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RÉSUMÉ 

 

Le mélange est une opération de base très utilisée dans plusieurs industries y compris celles du 

pétrole, des polymères, pharmaceutique, alimentaire, agricole, etc. Jusqu’à ce jour, les 

connaissances sur cette opération peuvent être encore considérées comme un art plutôt que basées 

sur des preuves scientifiques. Ainsi, de nombreux dispositifs de mélange utilisés dans la pratique 

industrielle sont toujours conçus et opérés en suivant une approche d’essai-erreur. Cela est aussi 

le cas des extrudeuses à vis. Toutefois, dans un environnement très concurrentiel où il y a une 

demande croissante de produits et procédés qui soient fonctionnels et innovateurs, la production 

de connaissances fondamentales sur la performance des outils de mélange comme le Co-Kneader 

doit être considéré comme un facteur clé. 

 

Le Co-Kneader est une extrudeuse monovis modifiée. La vis à filet interrompu fait un 

mouvement de va-et-vient. En plus, le fourreau a des doigts de malaxage fixés à l’intérieur. La 

combinaison du mouvement réciproquant avec la présence des doigts de malaxage cause une 

action autonettoyante qui ne se trouve pas sur d'autres extrudeuses monovis. La vis du Co-

Kneader est formée par des éléments interchangeables, ce qui donne la souplesse nécessaire pour 

modifier la configuration de la vis en fonction de l’application. 

 

Une description fiable des mécanismes d'écoulement et de mélange dans le Co-Kneader est 

nécessaire afin de pouvoir évaluer les possibilités et les limites de cet outil de mélange. Ainsi, des 

descripteurs hydrodynamiques tels que patrons d'écoulement, profils de pression, efficacité de 

mélange et distribution des temps de séjour entre autres, ont été étudiés. La stratégie suivie dans 

cette étude a été d'abord de comprendre la performance du Co-Kneader d’un point de vue 

macromélange (c'est-à-dire, cause-effet des principales variables d'opération), puis examiner les 

mécanismes responsables de celui-ci. Une double approche méthodologique associée à cette 

stratégie a été mise en œuvre. Elle a comporté une partie expérimentale et une partie de 

modélisation de l’écoulement par dynamique des fluides numérique (CFD). 
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Un Co-Kneader transparent à l'échelle laboratoire a été spécialement conçu et construit pour les 

besoins de ce travail. Le fluide modèle utilisé est une solution aqueuse de sirop de maïs avec une 

viscosité newtonienne de 0.2 Pa·s. Les patrons d'écoulement ont été déterminés en suivant un 

traceur par une technique de décoloration rapide avec analyse d'images. La distribution de temps 

de séjour (DTS) a été estimée à partir des changements de conductivité produits par l’injection 

d’un traceur par impulsion. Le développent de la pression le long de la vis a été mesurée en 

utilisant des manomètres à tube ouvert placés près de l'entrée et à la sortie du système. La 

prédiction numérique du champ d'écoulement tridimensionnel non-stationnaire a été obtenue en 

résolvant les équations incompressibles de Navier-Stokes avec une méthode d’éléments finis. 

L’élément tétraédrique à 5-nœuds P1 +-P1 (MINI) a été utilisé pour calculer la vitesse et la 

pression. 

 

Il a été constaté que la technique d'analyse d'images, pour la première fois appliquée à des 

systèmes en continus, donne un nouvel aperçu sur le mécanisme de mélange du Co-Kneader. 

Aussi elle peut être utilisée comme une méthode expérimentale simple afin de quantifier le degré 

de mélange vers l’arrière (backmixing). La DTS a été utilisée pour obtenir des coefficients de 

dispersion axiale. Dans un système entièrement rempli, le coefficient de dispersion augmente 

avec le débit et la vitesse de rotation de la vis. En outre, les doigts de malaxage et les 

interruptions dans le filet de la vis produisent des temps de séjour uniformément distribués autour 

de la moyenne. L’analyse de la distribution de longueur de trajectoires (DLT) montre que 

l’élément de mélange engendre un mélange axial tandis que l'élément de transport mélange dans 

la direction en aval du chenal de la vis (down-channel). Les résultats obtenus par CFD ont été 

validés par des résultats de pression expérimentale, démontrant être en accord. Les résultats de 

CFD suggèrent que les doigts de malaxage promeuvent des écoulements extensionnels dans les 

canaux de la vis. Les résultats présentés incluent des courbes caractéristiques adimensionnelles 

pour chaque type d'élément de vis, des coefficients d'efficacité extensionnelle, et pour la première 

fois une caractérisation du taux de cisaillement. Les résultats expérimentaux et de CFD présentés 

dans ce travail suggèrent clairement que le Co-Kneader peut être mieux conçu et opéré. 
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ABSTRACT 

 

Mixing is a common basic operation in several industries including petroleum, polymer 

pharmaceutical, food, agriculture, etc. Up to the present day, our knowledge on this operation can 

still be considered more as an art rather than hard based scientific evidence. Thus, many mixing 

devices used in industrial practice are still being designed and operated following a trial-and-error 

approach and this is also the case of screw extruders. However, in a highly competitive 

environment where there is an increasing demand for more functional and innovative products 

and processes, generation of basic knowledge on the performance of mixing devices such as the 

Co-Kneader should be considered a key driver. 

 

The Co-Kneader is a modified single screw extruder that has an oscillatory screw with sliced 

flights fitted into a barrel that has stationary pins. The combination of the reciprocating 

movement and the presence of the pins results in a self-wiping action not found on others single 

screw extruders. Interchangeable screw elements give the flexibility to change the screw 

configuration depending on the application. 

 

To obtain a reliable description of the flow mechanisms and mixing in the Co-Kneader in order to 

assess the opportunities and limitations of this mixer, hydrodynamic descriptors like flow 

patterns, pressure drop, mixing efficiency and residence time distribution among others were 

studied. The strategy followed in this study was first to understand the Co-Kneader performance 

from a macromixing perspective (i.e., cause-effect of main operational variables) followed by 

digging into the mechanisms responsible of it. A dual methodological approach associated to this 

strategy was implemented; experimental and computational fluid dynamics (CFD). 

 

A transparent lab-scale modular Co-Kneader was specially designed and built for the purposes of 

this work. The model fluid was an aqueous solution of corn syrup with a Newtonian viscosity of 

0.2 Pa·s. Flow patterns were determined by following a tracer pathway combining a fast 
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discoloration technique with image analysis. Residence Time Distribution (RTD) was estimated 

from a stimulus response technique based upon changes in conductivity after adding a tracer. The 

pressure build up along the screw was measured using open tube manometers placed near the 

inlet and at the exit of the system. The numerical prediction of the unsteady three-dimensional 

flow field was obtained by solving the incompressible Navier-Stokes equations with a finite 

element method. The 5-node P1+-P1 (MINI) tetrahedral element was used to approximate the 

velocity and the pressure.  

 

It has been found that the image analysis technique, for the first time applied to continuous 

systems, gives new insight into the mixing mechanism of the Co-Kneader and may be used as a 

simple experimental method to quantify the degree of backmixing. RTD have been used to obtain 

axial dispersion coefficients. In a fully filled system, the dispersion coefficient increases with the 

flow rate and the screw speed. Furthermore, the pins and the slices in the screw generate evenly 

distributed residence times. Trajectory length distribution (TLD) analysis show that the mixing 

element yields axial mixing whereas the conveying element causes down-channel mixing. CFD 

results were first validated by means of experimental pressure vs. flow rate characteristic curves. 

The CFD results were found to be in good agreement with the experimental results. CFD results 

suggest that the pins in the barrel promote extensional flows in the screw channel. The presented 

results include dimensionless characteristic curves for each type of element, extensional 

efficiency coefficients, and for the first time a shear rate characterization. The combination of 

experimental and CFD original results from this work clearly suggest that the Co-Kneader can be 

better designed and operated. 
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CONDENSÉ EN FRANÇAIS 

 

Le mélange de polymères est une opération très commune puisque la majorité de produits finis 

demandent l’incorporation de divers composants. Parmi eux on trouve des additifs, stabilisants, 

antioxydants, agents de renforcement, charges, ainsi que des mélanges et alliages de différents 

polymères de base. Les propriétés mécaniques, physiques, chimiques, ainsi que l’apparence du 

produit dépendent fortement de l’uniformité de la composition. De plus, il y a une demande 

croissante de nouveaux matériaux avec des propriétés adaptées pour satisfaire des besoins encore 

plus rigoureux et diversifiés. Les matériaux avec ces nouvelles propriétés peuvent s’obtenir plus 

simplement et de façon moins chère par des mélanges de différent polymères et charges, plutôt 

que par la conception chimique de nouvelles molécules de polymère. Dans un environnement très 

concurrentiel, des procédés plus fonctionnels et innovateurs son donc nécessaires. De cette façon, 

la production de connaissances fondamentales sur la performance des outils de mélange comme 

le Co-Kneader doit être considéré comme un facteur clé. L’objectif général de cette thèse est 

l’obtention d’une description fiable des mécanismes d’écoulement et de mélange dans le Co-

Kneader ainsi que la clarification de l’impact des variables du procède sur la capacité de mélange 

de la machine. Tout ça pour pouvoir faciliter la mise en œuvre de nouveaux profils de vis 

spécialement conçus pour une application quelconque. 

 

Les extrudeuses à vis, où la majorité des opérations de transformation des polymères sont 

effectuées, peuvent être considères comme des mélangeurs en continu. Cependant, dans certains 

cas, le mélange est très inefficient et pour l’améliorer certaines modifications sont effectuées sur 

la vis ou bien sur le fourreau. Le Co-Kneader est une extrudeuse monovis modifiée. La vis a un 

seul filet interrompu et fait un mouvement de va-et-vient. En plus, le fourreau a des doigts de 

malaxage fixés à l’intérieur. La combinaison du mouvement réciproquant avec la présence des 

doigts de malaxage cause une action autonettoyante qui ne se trouve pas sur d'autres extrudeuses 

monovis. La vis du Co-Kneader est formée par des éléments interchangeables, ce qui donne la 

souplesse nécessaire pour modifier la configuration de la vis en fonction de l’application. 
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Le Co-Kneader est connu pour avoir un écoulement complexe en raison de son principe de 

fonctionnement (c’est-a dire, l’oscillation et le mouvement de rotation). Cependant, il n’y a pas 

d’études expérimentales de visualisations rapportées dans la littérature. D’autre part, les études 

portant sur la modélisation de l’écoulement font des simplifications importantes telles que 

l’omission de l’oscillation de la vis ou bien des doigts de malaxage. En général, les études 

publiées sur le Co-Kneader sont rares par rapport aux autres outils de mélange comme les 

extrudeuses monovis et les bivis. Donc, pour que cette machine ne soit plus utilisée de façon 

empirique et pour que ces capacités et ces limites soient identifiées, elle doit être mieux connue et 

comprise. 

 

Dans le but d’atteindre l’objectif principal de cette thèse, la méthodologie de recherche de ce 

projet est divisée en trois objectifs spécifiques: i) développer des techniques de visualisation qui 

permettront d’observer le mécanisme de mélange dans le Co-Kneader ainsi que déterminer les 

effets des conditions d’opération, ii) évaluer les caractéristiques hydrodynamiques du Co-

Kneader en utilisant un modèle numérique tridimensionnel incluant autant le mouvement 

d’oscillation comme les doigts de malaxage, et iii) mieux caractériser l’hydrodynamique et les 

capacités de mélange de chaque type d’élément de vis. 

 

La stratégie de recherche suivie dans cette étude a été d'abord de comprendre la performance du 

Co-Kneader d’un point de vue macromélange (c'est-à-dire, cause-effet des principales variables 

d'opération), puis examiner les mécanismes responsables de celui-ci. Une double approche 

méthodologique associée à cette stratégie a été mise en œuvre. Elle a comporté une partie 

expérimentale et une partie de modélisation de l’écoulement par dynamique des fluides 

numérique (CFD). 

 

Un Co-Kneader transparent à l'échelle laboratoire a été spécialement conçu et construit pour les 

besoins de ce travail. Le rapport L/D du Co-Kneader est égal à 11 et le diamètre intérieur du 

fourreau est de 50.8 mm. Le mouvement caractéristique du Co-Kneader consiste d’un aller-retour 

pour chaque tour de vis. L'amplitude de cette oscillation est de 7.5 mm. Les dents de malaxage 

forment trois rangées placées tout au long du fourreau. Chaque doigt de malaxage est cylindrique, 
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avec un diamètre de 4.2 mm et 7.4 mm de long. Il existe différents types d'éléments de vis 

disponibles pour ce type d'extrudeuse. Dans cette étude nous avons utilisé des éléments de 

transport (EZ) et des éléments de mélange (KE). L'élément EZ a un seul filet et une seule 

interruption. L'élément KE a deux filets et trois interruptions. Une configuration de doigts de 

malaxage correspond à chaque élément. Donc la répartition des doigts le long du fourreau dépend 

du profil de vis utilisé. L'élément EZ a un seul doigt de malaxage chaque deux interruptions et 

l'élément KE a deux doigts de malaxage dans chacune des trois rangées d’interruptions. Le profil 

de vis étudié compte deux sections de transport dont chacune est formée par 5 éléments EZ, et 

une section de mélange placée entre les deux, formée de 8 éléments KE. Le fluide modèle utilisé 

a été une solution aqueuse newtonienne de sirop de maïs de 82% (viscosité = 0.2 Pa s; densité = 

1270 kg/m3). Les conditions d’opération utilisées étaient les suivantes: vitesse de rotation de 50 à 

100 tr/min, débit massique de 5 à 30 kg/h. 

 

Les patrons d'écoulement ont été déterminés en suivant un traceur par une technique de 

décoloration rapide avec analyse d'images. La technique de décoloration se base sur le 

changement de couleur selon le pH, d’un fluide qui contient un indicateur acide-base (dans ce cas 

bromocrésol). Une fois le traceur injecté, les expériences ont suivi le changement de couleur de 

pourpre (couleur dans des conditions alcalines) à jaune (couleur dans des conditions acides) à 

mesure que le mélange a eu lieu. Chaque expérience a été enregistrée sous format vidéo. La 

méthode d’analyse d’images consiste à quantifier la quantité de fluide mélangé à travers le temps 

selon la couleur des pixels dans chaque image prélevée de la vidéo filmée. De cette façon, des 

courbes de mélange sont obtenues. Dans cette thèse, cette méthodologie est appliquée pour la 

première fois sur un système en continu, puisqu’elle est généralement utilisée pour l’analyse de 

mélange dans des cuves agitées. 

 

La distribution de temps de séjour (DTS) a été estimée à partir des changements de conductivité 

produits par l’injection d’un traceur par impulsion. La sonde de conductivité installée sur le 

montage expérimental a suivi la conductivité locale en fonction du temps. L'accumulation de 

pression le long de la vis a été mesurée en utilisant des manomètres à tube ouvert placés près de 

l'entrée et à la sortie du système. 
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La prédiction numérique du champ d'écoulement tridimensionnel non-stationnaire a été obtenue 

en résolvant les équations incompressibles de Navier-Stokes avec une méthode d’éléments finis. 

L’élément tétraédrique à 5-nœuds P1 +-P1 (MINI) a été utilisé pour calculer la vitesse et la 

pression. En raison du mouvement complexe du Co-Kneader et visant à simplifier les conditions 

limites du système, une méthode de domaine fictif connue comme méthode d’éléments finis 

virtuels (Virtual Finite Element Method VFEM) a été employée. Dans le cadre du VFEM, un 

maillage unique est nécessaire pendant les calculs et la vis est représentée par un ensemble de 

points de contrôle mobiles qui agissent comme des contraintes cinématiques. Suite à cette 

approche, le profil de vis complet a été constitué par environ 135 000 points de contrôle. D'autre 

part, la géométrie représentant le domaine fluide a été composée d'un maillage 3D cylindrique 

avec une section annulaire, dans lequel la forme des doigts de malaxage a été soustraite. La 

géométrie du modèle a les mêmes dimensions que le dispositif expérimental. Le maillage non 

structurées 3D final a été composé d'environ 1 million d'éléments ce qui a donné un système de 

près d'un demi million d'équations. 

 

Comme prévu, les courbes de mélange dépendent des conditions d'opération: à mesure que la 

vitesse de rotation de la vis augmente, le temps de mélange diminue. Pour une même condition, 

les courbes de mélange obtenues après l'analyse d’images présentent de très petites variations, ce 

qui signifie que la technique est aussi robuste pour les systèmes en continu que pour les cuves 

agitées. Trois régions différentes liées aux sections de la vis (deux sections de transport avec une 

section de mélange entre les deux) ont été clairement identifiés dans les courbes de mélange. En 

ajustant un modèle statistique linéaire aux courbes de mélange, un taux de mélange a été défini. 

Ce taux estime l'augmentation dans le temps de la zone mélangée suivant la direction axiale pour 

chaque section de la vis. Les résultats montrent clairement qu'il y a un changement brusque du 

taux de mélange en fonction de la section de vis et des débits. Il a été constaté que la technique 

d'analyse d'images, pour la première fois appliquée à des systèmes en continu, donne un nouvel 

aperçu du mécanisme de macro-mélange dans le Co-Kneader. En outre, elle peut être utilisée 

comme une méthode expérimentale simple pour quantifier le degré de mélange vers l’arrière 

(backmixing). 
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L’analyse de la DTS a montré les tendances attendues, à mesure que le débit et la vitesse de 

rotation augmentent, le temps de séjour moyen diminue. Un comportement similaire a été 

observé en ce qui concerne la variance des distributions autour de la moyenne; à mesure que le 

débit et la vitesse de rotation augmentent, la variance diminue. Le modèle de dispersion axiale a 

permis une estimation du coefficient de dispersion axiale. Il a été constaté que pour un système 

complètement rempli, le coefficient de dispersion augmente linéairement avec le débit et la 

vitesse de la vis. En comparant la DTS du Co-Kneader avec celle d’une extrudeuse monovis, il a 

été trouvé que contrairement à la monovis, le Co-Kneader génère des temps de séjour 

uniformément distribués autour de la moyenne. Ce comportement est attribué à l’effet des 

interruptions dans le filet et des doigts de malaxage. Aussi, comparé à un mélangeur statique le 

Co-Kneader a une DTS plus élargie. 

 

Afin de vérifier l'exactitude du modèle numérique, les résultats obtenus des simulations ont été 

comparés avec les mesures de pression expérimentales et ils ont été jugés en bon accord. L'erreur 

relative calculée entre les résultats expérimentaux et les résultats numériques dans tous les cas est 

inférieure à 8%. Des courbes caractéristiques adimensionnelles de débit versus différence de 

pression ont été générées à partir des simulations numériques. Il a été démontré que l'élément de 

transport a une plus grande capacité de pompage que l'élément de mélange Toutefois, 

comparativement à une monovis théorique, ces deux éléments ont une très basse capacité de 

pompage. Ces résultats confirment pourquoi en pratique, le Co-Kneader est couplé avec une 

extrudeuse de décharge. Les résultats de ce travail suggèrent que la faible capacité de pompage 

du Co-Kneader est due à la présence des interruptions dans les filets de la vis. 

 

L'effet local des doigts de malaxage a été analysé à partir des champs de vitesse obtenus avec la 

CFD. Il a été constaté que le débit est divisé et recombiné d'un canal à l'autre quand les doigts de 

malaxage se trouvent au milieu d’une interruption de filet, ce qui favorise l’écoulement vers 

l’arrière (backflow) et le mélange distributif. Aussi dans cette position, il a été démontré que 

l’écoulement semble accélérer plus entre doigts de malaxage adjacents. Lorsqu'il n'y a pas de 

doigts de malaxage entre les interruptions du filet, l’écoulement suit simplement la direction en 
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aval du canal (down-channel). De la même façon au milieu du canal, l’écoulement normal est 

perturbé quand il y a un doigt de malaxage. Les résultats de CFD suggèrent aussi que les doigts 

de malaxage favorisent les écoulements extensionnels. 

 

Les analyses de la DTS et de la distribution de longueur de trajectoires (DLT) présentées dans ce 

travail ont été obtenues par une technique de suivi de particules, où le mouvement de traceurs 

sans masse est dominé uniquement par le champ d'écoulement. Une approche élément-par-

élément couplée à un schéma de tirs prédicteur-correcteur a été choisie pour obtenir le chemin 

suivi par une particule. Les trajectoires utilisées pour les analyses de la DTS et de la DLT ont été 

obtenues en utilisant 300 tirs par élément. La DTS numérique a été obtenue en calculant le temps 

pris par chacun des traceurs pour se rendre du point d’injection jusqu’au plan de sortie. Environ 

1000 particules ont été injectées dans chacun des plans analysés. Les résultats numériques du 

temps de séjour moyen ont été comparés avec des valeurs expérimentales et ils se sont montrés 

en accord. Les DLT ont été obtenues en même temps que les DTS. On obtient les DLT en 

calculant la longueur de la trajectoire parcourue à partir du plan d’injection jusqu’au plan de 

sortie par chaque particule fictive. L’analyse de la DLT a montré que l’élément de mélange 

engendre un mélange axial tandis que l'élément de transport mélange dans la direction en aval du 

chenal de la vis (down-channel). Dans ce travail, l'analyse de la DLT a été effectuée pour la 

première fois sur une extrudeuse et elle s'est avérée être un outil complémentaire à l'étude des 

mécanismes de mélange dans le Co-Kneader. 

