

Titre: Title:	Microstructural and fatigue characterization of 316L stainless steel subjected to flow drilling and tapping: comparison with machined threads. Supplément
Auteurs: Authors:	Mohamed Akram Mechter, Mina Gadour, Léa Romain, Oguzhan Tuysuz, & Myriam Brochu
Date:	2024
Туре:	Article de revue / Article
Référence: Citation:	Mechter, M. A., Gadour, M., Romain, L., Tuysuz, O., & Brochu, M. (2024). Microstructural and fatigue characterization of 316L stainless steel subjected to flow drilling and tapping: comparison with machined threads. Engineering Failure Analysis, 164, 108730 (13 pages). <u>https://doi.org/10.1016/j.engfailanal.2024.108730</u>

Document en libre accès dans PolyPublie Open Access document in PolyPublie

URL de PolyPublie: https://publications.polymtl.ca/59026/

PolyPublie URL:	
Version:	Matériel supplémentaire / Supplementary material Révisé par les pairs / Refereed
Conditions d'utilisation: Terms of Use:	CC BY-NC

Document publié chez l'éditeur officiel Document issued by the official publisher	

Journal Title:	Engineering Failure Analysis (vol. 164)
Maison d'édition: Publisher:	Elsevier
URL officiel: Official URL:	https://doi.org/10.1016/j.engfailanal.2024.108730
Mention légale: Legal notice:	

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

Supplementary Information for: Microstructural and fatigue characterization of 316L stainless steel subjected to flow drilling and tapping: comparison with machined threads.

Mohamed Akram Mechter^{*a*}, Mina Gadour^{*a*}, Léa Romain^{*a*}, Oguzhan Tuysuz^{*a*}, Myriam Brochu^{*a*}

a: Polytechnique Montreal, 2500 Chem. de Polytechnique, Canada, Montréal, QC H3T 1J4 Corresponding author: Mohamed Akram Mechter | mohamed-akram.mechter@polymtl.ca

S1. Hardness Measurements

Figure 1 shows how a specimen is cut to perform hardness measurements on holes 1 and 4 to determine if a series of drilling and tapping operations affects the hardness of the material. Tables 2 and 3 present the raw hardness data for the first and fourth cutting threads respectively. It can be observed that the hardness measured in the first hole is similar to the one in last hole. Tables 4 and 5 present the raw hardness data for the first and the first and fourth flow processed threads. No difference is noted between the first and the last hole.

Figure 1. Cutting samples for hardness measurement from the threaded specimens

	1.A	<u> </u>		1.B		
	Distance from the		_	Distance from the	n the	
	thread root (um)	Hardness HV		thread root (μm)	Hardness HV	
	372 65	190		393,55	187	
	707 56	195		803,31	181	
	191,50	105		1163,41	167	
	11/7,53	1/8		1566,37	166	
	1115,33	174		2044,04	152	
	1356,27	175		2375,92	158	
	1571,08	174		2/92,47	158	
	1809,93	174		3233,38	157	
	2048.78	171		4063 55	103	
	2284.49	169		4005,55	159	
	2207,75	172		4870.00	163	
	2323,60	1/2		5272,96	161	
	2802,95	108		5662,86	165	
	3048,07	170		6081,50	162	
	3282,74	181		6472,44	168	
	3522,64	195		6862,86	161	
	3760.44	181		7265,82	153	
	4039.01	245		7669,83	158	
	2026.64	213		8061,29	159	
	3920,04	227		8465,30	159	
	3922,46	233		8856,76	154	
	4290,40	266		9260,24	162	
	4526,11	304		796.00	165	
	4759,21	333		1098.61	171	
	4866,84	350		1387.63	169	
	9,22	519		9.22	519	
	53 40	294		78.14	291	
	120 55	225		150,00	236	
Close to the surface	120,33	203	Close to the surface	83,9	282	
(measurements using	203,14	239	(measurements using 25 g	178,14	234	
25 g mass)	294,37	243	mass)	280,37	230	
	324,08	239		364,79	222	
	414,53	226		489,27	220	

Table 1. Hardness measurements of conventional specimen, sample 1.A and 1.B

	4.4	A	-	4.B	;
-	Distance from the	Hardness HV		Distance from the	Hardness HV
	233 62	210		230.49	199
	451 56	184		459.41	175
	654.87	174		689.90	166
	894.92	174		914.64	169
	1152 59	187		1180.67	161
	1402.94	164		1416.38	165
	1617 23	165		1664.64	164
	1864 44	167		1910.81	168
	2118 97	169		2163.35	152
	2347 37	170		2390.70	154
	2613.4	166		2646.27	160
	2848 59	169		2892.44	167
	3055.04	105		3131,29	156
	3294 41	186		3386,86	168
	3537 44	210		3636,16	155
	3778 90	210		3887,55	160
	4024.02	263		4148,36	161
	4006.25	265		4392,44	159
	4000,20	207		4650,11	160
	4480.29	318		4941,22	157
	4780.26	345		5181,52	155
	3907.99	247		5424,55	157
	3666.53	232		5730,30	167
	9.22	519		5973,33	168
	62.43	303		6237,27	164
	134.55	291		6463,58	162
Close to the surface	213.74	250		6710,79	160
(measurements usina	295.28	230		6962,18	161
25 a mass)	238.34	230		7210,64	156
5 ,	411 51	232		7470,40	162
	509 55	220		7717,61	159
	505,55	221	-	7981,55	160
				8253,85	161
				8497,93	164
				9,22	519
				67,15	306
			Close to the surface	157,6	245
			(measurements using	197,26	230
			25 a mass)	220,43	226
				315,06	216
				461,26	212
				424,61	206

