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Abstract: In this paper, we introduce a new algorithm for calculating the radial and axial magnetic
forces between two non-coaxial circular loops with parallel axes. These formulas are derived from a
modified version of Grover’s formula for mutual inductance between the coils in question. Utilizing
these formulas, we compute the radial and axial magnetic forces between two non-coaxial thick
coils of rectangular cross-sections with parallel axes. In these calculations, we apply the filament
method and conduct investigations to determine the optimal number of subdivisions for the coils in
terms of computational time and accuracy. The method presented in this paper is also applicable
to all conventional non-coaxial coils, such as disks, solenoids, and non-conventional coils like Bitter
coils, all with parallel axes. This paper emphasizes the accuracy and computational efficiency
of the calculations. Furthermore, the new method is validated according to several previously
established methods.

Keywords: mutual inductance; radial force; axial force; coils of rectangular cross-section with
parallel axes

1. Introduction

The calculation of mutual inductance and magnetic force between coils of various
shapes and positions has been the subject of numerous studies [1–4]. Most of these calcula-
tions are presented in analytical form for coils with simple configurations.

Analytical and semi-analytical methods for calculating self and mutual inductances of
conducting elements in electrical circuits, as well as magnetic force interactions between
these elements, have emerged as powerful mathematical tools [5–27]. These methods
have been instrumental in advancing power transfer, wireless communication, sensing,
and actuation technologies and have found applications across a wide range of scientific
disciplines, including electrical and electronic engineering, medicine, physics, nuclear
magnetic resonance, mechatronics, and robotics, among others.

While several efficient numerical methods are available in commercially developed
software, analytical and semi-analytical methods offer the advantage of providing calcula-
tion results in the form of a final formula with a finite number of input parameters. This
feature can significantly reduce computational effort when applicable. In this paper, we
present new formulas for calculating the radial and axial magnetic forces between two non-
coaxial circular loops with parallel axes. Using these formulas and the filament method, we
calculate the forces between two non-coaxial coils of rectangular cross-sections with parallel
axes. We emphasize the importance of accuracy and computational efficiency by selecting
different numbers of subdivisions for the coils. Our analysis demonstrates that using the
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same number of subdivisions is not preferable due to significant computational time. There-
fore, we choose varying numbers of subdivisions that considerably reduce computational
time without compromising accuracy, which is crucial from an engineering perspective.

The results are compared with those obtained and presented in terms of line inte-
grals [14]. These semi-analytical expressions [14] may not be familiar to most engineers,
who may require simpler expressions for practical use. In this paper, we provide straight-
forward formulas that also utilize single integrals for Maxwell coils, as employed in the
filament method. This approach is highly accessible and suitable for professionals, includ-
ing engineers and physicists, working in this field.

We also employ another method [5], where the single integral is replaced by the
summation of its kernel function over very small segments within the integration interval
[0, π]. This method achieves considerably reduced computational time with satisfactory
accuracy. All methods are validated according to the methods given in [13,14].

2. Basic Expressions

In this paper, we use the modified formula for calculating the mutual inductance
between two circular loops with parallel axes to calculate the radial and the axial magnetic
force between them (see Figure 1) [5],

M =
µ0

π

√
RP

π∫
0

[
r2 − R2

S − d2]ϕ(k)

k
√

r3
dφ (1)

wherein
r =

√
R2

s − 2RSd cos(φ) + d2, k2 =
4RPr

(RP + r)2 + c2

ϕ(k) =
(

1 − k2

2

)
K(k)− E(k)
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Figure 1. Filamentary circular loops with parallel axes.

RP and RS—are the radii of the primary and secondary loops in (m), respectively.
d—is the perpendicular displacement between parallel axes of coils in (m).
c—is the axial displacement between the centers of coils in (m).
K(k) and E(k) are the complete elliptical integrals of the first and the second kind [28,29].
µ0 = 4π·10−7H/m is the permeability of the vacuum.

The radial and the axial magnetic force can be obtained by [1],

Fradial = Fr = IP IS
∂M
∂d

(2)

Faxial = Fa = IP IS
∂M
∂c

(3)
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IP and IS—are the currents in the primary and secondary loops in (A), respectively.
According to [1], the force between two filaments is one of the attractions if the

currents in them are in the same direction around the common axis. If the currents in the
two filaments are in opposite directions around the common axis, the force between them
is one of repulsion.

Using (1)–(3) we have,

Fr =
µ0 IP ISRS

√
RP

π

π∫
0
[RSd

(
cos2 φ − 3

)
+

(
R2

S + d2)cos φ]
ϕ(k)
k
√

r7 dφ

− µ0 IP ISRS
4π

√
RP

π∫
0
(RS cos φ − d)(RS − d cos φ)

(
R2

P + c2 − r2) kψ(k)√
r9 dφ

(4)

Fa = −µ0 IP IScRS

2π
√

RP

π∫
0

k(RS − d cos φ)ψ(k)√
r5

dφ (5)

wherin

ψ(k) =
1 − k2

2
1 − k2 E(k)− K(k)

3. Filament Method for Calculating the Magnetic Force Fr and Fa between Two
Non-Coaxial Coils of Rectangular Cross-Section with Parallel Axes

1. Let us treat two non-coaxial coils of rectangular cross-section with parallel axes (see
Figure 2).

2. Using the filament method [8,10,12], the formulas for the mutual inductance M, as
well as for the magnetic forces Fr and Fa are as follows,

M =
N1N2

(2K + 1)(2N + 1)(2m + 1)(2n + 1)

g=K

∑
g=−K

h=N

∑
h=−N

p=m

∑
p=−m

l=n

∑
l=−n

M(g, h, p, l) (6)

And

Fr =
N1N2

(2K + 1)(2N + 1)(2m + 1)(2n + 1)

g=K

∑
g=−K

h=N

∑
h=−N

p=m

∑
p=−m

l=n

∑
l=−n

Fr(g, h, p, l) (7)

Fa =
N1N2

(2K + 1)(2N + 1)(2m + 1)(2n + 1)

g=K

∑
g=−K

h=N

∑
h=−N

p=m

∑
p=−m

l=n

∑
l=−n

Fa(g, h, p, l) (8)
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Figure 2. Configuration of mesh matrix: Two non-coaxial coils of rectangular cross-section with
parallel axes.
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r =
√

