
Titre:
Title:

PrismParser: a framework for implementing efficient P4-
programmable packet parsers on FPGA

Auteurs:
Authors:

Parisa Mashreghi-Moghadam, Tarek Ould-Bachir, & Yvon Savaria

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Mashreghi-Moghadam, P., Ould-Bachir, T., & Savaria, Y. (2024). PrismParser: a
framework for implementing efficient P4-programmable packet parsers on FPGA.
Future Internet, 16(9), 307 (19 pages). https://doi.org/10.3390/fi16090307

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/59166/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Future Internet (vol. 16, no. 9)

Maison d’édition:
Publisher:

Multidisciplinary Digital Publishing Institute

URL officiel:
Official URL:

https://doi.org/10.3390/fi16090307

Mention légale:
Legal notice:

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/)

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.3390/fi16090307
https://publications.polymtl.ca/59166/
https://doi.org/10.3390/fi16090307

Citation: Mashreghi-Moghadam, P.;

Ould-Bachir, T.; Savaria, Y.

PrismParser: A Framework for

Implementing Efficient

P4-Programmable Packet Parsers on

FPGA. Future Internet 2024, 16, 307.

https://doi.org/10.3390/fi16090307

Academic Editor: Gianluigi Ferrari

Received: 16 July 2024

Revised: 12 August 2024

Accepted: 21 August 2024

Published: 27 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

PrismParser: A Framework for Implementing Efficient
P4-Programmable Packet Parsers on FPGA
Parisa Mashreghi-Moghadam 1,* , Tarek Ould-Bachir 2, and Yvon Savaria 1,*

1 Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC H3H 1T1, Canada
2 Department of Computer and Software Engineering, Polytechnique Montréal, Montréal,

QC H3H 1T1, Canada; t.ould-bachir@polymtl.ca
* Correspondence: parisa.mashreghi-moghadam@polymtl.ca (P.M.-M.); yvon.savaria@polymtl.ca (Y.S.)

Abstract: The increasing complexity of modern networks and their evolving needs demand flexible,
high-performance packet processing solutions. The P4 language excels in specifying packet processing
in software-defined networks (SDNs). Field-programmable gate arrays (FPGAs) are ideal for P4-based
packet parsers due to their reconfigurability and ability to handle data transmitted at high speed.
This paper introduces three FPGA-based P4-programmable packet parsing architectural designs that
translate P4 specifications into adaptable hardware implementations called base, overlay, and pipeline,
each optimized for different packet parsing performance. As modern network infrastructures evolve,
the need for multi-tenant environments becomes increasingly critical. Multi-tenancy allows multiple
independent users or organizations to share the same physical network resources while maintaining
isolation and customized configurations. The rise of 5G and cloud computing has accelerated the
demand for network slicing and virtualization technologies, enabling efficient resource allocation and
management for multiple tenants. By leveraging P4-programmable packet parsers on FPGAs, our
framework addresses these challenges by providing flexible and scalable solutions for multi-tenant
network environments. The base parser offers a simple design for essential packet parsing, using
minimal resources for high-speed processing. The overlay parser extends the base design for parallel
processing, supporting various bus sizes and throughputs. The pipeline parser boosts throughput
by segmenting parsing into multiple stages. The efficiency of the proposed approaches is evaluated
through detailed resource consumption metrics measured on an Alveo U280 board, demonstrating
throughputs of 15.2 Gb/s for the base design, 15.2 Gb/s to 64.42 Gb/s for the overlay design, and up
to 282 Gb/s for the pipelined design. These results demonstrate a range of high performances across
varying throughput requirements. The proposed approach utilizes a system that ensures low latency
and high throughput that yields streaming packet parsers directly from P4 programs, supporting
parsing graphs with up to seven transitioning nodes and four connections between nodes. The
functionality of the parsers was tested on enterprise networks, a firewall, and a 5G Access Gateway
Function graph.

Keywords: SDN; packet parser; P4 language; FPGA; overlay

1. Introduction

Software-defined networks (SDNs) have introduced the potential for dynamically
programmable network infrastructure by decoupling control and data planes [1]. This
architectural innovation allows for the agile deployment of new protocols through a cen-
tralized controller, streamlining the introduction of new forwarding rules to the data plane
without altering the foundational hardware. Building on these foundational principles, the
P4 language was introduced, enabling detailed specification of packet processing behaviors
in the data plane [2]. The underlying concepts were embodied in the protocol-independent
switch architecture (PISA), which supports dynamic packet processing and allows network
devices to evolve with network requirements [3].

Future Internet 2024, 16, 307. https://doi.org/10.3390/fi16090307 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-6796-7652
https://orcid.org/0000-0002-9000-5467
https://orcid.org/0000-0002-3404-9959
https://doi.org/10.3390/fi16090307
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090307?type=check_update&version=1

Future Internet 2024, 16, 307 2 of 19

The rapid evolution of modern network infrastructures highlights the increasing im-
portance of multi-tenant environments. Multi-tenancy allows multiple independent users
or organizations to share the same physical network resources while maintaining isolation
and customized configurations [4]. The rise of 5G and cloud computing has accelerated
the demand for network slicing and virtualization technologies, enabling efficient resource
allocation and management for multiple tenants [5,6].

Field-programmable gate arrays (FPGAs) are crucial to networking evolution, especially
in dynamic SDNs. They offer essential programmability, balancing fine-grained control with
robust, power-efficient performance, making them ideal for SDN deployments [7]. As the
industry recognized the potential of P4’s flexibility, a need for hardware architectures to
support this programmability emerged. PISA, inherently adaptable, pairs naturally with
FPGAs, facilitating rapid prototyping and deployment of custom networking protocols [3].

PISA comprises three main components: a packet parser, a deparser, and match-action
tables. The parser extracts relevant fields from incoming packets, the deparser reconstructs
processed packets for transmission, and the extracted fields are matched against table entries.
Given the dynamic nature of network traffic, FPGAs offer outstanding flexibility, enabling
real-time adjustments [8]. Whether software- or ASIC-based, traditional packet parsers face
significant limitations in processing capabilities, latency, and flexibility [9]. While software-
based parsers offer programmability, they suffer from high latency and limited processing
capacity. ASIC-based solutions, though faster, lack flexibility and have long development
cycles [10]. In contrast, FPGA-based solutions present a favorable trade-off, providing high
data rate processing and flexibility.

Early FPGA-based parsers, such as those by [9,10], faced significant latency issues. Sub-
sequent ternary content addressable memory (TCAM)-based methods by [3,11] reduced la-
tency but compromised flexibility and scalability. Innovations like those from [12–15] intro-
duced custom processors for reconfigurable packet parsing, but still grappled with latency.
Recent advancements, such as those by [16–18], emphasized reconfigurability and software
programmability, addressing some limitations but highlighting challenges in simultaneous
protocol detection and scalability. Separating parsing logic from protocol-specific details
and leveraging FPGA reconfigurability allows for adaptive, high-performance packet
parsing, ensuring responsiveness to evolving network protocols.