 

Afin d'évaluer l'efficacité du mélange dispersif à l'intérieur du Co-Kneader, l'efficacité 

extensionnelle α a été obtenue. Ce paramètre quantifie les composantes rotationnelles et 

élongationnelles du champ de vitesse. Il a été démontré que la section de mélange a une valeur de 

α légèrement supérieure par rapport aux sections de transport. En termes de magnitude il n'y a 

pas de différence significative entre les valeurs moyennes de chaque élément αm–KE et αm-EZ, les 

deux étant comprises entre 0,51 et 0,53. En outre, il a été constaté que la valeur de αm–KE et αm-EZ 

demeure relativement constante en variant le débit à vitesse constante. 
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Le taux de cisaillement γ&  a été obtenu tout au long du Co-Kneader en diverses positions 

angulaires de la vis ainsi que pour différentes conditions d’opération. Les différences entre les 

éléments de vis ont été clairement démontrées. Le taux de cisaillement moyen est plus élevé dans 

les éléments de mélange et il reste constant sur tout le long de la section. Au contraire, sur les 

sections de transport, il y a de grandes oscillations sur les valeurs de γ&  où les valeurs plus élevées 

se trouvent à l'emplacement du seul doigt de malaxage qui a cet élément. Une analyse plus 

détaillée de l’élément de mélange a révélé que la valeur moyenne de γ&  est plus élevée lorsque le 

doigt de malaxage est à la position initiale de 0° (c'est à dire au milieu de l’interruption du filet) 

et elle diminue à mesure que le doigt de malaxage se déplace entre les filets de vis. Elle atteint à 

nouveau la valeur maximale quand le doigt termine son passage, après 120°. Ce cycle est répété 

trois fois, ce qui correspond à la géométrie de l’élément de mélange (trois doigts de malaxage et 

trois interruptions du filet). Parce que l'élément de transport a un seul doigt de malaxage, la 

valeur de γ&  n'est pas autant affectée par la position de la vis. 

 

Afin de traiter les variables géométriques et d'opération ainsi que leur impact sur γ& , une valeur 

moyenne du taux de cisaillement produit dans chaque élément de vis a été obtenue en utilisant 

l’approche classique de Metzner-Otto. Le taux de cisaillement est alors proportionnel à la vitesse 

de la vis avec la constante de proportionnalité Ks. Les valeurs estimées de Ks. pour les elements de 

transport et de mélange est de 18 et 23 respectivement. Une valeur plus élevée de Ks pour 

l'élément de mélange est expliqué par le plus grand nombre de doigts de mélange trouvés sur cet 

élément. 

 

D’après les résultats obtenus dans ce travail on peut conclure que les nouvelles techniques 

dirigées à caractériser et quantifier le mécanisme de mélange tels que l’analyse de DLT et la 

méthode expérimentale de visualisation couplée à l’analyse d’images, ont été appliquées avec 

succès pour la première fois sur un mélangeur en continu. Ces méthodes ont permis de décrire le 

mécanisme de mélange du Co-Kneader, qui c’est avéré être principalement dans la direction 

axiale, ainsi que de clarifier comment les conditions d’opération impactent le mélange axial et 

l’écoulement vers l’arrière (backflow). Par le biais du modèle 3D numérique qui prenait en 
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compte toutes les caractéristiques géométriques et mécaniques du Co-Kneader, il a été possible 

de mieux évaluer l’impact fourni par les doigts de malaxage sur l’écoulement global ainsi que sur 

les capacités de mélange de la machine. Il a été trouvé que en dehors de provoquer la division et 

recombinaison de l’écoulement dans les canaux de la vis, ils favorisent aussi l’écoulement 

extensionnel où, le cas contraire, il y aurait seulement de l’écoulement de cisaillement. La 

caractérisation des éléments de vis les plus couramment utilisés a été faite par l’analyse de la 

DTS et du taux de cisaillement produit par chaque élément individuel. Cette information peut être 

utilisée vers la conception de nouveaux profils de vis spécialement créés pour combler les 

besoins d’une application particulière.  

 

Dans l’ensemble, les résultats expérimentales et de CFD suggèrent que l’extrudeuse Co-Kneader 

peut être mieux conçue et opérée. La stratégie suivie dans ce travail a permis l’analyse détaillée 

de la performance hydrodynamique du Co-Kneader. Cette analyse pourra alors aider identifier et 

examiner les mesures convenables, tels que l’implémentation de nouveaux profils de vis et de 

conditions d’opération optimales, pour la conception et l’amélioration des procèdes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Mixing in the Polymer Processing Industry 

The purpose of mixing is to reduce composition non-uniformities in systems comprising two or 

more substances. It constitutes an essential step in many industries because the quality and 

properties of products depend on the effectiveness of mixing the different components involved. 

In the polymer processing industry, end products depend upon the regular incorporation of a lot 

of components; among them are additives, stabilizers, antioxidants, fillers, reinforcing agents, as 

well as blends and alloys of different base polymers. Mechanical, physical, chemical, and 

appearance properties are thus strongly dependent on composition uniformity. Examples of 

mixing operations in polymer processing production lines are (Rauwendaal, 1998a): 

• Homogenization, where blending of virgin polymers with color concentrates take place.  

• Reactive extrusion, where polymerization reaction and extrusion occurs simultaneously. 

Examples are free radical grafting or polycondensation (e.g. Nylon).  

• Reinforcing and filling of critical and difficult-to-handle compounds (e.g. thermoplastics, 

rubbers or thermosets) with other materials (e.g. fiber glass, carbon tubes, 

nanocomposites) to improve and enhance their properties. 

 

1.1.1 Mixing mechanisms 

In general, mixing of two or more components can be achieved by three different types of 

motion: 

• Molecular diffusion, which is driven by a concentration difference between the different 

species present in the mixture and occurs spontaneously. 

• Eddy motion, which is the result of turbulent mixing. 
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• Convection, which involves the spatial movement of fluid particles from one location to 

another.  

 

Molten polymers are very viscous fluids, with viscosities ranging from 100 Pa·s to 100 000 Pa·s. 

This results in laminar flows where the fluid moves in adjacent layers that slide over each other 

without lateral mixing. In these conditions turbulent mixing is non-existent and molecular 

diffusion occurs very slowly; therefore convective motion is the dominant mixing mechanism. 

Convective mixing in polymer processing is achieved by imposing deformations such as shear 

and elongation, which results in an increase of the interfacial area separating the components. 

This mixing mechanism is called distributive or extensive mixing. Reorientation and 

randomization of the interfacial elements throughout the volume is also necessary to effectively 

achieve distributive mixing. Some mixing components, like solid agglomerates (e.g. Silica, 

carbon black, and pigments), viscoelastic polymer blobs or droplets, exhibit cohesive strength. 

Therefore in order to reduce the size of these cohesive components, stresses have to be applied. 

This mixing mechanism is known as dispersive or intensive mixing. Figure  1–1 shows the 

combined effect of the two mixing mechanisms. 

 

 

Figure  1–1. Schematic of dispersive and distributive mixing. 
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1.2 Polymer Mixing Technology 

Numerous types of equipment exist to carry out mixing operations involving polymeric materials. 

The classification of the different mixing machinery (Tadmor & Gogos, 2006) is presented in 

Figure  1–2.  

 

 

Figure  1–2. Classification of mixers. 

 

The first classification is based on the way they operate, whether they are continuous or batch 

mixers. Batch mixers can then be classified into particulate solid mixers or liquid mixers. 



4 

Moreover, liquid mixers can be subdivided according to the mixture viscosity range in which 

they are used. Continuous mixers include static mixers as well as screw extruders. Screw 

extruders are further classified depending on the number of screws; they can be single, twin or 

multi screw extruders. The most used in the industry are single and twin screw extruders. 

 

1.2.1 Twin screw extruders 

Various types of twin screw extruders are available. The differences among them concern their 

design and operating principles. Twin screw extruders can be classified according to the direction 

of rotation. If both screws rotate in the same direction they are known as a co-rotating twin screw 

extruders. If they rotate in different directions they are known as a counter-rotating twin screw 

extruders. Depending on the distance between both screws they can be separated, tangential, 

partially intermeshing or fully intermeshing. The different configurations are showed in Figure 

 1–3. The design of the extruder depends on the application. Each of them has different functional 

characteristics like throughput, mixing capacity, pressure development, residence time 

distribution, etc. Very often mixing elements are added to the screw to enhance the mixing 

action. 

 

 

Figure  1–3. Twin screw extruders with different degree of intermeshing. 
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There is a lot of operational experience regarding intermeshing co-rotating twin screw extruders. 

They are widely used because of the flexibility in the selection of screw configurations, efficient 

mixing capability (best for distributive mixing) and self-wiping effect (Sakai, 2009). In the case 

of counter-rotating twin screw extruders, distributive mixing is better when they are non-

intermeshing, and dispersive mixing is better when they are intermeshing (Rauwendaal, 1998a). 

 

1.2.2 Single screw extruders 

Regular single screw extruders are the most common type of extruders in polymer processing. 

Because they are not very good mixers as such, different devices or adaptations are made to the 

screw in order to enhance the mixing action. Depending on the desired type of mixing to be 

achieved, whether it is dispersive or distributive, is the kind of mixing section added. Figure  1–4 

shows some examples of mixing elements used in single screw extruders. 

 

 

Figure  1–4. Mixing sections for single screw extruders (from Rauwendaal (1998b)) 
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1.2.3 The Co-Kneader 

The Co-Kneader (Figure  1–5), also called “List/Buss Kneader” or “Kokneter”, was invented in 

1945 by Heinz List (1950). It is a special type of single screw mixer since it combines 

simultaneously the usual rotational motion with a reciprocating action. The screw has slices in 

the flights and it is fitted into a barrel that has stationary pins. The combination of the 

reciprocating movement and the presence of the pins results in a self-wiping action not found on 

any other single screw extruder.  

 

 

Figure  1–5. Industrial Co-Kneader (Buss brochure) 

 

Good dispersive and distributive mixing capabilities have been attributed to the Co-Kneader, 

which makes it very suitable for compounding applications. It has been stated that the highly 

effective mixing action of the Co-Kneader allows a very short machine length, typically about 

11D. When compared to a typical length of 30D-50D for twin screw extruders it becomes clear 

that the mixing efficiency of a Co-Kneader per unit axial length is substantially better than both 
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single and twin screw extruders (Rauwendaal, 2009). However, even though it was invented 

many years ago there are few studies available regarding this mixer and still less that have 

focused on the mixing mechanism or on the flow patterns. 

 

 

1.3 Motivation of the study 

Up to the present day, our knowledge on mixing operations can still be considered more as an art 

rather than hard based scientific evidence. Thus, many mixing devices used in industrial practice 

are still being designed and operated following a trial-and-error approach. This is still the case of 

screw extruders, and especially of the Co-Kneader. Additionally, there is an increasing demand 

for new materials with tailored properties designed to meet more rigorous and diversified 

requirements. These new properties can be simply and cheaply designed into materials by 

blending and compounding different polymers and fillers, rather than chemically designing new 

polymeric molecules. In a highly competitive environment, more functional and innovative 

processes are needed. In light of this, generation of basic knowledge on the performance of 

mixing devices such as the Co-Kneader should be considered a key driver.  

 

 

1.4 General Objective 

The general objective of this project is to develop a reliable description of the flow mechanisms 

and mixing in the Co-Kneader and to clarify how process variables impact the mixing capacity of 

the machine in order to facilitate the implementation of tailored screw profiles according to the 

application. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 The Co-Kneader Mixer 

The Co-Kneader is a continuous mixer that has a single screw that both rotates and oscillates. The 

screw has interrupted flights and there are stationary pins along the walls of the barrel. This 

geometry, together with the combination of the rotational and axial movement of the screw, 

promote distributive mixing (Elemans, 2009). The Co-Kneader was invented in 1945 by Heinz 

List (1950) and nowadays it is distributed by Buss AG in Switzerland. White & Lyu (1998) 

present a summary of the development of the modern Co-Kneader since its origins. 

 

2.1.1 Geometry 

The single screw of the Co-Kneader is fitted in a clam shell barrel that has stationary pins. 

(Figure  2–1). The pins are placed along the length of the barrel forming three rows at 120° from 

each other. While the screw rotates it also reciprocates, making one complete forward and return 

stroke for every revolution. The magnitude of the stroke is about 15% of the screw diameter 

(Rauwendaal, 1998a).  

 

 

Figure  2–1. Schematic of a Co-Kneader (from Buss AG) 
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Since there are many clearances in the screw flights, high pressures cannot buildup. Additionally, 

the oscillatory motion of the screw relative to the barrel causes great pressure and throughput 

fluctuations (Elemans & Meijer, 1990). To tackle these problems, either a discharge extruder or a 

gear pump is used to guarantee constant pressure at the die. 

 

The Co-Kneader is commercially available in a range of screw diameters from 30 mm to 200 mm 

and the process length can vary from 8 to 20 L/D, giving an output range of 10-4000 kg/hr. 

 

2.1.1.1 Modular Screw Elements 

The screw of the Co-Kneader consists of interchangeable elements that are assembled into a 

shaft. There are different types of elements that can be placed along the screw shaft in any 

desired position depending on the application. The most common are: 

 

• Conveying screw elements: Known as EZ elements (from German: Einzugsbüchse) 

(Figure  2–2a), they have one flight, one screw slice, and two rows of one pin 

 

• Mixing (kneading) screw elements: Known also as KE elements (from German 

Knetbüchse) (Figure  2–2b) they have two flights, three parallel screw slices, and three rows of 

two pins. The KE elements are for dispersive and distributive mixing of the molten polymer 

(Rauwendaal, 1991b). The closed-channel mixing elements, known as GS elements (from 

German Gangschliessbüchse) (Figure  2–2c) are a variation from the KE element. They also have 

two flights; however one has three slices and the other only one. This element has three rows of 

two pins. Its purpose is to prevent the backflow of the molten polymer. 

 

• Restriction ring adapters: Known as ST elements (from German Stauring) (Figure  2–2d), 

they are used in conjunction with restriction rings (Figure  2–4b). 



10 

a)   b)  

c)     d)    

Figure  2–2. Modular screw elements: a) Conveying EZ element; b) Mixing KE element; 

c) Closed-channel GS element; d) Restriction ring ST element. 

 

2.1.1.2 Pins 

The pins are fixed along the barrel wall forming three parallel rows. Each pin is interchangeable. 

Since each screw element has a different pin configuration, the distribution of the pins along the 

barrel depends on the screw profile. They are usually diamond-shaped although in small size Co-

Kneaders they are cylindrical; they can be solid (Figure  2–3a) or hollow (Figure  2–3c) as well. 

Hollow pins are used to place thermocouples (Figure  2–3c.i) along the screw axis or as feed 

ports for injecting liquids (Figure  2–3c.ii). There are also blank pins (Figure  2–3b), which are 

used to cover the perforations on the barrel where pins are not needed. 

 

a)   b)  

c) i)  ii)  

Figure  2–3. Types of pins: a) Regular pin; b) Blank pin; c) Hollow pin for i) thermocouple and 

ii) injection of fluids. 
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2.1.1.3 Barrel Liners 

The clam-shell barrel of the Co-Kneader consists of segmented liners. The liners have 

perforations of different size depending on whether the pin is solid or hollow (Figure  2–4a). 

They are also changed as they wear out. Restriction ring liners (Figure  2–4b) act like barriers 

fitted into the barrel (White et al., 2003). They are used to increase the degree of filling of the KE 

elements placed upstream and therefore they improve the mixing action (Rauwendaal, 1998a). 

They are also used in sections preceding openings in the barrel such as side-feed or vent ports 

(Elemans, 2009). Restriction rings are available in different sizes, thus varying the annular gap 

between the restriction ring and the screw root.  

 

 

a) b)    

Figure  2–4. Types of barrel liners: a) Regular liner; b) Restriction ring. 

 

2.1.2 Operating Principle 

The rotational and reciprocating motions of the Co-Kneader cause the pins to move, relative to 

the screw, in a sinusoidal way through the flight clearances of the screw. Rauwendaal (1991b) 

explains this motion in detail and the important aspects are described next. Figure  2–5 illustrates 

the trajectories of the pins relative to a screw flight segment, which is shaded in the figure. The 

screw and the barrel surface are shown unrolled into a flat plane and the conveying direction of 

the material is from right to left. After a quarter of a screw turn (Figure  2–5b) the pin has wiped 
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the upper left flank of the shaded flight segment and the material that passed between the pin and 

the flight has been sheared. After another quarter of a turn (Figure  2–5c) the upper right flank of 

the flight is wiped and the other pins push the material back into the screw channel behind the 

slots creating backflow. This backflow causes efficient radial and axial mixing (Rauwendaal, 

1991b). At 270° (Figure  2–5d) the lower left flank is wiped, and when the full screw turn is 

completed at 360° (Figure  2–5e), the lower right flank is wiped. Each time the pin passes near 

the flanks the material is sheared (Figure  2–6) and the wiping action reduces the stagnation of 

material. This process is the same for all the flight segments in the screw and the entire screw 

surface is covered by the pins as shown in Figure  2–5f. 

 

 

Figure  2–5. Trajectories of stationary pins relative to the shaded flight (from Buss AG) 

 

The heat transfer in the Co-Kneader is also enhanced due to the self-cleaning action of the screw 

and barrel, and thus the chance of material degradation is reduced. This is particularly useful in 

reactive processing and when working with thermally sensitive polymers. Self-cleaning action is 

usual in intermeshing twin-screw extruders however the Co-Kneader is the only single screw 

extruder that has certain sections completely self-wiping. This characteristic allows the Co-

Kneader to be used in applications where conventional single-screw extruders could not possibly 

be used (Rauwendaal, 1991b). 
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Figure  2–6. Diagram of shear flow between the pin and the flight segment (from Buss AG) 

 

An up close diagram of the shear flow taking place when a pin is passing by a screw flight 

segment is shown in Figure  2–6. According to Buss AG, the shear rate in the Co-Kneader is 

exclusively dependent on the screw speed and of a geometrical constant. The minimum gap width 

between the barrel pin and the screw flight is represented by s, which is defined by the following 

Buss AG relationship as 

 

 Dcs geom ⋅=  (2.1)  

 

The shear rate is defined as 
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The combination of Equation 2.1 and Equation 2.2 results in 
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where γ&  is the shear rate, s is the gap width, cgeom is a geometric constant given by the 

manufacturer, D is the diameter of the screw, and N is the screw speed. Buss AG sustains that 

according to this relationship the shear rate in the Co-Kneader depends only on the operational 

speed of the extruder. This would only be true for a fixed geometry. 

 

2.1.3 Applications 

There are over 3 000 Co-Kneader mixers working worldwide and it is considered to be a good 

extruder in processing thermally sensitive materials like PVC compounds and thermosets powder 

coatings (White et al., 2003). Filled and reinforced engineering plastics can be processed in a Co-

Kneader. Examples of this are PA, PBT, PET, PC, PP, among others. It is also used in the 

manufacturing of polymeric blends and alloys, colored and additives masterbatches as well as in 

the food industry.  

 

 

2.2 Mixing Mechanism in the Co-Kneader 

The first attempt to explain the distributive mixing action of the Co-Kneader was that of Jakopin 

& Franz (1983). In their work, they made a qualitative analysis of the number of striations per 

L/D. They calculated that the total number of striations per L/D was 212. 

 

Booy & Kafka (1987) studied the flow in an elemental channel (Figure  2–7). They determined 

that in a mixing zone of 8 L/D, a screw speed of 60 rpm and a flow rate of 1 575 kg/hr, the fluid 

is split approximately 60 times. They also affirm that this number of striations is proportional to 

the screw speed and the L/D ratio, but inversely proportional to the flow rate. Also, they observed 

that the flow is split and recombined by the rows of sliced flights and that this action constantly 
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shuffles fluid elements, resulting in the reorientation of the interfaces. According to the authors, 

this process is what causes the mixing action in the Co-Kneader.  

 

 

Figure  2–7. Elemental channel studied by Booy & Kafka (1987). 

 

Elemans & Meijer (1990) took another approach. They stated that in order to have a more 

comprehensive model of the mixing quality, the degree of fill in the screw elements had to be 

known first. They formulated two expressions for the number of reorientations nr in a screw 

element, one for a completely filled element 
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and another for the case of partially filled screw elements 
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where p is the number of pins, D the diameter, Lf the filled length, H the channel depth, ϕ the 

angle of the flight, n the number of flights, e the relative flight width, N the screw speed and Q 

the volumetric throughput. They made the calculation for a completely filled mixing element of 

L = 27 mm, D = 46 mm, working at N = 240rpm and with Q = 20kg/h, and obtained nr=128. 

 

The striation count is often used to obtain the total interfacial area between different flow 

components. Since an increase of the interfacial area is a direct result of the laminar mixing 

process, the striation count can be used as a measure of the effectiveness of mixers. However, in 

order to be valid, this approach requires a characteristic flow direction and a uniform strain 

history. In flows where there is not a single characteristic direction, this measure is not enough 

since it only gives a sense of the amount of mixing but nothing about the distribution of the 

mixture (Bigio & Stry, 1990). 

 

 

2.3 Experimental Studies 

There are relatively few experimental studies of the flow in the Co-Kneader even though it has 

been commercialized during the past 60 years. Various papers have been focused on the 

application of the machine in compounding processes (Stade, 1977, 1978; Todd, 1987). There 

have been melting experiments (Lyu & White, 1998) and measurements of temperature profiles 

(Lyu & White, 1997c). The rest of the studies, detailed in the following sections, cover 

hydrodynamic aspects of the machine such as pumping characteristics, RTD, and comparative 

mixing studies with other mixing equipment.  

