward compensation using the
dynamic model of the system is usually added. Widespread alternatives can use simplified
models [6] or machine learning methods [3]. Notably, iterative methods, such as iterative

Appl. Sci. 2024, 14, 8405. https:/ /doi.org/10.3390/app14188405

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14188405
https://doi.org/10.3390/app14188405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0004-8926-9440
https://orcid.org/0000-0002-0311-456X
https://doi.org/10.3390/app14188405
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14188405?type=check_update&version=2

Appl. Sci. 2024, 14, 8405

20f 18

learning control, are based on task repetition and allow for efficient trajectory tracking
either with the addition of a dynamic model [5] or without any information on the dynamic
model [7,8]. However, if these methods are useful for repetitive tasks, such as working
on assembly lines, the learned representation is not easily transferable between different
trajectories.

Control structures based on neural networks (NNs) have attracted attention with their
potential ability to generalize beyond a training set [5]. For trajectory tracking especially,
the power of approximation of NNs has been used in control structures to learn either the
forward or inverse dynamics of the system [9-12]. According to [5], when using an NN
architecture, the control problem falls either in reinforcement learning [13,14], adaptive
control [15], or optimal control [16].

To approximate a system’s forward dynamics, several NN architectures, such as recur-
rent neural networks (RNNs), feedforward networks, or radial basis function (RBF) neural
networks, have been used, e.g., [12,17-19]. In [20], NNs were used to learn inverse dynamic
models, and they were included as a feedforward component for dynamic compensation. It
has already been shown that NNs—especially RNNs and Long Short-Term Memory (LSTM)
neural networks—can outperform other techniques, such as Gaussian Processes, to learn
inverse dynamics when there are sufficient training data [21,22]. However, most of these
works operate at a torque-level control, which usually requires many parameters for the
NNs—in the order of 10° in [23], for a 7-degrees of freedom (DOF) robot arm—or several
neural networks to approximate different elements of the dynamic model. Moreover, when
torque control is required, a bridge exists between the results in simulations and in reality.
In [24], an adaptive controller based on a neural network was used for robot manipulator
trajectory tracking, but solely the simulation results were presented.

Even if the design of a controller plays a major role in control structures, Ref. [25]
reminds us that the design of the control structure also answers the following questions:
“Which variables should be controlled and measured, and which inputs should be manip-
ulated?” “Which control configurations (e.g., cascade control, feedforward control, etc.)
should be used, how must the different controls be organized hierarchically, and how many
degrees of freedom must the controller have to achieve the desired performance?”.

In [4], as in [26], another architecture is proposed for the control structure. An NN-
based control structure is used in an outer loop (i.e., for position control) as feedforward
compensation on either a quadrotor with a deep NN or a 7-DOF robot arm with an RNN.
These papers highlighted three main advantages of combining an NN system as feedfor-
ward compensation with a position PD controller. First, NN architectures can be applied to
various systems with complex dynamics while ensuring their stability [26]. Secondly, this
approach is easy to use because it does not need any prior information on the system and
can be applied to unseen trajectories without any adaptation process [5,11]. Thirdly, with
a good training process, this approach demonstrates good accuracy in trajectory tracking
while being computationally efficient with a small model [4].

In [4], the learning of the direct dynamic model of a flexible Baxter robot was conducted
at the joint position control level by combining a proportional-integral-derivative (PID)
controller with either a bidirectional RNN or an RNN associated with an iterative learning
control (ILC) algorithm, both with around 103 parameters, directly as one integrated model.
The results showed a reduction in tracking errors between 12% and 54% depending on the
joints, compared to the reference for random trajectories.

In [5], the inverse dynamic learning process of a 7-DOF industrial robot was first
conducted in a simulation by implementing the control for many trajectories to collect
data for the NN on the real system. However, this technique required a good dynamic
simulation of the system, which is rarely available for non-industrial robots because a large
amount of data is needed to train the model. In this paper, a trained NN with around
2.10* parameters—2 layers of 100 neurons—is employed as a feedforward component
to compensate for the dynamic errors of the position controller of an ABB IRB6640-180
robot with 6 DOEF. This approach resulted in a diminution of tracking errors by 80% to 90%

Appl. Sci. 2024, 14, 8405

30f18

compared to tracking errors without compensation, achieving a global mean squared error
of 2.145° in their tests. Unlike their previous work [4], which used a single NN for the
whole system, the authors mentioned that on the studied ABB robot (Zurich, Switzerland),
the joint dynamics were decoupled—i.e., the impact of the joint movements was negligible
on the dynamics of the other joints—allowing the possibility to train six separate NN’s,
each approximating the dynamic inversion for one joint. However, only a global neural
network for all joints was implemented.

In [11], we proposed a model-free control structure for high-speed trajectory tracking
that combined the advantages of both proportional-derivative (PD) controllers, which
are stable and easy to use, and neural networks, which are efficient in estimating the
system dynamics. This method differed from [4] and [5] by using one NN per joint (the
INN method) instead of one global NN for the entire robot arm (the GNN method). The
architecture—illustrated in Figure 1—combines an NN with a PD controller. It consists of
learning the dynamic response of the PD controller with an NN and using it in an outer
loop as a feedforward compensation to predict and correct the errors of the PD controller,
which is effective for robot trajectory tracking [27]. A summary of existing methods for
trajectory tracking is presented in Figure 2.

Global neural network method (GNN method)

x Planner qda Neural 4dc u Real
—> (nverse kinematc > Network > PD System q >
module) | /3 Y T x = desired effector
Control structure trajectory
Independant neural networks method (INN’s method) qq = desired joint
Neural e Uy Real trajectory
qa 1 — PD —— > .
= - Network System qr1 q. = modified command
x anner o
(Inverse kinematic ...’... (posmon) ..
module) q w g, = motor position
qan Neural ~ _fen PD —» Real I u = torque command
Network System Arn 1..n=motor1lton
Control structure %

Figure 1. Model-free control structure for high-speed trajectory tracking.

Machine
Precomputed torque : learning
cgntrol 4% Optimal control
Kong, 2020 NN for
direct/inverse

Adaptive control

Jiang, 2020; Trierweiler, 1997~ dynamic estimation

Accurate/
simplified

. Iterative methods
dynamic model

Chen, 2021; Arimoto, 1990; Norrlof, 2002.

Reinforcement learning
Lou, 2016; Ouyang, 2020

Traditional NN feedfor\ivard
feedforward compensation
: Chen, 2019; Chen, 2021;
compensation

Wang 2017; Li, 2017.
PID

Aggressive controller
with high-gain
feedback

Figure 2. Summary of existing control structures for trajectory tracking [4,5,7,8,12-16,25,26].