This paper proposes a novel dynamic and configurable low-latency packet parser
architecture based on FPGA technology, addressing the challenges of flexibility, scalability,
and high performance in modern networks [19]. Our design leverages parallel extraction
and matching techniques to minimize latency and maximize throughput, supporting real-
time reconfiguration through SDN control planes [20]. The contributions of this paper are
as follows:

• A scalable parser framework that efficiently extracts parsing information from the P4
definition and adjusts the hardware implementation on FPGA;

• A mechanism within the parser that allows for the integration and support of emerging
protocols, offering a forward-compatible system;

• An optimized architecture that reduces the time complexity of protocol identification,
enhancing the speed and efficiency of the parser;

• An intuitive software interface for users to easily define and modify protocol-specific
information, enhancing the usability of the parser;

• Design considerations enabling third-party users to extend the parser’s capabilities by
setting design parameters and bus size to achieve their goals.

The remainder of this paper is organized as follows: Section 2 outlines packet parsing
strategies and reviews previous work. Section 3 highlights the methodology employed in
our study. Section 4 presents the experimental results, and Section 5 concludes this work.

Future Internet 2024, 16, 307 3 of 19

2. Protocol-Agnostic Packet Parsing: Background
2.1. Introduction to Packet Parsing in P4

Data are sent in packets encapsulated using various protocol layers in digital com-
munication. When the data is processed, the layers must be appropriately decoded, as
parsing involves methodically examining incoming packets to identify and separate their
headers. Given the layered nature of network protocols, headers are nested within each
other, each signifying a specific protocol layer. For example, an Ethernet header can contain
an IP header, which might enclose a TCP header.

In P4, a packet parser is implemented using a state machine to navigate through the
packet’s hierarchical structure. This state machine comprises states specifically configured
to recognize and extract different headers based on predefined keys and their exact positions
within the packet. The configuration of these keys, their respective locations, and the
dimensions of the headers are all defined within the P4 code. Upon encountering a key
at a specific location, the parser determines which header comes next, extracts it, and
transitions to the appropriate state. This systematic process ensures the orderly extraction
of headers, aligning with the structured layers of network protocols. This parsing procedure
is often visualized using a parser graph, typically represented as a directed acyclic graph
(DAG). Figure 1 showcases a classic parse graph for enterprise networks, similar to what
is explained in [21]. In this graphical representation, nodes show individual protocols or
headers, and edges outline the potential transitions between them.

Ethernet outer_VLAN

inner_VLAN

IPv4IPv6

UDP

IPv6_ext_1

IPv6_ext_2

TCP ICMP

Figure 1. Example of an enterprise parsing graph.

2.2. Programmable Packet Parsing Overview

A programmable parser flexibly analyzes and dissects various packet formats and
structures. Unlike fixed traditional parsers, it can be reconfigured to detect new or custom
protocols, offering versatility in evolving networking environments. Combined with P4,
it specifies which headers to recognize and in what sequence, maximizing its potential.

Future Internet 2024, 16, 307 4 of 19

FPGAs are ideal for implementing these parsers in hardware, effectively embodying the
parsing logic described by P4. This combination of FPGAs and P4 offers the speed and
low latency of dedicated hardware with software adaptability. Diverse methodologies
and innovations have contributed to the evolution of FPGA-based packet parsers. Early
programmable parsers such as [9,10] were associated with considerable latencies. Subse-
quent TCAM-based methodologies [3,11] achieved reduced latency but at the expense of
flexibility, scalability, and the introduction of complex logic. As research advanced, custom
processors for packet parsing emerged, as reported in [12–15,22]. These designs, while
reconfigurable, grappled with latency issues, especially when integrating new protocols.

The automation of P4-programmable packet parsers, explored in [19,23], marked a
significant shift. A notable contribution from Da Silva et al. [24] utilized Vivado HLS for P4-
to-RTL conversion, achieving impressive throughputs but necessitated an entire translation
cycle for each P4 code modification. The later innovations, such as the templated packet
parser architecture in [16,17], emphasized reconfigurability. However, they also highlighted
the challenges of comprehensive re-synthesis with P4 code alterations, suggesting the
potential advantages of software programmable solutions.

The merits of a software programmable design are explored in the work presented
by [18]. This approach, where alterations in the P4 parser code necessitate only changes to
the embedded memory content without mandating modifications to the hardware design,
is particularly noteworthy. However, the design proposed has its limitations. Specifically,
it supports detecting only one protocol field per clock cycle, and its logic would need
substantial modification to detect multiple protocols simultaneously. Such changes introduce
complexity and pose potential timing challenges.

Furthermore, this limitation interferes with the design’s scalability, mainly when larger
bus sizes are essential for higher throughput demands. To truly harness the potential of
such a design, it is imperative to evolve toward a more generic parser. The optimal parser
would process all protocols from the parsing graph in each data bus cycle. This would allow
simultaneous detection of all protocols delineated in a parsing graph, accommodating
larger bus sizes and substantially improving throughput potential.

It is imperative to separate the parsing logic from the specific header details to achieve
a versatile and efficient hardware architecture for packet parsing. The consistent set of
operations, or the parsing logic, remains unchanged irrespective of the packet type. On
the other hand, the critical parsing information, which includes specifics like header sizes
and key locations, varies with each protocol. By storing this protocol-specific information,
hardware can dynamically adapt to different packet headers, ensuring flexibility and opti-
mized performance. Such an architecture, when implemented on an FPGA, can leverage the
inherent reconfigurability of the platform. As network protocols evolve or new ones emerge,
the FPGA-based parser can smoothly adapt, ensuring that the network remains agile and
responsive to changing requirements. Furthermore, this adaptive approach provides a solid
foundation for future enhancements.

3. Proposed P4-Programmable Parser

The parser framework presented in this paper offers a robust solution for translating
P4 parser specifications into a generic, programmable hardware platform that combines
software and hardware components. The software component generates header speci-
fications from P4 configurations, which are then used by the hardware. The hardware
architecture is designed to be generic and programmable, allowing easy reconfiguration
when the input parsing graph changes.

3.1. Software Overview
3.1.1. Proposed Workflow

The initial step in extracting configurations and control data from P4 code is compiling
the code using the p4c compiler. The p4c compiler translates P4 code into a JSON file,
which is then processed to extract header and parser information. After that, the memory

Future Internet 2024, 16, 307 5 of 19

content is generated, which can be used to program the hardware via the SPI protocol. This
process is described in Figure 2.

P4 Code JSON Array Full Graph Memory Content Gen

DFS Optimized Paths

Memory

Parser

Data
Python
Script

Figure 2. Proposed compilation workflow for generating control and configuration for the parser.

3.1.2. P4 Compiled JSON File

The most important fields within the JSON file are header types, headers, and parsers.
The header types array defines the types of each header, where each object includes field
names, lengths, and an ID number, referred to as the protocol ID in this paper. The headers
array maps each header type to its respective header.

The most crucial part of the P4 compiled JSON file is the parser array. Typically,
each object in this array represents a parsing state based on the current parsed header, its
transition key (the fields of interest for parsing in the header), and transitions (which detail
the next parsing state based on the value of each transition key). Therefore, parsing can be
conceptualized as a directed acyclic graph (DAG), where each node symbolizes a header,
and the edges denote transitions between headers based on the transition key and its value.
Listing 1 shows a simplified P4 compiled JSON file, which shows the header types, headers,
and parsers for the Ethernet header:

Listing 1. Header types, headers, and parsers for the ethernet header.

