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An implicit large-eddy simulation perspective on the flow over periodic hills
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A B S T R A C T

The periodic hills simulation case is a well-established benchmark for computational fluid dynamics solvers
due to its complex features derived from the separation of a turbulent flow from a curved surface. We study the
case with the open-source implicit large-eddy simulation (ILES) software Lethe. Lethe solves the incompressible
Navier–Stokes equations by applying a stabilized continuous finite element discretization. The results are
validated by comparison to experimental and computational data available in the literature for Re = 5600.
We study the effect of the time step, averaging time, and global mesh refinement. The ILES approach shows
good accuracy for average velocities and Reynolds stresses using less degrees of freedom than the reference
numerical solution. The time step has a greater effect on the accuracy when using coarser meshes, while for
fine meshes the results are rapidly time-step independent when using an implicit time-stepping approach. A
good prediction of the reattachment point is obtained with several meshes and this value approaches the
experimental benchmark value as the mesh is refined. We also run simulations at Reynolds equal to 10 600
and 37 000 and observe promising results for the ILES approach.
1. Introduction

The phenomenon of turbulent separation from a curved surface
occurs in a large variety of engineering problems, such as flow over the
blades of a turbine, past an obstruction in a pipe, and near an impeller
in a mixing tank. Therefore, it is essential that a method capable of
simulating turbulent flows is able to capture this phenomenon and
the resulting flow characteristics. The periodic hills is an established
simulation benchmark for flow separation [1]. In this case, a well-
defined flow passes over a series of hills which repeat along a channel
in a periodic fashion. As the flow passes over a hill, there is a pressure-
induced separation from the curved surface. It then recirculates on the
leeward face of the hill and reattaches at the base of the channel before
accelerating up and over the next hill. This case includes complex flow
features such as the generation of an unsteady shear layer, recircula-
tion, strong pressure gradients, attached and detached boundary layers,
and turbulence recycling due to the periodicity assumption [2].

Over the past decade, the main research focus around the periodic
hills simulation case has been on developing better wall functions
and subgrid-scale models for explicit Large-Eddy Simulations (LES)
(e.g., [3–5]), with a few studies using implicit LES (ILES) [5–10]. In
the latter studies, only two use the Finite Element Method (FEM): Krank
et al. [10] with high-order discontinuous FEM and Wang et al. [5] with
hp-spectral-FEM. In both LES and ILES approaches there is numerical
dissipation, which is not the case in Direct Numerical Simulations

∗ Corresponding author.
E-mail address: bruno.blais@polymtl.ca (B. Blais).

(DNS), where all the scales are fully resolved. The main difference
between LES and ILES is that in the latter, often referred to in the
literature as under resolved DNS, there is no subgrid-scale model.
Instead, the refinement of the mesh determines the length scales that
are resolved. In general, the mesh is finer in areas of interest or where
large flow variation occurs (particularly in near-wall regions), so that
the smaller eddies can also be resolved. In stabilized approaches, if
the cell size is not small enough to resolve all the eddies up to the
scale where there is viscous dissipation, which is usually the case,
additional dissipation is included numerically according to what is
called a stabilization term that comprises a stabilization parameter and
the strong residual of the momentum equation.

The aim of this study is two-fold: the first is to demonstrate how
accurate results for the periodic hills case can be obtained using less
degrees of freedom than a traditional explicit LES approach when using
an ILES approach with a stabilized FEM discretization for different
Reynolds numbers. This is achieved by comparing the simulation re-
sults with two previous studies: an experimental study by Rapp [11]
and a computational finite-volume explicit LES completed by Breuer
et al. [12]. The second aim and main contribution is to investigate the
effect of numerical parameters, such as time step, overall simulation
time for averaging of flow properties, and mesh refinement, on the
periodic hills simulation. The solver used in this study is implemented
in the open-source multiphase flow simulation software Lethe [13],
a stabilized continuous Galerkin FEM solver which uses the deal.II
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Fig. 1. An instantaneous snapshot of the turbulent flow over periodic hills as generated by Lethe after 800 s of simulation run time. The recirculation zone and turbulence shed
from the shear layer can clearly be seen. The black lines represent streamlines of the time-averaged flow.
Library [14,15]. This is the first work in the literature that studies
closely the effect of such parameters when using a stabilized FEM
approach and it highlights the strengths of stabilized methods for the
modeling of these kind of turbulent flows when using an implicit
time-stepping scheme.

The remainder of this work is organized as follows. Section 2
introduces the periodic hills case in detail and summarizes the previous
studies available in the literature, and Section 3 presents the stabilized
formulation, simulation parameters and benchmark data. In Section 4
the results of all simulations are presented and analyzed. Finally,
Section 5 summarizes our conclusions.

2. Periodic hills case

As the flow passes over the hill, it is subjected to the effects of both
the curvature of the hill and the pressure gradient. The adverse pressure
gradient on the leeward side of the hill and resulting deceleration of
the flow causes the boundary layer to separate from the curved hill
surface. The flow then recirculates on the leeward side of the hill and
reattaches in the base of the channel before the next hill. There is a
short distance remaining before the subsequent hill which allows the
boundary layer to recover. The flow then accelerates up and over the
second hill, and the flow pattern repeats in a periodic manner. Fig. 1
depicts an instantaneous snapshot of the flow over periodic hills.

2.1. Geometry

For a couple of decades, many experimental and computational
studies have been completed over the same generalized geometry,
which was first introduced by Mellen et al. [16] (for more information
on this, a history of the periodic hills case is well surmised by Rapp
et al. [17] and more recently by Wang et al. [5]). The initial geometry
was improved over the years to ensure that the periodic hills case could
be used as a benchmark for wall modeling, subgrid-scale modeling and
grid parameters [12]. For example, the distance between the hills was
increased to have a larger reattachment zone, and the side walls were
eliminated to remove the spanwise effects on the flow. This means that
there are now many studies, both experimental and computational, that
can be used as benchmarks for the periodic hills case and confirm that
the case has a well-defined configuration [11,12,18,19]. Since most
cases use the same geometry, it was also logical for our case to use
this geometry (see Fig. 2), allowing comparison of the simulation with
both experimental and simulation data.

The shape of the hills is described using 6 polynomials, each defined
for a sub-domain of the 𝑥 domain [1] (the polynomials can be found
in Appendix A). The top of the first hill is located at 𝑥∕ℎ = 0 with an
elevation of 𝑦(𝑥) = ℎ; 𝑦(𝑥) reaches a minimal value of 0 at 𝑥∕ℎ = 1.929.
2 
Fig. 2. Geometry of the periodic hills test case, where 𝐿𝑥 = 9ℎ, 𝐿𝑦 = 3.035ℎ and
𝐿𝑧 = 4.5ℎ, and ℎ is the maximum height of the hill.
Source: Adapted from [1].

The geometry is flat in the range 𝑥 ∈ [1.929; 7.071], with the geometry
mirrored at 𝑥∕ℎ = 4.5 (meaning the second hill has a windward face
equal and opposite to the leeward face of the first hill). The gap
between hills is sufficiently sized to allow the flow to reattach between
hills and give some distance for recovery of the boundary layer after
reattachment. Therefore, the presence of the second hill does not affect
the point of reattachment.