R2
s − 2RSdcos(φ) + d2

RI =
R1 + R2

2
, RI I =

R3 + R4

2
, hP = R2 − R1, hS = R4 − R3

RP(h) = RI +
hP

2N + 1
h, (h = −N, . . . , 0, . . . , N)

RS(l) = RI I +
hS

2n + 1
l, (l = −n, . . . , 0, . . . , n)

z(g, p) = c +
a

2K + 1
g − b

2m + 1
p, (g = −K, . . . , 0, . . . , K; p = −m, . . . , 0, . . . , m)

k2(h, l, p, g) =
4RP(h)r(l)

(RP(h) + r(l))2 + z2(g, p)

r(l) =
√

R2
s (l)− 2RS(l)dcos(φ) + d2

M(g, h, p, l) =
µ0

π

√
RP(h)

π∫
0

r2(l) + R2
s (l)− d2

k(h, l, p, g)
√

r3(l)
ϕ(k)dφ

Fr =
µ0 IP IS

π

π∫
0
[RS(l)d

(
cos2 φ − 3

)
+

(
R2

S(l) + d2)cos φ]RS(l)
√

RP(h)
ϕ(k)

k
√

r7(l)
dφ

− µ0 IP IS
4π

π∫
0
(RS(l) cos φ − d)(RS(l)− d cos φ)

(
R2

P(h) + z2(g, p)− r2(l)
) RS(l)kψ(k)√

RP(h)
√

r9(l)
dφ

Fa = −µ0 IP IS
2π

π∫
0

z(g, p)RS(l)k(RS − d cos φ)ψ(k)√
RP(h)

√
r5(l)

dφ

ϕ(k) =
(

1 − k2

2

)
K(k)− E(k), ψ(k) =

1 − k2

2
(1 − k2)

E(k)− K(k)

IP—current in the primary coil.
IS—current in the secondary coil.
N1—number of turns in the primary coil.
N2—number of turns in the secondary coil.
R1—inner radius of the primary coil of the rectangular cross-section.
R2—outer radius of the primary coil of the rectangular cross-section.
R3—inner radius of the secondary coil of the rectangular cross-section.
R4—outer radius of the secondary coil of the rectangular cross-section.
a and b—heights of the primary and the secondary coil, respectively.
d—perpendicular displacement between axes of coils.
c—displacement between the plans of centers of coils.
RP(h)—average radius of the primary coil positioned in the plane (x, y) whose axis is ‘z’ axis.
RS(l)—average radius of the inclined secondary coil.
K, N, n, and m—the number of the subdivisions of thick coils.

In this paper, we used the Gaussian numerical integration for the single integrals [28].

4. The Optimal Choice of the Number of the Subdivisions

Here, we discussed and presented the relationship between the radial and axial
divisions as a function of the number of subdivisions of the coils.
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Let us define the following radial distances LN and Ln, which correspond to radial
subdivisions N and n, respectively,

LN = R2 − R1 → N (9)

Ln = R4 − R3 → n (10)

As well as the following axial distances La and Lb, which correspond to radial subdivi-
sions K and m, respectively,

La = a → K (11)

Lb = b → m (12)

From (10)–(13), we obtain the following system of equations where N, K, m and
are given in the function of dimensions R2, R1, a for the first coil, and R2, R1, a or the
second coil.

Thus,
LN/Ln = N/n = (R2 − R1)/(R4 − R3)

La/Ln = K/n =a/(R4 − R3)

Lb/Ln =m/n = b/(R4 − R3)

La/Lb = K/m

Now, let us conduct the following analysis concerning the coil dimensions and the
number of subdivisions. We propose the optimization method to minimize the three
subdivisions (variables) in the function of one subdivision (variable) for the given coils’
dimensions. The relations between the two subdivisions are linear. It means that we
have the problems of four linear homogenic equations where one depends on the other
three. We use the following reasoning to find the minimal number of subdivisions (vari-
ables) to reduce the computational time and keep good accuracy. Choosing the smallest
dimension between the radial and axial coils dimensions (LN = R2 − R1, Ln = R4 − R3,
La = z2 − z1 = a, Lb = z4 − z3 = b), we arbitrarily choose the corresponding subdivision. The
other three subdivisions will depend on this arbitrarily chosen subdivision. The procedures
are as follows:

(A) Find t = min{LN , La, Ln, Lb} = tmin
(B) For obtained tmin, we choose the corresponding variable (subdivision), for example,

n → tmin
(C) Now we have, K = a

R4 – R3 n, N = R2 – R1
R4 – R3 n, m = b

R4 – R3 n, n = n

Choosing the number of subdivisions, we make the pre-calculation for the different
values of n controlling the computational time and the accuracy.

4.1. Definitions and Initial Values

Let K0= [l1] n0, N0 = [l2] n0, m0 = [l3] n0 and n0 = n be the initial variables that corre-
spond to larger coil’s dimensions, where [l1] = [ a

R4 – R3 ], [l2] = [ R2 – R1
R4 – R3 ], and [l3] = [ b

R4 – R3 ]
are the nearest ones to whole numbers.

Let n0 be the initial variable corresponding to the smaller coil’s dimension.
Let us calculate the mutual inductance for this number of subdivisions and denote the

Mutual inductance as M0, as well as record the computational time.
If we are satisfied with these results, we will choose the two largest and two smallest

subdivisions. Let us say that K0 and m0 are the two largest subdivisions, and N0 and n0 are
the two smallest subdivisions.

4.2. Operations Description

The first step:
Decrease K0 and m0 by 1 so that K1 = K0 − 1, and m0 = m0 − 1.
Increase N0 and n0 by 1 so that N1 = N0 + 1, and n0 = n0 + 1.
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Let us calculate the mutual inductance for these new subdivisions and denote the
mutual inductance as M1, as well as record the computational time.

After the second calculation, we find

|M0 − M1|
M0

100% < ε (13)

where ε is the small positive given number.
If the condition (13) is not satisfied, we proceed to the next step.
We are describing a convergence criterion for an iterative method. The procedure

continues iterating until the relative difference between consecutive iterations is less than a
small positive number ε, indicating that the sequence has converged.