1 {
2 "header_types": [{
3 "name": "ethernet_t",
4 "id": 1,
5 "fields": [
6 ["dstAddr", 48],
7 ["srcAddr", 48],
8 ["etherType", 16]
9]

10 }],
11 "headers": [{
12 "name": "ethernet",
13 "header_type": "ethernet_t"
14 }],
15 "parsers": [{
16 "name": "parse_ethernet",
17 "transition_key": [{
18 "type": "field",
19 "value": ["etherType"]
20 }],
21 "transitions": [
22 {"value": "0x0800", "next_state": "parse_ipv4"},
23 {"value": "0x8100", "next_state": "parse_inner_vlan"},
24 {"value": "0x9100", "next_state": "parse_outer_vlan"},
25 {"value": "0x86DD", "next_state": "parse_ipv6"}
26]
27 }]
28 }

Future Internet 2024, 16, 307 6 of 19

3.1.3. Hardware Configuration Generation

JSON processing and DAG generation are implemented using Python. The initial step
involves extracting the required information from the JSON file, including header size,
transition key lengths, and their locations relative to the start of the header, protocol ID,
and transitions. This is achieved by matching the header types with the header arrays and
looking for parser transition key field information within them. Based on this information,
the DAG is generated. Subsequently, all simple paths from the root to the leaves of the
DAG are found using a Depth-First Search (DFS) algorithm. Some paths to the leaf nodes
are discarded since the last headers do not need to be considered parsing states. Now,
for these paths and the extracted information from the JSON file, the following hardware
configurations are generated per each path:

• Protocol bitmap: One-hot encoding representation of the protocol_ID and bit number of
protocol_ID − 1. Bitmap length is equal to the number of parsable headers.

• Protocol mask: Determined by the transition key length and position within a 16-bit
long chunk per each header in the path.

• Match values and next state: Determined by the extracted transitions per each header
in the path.

• Multiplexer select lines and enable signals: Determined by the bus size, number of
inputs per each mux, and transition key location.

• Next state bitmap: The OR value of the header protocol and next header bitmaps.

For example, for the Ethernet header, these contents are generated:

• Protocol bitmap: “00000001"; consider that there are seven headers and protocol_ID is 1.
• Protocol mask: 0x“FFFF", since the transition key etherType is 16 bits long.
• Match values and next state: Match value vector is 0x“08008100910086DD" which is

the concatenated transitions values. The next state is 0x“4325", which is protocol_ID
for each match, meaning that when etherType = 0x“9100", the next parser state will be
protocol_ID 2, which is parse_outer_vlan in our example.

• Multiplexer select lines and enable signals:
Section 3.2 explains that the design’s input bus is 64 bits. The input data is split into
four chunks of 16 bits, each connected to the input of a multiplexer. Since the key to
be extracted is two bytes or less, one of these input chunks in a specific clock number
contains the value that needs to be selected. The extracted key will be masked and
matched if it is less than two bytes. Moreover, based on previously parsed values, the
same protocol key may occur in different clock cycles. All possible scenarios for the
key’s occurrence are calculated to account for this. A bit vector is then generated to
select the correct protocol at the appropriate clock cycle.
Listing 2, an example of such a vector, and is provided below. To parse the correct key,
the design must identify which protocols can occur in every clock cycle. The Enable bits
indicate the protocols that can happen in a certain clock cycle. Each bit in the Enable
vector corresponds to a specific transitioning node, representing a particular protocol.
A one in the location number of the protocol_ID − 1 signifies that this specific protocol
can occur in that clock cycle. The select vector determines the selection of one of the
four inputs of a multiplexer for an activated protocol. With two bits to select the binary
range of “00” to “11”, one of the four inputs of the multiplexer is chosen. Consequently,
each bit in the enable vector has two corresponding bits in the select vector.

Future Internet 2024, 16, 307 7 of 19

Listing 2. Example of select and enable arrays for protocol selection at a specific clock cycle.

1 select_enable_array_clk_3=
2 -----SELECT---------ENABLE---
3 "00000000000000" & "0000100"&
4 "00000000100000" & "0000110"&
5 "00000011000000" & "0001000"&
6 "00001000000000" & "0010000"

• Next state bitmap: The initial node is Ethernet, corresponding to the protocol bitmap
“0000000001", as it is the first protocol to be parsed. From this state, based on the discus-
sion in the multiplexer select lines and enable signals section, protocols 2, 2 and 3, 4, or
5 can be detected when receiving 64-bit input data. Therefore, in the next clock cycle,
the generated protocol bitmap needs to be checked against “000001101", “0000010101",
“0000001111", and “0000010111", which indicate the possible paths in the graph up to
number-of-clk-cycles * 64. The following are the possible bitmaps for the fourth clock
cycle, which should be matched against the input bitmap from the previous cycle:

Listing 3. Bitmap array comparison for protocol transition at a specific clock cycle.

1 bitmap_array_clk_4=
2 "000001101"& "0000010101"& "0000001111"& "0000010111"

After the process, the configurations and control data vectors will match those illus-
trated in Listing 4 or Listing 5.

Listing 4. Generated configuration.

1 configuration =
2 mask_prt_1 & mask_prt_2 & ... & mask_prt_n & all_key_values_prt_1 &

all_key_values_prt_2 & ... & all_key_values_prt_n & all_next_prt_ids_prt_1 &
all_next_prt_ids_prt_2 & ... & all_next_prt_ids_prt_n

Listing 5. Generated control.

1 control =
2 select_enable_array_clk_1 & select_enable_array_clk_2 & ... &

select_enable_array_clk_m & bitmap_array_clk_1 & bitmap_array_clk_2 & ... &
bitmap_array_clk_m

3.1.4. Memory Content Generation and Programming

After extracting all hardware configurations, alignment is performed based on the clock
number. This is viable because the bus size is already known; therefore, the current position
of the packet is determined. The path and header information are also available, allowing
for the implementation of a counter in the hardware to address memory configurations
based on the counter value. The SPI protocol is used to program these memory contents to
the hardware. The Python program encodes these memory contents as binary vectors that
can be transferred using the SPI protocol. Algorithm 1 shows the whole process:

Future Internet 2024, 16, 307 8 of 19

Algorithm 1: Configuration and control extraction algorithm.
Input: J: The compiled P4 JSON file, B: The desired bus size, S: The desired

multiplexers size
Output: MemCode: Memory configuration code

1 Initialization:
2 G ← Create an empty DAG
3 ProtocolBitmap← Create an empty array
4 ProtocolMask← Create an empty array
5 Matchvalues← Create an empty array
6 NextState← Create an empty array
7 MuxSelect← Create an empty array
8 EnableSignals← Create an empty array
9 NextStateBitmap← Create an empty array

10 MemCode← Create an empty array

11 HeaderIn f o ← parseJSON(J)
12 foreach parseObj in J.get(‘parsers’) do
13 header ← parseObj.name
14 G.addNode(header)
15 G.addData(HeaderInfo.get(header))
16 foreach transition in parseObj.get(‘transitions’) do
17 G.addEdge(G.currentNode, transition.nextState, transition.value)

18 paths← DFS(G)
19 reducedPaths← removeUnusedPaths(paths)
20 foreach path in reducedPaths do
21 foreach header in path do
22 ProtocolBitmap.append(getProtocolBitmap(header,

HeaderInfo.get(header)))
23 ProtocolMask.append(getProtocolMask(header, HeaderInfo.get(header)))
24 Matchvalues.append(getMatchvalues(header, HeaderInfo.get(header)))
25 NextState.append(getNextState(header, HeaderInfo.get(header)))
26 MuxSelect.append(getMultiplexerSelect(header, HeaderInfo.get(header), B,

S))
27 EnableSignals.append(getEnableSignals(header, HeaderInfo.get(header), B,

S))
28 NextStateBitmap.append(getNextStateBitmap(header,

HeaderInfo.get(header)))

29 MemCode← createMemContent(ProtocolBitmap, ProtocolMask, Matchvalues,
NextState, MuxSelect, EnableSignals, NextStateBitmap, B)

30 return MemCode

A key feature of the software component is its ability to support dynamic adaptability.
It can handle real-time updates to P4 configurations, enabling the hardware to adapt to
new parsing requirements on the fly. This adaptability is achieved through efficient data
transfer mechanisms and a flexible hardware design.