The height and width of the channel are specified as to reduce
the computational power and memory required and allow sufficient
resolution in both directions. The spanwise domain of 𝐿𝑧 = 4.5ℎ
allows the side wall effects to be ignored and the spanwise fluctua-
tions to be completely resolved excluding the largest eddies [11,16,
18]. Flow characteristics which are half a channel width apart are
uncorrelated [5].

2.2. Boundary conditions

The top and bottom walls use no-slip boundary conditions, while the
boundary conditions at the start (𝑥 = 0) and the end of the geometry
(𝑥 = 𝐿𝑥) are periodic. This allows the flow regime to achieve periodicity
after several flow throughs, as per the definition of the test case, and
removes the complication of specifying inlet and outlet conditions. The
side walls are considered to have periodic boundary conditions, which
allows the model to represent the bulk flow of the channel [1].

It is worth noting that while the velocity components are explicitly
periodic at the streamwise boundaries, the pressure is not. The pressure
is comprised of a linear force component and a non-linear pressure
component:

𝑝total(𝒙, 𝑡) = 𝑝force(𝑡) + 𝑝dynamic(𝒙, 𝑡) = 𝛽(𝑡)𝑥 + 𝑝(𝒙, 𝑡) (1)

where 𝛽 is a spatially independent pressure gradient term and 𝑝 is the
dynamic pressure resulting from the flow regime. The value of 𝛽 is
dynamically adapted over time to ensure that the specified volumetric
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flow rate remains constant as the flow develops, and it is included in
the momentum equation as a source term. 𝛽 is calculated following the
procedure of Benocci et al. [20] and Wang [21]:

𝛽𝑛+1 = 𝛽𝑛 − 𝛼
𝛥𝑡

(

𝑈
0
− 2𝑈

𝑛
+ 𝑈

𝑛−1)
(2)

where, 𝛼 is a relaxation coefficient to control the convergence of speed,
𝑈 is the average velocity at the inlet and 𝛥𝑡 is the time step.

2.3. Interesting features

Several features of interest have been identified in the flow pattern
at varying Reynolds numbers. The Reynolds number for this flow
configuration is given by:

Re =
𝑢𝐵ℎ
𝜈

(3)

𝑢𝐵 = 1
2.035ℎ ∫

3.035ℎ

ℎ
𝑢(𝑦)d𝑦 (4)

where 𝑢𝐵 is the bulk velocity, 𝜈 the kinematic viscosity and 𝑢(𝑦) the
streamwise velocity profile at 𝑥∕ℎ = 0. Periodic hills simulations
have been carried out at Reynolds numbers up to 37 000 [4,22–24].
Most of the recent LES/DNS periodic hills studies use Re = 10 595
(e.g., [2,5,10,12,24,25]). The flow regime is still relevant for lower
Reynolds numbers however, with the relevant features being observed
at Re = 5600, not to mention the plentiful experimental and numerical
data available for this specific case summarized in Section 2.4. Conse-
quently, this Reynolds number is used for the core of this study, while
the higher Reynolds numbers are only investigated shortly to have a
complete view of the capabilities of the ILES approach.

One main feature which has a large impact on the overall flow pat-
tern is the point of separation. The point of separation from smoothly
contoured walls is affected greatly by the properties of the flow and the
environment, including pressure gradient, wall roughness, turbulence
in the shear layer and transport of downstream effects [9,17]. The point
of separation has an effect on the length and height of the recirculation
bubble, and hence on the reattachment point. As Re increases, the recir-
culation zone flattens and the reattachment point moves upstream [17].
A variation in the separation point is amongst several factors that affect
the development of the flow regime in the leeward side of the hill, and
so it leads to a difference in reattachment point [1]. Indeed, for the
periodic hills case, it has been shown that a 1% change in separation
point results in a 7% change in reattachment point [18].

The accuracy of the reattachment point is a good indicator of
the accuracy of the simulation at the near-wall region. However, the
turbulent and unsteady nature of the flow leads to a low frequency
oscillation of the reattachment point, making it difficult to accurately
determine [17]. It is usually obtained as the location on the channel
flow where 𝑢 changes direction (the flow stops reversing within the
recirculation bubble and reattaches, flowing forward) [11], or the
location on the channel floor where the wall shear stress is zero [6].

Large eddies originate from the separated shear layer and are ap-
parent as large longitudinal rolls on the windward side of the second
hill [22]. These are due to the Kelvin–Helmholtz instabilities; the
difference in shear stress through the fluid lead to a rotational effect
and result in vortex rolls. These elongated vortices are often less than ℎ
in diameter, but being able to model these large 3D structures indicates
the need to have sufficient spanwise resolution in a simulation.

Fluctuations are observed in the 𝑧 direction on the windward side
of the second hill. This is attributed to the ‘‘splattering’’ effect. Ed-
dies, including the larger Kelvin–Helmholtz eddies, are transported by
convection towards the second hill. These eddies are compressed by
the presence of the second hill, and as they can no longer continue
motion in the 𝑥 direction, they ‘‘splatter’’ outwards. This is much more
noticeable in the 𝑧 direction than in the 𝑦 direction as the bulk flow
at this location has a significant 𝑦-component as it accelerates up and
over the second hill [18].
3 
A small recirculation has also been identified at the foot of the
second hill, at around 𝑥∕ℎ = 7. As the flow travels over the second
hill, the flow accelerates and shear stress increases rapidly. Flow at
the base of the second hill decelerates and can reverse, leading to a
separation of the boundary layer and secondary vortices [18]. However,
this separation is strongly dependent on the flow regime before the
second hill and transportation of eddies. Since this varies over time,
this recirculation is hardly visible in the averaged flow field [12].

Another potential small recirculation can be observed on the crest of
the hill. The sudden increase of wall shear stress as the flow accelerates
over the second hill is countered by a change from a favorable to an
adverse pressure gradient at approximately 𝑥∕ℎ = 8.6, dropping the
shear stress and decelerating the flow. This deceleration can lead to a
small flat recirculation zone (only found in numerical simulations at
Re > 10 600, e.g., [12,26]). Hence, it is not expected to be observed
in the Lethe simulations at Re = 5600. For a more detailed review of
the flow features which arise in the periodic hills simulation case, we
refer the reader to dedicated previous studies such as the articles by
Fröhlich [18] or by Gloerfelt et al. [19].

2.4. Previous studies of the periodic hills simulation case

Table 1 describes the type and resolution of meshes used in previous
periodic hills simulations at Re = 5600, and the resulting reattach-
ment points obtained, to give an indicator of the near-wall resolution.
Similarly, Tables 2 and 3 contain the information for studies using
Re = 10 600 and Re = 37 000, respectively. Table 1 shows that the
mesh size varies dramatically across studies of periodic hills at Re =
600. Meshes used tend to vary from 12.4 million cells up to 218
illion cells. The spacing and number of grid points is important to

esolve features within the flow completely and accurately. The finer
he mesh, the closer to DNS the simulation becomes, and the greater
he computational expense. Several studies do compare mesh size and
hen proceed with the most accurate mesh for the least computational
xpense [10,22].