 

2.3.1 Pumping Characteristics and Filled Lengths 

The first experimental work carried out to understand the working mechanisms of the extruder 

was performed by Elemans & Meijer (1990). The results reported were obtained in a modular 
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laboratory Co-Kneader of 46 mm of diameter and 600 mm long that was fitted in a Plexiglas 

cylinder. The experiments were performed using conveying, mixing and closed-channel mixing 

screw elements, with and without pins. Different processing conditions were studied like screw 

speed (150-250 rpm) and output (10-25 kg/h). The Newtonian fluids used for the experiments 

were silicon oil (μ = 1Pa·s) and paraffinic oil (μ = 0.2Pa·s) under isothermal conditions. A special 

die at the end of the extruder was used in order to avoid pressure and output variations resulting 

from the screw oscillation. Local pressure differences were measured directly by means of a 

series of open manometers installed along the barrel. By obtaining throughput versus pressure 

characteristic curves, it was found that the conveying element had a much larger capacity than the 

two mixing elements. Also, it was concluded that the presence of the pins affected very little the 

pumping abilities of all the screw elements. Filled axial lengths were determined by direct 

observation of the material distribution through the transparent barrel. No distinct influence of the 

pins on the filled length was observed. 

 

Lyu & White (1995) reported experiments done in a modular Co-Kneader of 46 mm of diameter 

and L/D = 16 connected to a crosshead extruder of L/D = 5 and D = 45 mm. The experiments 

were made with polypropylene. Two different screw configurations were investigated and they 

were formed by conveying elements, mixing elements and restriction rings. They observed that 

the Co-Kneader gave a fluctuating output but they eliminated it by coupling a crosshead extruder 

at the end. They also obtained filled lengths. The results were used to validate a mathematical 

model. 

 

2.3.2 Residence Time Distributions 

Elemans & Meijer (1990) measured the RTD in the Co-Kneader using polyvinyl chloride (PVC) 

with titanium dioxide (Ti02) particles as tracers. They took samples at the end of the extruder at a 

given interval of time and detected the amount of tracer in them via X-ray fluorescence. They 

presented dimensionless plots with the values of the cumulative response. They found that at 

greater speeds the mean residence time in the machine was reduced. 
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Lyu & White (1998) report RTD results obtained in a partially filled system with polystyrene and 

aluminum flakes as tracers. The results showed that as the feed rate increased the residence time 

decreased and the distribution was narrowed. Additionally, as the screw speed increased the 

residence time distribution narrowed and tended to lose its long tail. 

 

Troelstra (1998) analyzed the axial mixing in the Co-Kneader by means of the axial dispersion 

model. Experiments to obtain the RTD were performed using water and two syrups with 

viscosities of 5 and 21 Pa·s. The experiments were carried out in a system having D = 46mm and 

L/D = 15 using dye as tracer. It was demonstrated that the axial dispersion model could well 

represent the experimental data. Furthermore, it was found that for a partially filled system the 

axial dispersion coefficient increased linearly with the screw speed but was not affected by the 

flow rate.  

 

Hoppe et al. (2002) conducted RTD experiments using polystyrene in a Co-Kneader of 

D = 46mm and L/D = 11. They investigated the effect of the tracer by using two kinds: free 

anthracene and anthracene grafted on the polymer. They found that only the grafted anthracene 

tracer could characterize the actual flow of the polymer in the extruder since it had the same 

rheological behavior as that of the unmodified polymer. The RTDs with grafted tracer were found 

to be always bimodal, which was attributed to the backflow of the polymer caused by the 

oscillation of the screw. They also found that for a partially filled Co-Kneader, the variance of the 

RTD increased when the feed rate was increased as well. Based on the experimental data, they 

developed an RTD model for the particular Co-Kneader screw configuration they studied. The 

model consisted of a combination of ideal reactors such as continuous stirred tanks and plug flow 

reactors. The predicted RTD was in good agreement with experiments. 

 

One of the first comparative studies of residence time distributions was made by Shon et al. 

(1999). They compared the RTD of a Co-Kneader, a continuous mixer, a modular intermeshing 

co-rotating and counter-rotating twin screw extruders. For the experiments they used 

polypropylene with aluminum flakes in different screw configurations and with different 

operating conditions. They found that in every machine when the outflow was increased the 
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residence time decreased and the RTD narrowed. The same tendency was observed when screw 

speed increased. Their results also showed that the intermeshing counter-rotating twin screw 

extruders had the shortest residence time and narrowest RTD. On the other hand the Co-Kneader 

had the longest residence time and the broadest RTD, which according to the authors could mean 

that the kneader had the best distributive mixing.  

 

2.3.3 Mixing and Compounding 

Shon & White (1999) did a comparative study of glass fiber breakage in a Co-Kneader, a co-

rotating and counter-rotating twin screw extruders. The study included a comparison using three 

different screw configurations varying in terms of mixing severity. It was found that the 

restriction ring elements caused more severe fiber breakage than the mixing elements. The milder 

brakeage occurred in the conveying elements. Comparison between the different machines was 

done using similar mixing conditions since it was found that the relative order of the machines in 

terms of fiber breakage could be changed by modifying the screw configuration. Overall, the 

results showed longest fiber length for the Co-Kneader. 

 

Shon et al. (2005) investigated agglomerate breakage by compounding calcium carbonate into a 

polymer matrix. They did a comparison between the Co-Kneader, a continuous mixer, a co-

rotating and counter-rotating twin screw extruder. By comparing intensive screw configurations 

in all the machines, they found that the Co-Kneader yielded the larger particle size. 

 

Shon et al. (2008) studied the blending of immiscible polyamide 6 into polypropylene. They 

compared the same mixers as in their previous studies. The found that the order of the mixers 

according to the droplet size of the minor phase largely depended on the screw configuration and 

on the type of mixer. This was specially observed in the case of the Co-Kneader, where just by 

changing the screw configuration it produced a much finer morphology than the other mixers. 
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2.4 Flow Modeling 

2.4.1 Flow, Pumping Characteristics and Filled Lengths 

Booy & Kafka (1987) made the first attempt to model the flow inside a Co-Kneader. Their study 

concerned the flow of an isothermal Newtonian fluid between two flights with a single pin 

passing between them (Figure  2–7). For their analysis they used two methods: a Finite Element 

Method (FEM) program called POLYFLOW™, and an analytical approach using the Lubrication 

Method. They validated the results of the Lubrication Method with the results obtained with the 

FEM method. The calculations that they obtained were based on a Newtonian model fluid of 

μ = 1000 Pa·s being processed in a 20 cm diameter Co-Kneader running at 60 rpm. They 

presented plots of the flow rate as a function of pin position, pressure distributions around the pin 

at a given position and shear rate along the tangential coordinate also in a particular pin position. 

They found that the pin passage between the flights caused splitting and reorientation of the flow. 

According to them this is what explains the good mixing capability of the kneader. At the narrow 

gaps located between the pin and the flights they found that the shear rates reached 400 s-1 at 

60 rpm. These high shear mixing zones would give the kneader its capability in dispersive 

mixing, provided that all the fluid would pass through them. Concerning the analysis methods, 

they concluded that the differences between the results obtained with both methods were due to 

the coarseness of the FEM meshes and to imperfections in applying the Lubrication Method.  

 

Brzoskowsky et al. (1989) sought also to model the isothermal flow of a Newtonian fluid in a 

section of the Co-Kneader. They performed their simulation using a modified Flow Analysis 

Network (FAN) method (Tadmor et al., 1974). This method consists in splitting the flow field 

into rectangular cells thus forming a mesh. The continuity equation is then applied to each cell. 

The rheological properties of the fluid and the dimensions and operating conditions of the Co-

Kneader were the same as those used by Booy & Kafka (1987). They presented pressure profiles 

along the flights for different pin positions. With curves of output vs. screw position they 

observed that the output changed in a sinusoidal way. The maximum output was found to be 

when the screw was at 240° and the minimum at 60°. These are the positions in which the axial 

component of the velocity has its maximum and minimum values. They also studied the effects 
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of the pins in the output and found that when the pins are between the flights the effects are 

negligible but when they are in the slices of flights their effect is important. They concluded that 

the effectiveness of the kneader as a distributive mixer was due to the different intensities of local 

flows. The general results obtained by these authors were almost the same as those of Booy & 

Kafka (1987). 

 

Until this point, the two existing works that tried to understand the hydrodynamics of the Co-

Kneader were carried out only taking into account a small section of the mixer (i.e. the elemental 

channel between two interrupted flights showed in Figure  2–7). Elemans & Meijer (1990) took a 

different approach and attempted to model the characteristics of the whole extruder. They 

investigated the effect of two important influences on the drag and pressure flow: the additional 

conveying action produced by the pins and the backflow through the flights slices. One important 

simplification in this work is that in their analysis they do not take into account the oscillatory 

motion of the Co-Kneader. The model they proposed for a Newtonian isothermal pressure and 

drag flow in an unrolled screw channel is 

 

 LLDppind QQQQQQ −−+ε+α−= )1(  (2.6)  

 

This expression represents the overall flow that take into account the drag flow Qd, the plug flow 

by pins Qpin, the pressure flow Qp, the leakage flow over the flights QL and the leakage flow 

through the interrupted flights QLD. There are two additional parameters: ε, an efficiency 

parameter of the pin that determines the amount of plug flow induced by it; and α, a geometrical 

factor given by the aspect ratio of the pins surface over the channel surface. The parameter ε was 

determined with the help of experimental data of output vs. pressure characteristics, filled lengths 

and pressure gradients. What the authors found in their work is that the pins have little influence 

in pumping and filled lengths, contrary to flight slices which have a significant effect on those 

characteristics.  
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Lyu & White (1995) first analyzed the effect of the oscillatory motion in the flow of the Co-

Kneader. They made a momentum balance for a Newtonian fluid and they obtained the velocity 

profiles in the down channel direction 
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and in the cross channel direction 
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Ux(t) and Uz(t) were defined as 

 

 ϕ+ϕπ= sin)(cos)(
dt

tdSDNtU x  (2.9)  

 

 ϕ+ϕπ−= cos)(sin)(
dt

tdSDNtU z  (2.10)  

 

where ϕ is the screw helix angle and S(t) is the stroke of the oscillating screw defined as 

 

 tStS ω= sin)( 0  (2.11)  
 

So is the amplitude of the oscillation and the frequency ω is 2πN/60. 

Taking the velocity profile of the down channel direction (Equation 2.7) they obtained the 

expression for the outflow which is given by 
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where, k the die constant and L the length in the down channel direction. Equation 2.12 

demonstrates that the output at the die will oscillate as a result of the screw motion. That is why it 

is necessary to put a crosshead screw extruder or a gear pump at the end of the Co-Kneader. This 

development however, does not consider the presence of the pins. This analysis was later 

extended to Power-law fluids (Lyu & White, 1996) and to linear viscoelastic fluids (Lyu & 

White, 1997b). Using these analytical flow models, the authors calculated the velocity fields, 

flow rates and pressure profiles in a modular Co-Kneader including the discharge crosshead 

screw extruder. Their calculations began at the die of the crosshead screw extruder and then 

moved backwards to the Co-Kneader screw elements. In this fashion, they obtained 

dimensionless screw characteristic curves for the conveying, mixing and restriction ring 

elements. The Newtonian flow model (Lyu & White, 1995) showed that the conveying and 

mixing element were able to develop pressure but not the restriction ring element. Results with 

the Power-Law fluid (Lyu & White, 1996) indicated that the pumping capacity of all screw 

elements was less than for Newtonian fluids. In the same manner, the linear viscoelastic fluid 

flow model (Lyu & White, 1997b) showed that the deviation from the Newtonian behavior was 

more important for long relaxation times. 

 

The FAN method was also used by Lyu & White (1996) to calculate Non-Newtonian flow fields 

in the mixing and conveying elements. The flow fields that they obtained excluded the pins in the 

barrel. The flow fields showed backward leakage through the flight slices and they showed that 

the backflow was greater for the mixing element than for the conveying element. They concluded 

that the more non-Newtonian the fluid is (i.e. lower power law index n) the more backward 

leakage there is. 

 

Mehranpour et al. (2002a) used a Finite Volume Method (FVM) to numerically simulate the 

Newtonian velocity field in the conveying element. Their model accounted the oscillatory motion 
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of the screw but not the presence of pins. They found that the reciprocating action played a 

significant role in the mixing action of the Co-Kneader because it caused a periodical change in 

the flow field and shear rate distribution in the channel. In a following paper (Mehranpour et al., 

2003a) they extended the study to the mixing element. The results showed that the velocity 

changes during a period of reciprocating motion were greater for the transverse flow than for the 

down channel flow. 

 

2.4.2 Residence Time Distributions 

Mehranpour et al. (2002b) estimated the RTD using the flow model developed by Lyu & White 

(1995). They were able to obtain results for the mixing and conveying elements with a 

Newtonian fluid, taking into account the oscillatory motion but not the presence of pins. They 

found that the RTD in mixing elements was slightly narrower than in conveying elements. By 

using flow fields obtained previously (Mehranpour et al., 2002a, 2003a) Mehranpour et al 

(2003b) predicted the RTD in the conveying and mixing screw elements using an elemental 

trajectory method by CFD. However, contrary to their analytical results, they found that the 

cumulative RTD for the mixing element was wider than that of the conveying element. As a final 

step, Mehranpour et al. (2004) were able to predict the RTD for different screw configurations by 

means of a method similar to additive rule named Cluster Model. 
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2.5 Summary  

In this section, the previously detailed investigations are condensed. They are divided into two 

main categories, experimental studies and flow modeling studies. The summary of the 

experimental studies is represented in Figure  2–8. The classification is based on the topics that 

have been studied experimentally in the Co-Kneader. Figure  2–9 shows the summary of the flow 

modeling studies. The first classification depends on whether it is an analytical or CFD model. 

Next, if the model considers the oscillation of the screw, the pins, or both features. Finally, in the 

case of CFD models, we highlight the method by which the problem was resolved. 

 

 

Figure  2–8. Summary of experimental studies. 
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Figure  2–9. Summary of flow modeling studies. 
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2.6 Analysis of the Literature Review 

The current knowledge about the Co-Kneader extruder is limited, and is concentrated on the 

studies of relatively few authors. The few available comparative studies have shown that in 

certain applications, the Co-Kneader has a better mixing performance compared to other 

equipment. Nevertheless, contrary to single and twin screw extruders, there is not enough 

information. Increasing the knowledge on the mixing and flow mechanisms of this mixer can 

widen the scope of applications in which it can be effectively used. 

 

In this section the current state of knowledge is assessed. The areas where there is a lack of 

knowledge are also identified. 

 

2.6.1 Experimental Characterization 

The experimental studies available so far regarding the Co-Kneader have focused on general 

working parameters of the machine like pressure profiles and filled lengths. Flow characteristics 

like backmixing, which is an important aspect of the flow in the Co-kneader due to the number of 

slices in the screw flight, has been given little attention. Flow models have tried to determine the 

impact of operating conditions on the amount of backmixing by relating it with the pumping 

capacity of each type of screw element, mixing or conveying. However these models simplify the 

geometry by omitting the presence of the pins or they do not consider the oscillating motion of 

the screw. Experimental axial mixing determined by the analysis of RTD has only been examined 

once. It is clear that there is a lack of information regarding the axial mixing capacity of the 

mixer. 

 

Direct flow visualization has been used as a tool to study flows inside mixing processing 

equipment. However, it creates many technical challenges when carried on with extrusion 

machinery working with real polymers. Small glass windows are usually installed on one side of 

the metal barrel. Therefore, axial and thermal expansion of the metal components must be 

accounted for and proper alignment and clearances become critical. Simplified mixers or 
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extruders inside transparent plastic barrels then become a good alternative for direct flow 

visualization. They are used at room temperature with model fluids and they usually give the 

chance to have a larger visualization area. Flow visualization setups of this kind have been used 

in polymer processing equipment. Yao et al. (1997) approximated the geometry of the helical 

channel of a single screw extruder by means of a transparent rectangular cavity with a moving 

top wall. Acrylic (PMMA) barrels have been used to study the mixing process in twin screw 

extruders using dyes (Bigio & Baim, 1991; Sanchez et al., 1997) or colored particles (Ma et al., 

2003). More sophisticated flow visualization techniques, such as Particle Image Velocimetry, 

have required complete extruder models (barrel, shafts and screw elements) made out of acrylic 

(Jaffer et al., 2000). Elemans & Meijer (1990) fitted a Co-Kneader in a Plexiglas barrel, however 

they only used it to directly measure the filled lengths. Even if the Co-Kneader is known to have 

a complex flow due to its operating principle (i.e. oscillation and rotation motion) there is no 

experimental flow visualization studies reported in the literature.  

 

2.6.2 Numerical Simulation 

Several flow models have been developed to represent the flow in the Co-Kneader. Different 

rheological behaviors have also been taken into account. Analytical flow models have considered 

the presence of the pins or the oscillation of the screw in geometries representing conveying or 

mixing screw elements. Computational Fluid Dynamics (CFD) models have simulated the 

passage of only one pin between two flights. Three dimensional geometries have also been 

investigated by CFD taking into account only the oscillation of the screw. The pins at the barrel 

together with the oscillatory motion of the screw are what distinguish the Co-Kneader from other 

extruders. However there are no modeling studies that take into account the interactions of both 

features.  

 

The prediction of the characteristics of the flow like RTD or shear rate depends on the level of 

accuracy of the velocity field. In simple geometries, where analytical models of velocity profiles 

exits, the theoretical calculation of the RTD is straightforward. On the other hand, when more 

complex flows systems are encountered the modeling of the velocity profile, and consequently 
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the prediction of the RTD and other parameters, become more difficult. Simplifications of the 

system being studied have a direct impact on the accuracy of the predicted parameters. 

 

Numerical modeling by CFD as an approach to study complex flow like the one inside the Co-

Kneader, allows for the detailed observation of the three-dimensional flow at any time and at any 

location. By including into the model both the oscillating motion and the pins, a more accurate 

representation of the mixer could be achieved. The tracking of massless tracers allows calculating 

of RTD and other useful distributions for mixing analysis such as the trajectory length 

distribution (TLD) first introduced by Villermaux (1996). 

 

2.6.3 Mixing Analysis in Screw Elements 

Characterization of the different screw elements has mainly focused on the determination of their 

pumping capacities. This has been achieved by means of experiments or flow models. Flow 

models have explored the effect of rheological properties. Results on shear rate during the 

passage of one pin in a screw channel have been reported, however values of shear rate for the 

individual elements were only obtained without accounting for the pins. Also the existing RTD 

calculations for each type of element were obtained with no account of the pins. 

 

The interchangeable modular screw elements of the Co-Kneader give the flexibility to change the 

screw configuration. It has been found that the screw profile has an impact on the distributive and 

dispersive capacity of the mixer. The impact can be of such an extent that it can make the Co-

Kneader better or worse than other continuous mixers for a particular application. However, 

contrary to twin screw extruders, there are no general guidelines as to how to assemble a screw 

profile according to the application. More information and a more complete characterization of 

the screw elements in the Co-Kneader are thus needed. 
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CHAPTER 3 

SPECIFIC OBJECTIVES 

 

As mentioned in chapter 1, the general objective of this research is 

 

To develop a reliable description of the flow mechanisms and mixing in the Co-Kneader 

and to clarify how process variables impact the mixing capacity of the machine in order to 

facilitate the implementation of tailored screw profiles according to the application. 

 

 

Based on the information already presented, the specific objectives of this thesis are: 

 

1. To develop flow visualization techniques that will allow for the mixing mechanisms in 

the Co-Kneader to be evidenced and the effect of the operating conditions to be 

determined. 

 

2. To assess the hydrodynamic characteristics of the Co-Kneader using a three dimensional 

numerical model that includes both the oscillating motion of the screw and the pins on the 

barrel. 

 

3. To better characterize the hydrodynamics and mixing abilities of each type of screw 

element.  
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CHAPTER 4 

OVERALL METHODOLOGICAL APPROACH 

 

In this chapter a brief overview of the research strategy followed for the achievement of the 

specific objectives of the project is presented. Chapters 5 through 7 constitute the results sections 

of this thesis. Each of these chapters was conceived as a scientific publication, therefore each of 

them include the details of the corresponding methodology and techniques. 

 

The research strategy followed in this thesis is summarized in Figure  4–1. It is divided in two 

main parts, experimental and numerical simulation. 

 

 

Figure  4–1. Research strategy. 

 

γ&
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The experimental part relies on the design and building of a fully transparent laboratory-scale Co-

Kneader (Figure  4–2). Details about the dimensions and other characteristics of the setup can be 

found in Chapters 5 and 6. Design drawings and details on the screw profile and pin 

configuration can be found in Appendix 1. Suitable operating conditions were determined in 

which the screw could be operated fully filled. Then, flow visualization experiments of the 

mixing mechanism were performed as well as a flow characterization by RTD analysis. The 

results of this first step are presented in Chapter 5. 