3.2. Hardware Design Overview

The core of the packet parser presented in this study is conceptualized as a DAG,
where each node symbolizes a protocol, and the edges denote transitions between protocols.
It functions as an abstract state machine (ASM), systematically evaluating state transitions
at each node within the parser. The states that link the initial state to the terminal state in
the ASM delineate the set of protocols supported by the P4 parsing graph.

Future Internet 2024, 16, 307 9 of 19

This design introduces a base block capable of reuse to accommodate larger bus sizes
and higher data throughputs. The base design architecture is a streaming packet parser that
operates without needing packet storage, explicitly tailored for 64-bit bus sizes. This bus
size is strategically chosen to comply with byte-aligned network protocols and ensure reli-
able header key alignment, thereby preventing any header key from being split across two
incoming data chunks. This careful balance in bus size selection avoids the complications of
an overly intricate design while preventing excessive demands on software computations
and hardware resources. This approach results in a highly flexible and scalable hardware
design that can efficiently handle current demands and adapt to future network protocol
developments.

Base Block Architecture and Microarchitecture

The base block, shown in Figure 3, is designed to support a 64-bit bus size with a
maximum possible clock frequency to handle a data throughput of more than 10 Gbps
efficiently. This throughput is commonly used in high-speed networks and ensures the
design can meet industry-standard performance requirements while consuming a minimal
area footprint. Table 1 compares the proposed design with previous programmable packet
parsers using the same bus size.

control

Protocol_Navigator

Protocol
Investigator[0]

2

Bitmap
Match

Prism_Controller

1
0

Protocol
Investigator[n-1]

Bitmap
Generator

nx_id[n-1]

nx_id[0]

prt_bitmap

configuration

input_data_64

prev_prt_bitmap*

prev_prt_bitmap*

bitmap_set

control_set

clk_num

Parser_Base_Block

Figure 3. Base Block.

Table 1. Results comparison for base block.

Work FPGA
Performance Resources Programmability

Bus Size
[bits]

Freq.
[MHz]

TP
[Gb/s]

Max Latency
[cycles] LUTs FFs Total

Logic Method Time

[22] Alveo U200 64 125 8 23 3538 1578 5116 Instr. Hours
[18] Virtex-7 64 173.4 11.1 10 312 1135 1447 Memory Min.

Proposed Alveo U280 64 237.69 15.2 9 1028 1873 2901 Register Sec.

The hardware design follows a straightforward principle: extract key information
from a specific location within a header, match it against predefined key values, transition
to the next state upon a match, and forward the information as a Packet Header Vector
(PHV) for subsequent processing stages. To simplify the hardware design, the critical

Future Internet 2024, 16, 307 10 of 19

pieces of information are generated via software data structures essential for initializing
the processing objects. The Software Overview section provides a detailed discussion of
how this information is generated from P4 code. These configurations include protocol
keys, masks, next protocol IDs, multiplexer selections, and hierarchical sets of bitmaps, all
crucial for determining the processing path.

The base parser block also includes two critical sub-blocks designed to efficiently deter-
mine the next protocol header in the graph hierarchy with minimal dependencies and a low
area footprint. When the protocol investigator unit identifies the next protocol to be parsed, it
requires only bitmap updates to propagate to the block in the following cycle, enhancing the
parser’s efficiency and reducing the time and resources needed for protocol transitions.

The two main components of the base parser block are the Prism Controller and the
Protocol Navigator. The Prism Controller manages control signals by calculating potential
transition sets and using multiplexers to select protocol bitmaps and control signals based
on clock cycles and comparison results, ensuring accurate control signal generation. As
the guiding force, the Protocol Navigator directs the parser through both parsed and
impending protocols. This block contains several Protocol Investigators sub-blocks, each
tailored to specific protocols and responsible for retrieving header details from software-
generated header configurations. The number of Protocol Investigator units corresponds to
the transitioning nodes in the parsing graph, allowing detection of all possible protocols
within the same clock cycle. As depicted in Figure 4, each Protocol Investigator is designed
to be generic and extendable, adapting to diverse network protocols. It retrieves essential
information, such as masks, keys, and next protocol IDs, under the control of the Prism
Controller. It determines whether to activate its functionalities during each cycle and
specifies which 2-byte input data segment to process. Using a protocol mask in a bitwise
AND operation allows the extraction of relevant key bits from the input data. At the
same time, a parallel search identifies a matching key through the Match Detector unit,
which executes an XOR operation followed by a bitwise NOR operation to generate the
match found signal. Additionally, the Bitmap Generator decodes the following protocol
ID into a Protocol Bitmap, a vector with bits corresponding to the graph nodes. This
newly encoded bitmap is combined with the previous cycle’s protocol bitmap and outputs
from other decoders using a bitwise OR operation. This process ensures a comprehensive
representation of parsed protocols, facilitating efficient select operations in processing
control stages. The protocol bitmap is an n-bit vector, where the position i indicates whether
the protocol ID − 1 = i has been detected.

Despite the design’s support for a 15 Gbps data rate due to its 64-bit bus size and clock
frequency limitations, it faces constraints such as limited bus width, required advanced
fabrication for higher clock frequencies, latency from multiplexers and control logic, and
sequential processing bottlenecks. To improve and support higher throughputs like 40
or 100 Gbps, the design could benefit from increasing bus width, implementing deeper
pipeline stages, optimizing multiplexers, and utilizing parallel processing units.

Future Internet 2024, 16, 307 11 of 19

prt_bitmapBitmap
Generator

nxt_id / key / mask
en / sel
data_in

Protocol
Investigator[n]

Protocol
Investigator[1]

Match[1]
Detector

Protocol Navigator

Match[m]
Detectordata_in

nxt_id

key

mask

sel

nxt_id
en

Reg
pre_prt_bitmap

Decoder
[1]

nxt_id[1]

Decoder
[n]

nxt_id[n]

prt_bitmap

Reg
prt_bitmap pre_prt_bitmap

Figure 4. Protocol Navigator: Protocol Investigator with its Match Detector sub-block and
Bitmap Generator.

3.3. Limitations and Evolution of the Base Block

Two primary solutions can be considered to enhance our parser’s throughput: in-
creasing its operating frequency or expanding the bus size. Alternatively, combining both
approaches may also be employed to achieve optimal performance. However, the base
design of our packet parser faces inherent challenges that constrain its operational efficiency.
The primary issue is achieving higher frequencies, which is impossible with the base design
because of its long critical path and single-cycle architecture.