Appl. Sci. 2024, 14, 8405

40f18

Pivot joint

.
Pivot joint 3°%

From our state-of-the-art review, it appears that using a control structure with an NN
architecture as a feedforward component for the inner-loop dynamic compensation allows
for reducing the errors in position and velocity during the trajectory tracking without
any prior knowledge of the dynamic model [4,5,11]. However, there is a lack of studies
optimizing the design process of this model-free control structure. This gap necessitates
experimentally selecting learning parameters, often leading to unnecessarily complex
architectures. Particularly, the current models still require a large number of parameters—
ranging from 10° to 10* parameters—resulting in non-convex loss functions and higher
computational costs during the training process. The minimum number of parameters
needed for the NN architecture to provide an effective dynamic compensation is also absent
from the literature, as well as the amount of data required to train these architectures.

Moreover, there are no established guidelines on the best NN architecture for the
use as feedforward compensation—whether a global NN for the whole system (the GNN
method) or smaller NNs for each joint (the INN method)—and the necessary conditions to
achieve optimal performances for these methods remain unclear.

The objective of this study is to design a minimal model-free control structure based
on a neural network for the fast and accurate trajectory tracking of robotic arms. The
subsequent objective is to compare 1. one NN per individual joint (the INN method)
and 2. one global NN for all joints (the GNN method). To meet this objective, both real
3D-printed robotic arms (3- and 5-DOF) and simulated robotic arms (3-DOF) were used.
We focused on the fast trajectories, i.e., trajectories where the PD is unable to accurately
track the trajectories due to the response time limitations. Figure 3 presents the design of
the studied robots.

dz =0.2m

Pivot joint

Pivot joint

s

“——— Pivotjoint
d3 = 0.1m
d; =0.2m

Universal joint

(A) (B)

Figure 3. Design of the studied robotic arms for (A) simulated and real 3-DOF arms and (B) a real
5-DOF arm.

The planar 3-DOF setup allows straightforward results while accounting for external
forces like gravity, while the 5-DOF setup demonstrates the architecture’s applicability to a
widely used topology in industry settings.

2. Materials and Methods

To obtain the required results to evaluate the NN architectures used in the control
structure across different configurations, both real 3D-printed (3- and 5-DOF) and simulated
robotic arms (3-DOF) were used, as shown in Figure 3.

Appl. Sci. 2024, 14, 8405

50f18

First, the real 3-DOF planar robotic arm consisted of three 3D-printed bodies made
from polylactic acid with segment lengths of 4y = 0.2 m, d, = 0.2 m, d3 = 0.1 m, respec-
tively. Each body was connected by a pivot joint actuated by XM-540 Dynamixel motors.

Secondly, the real 5-DOF robotic arm consisted of five 3D-printed PLA bodies. Two
DOFs were in the base (universal joint), while the remaining three were pivot joints, as
shown in Figure 3. All joints were actuated by Dynamixel motors from the XM series. The
segment lengths were d; = 0.3 m, d» = 0.3 m, d3 = 0.1 m, respectively.

The experimental results were used to validate and enhance the simulated results,
ensuring that the simulations represented reality. Specifically, we adjusted simulation
parameters, including PID gains, inertias, and masses, to ensure that the accuracy of the
simulated PD controller matched that of the real PD controller.

We also assumed that the internal dynamics of the robotic arms were deterministic
and repeatable.

2.1. Equations of the Simulated Model

The equations for the simulated system were generated using the Robotran software
(version 1.22.0) [28]. The semi-explicit formalism, as presented in (1), also referred to as the
direct dynamic model in the literature, was used as follows:

M(q,8)q+c(q,q,8,frc, trq,g) = 7(q,9), ey

where M[n - n] is the symmetric generalized mass matrix of the system; c[n - 1] is the
nonlinear dynamic vector containing the gyroscopic, centrifugal and gravity terms, as well
as the contributions of external forces and torques; q[# - 1] contains the relative generalized
coordinates; [10# - 1] contains the dynamic parameters of the system, i.e., masses, centers
of masses, inertia; and T[n - 1] contains the generalized joint forces.

To be as realistic as possible, the dynamic effects of the motors were considered by
accounting for the inertia of the rotor of each motor and viscous friction, which is velocity-
dependent [29]. For simplicity, we neglected the nonlinear friction torque given in this
article. Thus, the model of the motors was written as follows:

]mq.m + qum = Tm — RT, (2)

with T corresponding to the generalized joint forces from Equation (1); g,,[n - 1] and
g, - 1] being the velocities and accelerations of the n motors, respectively; J,,,, Dy, and R
being three [n - n] diagonal matrices corresponding to the moments of inertia, the viscous
friction coefficients of the motors, and the gear reduction ratios, respectively.

Finally, T, [n - 1] is the vector of torques supplied by the motors, which corresponds
to the output of the PD controller. Based on [29], we used (1) to replace T in (2) and
applied the relation g = Rq,, to combine the equations to obtain the complete model of the
simulated arm:

Jintyy + D,y = T — R(Mg +) (3)
(J,, + RMR)q,, + Dq,, + Rc = Ty, 4)
i = Rd,, = R(J,, + RMR) "' Ty — Dyug,,, — Rc) (5)

An n-DOF robot arm was considered with a joint servocontrol with input g, € R",
the joint position commands, and the output g € R”, the measured joint positions. Our
goal was to find a feedforward compensation such that, for desired joint trajectories g,
the corrected input commands g, would result in the perfect tracking of these desired
trajectories: g, — q = q,. The architecture of the control structure is presented in Figure 1.

2.2. Implementation of the Control System

Once the gains of the PD controller were tuned by using traditional tuning methods,
the NN architecture for feedforward compensation was designed. All NN architectures

Appl. Sci. 2024, 14, 8405

6 of 18

were built by using a multi-layer perceptron regressor, implemented with the “MLPRe-
gressor” function from the Python library “sklearn” [30]. We tested architectures with
varying numbers of neurons, starting from the simplest with a single layer of one neuron
to more complex configurations, to determine the minimal requirements for achieving
good accuracy. In simulation, we evaluated different motor reduction ratios and noise
magnitudes to analyze their impact on the control structure accuracy. The range parameter
values were set to reflect realistic values of physical systems.

Table 1 sums up parameters tested across different configurations. We provided an
open source implementation and training procedure for the architectures discussed in this
section in [31].

Table 1. Summary of tested parameters.

Parameter Values
Arm Real (3/5 DOF), Simulated (5 DOF)
NN Architecture INN, GNN
Number of neurons 1,3,16,3+3,16 + 16,3 x 16
Additional parameters studied in simulation
PD parameters RNN
Motor reduction ratio 1,0.5,0.25,0.16, 0.1, 0.01
Noise magnitude (m) 0, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.04

2.3. Test Procedure

The main steps for designing an accurate control structure with a feedforward neural
network were identified prior to the study. To provide a guide for the design of our minimal
model-free control structure by using neural networks for feedforward compensation, we
studied each of these steps in detail.