The majority of previous periodic hills simulations do not discuss or
ven state the time averaging or time stepping aspects of the simula-
ions, excluding whether to consider if the CFL number is sufficiently
ow (an important consideration for stability in explicit time-stepping
ethods). If they do state the averaging time and time step, often these

re extremely large and small respectively. However, an overly large
veraging time or overly small time step may result in a simulation
unning for much longer and being much more computationally costly
han necessary. Additionally, due to the transient and turbulent nature
f the simulation, it was theorized that these two parameters would
ave an effect on the results produced. Therefore, the time after which
he average was taken and the time step used in the simulation were
eemed to be two parameters worthy of further investigation.

To the authors’ knowledge, the only two FEM ILES studies that study
ome of these parameters for the periodic hills case are by Krank et al.
nd Wang et al. [5,10]. The time is considered by the former, who look
t the time taken for averages to converge for different DNS and under
esolved DNS simulations with both Re = 5600 and Re = 10 600. They

also consider the convergence using h/p refinement for a discontinuous
Galerkin ILES approach, while the latter look at the ILES requirements
only for Re = 10 600, but mainly focus on the grid requirements and
order of the elements, and do not consider the effect of time at all.

In summary, the majority of previous studies of the periodic hills
simulation case have focused on the physical processes controlling the
flow regime, or solely have demonstrated the ability of a CFD code
to accurately model the simulation case, rather than focused on the
parameters of the simulation itself. They hence ran the simulation case
at the smallest time step and finest grid that is computationally feasible
for the longest time.

Optimization of the parameters for the flow regime has barely
been focused on at all; using parameters which maintain accuracy of
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Table 1
Mesh type and resolutions used in previous studies with Re = 5600.

Code Type Spatial method Number of cells DoFs Mesh type Reattachment
point

Averaging time
[flows through]

Time step [s] Author

LESOCC Case 7 LES FVM 12.4M – Curvilinear 5.09 145 0.002 Breuer et al. [12]
MGLET Case 8 DNS FVM 218M – Cartesian 5.14 38 0.001 Breuer et al. [12]
URDNS 5600 URDNS DG-FEM (𝑘 = 6) 65K 22.5M Curvilinear 4.82 ± 0.09 61 Dynamic Krank et al. [10]
DNS 5600 DNS FEM (𝑘 = 7) 65K 33.6M Curvilinear 5.04 ± 0.09 61 Dynamic Krank et al. [10]
Incompact3d DNS FD 37.8M – Cartesian ∼4.70 150 0.0005 Xiao et al. [27]

Note: A dash (–) is placed where the information was not explicitly reported in the respective reference.
Table 2
Mesh type and resolutions used in previous studies with Re = 10 600.

Name Type Spatial
method

Number of
cells

DoFs Mesh type Reattachment
point

Averaging time
[flows through]

Time step [s] Author

LESOCC LES FVM
(cell-
centered)

4.7M – Curvilinear 4.56 55 0.002 Fröhlich et al. [18]

STREAMLES LES FVM
(cell-
centered)

4.7M – Curvilinear 4.72 55 0.001 Fröhlich et al. [18]

ALDM ILES FVM
(staggered)

4.5M – Cartesian 4.3 60 – Hickel et al. [6]

LESOCC Case 9 LES FVM 12.4M – Curvilinear 4.69 142 0.0018 Breuer et al. [12]
WMLES_C ILES FVM 200K – Cartesian – 90 Dynamic Z.L. Chen et al. [7]
WMLES_F ILES FVM 900K – Cartesian – 40 Dynamic Z.L. Chen et al. [7]
MDCD/SLAU ILES FVM 900K to

6.9M
– Curvilinear – 20 0.01 Li et al. [8]

High order impact LES ILES FVM 5.4M and
14.3M

– Curvilinear 4.2 and 4.4
3.75 and 4.4

– – Balakumar et al. [9]

DRP11 LES FD 4.2M
33.5M

– Curvilinear – 80 – Gloerfelt et al. [19]

No-model and WALE LES DG-FEM
(k = 3)

65K 4.19M Curvilinear 3.9 – 0.0001 De La Llave Plata et al. [24]

URDNS 10600 URDNS DG-FEM
(k = 5)

524K 113M Curvilinear 4.57 ± 0.06 61 Dynamic Krank et al. [10]

DNS 10600 DNS FEM
(k = 6)

524K 180M Curvilinear 4.51 ± 0.06 61 Dynamic Krank et al. [10]

FD LES FDM 67K, 524K,
4.2M and
33.5M

– Curvilinear – 55 to 80 Explicit Gloerfelt et al. [2]

SEDM-Roe LES DFEM
(k = 4)

72K and
10K

9M and
1.3M

Curvilinear 4.37 and
4.18

64 and 96 Explicit Lodato et al. [25]

SEDM-Aufs LES DFEM
(k = 4)

72K and
10K

9M and
1.3M

Curvilinear 4.21 and
4.43

64 and 96 Explicit Lodato et al. [25]

SEDM LES DFEM
(k = 6)

72K 24.7M Curvilinear – 23 Explicit Lodato et al. [25]

Nektar++ ILES hp-FEM
(k = 4,7)

246K, 500K – Curvilinear – 140 0.001 Wang et al. [5]

Note: A dash (–) is placed where the information was not explicitly reported in the respective reference.
Table 3
Mesh type and resolutions used in previous studies with Re = 37 000.

Name Type Spatial method Number of
cells

DoFs Mesh type Reattachment
point

Averaging time
[flows through]

Time step [s] Author

HHTBLEC
HHTBLEF

ILES FVM 200K and
350K

12.4M – 3.41 and
3.80

90 and 40 – Z. Chen [28]

PITM Hybrid
RANS
/LES

FVM 240K, 480K,
480K and
960K

– Curvilinear 4.30, 4.26
3.54 and
3.68

– Explicit Chaouat et al. [22]

LES LES FVM 500K, 5M
and 20M

– Curvilinear 3.5, 3.65
and 3.65

140 Explicit Mokhtarpoor et al. [23]

DLUM RANS/LES FVM 500K – Curvilinear 3.8 140 Explicit Mokhtarpoor et al. [23]
WALE LES DG-FEM (k = 3) 65K 4.19M Curvilinear 3.2 – Explicit De La Llave Plata et al. [24]

Note: A dash (–) is placed where the information was not explicitly reported in the respective reference.
the simulation while reducing computational expense are important
for feasible simulations, particularly for application of the model to
industry [29]. Therefore, the effect of the numerical parameters must
be understood and so the effect of time step, averaging time and mesh

resolution, are investigated within this work.

4 
3. Simulation setup

All simulations in this work were completed using the open-source
software Lethe [13]. All relevant code required to run the simula-

tions in this report can be found in the public Github repository
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for Lethe (https://github.com/chaos-polymtl/lethe). The code specific
to post-processing the results obtained from the periodic hills sim-
ulations is available in the periodic hills folder within the Lethe-
utils Github repository (https://github.com/chaos-polymtl/lethe-utils.
git). Lethe depends on the deal.II library v9.5.0 with Trilinos, p4est,
ParMetis, and MPI enabled [14,15]. In this study, the supercomputers
Beluga and Niagara of the Digital Research Alliance of Canada were
used.