The secondary issue lies in its limited throughput capabilities, primarily due to its
support for only small bus sizes. Enhancing the parser through larger bus sizes involves
maintaining the base design while scaling up the number of multiplexer inputs. While
preserving the core architecture, this approach increases resource consumption and a longer
critical path. Additionally, it necessitates more complex memory content generation and
requires unrolling the Prism Controller to manage the expanded data flow effectively. This
limitation impacts the parser’s ability to handle high-volume network traffic effectively,
necessitating enhancements to accommodate larger data loads. To mitigate these issues, a
range of improvements are proposed to augment throughput, focusing on either refining
the operational frequency or expanding the bus size capabilities:

• Enhancement via Higher Frequency:
Increasing the operating frequency to enhance the packet parser’s performance is
inherently limited due to the current design’s optimization boundaries. Achieving
higher frequency involves extensive optimization of the control logic and minimization
of the latency of multiplexers and other critical components. Given that the current
frequency represents the highest possible frequency without compromising system
functionality, further enhancements in performance must be sought through other
means. Specifically, increasing the bus size offers a viable alternative to achieve higher
throughput. This approach involves scaling up the number of multiplexer inputs and
expanding the overall architecture to handle larger data loads effectively.

• Enhancement via Larger Bus Sizes:
Two different approaches can enhance the parser through larger bus sizes. The first
involves increasing the bus size, which results in larger multiplexers in the Protocol

Future Internet 2024, 16, 307 12 of 19

Investigator block. This makes the logic more complex, worsens the critical path, and
requires the software-generated configuration and control data to consider the entire
path, necessitating fundamental changes in the software script. The second approach
replicates the base block with modifications to enable parallel logic, extracting all
headers in the input header chunk.

3.4. Overlay Optimization

To address the limitations of the base parser block and enhance throughput and
scalability, the initial step was to double the bus size rather than the frequency, presenting
fewer constraints and greater feasibility. Building on this foundation, the design was further
expanded into an extendable block that can be replicated to support larger bus sizes and
frequencies. This section explains the breakdown of the problem and the development of
an adjustable design, controllable through generics, to optimize performance.

Doubling the throughput can be achieved by increasing either the frequency or the
bus size. Since increasing the frequency is not feasible due to inherent limitations, the
focus shifts to doubling the bus size while reusing the base block. The initial step involves
employing two base blocks. By increasing the bus size from 64 to 128 bits, the first base
block processes the first 64 bits and the second 64 bits by the second base block. However,
the second base block cannot complete its calculations without the results from the first
base block. Waiting for one clock cycle to obtain the results for the second base block would
require processing another packet. If the packet is not stored, it will be dropped; if stored,
it necessitates additional logic, memory, and more clock cycles to parse the header.

The solution, illustrated in Figure 5, is to modify the second base block to process
all possible scenarios from the first block in parallel. This modified block, along with the
original base block, runs concurrently. Before the result from the first block is available,
the modified second block begins processing the data. The result from the first block
drives a multiplexer that selects the appropriate result from the second block. Similarly,
the modified base block can be replicated x− 1 times to support processing a (x)× (64-bit)
bus size. The parameter x can be defined before FPGA implementation, thus creating an
overlay design, as shown in Figure 6.

prt_bitmap[c1]10

Bitmap
Match

11

prt_bitmap[c0]*

prt_bitmap

bitmap_set

clk_num

control_set

bitmap_set

prev_prt_bitmap*

clk_num

control_set

Protocol_Navigator_0

Protocol_Navigator_m-1

Parser_Unrolled
[64, 127]

prt_bitmap[c0]*

02

Bitmap
Match

Prism_Controller

01

Parser_Base_Block
[0, 63]

Protocol_Navigator_0

00

Figure 5. Overlay Block: In the multiplexer ID, the first digit indicates the parser block it belongs to,
and the second digit indicates the multiplexer number, referred to in the text with a #.

Future Internet 2024, 16, 307 13 of 19

Bitmap
Match

01

Parser_Base_Block_0 Parser_unrolled_1

pr
t_
bi
tm

ap
[c
0]
*

pr
t_
bi
tm

ap
[c
0]
*

Bitmap
Match

pr
t_
bi
tm

ap
[c
1]
*

Parser_unrolled_2

prt_bitmap[c2]*

11

prt_bitmap[c1]*

Parser_unrolled_x-1

prt_bitmap[cx-2]*

prt_bitmap

data_in da
ta
0_

64

da
ta
1_

64

da
ta
x-
1_

64

da
ta
x-
2_

64

bitmap_set

Figure 6. Overlay Block.

The operation of the modified base block is designed to process data in parallel across
multiple blocks without waiting for the results from previous blocks, thereby improving
throughput and reducing latency. Each new modified block increments the clock by one,
simulating that it is working in the next cycle. However, in reality, all blocks work in parallel,
and only the output is selected based on the result from the previous block. Multiplexer
#0, which handles the control sets and is controlled by the clock number, remains the same
across all blocks to ensure that each block receives the correct control signals based on the
current clock cycle. Multiplexer #1, also controlled by the clock, selects the proper set of
controls by comparing the result bitmap from the previous block (i − 1) with the possible
bitmap combinations for the current block (i). This comparison ensures that the correct
control set is selected for the current block based on the outcomes of the previous block.

In the base design, Multiplexer #2 was used to select one control set out of multiple
m sets. In the modified design, this multiplexer is discarded. Instead, multiple Protocol
Navigator blocks run in parallel, each handling a different control set. This parallel operation
eliminates the need to wait for the results from the first block, allowing all possible scenarios
to be processed simultaneously. The Prism Controller manages the control signals and
ensures that each block operates based on the current clock cycle, sending the appropri-
ate control signals to Multiplexer #0 and Multiplexer #1. Each Protocol Navigator block
processes data based on the control signals it receives, with multiple Protocol Navigators
running in parallel to handle different control signals. The Bitmap Match unit compares
the current bitmap with possible outcomes to select the appropriate data for processing,
ensuring that the correct path is followed based on the previous block’s results. This design
removes the need to wait for a clock cycle to obtain the result from the first block, signif-
icantly reducing latency and increasing throughput. Figure 5 also illustrates how blocks
from 0 to m− 1 in Protocol Navigator blocks operate in parallel within the modified base
block, resulting in a more efficient and faster processing pipeline.

The performance of different overlay sizes was evaluated by varying the parameter x.
The results are summarized in Table 2, showing the throughput improvements achieved by
increasing the number of modified base blocks.

Future Internet 2024, 16, 307 14 of 19

Table 2. Results overlay block with different bus sizes.

Performance Resources

Data Bus
[bits]

Parameter
x

Frequency
[MHz]

TP
[Gb/s]

Max Latency
[cycles] LUTs FFs Total

Logic

64 1 237.69 15.20 9 1028 1873 2901
128 2 193.38 24.80 5 3613 1938 5551
192 3 165.00 31.71 4 6841 2012 8853
256 4 145.51 37.20 3 8782 2066 10,848
320 5 97.50 31.21 2 17,427 2147 19,574
512 8 69.00 35.32 2 21,143 2311 23,454

1024 16 62.90 64.42 1 21,492 2880 24,372

3.5. Pipeline Optimization

As seen in Section 3.3, the overlay design has limitations due to the complex critical
path caused by the selection process for the output of each parallel search. This complexity
limits the maximum frequency for larger bus sizes. We propose a pipeline approach suitable
for larger bus sizes to achieve better throughput for large bus sizes. The longest path in our
graph can be parsed in a maximum of two clock cycles with a bus size of 512 bits and one
clock cycle with a bus size of 1024 bits. Consequently, there will be no need for memory
to store packets. We propose a pipeline parser and a bus selector unit. The bus selector
either parallelizes the 1024-bit input into sixteen chunks of 64-bit data or, in a more complex
manner, forwards the eight chunks of 512-bit input into the correct half of the pipeline.