Using both real robotic arms and simulated models, we followed these steps:

Build a dataset of trajectories, all with the same duration representing the entire workspace
of the arm, by using a simple PD controller on each joint, with the following control law.

c(t) = P(q(t) —u(t)) + D(q(t) —u(t)),

with ¢ the vector of commands (in current) of the n motors, g and g the position and velocity
of the n motors, u and u are the desired position and velocity of the # motors, and P and D
the gains of the internal PD controller.

The dataset comprised 1000 trajectories, a number selected to provide enough data to
ensure optimal training while being feasible for real systems.

Joint trajectories were generated from a home position by using quintic polynomials
by choosing the desired random position and velocity in the workspace of each motor, as
follows:

qi(t) = ag + art + aot® + ast® + agt* + ast®, (6)
with

1 0 0 0 0 0 ap qi0

01 0 0 0 0]||m i

00 2 0 0 0 ||a] i @)
1ty 5 & & 65 ||a| |qa|

0 1 2ty 3t5 4t 5t |ay Qi

0 0 2 6ty 12t5 20£] Las ia

with g;o being the home position of the ith motor, gy = 0 and g;p = 0 being the initial
velocity and acceleration of the motor, g;4, g;4 being the desired position and velocity, and
gia = 0 being the desired acceleration.

The same equations were used to generate the second half of the trajectory between

qia and g;r = qio-

Appl. Sci. 2024, 14, 8405

7 of 18

All these trajectories were generated at 100 Hz to ensure regular commands were sent
to the motors with our computer.

Once the trajectories were executed, the dataset was built using a desired number of
trajectories (between 20 and 1000). Each datum of the dataset consisted of five variables for
each motor: the position g and the velocity g of the motor at two consecutive timestamps—
q(t), q(t+9),q(t), q(t + 6)—and the command sent between these two timestamps u(t).

Train the NN architecture to learn the dynamic model through the response of the PD
controller. By giving the NN a lot of data from the trajectories, it learned which command
had to be sent to each motor to go from a state—q(t), g(t)—to the next one—q(t +),
q(t + 6)—and implicitly, the dynamic model of the robotic arm. The multi-layer perceptron
regressor was trained with a maximum of 500 iterations by using the “MLPRegressor.fit ()”
function from the Python library “sklearn” [30]. This function used the square error as the

loss function:
L=Y (u(t)—q(t+6)*)

The loss function was minimized by using the Adam solver.
Generate a new set of commands to effectively track the desired trajectory q,(t), t €

[O, t f} . For the GNN method, inputs consisted of the ensemble of two successive positions

and velocities for all motors—q(t), 4(t), q(t +), g(t +). For the INN method, each
NN received inputs related solely to its specific motor, i.e., its successive position and
speed—q;(t), 4;(t), qi(t + 6), 4i(t +0).

Outputs were the series of commands required for each motor, by considering the
response time of the PD controller to ensure the execution of the desired trajectory. Table 2
summarizes how a command sequence was computed for the trajectory of the joint i.

Table 2. Computation of a command sequence.

Step Inputs Output
1 7i(0), 4;(0), qi(0), 4i(4) u;(t) for t € [0; 9]
2 qi(9), 4:(9), qi(26), 4:(20) ui(t) for t € [5; 24]
3 7:(20), 4,(26), :(30), 4(39) wi(t) for t € [26; 30)
n qi((n—1)8), 4;((n = 1) 6), gi(n5), qi(n 9) u(t) fort € [(n—1)5; nd]

Store the tracking errors for n test trajectories (n = 40). The number of test trajectories
was chosen to ensure low variation in the results while maintaining a reduced number
of trajectories for practical feasibility. The accuracy of the control structure for trajectory
tracking was evaluated by comparing the root-mean-square errors (RMSE) along the

trajectory, e = \/ mean (Z(q —q d)z), with g being the real executed trajectory and g, being

the desired trajectory.
This test procedure was applied by using different values of parameters and NN
architectures to compare their effectiveness to track the test trajectories accurately.

3. Results

Figures 4 and 5 illustrate the impact of the motor reduction ratio on the performance of
the control structure for both the GNN and INN methods, which must be considered during
the design phase to choose the best architecture for the NN. Additionally, these figures
present performances for varying amounts of training trajectories, which is important for
optimizing the NN training process.

Appl. Sci. 2024, 14, 8405

8 of 18

RMS errors (in radians)

RMS errors (in radians)

(A) : Without reduction ratio

08

06

| E 100 trajectories 5250 trajectories Motor 1
ineeded for INN’s method }needed for GNN method
0 V\ i i
02 AN ; :
[11)0 ‘zou : 300 400 sﬁn
i Motor 2
200 H 300 400 500
E Motor 3
200 300 400 500

Number of trajectories used for training
—— GNN method : one global neural network

—— INN’s method : one neural network per motor

(B) : With a reduction ratio

1100 trajectoriés

- ; Motor 1
A) ineeded for INN’s method
200 i 400 600 800
Motor 2
200 E 400 600 800
1250 trajectories Motor 3
ineeded for GNN method

o 200 400

600

Number of trajectories used for training
—— GNN method : one global neural network

—— INN’s method : one neural network per motor

RMSE of PD controller = 0.21
RMSE of INN’s method =0.19
RMSE of GNN method = 0.03

RMSE of PD controller = 0.20
RMSE of INN’s method =0.20
RMSE of GNN method = 0.04

RMSE of PD controller = 0.18
RMSE of INN’s method = 0.016
RMSE of GNN method = 0.016

RMSE of PD controller = 0.28
RMSE of INN’s method = 0.036
RMSE of GNN method = 0.042

RMSE of PD controller = 0.26
RMSE of INN’s method = 0.034
RMSE of GNN method = 0.035

RMSE of PD controller = 0.31
RMSE of INN’s method =0.048
RMSE of GNN method = 0.049

Figure 4. Learning curve with both INN and GNN methods: (A) without reduction ratio, (B) with a
reduction ratio R = 0.01.

1.2

Ratio Jm/(RMR)=10

Safety factor Jm/(RMR)=100

Relative RMSE

0.1

—e—Reference performance of the PID

0.8

0.6

10

Jm/(RMR) ratio

—=—|NN's method

100 1000

—+—GNN method

Figure 5. Relative performances of the NN-based control structure compared to the reference PD

controller as a function of the J,,, / (RMR) ratio.

Appl. Sci. 2024, 14, 8405

9of 18

3.1. A. Results with the 3-DOF Simulated Model without Reduction Ratio

Figure 4A illustrates a typical learning curve obtained with the simulated model
from Figure 3A by using both methods. One can observe that the INN method requires
100 trajectories, while the GNN method needs 250 trajectories of 1 s each to maximize
their accuracy.