 

 

Figure  4–2. Experimental setup. 
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The numerical simulation part consisted in the 3D modelling of the Co-Kneader using a FEM-

based CFD code (Poly3D™). It involved the generation of two 3D geometries, one of the barrel 

and the pins, and the other of the screw profile. The geometries were done following the 

dimensions and configuration of the experimental setup. Meshes based on these two geometries 

were then generated. The next step consisted in the determination of boundary conditions and 

motion equations for the moving parts of the geometry (i.e. the screw). The motion equations 

accounted for the rotational and reciprocating movements of the Co-Kneader. Details about the 

meshes, boundary conditions and motion equations are found in Chapter 6. The results of the 

flow simulations were then validated with experimental values of pressure. With a particle 

tracking technique, RTD and TLD were obtained. Results were validated with experimental RTD 

as well. Results obtained in this stage are detailed in Chapter 6. 

 

The third and final step was based on the numerical model previously developed. It consisted in 

performing a mixing analysis of the individual screw elements. To this effect, results of 

extensional efficiency, shear rate and axial dispersion coefficients were obtained. Spatial 

distributions of tracers were also obtained. These results are presented in Chapter 7. 
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CHAPTER 5 

EXPERIMENTAL FLOW VISUALIZATION AND RESIDENCE 

TIME DISTRIBUTIONS IN A CO-KNEADER 

 

Magdalena Brito-Bazan, Louis Fradette, Philippe A. Tanguy 

 

URPEI, Department of Chemical Engineering, École Polytechnique de Montréal P.O.Box 6079, 

Station Centre-Ville, Montreal, Que., Canada H3C 3A7 

 

 

5.1 Presentation of the article 

This article was submitted to the International Polymer Processing Journal. 

 

This article tackles the first of the specific objectives which was to develop flow visualization 

techniques that will allow for the mixing mechanisms in the Co-Kneader to be evidenced and the 

effect of operating conditions to be determined. 

 

The article presents for the first time experimental flow visualization results in a fully transparent 

laboratory Co-Kneader. Flow visualizations were performed by means of an acid-base 

discoloration method followed with an image analysis technique here for the first time applied to 

continuous systems. Residence times distributions analysis is also presented. 

 

 

Keywords: Flow visualization, RTD, Co-Kneader, backmixing, Newtonian fluid 
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5.2 Abstract 

Flow patterns and residence time distributions have been investigated in a transparent laboratory-

scale Co-Kneader with a viscous fluid and different combinations of operating conditions. An 

image analysis technique, already successfully applied in stirred tanks, has been applied here for 

the first time in a continuous system. The flow visualization results are presented as mixing 

curves, which show quantitatively the evolution of the macromixing along the Co-Kneader. It has 

been found that the image analysis technique gives new insight into the mixing mechanism of the 

Co-Kneader and may be used as a simple experimental method to quantify the degree of 

backmixing. Residence time distributions have been used to obtain axial dispersion coefficients. 

A comparison of the cumulative distribution functions between different systems is also 

presented.  

 

 

5.3 Introduction 

Mixing is a very important and complex aspect of the majority of the polymer processing 

operations. End products often require blends of different base polymers, as well as regular 

incorporation of additives, fillers and reinforcing agents among others. Screw extruders in which 

polymer processing operations are carried out, act as continuous mixers. Among them, single and 

twin screw extruders are the most common. Sometimes however, the mixing is very inefficient 

(Rauwendaal, 2009). In order to improve the mixing action, design modifications are made to the 

screw and/or barrel. The Co-Kneader is a modified single screw extruder. It has an oscillatory 

screw with sliced flights fitted into a barrel that has stationary pins. The combination of the 

reciprocating movement and the presence of the pins results in a self-wiping action not found on 

others single screw extruders. The screw consists of interchangeable modular screw elements that 

are assembled into a shaft. This gives the flexibility to change the screw configuration depending 

on the application. The Co-kneader has been used in a wide variety of mixing applications, such 

as the manufacture of carbon electrode paste, rocket propellant fuel, food processing, and plastics 

compounds among others (Rauwendaal, 1991a). 
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Published studies about the Co-Kneader are scarce compared to other extrusion equipment like 

single screw and twin screw extruders. Studies focused on the application of the machine in 

compounding processes were the first to be available (Stade, 1977, 1978; Todd, 1987). 

Subsequent experimental studies investigated the influence of operating conditions on filled 

lengths and pressure generation (Elemans & Meijer, 1990) as well as temperature profiles and 

residence time distributions (RTD) (Lyu & White, 1995). More recently, efforts have been made 

to model the Co-Kneader using RTD for specific uses such as a polymerization reactor for 

acrylates (Troelstra et al., 2002) and for manufacturing absorbent composite materials (Hoppe et 

al., 2002). Numerical investigations have also been performed in order to study in more detail the 

complex flow of the Co-Kneader (Brzoskowski et al., 1991; Lyu & White, 1996, 1997b; 

Mehranpour et al., 2002a, 2003a). 

 

An important flow characteristic in an extruder is backflow also known as backmixing. In single 

screw extruders, backmixing is a desirable feature since it promotes axial mixing, which is 

responsible for achieving the reduction of striation thickness (Rauwendaal, 2009). However, a 

large degree of backmixing can result in longer residence times and consequently increase the 

risk of material degradation. In conventional extruders, backmixing is due to pressure gradients in 

the channel and leakage flow through the clearances (Manas-Zloczower, 2009). Therefore, 

because of the number of slices in the screw flight of the Co-Kneader, backmixing becomes an 

important aspect of the characterization of this type of extruder. Flow models have tried to 

determine the impact of the operating conditions on the amount of backmixing by relating it with 

the pumping capacity of each different screw element (i.e. conveying or mixing element). 

However the models simplify the geometry by omitting the presence of pins (Lyu & White, 1995, 

1996) or they do not consider the oscillating motion (Elemans & Meijer, 1990). The RTD in 

conventional extruders has a spreading effect superimposed on plug flow, which is caused by the 

backmixing (Manas-Zloczower, 2009). The extent of axial mixing can then be determined by the 

examination of the RTD. Lyu & White (1998) reported RTD results obtained with polystyrene 

and aluminum flakes as tracers. Their results showed that for a given screw speed, as the feed rate 

increased the average residence time decreased; also for a fixed feed rate, as the screw speed 

increased the RTD narrowed and tended to lose its long tail. Shon et al. (1999) compared the 

RTD of a Co-Kneader, a continuous mixer, an intermeshing co-rotating twin screw and a 
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counter-rotating twin screw extruders. Using polypropylene and aluminum flakes, they found that 

the Co-Kneader had the longest residence time and the broadest RTD, which according to the 

authors, could mean that the Co-Kneader had the best distributive mixing. More information is 

needed however, regarding the axial mixing capacity of the machine. 

 

By direct visualization of the flow inside the Co-Kneader, the flow structure and therefore the 

backmixing could be studied in more detail. Yet, direct visualization of the mixing and fluid 

flows in extrusion machinery with real polymers creates many technical challenges. Proper 

alignment and clearances are critical when glass windows are installed on the side of a metal 

barrel. Axial and thermal expansion of the metal components must be accounted for as well, 

otherwise the window can crack or break (Manas-Zloczower, 2009). As a consequence these 

types of windows are usually small thus limiting the visualization area. To overcome these 

restrictions, simplified mixers or extruders inside transparent plastic barrels are used at room 

temperature with model fluids, which gives the possibility to visualize the complete flow 

behavior. Yao et al. (1997) approximated the geometry of the helical channel of a single screw 

extruder by means of a transparent rectangular cavity with a moving top wall. Acrylic (PMMA) 

barrels have been used to study the mixing process in twin screw extruders using dyes (Bigio & 

Baim, 1991; Carneiro et al., 2002; Sanchez et al., 1997) or colored particles (Ma et al., 2003). 

More sophisticated flow visualization techniques, such as Particle Image Velocimetry, have 

required complete extruder models (barrel, shafts and screw elements) made out of acrylic (Jaffer 

et al., 2000). Regarding the Co-Kneader, the only available visualization study is the work by 

Elemans & Meijer (1990). They fitted a Co-Kneader in a Plexiglas barrel and they measured 

filled lengths. Even if the Co-Kneader is known to have a complex flow due to its operating 

principle (i.e. oscillation and rotation motion) there is no experimental flow visualization studies 

reported in the literature. 

 

In this work we report for the first time experimental results of flow visualization in a fully 

transparent Co-Kneader as well as residence time distributions. The objective is to gain a better 

understanding of the mixing mechanism in the Co-Kneader including the effect of operating 
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conditions on backmixing. An approach based on mixing curves is being applied for the first time 

to a continuous mixer. 

 

 

5.4 Methods 

5.4.1 Discoloration technique 

A variety of flow visualization techniques have been used in stirred tanks over the years (Mavros, 

2001). Among them, the single-indicator acid-base discoloration method is a practical non-

intrusive global technique. It is based on following the color change of a solution containing an 

indicator, when an acid or alkaline solution generating a fast reaction is added. This technique has 

been applied to analyze flow patterns qualitatively and to determine mixing times in stirred 

vessels (Ascanio et al., 2002). 

 

Flow visualization experiments were performed in this work using the discoloration method. An 

advanced image analysis technique developed by Cabaret et al. (2007) was then used in order to 

analyze the results. This method has been used to successfully determine the macromixing time 

in several stirred tank studies and has demonstrated to be highly reproducible and robust (Bonnot 

et al., 2007; Guntzburger et al., 2009; Iranshahi et al., 2007). 

 

The image analysis technique consists in recording a video during the color change experiments. 

Images from the video are then sampled at a known rate. Next, the fluid area from each image is 

defined with imaging software and the rest is removed (i.e. the impeller or baffles). The resulting 

images are then analyzed individually using in-house analysis software coded in java. Using the 

Red-Green-Blue color model, the program determines the intensity of the green color for each 

pixel. An individual green threshold value is defined by comparing the first unmixed picture and 

the last fully mixed picture. By comparing its green value with the threshold a pixel can be 

considered mixed or unmixed. The curves resulting from this image analysis show the percentage 

over time of mixed pixels M (%), which is defined as 
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This analysis technique proved to give more information than the single mixing time in stirred 

tanks and it provided a picture of the mixing process over time (Cabaret et al., 2007). To the best 

of our knowledge it has never been applied to a continuous system. 

 

5.4.2 Residence Time Distributions 

The analysis of residence time distributions (RTD) (Danckwerts, 1953) has proved to be a useful 

tool to understand the characteristics of the flow in extrusion equipment. It is based on the fact 

that depending on the geometry and hydrodynamics of the system, fluid elements spend different 

amounts of time to pass through the system. The distribution of these times of passage is called 

the residence time distribution of the fluid and is represented by the function E(t) (Levenspiel, 

1999). Experimentally, the RTD function is the direct response to a tracer impulse. It is obtained 

by recording the concentration of tracer C(t) as a function of time and then normalizing this 

function by the total amount of tracer injected: 
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The first moment of the E(t) curve is the mean residence time tm and is defined by 
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The second moment is known as the variance σ2,  
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which gives a measure of the spread of the distribution around the mean. 

 

 

5.5 Experimental procedure 

5.5.1 Experimental setup 

The experimental setup consisted of a transparent laboratory-scale modular Co-Kneader. The L/D 

of the Co-Kneader is 11 and the internal diameter of the barrel is 50.8 mm. The amplitude of the 

oscillation S0 is 7.5 mm and for each complete turn the screw goes back and forth one time 

(Figure  5–1). 

 

The barrel and the screw elements were specially manufactured from Plexiglas. The barrel has 

two inlets and an outlet; in one inlet the fluid is fed and in the other the tracer is injected. There 

are three rows of pins along the length of the barrel. Each pin is cylindrical, has a diameter of 

4.2 mm and is 7.4 mm long. The fluid is pumped from a feeding tank to the inlet of the barrel by 

a progressive-cavity pump (PCM Pumps); nevertheless precautions were taken to avoid any 

effect on the flow inside the Co-Kneader. The flow delivered by the pump was monitored by an 

oval gear flow meter (Kobold Instruments) connected to a computer. 

 

There are different types of screw elements available for this kind of extruder. In this study we 

used conveying elements (EZ) and mixing elements (KE), which are shown in Figure  5–2. 
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Figure  5–1. Screw motion of the Co-Kneader (Buss-Coperion brochure 2004) 

 

 

Figure  5–2. Different screw elements. 
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The EZ element has a single flight and one screw slice. The KE element has two flights and three 

screw slices. To each element corresponds a different pin configuration, therefore the distribution 

of the pins along the barrel depends on the screw profile. For the EZ element there is one pin in 

each of two rows and for the KE element there are two pins in each of the three rows. Detailed 

dimensions of the screw elements are summarized in Table  5-1. The screw configuration used in 

this work is shown in Figure  5–3. It comprises two conveying sections of as much as 5 elements 

each, and a mixing section of 8 elements. 

 

Table  5-1. Geometrical configuration of the screw elements. 

[Unit: mm] KE EZ 
Inside diameter of barrel, Db 50.80 50.80  
Outside diameter of screw, Do 50.20 50.20  
Screw channel width, W 10.56 21.33  
Screw channel depth, H 8.20 8.20  
Length of one element, Le 30 30  
Flight angle, ϕ 9.37 9.37  
Width of slice, s 8.53 8.53  
Flight thickness, e 4.32 4.32  
Number of flights 2 1  
Number of slices 3 1  

 

 

 

Figure  5–3. Studied screw profile 

 

Each experiment was filmed with a digital CCD camera (Digital Handycam DCR-PC101, Sony). 

A rectangular water-filled chamber of 125 mm x 125 mm x 630 mm encased the barrel in order 
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to minimize optical distortions due to its curvature. White sheets of paper were used as light 

diffuser on the chamber in order to achieve homogenous illumination. 

 

A homemade 2-pin conductivity probe was placed at the outlet of the Co-Kneader (Figure  5–3). 

The probe consists of stainless steel electrodes in a cylindrical casing of the same material which 

is sealed with Teflon caps. The electrodes are connected to an alternating current supply in order 

to prevent polarization or electrolysis. The measured output from the conductivity probe is 

collected on a computer using a data acquisition card. 

 

5.5.2 Materials 

An aqueous solution of corn syrup was used. The solution had a concentration in weight of 82% 

which corresponded to a Newtonian viscosity μ of 0.2 Pa·s and a density ρ of 1270 kg/m3. A 

Bohlin Viscometer 88-BV with a Couette configuration was used to determine the rheological 

properties. Since the fluid had a low viscosity, the experimental setup was adjusted to avoid any 

flow induced by gravity. 

 

Bromocresol purple was used as the indicator for the discoloration technique. The tracer solution 

injected into the Co-Kneader was prepared by adding 1.2% w/w of table salt (NaCl) and 1% v/v 

of 10N HCl solution to a given quantity of corn syrup/indicator solution. 

 

5.5.3 Operating conditions 

Each experiment was conducted having the Co-Kneader completely filled. Care was taken in 

order to eliminate all the bubbles in the fluid, since they cause interference with the image 

analysis technique. The tracer was injected into the second barrel inlet of the Co-Kneader (Figure 

 5–3) while the system was stopped; however, the low viscosity fluid quickly developed its 

velocity profile. By controlling the angular position of the screw we could ensure that the tracer 

did not leaked through the screw flight slices into the next screw channel. The camera, as well as 
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the computer, started to record each experiment moments before the system was initiated and it 

was stopped when the conductivity probe output returned to the baseline. Fifteen operating 

conditions (Table  5-2) were tested, with three repetitions for each condition. We kept the system 

running for 3 minutes after each repetition as well as after changing operating conditions, to 

ensure that no tracer was still in the system. 

 

Table  5-2. Operating Conditions 

Run no. N (rpm) Q (kg/h) 
1 50  5.5  
2 50  6.7  
3 50  7.8  
4 50  8.8  
5 50  10.3  
6 75  12.5  
7 75  14.0  
8 75  15.2  
9 75  16.5  
10 75  17.8  
11 100  20.4  
12 100  21.7  
13 100  23.1  
14 100  24.3  
15 100  25.7  

 

5.5.4 Discoloration technique 

The first step of the discoloration technique is the incorporation of the indicator into the bulk 

glucose solution. The quantity of indicator in the fluid has a direct impact on the sharpness and 

intensity of the resulting color. A small quantity will yield pale colors, making the detection of 

the color change difficult. For the application of the technique in stirred tanks, Cabaret et al. 

(2007) recommended a concentration of 0.0043g of bromocresol purple per liter of solution. 

However, in our case this quantity was not enough to observe a bright and contrasting color; 

therefore the concentration of bromocresol purple had to be increased. In this work 0.016g of 

bromocresol purple was added per 1L of the corn syrup solution. The experiments followed the 

color change from purple (alkaline color) to yellow (acid color); therefore the corn syrup solution 

was set to purple by adding aqueous 10N NaOH solution. 
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The discoloration experiments were recorded showing the Co-kneader lengthwise in order to 

observe the color change evolution from the inlet to the exit. The injected tracer reacted and 

changed the bulk color gradually from purple to yellow as the mixing took place. The captured 

videos were then analyzed using the method proposed by Cabaret et al. (2007) to quantify the 

macromixing evolution along the Co-Kneader. Following the technique, one image per second 

was sampled from each video. With imaging software, the shaft was removed from each picture 

leaving two fluid areas, one above and one below (Figure  5–4). The upper fluid area was chosen 

as the fluid-only area to be analyzed since the lower part contains pins. The flights of the screw 

could not be removed from the images due to their complicated geometry; however, since the 

screw elements are transparent we do not expect them to greatly influence the results. 

 

 

Figure  5–4. Example of video frame and area to be analyzed. 

 

This image analysis technique is applied straightforward in stirred tanks as videos are usually 

recorded until a uniform yellow color is achieved. However, in a continuous system with a pulse 
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injection, this condition is never reached since the system will gradually return to its purple 

starting point. Therefore, a picture showing the fluid being completely yellow was used only as a 

reference.  

 

5.5.5 Residence time distributions 

The residence time distributions (RTD) were determined using a stimulus response technique. 

The salt in the tracer solution acts as the electrolyte that will produce a change in the conductivity 

of the system, given that the corn-syrup solution without tracer has a very low conductivity. The 

conductivity of the solution is found by measuring the amount of current obtained when a 

potential difference is applied to the electrodes in the conductivity probe. Since in a solution the 

current flows by ion transport, an increasing concentration of ions in the solution will result in 

higher conductivity values. The conductivity probe in the experimental setup monitored the local 

conductivity as a function of time. According to Brown et al. (2004) the data obtained by 

conductivity probes must be normalized to eliminate the effect of probe gain. The data is 

normalized between an initial zero value C0 measured before the addition of tracer, and a typical 

stable value C∞ measured after the test is complete. The normalized output is obtained by 
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However, in our results the value of C∞ - C0 was very close to zero, which meant that our probe 

did not have any gain effect. Therefore the data was only shifted so that the baseline 

corresponded to a value of zero. 
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5.6 Results and discussion 

5.6.1 Discoloration technique 

Since this was the first time that mixing curves were obtained for a continuous mixer, the first 

step was to determine the acid concentration to be injected as the tracer into the system. 

Preliminary results showed that high acid concentrations caused all the fluid in the system to turn 

to yellow. On the other hand, the color change resulting from very small acid concentrations 

vanished in the bulk fluid. In both extreme cases, the discoloration experiments did not reveal 

any mixing pattern. A suitable acid concentration able to generate a sharp color change of only a 

portion of the fluid volume was thus looked for. In order to achieve this, four different 

concentrations of HCl were tested for the same operating condition and the mixing curves were 

obtained (Figure  5–5). It is important to note that even in a static system the tracer would 

eventually become mixed with the bulk fluid by means of molecular diffusivity. However, the 

time scale of this process is much larger than the time scale of the experiments, therefore in this 

case the molecular diffusivity of the tracer is negligible. 

 

 

Figure  5–5. Mixing curve as a function of acid concentration, N = 50 rpm, Q = 10.3 kg/h. 
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As the concentration of acid is raised, the maximum value of M and the residence time increase. 

This was expected because as more acid is reacting, more fluid volume changes color; therefore it 

takes more time to leave the system. The shape of the curve however is different for each 

concentration. All the curves show two inflection points. In all cases, M increases from t = 0 s 

until the first point. Then, between the first and the second inflection point, the slope of the curve 

gradually increases as acid concentration increases. For the two lower concentrations, M starts to 

gradually decrease, while for the two higher concentrations a higher value of M is reached. Then, 

from the second inflection point on, M decreases more rapidly in all cases. This effect, which is 

more noticeable when 0.05 ml of HCl is injected, has to do with the different sections of the 

screw profile and it will be explained in more detail later. All the experiments were then carried 

out with a tracer having 0.05 ml of HCl. 

 

The reproducibility of the image analysis technique is shown in (Figure  5–6). The mixing curves 

obtained after the image analysis present very small variations, which mean that the technique is 

as robust for continuous systems as for stirred tanks. 

 

 

Figure  5–6. Mixing curve obtained for the reproducibility test, N = 50 rpm and N = 100 rpm. 
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Mixing curves obtained at N = 75 rpm for different flow rates are showed in Figure  5–7. For 

smaller flow rates the time spent inside the system increases. However, the general shape of the 

curve remains the same. A similar behavior was observed for the other two screw speeds. 

 

 

Figure  5–7. Effect of flow rate on the mixing curve at N = 75 rpm. 