The bus selector is a critical component in this design. It splits the 1024-bit input into
sixteen parallel chunks of 64 bits each or divides the 512-bit input into eight parallel chunks,
forwarding them into the correct half of the pipeline. This selective forwarding ensures
that data is distributed evenly and processed efficiently across the pipeline stages.

The pipeline’s parser unit is a simplified base block version (Figure 7). Since the block
is replicated along the pipeline, the first two multiplexers of the Prism Controller can be
omitted. The clock controls these multiplexers, but in our pipeline approach, each stage is
associated with a specific clock cycle. This simplification makes the base block even more
streamlined, reducing the clock frequency. Since block i depends on i− 1, the bitmap of the
latter is forwarded to the former, creating a streaming pipeline that accepts a packet per
clock cycle.

Pa
rs

er
_P

ip
el

in
e

0

Pa
rs

er
_P

ip
el

in
e

1

Pa
rs

er
_P

ip
el

in
e

y-
1

fifo_0 fifo_1 fifo_y-1

out_bitmap_0 in_bitmap_1 out_bitmap_1 in_bitmap_y-1 out_bitmap_y-1

da
ta

0_
64

data_in - 64

da
ta

1_
64

data_in - 2*64

init_bitmap

data_in

da
ta

y-
1_

64

enable_select_set
bitmap_set/clk
configuration

enable_select_set
bitmap_set/clk
configuration

enable_select_set
bitmap_set/clk
configuration

Figure 7. Parser Pipeline Block.

As explained in the previous section, the Prism Controller consists of three multi-
plexers, two of which are controlled by the clock number. If the same base block is put

Future Internet 2024, 16, 307 15 of 19

in a pipeline fashion, these two multiplexers can be eliminated since each stage in the
pipeline is dedicated to a particular clock number. The generated bitmap is forwarded
for comparison to the next pipeline stage, simplifying the base block even further than
the overlay design that includes only one multiplexer for control. This simplification also
improves the performance frequency, enabling higher throughput for larger bus sizes.

By unrolling the two multiplexers controlled by the clock, the pipeline design elim-
inates the need for complex control logic at each stage. Each pipeline stage processes its
specific data portion in parallel, and the results are forwarded to the next stage in real-time.
This design allows for continuous data flow and high throughput, removing the need for
intermediate storage. The improved frequency and reduced complexity make this pipeline
design suitable for handling larger bus sizes and achieving higher overall performance.
The results are summarized in Table 3, showing the throughput improvements achieved by
this approach.

Table 3. Results comparison for pipeline block.

Work FPGA
Performance Resources

Bus Size
[bits]

Frequency
[MHz]

TP
[Gb/s]

Latency
[ns] LUTs FFs Total

Logic

[19]—Golden Virtex-7 512 195.30 100.00 27.00 N/A N/A 8000
[19] Virtex-7 512 195.30 100.00 46.10 10,103 5537 15,640
[24] Virtex-7 320 312.50 100.00 25.60 7831 13,67 21,502
[20] Ultrascale+ 512 250.00 128.00 36.00 2587 2395 4990
Proposed—Pipeline Alveo U280 512 282.32 144.55 31.87 8435 3880 12,315
[16] Virtex-7 1136 279.30 317.00 25.06 16,888 12,033 28,921
[17] Ultrascale+ 1280 800.00 1024.00 15.00 15,634 11,476 27,110
Proposed—Pipeline Alveo U280 1024 282.32 289.10 31.87 8435 3880 12,315

Adopting a pipeline design offers several advantages. It allows continuous data pro-
cessing without waiting for the previous block’s results, significantly increasing throughput.
By dividing the processing task into stages, each packet part can be processed concurrently
at different stages, enhancing overall efficiency. This design is especially beneficial in high-
speed network environments where minimizing latency and maximizing data processing
rates are crucial.

Unrolling both the bitmap and control multiplexers simplifies the parser block by
dedicating one information set to each pipeline stage. This method is particularly effective
for larger bus sizes, such as 512 and 1024 bits, as it improves block frequency and throughput.
It allows the longest graph path headers to be parsed in one or two clock cycles, eliminating
the need for packet storage and avoiding system back pressure. One significant advantage
of this approach is that it does not require changes to the software to generate parsing
information. This method enhances performance while maintaining simplicity and reliability.
Additionally, the configuration and control data generated via software remain unchanged,
ensuring compatibility and ease of implementation. Overall, this approach provides a
throughput comparable to other high-performance designs, making it a robust solution for
handling larger bus sizes efficiently.

4. Experimental Results

This section discusses the experimental results obtained by evaluating the proposed
P4-programmable packet parser framework. The experiments were conducted on an Alveo
U280 FPGA board. The hardware architecture was reprogrammed via software-generated
configurations to process different input graphs. Configurations were generated for three
different graphs: an enterprise network graph, a firewall graph, and an Access Gateway
Function (AGF) graph (Figure 8). The enterprise network graph was the most complex,

Future Internet 2024, 16, 307 16 of 19

comprising ten nodes and seven transitioning nodes that require parsing states. The maxi-
mum number of connections between a node and its subordinate nodes in the hierarchy
was four. Therefore, there are seven protocol investigators and four match detectors, and the
protocol bitmap vector comprises 10 bits, one per protocol. The other two graphs fit within
the boundaries considered for the enterprise network graph, and the same methodology
can be applied to even more complex graphs if needed.

Ethernet

IPv4 IPv6

UDP TCP

Ethernet

IPv4 802.1Q

UDP

GTPU

PDU Session
Container

PPPoE_V1orV2

5WE

PPPoE_V1

802.1AD

(a) (b)

Figure 8. (a) Simple firewall graph. (b) Access Gateway Function flow graph.

Each of the seven protocols is allocated a 16-bit mask, resulting in a total of 7× 16 =
112 bits. Given that this graph has a maximum of four connections, there are four keys for
each protocol, each being 16 bits in size, totaling 7× (4× 16) = 448 bits. Additionally, each
key has an associated next protocol ID, representing each ID as a 4-bit array, leading to a
total of 7× (4× 4) = 112 bits. This means that the total number of bits required for Protocol
Investigators is 672.

Each of the seven Protocol Investigators in the control unit requires a 1-bit Enable
signal and a 2-bit Select signal to choose any 2-byte segment from the 64-bit input. This
means that, for each cycle, 7× (1 + 2) = 21 bits are essential to control all Protocol Inves-
tigators. Considering that the maximum number of distinct directions for various paths
is determined to be four, there are 4× 21 = 84 bits routed to the third prism multiplexer
before the bitmap match. Given that the longest path in our graph is parsed over nine clock
cycles, the cumulative number of control set bits directed to the second multiplexer of the
prism controller amounts to 9× 4× 21 = 756 bits. Additionally, four sets of 10-bit protocol
bitmap sets are linked to the first multiplexer of the prism controller. Considering the nine
clock cycles required for parsing, this results in a total of 9× 4× 10 = 360 bits. Combining
these two values yields a total of 1116 bits.