3.1. Governing equations and numerical model

Lethe solves the incompressible Navier–Stokes equations:

∇ ⋅ 𝒖 = 0 (5)
𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇) 𝒖 = −∇𝑝∗ + ∇ ⋅ 𝝉 + 𝒇 (6)

with

𝝉 = 𝜈
(

(∇𝒖) + (∇𝒖)𝑇
)

(7)

where 𝒖 is the velocity vector, 𝑝∗ = 𝑝
𝜌 with 𝑝 the pressure and 𝜌 the

density, 𝝉 the deviatoric stress tensor, 𝜈 the kinematic viscosity and
𝒇 a body acceleration. Being non-linear partial differential equations,
they must be discretized in space and time in order to approximate a
solution. For this a continuous Galerkin Finite-Element formulation is
used along with a SUPG (Streamline-Upwind/Petrov–Galerkin)/PSPG
(Pressure-Stabilizing/ Petrov–Galerkin) stabilization approach. This al-
lows the use of equal-order finite elements for the pressure and ve-
locity components and avoids numerical oscillations for advection-
dominated problems [13,30,31]. The following weak formulation for
the Navier–Stokes equations is obtained:

∫𝛺
∇ ⋅ 𝒖𝑞𝑑𝛺 +

∑

𝐾
∫𝛺𝑘

( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 + ∇𝑝∗ − ∇ ⋅ 𝝉 − 𝒇
)

⋅
(

𝜏𝑢∇𝑞
)

𝑑𝛺𝑘 = 0

(8)

∫𝛺

( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 − 𝒇
)

⋅ 𝒗𝑑𝛺 + ∫𝛺
𝝉 ∶ ∇𝒗𝑑𝛺 − ∫𝛺

𝑝∗∇ ⋅ 𝒗𝑑𝛺

+
∑

𝐾
∫𝛺𝑘

( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 + ∇𝑝∗ − ∇ ⋅ 𝝉 − 𝒇
)

⋅
(

𝜏𝑢𝒖 ⋅ ∇𝒗
)

𝑑𝛺𝑘 = 0 (9)

where 𝒗 and 𝑞 are the test functions for velocity and pressure, respec-
tively, and 𝐾 is the total number of elements. Since the problem is
transient, the stabilization parameter 𝜏𝑢 takes the following form:

𝜏𝑢 =
⎡

⎢

⎢

⎣

( 1
𝛥𝑡

)2
+
(

2‖𝒖‖
ℎconv

)2
+ 9

(

4𝜈
ℎ2dif f

)2
⎤

⎥

⎥

⎦

−1∕2

(10)

where 𝛥𝑡 is the time step, ℎconv and ℎdif f are the size of the element
related to the convective transport and diffusion mechanism, respec-
tively [30,32]. In Lethe, both element sizes (ℎconv and ℎdif f ) are set
to the diameter of a sphere of a volume equivalent to that of the
cell [13,31,33]. The full definition of the methods and demonstration
of the order of accuracy of this CFD solver are detailed in a separate
publication [13]. For the simulations in this study, Newton’s method
is used to solve implicitly the non-linear problem. Each linear system
of equations is solved with an ILU preconditioned GMRES solver. A
second-order backward difference implicit scheme (BDF2) is used for
time stepping [34].

3.2. Simulation parameters and mesh

The flow geometry is used as described in Section 2.1 and the
boundary conditions as specified in Section 2.2. The height of the
hill (ℎ) is set equal to 1 for simplicity. Likewise, the volumetric
flow rate and kinematic viscosity are set to be 9.1575m3 s−1 and
1.785 71 × 10−4 m2 s−1 respectively, so that the bulk velocity is 𝑢𝐵 =
1m s−1, and a Reynolds number of 5600 can be maintained. The kine-
matic viscosity is set to 9.433 96 × 10−5 m2 s−1 for a Reynolds number of
5 
Fig. 3. Example of the curvilinear mesh used in Lethe. This mesh contains only 4K
cells for the purpose of visualization. However, the coarsest mesh used in the results
section contains 120K cells.

10 600 and to 2.7027 × 10−5 m2 s−1 for a Reynolds number of 37 000. For
all simulations, first-degree Lagrange elements (𝑄1) are used for both
pressure and velocity.

The elements of the mesh are isoparametric hexahedra and are
arranged on a curvilinear mesh (see Fig. 3). The mesh used for all
simulations is a static, uniformly refined mesh. In the 𝑥 and 𝑧 directions,
the elements are of equal width across the domain. In the 𝑦 direction,
the spacing of the grid points can be varied, allowing the mesh to
become finer as the elements approach the wall. For all meshes used in
this study, the ratio between the longest to the shortest dimensions of
a cell located in the middle of the geometry never exceeds a value of
two.

The quality of the grid is as important as the number of grid points
in order to accurately locate features of interest and reduce numerical
errors. The resolution of the mesh in the near-wall region is evaluated
using the dimensionless distance from the wall 𝛥𝑦+ which gives an
indication of how fine the mesh is in the near-wall region:

𝛥𝑦+ =
𝑦𝑐𝑐𝑢𝜏
𝜈

(11)

where 𝑦𝑐𝑐 is the half of distance from the wall to the wall-nearest grid
point, 𝜈 is the kinematic viscosity and 𝑢𝜏 is the friction velocity given
by:

𝑢𝜏 =
√

𝜏𝑤
𝜌

(12)

where 𝜏𝑤 corresponds to the wall-shear stress and 𝜌 to the density. The
spanwise and lengthwise cell lengths 𝛥𝑥+ and 𝛥𝑧+ are also important
for resolving near the wall and can be calculated in the same fashion
by replacing 𝑦𝑐𝑐 with the appropriate coordinate. The average and
maximum values for 𝛥𝑥+, 𝛥𝑦+ and 𝛥𝑧+ over 𝑥∕ℎ for all meshes used
in this study, are reported in Appendix B.