In the general form, the convergence criterion can be written as∣∣∣Mn − M(n+1)

∣∣∣
M(n+1)

100% < ε, n = 0, 1, 2, . . . (14)

where:

Mn and M(n+1) are the results of the n-th and (n + 1)-th iterations, respectively.
ε is a small positive number that determines the desired accuracy of the solution.

If this condition is satisfied, the iterative procedure is stopped because the solution
has converged to within the desired tolerance. If not, the procedure continues until the
condition is met.

5. Examples
5.1. Example 1

In this example, we calculate the mutual inductance, the radial, and the axial magnetic
force as a function of the displacement of two non-coaxial loops with the parallel axes
where we have RP = 42.5 mm, RS = 20 mm. The perpendicular displacement between coils
axes is d = 3 mm [10]. All currents in the coils are 1 A.

In this example, we compare the results for the mutual inductance obtained by [1] and
Equation (1).

The absolute relative error is zero in each case. Here, we present another numerical
approach to solve Equation (2) [5], which is particularly interesting from an engineering
perspective. Equation (1) is solved in Table 1, using the summation of small segments of
the interval over the range [0, π], thereby avoiding numerical integration. This approach
allows for a considerable reduction in computational time with very high accuracy. In
Table 2, we provide a comparative calculation of Equation (1) using both integration and
summation methods.

Table 1. Mutual inductance as a function of the axial displacement c of two non-coaxial loops with
the parallel axes, using single integration.

c (m) M (nH) [1] M (nH) (1) ARE (%)

0.000 20.488524 20.488524 0.0
0.001 20.462961 20.462961 0.0
0.002 20.386684 20.386684 0.0
0.003 20.260910 20.260910 0.0
0.004 20.087604 20.087604 0.0
0.005 19.869401 19.869401 0.0
0.006 19.609487 19.609487 0.0
0.007 19.311485 19.311485 0.0
0.008 18.979320 18.979320 0.0
0.009 18.617096 18.617096 0.0
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Table 1. Cont.

c (m) M (nH) [1] M (nH) (1) ARE (%)

0.010 18.228978 18.228978 0.0
0.011 17.819091 17.819091 0.0

Table 2. Mutual inductance as a function of the axial displacement c of two non-coaxial loops with
the parallel axes, using single integration and summation.

c (m) M (nH) [1]
Single Integration

M (nH) (1), [5]
Summation ARE (%)

0.000 20.488524 20.490490 0.0096
0.001 20.462961 20.464925 0.0096
0.002 20.386684 20.388642 0.0096
0.003 20.260910 20.262858 0.0096
0.004 20.087604 20.089540 0.0096
0.005 19.869401 19.871320 0.0097
0.006 19.609487 19.611386 0.0097
0.007 19.311485 19.313361 0.0097
0.008 18.979320 18.981170 0.0097
0.009 18.617096 18.618918 0.0098
0.010 18.228978 18.230769 0.0098
0.011 17.819091 17.82084807899210 0.00986134166

Here, we use another numerical approach to solve Equations (4) and (5) [5], which is
particularly interesting from an engineering perspective. Equations (4) and (5) are solved
using the summation of small intervals over the range [0, π], thereby avoiding numerical
integration. From Table 2, we can see a very good agreement between the two numerical
approaches with the absolute relative error 0.0097%. ARE is the absolute relative error.

In Tables 3 and 4, the radial and axial force calculations given for (4) and (5) are
compared with the results obtained in [10]. The single integration is used in (4) and (5).
Clearly, we obtained identical results from the two approaches.

Table 3. Radial force as a function of the axial displacement c of two non-coaxial loops with the
parallel axes, using single integration.

c (m) Radial Force [10]
Fr (µN)

Radial Force (4)
Fr (µN) ARE (%)

0.000 0.0754775 0.0754775 0.0
0.001 0.0748858 0.0748858 0.0
0.002 0.0731367 0.0731367 0.0
0.003 0.0703055 0.0703055 0.0
0.004 0.0665103 0.0665103 0.0
0.005 0.0619027 0.0619027 0.0
0.006 0.0566551 0.0566551 0.0
0.007 0.0509497 0.0509497 0.0
0.008 0.0449660 0.0449660 0.0
0.009 0.0388721 0.0388721 0.0
0.010 0.0328174 0.0328174 0.0
0.011 0.0269285 0.0269285 0.0

In Tables 5 and 6, we provide a comparative calculation of Equations (4) and (5) using
both integration and summation methods.
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Table 4. Axial force as a function of the axial displacement c of two non-coaxial loops with the parallel
axes, using single integration.

c (m) Axial Force [10] Fa
(µN)

Axial Force (5) Fa
(µN) ARE (%)

0.000 0.00 0.00 0.0
0.001 −0.0510570 −0.0510570 0.0
0.002 −0.1012936 −0.1012936 0.0
0.003 −0.1499265 −0.1499265 0.0
0.004 −0.1962434 −0.1962434 0.0
0.005 −0.2396304 −0.2396304 0.0
0.006 −0.2795912 −0.2795912 0.0
0.007 −0.3157568 −0.3157568 0.0
0.008 −0.3478871 −0.3478871 0.0
0.009 −0.3758645 −0.3758645 0.0
0.010 −0.3996818 −0.3996818 0.0
0.011 −0.4194262 −0.4194262 0.0

Table 5. Radial force as a function of the axial displacement c of two non-coaxial loops with the
parallel axes, using single integration and summation.

c (m)
Radial Force (4) Fr

(µN) Single Integral,
[1]

Radial Force (4) Fr
(µN)

Summation, [5]
ARE (%)

0.000 0.0754775 0.0752575 0.29
0.001 0.0748858 0.0746662 0.29
0.002 0.0731367 0.0729183 0.30
0.003 0.0703055 0.0700890 0.30
0.004 0.0665103 0.0662966 0.32
0.005 0.0619027 0.0616923 0.34
0.006 0.0566552 0.0564488 0.36
0.007 0.0509497 0.0507478 0.40
0.008 0.0449660 0.0447691 0.44
0.009 0.0388721 0.0386805 0.49
0.010 0.0328175 0.0326314 0.57
0.011 0.0269285 0.0267482 0.67