Tables 1–3 showcase our design outcomes using Vivado 2022.2 to synthesize the RTL
code for an Alveo U280 board. Table 1 presents performance metrics and resource utilization,
contrasting the programmability methods and the time taken to transition from a P4 code
modification to hardware compared to other studies. Our design consumes 1028 LUTs and
1873 FFs and operates at 237.69 MHz. This frequency leads to a throughput of 15.2 Gb/s for
a bus size of 64 bits per clock cycle. Table 2 presents the results of area and throughput for
different bus sizes for the overlay design. Finally, Table 3 demonstrates and compares the
results of the pipeline design with similar approaches in state-of-the-art works.

4.1. Base Block Design Performance

In terms of performance, our proposed design achieves the highest frequency at
237.69 MHz and the highest throughput at 15.2 Gb/s. This is a significant improvement
over other designs, such as [22], which operates at 125 MHz with a throughput of 8 Gb/s,
and [18], which achieves a frequency of 173.4 MHz and a throughput of 11.1 Gb/s. Ad-

Future Internet 2024, 16, 307 17 of 19

ditionally, our design maintains a maximum latency of nine cycles, matching the lowest
latency observed among the compared works.

Resource utilization is another area where our proposed design excels. It uses only
1028 LUTs and 1873 FFs, considerably lower than the 3538 LUTs and 1447 FFs used by [22].
This efficient resource usage is further highlighted by the total logic usage, which is 2901 in
our design, compared to 4029 in FPGA_paper. This demonstrates that our design not only
delivers high performance but also does so with optimal use of hardware resources.

Regarding programmability, our design utilizes a register file for storing the con-
figuration, similarly to other high-performance designs, ensuring low latency and fast
reconfiguration. The configuration time for our design is in the order of seconds, which is
significantly faster compared to [22], which requires hours for configuration. The quick
reconfiguration capability, combined with our design’s efficient resource usage and high
performance, makes it highly adaptable and efficient for dynamic network environments.

Our proposed design offers superior performance, resource efficiency, and programma-
bility compared to existing works. It achieves the highest throughput and frequency with
minimal latency and resource utilization. It is an excellent choice for modern network
environments that demand high-performance and scalable packet parsing solutions.

4.2. Pipeline Design Performance

The proposed pipeline design demonstrates excellent performance and resource effi-
ciency compared to other works. Our design achieves a frequency of 282.32 MHz and a
throughput of 144.55 Gb/s with a data bus size of 512 bits. Additionally, with a data bus
size of 1024 bits, our design reaches a throughput of 289.10 Gb/s while maintaining the
same frequency. The maximum latency observed is 31.87 cycles.

Compared with the work of [19], our proposed design shows superior performance.
While their design achieves a frequency of 195.3 MHz and a throughput of 100 Gb/s, it
uses significantly more resources, with 10,103 LUTs and 5537 FFs. Our design, on the other
hand, utilizes only 8435 LUTs and 3880 FFs.

Similarly, our design outperforms [24] regarding resource efficiency and frequency.
While they achieve a frequency of 312.5 MHz, their throughput remains the same at
100 Gb/s with a higher latency of 25.6 cycles. Our design achieves a comparable perfor-
mance with significantly fewer resources, making it more efficient.

Compared to [20], our design offers a higher throughput of 144.55 Gb/s and 289.10 Gb/s
for 512-bit and 1024-bit data buses, respectively, while using more resources. However,
the increased performance justifies the difference in resource usage, making our design a
robust choice for high-throughput applications.

The work of [16] achieves a higher throughput of 317 Gb/s with a data bus size of
1136 bits, but at the cost of significantly higher resource usage (16,888 LUTs and 12,033 FFs).
Our design provides a balanced approach with competitive throughput and efficient
resource utilization, making it suitable for various network environments.

Lastly, Ref. [17] achieves an impressive throughput of 1024 Gb/s with a data bus size
of 1280 bits and the lowest latency of 15 cycles. However, their design requires significantly
more resources (15,634 LUTs and 11,476 FFs), which might not be feasible for all applications.
While achieving lower throughput, our design offers a more resource-efficient solution
with excellent performance.

Overall, our proposed pipeline design offers a high-performance and resource-efficient
solution for packet parsing, demonstrating superior scalability and flexibility for modern
network environments.

5. Conclusions

This paper presents a versatile and efficient P4-programmable packet parsing frame-
work that harnesses FPGAs’ reconfigurability and high-speed data processing capabilities.
Implemented as a hardware/software co-design, our software extracts definitions from a
P4 code to generate memory content that programs the hardware. The hardware can be one

Future Internet 2024, 16, 307 18 of 19

of the three proposed architectural designs—base, overlay, and pipeline—each optimized
for distinct packet parsing performance requirements. Experimental results validate the
framework’s efficiency and scalability, with detailed resource consumption metrics show-
ing significant improvements in throughput, frequency, and resource utilization compared
to existing solutions.

The base design achieves a frequency of 237.69 MHz and a throughput of 15.2 Gb/s
using 1028 LUTs and 1873 FFs, showcasing a balance of high performance and resource
efficiency. By doubling the bus size, the overlay design further enhances throughput while
maintaining efficient resource usage. The pipeline design achieves remarkable throughput
rates of 144.55 Gb/s and 289.10 Gb/s for 512-bit and 1024-bit data buses while maintaining
low latency and high resource efficiency.

Regarding programmability, the proposed framework supports rapid reconfiguration in
the order of seconds, significantly outperforming other designs requiring hours for similar
transitions. This capability, combined with the proposed designs’ high performance and re-
source efficiency, makes the framework highly adaptable to dynamic network environments.

The originality of our work lies in its ability to integrate high-throughput, resource-
efficient packet parsing with rapid reconfiguration capabilities, addressing the limitations
of existing solutions. Our pipeline design, achieving up to 289.10 Gb/s, surpasses the
performance of many state-of-the-art designs, which often sacrifice speed or resource
efficiency. Additionally, our framework’s rapid reconfiguration in seconds substantially
improves adaptability and responsiveness to network changes. This combination of high
performance, resource efficiency, and quick reconfiguration establishes our framework as a
superior solution for modern, scalable network environments.

In conclusion, the PrismParser framework offers a powerful solution for implementing
efficient P4-programmable packet parsers on FPGAs, particularly suited for multi-tenant
networking environments. By supporting dynamic reconfiguration and high-speed process-
ing, the framework addresses the unique challenges of network slicing and virtualization,
ensuring robust performance and isolation for multiple tenants.

Author Contributions: Conceptualization, P.M.-M., T.O.-B., and Y.S.; methodology, P.M.-M., T.O.-B.
and Y.S.; software, P.M.-M.; validation, P.M.-M.; formal analysis, P.M.-M.; investigation, P.M.-M.;
resources, Y.S., T.O.-B. and P.M.-M.; data curation, P.M.-M.; writing—original draft preparation,
P.M.-M.; writing—review and editing, Y.S., T.O.-B. and P.M.-M.; visualization, P.M.-M.; supervision,
Y.S., T.O.-B.; project administration, Y.S.; funding acquisition, Y.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the NSERC Kaloom-Intel-Noviflow Industrial Chair of
Professor Savaria IRCPJ-548237-18 CRSNG, by Polytechnique Montreal, and by discovery grant
RGPIN-2019-05951 CRSNG (AV: 05295-2014/6574-09) to one of the authors.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. OpenFlow: Enabling Innovation in Campus

NetworksSoftware-defined networking: A comprehensive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]
2. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.