Apart from the 𝑦+ criteria, that is in fact commonly used in the
LES and RANS domains, no other criteria in the literature of stabilized
methods were found to assess the quality of the mesh a posteriori.
According to the literature, simulations of attached boundary layers
are not precise for traditional LES approaches if the nearest computed
values are not located within the viscous sub-layer (𝛥𝑦+ < 5) [35]. In
the periodic hills literature, the recommended ranges for wall-resolved
LES simulations are defined as: 𝛥𝑥+ ≈ 50–100, 𝛥𝑦+ ≈ 1 and 𝛥𝑧+ ≈
15–30 [2,18]. In this study, none of the meshes have coordinate reso-
lutions within these ranges. In particular, the average values for 𝛥𝑥+

and 𝛥𝑧+ always have significantly higher resolution. In a publication
by Krank et al. [10], where a DNS simulation was performed, a value
of 𝛥𝑦+𝑚𝑎𝑥 < 0.86 and 𝛥𝑥+𝑚𝑎𝑥 = 𝛥𝑧+𝑚𝑎𝑥 = 7.2 was reported. This indicates
that the mesh resolutions used in this study are, in fact, in between DNS
and wall-resolved LES, which is exactly the definition of implicit LES
when it comes to mesh resolution.

https://github.com/chaos-polymtl/lethe
https://github.com/chaos-polymtl/lethe-utils.git
https://github.com/chaos-polymtl/lethe-utils.git
https://github.com/chaos-polymtl/lethe-utils.git
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Fig. 4. Average velocity in the 𝑥 direction throughout the geometry at Re = 5600, compared against the benchmarks. The profiles are scaled by a factor of 0.8 for ease of
visualization.
3.3. Comparison data

In order to verify the accuracy, stability and reliability of this
ILES approach in the periodic hills case, the results are compared to
established test data from both experiments and other CFD simulation.
Experimental data is obtained from Rapp [11], and results from the
LESOCC CFD code performed by Breuer et al. [12] provide benchmark
computational data. Since data is provided for cross-section at varying
𝑥∕ℎ values in both benchmarks, the results from the Lethe simulation
must also be extracted at these points to allow comparison of the data.

3.3.1. Experimental data
A series of experiments ran by Rapp [11] provide an experimental

benchmark case. Not all benchmark data can be obtained from a
physical experiment — notably the data obtained by Rapp does not
contain values of the turbulent kinetic energy or the spanwise Reynolds
normal stresses. The experimental set up involved a series of 10 hills
with the curvature and hill spacing described in Section 2.1 with hill
height ℎ = 50mm. The channel height was kept the same, but the
channel span was increased to 18ℎ in order to sufficiently neglect side

all effects.
Results were collected using Particle Image Velocimetry (PIV) and

erified against Laser Doppler Anemometry (LDA) measurements.
iezoelectric pressure probes were used to allow non-intrusive pressure
easurement. Results were corrected for error and signal noise. These

onscientious, well-considered measurement techniques used give high
onfidence to the results. The reattachment point was determined at
∕ℎ = 4.83.

Periodicity of the flow was confirmed by comparing flow between
ills 6 and 7 and hills 7 and 8, and the reference data taken from
etween hills 7 and 8. While it is confirmed that the flow can be
ssumed to be homogeneous (statistically 2D), the periodicity at Re =

5600 can only be proven to a certain extent due to limitations inherent
to the measurement equipment. However, Rapp [11] concluded that
the data produced is precise enough to be used to develop better LES
models.

Rapp also collected data for higher Reynolds numbers (Re = 10 600
and Re = 37 000) using the same set up and experimental techniques.
This data is chosen for comparison with our results obtained using the
higher Reynolds numbers in Section 4.4. Measuring properties near to
the wall is specially challenging in these cases as the boundary layer
thickness is very small, however, the periodicity of the flow could be
6 
proven completely in both cases [11]. The experimental reattachment
point was determined to be equal to 𝑥∕ℎ = 4.21 and to 𝑥∕ℎ = 3.76 for
Re = 10 600 and Re = 37 000, respectively.

3.3.2. Computational data
An established benchmark test case for computational periodic hills

simulations was created by Breuer et al. [12] using the FVM code
LESOCC. LESOCC solves the incompressible Navier–Stokes equations
using the dynamic Smagorinsky model as sub-grid scale model. A range
of simulations were performed by Breuer et al.; the first results of
interest arise from Case 7, which was performed at Re = 5600 using
a LES approach. This setup uses around 12.4 million active cells (13.1
million grid points) in the mesh with a time step of 0.002 s and the
average taken over a time period of 1300 s.

The reattachment point for the benchmark case is 5.09, which is
longer than the value of 4.83 given experimentally by Rapp. Since the
reattachment point describes the overall performance of a simulation
in one number [10], these values can be used as indicators for the
method’s performance. Breuer et al. note that the pressure distribution
in the computational benchmark data is slightly under-predicted due
to the SGS model, leading to a delay in the separation point and hence
to an over-prediction of the reattachment point. In general, previous
implicit LES studies appear to give better reattachment point agreement
to the Rapp data than to the Breuer data (e.g., [5]), but in the bulk
of the flow the profiles are closer to those of Breuer data (e.g., [10]).
Therefore, while both benchmarks do not give precise values, they
give a clear indication of the region the reattachment point should fall
within.

The second results of interest are known as LESOCC Case 9 and
correspond to the Reynolds number of Re = 10 600. The grid used for
this case was the same as in the previously explained simulation, but a
time step of 0.0018 s and an average taken over a time period of 1300 s
were used. The numerical reattachment value was determined to be
𝑥∕ℎ = 4.69 in this case.

4. Results and discussion

A baseline simulation is run to validate the results against the
computational and experimental data sets presented in Section 3.3.
Then, different meshes are considered when investigating the effects
of time step and averaging time, followed by some simulations using
higher Reynolds numbers. In Table 4, a summary of the different
simulations and their parameters is presented. The computational times

of all simulations in core hours are presented in Appendix C.
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Fig. 5. Reynolds normal stress in the 𝑥 direction throughout the geometry at Re = 5600, compared against the benchmarks. The profiles are scaled by a factor of 5 for ease of
visualization.
Fig. 6. Average velocity in the 𝑥 direction at different points of the geometry with Re = 5600, compared against the benchmarks.
4.1. Baseline

The baseline simulation ensures that the results accurately repro-
duce the physical phenomenon that occurs in the periodic hills case.
It uses the coarse, regular, and fine mesh, a time step of 0.1 s, and the
7 
average is taken between 207 s and 1000 s (for an averaging period of
793 s or 88 flow throughs). This averaging period is larger than most of
the simulations shown in Table 1 and is studied in detail in Section 4.3.

Considering the average velocity profile in the 𝑥 direction (Fig. 4),
there is a good agreement of the Lethe data with both benchmarks
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Fig. 7. Reynolds normal stress in the 𝑥 direction at different points of the geometry with Re = 5600, compared against the benchmarks.
Table 4
Summary of the simulations performed and respective parameters.

Case Mesh Re Time step [s] Time average [s]

Baseline Coarse 5600 0.1 1000
Regular
Fine

Time step Coarse 5600 0.0125, 0.025, 1000
Regular 0.05, 0.1
Fine

Time averaging Coarse 5600 0.025 500 to
Regular 1100
Fine

High Reynolds Very coarse 10 600 0.025 800
Coarse 37 000

numbers Intermediate

Note: (cells, DoFs) of each mesh: very coarse (∼120K, 500K), coarse (∼250K, 1.1M),
intermediate (∼500K, 2.4M), regular (∼1M, 4.5M) and fine (∼4M, 16M).

in the bulk of flow. At the upper and lower walls, the Lethe data
exceeds the benchmarks but retains shape at all 𝑥 values similarly to
the LESOCC simulation. The 𝑦 velocity and Reynolds stresses also agree
well with the benchmark data; for the Reynolds normal stress in 𝑥
direction see Fig. 5. The Reynolds stresses are more sensitive than the
average velocity, but overall, there is a good accuracy of the prediction
with minimum discrepancies between the meshes.