The learning curves for motors 1 and 2 highlight the differences in tracking accuracy
between the two studied architectures when more than 100 trajectories are available. The INN
method achieves an RMSE of 0.2 radians, whereas the GNN method achieves an RMSE of less
than 0.04 radians—or 2.3 degrees. Conversely, the learning curve for the third motor shows an
RMSE of 0.016 radians—less than 1 degree—for both methods, representing a 91% reduction
in tracking errors compared to the PD controller without feedforward compensation.

3.2. B. Results with the 3-DOF Simulated Model with a Reduction Ratio

Figure 4B presents the learning curves for the two architectures with a reduction ratio
R of 0.01. This time, RMSE is under 0.05 radians—3 degrees—for all three motors.

As observed in Figure 4A, the INN method reaches its optimal performance with
100 trajectories vs. 250 for the GNN method.

Figure 5 presents the average relative performance of both methods, with the reference
PD controller as a function of the ratio between the inertia J,,, of the motor rotor and the mass
matrix of the system (RMR). The results indicate similar performances for both methods for a
ratio above 10 with a relative RMSE of 0.15 compared to the PD controller and a progressive
deterioration of performances of the INN method when the ratio decreases. For a ratio of
0.2—obtained when there is no reduction ratio in the motor—the GNN method demonstrates
a relative RMSE of 0.22 compared to 0.56 for the PD controller, i.e., 2.5 times less.

Figure 6 shows the relative performances of both methods compared to the reference
PD controller depending on its accuracy—or parameters—for two ratios between the fre-
quency of the dynamic integration and the frequency of the feedforward NN compensation
to construct an optimal dataset. When the step time corresponds to the interval between
two commands from the neural network, the RMSE of the NN is nearly proportional to that
of the PD controller, showing a reduction of 90% of its tracking errors. When the frequency
of the dynamic integration is ten times higher than the frequency of the NN, the reduction
in tracking errors compared to the PD controller is between 80% and 85%, resulting in
RMSE values that are two times more important than when the timestamps are the same.
Moreover, when the reference PD is more aggressive—i.e., manages to track the trajectories
with an RMSE less than 3 degrees—we can see that the performances of the NN are no
longer proportional to that of the PD with an RMSE remaining around 0.5 degrees when
the two frequencies differ.

14

12

w
(%]
E 0.8
o
L 06
>
=
E 0.4
[J]
o
o \R
‘/.
0
0 5 10 15 20 25 30
RMSE of the PD controller (in degrees)
—e—Reference performance of the PID INN's method : steptime of 0.001s
GNN method : steptime of 0.001s INN's method : steptime of 0.01s

—e—GNN method : steptime of 0.01s

Figure 6. Relative performances of the NN-based control structure compared to the reference PD
controller as a function of the accuracy of the PD controller and the step time of the direct dynamic
integration.

Appl. Sci. 2024, 14, 8405 10 of 18

To design an optimal neural network, the median relative RMSE was compared
for different sizes of NNs for both INN and GNN methods tested under various PID
parameters. The results are presented in Table 3. All tested architectures, which have
at least as many neurons as the number of associated motors on each layer, achieved a
median relative accuracy between 0.935 and 1.063 compared to the smallest neural network,
representing less than a 10% difference in accuracy. On the contrary, when the number
of neurons per layer was fewer than the number of associated motors, the NN failed to
converge. This is true for the NN with only 1 neuron in the GNN method, which had an
RMSE 24.26 times greater than other NN configurations.

Table 3. Median relative RMSE according to the size of the NNs.

Method One NN for Each Servomotor One Global NN for the Whole System
Size of the NN 1 3 16 2x3 2x16 3x16 1 3 16 2x3 2x16 3x16
Relative RMSE 1 1.057 0.978 0.935 0.992 0.996 24.26 0.970 1.014 1.027 0.989 1.063

Figure 7 shows the relative performances of both methods compared to the reference
PD controller depending on the noise present in the training data. In the absence of noise,
both INN and GNN methods achieved a 90% improvement in trajectory tracking over
the reference PD controller, with an RMS error of 0.86 degrees. A gradual decrease in the
accuracy of the system is observed for noise between 0 and 0.5 degrees and is also observed
for both INN and GNN methods.

12

10

RMSE in degrees

0 0.5 1 1.5 2 2.5
Magnitude of the noise (in degrees)
—e—Reference performance of the PID INN's method GNN method

Figure 7. Relative performances of the neural networks to the reference PD controller as a function of
the noise magnitude in the training data.

Moreover, when the noise exceeds 0.5 degrees, the RMSE becomes 1.8 times larger
than in the absence of noise in the data. However, the RMSE of the NN remains relatively
stable—ranging between 1.40 and 1.65 degrees—which is still five times less than the RMSE
of the PD controller.

Note that the noise in this figure is quite high; for instance, the noise in the real systems
in this study is estimated to be 0.2 degrees (one encoder step).

Finally, with noise levels higher than 0.5 degrees, the NNs with more neurons demon-
strated a 20% improvement in accuracy compared to the smallest tested NNs, as summa-
rized in Table 3.

Appl. Sci. 2024, 14, 8405

11 0f 18

3.3. C. Experimental Results

Figure 8 presents a comparison between trajectory tracking accuracies—measured by
RMSE—of the control structure for three configurations using real robotic arms between
the two studied NN architectures: (A) fast trajectories and (B) intermediate trajectories for
a 3-DOF robotic arm and (C) slow trajectories with a 5-DOF serial robotic arm.

(A) 3 degrees of freedom, fast trajectories

551
5+ === [NN’s method - 2 layers of 8 neurons
GNN method - 2 layers of 8 neurons
45 === GNN method - 2 layers of 16 neurons
m— Reference performance of the PD controller
4l

RMS error (degrees)
w

ok
15F
1F =
0.5)
0 100 200 300 400 500 600 700 800
Number of trajectories of 1s used for learning
(B) 3 degrees of freedom, intermediate trajectories
=== NN’s method - 2 layers of 8 neurons
8r === GNN method - 2 layers of 8 neurons
=== GNN method - 2 layers of 16 neurons
7r = Reference performance of the PD controller
3o
o
)
£ st
g
g 4T
s
& 3
1
oL
M
) N
1 —
S 1 A —— - _— _
0)
0 100 200 300 400 500 600 700 800
Number of trajectories of 2s used for learning
(C) 5 degrees of freedom, slow trajectories
12
=== [NN’s method - 2 layers of 8 neurons
=== [NN’s method - 2 layers of 16 neurons
10 === GNN method - 2 layers of 16 neurons
= s GNN method - 2 layers of 32 neurons
] == Reference performance of the PD controller
2 e
=2
g
5 6f
wn
=
~ |
afF o\ /\
~
~ S = N
2F —— =T T e Z_ _ "=
(—
o)
0 100 200 300 400 500 600 700 800

Number of trajectories of 3s used for learning

Figure 8. Performance of trajectory tracking with various NNs for (A) 3-DOF robotic arm, fast
trajectories (B) 3-DOF robotic arm, intermediate trajectories; (C) 5-DOF robotic arm, slow trajectories.