Table 6. Axial force as a function of the axial displacement c of two non-coaxial loops with the parallel
axes, using single integration and summation.

c (m) Axial Force (5) Fa (µN)
Single Integral

Axial Force (5) Fa
(µN) Summation, [5] ARE (%)

0.000 0.00 0.00 -
0.001 −0.0510570 −0.0510608 0.0074
0.002 −0.1012936 −0.1013011 0.0074
0.003 −0.1499265 −0.1499377 0.0075
0.004 −0.1962434 −0.1962581 0.0075
0.005 −0.2396304 −0.2396486 0.0076
0.006 −0.2795912 −0.2796127 0.0077
0.007 −0.3157568 −0.3157814 0.0078
0.008 −0.3478872 −0.3479145 0.0079
0.009 −0.3758645 −0.3758945 0.0080
0.010 −0.3996818 −0.3997141 0.0081
0.011 −0.4194262 −0.4194607 0.0082

The results of the radial and axial forces are given in Tables 5 and 6. All results are in
very good agreement either by the numerical integration or the numerical summation. The
absolute relative error is about 0.0075%. Thus, the validity of formulas (1), (4), and (5) is
confirmed by the previous calculations.
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In this example, all calculations were performed using a Dell laptop equipped with an
Intel Core i5-12500H processor (Intel, Mountain View, CA, USA) running at 2.5 GHz, either
for the single integration by the Gaussian numerical integration or the summation method.

5.2. Example 2

Parameters for two non-coaxial cylindrical coils with parallel axes given in [13] are as
follows, Table 7.

Table 7. Description of coils [13].

Coil 1 Coil 2

Inner radius (cm) R1 = 9.69645 R3 = 7.1247

Outer radius (cm) R2 = 13.84935 R4 = 8.5217

Length (cm) a = 2.413 b = 14.2748

Turns N1 = 516 N2 = 1142

The axial displacement between coils is c = 0.
Here, we will calculate the mutual inductance by the presented method using the

filament method using the same and different numbers of the subdivisions. Our goal is to
find the best accuracy and the smallest computational time, if possible.

Let us begin with the same number of subdivisions K = N = m = n = 20.
Table 8 presents the comparative results for the mutual inductance, obtained using

both [13] and Equation (6) from this work.

Table 8. Mutual inductance as a function of the perpendicular displacement d [13], K = N = m = n = 20.

d (m) M (mH), [13] M (mH), (6) Time (s) ARE (%)

0.000 56.895508 56.898767 856.953 0.0057
0.003 56.910832 56.914090 867.415 0.0057
0.005 56.938067 56.941323 2761.819 0.0057
0.008 57.004416 57.007667 1177.524 0.0057
0.011 57.101294 57.104539 521.859 0.0057
0.224 −5.7748447 −5.7752692 419.295 0.007
0.250 −4.0260049 −4.0262912 452.489 0.007
0.300 −2.1940295 −2.1941402 361.227 0.005
0.400 −0.8609762 −0.8609958 505.658 0.002
0.500 −0.4256180 −0.4256226 1648.168 0.001

It is obvious from Table 8 that results obtained by two different approaches are in very
good agreement with the absolute relative error of about 0.055%, but the computational
time for the filament method is considerably enormous and is not preferable from the
engineering point of consideration. Thus, the same number of subdivisions is not the smart
choice in the mutual inductance calculation using the filament method. We can have very
good precision of obtained results but with considerably big computational time. This
is why one must find a good compromise between the accuracy and the computational
time in the choice of the number of subdivisions of coils. The computational time of the
calculation in [13] is not given.

This passage suggests that in Table 8, the computational time varies despite having the
same number of subdivisions. This inconsistency is likely due to the different numerical
methods used. The method mentioned here uses a fixed number of segments, meaning
the computation time is dependent on the number of segments rather than on specific
parameter values. In contrast, more advanced numerical methods employ adaptive proce-
dures. These adaptive methods adjust the computation dynamically based on the specific
parameter values, which can lead to variations in computational time even if the number
of segments remains constant.
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Now, let’s conduct the following analysis concerning the coil dimensions and the
number of subdivisions respecting the procedures given in Section 4, by (9)–(14).

In this example, we have,

R2 − R1 = 4.15485 cm; R4 − R3 = 1.397 cm; a = 2.413 cm; b = 14.2748 cm. The smallest
dimension is R4 − R3 = 1.397 cm, which corresponds to the radial subdivision n of the
second coil. Let us express all subdivisions in the function of n.

N/n = [(R2 − R1)/(R4 − R3)] = [2.9727] = 3 or N = 3n

K/n = [a/(R4 − R3)] = [1.72727] = 2 or K = 2n

m/n = [b/(R4 − R3)] = [10.218218] = 10 or m = 10n

In Tables 8–10, we give the calculations of the mutual inductance by the filament
method where the values of n subdivisions are different. All other subdivisions K, N and m
are in the function of n as previously discussed.

Table 9. Mutual inductance as a function of the perpendicular displacement d [13], n = 3, K = 6, N = 9,
m = 30.

d (m) M (mH), [13] M (mH), (6) Time (s) ARE (%)

0.000 56.895508 56.892867 11.338 0.0046
0.003 56.910832 56.908190 10.567 0.0046
0.005 56.938067 56.935423 10.742 0.0046
0.008 57.004416 57.001770 10.759 0.0046
0.011 57.101294 57.098645 10.970 0.0046
0.224 −5.7748447 −5.7742888 11.536 0.0096
0.250 −4.0260049 −4.0256225 10.564 0.0095
0.300 −2.1940295 −2.1938284 10.827 0.0092
0.400 −0.8609762 −0.8609009 10.847 0.0088
0.500 −0.4256180 −0.4255815 10.518 0.0086

Table 10. Mutual inductance as a function of the perpendicular displacement d [13], K = 8, n = 4,
N = 12. m = 40.

d (m) M (mH), [13] M (mH), (6) Time (s) ARE (%)

0.000 56.895508 56.893851 30.964 0.003
0.003 56.910832 56.909174 31.016 0.003
0.005 56.938067 56.936408 31.642 0.003
0.008 57.004416 57.002756 35.509 0.003
0.011 57.101294 57.099632 93.660 0.003
0.224 −5.7748447 −5.7745079 115.902 0.006
0.250 −4.0260049 −4.0257733 161.775 0.006
0.300 −2.1940295 −2.1939082 126.383 0.006
0.400 −0.8609762 −8609310 114.445 0.005
0.500 −0.4256180 −0.4255962 151.118 0.005

From Tables 8–10, we can see very good agreement between the two approaches. In
all calculations, we have very high accuracy between two different approaches where the
absolute relative error is about 0.0069% (Table 9), 0.0043% (Table 10), and 0.0029% (Table 11).
Also, for both methods, we have the same four significant figures for each calculation.
Moreover, the calculation for the different numbers of subdivisions considerably reduced
the computational time (Tables 7 and 9) regarding the calculation for the same number of
subdivisions (Table 8).