 

To be able to compare all operating conditions, the mixing curves were normalized by dividing 

the time by the theoretical mean residence time defined as V/Q, where V is the volume of the 

system, thus obtaining θ, a dimensionless time (Figure  5–8). The variation between the different 

conditions is not very significant. The maximum value of M is approximately the same for every 

curve, around 65% ±5%, which as mentioned earlier, depends on the quantity of acid being 

introduced into the system. Among the screw speeds, the difference in θ is only 0.1, which equals 

to a residence time 10% larger that the theoretical value obtained by V/Q. A slight tendency of 

the higher screw speeds towards this bigger value of θ is observed, which could mean a larger 

degree of backmixing. 
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Figure  5–8. Normalized mixing curves, all conditions. 

 

Figure  5–9 presents the mixing curve obtained at 50 rpm and 10.3 kg/h. As mentioned earlier, 

the curve shows three different regions, which are related to the different sections of the screw: 

two conveying sections with a mixing section in between. From the start of the experiment until 

M ≈ 55% (Figure  5–9a) the extent of the mixed zone steadily increases. This corresponds to the 

mixed zone extending from the first conveying section to about two thirds into the mixing 

section. Then, as it goes forward into the mixing section (Figure  5–9b) M remains constant for a 

short time until it starts to increase again to reach a higher value of approximately 65%. This last 

point represents the moment when the mixed part of the fluid gets into the last conveying section 

(Figure  5–9c). Later on, the mixed region leaves the system gradually. It can be concluded that 

the different rates at which the mixed region expands (i.e. the slope m on the mixing curve) 

depend on the type of screw element. The value of the slope therefore gives an insight into the 

behavior of the flow. A slope of 0 indicates that the extent of the mixed zone remains constant 

trough time. If the slope changes from m1 to m2 and m2 is smaller than m1, then the mixed zone is 

expanding at a slower rate than previously in time, which may indicate the presence of backflow. 
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Figure  5–9. a) Discoloration area in the first conveying zone. b) Discoloration area in the mixing 
zone. c) Discoloration area in the second conveying zone. d) Mixing curve at N = 50 rpm and 
Q = 10.3 kg/h. 

 

By performing a linear fitting in each region of the mixing curve as showed in Figure  5–10, we 

can obtain the value of the slope which can be expressed as an axial mixing rate mr. This mixing 

rate can be defined as the increase in axial mixed area in time. Figure  5–10 shows the value of 

the mixing rates obtained in each of the three regions of the mixing curve for all experimental 

conditions. We can clearly see the sharp change of the mixing rate depending on the screw 

section. It is interesting to see that the value of mr2, which corresponds to the screw mixing zone, 

is not affected by either the screw speed or the flow rate. In this study we worked with a fixed 
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screw profile, however the effect of the number of screw elements on the mixing rate should be 

investigated. 

 

 

Figure  5–10. Mixing rates as a function of flow rates. 

 

The results obtained by the discoloration technique together with the image analysis technique 

are preliminary The observed trends must be confirmed by exploring wider ranges of operating 

conditions as well as fluids with different rheological behaviors. 

 

5.6.2 Residence time distributions 

The reproducibility of the measurements obtained with the conductivity probe is demonstrated in 

Figure  5–11. The RTD curves for N = 75 rpm at different flow rates, are shown in Figure  5–12. 

For clarity of representation only the curves of three flow rates are plotted. It is observed that as 

the feed rates increase the residence times become shorter and the distributions become narrow. 

This behavior was observed for all operating conditions. Mean residence times were determined 
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by Equation 5.3 and the results are presented in Figure  5–13. We can see that the flow rate has 

more impact on the mean residence time at lower screw speeds than at higher screw speeds. 

 

Figure  5–11. Probe output curve showing the reproducibility of the experiments, N = 50 rpm 
Q = 7.8 kg/h. 

 

 

Figure  5–12. RTD curves for N = 75 rpm 
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As a reference, the mean residence times were compared with the theoretical values obtained 

from calculating V/Q. The experimental results are lower than the theoretical values by a relative 

error of ~12%. The difference can be attributed to experimental error and to the closed boundary 

condition assumption made when using Equation 5.3. The closed boundary assumption states 

that there should be no flow or diffusion or upflow eddies at the entrance and exit planes of the 

system (Levenspiel, 1999). 

 

 

Figure  5–13. Average residence time as a function of flow rate for different screw speeds. 

 

The spread σ2 of the RTDs was also obtained (Figure  5–14). The value of σ2 decreases as the 

flow increases for each fixed speed, which means that the distributions become narrower thus 

confirming the previous observation. As with the mean residence time results, it is observed that 

σ2 decreases more rapidly at lower screw speeds. It should be reminded that the RTD results were 

obtained with the restriction of having to work with a fully filled system. Consequently, the effect 

of the screw speed on a fixed flow rate could not be studied. The RTD analysis results presented 
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in this work confirm the observations reported by Lyu & White (1998) regarding the relationship 

of the mean residence time and the variance with the operating conditions. 

 

 

Figure  5–14. Variance of the RTD as a function of flow rate for different screw speeds. 

 

We compared the RTD results obtained for the Co-Kneader to the axial dispersion model 

(Levenspiel, 1999). The normalized RTD curves presented in Figure  5–15, where θ = t/tm, show 

that the curves obtained experimentally are non-symmetrical and that they present a shift from 

the plug flow behavior (i.e. mean centered on θ = 1). Therefore we used the axial dispersion 

model for a large deviation from plug flow and open-open boundary conditions: 
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Figure  5–15. Dimensionless RTD, all conditions. 

 

By fitting this model to the experimental results we can obtain the axial Peclet number Pe defined 

as 

 

 
axD

uLPe =  (5.7)  

 

where u is the mean axial velocity of the flow, L the axial length and Dax the axial dispersion 

coefficient. At Pe higher than 100, this model approximates plug flow behavior. On the other 

hand, a Pe approaching 0 indicates fully mixed flow (Nauman, 2008). 

 

Figure  5–16 shows the fitting of the experimental RTD to the axial dispersion model. The 

number on each curve corresponds to the run number associated to each operating condition as 

listed in Table  5-2. For each screw speed, the lowest and the highest studied flow rates are 

presented. We can observe that the shape of the curve is closely represented by the model. 
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However, the experimental results are more shifted towards small values of θ. It is also observed 

that the ability of the model to fit the experimental results does not change noticeably according 

to the operating conditions. This fact is confirmed by comparing the values of the adjusted R2 

from each fitting (Table  5-3). The Pe values obtained from the model fit are presented in Table 

 5-3. 

 

 

Figure  5–16. Fitting of experimental results with the axial dispersion model. 

 

From the obtained Pe numbers the axial dispersion coefficients were calculated (Equation 5.7). 

Even if the axial dispersion model was not an exact fit, the value of an estimated Dax can yield 

information on the spreading process. Figure  5–17 shows the influence of the flow rate on Dax. 

An increase in flow rate results in an increase of Dax. Since our system is fully filled, the flow 

rate directly affects the amount of backmixing. However it has been found that on partially filled 

systems the variation of flow rate results in a variation of the degree of fill without significantly 

impacting the value of Dax (Troelstra, 1998). The effect of the screw speed is presented in Figure 

 5–18. As the screw speed increases the value of Dax increases following an approximated linear 

dependency. Troelstra (1998) reported this linear dependency and it was attributed to the direct 

relationship between the number of pin passages and the screw speed. With every passage of the 
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pin through the slices in the screw flight the material is pushed backwards and the axial mixing is 

induced. 

 

Table  5-3. Values of Pe and adjusted R2 obtained from the axial dispersion model. 

Run no N (rpm) Q (kg/h) Pe Fit adj. R2 
1 50  5.5  12.47 0.902 
2 50  6.7  14.58 0.908 
3 50  7.8  16.80 0.927 
4 50  8.8  18.23 0.935 
5 50  10.3  18.65 0.940 
6 75  12.5  15.31 0.909 
7 75  14.0  20.45 0.933 
8 75  15.2  21.00 0.935 
9 75  16.5  21.33 0.935 
10 75  17.8  22.96 0.939 
11 100  20.4  19.74 0.931 
12 100  21.7  23.78 0.941 
13 100  23.1  21.84 0.936 
14 100 24.3 23.00 0.943 
15 100 25.7 15.99 0.918 

 

 

 

Figure  5–17. Axial dispersion coefficient as a function of flow rate at different screw speeds. 
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Figure  5–18. Axial dispersion coefficient as a function of screw speed. Flow rate ranges from 

5.5 kg/h to 24.7 kg/h. 

 

A comparison between the Co-Kneader and other systems was performed (Figure  5–19). The 

dimensionless cumulative distribution function F(θ) at two screw speeds was obtained from the 

experimental RTD curves of the Co-Kneader by 

 

 ∫=
θ

θθ
0

)()( dtEF  (5.8)  

 

The F(θ) curve for a single screw extruder was calculated following the RTD model developed 

by Pinto & Tadmor (1970): 
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where ξ is the dimensionless normal coordinate defined as 

 
H
y2=ξ  (5.10)  

 

The dimensionless time θ can be expressed as a function of ξ 
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This model was derived for a Newtonian fluid using the flat plate approximation and considering 

both down- and cross-channel velocity components. Three dimensional models of single screws 

based on computer simulations have proven to yield narrower RTD curves (Joo & Kwon, 1993). 

 

The theoretical F(θ) curve for an empty tube was obtained from 
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Finally, the curves for the Kenics (Chemineer) and the SMX (Sulzer) static mixers were modeled 

by the axial dispersion model (Equation 5.6) using a Pe of 80 and 110 respectively as suggested 

by the manufacturers.  

 

The cumulative RTD curves of the single screw and the empty tube show that the residence times 

are not uniformly distributed around the mean, which leads to an uneven mixing history. The Co-

Kneader and the static mixers on the contrary show a more even and narrow distribution. Both 

systems exhibit axial dispersion as well, which is not found on either the single screw or the 

empty tube. It is clear that the combination of the oscillating motion and the pins in the barrel 

greatly improves the mixing performance of a single screw by promoting axial mixing. It is also 
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observed that the distribution of the static mixers is narrower compared to that of the Co-Kneader 

and has a shorter tail. 

 

 

Figure  5–19. Comparison of RTD between different systems. 

 

 

5.7 Conclusions 

Flow visualization experiments were performed in a fully transparent laboratory-scale Co-

Kneader. An image analysis technique usually used in stirred tanks was applied for the first time 

in a continuous mixer. The mixing curves resulting from the image analysis gave a different 

insight into the mixing mechanisms of the Co-Kneader. This technique may prove useful towards 

the evaluation of the degree of backmixing. However, experiments should be done in well known 

geometries (e.g. a single screw extruder in which the backmixing is known to be minimal) in 

order to have a point of reference and confirm these results. Different Co-Kneader screw profiles 

should also be investigated. 
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Results of mean residences times and variance from the RTD analysis confirmed previous work. 

The axial dispersion model allowed for an estimation of the axial dispersion coefficient. In a fully 

filled system, the dispersion coefficient increases with the flow rate and the screw speed. 

Contrary to the single screw extruder, the pins and the slices in the screw of the Co-Kneader 

generate residence times evenly distributed around the mean residence time. Compared to a static 

mixer the Co-Kneader has a broader residence time distribution. 
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5.9 Notation 

θ Dimensionless time Dimensionless 

μ Newtonian viscosity Pa s 

ρ Density kg/m3 

σ2 Variance s2 

ξ Dimensionless normal coordinate Dimensionless 

ϕ Flight angle  ° 

   

Ci Output from conductivity prove Dimensionless 

C0 Initial zero value from conductivity probe Dimensionless 

C∞ Final stable value from conductivity probe Dimensionless 

D Diameter m 
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Dax Axial dispersion coefficient  m2/s 

Db Inside diameter of barrel mm 

Do Outside diameter of screw mm 

e Flight thickness mm 

H Screw channel depth mm 

N Screw speed rpm 

L Axial length m 

Le Length of screw element mm 

M Mixed pixels % 

m Slope on mixing curve Dimensionless 

mr Mixing rate Dimensionless 

Pe Peclet number Dimensionless 

Q Flow rate kg/h 

S0 Amplitude of screw stroke mm 

s Width of screw slice mm 

t Time s 

tm Mean residence time s 

u Mean axial velocity m/s 

V Volume m3 

W Screw channel width mm 
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6.1 Presentation of the article 

This article was submitted to the Polymer Engineering & Science Journal. 

 

This article aims the second specific objective which was to assess the hydrodynamic 

characteristics of the Co-Kneader using a three dimensional numerical model that includes both 

the oscillating motion of the screw and the pins on the barrel. 

 

This article presents for the first time results obtained with a numerical flow model that takes into 

account both the oscillation of the screw and the pins in the barrel of the Co-Kneader. Results of 

pressure profiles and RTD are validated with experimental data. A trajectory length distribution 

(TLD) analysis is performed here for the first time in a continuous system. 

 

 

Keywords: Co-Kneader, CFD, flow fields, finite element method, RTD, TLD. 
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6.2 Abstract 

The 3D flow inside a Co-Kneader has been predicted taking into account the presence of pins as 

well as the influence of screw oscillation. The studied screw geometry included conveying and 

mixing screw elements. Calculations were made using a MINI-based fictitious domain finite 

element method. Numerical results were first validated by means of experimental pressure vs. 

flow rate characteristic curves. The results were found to be in good agreement with the 

experimental results. To characterize the mixing ability of the Co-Kneader, RTD analysis as well 

as the recently introduced TLD analysis were performed. RTD results were further validated with 

experimental results, showing good agreement. TLD analysis shows that the mixing element 

yields axial mixing whereas the conveying element causes down-channel mixing. Predictions of 

pressure profiles and velocity fields are presented as well as RTD and TLD curves. 

 

 

6.3 Introduction 

Single screw extruders are a very common type of extruders in polymer processing. Because they 

are not very good mixers as such, different devices or adaptations are made to the screw and/or 

barrel to enhance the mixing action. The Co-Kneader is an example of such modifications. It is a 

single screw extruder that combines the usual rotational motion with a reciprocating action. The 

screw is made of interchangeable screw elements that have interrupted flights. In addition, three 

rows of stationary pins are placed along the barrel. The combination of the rotational and 

reciprocating motions of the screw causes the pins to move (relative to the screw) in a sinusoidal 

way through the flight clearances of the screw, which results in a self-wiping action. Applications 

of the Co-Kneader include the manufacture of carbon electrode paste, rocket propellant fuel, food 

processing, and plastics compounds among others (Rauwendaal, 1991a). 

 

Work aimed at understanding the flow inside the Co-Kneader began with Booy & Kafka (1987) 

and Brzoskowsky et al. (1989). Both works modelled the flow of a Newtonian fluid between two 

flights with a single pin passing between them. These investigations were carried out using the 
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finite element method program POLYFLOW™ and a modified Flow Analysis Network (FAN) 

method respectively. The first experimental effort to understand the working principle of the 

extruder was performed by Elemans & Meijer (1990). They worked with a Co-Kneader fitted into 

a transparent barrel and the results obtained were used to validate a simplified model which only 

considered the rotational motion of the screw. Lyu & White, in a series of reports (1995, 1996, 

1997a, 1997b, 1997c, 2000) developed a mathematical flow model that accounted for the 

oscillation of the screw, as well as non-Newtonian and non-isothermal aspects. They analysed the 

local and global characteristics of a Co-Kneader using the FAN method; however, they excluded 

the presence of the pins at the barrel. More recently, Mehranpour et al. (2002a, 2002b, 2003a, 

2003b, 2004) used the model developed by Lyu & White to estimate residence time distributions 

(RTD) for conveying and mixing screw elements separately. They used 3D Finite Volume 

Method (FVM) for the flow fields and a Cluster Model for the RTD. Since they used Lyu & 

White’s model, they neither took into consideration the presence of the pins. The oscillatory 

motion and the pins at the barrel are what distinguish the Co-Kneader from other extruders. 

However there are not modeling studies that take into account the interaction of both features. 

 

The residence time distribution (RTD) is a common tool to describe continuous flow systems. In 

polymer processing, the RTD is used when analyzing the probability of polymer thermal, 

mechanical or chemical degradation (Rauwendaal, 1994). The mixing process in the extruder can 

also be examined with the RTD. In reactive extrusion, the chemical reaction depends on the time-

temperature history of the polymer. Moreover, when in operation, the time needed to purge a 

system or to switch materials is also given by this distribution (Tadmor & Gogos, 1979). 

Therefore, RTD functions have an important role in the design, operation, and selection of 

extruders. In simple geometries (e.g. a pipe) the theoretical calculation of the RTD is 

straightforward since analytical models of velocity profiles exist. In single screw extruders, 

simplifying assumptions help to determine reasonably well velocity profiles (Rauwendaal, 1994). 

On the other hand, when more complex flow systems are encountered the modeling of the 

velocity profile, and consequently the prediction of the RTD, become more difficult. 

Simplifications of the system being studied will then have a direct impact on the accuracy of 

predicted RTD. 
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A different distribution function for mixing analysis in flow systems was introduced by 

Villermaux (1996). The trajectory length distribution (TLD) is based on the distance covered by 

fluid elements. In the same manner that the RTD is constructed from the different times spent by 

fluid elements inside the system, the TLD is defined by the different distances covered by the 

same fluid elements. It was demonstrated that for a given RTD there is a great variety of TLD 

that may be encountered, thus concluding that the TLD yields a different aspect of mixing from 

that shown by the RTD (Villermaux, 1996). It is not easy to experimentally obtain the trajectory 

length of a particle. To this effect, methods like radioactive particle tracking (Kiared et al., 1997) 

or positron emission particle tracking (Fangary et al., 2000) have been used. The TLD approach 

has already been applied in the study of a three-phase fluidized bed (Kiared et al., 1997) and in 

stirred vessels (Campolo et al., 2003; Fangary et al., 2000). However, to the knowledge of the 

authors, it has never been applied to an extruder. 

 

Computational Fluid Dynamics (CFD) is an alternative approach to study complex flows, like the 

one inside the Co-kneader. Numerical modeling by CFD allows for the detailed observation of 

the three dimensional flow at any time and at any location. Additionally, RTD and TLD can be 

simultaneously obtained by tracking massless tracers in the flow field. The prediction of 

residence times from CFD calculations has been extensively reported for continuous mixers such 

as twin screw extruders (Bravo et al., 2004; Ishikawa et al., 2002), single screw extruders with 

mixing sections (Yao et al., 2001) and static mixers (Fradette, 1999; Heniche et al., 2005). 

Trajectory lengths from CFD have only been reported for static mixers (Fradette, 1999) and for a 

stirred tank (Campolo et al., 2003). 

 

The objective of this work is to assess the hydrodynamic characteristics of the Co-Kneader using 

computer simulations. The challenge is to include in the numerical model both the oscillating 

motion and the pins on the barrel. To achieve this, a 3D fictitious domain finite element method 

is used in order to account for the moving parts. A mixing analysis using particle tracking results 

is performed as well. The results presented include pressure profiles, velocity profiles, RTD and 

TLD. The results are validated with experiments. 
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6.4 Methodology 

6.4.1 Experimental Methodology and Setup 

Experimental results were obtained with a laboratory-scale modular Co-Kneader. The internal 

diameter of the barrel Db is 50.8 mm and the L/Db ratio is 11. The amplitude of the oscillation S0 

is 7.5 mm and for each complete turn the screw goes back and forth one time. There are three 

rows of pins along the length of the barrel. Each pin is cylindrical, has a diameter of 4.2 mm and 

is 7.4 mm long. 

 

 
Figure  6–1. Screw elements. 

 

Two different types of screw elements were used, conveying elements (EZ) and mixing elements 

(KE) (Figure  6–1). The EZ element has a single flight and one screw slice. The KE element has 

two flights and three screw slices. There is a different pin configuration for each element. The EZ 

element has one pin in each of two rows and the KE element has two pins in each of the three 

rows. Detailed dimensions of the screw elements are summarized in Table  6-1. The screw 

configuration used in this work is shown in Figure  6–2. It comprises two conveying sections of 5 

elements each, and a mixing section of 8 elements. The pressure build up along the screw was 

measured using open tube manometers placed near the inlet and at the exit of the system (Figure 
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 6–2). RTD results were obtained by means of a conductivity probe placed at the outlet of the 

system (Figure  6–2). 

 

Table  6-1. Geometrical configuration of the screw elements. 

[Unit: mm] KE EZ 
Inside diameter of barrel, Db 50.80  50.80  
Outside diameter of screw, Ds 50.20  50.20  
Screw channel width, W 10.56  21.33  
Screw channel depth, H 8.20  8.20  
Length of one element, Le 30  30  
Flight angle, ϕ 9.37  9.37  
Width of slice, s 8.53  8.53  
Flight thickness, e 4.32  4.32  
Number of flights 2  1  
Number of slices 3  1  

 

 

 
Figure  6–2. Studied screw profile, location of the manometers and of the conductivity probe. 

 

An aqueous solution of corn syrup was used. The solution had a concentration in weight of 82% 

which corresponded to a Newtonian viscosity of 0.2 Pa·s and a density of 1270 kg/m3. Since the 

fluid had a low viscosity, the setup was adjusted to avoid any flow induced by gravity. The tracer 

used for the residence time measurements was prepared by adding 1.2 %w/w of table salt (NaCl) 

to a given quantity of corn syrup solution. The operating conditions used for the experiments are 

listed in Table  6-2. 
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Table  6-2. Experimental operating conditions. 