Appl. Sci. 2024, 14, 8405

12 of 18

Figure 8 also shows that the INN method achieves accuracy close to that obtained with
all training data by using solely 100 trajectories, whereas the GNN method requires around
300 trajectories to effectively learn the dynamic response of the PD controller, regardless of
the robot arm or trajectory speed.

Table 4 summarizes the numerical RMSE values among the n-test trajectories and the
reduction rates of the errors compared to the reference PD controller. Specifically, the INN
method consistently shows at least a 75% reduction in tracking errors compared to the PD
controller alone, with an RMSE under 1 degree across all configurations.

Table 4. Comparison between the trajectory tracking accuracies (RMSE) of NN for trajectory tracking
on two real robot arms.

RMSE with the Reference PD RMSE with the GNN

Trajectory Velocities Controller Method RMSE with the INN Method
(and DOF) In Degrees (Tracking Errors Prediction Compared to the Reference Controller in %)
Fast (3 DOF) 5.36 1.12 (79%) 0.88 (84%)
Intermediate (3 DOF) 8.17 0.45 (94%) 0.33 (96%)
Slow (5 DOF) 3.18 1.71 (46%) 0.76 (76%)

4. Discussion

The first main result is highlighted by the simulated model without reduction ratio in
Figure 4A. The INN method is effective solely when the joint dynamics are not coupled
with the other joints’ dynamics—i.e., the impact of the joint movements on the dynamics of
the other joints is negligible. In fact, the INN method performs well for the last motor, with
a 91% reduction in tracking errors. This is because the third motor at the end of the arm is
not affected by the movements of the first two motors. Contrarily, the INN method does
not outperform the PD controller for the first two motors, with an RMSE of 0.2 radians
similar to that of the PD controller.

The second main result is highlighted in Figure 4B: the INN method outperforms the
GNN method when the dynamics of each joint are not coupled with the other ones and
when the training dataset comprises fewer than 250 trajectories. This can be explained by
the lower number of parameters required for the INN method. Moreover, both methods
present a similar accuracy when more training data are available, with RMSE values ranging
from 0.034 and 0.048 for the INN method and from 0.035 and 0.049 for the GNN method.
These first two results align with those in [4], where the GNN method was applied to a
flexible Baxter robot because of the dependence on the joint dynamics and the statement
that it would be possible to use the INN method on an ABB industrial robot because of the
decoupled dynamics [4,5].

The decoupling of the joint dynamics occurs when the term RMR in Equation (2)
becomes negligible compared to the inertia of the servomotor J,,. This means that the
influence of the mass matrix on the system is negligible compared to the inertia of the
servomotor due to the reduction ratio. This result is consistent with the equations presented
in [29]. Specifically, Figure 5 shows that this decoupling occurs when the inertia of the rotor
of the motor J,,, is more than 10 times larger than the term RMR in Equation (2). In this
case, the INN method requires less data than the GNN method to complete the learning
process: 100 trajectories vs. 250 trajectories for a 3-DOF robot arm. Moreover, the more
complex the controlled robot arm, the more trajectories required for the training of the NN
in the GNN method. To our knowledge, no study has explicitly demonstrated this result.
Figure 3 also shows that the more trajectories available for training, the more accurate will
be the control structure. Notably, the amount of data required for the training is 50 times
less than the 500 trajectories of 25 s used in [4]. These ones likely used more trajectories
than necessary to ensure an optimal training process of their RNN.

Contrarily, Figures 4A and 5 also show the advantages of using the GNN method
for systems with coupled dynamics, i.e., when the inertia of the rotor of the motor J,,, is

Appl. Sci. 2024, 14, 8405

13 of 18

no more than 10 times larger than RMR in Equation (2). In this case, the GNN method
provides better accuracy. For example, when the reduction ratio is 1, the RMSE is 2.5 times
smaller than the INN method. In fact, the global NN in the GNN method can learn the
dependencies between the different joints and maintain accuracy close to that achieved
with decoupled dynamics. To our knowledge, no study has explicitly compared the INN
and GNN approaches in systems with coupled dynamics.

To summarize, these first results provide guidelines for both designing the neural
network system and its training: if the ratio is greater than 10, a small neural network per
servomotor can be used effectively. If the ratio is less than 10, a larger neural network for the
entire system will yield better accuracy. Moreover, when the J,,/ (RMR) ratio is between
10 and 100, the accuracy of the GNN method might be slightly better than the accuracy of
the INN method. Thus, if the system accuracy is crucial, it may be beneficial to use both
methods to see if the improvement in accuracy justifies the use of the GNN method.

Further, Figure 6 demonstrates that to achieve the best possible accuracy for both the
INN and GNN methods, the step time of the training data must match the PD frequency
used during the dataset construction. In fact, when the step time of the data used for
training corresponds to the PD frequency, the RMSE is twice as low compared to scenarios
where the step time is 10 times smaller than the PD frequency. However, to enable the
neural network to effectively learn the dynamics of the PD controller, sufficient resolution
in the data is required. Particularly, the motor should be able to complete at least 20 encoder
steps between 2 consecutive time steps. Thus, the resolution of the encoders can limit the
step time of the dataset. To our knowledge, none of the existing literature addresses the
impact of the PD frequency on the tracking accuracy and the requirements for encoder
resolution for this control structure.

Figure 6 also shows that the more accurate the PD controller, the more accurate the
NN-based control structure. Thus, it is strongly recommended to optimize the gain of the
PD controller before starting the training process, to ensure the best accuracy for the control
structure without the feedforward neural network. In fact, the relative accuracy of the
NN-based control structure compared to the PD controller alone remains stable regardless
of the accuracy of the PD controller. The tuning can be performed by using manufacturer
recommendations when available or through classical tuning methods from the literature.

Table 3 indicates that a necessary condition for the successful use of the GNN method
is that the number of neurons in each layer should be larger than or equal to the number of
motors in the system for proper convergence. When this condition is not met, the global NN
is forced to express the dynamics of multiple motors in one neuron, which is insufficient to
accurately represent the joint dynamics. To our knowledge, the current study is the first
one to provide guidelines on the minimal size required for the NN architecture to efficiently
learn dynamic compensation.