Even though there is no considerable difference between the calculations regarding
the accuracy given in Tables 7 and 9, it is recommended to choose K = 6, N = 9, m = 30 and
n = 3. Also, without any reserve, one can take K = 8, N = 12, m = 40, and n = 4 because of a
very good accuracy and the relatively small computational time.
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Table 11. Mutual inductance as a function of the perpendicular displacement d [13], n = 5, K = 10,
N = 15, m = 50.

d (m) M (mH), [13] M (mH), (6) Time (s) ARE (%)

0.000 56.895508 56.894375 194.760 0.002
0.003 56.910832 56.909698 72.493 0.002
0.005 56.938067 56.936933 122.589 0.002
0.008 57.004416 57.003281 132.458 0.002
0.011 57.101294 57.100158 152.744 0.002
0.224 −5.7748447 −5.7746191 265.589 0.004
0.250 −4.0260049 −4.0258498 309.181 0.004
0.300 −2.1940295 −2.1939484 128.802 0.004
0.400 −0.8609762 −0.8609461 285.441 0.0035
0.500 −0.4256180 −0.4256031 401.472 0.0035

Figure 3 illustrates the required computation time as the subdivision numbers increase
for the Example 2 parameters when c (m) = 0. In this figure, the proposed subdivision
selection method is compared with the conventional, even subdivision selection. The
convergence to the exact solution [13], which is depicted in the red line, is illustrated.
Similar to Figure 3, the evenly distributed subdivisions demand a high amount of compu-
tation time as n increases, yielding only marginal accuracy improvements. In contrast, the
proposed subdivision selection method exhibits rapid convergence to the exact solution
with 0.002 ARE in a short time. Remarkably, it outperforms the conventional method
within the same computational time frame. The proposed method achieves instant con-
vergence when n = 1 in under 0.1 s, making it highly effective for scenarios with varying
computational resources.
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Figure 3. Computation time for mutual inductance using the conventional even subdivisions method
(black lines) and the proposed subdivision selection method (blue line) for Example 2 when c (m) = 0.
The exact solution [13] is taken as a reference point for comparisons.

In Table 9, we choose n = 3, which gives K = 6, N = 9 and m = 30.
In Table 10, we choose n = 4, which gives K = 8, n = 4, N = 12 and m = 40.
In Table 11, we choose n = 5, which gives K = 10, N = 15 and m = 50.
In Table 12, we choose n = 5, which gives K = 10, N = 15 and m = 50.
Also, we give the mutual inductance calculation obtained by the summation [5] in

Table 12. These results are expected regarding the accuracy and the computational time
because we used the summation [5] instead of the integration [1]. The number of the
subdivisions is K = N = m = n = 20. These results are in good agreement with those obtained
by two previous methods,
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In the calculations of the radial and the axial forces, we will use the same reasoning
when choosing the number of subdivisions.

Table 12. Mutual inductance as a function of the perpendicular displacement d [13], using the
summation [5], n = 5, K = 10, N = 15, m = 50.

d (m) M (mH), [13] M (mH) [5] Time (s), [5] ARE (%)

0.000 56.895508 56.883316 36 0.0214
0.003 56.910832 56.898968 37 0.0208
0.005 56.938067 56.926417 37 0.0205
0.008 57.004416 56.993080 37 0.0199
0.011 57.101294 57.090263 37 0.0193
0.224 −5.7748447 −5.7645909 37 0.178
0.250 −4.0260049 −4.0187167 36 0.181
0.300 −2.1940295 −2.1898137 36 0.192
0.400 −0.8609762 −0.8590768 36 0.220
0.500 −0.4256180 −0.4245469 36 0.251

In this example, all calculations were performed using different hardware setups.
The single integration (Gaussian numerical integration) and the summation method were
carried out on a Dell laptop with an Intel Core i5-12500H processor running at 2.5 GHz.

For the calculations using the Finite Element Method (FEM), a PC with an Intel Core
i7-7700K CPU @ 4.20 GHz and 16.0 GB of RAM was used.

5.3. Example 3

From Example 2, let’s calculate the radial and axial magnetic forces between the coils
in question. All currents in the coils are units.

Here, we utilize the number of subdivisions, K = 8, N = 12, m = 40, and n = 4, as
determined in the previous example. This selection ensures both good accuracy and
minimal computational time for the integral approach. In contrast, for the summation
approach, the number of subdivisions is set to K = N = m = n = 20.

The comparison will involve using the Formula (8) for the radial magnetic force
and (9) for the axial magnetic force, obtained through integration (as presented in this
work), alongside the method that employs summation instead of integration, as outlined in
reference [5].

From Table 13, we have a good agreement between the results obtained from two
methods in which the numerical integration [1] and the numerical summation [5] are used
on the interval of the consideration θ ∈ [0; π]. Obviously, the results for the radial magnetic
force Fr, (8) obtained by the numerical integration are more precise, but the method [5] is
usable as a comparative benchmark. The absolute relative error is between 0.1% and 1.06%.