Run 
no. N (rpm) Q (kg/h) 

1 50  5.5  
2 50  6.7  
3 50  7.8  
4 50  8.8  
5 50  10.3  
6 75  12.5  
7 75  14.0  
8 75  15.2  
9 75  16.5  
10 75  17.8  
11 100  20.4  
12 100  21.7  
13 100  23.1  
14 100  24.3  
15 100  25.7  

 

6.4.2 Numerical Methodology 

The numerical prediction of the unsteady three-dimensional flow field in the Co-Kneader was 

obtained by solving the incompressible Navier-Stokes equations with a finite element method. 

 

 fp
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The 5-node P1+-P1 (MINI) tetrahedral element was used to approximate the velocity and the 

pressure (Arnold et al., 1984). Due to the complex movement of the Co-Kneader screw and 

aiming at simplifying the boundary conditions, an Eulerian frame of reference was used. In order 

to do so, a fictitious domain method known as virtual finite element method (VFEM) was 

employed. Within the VFEM framework, a unique mesh is required during the computations and 

the screw is represented by a set of moving control points that act like kinematic constraints 

(Bertrand et al., 1997; Glowinski et al., 1994). It has been showed that the MINI-based VFEM is 
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a suitable strategy for simulating complex mixing systems since the accuracy obtained is 

comparable with that given by other more costly elements (Coesnon et al., 2008). A portion of 

the surface grid used to generate the control points that represent the screw (virtual object) is 

shown in Figure  6–3b. The complete screw profile (Figure  6–2) was constituted by 

approximately 135 000 control points. 

 

The geometry which represented the fluid field consisted of a 3D cylindrical mesh with an 

annulus section, in which the shape of the pins was subtracted. Additionally, the inlet and outlet 

of the system was accounted for by two short pipe sections placed perpendicularly on each end of 

the main part and facing opposite directions. The model geometry had the same dimensions as 

the experimental setup. The final 3D unstructured mesh required about 1 million elements 

(Figure  6–3a), yielding a system of nearly half a million equations. 

 

 

          
Figure  6–3. Section of the finite element meshing of the Co-kneader. a) 3D mesh of the barrel 

and pins, b) surface grid of the screw elements. 

 

Cartesian coordinates (x, y, z) were used as reference frame in the numerical model. The screw is 

oriented along the z-axis, the barrel cross-section is defined in the x-y plane, and the inlet and 

outlet cross-sections are defined in the x-z plane. The set of boundary conditions employed were 

the following: 
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• Laminar velocity profile in the axial direction at the fluid inlet: vx = vz = 0 and vy given by 

Equation 6.3 in cylindrical coordinates (r, θ, y), where Q is the mass flow rate and 

R=√(x2+z2) is the radius of the inlet pipe. 
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• At the exit Vx = Vz = 0 

• No slip condition at the barrel wall: v = 0 

• Imposed velocity on the control points is given by Equation 6.4 and Equation 6.5, where 

S0 is the amplitude of the oscillation and the frequency ω is 2πN/60. 

 dt
tdSDNv )(

+= π  (6.4)  

   

 tStS ωsin
2
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The fluid properties of the corn syrup solution used in the experimental study were used for the 

simulation work as well. Calculations were done at each 3° of screw rotation, which corresponds 

to 120 time steps to complete a single screw turn and its corresponding back and forth cycle. It 

was observed that the solutions were already periodic after the first screw turn. All simulations 

were run on an IBM P690 cluster and each required approximately 70 hours of CPU time. The 

problem was resolved using a Newton-Raphson iterative scheme available in the commercial 3D 

finite element software POLY3D™ (Rheosoft, Inc.). Both the 3D and the surface mesh were 

generated on I-DEAS (EDS) software, and post-processing visualization was done with Ensight 

(CEI).  
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6.5 Results and discussion 

6.5.1 Pressure profiles 

In order to validate the simulations, numerical results are compared with experimental values in 

the form of flow rate versus pressure characteristic curves (Figure  6–4). The pressure gradient 

ΔP is P2-P1, where P1 is the pressure near the inlet of the system, and P2 the pressure at the exit 

(Figure  6–2). The numerical results of P1 and P2 are averaged values of all the time steps, at the 

same position as the location of the manometers. The relative error calculated between the 

experimental and the numerical results in all cases is less than 8%. However, the difference 

between experimental and numerical results tends to increase slightly as the speed increases. 

 

Figure  6–5 shows the calculated pressure profiles along the length of the Co-Kneader for 

different operating conditions. The different pumping capacities of the two types of screw 

elements are clearly evidenced. Both conveying zones (EZ screw elements) develop most of the 

pressure whereas in the mixing zone (KE screw elements) the pressure remains almost constant. 

The difference in pumping capacities of the screw elements is a result of their geometry; the 

mixing element has two more screw slices than the conveying element, therefore it generates less 

pressure.  

 

Figure  6–6 shows lengthwise calculated pressure distributions in the Co-Kneader. The 

cylindrical surface is placed at mid-channel distance from the screw root. In Figure  6–6a the 

pressure distribution along the complete length of the extruder shows that the pressure gradient is 

developed axially, whereas in standard single screw extruders (no interrupted flights) the pressure 

gradient follows the down channel direction. Figure  6–6b is a close up to the mixing section in 

which the color scale has been modified in order to represent more clearly the differences in 

pressure values around the pin section. Following the down channel direction, the pressure in 

front of the pins is generally higher that behind the pins. 
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Figure  6–4. Experimental and numerical characteristic curves. 

 

6.5.2 Velocity fields 

Figure  6–7 shows velocity magnitude distributions for N = 50 rpm and Q = 10.3 kg/hr in a 

segment of the mixing section. The local effect of the pin can be observed by comparing different 

screw positions. The flow is split and recombined from one channel to another when a pin is 

located between the slices of the screw (Figure  6–7a), thus promoting backflow and distributive 

mixing. However, when there is no pin between the slices (Figure  6–7b) the flow simply 

continues down channel. In the same way, the regular down channel flow between the screw 

flights (Figure  6–7d) is disrupted when there is a pin in the channel (Figure  6–7c). The leakage 

flow associated with the screw slices is affected by the pins as well. In Figure  6–7a, the flow 

appears to accelerate more between adjacent pins than it does when there are no pins (Figure  6–

7b). 
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Figure  6–5. Calculated pressure profiles along the extruder at different screw speeds. 
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Figure  6–6. Pressure distribution in Co-Kneader at 100 rpm; a) complete screw, b) close up of 
mixing section. Pressure values in Pa. 

 

 

Figure  6–7. Calculated velocity field (magnitude) in the mixing section of the Co-Kneader at 
N = 50 rpm and Q = 10.3 kg/hr. 



81 

6.5.3 Particle tracking 

The RTD and TLD results presented in this work were obtained by the particle tracking 

technique, where the motion of massless particles is dominated only by the flow field. The path 

followed by a particle is obtained by the following equation 

 

 
dt
dxxv =)(  (6.6)  

 

where v(x) is the velocity vector, x is the vector position and t is the time. To solve the problem, 

we used the element-by-element approach coupled with a predictor-corrector shooting scheme 

proposed by Heniche & Tanguy (2006). This method, which has been successfully apply to the 

complex geometries of static mixers (Heniche et al., 2005), does not require the use of any time 

steps. Nevertheless, the accuracy of computed trajectories depends on the number of shootings. 

The trajectories used for the RTD and TLD analyses were obtained using 300 shootings per 

element. A problem in particle tracking techniques is the loss of particles due to zero velocity 

regions (no-slip boundary condition) or because the particles exit the computational domain 

(round-off errors on computed coordinates). To minimize the particle loss due to zero velocity 

near the walls, the injected particles were positioned leaving a small gap from the wall. All 

subsequent analyses were then performed based on the number of particles arriving at the exit 

plane. The injection of particles was done following the screw cross section plane x-y. In 

preliminary results it was found that out of a large number of tracers initially injected at the start 

of the screw (location 1 in Figure  6–8) only a very small number, if any, reached the exit plane. 

To tackle this problem without largely increasing the number of particles paths to calculate, the 

screw was divided in three main sections as shown in Figure  6–8. Every particle path was then 

calculated from the injection plane until the end of each section. 
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Figure  6–8. Location of the injection planes. 

 

6.5.3.1 Residence Time Distributions 

Residence time analysis is a very common tool for understanding flow systems. It is based on the 

fact that depending on the geometry and hydrodynamics of the system, fluid elements spend 

different amounts of time to pass through the system. The distribution of these times of passage is 

called the exit age distribution E, or the residence time distribution of the fluid (Levenspiel, 

1999). Experimentally, this function E(t) is the direct response to a tracer impulse and it is 

obtained by normalizing the output concentration by the total amount of tracer injected. 

 

The mean residence time tm is the first moment of the E(t) distribution and is defined by 
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The second moment, which gives a measure of the spread of the distribution around the mean, is 

known as the variance σ2, 
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From the material balance of the system, a theoretical mean residence time can be calculated as 

 

 Q
Vtm =  (6.9)  

 

A cumulative distribution function F(t) can be defined such as 

 

 ∫=
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Numerical RTD was obtained by determining the time (ti) taken by each of the massless tracer 

particles to get from the injection point to the exit plane. According to Nauman & Buffham 

(1983), a fraction of the volumetric flow rate ΔQi has to be associated to each particle. This 

fraction can be approximated by 

 

 iii ArVQ Δ⋅=Δ )(  (6.11)  
 

where V(ri) is the velocity at the point of entry which varies according to the position ri(x,y), and 

ΔAi is a small area element determined by 

 

 
particles

i N
AA =Δ  (6.12)  

 

where A is the injection plane area and Nparticles is the number of particles that reached the exit 

plane. Paired values of ΔQi and ti can then be used to construct a histogram, which once 

normalized will become the E(t) function defined as the fraction of the volumetric flow which has 

a residence time between t and t+dt. Analysing the data in this manner means that the residence 
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time histogram is being weighted according to ΔQ and not ΔA. Weighting by ΔA results in a 

distribution with respect to resident fluid, not flowing fluid (Nauman, 1991). 

 

The number or size of intervals, also called bins, is an important and often subjectively selected 

parameter when constructing a histogram. The choice of bin width has a direct effect on the 

visual representation of the resulting histogram. A very small bin width (i.e. too many bins) 

results in a very irregular histogram where the noise in the data is not sufficiently averaged out 

and the underlying distribution of the data is hard to discern. On the other hand, a very large bin 

width (i.e. too few bins) results in an over-smoothed distribution with little detail. The choice of 

bin width is then critical in RTD analysis since the shape of the distribution helps diagnose faulty 

flows like channelling, internal recirculation or stagnant fluid. To help in the determination of an 

appropriate bin width there are guidelines or rules. Some of them only take into account the 

number of data points (Square-Root Rule) or the data range (Sturges Rule), others consider some 

characteristic of the distribution like the standard deviation (Scott’s Rule) or the interquartile 

range (Freedman & Diaconis, 1981), and others more elaborated formulas seek to minimize the 

mean integrated squared error (Shimazaki & Shinomoto, 2007; Wand, 1997). The results 

presented here are based on histograms constructed with the bin width obtained from the 

Freedman-Diaconis Rule (1981) which is defined as 

 

 3/1
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xIQRh =  (6.13)  

 

where h is the bin width, n is the number of data points and IQR is the interquartile range of the 

data which is equal to the difference between the third and first quartiles. The IQR is a better 

choice over the standard deviation as a measure of the statistical dispersion of the data since it is 

less sensitive to outliers. Additionally, for the purpose of comparison, the bin width was also 

calculated following the Shimazaki-Shinomoto optimization method (Shimazaki & Shinomoto, 

2007). The resulting bin size was of the same value as the one obtained by the Freedman-

Diaconis Rule. 
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Approximately 1000 particles were injected in each of the planes shown in Figure  6–8. In the 

mixing zone only between 11% and 31% of the particles injected reached the exit plane. The 

amount of particles recovered increased with higher screw speeds and higher flow rates. In the 

first conveying zone the fraction of particles recovered at the exit plane was approximately 70% 

and in the second conveying zone approximately 60%. Figure  6–9 shows the start location of the 

particles recovered at the exit plane of each zone for two extreme operating conditions: low screw 

speed-low flow rate, and high screw speed-high flow rate.  

 

 

Figure  6–9. Start positions of the particles injected and of the particles recovered at the exit plane 
in each of the three injection planes: a) N = 50 rpm, Q = 5.5 kg/hr; b) N = 100 rpm, 
Q = 25.7 kg/h.  

 

It is shown that the lost particles are not only located near the walls, where the velocity is zero. 

Therefore the loss of particles must be attributed to the complex geometry in which the round-off 

errors have a more significant impact. In order to determine the impact of the amount of particles 

that reached the exit plane on the value of the mean residence time, two additional computations 

were performed for the operating condition of low screw speed-low flow rate. The results are 

presented in Table  6-3. As we can see the fraction of particles recovered does not increase 
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significantly when more particles are injected. In the same manner, the relative error between the 

calculated mean time and the theoretical value only changes 2%. The required CPU time 

however, increases linearly with the number of particles. 

 

Table  6-3. Effect of the number of particles on the mean residence time. N = 50 rpm, Q = 7.8kg/h 

Injected 
particles 

Recovered 
particles 

Recovered 
Fraction (%)

CPU time  
(h) 

Numerical 
tm (s) 

Theoretical 
tm (s) 

Relative 
error (%) 

1049 118 11.25 58 126.60 151.44 16.40 
2476 337 13.61 136 125.06 151.44 17.42 
5107 662 12.98 266 123.26 151.44 18.61 

 

In order to assemble the RTD curve of the whole screw the individual curves obtained for the 

different sections where combined by means of a convolution operation, which is based on a 

statistically independent hypothesis (Levenspiel, 1999). Therefore, the E(t) function of the whole 

screw can be expressed as 

 

 )()()()( 21 tEtEtEtE EZKEEZ −− ∗∗=  (6.14)  
 

where EEZ-1(t) and EEZ-2(t) are the RTD functions of the first and second conveying sections 

respectively, and EKE(t) is the RTD function of the mixing section. Since the time interval (bin 

size) for each E(t) curve is different, a non-linear regression analysis was performed to fit the data 

and obtain continuous functions. Figure  6–10 shows the E(t) curves for each screw section and 

the resulting convoluted curve for one operating condition. 

 



87 

 
Figure  6–10. Individual and convoluted E(t) curves for N = 75 rpm, Q = 12.5 kg/h. 

 

 
Figure  6–11. Numerical and theoretical mean residence time. 
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The numerical and theoretical mean residence times of the whole system are presented in Figure 

 6–11. For clarity of presentation the graph is presented in logarithmic scale. The difference 

between the numerical and the theoretical values is higher for low screw speeds and low flow 

rates. When all operating conditions are compared, it is found that the higher relative error 

between numerical and theoretical values is 11% and the smallest is 6%. A smaller number of 

data bins in the histogram can diminish this difference; however the shape of the RTD is directly 

affected and detail is lost. It is confirmed that, as reported by other experimental studies (Lyu & 

White, 1998), the flow rate has a greater effect on the mean residence time than the screw speed. 

 

Due to the configuration of the experimental setup (Figure  6–2), the volume occupied by the 

fluid in the experiments differs from the volume considered by the particle tracking analysis. To 

be able to compare the results, the residence time corresponding to the volume difference was 

calculated with Equation 6.9 and then added to the previously obtained numerical value. Table 

 6-4 shows the adjusted numerical results, the experimental results and their standard error, as 

well as the relative error between numerical and experimental values. In all cases the numerical 

mean times are higher compared with the experimental results; however, the relative error is less 

than approximately 13%. 

 

Table  6-4. Numerical and experimental mean residence time. 

Run No.  N (rpm)  Q (kg/h) 
Numerical  Experimental   

Relative 
error 

tm adj. (s)  tm (s)  SE    δ (%) 
1  50    7.8    333.9    309.7    0.9      7.83   
2  50    10.3    259.5    241.1    2.2      7.64   
3  75    12.5    211.0    189.8    1.6      11.19   
4  75    15.2    175.6    162.1    1.4      8.35   
5  75    17.8    151.1    137.9    1.3      9.60   
6  100    20.4    132.5    122.1    0.5      8.50   
7  100    23.1    114.7    108.9    0.6      5.32   
8  100    25.7    106.2    94.7    0.8      12.16   
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Table  6-5 presents the numerical and experimental results of σ2 as well as the relative error 

between the two values. As can be seen, the error for all cases is very high and it does not depend 

on the operating conditions. 

 

Table  6-5. Numerical and experimental variance. 

Run No. N (rpm) Q (kg/h) Numerical Experimental  Relative 
error 

σ2 σ2 SE  δ (%) 
1 50  7.8 1501.1 11139.4 47.9   86.52 
2 50  10.3 705.3 5325.9 28.9   86.76 
3 75  12.5 520.9 4595.0 24.2   88.66 
4 75  15.2 296.4 2497.3 29.1   88.13 
5 75  17.8 148.9 1634.7 18.6   90.89 
6 100  20.4 231.6 1490.3 10.0   84.46 
7 100  23.1 155.2 1082.1 13.3   85.66 
8 100  25.7 102.1 771.7 19.7   86.78 

 

Figure  6–12, Figure  6–13 and Figure  6–14 show the numerical and experimental cumulative 

distribution function for each of the studied screw speeds respectively, expressed in terms of the 

dimensionless time θ  

 

 
mt
t

=θ  (6.15)  

 

We can see that for every operating condition the numerical curves behave more like a plug flow 

than the experimental curves. However, the overall shape of the curves is the same. The 

difference between the numerical and the experimental σ2 values can be attributed to the fact that 

the region in which the measurements were taken is not the same in each case and are 

hydrodynamically drastically different. The experimental readings were taken in the center of the 

outlet pipe (Figure  6–2) whereas the numerical results are calculated from the annular cross-

section exit planes defined on the extruder (Figure  6–9). Another factor contributing to the 

difference is the simplifying assumption of statistically independent regions made in order to 



90 

perform the convolution operation. This condition is very difficult to obtain due to the oscillating 

nature of the Co-Kneader and the slices in the screw. 

 

 
Figure  6–12. Cumulative distribution function for N = 50 rpm. 

 

 
Figure  6–13.Cumulative distribution function for N = 75 rpm. 
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Figure  6–14. Cumulative distribution function for N = 100 rpm. 

 

6.5.3.2 Trajectory Length Distributions 

As previously mentioned, the trajectory length for each particle was obtained simultaneously 

with the residence time. As with the RTD, a normalized trajectory length distribution E(l) is 

defined such that E(l)dl represents the fraction of fluid particles in the exit plane following 

trajectories whose lengths are comprised between l and l + dl. Following the formerly detailed 

procedure to analyse the RTD results, each trajectory length was weighted by ΔQ (Equation 

6.11) and the bin size for the histogram was calculated by Equation 6.13. In the same manner, 

the TLD curve of the whole screw was obtained by convoluting the individual TLD curves 

obtained for each section by means of Equation 6.14 and by replacing t with l. Figure  6–15 

shows the individual TLD curves as well as the resulting convoluted curve for one operating 

condition. 

 



92 

 
Figure  6–15. Individual and convoluted E(l) curves for N = 100 rpm, Q = 25.7 kg/h 

 

 
Figure  6–16. Operating conditions effect on TLD. 
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Figure  6–16 shows the effect of the operating conditions on the cumulative distribution function 

F(l). The effect of the flow rate becomes less noticeable as the screw speed increases. The 

distribution becomes narrower at high screw speeds and high flow rates as well. 

 

As with the RTD, a mean trajectory length lm and a variance σl
2

 can be determined by using the 

value of l instead of t in Equation 6.7 and Equation 6.8 respectively. Additionally, a 

macromixing index M can be defined from lm and a characteristic dimension L of the system 

(Villermaux, 1996) such as 

 

 
L
l

M m=  (6.16)  

 

A large value of M corresponds to an efficient macromixing as fluid elements cover long 

distances with respect to the system size before exiting. In the case of plug flow in a straight tube 

M = 1 because there is no macromixing. 

 

Two characteristic dimensions are of interest in the Co-Kneader: the axial distance along the 

screw Lax and the down channel distance or helical distance Lh. The helical distance is the length 

that the fluid elements would cover if the screw channels were completely closed (i.e. an 

equivalent single screw). Table  6-6 shows the calculated values of the mean trajectory length and 

the macromixing index calculated with both characteristic dimensions. We can see that the mean 

trajectory length is larger at low flow rates and at low screw speeds. The macromixing indexes 

follow the same trend. An interesting result is that the value of Max is much larger than the value 

of Mh. Particles cover approximately 20 times the axial length of the Co-Kneader and 3 times 

more distance than in a closed channel single screw. This result confirms that the mixing in the 

Co-Kneader is mainly the result of axial flows through the slices. 
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Table  6-6. Results of mean trajectory length, variance and macromixing index. 