The reattachment point was determined to be 4.73 with the coarse
mesh, 4.40 with the regular mesh, and 4.35 with the fine mesh; all
of them shorter than both the Rapp and the Breuer values (4.83 and
5.09 respectively). In the literature, the reattachment point has been
8 
shown to be constantly under-predicted by overly coarse meshes [5],
however, as we are using a stabilized method, in this case other
parameters are playing an important role as well, such as the time
step and the averaging period for the estimated quantities. Therefore,
these parameters along with the mesh are investigated in the following
sections.

4.2. Time step

To study the effect of the time step in the simulation, four simu-
lations per mesh were completed using Lethe. Again, the coarse, the
regular and the fine meshes were used, and the time steps were defined
by sequentially halving the value of the time step from 𝛥𝑡 = 0.1 s to
𝛥𝑡 = 0.0125 s. We recall that the BDF2 scheme is second-order accurate
in time. Average results were taken again after 1000 s.

The average velocity profiles in 𝑥 are presented in Fig. 6. For all the
meshes, we obtain results that are very similar to the experimental and
numerical benchmarks. The biggest difference can be observed again
in the near-wall region. Looking at the zoom-in plots, it is possible to
observe that, in the case of the coarse mesh, there is a high discrepancy
between the results corresponding to the different time steps. While
for the regular and fine mesh, this difference between the results is
reduced. The stresses demonstrate this trend most significantly (see
Figs. 7 and 8). In the case of the fine mesh, all the time steps with the
exception of the largest one converge towards the numerical solution
of Breuer et al. [12].

These results can be analyzed taking into account the stabilization
term in the FEM formulation, which comprises two components: (i)
the stabilization parameter 𝜏 , which in turn considers the time step
𝑢
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Fig. 8. Reynolds shear stress at different points of the geometry with Re = 5600, compared against the benchmarks.
Table 5
Near-wall parameters and CFL at varying time steps for an averaging time of 1000 s.
The experimental reattachment points are: 4.83 for the experimental benchmark by
Rapp [11] and 5.09 for the numerical benchmark by Breuer et al. [12].

Time step Coarse (250K) Regular (1M) Fine (4M)

RP CFL RP CFL RP CFL

0.1 4.73 ± 0.05 ≈2.2 4.40 ± 0.05 ≈3.2 4.35 ± 0.4 ≈5.1
0.05 4.87 ± 0.05 ≈0.9 4.59 ± 0.05 ≈1.6 4.74 ± 0.4 ≈2.8
0.025 5.07 ± 0.05 ≈0.5 4.80 ± 0.05 ≈0.7 4.83 ± 0.4 ≈1.2
0.0125 5.37 ± 0.06 ≈0.2 4.88 ± 0.05 ≈0.4 4.85 ± 0.4 ≈0.6

ote: RP corresponds to reattachment point.

𝑡 and the cell size ℎ, and (ii) the residual of the strong form of the
omentum equation. In the case of the coarse mesh, as the time step is

educed, so is the dissipation or stabilization, which in general leads to
deterioration of the accuracy in coarse meshes. This phenomenon has
een observed in the literature, e.g., in the articles by Hsu et al. [36],
alderer et al. [37] and Gamnitzer et al. [38]. In the case of the fine
esh, the norm of the strong residual is smaller, which reduces the

ffect of the stabilization, and leads to accurate and similar results for
ll the time steps. For the case where Re = 5600, we observe that using
stabilized formulation along with an implicit scheme allows us to

efine the mesh and use a time step as large as 0.05 without losing
he accuracy of the solution.

Considering the reattachment points in Table 5, it can be seen that
he value of the reattachment point increases as the time step decreases
hen the coarse mesh is used. For the regular mesh, decreasing the time

tep means that the value converges more towards the experimental
alue (4.83) by Rapp [11], as the stabilization is affected by the
9 
refinement of the mesh. Hence the reattachment point becomes more
accurate as the time step decreases. Finally, in the case of the fine mesh,
all the time steps, apart from the coarsest one, obtain a value of the
reattachment point that is nearer to that obtained experimentally.

In this study, we use an implicit time-stepping scheme where the
CFL condition is not necessary, allowing a much greater time step to
be used stability-wise compared to an explicit time-stepping scheme.
For stability with an explicit time-stepping method, a CFL number
less than 0.8 is required in the periodic hills case as reported by
Mokhtarpoor et al. [4], which explains why the time step used is so
small in other studies since they mostly use explicit methods. We report
the CFL number of each simulation in Table 5. It is worth noting that
for the fine mesh, only the smallest time step fulfills the usual CFL
requirement for this case, while all the others do not but still produce
accurate results. This indicates that it is possible to use fine meshes
and large time steps, without affecting the accuracy of the implicit LES
approach. A detailed comparison between explicit and implicit time-
stepping schemes in terms of computational cost of the solution is out
of the scope of this study. However, it is important to keep in mind that
iterations are generally computationally more demanding when using
an implicit scheme.

In conclusion, for coarse meshes, reducing the time step leads to a
reduction of the accuracy of the average velocity and Reynolds stresses,
with a higher impact in the latter for the bulk of the flow. In the case of
fine meshes, a similar accuracy is obtained for all the time steps with
the exception of the coarsest one. This opens up the possibility of using
high CFL values when simulating complex cases.
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Fig. 9. Average velocity in the 𝑥 direction at different points of the geometry with Re = 5600, compared against the benchmarks.
4.3. Time averaging

For the periodic hills simulation, the average velocities and
Reynolds stresses are taken over time. The values used in the averaging
process are taken after the time exceeds 207 s, or after 23 hills have
been passed, and so the flow can be considered as periodic. For the
reference numerical data, the averaging period used was of 145 flow-
through times while in the experimental set up a total of 10 hills were
considered. In previous studies, the averaging time period varied by
approximately one order of magnitude [10], with no clear consistency
on how that time period was decided. In fact, Krank et al. [10] stated
that the averaging period suggested by some studies for this case is of
around 1000 flow-through times, which is very long and not feasible.
Therefore, we decided to study the effect of the time elapsed on the
convergence of the average values. For this purpose, we again used the
coarse, the regular and the fine mesh, and data was extracted at varying
times to see the convergence. The lowest averaging period considered
was of 500 s or 44 flow throughs and the largest averaging period was
1000 s or 88 flow throughs. To have a fair comparison of the effect of
the averaging time for these three meshes, a time step of 𝛥𝑡 = 0.025 s is
chosen due to the observations of the previous section.