Table 2 Hardness measurements of conventional specimen, sample 4.A and 4.B

	1.A			1.B	
	Distance from the thread root (µm)	Hardness HV		Distance from the thread root (µm)	Hardness HV
	408,19	246		270,73	281
	796,52	230		602,61	258
	1255,93	211		959,58	243
	1035,37	211		1243.38	267
	1667,25	201		1622 30	241
	2011,68	196		1022,50	271
	2390,6	196		1924,91	222
	2684,85	226		2267,77	185
	3021,96	220		2540,07	192
	3389.38	249		2910,63	182
	3699 31	275		3282,76	178
	4033.80	320		3627,19	191
	- 10.62	759		3980,71	191
	49 74	393		4353,36	181
	102,75	342		4738,55	183
Close to the surface	152,23	303		- 10,62	759
(measurements using	267,28	316		56.15	388
25 g mass)	333,12	294		50,15	500
	407,20	273		143,98	338
	461,52	276	Close to the surface	230,50	342
			(measurements using	276,7	316
			25 g mass)	363,74	291
				443,98	265

494,90

303

Table 3 Hardness measurements of flow processed specimen, sample 1.A and 1.B

	4.A			4.B	
	Distance from the thread root (μm)	^e Hardness HV		Distance from the thread root (µm)	Hardness HV
	311	270		240,42	282
	521	252		511,67	240
	741	250		765,15	251
	845	236		1025,95	242
	1077	229		1285,71	232
	1323	217		1533,97	219
	1572	201		1811,4	209
	1800	196		2076,38	181
	2045	197		2348,68	179
	2349	202		2617,84	182
	2611	201		2879,69	174
	2825	208		3134,22	178
	3077	212		3410,7	180
	3339	236		3680,91	182
	3598	250		3974,12	182
	3863	283		4228,65	173
	4174	325		4498,86	178
	10,62	759		4743,98	181
	55,89	384		10,62	759
	132,72	347		63,22	384
Close to the surface	156,41	330	Close to the surface	153,67	327
(measurements using	232,46	273	(measurements using	239,93	297
25 g mass)	374,21	265	25 g mass)	332,47	291
	452,09	282		, 383,91	265
	102,88	330		465.98	250

Table 4 Hardness measurements of flow processed specimen, sample 4.A and 4.B

S2. Fatigue Tests Raw data

Table 5 shows the raw data from the fatigue tests conducted during this study. It is noted that 6 F specimens were tested with a maximum loading level of 700 N. It should be reminded that the tests were run at a stress ratio of 0.1 and the run-out is set at 10^7 cycles.

Table 5. Fatigue test raw data				
	Maximum	Number of cycle		
Load Max (N)	bending moment (N.m)	С	F	
		1,03E+05	1,14E+05	
		1,75E+05	1,01E+05	
1125	16,875	1,35E+05	1,12E+05	
		3,52E+05	1,68E+05	
		1,69E+05	1,12E+05	
		3,70E+05	2,55E+05	
	13,5	3,90E+05	1,73E+05	
900		3,98E+05	4,94E+05	
		4,59E+05	3,29E+05	
		3,58E+05	7,96E+05	
		1,00E+07	1,00E+07	
	11,25	1,00E+07	4,93E+05	
		9,07E+05	7,04E+05	
700		1,04E+06	2,21E+05	
		1,00E+07	2,63E+05	
			7,63E+05	

S3. Material analysis

The following figures present an analysis conducted using an SEM on samples from a test specimen related to the project that have not undergone any testing. The samples were polished up to the OPS stage to reveal the microstructure at the thread's root (Figure 2), crest (Figure 3), and in the bulk material (Figure 4) where the influence of flow drilling and flow tapping is no longer present. These microstructure images are accompanied by EDS analyses performed in the three mentioned zones. The chemical composition does not vary across the sample. The microstructure near the surface of the threads (both crest and root) is very fine owing to : the work hardening induced by flow drilling and flow tapping, the heating of the material during flow drilling and the air cooling. The grain orientation induced by the material flow during flow drilling and flow tapping is also visible at the root and crest of the thread. As shown by the Figure 5, the increase in hardness observed is consistent with the reduction of the grain size.

Figure 2. Microstructure and EDS analysis at the thread's root

Figure 3. Microstructure and EDS analysis at the thread's crest

Figure 4. Microstructure and EDS analysis of the bulk material

Figure 5. Hardness measurement related to grain size

S4. Evolution of the temperature during a flow drilling sequence

The flow-drilling tool was instrumented with a thermocouple placed at its center. The temperature was measured during a drilling operation. Figure 6 shows the temperature reached by 316L during a flow-drilling operation with the operating parameters used during this study. As can be seen, the material does not reach its melting temperature; at most, it reached 85% of its melting temperature.

Figure 6. Evolution of the temperature at the tip of the flow drilling tool during a flow drilling sequence