Run No. N (rpm) Q (kg/h) lm (m) σl
2 

Helical distance Axial distance 
Lh (m) Mh  Lax (m)  Max 

1 50  7.8  16.34 4.74 3.36 4.86 0.505  32.36
2 50  10.3  12.66 1.86 3.36 3.77 0.505  25.06
3 75  12.5  13.96 3.79 3.36 4.16 0.505  27.65
4 75  15.2  11.35 2.35 3.36 3.38 0.505  22.49
5 75  17.8  9.93 1.24 3.36 2.95 0.505  19.66
6 100  20.4  10.75 2.76 3.36 3.20 0.505  21.29
7 100  23.1  9.37 1.75 3.36 2.79 0.505  18.56
8 100  25.7  8.60 1.25 3.36 2.56 0.505  17.04

 
 

Having performed the injection of particles in three different planes according to the sections of 

the screw gave us the opportunity to examine and compare the characteristics of each type of 

element. Figure  6–17 shows that compared with the conveying sections (EZ-1, EZ-2), the mixing 

section (KE) has the longest trajectory length and broadest distribution. If the trajectory length is 

normalized relative to Lax (Figure  6–18) the mixing section still has the longest trajectory, 

approximately 5 times longer than the conveying sections. This was an expected result since the 

mixing element has more screw slices than the conveying elements. As a consequence of this 

there is more backflow and the particles cover more distance before reaching the exit plane.  On 

the other hand, when we compare the trajectory length relative to Lh (Figure  6–19) the conveying 

sections show a much wider distribution and a longer trajectory than the mixing section. This 

may be due to the fact that the conveying element only has one slice, compared to the three of the 

mixing element; therefore the particles must go down-channel with the flow. Additionally it can 

be observed in Figure  6–19 that since the ratio of l/Lh is higher than 1, the conveying element has 

some degree of down-channel mixing. This is probably caused by the cross-channel velocity 

created by the oscillating motion of the Co-Kneader. 
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Figure  6–17. Cumulative distribution functions for the different screw sections. 
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Figure  6–18. Cumulative distribution functions for the different screw sections compared with 
Lax. 
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Figure  6–19.Cumulative distribution functions for the different screw sections compared with Lh. 

 

 

6.6 Conclusions 

Newtonian simulations performed with a 3D MINI-based VFEM were done in order to predict 

the flow inside a Co-Kneader. The calculations took into account both the presence of the pins 

and the screw oscillation. The numerical results were verified by experimental pressure 

measurements and prove to be in good agreement. Pressure profiles along the screw were 

obtained and the different pumping capabilities of the screw elements were observed, that of the 

KE element being the lower. Velocity fields showed that the presence of the pins is crucial in the 

overall mixing performance of the Co-Kneader since they disrupt the steady flow in the screw 
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channel and without them the split and recombination effect could not take place. By means of 

particle tracking, RTD and TLD curves were obtained. The numerical RTD results were in good 

agreement with the experimental measurements. Previously reported effects of operating 

conditions on the residence time were confirmed. The analysis of TLD showed that the different 

screw elements contribute differently to the mixing capacity of the Co-Kneader. The mixing 

element produces axial mixing while the conveying element yields down-channel mixing. A 

more localized analysis (i.e. element by element) should be performed in order to confirm these 

observations. The TLD analysis was performed on an extruder for the first time and it proved to 

be a complementary tool in the study of the mixing mechanisms in the Co-Kneader. 

 

 

6.7 Acknowledgements 

The financial support of the National Science and Engineering Research Council of Canada 

(NSERC) and of TOTAL is greatly acknowledged. Thanks are also directed to CONACYT 

(Mexico) for the financial support of M. Brito-Bazan. 

 

 

6.8 Notation 

δ Relative error % 

θ Dimensionless time Dimensionless 

μ Newtonian viscosity Pa s 

ρ  Density kg/m3 

σ2  Variance s2 

σl
2  Length variance m2 

ϕ Flight angle  ° 

ω Oscillation frequency 1/s 
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A Area  m2 

D Diameter m 

Db Inside diameter of barrel mm 

Do Outside diameter of screw mm 

e Flight thickness mm 

H Screw channel depth mm 

h Bin width Dimensionless 

N Screw speed rpm 

n Number of data points Dimensionless 

Lax Axial length m 

Le Length of screw element mm 

Lh Helical or down-channel length m 

l Trajectory length  m 

lm Mean trajectory length m 

M Mixing index Dimensionless 

P Pressure  Pa 

Q Flow rate kg/h 

R Radius  m 

S0 Amplitude of screw stroke mm 

s Width of screw slice mm 

t Time  s 

tm Mean residence time  s 

V Volume m3 

W Screw channel width mm 
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7.1 Presentation of the article 

This article was submitted to the Advances in Polymer Technology Journal. 

 

This article tackles the third and last of the specific objectives which was to better characterize 

the hydrodynamics and mixing abilities of each type of screw element. 

 

The article presents a mixing analysis on each type of screw element which includes extensional 

efficiency coefficients, shear rate characterization using the Metzner-Otto relationship and 

particle distributions along the Co-Kneader. 

 

 

Keywords: Co-Kneader, CFD, screw elements, shear rate, RTD, extensional efficiency 
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7.2 Abstract 

The mixing and conveying elements of a Co-Kneader have been characterized by means of a 3D 

CFD flow model that included the oscillation of the screw as well as the presence of the pins. 

Numerical results were validated by means of experimental pressure data. The results for each 

screw element include dimensionless characteristic curves, extensional efficiency parameters and 

RTD. It is showed that the pins in the barrel promote extensional flows in the screw channel. For 

the first time, the shear rate relationship of Metzner-Otto was used in order to obtain the constant 

of proportionality Ks for each type of element. The cross-section and axial mixing evolution 

along a mixing section has been studied by means of particle tracking. 

 

 

7.3 Introduction 

A Co-Kneader is a type of extruder that incorporates a reciprocating motion with the standard 

rotating movement of a single screw extruder. The screw has interrupted flights and is fitted in a 

barrel that has three rows of stationary pins. The rotational and reciprocating motions of the Co-

Kneader cause the pins to move relative to the screw, in a sinusoidal way through the flight 

clearances of the screw. Interchangeable modular screw elements assembled into a shaft give the 

flexibility to change the screw configuration. However, contrary to twin-screws extruders, there 

are no general guidelines as to how to assemble a screw profile according to the application. 

 

Since its invention (List, 1950), there have been relatively few studies on the Co-Kneader 

compared to single screw and twin screw extruders. The first studies focused on compounding 

applications using the machine (Stade, 1977, 1978; Todd, 1987). Work aimed at understanding 

the flow inside the Co-Kneader began by modelling the flow of one passing pin between two 

screw flights (Booy & Kafka, 1987; Brzoskowski et al., 1989). The results in both studies 

revealed low pressure values and flow recirculation behind the pin. It was also found that the 

maximum shear rate value occurred between the pin and the flight when the clearance became the 

smallest. 
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Characterization of the different screw elements began by determining their pumping capacities 

by means of experiments and flow models. Elemans & Meijer (1990) obtained experimental 

throughput versus pressure characteristic curves with Newtonian model fluids for conveying, 

mixing and closed-channel mixing elements. They found that conveying elements had a much 

larger pumping capacity than the two mixing elements. Also, they concluded that the presence of 

the pins affected very little the pumping abilities of all the screw elements. The authors also 

developed a flow model which only considered the rotational motion of the screw. Lyu & White 

(1995, 1996, 1997b) developed flow models and calculated dimensionless screw characteristic 

curves for three different types of screw elements: conveying, mixing and restriction ring. The 

Newtonian flow model (Lyu & White, 1995) showed that the conveying and mixing elements 

were able to develop pressure but not the restriction ring element. Results obtained with a Power 

Law flow model (Lyu & White, 1996) indicated that the pumping capacity of all screw elements 

was less than for Newtonian fluids. In the same manner, a linear viscoelastic fluid flow model 

(Lyu & White, 1997b) showed that the deviation from the Newtonian behaviour was more 

important for long relaxation times. 

 

Shear rate results obtained by the Finite Volume technique have been reported for the conveying 

and mixing elements of the Co-Kneader. It has been found that the reciprocating action of the 

screw has a much stronger effect than the down channel flow on both the extent and distribution 

of shear rate in the mixing element (Mehranpour et al., 2003a). On the contrary, this effect is not 

observed on the conveying element, where the reciprocating action only increases the shear rate 

at the upper part of the screw channel (Mehranpour et al., 2002a). The computer simulations 

incorporated the oscillation of the screw; however they excluded the pins on the barrel wall. 

 

Another useful tool to describe continuous flow systems is the analysis of Residence Time 

Distributions (RTD). Mehranpour et al. has determined the individual RTD of a conveying and a 

mixing element by following an analytical method (2002b) and by CFD (2003b). However the 

pins on the barrel wall were also omitted in the models. 
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Other characterizations performed on Co-Kneader screw elements include the calculation of 

leakage flows through the slices in each screw element and results from a non-isothermal flow 

model. Lyu & White (1996) found that the amount of backflow in both the conveying and mixing 

element is a function of the forward and backward motions of the screw, and that it was larger in 

the mixing element. The mixing element also showed to have the lowest temperature rise 

compared to the conveying and restriction ring elements (Lyu & White, 1997c). 

 

The screw configuration of the Co-Kneader has proven to have an impact on fiber breakage in 

compounding glass fiber-reinforced thermoplastics (Shon & White, 1999) and also on the 

development of phase morphology on an immiscible polymer blend (Shon et al., 2008). It is thus 

clear that a more complete characterization of the screw elements of the Co-Kneader is needed in 

order to design the appropriate screw profile according to the needs of each particular application. 

The characterization should also be based on models that take into account both the oscillation of 

the screw and the presence of the pins. 

 

In this study we present a mixing analysis performed on the conveying and mixing elements of 

the Co-Kneader. The analysis is based on flow fields obtained from validated numerical 

simulations which were performed using a 3D fictitious domain finite element method that 

incorporates the oscillation of the screw as well as the pins in the barrel. The presented results 

include dimensionless characteristic curves for each type of element, extensional efficiency 

coefficients, and a shear rate characterization using the Metzner-Otto relationship. Residence 

time distributions and particle tracking results are also reported. The objective is to better 

characterize the hydrodynamics and mixing abilities of each type of screw element in order to 

facilitate the implementation of new screw profiles. 
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7.4 Description of the Co-Kneader 

This study is based on a laboratory-scale Co-Kneader. The internal diameter of the barrel Db is 

50.8 mm and it has a length to diameter ratio L/Db equal to 11. Along the length of the barrel 

there are three rows of pins. Each pin is cylindrical with a diameter of 4.2 mm and a length of 

7.4 mm. In this work, conveying and mixing elements were studied (Figure  7–1). The conveying 

element (EZ element) has a single flight, one screw slice and one pin in each of two rows. The 

mixing element (KE element) has two flights, three screw slices and two pins in each of the three 

rows. Detailed dimensions of the screw elements are summarized in Table  7-1. 

 

 
Figure  7–1. Screw elements. 

 

Table  7-1. Geometrical configuration of the screw elements. 

[Unit: mm] KE EZ 
Inside diameter of barrel, Db 50.80  50.80  
Outside diameter of screw, Do 50.20  50.20  
Screw channel width, W 10.56  21.33  
Screw channel depth, H 8.20  8.20  
Length of one element, Le 30  30  
Flight angle, ϕ 9.37  9.37  
Width of slice, s 8.53  8.53  
Flight thickness, e 4.32  4.32  
Number of flights 2  1  
Number of slices 3  1  
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While the screw rotates, it also goes back and forth once per complete turn. Figure  7–2a shows 

the angular position at which the screw is at the minimum and maximum axial displacement. In 

this study the amplitude of oscillation S0 is equal to 7.5 mm. The rotational and reciprocating 

motions cause the pins to move, relative to the screw flights, in a sinusoidal fashion. As shown in 

Figure  7–2b, every 120° the pins in the mixing elements return to the initial position (i.e. 

between the screw slices).  

 

a)           b)  

Figure  7–2. Screw angular positions. a) Axial displacement. b) Pin passage through screw 
channel. 
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7.5 Methodology 

7.5.1 Numerical methodology 

The unsteady three-dimensional flow field in the Co-Kneader was obtained by solving the 

incompressible Navier-Stokes equations with a finite element method. 

 

 fp
t

=⋅∇+∇+⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
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∂ τρ vvv  (7.1)  
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The 5-node P1+-P1 (MINI) tetrahedral element was used to approximate the velocity and the 

pressure (Arnold et al., 1984). An Eulerian frame of reference was used with the purpose of 

simplifying the boundary conditions, which are difficult to impose due to the complex movement 

of the Co-Kneader.  In order to do so, a fictitious domain method known as virtual finite element 

method (VFEM) was employed. Within the VFEM framework, a unique mesh is required during 

the computations and the screw is represented by a set of moving control points that act like 

kinematic constraints (Bertrand et al., 1997; Glowinski et al., 1994). MINI-based VFEM has 

been showed as a suitable strategy for simulating complex mixing systems since the accuracy 

obtained is comparable with that given by other more costly elements (Coesnon et al., 2008). 

 

The simulated geometry was based on the Co-Kneader described earlier. The 3D mesh which 

represented the fluid field was an annulus section in which the shape of the pins was subtracted 

(Figure  7–3a). The inlet and the outlet of the system were accounted for by two short pipe 

sections placed perpendicularly on each end of the main part and facing opposite directions. The 

final 3D unstructured mesh required about 1 million elements (Figure  7–3a), yielding a system 

of nearly half a million equations. 
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a)         b)  

Figure  7–3. Section of the finite element meshing of the Co-kneader. a) 3D mesh of the barrel 
and pins, b) surface grid of the screw elements. 

 

Flow simulations were obtained for the screw configuration shown in Figure  7–4. It comprises 

two conveying sections of 5 elements each and a mixing section of 8 elements. A portion of the 

surface grid used to generate the control points that represent the screw (virtual object) is shown 

in Figure  7–3b. The complete screw profile (Figure  7–4) was constituted by approximately 

135 000 control points. Both the 3D and the surface mesh were generated on I-DEAS (EDS) 

software, and post-processing visualization was done with Ensight (CEI). 

 

 
Figure  7–4. Screw profile. 

 

Cartesian coordinates (x, y, z) were used as reference frame in the numerical model. The screw is 

oriented along the z-axis, the barrel cross-section is defined in the x-y plane, and the inlet and 
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outlet cross-sections are defined in the x-z plane. The set of boundary conditions employed were 

the following: 

 

• Laminar velocity profile in the axial direction at the fluid inlet: vx = vz = 0 and vy given by 

Equation 7.3 in cylindrical coordinates (r, θ, y), where Q is the mass flow rate and 

R=√(x2+z2) is the radius of the inlet pipe. 
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• At the exit vx = vz = 0 

• No slip condition at the barrel wall: v = 0 

• Imposed velocity on the control points is given by Equation 7.4 and Equation 7.5, where 

S0 is the amplitude of the oscillation and the frequency ω is 2πN/60. 
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The simulated fluid has a Newtonian viscosity of 0.2 Pa·s and a density of 1270 kg/m3. The 

operating conditions studied are listed in Table  7-2. Calculations were done at each 3° of screw 

rotation, which corresponds to 120 time steps to complete a single screw turn and its 

corresponding back and forth cycle. It was observed that the solutions were periodic after the first 

screw turn. All simulations were run on an IBM P690 cluster and each required approximately 70 
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hours of CPU time. The problem was resolved using a Newton-Raphson iterative scheme 

available in the commercial 3D finite element software POLY3D™ (Rheosoft, Inc.). 

 

Table  7-2. Investigated operating conditions. 

Run no. N (rpm) Q (kg/h) 
1 50  7.8  
2 75  12.5  
3 75  15.2  
4 75  17.8  
5 100  23.1  

 

7.5.2 Particle tracking 

The RTD and the particle distributions results presented in this work were obtained by the 

particle tracking technique, where the motion of massless particles is dominated only by the flow 

field. The path followed by a particle is obtained by the following equation 

 

 
dt
dxxv =)(   (7.6)  

 

where v(x) is the velocity vector, x is the vector position and t is the time. We used an element-

by-element approach coupled with a predictor-corrector shooting scheme that do not need the use 

of any time steps (Heniche & Tanguy, 2006). This method has been successfully applied to the 

complex geometries of static mixers (Heniche et al., 2005). An important parameter when using 

this approach is the number of shootings, on which the accuracy of the computed trajectories 

depends. The trajectories used for the analyses presented in this work were obtained using 300 

shootings per element.  
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Figure  7–5. Location of injection planes for the mixing section. 

 

To minimize the particle loss due to zero velocity near the walls, the injected particles were 

positioned leaving a small gap from the wall. All subsequent analyses were then performed based 

on the number of particles arriving at the exit plane. The injection of particles was done following 

the screw cross section plane x-y. Individual mixing elements were studied by injecting 1000 

particles at each of the four planes depicted in Figure  7–5. In the analysis of consecutive 

elements, 1500 particles were injected at plane 1. A similar approach was used for the conveying 

elements.  

 

7.5.2.1 Residence Time Distributions 

Residence time analysis is based on the fact that depending on the geometry and hydrodynamics 

of the system, fluid elements spend different amounts of time to pass through the system. The 

distribution of these times of passage is called the residence time distribution of the fluid and is 

denoted by E(t) (Levenspiel, 1999). Experimentally, this function is the direct response to a tracer 

impulse and it is obtained by normalizing the output concentration by the total amount of tracer 

injected. The mean residence time tm of the distribution is defined by 

 

 ∑
∞

Δ⋅=
0

)( ttEttm  (7.7)  
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The variance σ2, which gives a measure of the spread of the distribution around the mean, is 

obtained by 

 

 ∑
∞

Δ⋅⋅−=
0

22 )()( ttEtt mσ  (7.8)  

 

From the material balance of the system, a theoretical mean residence time can be calculated as 

 

 Q
Vtm =  (7.9)  

 

Additionally, a cumulative distribution function F(t) can be defined such as 

 

 ∫=
t

EdtF
0

 (7.10)  

 

By determining the time ti taken by each of the massless tracer particles to get from the injection 

point to the exit plane, a numerical RTD could be constructed. According to Nauman & Buffham 

(1983), a fraction of the volumetric flow rate ΔQi has to be associated to each particle. This 

fraction is approximated by 

 

 iii ArVQ Δ⋅=Δ )(  (7.11)  
 

where V(ri) is the velocity at the point of entry which varies according to the position ri(x,y), and 

ΔAi is a small area element determined by  
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particles

i N
AA =Δ  (7.12)  

 

where A is the injection plane area and Nparticles is the number of particles that reached the exit 

plane. Paired values of ΔQi and ti can then be used to construct a histogram, which once 

normalized will become the E(t) function defined as the fraction of the volumetric flow which has 

a residence time between t and t+dt. The following RTD results are based on histograms 

constructed with the bin width obtained from the Freedman-Diaconis Rule (1981) which is 

defined as 

 

 3/1

)(2
n

xIQRh =  (7.13)  

 

where h is the bin width, n is the number of data points and IQR is the interquartile range of the 

data which is equal to the difference between the third and first quartiles.  

 

 

7.6 Results and discussion 

7.6.1 Model validation with experimental pressure gradients 

In order to verify the accuracy of the numerical model, pressure gradient results obtained across 

the screw length are first compared with experimental values (Figure  7–6). The experimental 

results were obtained using a laboratory Co-Kneader setup having the same dimensions, screw 

configuration and fluid properties as the numerical model. The relative error calculated between 

the experimental and the numerical results in all cases is less than 8%. Knowing that the pressure 

is the most sensitive numerical variable to match flow rate, we can conclude that we have a good 

agreement between the simulated and the experimental flows. 
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Figure  7–6. Comparison of experimental and numerical results. 

 

7.6.2 Characteristic curves 

As part of a more comprehensive look into the fluid dynamics of the Co-Kneader, characteristic 

curves for each type of element were obtained. Figure  7–7 shows the dimensionless 

characteristic curve for the conveying EZ element and the mixing KE element.  

 

The dimensionless flow rate Q* is defined as 

 

 
xHWv

Q
Q

QQ 2*
max

==  (7.14)  

 

where Q is the imposed flow rate of the simulation, Qmax is the maximum theoretical flow of a 

single screw, H and W are geometrical parameters and vx is the down channel velocity component 

of the screw speed obtained by 
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Figure  7–7. Dimensionless characteristic curve for the different screw elements. 

 

 ϕπ cosNDv sx =  (7.15)  
 

The pressure gradient ΔP is equal to P2-P1, where P1 is the pressure at the inlet of each element 

and P2 the pressure at the exit of that same element. The numerical results of P1 and P2 are 

average values of all the calculated time steps. The dimensionless pressure gradient ΔP* is 

defined by 
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 (7.16)  

 

where ΔPmax is the maximum theoretical pressure gradient of a single screw and Lh is the channel 

length of each screw element; 0.16 m for the EZ element and 0.32 m for the double flighted KE 

element. The intersection with the y-axis gives the maximum flow rate value (when ΔP = 0) and 

the intersection with the x-axis represent the maximum pressure that the screw can generate at 

closed discharge (Q = 0). We can see that even if the maximum flow reached with both elements 
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is the same, the pressure-generating capacity is different. The conveying element has a greater 

pumping capacity than the mixing element; however, compared with a theoretical single screw 

both elements have very little pumping capacity. This is why in practice, the Co-Kneader is 

coupled with a crosshead screw extruder (Rauwendaal, 1991a). The main reason why the Co-

Kneader screw elements have a poor pumping capacity is the presence of the slices in the flights. 

Figure  7–8 shows the unrolled screw channels of both types of screw elements. If we compare 

the length of the slices Ls relative to the length of the channel Lh we found that for the EZ element 

the slices represent about 16% of the total channel length, whereas in the KE element they 

represent 48%. 

 

a)   b)  

Figure  7–8. Unrolled screw channel: a) EZ conveying element, b) KE mixing element. 