Furthermore, Table 3 shows that, theoretically, when the INN method is used, each
neural network may require only a single neuron. In fact, the RMSE comparison for trajec-
tory tracking has shown that when this condition is met, there is no significant difference
in accuracy—less than 10 percent—regardless of the NN size. This aligns with the results
from [5], which tested various NN sizes, showing no significant performance differences.
The best accuracy was achieved with one of the smallest tested architectures. This result
encourages the use of minimal neural networks to limit the number of parameters and
improve the convergence process.

Compared to other NN-based control structures in the literature, the smallest NN
presented in Figure 4B achieves an accuracy comparable to larger networks while requiring
only 15 parameters for the entire 3-DOF robot arm—>5 parameters per motor. This is 67 times
fewer than the system described in [4] and 6700 times fewer than the architecture in [23]
that operates at the torque level. This allows a proportional diminution of the calculation
time, allowing for increased frequency of the control structure and performance.

In the same way, when the GNN method is used, the NN should obtain at least as
many neurons as there are joints in the system (on each layer). Note that in real systems, it

Appl. Sci. 2024, 14, 8405

14 of 18

can be necessary to repeat the training process of the NN to achieve convergence, so it is
possible to gradually increase the number of neurons and the number of layers until having
a good convergence.

Finally, Figure 7 shows that while not critical, it is good practice to use the highest
possible encoder resolution to limit the noise in the data. Although a significant noise—
more than 0.5 degrees—does not prevent the control structure from improving the trajectory
tracking, with an RMSE ranging from 1.4 to 1.65 degrees (five times lower than the PD
controller), lower noise levels yield better results. Even though the NN seems capable
of managing this noise during the training, Figure 7 also shows that the best results are
obtained when the noise is zero—or almost zero with an RMSE of 0.86, 1.8 times lower than
when the noise exceeds 0.5 degrees.

Figure 8 and Table 4 reiterate the interest in using an NN as a feedforward compensa-
tion in the control structure, applying both the INN and GNN methods to a real 3D-printed
robotic arm. Both methods allow an RMSE of less than 2 degrees for all tested configu-
rations during the trajectory tracking on the real physical robot arms. These results are
consistent with the errors observed in the simulated model and the errors of the system
in [4], i.e., over a 50% improvement for multi-joint trajectories and 40% for random joint
trajectories. In fact, in Table 4, the use of the INN method demonstrates a 76% to 96%
reduction in errors across all tested configurations. This result matches the simulation
results of Figures 3B and 4 with an 80% to 90% reduction in tracking errors and is better
than the 40% improvement for random joint trajectories in [4]. This difference is likely due
to the type of robot used—a flexible Baxter robot. In [5], where an industrial ABB robot
is used, an 80% to 90% reduction has also been reported compared to the reference PD
controller alone. Note that the aim of the INN and the GNN methods is not to outperform
the accuracy of control structures that include accurate dynamic models when available
but rather to offer a simple and reliable way to accurately track desired trajectories.

Specifically, Figure 8A,B show that the improvement is even more significant for faster
trajectories, where the PD controller alone is less accurate than slower trajectories, with
a 96% and an 84% reduction for the fastest speed vs. a 76% reduction for the slowest
trajectories. Significantly, the INN method achieves an RMSE under 1 degree across all
configurations. This result is better than the accuracy of all control structures tested in [5],
which had RMSE values between 2.14 and 2.62 degrees, while also using a smaller number
of parameters in the NN architectures—1 neuron per motor vs. at least two layers of
50 neurons.

The experimental results in Figure 8 also show that the GNN method does not outper-
form the accuracy of the INN method. These results are consistent with the decoupled joint
dynamics, i.e., the dynamics of the servomotors prevail over the dynamics of the robotic
arm due to the real reduction ratio of the servomotors (1/540).

Finally, the experimental results confirm the main results from the simulated model on
a real system: the INN method requires two to three times less data than the GNN method
to effectively learn the dynamics.

A guide summarizing the conclusions of this study for designing a neural network-
based control structure for position control is presented in Table 5.

Table 5. Guide for the design of a neural network-based control structure for position control,
followed by an example of its application on the real 3- and 5-DOF systems.

Step 1—Tune the Gains of the PD Controller.
Tune the gain values of the PD controller to allow the best accuracy possible for the controller,
using either recommendations of motor manufacturers when available or tuning methods from
the literature.

Applied to the real systems: the custom parameters were based on the recommendation of the manufacturer.
Step 2—Choose between INN and GNN methods.
Estimate the ratio J,,,/ (RMR) (see a suggested method in Appendix A).
Refer to the cases below.

Appl. Sci. 2024, 14, 8405 15 0of 18

Table 5. Cont.

Case 1: the ratio is
larger than 100: INN
method will have a Case 2: the ratio is between 10 and 100, or the Case 3: the ratio is

good accuracy in the ratio is hard to estimate. INN method should smaller than 10:
trajectory tracking have a good accuracy, but it is advised to Using GNN method
with a minimum compare with the accuracy of GNN method if is necessary to obtain
number of the accuracy of the system is crucial. good accuracy.
parameters to train in
the NN

Applied to the real systems: the ratio is estimated to 194 (see Appendix A) for the 3-DOF system (case 1).
Thus, we chose INN method for the 3-DOF system.
For the 5-DOF system, the ratio is estimated to 31 (see Appendix A). Thus, we implemented both methods
(case 2); as they both led to the same accuracy, we chose INN method.
Step 3—Build the training dataset, following two recommendations:

3.1 The trajectories of the dataset should be randomly generated in the whole workspace of each
motor: at least 100 trajectories for INN method or 100 trajectories for each DOF of the system for
GNN method.

3.2 If a sufficient encoder resolution is available (the motor should be able to go through at least
20 steps of the encoder between two consecutive time steps), the step time of the PD controller
should be equal to the step time of the NN architecture. Otherwise, the choice of the step time
should be adapted to the motor encoder resolution.

Applied to the real systems: To build the training dataset:
1—At least 100 trajectories per motor were randomly generated in the whole workspace of each motor.
2—The resolution of encoders (4096 steps/rev) and the maximum velocity of the motors (30 rpm) allow a
maximum step time of 0.01s (20 steps of the encoder between each time step). Thus, while the PD controller
was internal to our motors and with a step time of 0.001s, the step time of the training data was reduced to
0.01s.

Step 4—Build and train the NN architecture.

Case 2: GNN method chosen at step 2, build
Case 1: INN method chosen at step 2, build one GNN, i.e., one NN for the whole robotic

INN, i.e., one NN for each joint of the system arm with at least as many neurons as the

with only one neuron. If the training does not ~ number of joints on each layer. If the training
converge, it is possible to gradually increase does not work, it is possible to gradually
the number of neurons. increase the number of neurons and the

number of layers.
Then, train the NN architecture with all available data (at least 100 trajectories for INN method or
100 trajectories for each DOF of the system for GNN method)
Applied to the real systems: the datasets of 100 trajectories per motor were used to train the real 3- and
5-DOF systems. The “MLPRegressor.fit()” function was used to train the NN.
When the NN was trained with only 1 neuron, it did not converge. Thus, we chose to increase the number
of neurons to 4 for the real system.
Step 5—Add the trained NN in the control structure as a feedforward compensation to predict
and correct the trajectory tracking errors.
Applied to the real systems: The “MLPRegressor.predict()” function was used to generate the commands for
new trajectories.