Table 13. The radial magnetic force as a function of the perpendicular displacement d using the
numerical integration [1] and the summation [5].

d (m) Fr (mN), Equation (7) Fr (mN), (7), [5] ARE (%)

0.000 0.0 0.1110414 -
0.003 10.214019 10.322692 1.06
0.005 17.017988 17.125130 0.63
0.008 27.207642 27.312572 0.39
0.011 37.367368 37.470326 0.28
0.224 83.088298 82.946061 0.17
0.250 53.557971 53.467342 0.17
0.300 24.212195 24.171024 0.17
0.400 6.8739960 6.8615134 0.18
0.500 2.6603232 2.6550312 0.20
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From Table 14, the axial magnetic force Fa is zero for all points of the calculation, which
is practically confirmed by the presented method, Equation (8). The second method [5]
doesn’t give exactly zero for the axial force Fa because of the positive and negative variations
during the summation on the interval of the consideration. The third method [15] gives
exactly zero due to the axial factor involved in the force Expression (15):

f2(κ, c) = −e−κ(c+h1+h2)
(

e−2cκ − 1
)(

e−2h1κ − 1
)

/κ (15)

where h1 = a/2 and h2 = b/2, and κ are the eigenvalues due to the introduction of artificial
boundary, and it can be concluded that Fa = 0 from f 2(κ, 0) = 0.

Table 14. The axial magnetic force as a function of the perpendicular displacement d using the
numerical integration [1,5,15].

d (m) Fa (mN), Equation (8) Fa(mN), (8), [5,15]

0.000 0 0
0.003 0 0
0.005 0 0
0.008 0 0
0.011 0 0
0.224 0 0
0.250 0 0
0.300 0 0
0.400 0 0
0.500 0 0

In this example, all calculations were performed using a Dell laptop equipped with an
Intel Core i5-12500H processor running at 2.5 GHz.

In this example, all calculations were performed using different hardware setups.
The single integration (Gaussian numerical integration) and the summation method were
carried out on a Dell laptop with an Intel Core i5-12500H processor running at 2.5 GHz.

For the calculations using the Finite Element Method (FEM), a PC with an Intel Core
i7-7700K CPU @ 4.20 GHz and 16.0 GB of RAM was used.

5.4. Example 4

Here, we give this example that can be used as the benchmark problem for testing the
different methods that treat the coils in question. All currents in the coils are units.

Parameters for two non-coaxial cylindrical coils with parallel axes given in [6] and
used in [14] are in the following Table 15.

Table 15. Description of coils [6,14].

Coil 1 Coil 2

Inner radius (m) 0.071247 0.085217

Outer radius (m) 0.0969645 0.13849

Length (m) 0.142748 0.02413

Turns 1142 516

Let us find the following values:

LN = R2 − R1= 0.01397 m, Ln = R4 − R3 = 0.041529 m,

La = z2 − z1 = a = 0.142748 m, Lb = z4 − z3 = b = 0.02413 m.

Now, let’s conduct the following analysis concerning the coil dimensions and the
number of subdivisions respecting the procedures given in Section 4, by (9)–(14).
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The smallest dimension is R2 − R1 = 0.01397 m, which corresponds to the radial
subdivision N of the first coil. Let us express all subdivisions in the function of N.

K= [a/(R2 − R1)] N = [10.218181] = 10 or K = 10N

m/N = [b/(R2 − R1)] = [1.72727] = 2 or m = 2N

n/N = [(R4 − R3)/(R2 − R1)] = [2.9727] = 3 or n= 3N

The next step is to find the best choice of subdivisions for the arbitrarily chosen
smallest variable.

In Table 16, for one calculation of the mutual inductance given in [14], with d = 0.006 m,
c = 0.059309 m, and M = 44.7454180199 mH, we test different values of N = {1, 2, 3, 4, 5, 6, 7, 8}.

Table 16. The test for the accuracy and the computational time for the different number of subdivisions.

K/N/m/n M (mH), (7) Time (s) ARE (%)

10/1/2/3 44.73698768471552 0.724790 0.01884
20/2/4/6 44.74148468303699 4.277472 0.00879
30/3/6/9 44.74326891694706 11.439728 0.00480
40/4/8/12 44.74407612900293 36.149399 0.00300

50/5/10/15 44.74450319954718 218.047730 0.00204
60/6/12/18 44.74475522011805 145.106737 0.00148
70/7/14/21 44.74491602293224 873.712863 0.00112
80/8/16/23 44.74502477488414 3226.565 0.00088

Obviously, it is not logical to increase the number of subdivision N beyond 4 because
the accuracy doesn’t change significantly while the computational time increases enor-
mously. Moreover, it is not practical from the engineering point of view. Thus, the best
choice is to take N = 3 or even N = 4.

We can further improve the accuracy and computational time of calculations by
adjusting the number of subdivisions based on (13) and (14).

These two subdivisions may be increased by 1, 2, or 3, while the other two are
decreased by 1, 2, or 3. This approach can significantly improve both accuracy and compu-
tational time.

From Table 16, we begin with the choice of N = N1 = 3. Now, K1 = 30, N1 = 3, m1 = 6,
N1 = 9.

After, we increase the two smallest variables by 1 and decrease the two largest vari-
ables by 1 1, Table 17. This process can be continued using the same logic, successively
incrementing and decrementing the variables by 1. This means K2 = 29, N2 = 4, m2 = 7,
N2 = 8 and so on.

Table 17. The best choice of the different number of subdivisions.

K1/N1/m1/n1 M(mH), (7) Time (s) ARE (%)

30/3/6/9 44.74326891694706 11.439728 0.0048
29/4/7/8 44.74436616452383 14.218988 0.0024
28/5/8/7 44.74479926514896 16.099376 0.0014
27/6/9/6 44.74487932957280 18.593136 0.0012
26/7/10/5 44.74465342835332 19.083521 0.0017

From Table 17, one can see that the previous statement is effective, as the accuracy
does not change significantly, and neither does the computational time.

Practically, we proposed a new approach to choosing the optimal numbers for the
variables (subdivisions) that archives very high accuracy and the shortest possible time
of calculation.

Let us choose N = 3, that gives

K = 30; N = 3; m = 6; n = 9
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Now, we calculate the mutual inductance given [14] by the presented method and test
the computational time and accuracy. All comparative results are given in Table 18.