P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]
3. Bosshart, P.; Gibb, G.; Kim, H.S.; Varghese, G.; McKeown, N.; Izzard, M.; Mujica, F.; Horowitz, M. Forwarding metamorphosis.

ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 99–110. [CrossRef]
4. Krude, J.; Hofmann, J.; Eichholz, M.; Wehrle, K.; Koch, A.; Mezini, M. Online reprogrammable multi tenant switches. In Proceedings

of the ENCP 2019—Proceedings of the 1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms, Part of CoNEXT 2019,
Orlando, FL, USA, 9 December 2019; Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 1–8.

http://doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2534169.2486011

Future Internet 2024, 16, 307 19 of 19

5. Chartsias, P.K.; Amiras, A.; Plevrakis, I.; Samaras, I.; Katsaros, K.; Kritharidis, D.; Trouva, E.; Angelopoulos, I.; Kourtis, A.;
Siddiqui, M.S.; et al. SDN/NFV-based end to end network slicing for 5G multi-tenant networks. In Proceedings of the EuCNC
2017—European Conference on Networks and Communications, Oulu, Finland, 12–15 June 2017; Institute of Electrical and Electronics
Engineers Inc.: Piscataway, NJ, USA, 2017.

6. Kfoury, E.F.; Crichigno, J.; Bou-Harb, E. An Exhaustive Survey on P4 Programmable Data Plane Switches: Taxonomy, Applications,
Challenges, and Future Trends. IEEE Access 2021, 9, 87094–87155. [CrossRef]

7. Song, H. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding plane. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 16 August 2013; p. 127.

8. Sivaraman, A.; Subramanian, S.; Alizadeh, M.; Chole, S.; Chuang, S.T.; Agrawal, A.; Balakrishnan, H.; Edsall, T.; Katti, S.; McKeown,
N. Programmable packet scheduling at line rate. In Proceedings of the SIGCOMM 2016—Proceedings of the 2016 ACM Conference
on Special Interest Group on Data Communication, Salvador, Brazil, 22–26 August 2016.

9. Kozanitis, C.; Huber, J.; Singh, S.; Varghese, G. Leaping Multiple Headers in a Single Bound: Wire-Speed Parsing Using the
Kangaroo System. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9.

10. Attig, M.; Brebner, G. 400 Gb/s Programmable Packet Parsing on a Single FPGA. In Proceedings of the 2011 ACM/IEEE Seventh
Symposium on Architectures for Networking and Communications Systems, Brooklyn, NY, USA, 3–4 October 2011; pp. 12–23.

11. Gibb, G.; Varghese, G.; Horowitz, M.; McKeown, N. Design principles for packet parsers. In Proceedings of the Architectures for
Networking and Communications Systems, San Jose, CA, USA, 21–22 October 2013; pp. 13–24.

12. Zolfaghari, H.; Rossi, D.; Nurmi, J. An Explicitly Parallel Architecture for Packet Parsing in Software Defined Networks. In
Proceedings of the 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Milano, Italy, 10–12 July 2018; pp. 1–4.

13. Zolfaghari, H.; Rossi, D.; Nurmi, J. Low-latency Packet Parsing in Software Defined Networks. In Proceedings of the 2018 IEEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), Tallinn,
Estonia, 30–31 October 2018; pp. 1–6.

14. Zolfaghari, H.; Rossi, D.; Cerroni, W.; Okuhara, H.; Raffaelli, C.; Nurmi, J. Flexible Software-Defined Packet Processing Using
Low-Area Hardware. IEEE Access 2020, 8, 98929–98945. [CrossRef]

15. Zolfaghari, H.; Rossi, D.; Nurmi, J. A custom processor for protocol-independent packet parsing. Microprocess. Microsyst. 2020,
72, 102910. [CrossRef]

16. Cao, Z.; Zhang, H.; Li, J.; Wen, M.; Zhang, C. A Fast Approach for Generating Efficient Parsers on FPGAs. Symmetry 2019, 11, 1265.
[CrossRef]

17. Mashreghi-Moghadam, P.; Ould-Bachir, T.; Savaria, Y. A Templated VHDL Architecture for Terabit/s P4-programmable FPGA-
based Packet Parsing. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX,
USA, 27 May–1 June 2022; pp. 672–676.

18. Mashreghi-Moghadam, P.; Ould-Bachir, T.; Savaria, Y. An Area-efficient Memory-based Architecture for P4-programmable
Streaming Parsers in FPGAs. In Proceedings of the Proceedings—IEEE International Symposium on Circuits and Systems,
Monterey, CA, USA, 21–25 May 2023.

19. Benacek, P.; Pu, V.; Kubatova, H. P4-to-VHDL: Automatic Generation of 100 Gbps Packet Parsers. In Proceedings of the 2016
IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Washington, DC,
USA, 1–3 May 2016; pp. 148–155.

20. Sun, Y.; Guo, Z. The Design of a Dynamic Configurable Packet Parser Based on FPGA. Micromachines 2023, 14, 1560. [CrossRef]
[PubMed]

21. Liu, H.; Qiu, Z.; Pan, W.; Li, J.; Huang, J. HyperParser: A High-Performance Parser Architecture for Next Generation Programmable
Switch and SmartNIC. In Proceedings of the ACM International Conference Proceeding Series, Virtual Event, 20–25 June 2021.

22. Hsu, K.S.; Shen, C.A. The Design of a Configurable and Low-Latency Packet Parsing System for Communication Networks.
SSRN Electron. J. 2022. [CrossRef]

23. Yazdinejad, A.; Bohlooli, A.; Jamshidi, K. P4 to SDNet: Automatic Generation of an Efficient Protocol-Independent Packet Parser
on Reconfigurable Hardware. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, 25–26 October 2018; pp. 159–164.

24. Santiago da Silva, J.; Boyer, F.R.; Langlois, J.P. P4-Compatible High-Level Synthesis of Low Latency 100 Gb/s Streaming Packet
Parsers in FPGAs. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New
York, NY, USA, 25–27 February 2018; pp. 147–152.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/ACCESS.2020.2996660
http://dx.doi.org/10.1016/j.micpro.2019.102910
http://dx.doi.org/10.3390/sym11101265
http://dx.doi.org/10.3390/mi14081560
http://www.ncbi.nlm.nih.gov/pubmed/37630096
http://dx.doi.org/10.2139/ssrn.4031275

	Introduction
	Protocol-Agnostic Packet Parsing: Background
	Introduction to Packet Parsing in P4
	Programmable Packet Parsing Overview

	Proposed P4-Programmable Parser
	Software Overview
	Proposed Workflow
	P4 Compiled JSON File
	Hardware Configuration Generation
	Memory Content Generation and Programming

	Hardware Design Overview
	Limitations and Evolution of the Base Block
	Overlay Optimization
	Pipeline Optimization

	Experimental Results
	Base Block Design Performance
	Pipeline Design Performance

	Conclusions
	References