White background refer to our experimental application of the guidelines while grey background refers to the
general guidelines.

The main limitation of this study is that the control structure has been designed for
fast trajectory tracking involving large movements and accelerations. For slow and micro-
movements, the control structure is not optimized, and the accuracy could be improved
by using an internal PID instead of a PD controller to correct static errors. However,
a PID would be less accurate for fast trajectory tracking [27]. Future works could also
explore more complex NN structures, for example, architectures specialized in time-series
prediction as RNN or LSTM.

5. Conclusions

The objective of this paper was to design a minimal neural network (NN)-based model-
free control structure for fast and accurate trajectory tracking of robotic arms. Particularly,

Appl. Sci. 2024, 14, 8405

16 of 18

the study compared the INN method by using one neural network for each joint of the robot
arm and the GNN method by using a single global neural network for the entire system.
The results were illustrated by two serial robotic arms with 3 and 5 degrees of freedom in a
simulation, then in reality, across several trajectory velocities ranging from 1 to 3 s.

The main results were as follows: 1. NN used as a feedforward compensation signifi-
cantly reduced trajectory tracking errors (RMSE < 2°, see Table 2) without requiring any
prior information about the dynamic model. 2. The study showed that the INN method
can be used when joint dynamics are decoupled and requires three times less data than the
GNN method to learn the dynamics. 3. Table 3 presents the guidelines for designing an
optimal minimal NN-based control structure for accurate trajectory tracking in five main
steps: 1. Tune the PD gains to optimize the accuracy of the PD controller. 2. Create an
NN with an architecture that allows good accuracy with the fastest calculation. 3. Build a
dataset representing the entire workspace of each motor. 4. Train the NN system by using
all available data (at least 100 trajectories for the INN method or 100 trajectories per DOF
of the system for the GNN method). 5. Use the trained NN in the control structure as a
feedforward compensation to predict and correct the trajectory tracking errors.

Future perspectives will be to apply these guidelines to the development of 3D-
printed low-cost robotic arms and extend them to other systems, such as automated visual
inspection robots involving micro- and slow movements.

Author Contributions: Conceptualization: B.T. and M.R.; methodology: B.T. and M.R.; investigation:
B.T. and M.R; visualization: B.T. and M.R,; funding acquisition B.T. and M.R.; project administration:
B.T. and M.R,; supervision: M.R.; writing—original draft: B.T. writing—review and editing: B.T. and
M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the Institute for Data Valorisation (IVADO),
Montreal, Canada, and from NSERC-Discovery. Number: 796536531.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All data are available in the main text.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A
Appendix A.1. Estimation of the J,,,/ (RMR) Ratio

To quickly obtain an estimation of the magnitude of the impact of motor inertia J,,, and
the impact of the robot dynamics RMR on joint dynamics for a serial system, the estimation
of the biggest value of the RMR matrix is proposed as follows:

max(RMR) = (Z md? + Zli)Rz

with m; the mass of the ith body, d; being the maximum distance between the basis of the
system and the center of mass of the ith body, I; being the biggest inertia of ith body, and R
being the gear reduction ratios of the motors.

Then, it is possible to compare with the value of the motor inertia.

Appendix A.2. Case Example 1—Real 3-DOF Robotic Arm

For 3-DOF real system, the parameters were my = my = mz =025kg, 1 = L = I3 =
3.1310~* kgm?, d; = 0.05m, d = 0.15m, d3 = 0.25 m, and R = 1/270.

Thus, max(RMR) = 3.1310~7 kgm?.

Moreover, the inertia of the motor around the rotating axis is given by the manufac-

turer: J,,; = 6.08 10~ kgm?. Finally, the ratio m = 194.

Appl. Sci. 2024, 14, 8405 17 of 18

Appendix A.3. Case Example 2—Real 5-DOF Robotic Arm

For 5-DOF real system, the parameters were m; = my = m3 = 0.3 kg, my = 0.15 kg,
ms =01kgly =L = I3 =3.7510"* kgm?, I = Is = 6.75107° kgm?, d; = 0 m, d» = 0.05
m,d; =0.35m,dy = ds = 0.65m, and R = 1/270.

Thus, max(RMR) = 1.9810~° kgm?. Finally, the ratio W = 31.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Taylor, C. Robots Could Take over 20 Million Jobs by 2030, Study Claims. Available online: https://www.cnbec.com /2019/06/26
/robots-could-take-over-20-million-jobs-by-2030-study-claims.html (accessed on 25 June 2024).

Zhihong, M.; Palaniswami, M. Robust Tracking Control for Rigid Robotic Manipulators. IEEE Trans. Autom. Control 1994, 39,
154-159. [CrossRef]

Kog, O.; Maeda, G.; Peters,]. Optimizing the Execution of Dynamic Robot Movements with Learning Control. IEEE Trans. Robot.
2019, 35, 909-924. [CrossRef]

Chen, S.; Wen,].T. Neural-Learning Trajectory Tracking Control of Flexible-Joint Robot Manipulators with Unknown Dynamics.
In Proceedings of the 2019 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), the Venetian Macao,
Macau, 3-8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 128-135.

Chen, S.; Wen,].T. Industrial Robot Trajectory Tracking Control Using Multi-Layer Neural Networks Trained by Iterative Learning
Control. Robotics 2021, 10, 50. [CrossRef]

Spong, M.; Khorasani, K.; Kokotovic, P. An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots. IEEE J.
Robot. Autom. 1987, 3, 291-300. [CrossRef]

Arimoto, S. Learning Control Theory for Robotic Motion. Int.]. Adapt. Control Signal Process 1990, 4, 543-564. [CrossRef]
Norrlof, M. An Adaptive Iterative Learning Control Algorithm with Experiments on an Industrial Robot. IEEE Trans. Robot.
Autom. 2002, 18, 245-251. [CrossRef]

Chen, S.; Wen,].T. Adaptive Neural Trajectory Tracking Control for Flexible-Joint Robots with Online Learning. In Proceedings
of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May-31 August 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 2358-2364.