Table 18. Mutual inductance M (mH) as a function of the perpendicular displacement d [14], K = 30;
N = 3; m = 6; n = 9.

d (m) c (m) M, [14] M, (7) Time (s) ARE (%)

0.006 0.01 56.6162643374 56.61363465455378 50.949498 0.0046
0.006 0.02 55.5894956502 55.5869094089611 51.984518 0.0047
0.006 0.03 53.8629343708 53.86042062215667 22.085411 0.0047
0.006 0.04 51.4222297882 51.41981711532675 17.279959 0.0047
0.006 0.05 48.2700337321 48.26774838654966 18.802184 0.0047
0.006 0.059309 44.7454180199 44.74326891694706 11.439728 0.0048
0.006 0.07 40.1814759728 40.17949410516751 10.649205 0.0049
0.006 0.083439 34.2304828323 34.22872135097286 22.910502 0.0051
0.006 0.09 31.4566003446 31.45494874434184 31.219811 0.0053
0.006 0.1 27.5571415229 27.55565306023951 22.247917 0.0054
0.006 0.6 0.4370202882 0.4369853665835998 21.303489 0.0080
0.006 1 0.0979060786 0.09789809468339546 15.960037 0.0082
0.020 0.083439 33.9467350341 33.94496955449947 22.260440 0.0052
0.020 0.09 31.0753970232 31.07375095703897 17.657343 0.0053
0.020 0.1 27.1316988802 27.13022256109052 18.291836 0.0054
0.020 0.6 0.4358068619 0.4357720325526511 16.392457 0.0080
0.020 1 0.0978025141 0.09779453844705811 37.723350 0.0082
0.250 0.01 −3.9917061128 −3.991327116889206 17.017424 0.0095
0.250 0.02 −3.8892645048 −3.888895853203926 17.197398 0.0095
0.250 0.03 −3.7202594312 −3.719908143385208 22.417223 0.0094
0.250 0.04 −3.4880421240 −3.487715260454917 22.161433 0.0094
0.250 0.05 −3.1987715126 −3.198475841930457 16.959263 0.0092
0.250 0.059309 −2.8870312678 −2.8867700832056 17.120941 0.0090
0.250 0.07 −2.4940353652 −2.493817639836896 18.719902 0.0087
0.250 0.083439 −1.9793349081 −1.979173375602797 18.864897 0.0082
0.250 0.09 −1.7317005825 −1.731565514863421 18.237672 0.0078
0.250 0.1 −1.3709099874 −1.370811777058473 10.940643 0.0072
0.250 0.6 0.2768190451 0.2767965107849468 10.749782 0.0081
0.250 1 0.0819441585 0.08193745655136937 11.089051 0.0082

For the previously chosen number of subdivisions, K = 30; N = 3; m = 6; n = 9, we
calculate the radial and the axial magnetic force between the coils in question. The method
given in [15,16] is used as the comparative method. The calculation of Fr and Fa can be used
as the benchmark problem for tasting other methods for calculating these two magnetic
forces for coils in question regarding the accuracy and the computational time.

From Tables 17 and 18, one can see very good agreements of results obtained by
two different methods, even though there are some differences for some points of the
calculations. It can be explained by the following facts.

(1) The presented method treats two coils of the rectangular cross-section with the parallel
axes in the unbounded space libre, which are divided into circular filamentary coils.
To account for the finite dimensions of the coils, massive solenoids are subdivided
into meshes of filamentary coils, as shown in Figure 2. The cross-sectional areas of two
coils are divided into (2K + 1) by (2N + 1) cells for the first coil and (2m + 1) by (2n + 1)
cells for the second coil, where K, N, m, and n are the numbers of the subdivisions
of coils [8,10,12]. Even though we use the analytical Maxwell’s formulas for the
mutual inductance or the magnetic force between two circular loops, we cannot say
that the presented filament method for the massive coils is purely analytical because
its precision and the computational time depend on the number of subdivisions.
This statement was studied in the previous examples. As shown, the number of
subdivisions has an influence on accuracy.
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(2) The compared method is a boundary value problem of circular coils with parallel axes
shielded by a cuboid of high permeability. This means the coils are bounded by a
medium of high permeability regarding the free space, in which there are coils, where
the mixed boundary conditions are satisfied on six surfaces of the artificial cuboid.
Thus, this approach is approximate, but it proves to be accurate and efficient enough
for practical applications. This means that this method can bring some differences
in accuracy.

In Tables 19 and 20, the computation of the radial and axial forces is presented,
comparing the results of this work, Equations (7) and (8), with those given in [15,16].

Table 19. Radial magnetic force Fr (mN) as a function of the perpendicular displacement d [14],
K = 30; N = 3; m = 6; n = 9.

d (m) c (m) Fr, (7) This Work Fr, [15,16]

0.006 0.01 20.576008 20.602994
0.006 0.02 20.990200 21.039176
0.006 0.03 21.439313 21.548290
0.006 0.04 21.400845 21.663334
0.006 0.05 19.748335 19.744878
0.006 0.059309 15.020430 15.057457
0.006 0.07 4.9434673 5.075121
0.006 0.083439 −7.967173 −7.932075
0.006 0.09 −11.538574 −11.626505
0.006 0.1 −13.554995 −13.571601
0.006 0.6 −0.040067 −0.042237
0.006 1 −0.003416 −0.003751
0.020 0.083439 −36.535795 −36.780664
0.020 0.09 −45.290737 −45.297743
0.020 0.1 −48.219792 −48.217222
0.020 0.6 −0.133111 −0.135434
0.020 1 −0.011372 −0.012146
0.250 0.01 52.955752 52.724566
0.250 0.02 51.142662 51.096883
0.250 0.03 48.047731 47.986993
0.250 0.04 43.598200 43.504992
0.250 0.05 37.781110 37.632765
0.250 0.059309 31.269094 31.279649
0.250 0.07 22.934243 22.893013
0.250 0.083439 12.369791 12.358394
0.250 0.09 7.635737 7.679720
0.250 0.1 1.330825 1.330104
0.250 0.6 −0.970102 −0.971188
0.250 1 −0.114421 −0.115135

Even though we compare the results obtained by two different methods, one for open
space and the other for artificial boundaries in bounded space, both give very satisfactory
results for calculating the magnetic force between two coils of rectangular cross-sections
with parallel axes.

With (1) and (2), we explain the possible differences in accuracy for some cases
of calculation.