According to Figs. 9–11, the results for all the meshes are inde-
pendent of the length of the time-averaging period. The difference
between the results for different time-averaging period is minimal in
all cases. The largest differences can be observed near to the walls
due to the zoom-in plots and it is slightly more evident when taking
a look to the Reynolds stresses. To answer the question of how the
time-averaging affects the prediction of the reattachment point, this
value was extracted at varying averaging times for each mesh and
10 
plotted, as per the method by Krank et al. [10]. This method plots
the reattachment points against the averaging time (in number of flows
through times). The error 𝑒 is evaluated using the following expression
𝑒 = ±𝑐∕

√

𝑇𝑓 , where 𝑐 is a manually defined constant and 𝑇𝑓 is the
number of flows through times. Since the reattachment point oscillates
due to the turbulence, a final reattachment point is set to a value
that the reattachment points extracted tend towards. The constant 𝑐
is then manually adjusted so that the error is as small as possible
with all the extracted reattachment points lying within the error range.
The error bandwidth hence decreases as the averaging time increases.
The reattachment points converge very quickly, with the expected
oscillation at different averaging times being within a very small error
range.

The results in Fig. 12 show that as we refine the mesh, the reattach-
ment points approach the experimental reattachment point value by
Rapp [11]. For this plot, we also added the results for an intermediate
mesh with 500K cells, since it allows us to see that the results are not
monotonically approaching the experimental value as the mesh is re-
fined, which is in agreement with the oscillatory nature of the physical
phenomena. The reattachment point obtained by Breuer et al. [12] is
in the error bandwidth of the reattachment points obtained using the
coarse mesh in this study. In the literature, Krank et al. [10] used this
methodology to compare two configurations: a DNS simulation with
65K cells and 33.6M DoFs and an URDNS simulation with 65K cells
and 22.5M DoFs. For the latter, they observed that the reattachment
point was closer to the experimental value by Rapp et al. [11] but away
from the DNS simulation. This study shows a very clear trend towards
the experimental reattachment point as we increase the mesh resolution
along with a reduction of the error bandwidth. It can also be observed
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Fig. 10. Reynolds normal stress in the 𝑥 direction at different points of the geometry with Re = 5600, compared against the benchmarks.
that again, the bandwidth of all the meshes is reduced significantly after
the averaging for 500 s and 600 s, which reassures that a minimum of
700 s is required to accurately predict specific quantities.

4.4. Higher Reynolds numbers

As mentioned in Section 2.4, results with higher Reynolds numbers
are available in literature, therefore, we tested our ILES method with
SUPG/PSPG stabilization to see how well it can predict important flow
properties at Re = 10 600 and Re = 37 000. For this, three meshes
are considered: very coarse, coarse and intermediate. A time step of
𝛥𝑡 = 0.025 s and a time average of 800 s are used in accordance with
the findings of the previous sections.

The results for Re = 10 600 are compared to the experimental and
computational data by Rapp [11] and Breuer et al. [12], respectively.
In the case of Re = 10 600, a good accuracy of the average velocity in
the 𝑥-direction is obtained for all meshes, with the intermediate mesh
having closer results to the experimental data in the bulk of the flow
and near to the wall (see Fig. 13). The reattachment points obtained for
this case using the different meshes, from very coarse to intermediate,
are 𝑥∕ℎ = 4.54, 4.90 and 4.01. According to the results obtained by
Rapp (𝑥∕ℎ = 4.21), the point of reattachment moves upstream with
increasing Reynolds number as the recirculation zone flattens, which is
what we observe in our results. In addition, the first two values are very
close to the reattachment point obtained by Breuer et al. (𝑥∕ℎ = 4.69).
The prediction of the reattachment point is more sensitive to the time-
averaging period; hence, it is possible that a larger period is required
to obtain more accurate results in the case of this Reynolds number.
For the Reynolds stresses (see Fig. 14) all meshes tend to overpredict
11 
the stresses throughout the channel, again with the intermediate mesh
obtaining closer results to the experimental data.

The results for the case with Re = 37 000 were only compared
with the experimental benchmark, as Breuer et al. did not conduct any
study using LESOCC for this Reynolds number. We see a similar trend
on the estimation of the average velocity and the Reynolds stresses,
however, with a higher discrepancy of the overall results in the bulk of
the flow and near the wall. In Fig. 15, there is an underprediction of
the velocity in the lower region of the channel and an overprediction
on the upper region, with a higher difference near the walls. A higher
difference between the results of the different meshes can be observed
in the results for the Reynolds stresses (see Fig. 16), where they are
all overpredicted, however, the intermediate mesh is the closest one to
the experimental results. As pointed out by Rapp [11], to accurately
predict the high near-wall peak obtained with this Reynolds number is
of utter importance to have a correct prediction of Reynolds stresses at
the windward side of the hill.

The reattachment points obtained in this case were 𝑥∕ℎ = 4.20, 4.09
and 3.49 for the three meshes from very coarse to intermediate. Ex-
perimentally, the reattachment point was determined to be equal to
3.76 [11]. Therefore, refining the mesh seems to help to have a better
resolution of the flow properties allowing the reattachment point to
move upstream, while introducing less dissipation. However, as in the
previous case, further refinement of the mesh might lead to less time-
dependent results and better accuracy of the predictions. This section
demonstrates the capabilities of this ILES approach to simulate higher
Reynolds numbers for turbulent flows with complex characteristics and
the need of understanding the influence of all the parameters involved
in the FEM formulation to be able to improve the predictions and
understand phenomena that are not easy to observe experimentally.
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Fig. 11. Reynolds shear stress at different points of the geometry with Re = 5600, compared against the benchmarks.
Fig. 12. Reattachment point extracted at different averaging times for the coarse (250K), intermediate (500K), fine (1M) and very fine (4M) meshes, where the dotted line shows
the error in the reattachment point over time.
5. Conclusion

Multiple simulations of the flow over periodic hills at Re = 5600
have been completed using a stabilized finite element ILES approach
implemented in the open-source software Lethe. The use of this numer-
ical method to model this simulation case was validated by comparison
with two previous studies, meeting the first objective of this study.
In general, the quality of the prediction depends on three factors: the
mesh, the time step (along with the type of time-stepping scheme),
and the time averaging period used to obtain the turbulent statistics.
12 
We demonstrated that it is possible to simulate these kinds of flows
using coarse meshes for the prediction of average quantities or specific
values, such as the reattachment points, but special attention needs to
be taken when choosing the time step as it significantly affects the
predictions when using a stabilized approach. When a finer mesh is
used, along with an implicit time-stepping scheme, larger time steps
(higher CFL values) than those typically used in periodic hills studies
with explicit schemes can be used without losing accuracy both in the
bulk of the flow and in the region near to the wall. This does not
necessarily imply that the implicit scheme is computationally more
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Fig. 13. Average velocity in the 𝑥 direction throughout the geometry at Re = 10 600, compared against the benchmarks. The profiles are scaled by a factor of 0.8 for ease of
isualization.
Fig. 14. Reynolds normal stress in the 𝑥 direction throughout the geometry at Re = 10 600, compared against the benchmarks. The profiles are scaled by a factor of 5 for ease of
visualization.
efficient, since it requires the full solution of a non-linear system of
equations.

The results for the reattachment points extracted from different
simulations using different meshes approach the value given by the
experimental benchmark as the mesh is refined. The values for a
1M cells mesh and a 4M mesh are very close, indicating that mesh-
independent results were obtained. The method was also tested for
Re = 10 600 and Re = 37 000 using very coarse meshes. Although
the ILES approach used in this study obtains accurate results for the
velocity for Re = 10 600, the Reynolds stresses are strongly affected near
the separation and post-reattachment zones. The results have greater
discrepancies at Re = 37 000, where significant differences are observed
not only at the wall but also in the bulk of the flow. These results could
be further improved by further reducing the size of the cells.