He, W,; Yan, Z.; Sun, Y.; Ou, Y,; Sun, C. Neural-Learning-Based Control for a Constrained Robotic Manipulator with Flexible
Joints. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5993-6003. [CrossRef] [PubMed]

Toussaint, B.; Raison, M. High-Speed Trajectory Tracking on Robotic Arm by Learning the Dynamic Response of the Pid
Controller with a Neural Network. In Proceedings of the 10th ECCOMAS Multibody Dynamics Conference; Budapest University
of Technology and Economics, Budapest, Hungary, 12-15 December 2021.

Wang, M.; Ye, H.; Chen, Z. Neural Learning Control of Flexible Joint Manipulator with Predefined Tracking Performance and
Application to Baxter Robot. Complexity 2017, 2017, 7683785. [CrossRef]

Lou, W.; Guo, X. Adaptive Trajectory Tracking Control Using Reinforcement Learning for Quadrotor. Int.]. Adv. Robot. Syst. 2016,
13, 38. [CrossRef]

Ouyang, Y.; Dong, L.; Wei, Y.; Sun, C. Neural Network Based Tracking Control for an Elastic Joint Robot with Input Constraint
via Actor-Critic Design. Neurocomputing 2020, 409, 286-295. [CrossRef]

Jiang, Y.; Wang, Y.; Miao, Z.; Na, J.; Zhao, Z.; Yang, C. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots
with Relative Motion. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1010-1021. [CrossRef] [PubMed]

Kong, L.; He, W,; Yang, C.; Sun, C. Robust Neurooptimal Control for a Robot via Adaptive Dynamic Programming. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 32, 2584-2594. [CrossRef] [PubMed]

He, W,; Dong, Y.; Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator with Input Saturation. IEEE Trans. Syst.
Man Cybern. Syst. 2015, 46, 334-344. [CrossRef]

Pérez-Cruz,] H.; Chairez, I.; Rubio, J.; Pacheco,]. Identification and Control of Class of Non-linear Systems with Non-symmetric
Deadzone Using Recurrent Neural Networks. IET Control Theory Appl. 2014, 8, 183-192. [CrossRef]

Yoo, S.J.; Park, J.B.; Choi, Y.H. Adaptive Output Feedback Control of Flexible-Joint Robots Using Neural Networks: Dynamic
Surface Design Approach. IEEE Trans. Neural Netw. 2008, 19, 1712-1726. [PubMed]

Talebi, H.A.; Patel, R.V.; Khorasani, K. Inverse Dynamics Control of Flexible-Link Manipulators Using Neural Networks. In
Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20
May 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 1, pp. 806-811.

Calandra, R; Ivaldi, S.; Deisenroth, M.P.; Rueckert, E.; Peters, J. Learning Inverse Dynamics Models with Contacts. In Proceedings
of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26-30 May 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 3186-3191.

Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. Learning Inverse Dynamics Models in o (n) Time with Lstm Networks. In
Proceedings of the 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, 15-17
November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 811-816.

Yang, C.; Wang, X.; Cheng, L.; Ma, H. Neural-Learning-Based Telerobot Control with Guaranteed Performance. IEEE Trans.
Cybern. 2016, 47, 3148-3159. [CrossRef] [PubMed]

https://www.cnbc.com/2019/06/26/robots-could-take-over-20-million-jobs-by-2030-study-claims.html
https://www.cnbc.com/2019/06/26/robots-could-take-over-20-million-jobs-by-2030-study-claims.html
https://doi.org/10.1109/9.273355
https://doi.org/10.1109/TRO.2019.2906558
https://doi.org/10.3390/robotics10010050
https://doi.org/10.1109/JRA.1987.1087102
https://doi.org/10.1002/acs.4480040610
https://doi.org/10.1109/TRA.2002.999653
https://doi.org/10.1109/TNNLS.2018.2803167
https://www.ncbi.nlm.nih.gov/pubmed/29993842
https://doi.org/10.1155/2017/7683785
https://doi.org/10.5772/62128
https://doi.org/10.1016/j.neucom.2020.05.067
https://doi.org/10.1109/TNNLS.2020.3037795
https://www.ncbi.nlm.nih.gov/pubmed/33361000
https://doi.org/10.1109/TNNLS.2020.3006850
https://www.ncbi.nlm.nih.gov/pubmed/32941154
https://doi.org/10.1109/TSMC.2015.2429555
https://doi.org/10.1049/iet-cta.2013.0248
https://www.ncbi.nlm.nih.gov/pubmed/18842476
https://doi.org/10.1109/TCYB.2016.2573837
https://www.ncbi.nlm.nih.gov/pubmed/28113610

Appl. Sci. 2024, 14, 8405 18 of 18

24.

25.

26.

27.

28.

29.
30.

31.

Sun, T.; Pei, H.; Pan, Y.; Zhou, H.; Zhang, C. Neural Network-Based Sliding Mode Adaptive Control for Robot Manipulators.
Neurocomputing 2011, 74, 2377-2384. [CrossRef]

Trierweiler, J. A Systematic Approach to Control Structure Design. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil, 1997.

Li, Q.; Qian, J.; Zhu, Z.; Bao, X.; Helwa, M.K.; Schoellig, A.P. Deep Neural Networks for Improved, Impromptu Trajectory Tracking
of Quadrotors. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29
May-3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5183-5189.

Kawamura, S.; Miyazaki, F.; Arimoto, S. Is a Local Linear PD Feedback Control Law Effective for Trajectory Tracking of Robot
Motion? In Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 20 May 1998;
IEEE: Piscataway, NJ, USA, 1998; pp. 1335-1340.

Docquier, N.; Poncelet, A.; Fisette, . ROBOTRAN: A Powerful Symbolic Gnerator of Multibody Models. Mech. Sci. 2013, 4,
199-219. [CrossRef]

Rocco, P. Stability of PID Control for Industrial Robot Arms. IEEE Trans. Robot. Autom. 1996, 12, 606-614. [CrossRef]
Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.5.0 Documentation. Available online: https://scikit-learn.org/stable/
(accessed on 25 June 2024).

Toussaint, B. Public Code of Paper: Design of a Minimal Model-Free Controller for Fast Robotic Arms Trajectory. Available online:
https:/ /github.com/LiBRTy-Lab/minimal_neural_controller (accessed on 16 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2011.03.015
https://doi.org/10.5194/ms-4-199-2013
https://doi.org/10.1109/70.508444
https://scikit-learn.org/stable/
https://github.com/LiBRTy-Lab/minimal_neural_controller

	Introduction
	Materials and Methods
	Equations of the Simulated Model
	Implementation of the Control System
	Test Procedure

	Results
	A. Results with the 3-DOF Simulated Model without Reduction Ratio
	B. Results with the 3-DOF Simulated Model with a Reduction Ratio
	C. Experimental Results

	Discussion
	Conclusions
	Appendix A
	Estimation of the Jm/(RMR) Ratio
	Case Example 1—Real 3-DOF Robotic Arm
	Case Example 2—Real 5-DOF Robotic Arm

	References