In this example, all calculations were performed using different hardware setups. The
single integration, including the Gaussian numerical integration, was carried out on a Dell
laptop (Dell, Inc., Round Rock, TX, USA) with an Intel Core i5-12500H processor running
at 2.5 GHz. For the calculations using the Finite Element Method (FEM), a PC with an Intel
Core i7-7700K CPU @ 4.20 GHz and 16.0 GB of RAM was used.
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Table 20. Axial magnetic force Fa (mN) as a function of the perpendicular displacement d [14], K = 30;
N = 3; m = 6; n = 9.

d (m) c (m) Fa, (8) This Work Fa, [15,16]

0.006 0.01 −68.191312 −68.205467
0.006 0.02 −137.391008 −137.389334
0.006 0.03 −208.173230 −208.158349
0.006 0.04 −279.963203 −279.898948
0.006 0.05 −349.604001 −349.520901
0.006 0.059309 −405.214825 −405.294053
0.006 0.07 −442.390770 −442.207026
0.006 0.083439 −433.226828 −433.307560
0.006 0.09 −411.017469 −411.060773
0.006 0.1 −367.800478 −367.886034
0.006 0.6 −2.102442 −2.102696
0.006 1 −0.289647 −0.289810
0.020 0.083439 −454.238985 −454.305635
0.020 0.09 −420.626836 −420.633025
0.020 0.1 −368.311148 −368.325780
0.020 0.6 −2.092916 −2.093189
0.020 1 −0.289140 −0.289332
0.250 0.01 6.851848 6.851354
0.250 0.02 13.609163 13.606354
0.250 0.03 20.134301 20.133180
0.250 0.04 26.203735 26.196089
0.250 0.05 31.476643 31.448595
0.250 0.059309 35.281758 35.276902
0.250 0.07 37.883856 37.884650
0.250 0.083439 38.163078 38.169832
0.250 0.09 37.213046 37.211353
0.250 0.1 34.771519 34.771530
0.250 0.6 −0.958292 −0.958551
0.250 1 −0.214685 −0.214975

5.5. Example 5

Finally, we give the rare examples that can be found in the literature to calculate the
mutual inductance between two non-coaxial coils of the rectangular cross-section with the
parallel axes [1]. All currents in the coils are units.

For this combination, the dimensions and the number of turns is as follows:

R1 = 4 cm, R2 = 6 cm, z2 − z1 = a = 10 cm, N1 = 150

R3 = 2.5 cm, R4 = 3.5 cm, z4 − z3 = b = 5 cm, N1 = 50

The perpendicular displacement of two coil axes is d = 10 cm, and the axial displace-
ment of the centers of the two coils is c = 10.5 cm.

In [1] the mutual inductance is,

M = 3.144 µH

According to the optimal minimizing method given by the presented approach con-
cerning the high accuracy and the short computational time, after some tests, we choose
the number of the subdivisions K = 30; N = 6; m = 15 for arbitrarily chosen n = 9.

Using the approach presented in this paper, the mutual inductance is

M = 3.13606092090 µH

The elapsed time is 17.133452 s, Intel Core i5-12500H @ 2.5 GHz.
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The method of [15,16] gives

M = 3.136970 µH

The elapsed time is 5.2 s on an Intel Core i7-8700 @ 3.2 GHz.
The absolute relative error regarding the accuracy between the presented method and

the one given in [15,16] is around 0.029%.
In [1], the mutual inductance is calculated using the general formula of Dwight and

Purssell, ref. [19] arranged as series involving zonal harmonics, Equations (190) and (191) [1].
The convergence of this series is sufficient for most purposes as long as all distances
rm =

√
d2

m + ρ2 are greater than (A + a), where dm, ρ is the perpendicular displacement
of two coil axes and the axial displacement of the centers of the two coils, respectively. A
and a are the mean radii of two coils of rectangular cross-section, respectively, refs. [1,30].
Since the general term of the series is known, it should be possible to use over the full
range. However, the calculation of higher power terms becomes very tedious and time-
consuming [1]. This is why Grover took only four terms of this series and obtained
M = 3.144 µH. It was problematic to take more terms because of the mentioned issues [1]
as well as very slow convergence.

We did many tests of (190) and (191), ref. [1] from which we found very slow conver-
gence. For two terms more, we obtain

M = 3.14454842613 µH

The absolute relative error discrepancy is 0.27%. Taking still more terms whose signs
change alternatively will oscillate without significantly improving the accuracy because of
the slow convergence.

However, these formulas are not working correctly for the different coil dimensions,
as mentioned in [1]. This is why we consider the approach presented here as general for
any coil’s dimensions.

Now, let us calculate the radial and the axial magnetic force between the coils in
question, respecting all parameters in the previously calculated mutual inductance.

Fr = −136.725877825 µN

Fa = 39.3340997099 µN

As a comparison, the method of [15,16] gives

Fr = −136.753948 µN

Fa = 39.344618 µN

Obviously, all results are in very good agreement.
The calculation provided by the presented method could also serve as a benchmark for

other methods addressing this problem. Additionally, this method could be automatically
applied to calculate the mutual inductance and the magnetic force between other coil
configurations (solenoids, disks) with parallel axes.

6. Conclusions

In this paper, we provide a new algorithm for calculating the radial and axial magnetic
forces between two non-coaxial coils of rectangular cross-sections with parallel axes. These
formulas are derived from modified Grover’s formula for the mutual inductance between
two non-coaxial loops with parallel axes. The validity of the presented approach is validated
with an already established method. Presented formulas are used for calculating the radial
and the axial force between two non-coaxial coils of rectangular cross-sections with parallel
axes using the filament method. Also, we presented the method to minimize the variables
(subdivisions) in the filament method to find the compromise between satisfactory accuracy



Computation 2024, 12, 180 19 of 20

and the corresponding small time of the calculation. We mention this method is applicable
between non-coaxial conventional coils with parallel axes (massive-loop; massive-disk;
massive-solenoid; two disks; disk-loop; disk-solenoid; two solenoids and solenoid-loop).
This method can be useful for engineers who are working in this domain because of its
simplicity. The proposed method is comprehensible, fast, and very precise.
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