To conclude, this study not only has provided a greater understand-
ing of how the numerical parameters affect the simulation results for

the periodic hills case, but also shows that ILES methods are able to

13 
provide very good solutions for these types of complex turbulent flows
with coarse and fine meshes that are coarser than the ones used in the
literature. It also highlights the advantages of an implicit time-stepping
scheme over an explicit one in the context of stabilized methods. The
ILES methods are promising for practical simulations as they provide
accuracy, do not require the calibration of a subgrid scale model, and
can reduce the computational effort, in terms of mesh size and degrees
of freedom of the numerical system, in comparison to traditional LES
approaches.
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Appendix A. Geometry of hills

The 6 polynomials used to describe the shape of the hill are:

1. For 𝑥 ∈ [0; 0.3214ℎ]:
𝑦(𝑥) = min(ℎ;ℎ + 0ℎ𝑥 + 2.420ℎ × 10−4𝑥2 − 7.588ℎ × 10−5𝑥3)
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Fig. B.17. Distribution of 𝛥𝑦+ along the lower wall for the different meshes used at
e = 5600. This was calculated for an average time of 800 s and a time step of 0.025.

able B.6
aximum and average 𝛥𝑥+ , 𝛥𝑦+ and 𝛥𝑧+ for the different meshes at Re = 5600. This
as calculated for an average time of 800 s and a time step of 0.025.
Mesh 𝛥𝑥+𝑎𝑣𝑔 𝛥𝑥+𝑚𝑎𝑥 𝛥𝑦+𝑎𝑣𝑔 𝛥𝑦+𝑚𝑎𝑥 𝛥𝑧+𝑎𝑣𝑔 𝛥𝑧+𝑚𝑎𝑥
250K 2.96 8.85 1.66 4.30 4.20 12.52
1M 2.40 7.49 1.16 3.15 2.26 7.06
4M 1.39 4.67 0.61 1.73 1.51 5.06

Fig. B.18. Distribution of 𝛥𝑦+ along the lower wall for the different meshes used at
e = 10 600. This was calculated for an average time of 800 s and a time step of 0.025.

2. For 𝑥 ∈ [0.3214ℎ; 0.5ℎ]:
𝑦(𝑥) = 0.8955ℎ+3.484ℎ×10−2𝑥−3.629ℎ×10−3𝑥2+6.749ℎ×10−5𝑥3

3. For 𝑥 ∈ [0.5ℎ; 0.7143ℎ]:
𝑦(𝑥) = 0.9213ℎ+2.931ℎ×10−2𝑥−3.234ℎ×10−3𝑥2+5.809ℎ×10−5𝑥3

4. For 𝑥 ∈ [0.7143ℎ; 1.071ℎ]:
𝑦(𝑥) = 1.445ℎ−4.927ℎ×10−2𝑥+6.950ℎ×10−4𝑥2 −7.394ℎ×10−6𝑥3

5. For 𝑥 ∈ [1.071ℎ; 1.429ℎ]:
𝑦(𝑥) = 0.6401ℎ+3.123ℎ×10−2𝑥−1.988ℎ×10−3𝑥2+2.242ℎ×10−5𝑥3

6. For 𝑥 ∈ [1.429ℎ; 1.929ℎ]:
𝑦(𝑥) = max(0; 2.0139ℎ−7.180ℎ×10−2𝑥+5.875ℎ×10−4𝑥2+9.553ℎ×
10−7𝑥3)

Appendix B. Mesh resolution

The quality of the meshes used in this study are evaluated in
terms of wall-coordinates 𝛥𝑥+, 𝛥𝑦+ and 𝛥𝑥+. The 𝛥𝑦+ values along 𝑥∕ℎ
are plotted in Figs. B.17–B.19. The average and maximum values are
reported in for all the coordinates are reported in Tables B.6–B.8.
15 
Table B.7
Maximum and average 𝛥𝑥+ , 𝛥𝑦+ and 𝛥𝑧+ for the different meshes at Re = 10 600. This
was calculated for an average time of 800 s and a time step of 0.025.

Mesh 𝛥𝑥+𝑎𝑣𝑔 𝛥𝑥+𝑚𝑎𝑥 𝛥𝑦+𝑎𝑣𝑔 𝛥𝑦+𝑚𝑎𝑥 𝛥𝑧+𝑎𝑣𝑔 𝛥𝑧+𝑚𝑎𝑥
120K 6.83 17.69 3.34 7.46 6.41 16.60
250K 4.37 12.71 2.44 6.18 6.18 17.98
500K 4.84 13.95 1.89 4.73 4.15 11.97

Fig. B.19. Distribution of 𝛥𝑦+ along the lower wall for the different meshes used at
Re = 37 000. This was calculated for an average time of 800 s and a time step of 0.025.

Table B.8
Maximum and average 𝛥𝑥+ , 𝛥𝑦+ and 𝛥𝑧+ for the different meshes at Re = 37 000. This
was calculated for an average time of 800 s and a time step of 0.025.

Mesh 𝛥𝑥+𝑎𝑣𝑔 𝛥𝑥+𝑚𝑎𝑥 𝛥𝑦+𝑎𝑣𝑔 𝛥𝑦+𝑚𝑎𝑥 𝛥𝑧+𝑎𝑣𝑔 𝛥𝑧+𝑚𝑎𝑥
120K 14.46 34.09 7.06 14.38 13.57 31.98
250K 10.21 25.60 5.73 12.46 14.44 36.21
500K 11.11 28.51 4.35 9.67 9.54 24.48

Appendix C. Computational time

The simulations were run using Niagara, a distributed memory
cluster from the Research Alliance of Canada. Niagara consists of 2024
nodes, each with 40 Intel Skylake cores (2.4 GHz) with 202 GB of RAM
per node. The computational times in core hours for all simulations
considered in this study are presented in Table C.9.

Table C.9
Computational times of all simulations performed.

Mesh Time step [s] Time average [s] Time [core hour]

Baseline, time step and time averaging simulations for Re = 5600

Coarse
0.1 1000

3647
Regular 16 800
Fine 116 667

Coarse
0.05 1000

5180
Regular 24 667
Fine 174 000

Coarse
0.025 1000

6933
Regular 36 667
Fine 188 000

Coarse
0.0125 1000

9400
Regular 39 933
Fine 167 333

Simulations for Re = 10 600

Very coarse
0.025 800

3061
Coarse 5493
Intermediate 15 307

(continued on next page)
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Table C.9 (continued).
Simulations for Re = 37 000

Very coarse
0.025 800

3173
Coarse 5440
Intermediate 15 253

Note: (cells, DoFs) of each mesh: very coarse (∼120K, 500K), coarse (∼250K, 1.1M),
intermediate (∼500K, 2.4M), regular (∼1M, 4.5M) and fine (∼4M, 16M).
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