 

The results found in this section are qualitatively in agreement with the ones previously reported 

by Elemans & Meijer (1990) and Lyu & White (1995). However a quantitative comparison is 

difficult to perform due to the fact that Elemans & Meijer do not present their results in a 

dimensionless form and Lyu & White performed their calculations using an analytical model that 

considered only the oscillating nature of the screw but not the presence of the pins. 
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7.6.3 Extensional efficiency 

In order to evaluate the dispersive mixing efficiency of the flow inside the Co-Kneader we 

obtained the extensional efficiency α as defined by Manas-Zloczower (1994): 

 

 
ω+γ

γ
=α
&

&
 (7.17)  

 

where γ& is the norm of the rate of deformation tensor and ω is the norm of the vorticity tensor. 

In this manner, the parameter α quantifies the elongational and rotational flow components of the 

velocity field. The base for using α as a tool to evaluate dispersive mixing comes from the 

conclusion that elongational flows are more effective than simple shear flows in the dispersion of 

liquids and solid agglomerates into liquids (Manas-Zloczower, 1994). The extensional efficiency 

coefficient is equal to 0 for pure rotation, 0.5 for simple shear flows and 1 for pure elongation. 

 

It should be highlighted that this criterion, being dependent of ω , is not frame invariant (Rauline 

et al., 1998). However, since in this study the reference frame is kept constant, the value of α can 

be used for comparative purposes. 

 

The extensional efficiency along the Co-Kneader at different angular positions of the screw is 

shown in Figure  7–9. The abscissa represents the axial length of the mixer. The plotted value of 

α corresponds to the average extensional efficiency at the cross-section plane located at a given 

distance along the Co-Kneader. The peaks at the start and at the end of the screw are due to the 

entrance and exit effects of the flow. We can see that the mixing section has a higher value of α 

compared to the conveying sections. 
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Figure  7–9. Extensional efficiency along the Co-Kneader. N = 75rpm, Q = 15.2 kg/hr. 

 

By analysing each separate section of the screw, we can calculate a mean value of α for the 

conveying and the mixing screw elements as a function of the screw angular position (Figure  7–

10). In addition to the mixing element having a higher value of αm than the conveying element, 

we observe that αm is more sensitive to the screw position in the mixing element that in the 

conveying element. Also, the maximum and minimum values of αm in each element are reached 

at different screw positions. The maximum for the conveying element is reached at 60°, 180° and 

300°, when the pin is closer to the screw flight. The minimum is located at 120° when the pin is 

located between the screw slices, and 240° when the pin is in the middle of the screw channel. 

For the mixing element, the maximum is reached at 90° and 210° when the pin is closer to the 

screw flight. As with the conveying element, the minimum values correspond to screw positions 

in which the pins are located between the screw slices or in the middle of the channel. The screw 

speed also has a larger impact on the mixing element than on the conveying element. In terms of 

magnitude there is not a significant difference between αm−KE and αm−EZ, both being between 0.51 

and 0.53.  
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Figure  7–10. Mean extensional efficiency of the EZ and KE elements as a function of screw 
position and screw speed. 

 

 
Figure  7–11. Mean extensional efficiency of the EZ and KE elements as a function of operating 
conditions. 
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The effect of the flow rate on αm is showed in Figure  7–11. We can see that the value of αm−KE 

and of αm−EZ remains fairly constant when varying the flow rate at the same screw speed. 

 

In order to evaluate the efficiency of different flow fields for mixing, not only the values of the 

coefficient α have to be considered, but also the magnitude and distribution of shear stresses τ in 

the flow field (Manas-Zloczower, 1994). Figure  7–12 shows the spatial distribution of α 

projected on a cylindrical surface placed at mid-channel distance from the screw root. We can see 

that the flow is mainly shear flow (α = 0.5) between the flights of both types of screw elements. 

However, around the pin in the mixing element and at the tips of the screw flight in the 

conveying element α takes values of ~0.8. If we look at the distribution of shear stresses for the 

same operating condition (Figure  7–13) we found that it is only around the pins and not at the 

tips of the screw flights where τ has larger values. This fact confirms that it is the pins that 

generate the dispersive mixing action in the Co-Kneader. 
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Figure  7–12. Distribution of the extensional efficiency coefficient. N = 100rpm, Q = 23.1kg/h. 

 

 
Figure  7–13. Distribution of shear stresses. N = 100rpm, Q = 23.1 kg/h. 
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7.6.4 Shear rate 

In the same manner as for the extensional efficiency, the shear rate γ&  along the Co-Kneader was 

obtained for different positions of the screw. Figure  7–14 shows the values depending on the pin 

position relative to the screw flights. 

 

 
Figure  7–14. Shear rate along the extruder in different screw angular positions. N = 75rpm, 
Q = 15.2 kg/hr. 

 

The differences between elements are clearly showed in this plot. The mean shear rate is higher 

in the mixing elements and it remains constant along all the mixing section. On the contrary, on 

the conveying sections there are large oscillations, where the higher values correspond to the 

location of the only pin found on each element. Another interesting feature is the variation of γ&  

in the mixing zone according to the relative position of the pin with respect to the screw flight. 

To analyse this variation, the mean value of γ&  for each section was plotted as a function of the 

angular position of the screw (Figure  7–15). We can see that the value of mγ&  in the mixing 

element is higher when the pin is at the initial position of 0° (i.e. between the screw slices) and it 
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decreases as the pin travels between the screw flights. It then reaches again the maximum value 

when it has completed its passage (120°). The cycle is repeated three times, which correspond to 

the three pins and the three slices in the flights found on the mixing element. Because the 

conveying element only has one pin, the value of mγ&  is not affected as much by the position of 

the screw. 

 

 
Figure  7–15. Mean shear rate of the EZ and KE element as a function of screw position and 
screw speed. 

 

Figure  7–16 shows the effect of the operating conditions on the mean shear rate. We see that 

only the screw speed has an impact on the shear rate value, which indicates that the level of shear 

rate that can be obtained depends only on the geometry of the extruder and the rotational speed. 
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Figure  7–16. Mean shear rate of the EZ and KE elements as a function of operating conditions. 

 

Determination of shear rate based only on geometrical parameters already exists for single screws 

(Rauwendaal, 1994). The shear rate in the screw channel of a single screw can be approximated 

by  
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According to the manufacturer, the maximum shear rate in the Co-Kneader can be obtained by 
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where sz is the gap width between the stationary pin and the passing screw flight. However shear 

rates values obtained with this formula are generated only when the screw flight is passing near 
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the pin. A more practical average value of the shear rate produced in each screw element can be 

obtained by using the Metzner-Otto relationship (Metzner & Otto, 1957). This definition is well 

known and widely used in agitated vessels and static mixers. It is based on the assumption that 

the fluid motion in an agitated tank can be represented by an average or effective shear rate. The 

shear rate is then proportional to the impeller speed with the constant of proportionality Ks,  

 

 NKs=γ&  (7.20)  
 

This function depends only on the geometry. With the Ks and a viscosity-shear rate curve for a 

non-Newtonian fluid, an effective or process viscosity can be determined. 

 

The values of Ks for the conveying and the mixing elements were obtained using the data from 

Figure  7–16. Table  7-3 lists the calculated Ks as well as the constants obtained from Equation 

7.18 and Equation 7.19. The values of Kch and Kpin are the same for both screw elements since 

they do not consider particular geometrical features of each screw element. Since the values of Ks 

were obtained from the simulations, we can consider that the interactions of the pins and the 

screw oscillation are taken into account. Therefore a higher value of Ks for the mixing element 

was to be expected since it has more pins passing through. The difference between the Co-

Kneader and a similar single screw is also evidenced; the value of Kch being 38% lower than the 

Ks value of the EZ element and 77% lower than the Ks of the KE element. 

 

Table  7-3. Values of Ks and other geometric constants for the EZ and KE screw elements. 

 EZ element KE element 
Kch 13 13 
Kpin 315 315 
Ks 18 23 
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7.6.5 Residence Time Distributions 

Figure  7–17 shows the calculated mean residence time for each type of element after a given 

number of consecutive screw elements. Theoretical values obtained from Equation 7.9 are 

presented as well. We can see that the results obtained for the conveying elements present a very 

small deviation from the theoretical values. On the other hand, the mixing elements exhibit a 

greater deviation from the theoretical values as the number of screw elements increase. The 

difference increases with the screw speed as well. This difference can be attributed to a greater 

number of lost particles in the mixing element. Also, the lost particles are often those with long 

residence times. The higher relative error between numerical and theoretical values in the mixing 

element is 16%. 

 

 
Figure  7–17. Calculated and theoretical mean residence time. 

 

The numerical values of σ2 are presented in Figure  7–18. We see that the spread of the residence 

time distributions increases as the number of consecutive mixing elements increases, however the 

relationship is not linear. Also, the variance increases as a function of screw speed and flow rate.  
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Figure  7–18. Calculated variance as a function of the number of consecutive mixing elements.  

 

By fitting the data to the axial dispersion model (ADM) (Levenspiel, 1999) 
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we can obtain the axial Peclet number Pe defined as 

 

 
axD

uLPe =  (7.22)  

 

where u is the mean axial velocity of the flow, L the axial length and Dax the axial dispersion 

coefficient. At Pe higher than 100, this model approximates plug flow behavior. On the other 

hand, a Pe approaching 0 indicates fully mixed flow (Nauman, 2008). 
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Figure  7–19 shows the fitting of the calculated results to the axial dispersion model after a given 

number of mixing elements. The values of the adjusted R2 show that the ability of the model to fit 

the results depends on the number of screw elements; after more mixing elements the model 

predicts the RTD curve better. The same pattern was observed for the other operating conditions. 

 

 
Figure  7–19. Fitting of results with the ADM. N = 50 rpm, Q = 7.8 kg/h. 

 

The evolution of the Pe with the number of consecutive mixing elements is shown in Figure  7–

20. A linear relationship is observed, however the rate at which the Pe number increases appears 

to be dependent on the operating conditions. At high screw speeds and high flow rates the Pe 

number increases more rapidly with each mixing element. 
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Figure  7–20. Peclet number as a function of consecutive mixing elements. 

 

With the purpose of characterizing the geometry of each screw element type, individual RTD 

curves for each conveying and mixing elements were obtained. Figure  7–21 shows the 

cumulative distribution functions obtained for each of the first four elements of the mixing and 

conveying sections, expressed in terms of the dimensionless time θ 

 

 
mt
t

=θ  (7.23)  

 

The curves of the conveying elements display a small variation in spread depending on the 

position of the element. However, when we compared with other operating conditions, no clear 

trend regarding the position and the width of the distribution could be discern. On the other hand, 

there is no difference in the RTD of the mixing elements, which indicates that the flow develops 

very quickly in this geometry.  
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Figure  7–21. Cumulative distribution functions obtained individually for the first 4 screw 

elements of each type. N = 75rpm, Q = 12.5kg/h. 

 

Mean residence times for each type of element at different operating conditions are presented in 

Figure  7–22. As the screw speed increases the difference between the two elements decreases, 

the conveying element having the longer mean residence time. The variance was calculated as 

well (Figure  7–23), showing that the mixing element has a broader distribution. Following 

previous trends, the distribution in both elements becomes narrower with high speeds and higher 

flow rates. 

 

We compared the values of tm and σ2 obtained directly from the calculations of consecutive 

mixing elements with those obtained from adding the values of tm and σ2 obtained from a single 

element (Figure  7–24). The difference between the values of tm increases as the number of 

consecutive mixing elements increase, the higher relative error being 17%. In the case of σ2, the 

deviation is greater and the relative error varies between 17% and 40%. 
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Figure  7–22. Mean residence time of individual mixing and conveying elements. 

 

 

 
Figure  7–23. Variance of individual mixing and conveying elements. 
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Figure  7–24. Comparison of calculated tm and σ2 with additive rule. 

 

7.6.6 Particle distribution 

Poincaré sections at the exit of the first four mixing elements of the Co-Kneader are shown in 

Figure  7–25. In addition to the injection plane defined in Figure  7–5, the injection of particles 

concentrated on the upper portion of the cross section was also studied. 

 

 

Figure  7–25. Poincaré sections at exit of first 4 mixing elements. N = 75 rpm, Q = 17.8 kg/h. 
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We can see that the initial position of the particles does not have an impact on the spatial 

distribution at the exit of the mixing elements. This confirms the fact that the velocity profile is 

quickly developed. Also, we can see that a constant spatial distribution in the cross section is 

attained after only one mixing element. In all cases, the particles are concentrated on the upper 

left side of the cross section, with some particles in the upper right side and very little in the 

lower region. In a single screw extruder, particles only on the upper left side would be expected 

because the plane would cut in the middle of a closed screw channel and the particles would have 

nowhere to go but in the down channel direction. In the case of the Co-Kneader the screw 

channel is opened, therefore particles can be found in other locations in the cross-section. The 

same observations were made for the other operating conditions. 

 

In Figure  7–26 we present the mixing evolution of the particles injected in the upper portion of 

the mixing element. At 0.5 s we can clearly see how the pin splits the flow and promotes 

backflow of the particles. In 5 seconds the particles are evenly distributed along the screw axis. 
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Figure  7–26. Evolution of mixing in the mixing section of the Co-Kneader. N = 75 rpm, 

Q = 17.8 kg/h. 
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7.7 Conclusions 

In this work we have investigated the mixing characteristics of two screw elements of the Co-

Kneader extruder. The results were obtained by means of a validated 3D CFD model that 

included the oscillation of the screw as well as the pins in the barrel. Dimensionless characteristic 

curves were presented, and the pumping capacity of each element was compared to that of a 

similar single screw extruder. Extensional efficiency results showed that the conveying element 

had a lower mean value than the mixing element. Also, it was demonstrated that the pins promote 

extensional flows in the screw channel. It was possible to obtain for each type of screw element 

the constant of proportionality Ks by using the Metzner-Otto relationship. This gives the 

possibility to obtain the effective shear rate value given by each screw element as only a function 

of the screw speed. It was found that the mean residence time of an array of elements can be 

obtained by adding the individual mean times within an error of 17%; however the error in the 

variance obtained in the same manner is doubled. Finally, by visualization of particle 

distributions we could reaffirm the performance of the Co-Kneader as a continuous mixer.  
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7.9 Notation 

α Extensional efficiency Dimensionless 

γ&  Shear rate 1/s 

θ Dimensionless time Dimensionless 
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μ Newtonian viscosity Pa s 

ρ  Density kg/m3 

σ2  Variance s2 

τ Shear stress Pa 

ϕ Flight angle ° 

ω Oscillation frequency 1/s 

   

A Area m2 

D Diameter m 

Db Inside diameter of barrel mm 

Do Outside diameter of screw mm 

e Flight thickness mm 

H Screw channel depth mm 

h Bin width s 

Kch Shear rate constant from single screw channel Dimensionless 

Kpin Shear rate constant from pin-flight gap Dimensionless 

Ks Shear rate constant from Metzner-Otto relationship Dimensionless 

Lax Axial length m 

Le Length of screw element mm 

Lh Helical or down-channel length m 

Ls Length of flight slices mm 

l Trajectory length m 

lm Mean trajectory length m 

N Screw speed rpm 

n Number of data points Dimensionless 

P Pressure Pa 

P* Dimensionless pressure Dimensionless 

Q Flow rate kg/h 

Q* Dimensionless flow rate Dimensionless 

R Radius m 
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S0 Amplitude of screw stroke mm 

s Width of screw slice mm 

sz Gap between pin and screw flight mm 

t Time s 

tm Mean residence time s 

u Mean axial velocity m/s 

V Volume m3 

v Velocity m/s 

W Screw channel width mm 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

 

The work presented in this thesis was divided in three parts. The first step was devoted to the 

development of a visualization technique that allowed for the mixing in the Co-Kneader to be 

evidenced. The second stage involved the development of a three dimensional numerical model 

that included both the oscillation of the screw and the pins in the barrel. The final stage aimed at 

the better characterization of the hydrodynamics and mixing abilities of the conveying and 

mixing screw elements. 

 

 

8.1 Experimental Flow Visualization and Residence Time 

Distributions 

This work reports for the first time flow visualization experiments performed in a fully 

transparent laboratory-scale Co-Kneader. In order to analyze the results, an image analysis 

technique usually used in stirred tanks was also applied for the first time in a continuous mixer. 

As expected, mixing curves are a function of the operational conditions; as the rotational speed 

increases, mixing time decreases. The mixing curves obtained as a result of the image analysis 

present very small variations between experiment repetitions, which mean that the technique is as 

robust for continuous systems as for stirred tanks. From the experimental mixing curves three 

different regions which are related to the different sections of the screw were clearly identified; 

two conveying sections with a mixing section in between. By performing a mathematical fitting 

analysis of the mixing curves, an axial mixing rate, defined as the increase in axial mixed area in 

time for each section, was estimated. The results clearly suggest that there is a sharp change of 

the mixing rate depending on the screw section and the flow rates. It has been found that the 

image analysis technique, for the first time applied to continuous systems, gives new insight into 

the macro-mixing mechanism of the Co-Kneader and may be used as a simple experimental 

method to quantify the degree of backmixing 
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Analysis of the RTD showed an expected trend, as the feed rate and screw speed increase, the 

mean residence time decreases. Similar behavior was observed regarding the spread of the 

distributions, as the feed rate and screw speed increased, the variance decreased. The axial 

dispersion model allowed for an estimation of the axial dispersion coefficient. It was found that 

for a fully filled system, the dispersion coefficient increased linearly with the flow rate and the 

screw speed. By comparing the RTD with that of a single screw extruder it was found that the 

pins and the slices in the Co-Kneader generate evenly and distributed residences times. 

Compared to a static mixer the Co-Kneader has a broader residence time distribution. 

 

 

8.2 Numerical Flow Simulation 

Newtonian simulations that took into account for the first time both the oscillation of the screw 

and the pins were performed with a 3D MINI-based VFEM. In order to verify the accuracy of the 

numerical model, pressure gradient as a function of flow rate results were obtained across the 

screw length and compared with experimental values. The CFD results were found to be in good 

agreement with the experimental results. The relative error calculated between the experimental 

and the numerical results in all cases is less than 8%. 

 

The local effect of the pins was analyzed from CFD velocity fields. It was found that the flow is 

split and recombined from one channel to another when a pin is located between the slices of the 

screw, thus promoting backflow and distributive mixing. However, when there is no pin between 

the slices, the flow simply continues down channel. In the same way, the regular down channel 

flow between the screw flights is disrupted when there is a pin in the channel. Furthermore, it 

was shown that the flow appears to accelerate more between adjacent pins than it does when 

there are no pins.  
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The RTD and TLD analysis presented in this work were obtained by a particle tracking 

technique, where the motion of massless particles is dominated only by the flow field. The 

numerical RTD results were in good agreement with experimental measurements. TLD showed 

that the mixing element yields axial mixing whereas the conveying element causes down-channel 

mixing. The TLD analysis was performed on an extruder for the first time and it proved to be a 

complementary tool in the study of the mixing mechanisms in the Co-Kneader. 

 

 

8.3 Mixing Analysis of Screw Elements 

Dimensionless characteristic flow curves were generated from numerical simulations. It was 

shown that the conveying element has a greater pumping capacity than the mixing element; 

however, compared with a theoretical single screw both elements have very little pumping 

capacity. These results may explain why in practice, the Co-Kneader is coupled with a crosshead 

screw extruder. Results from this work confirm that the poor pumping capacity of the Co-

Kneader is due to the presence of the slices in the flights. 

 

In order to evaluate the dispersive mixing efficiency of the flow inside the Co-Kneader, the 

extensional efficiency, α was obtained. This parameter quantifies the elongational and rotational 

flow components of the velocity field. It was shown that the mixing section has a slightly higher 

value of α compared to the conveying sections. In terms of magnitude there was not a significant 

difference between αm−KE and αm−EZ, both being between 0.51 and 0.53. Furthermore, it was 

found that the value of αm−KE and of αm−EZ remains fairly constant when varying the flow rate at 

the same screw speed. CFD results suggest that the pins in the barrel promote extensional flows 

in the screw channel. 

 

In the same manner as for the extensional efficiency, the shear rate γ&  along the Co-Kneader was 

obtained for different positions of the screw. The differences between elements were clearly 

showed; the mean shear rate is higher in the mixing elements and it remains constant along all the 
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mixing section. On the contrary, on the conveying sections there are large oscillations, where the 

higher points correspond to the location of the only pin found on each element. It was found that 

the mean value of the shear rate mγ&  is higher when the pin is at the initial position of 0° (i.e. 

between the screw slices) and it decreases as the pin travels between the screw flights, reaching 

the maximum value when it has completed its passage (120°). Because the conveying element 

only has one pin, the value of mγ&  is not affected as much by the position of the screw. In order to 

deal with geometrical and operational variables and its impact on the shear rate, an average value 

of γ&  produced in each screw element was obtained by using the classical Metzner-Otto approach. 

The estimated values of Ks. for the conveying and the mixing elements were 18 and 23 

respectively. A higher value of Ks for the mixing element is explained since it has more pins 

passing through. To the best knowledge of the authors, this is the first time that a shear rate 

characterization for a Co-Kneader as complete as possible has been shown. 

 

Additionally it was found that the mean residence time of an array of elements can be obtained by 

adding the individual mean times within an error of 17%; however the error in the variance 

obtained in the same manner is doubled. Finally, by visualization of particle distributions the 

performance of the Co-Kneader as a continuous mixer was reaffirmed. 

 

 

8.4 General Conclusions 

The main objective of this project was to obtain a reliable description of the flow mechanisms 

and mixing in the Co-Kneader and to clarify how process variables impact the mixing capacity of 

the machine in order to facilitate the implementation of tailored screw profiles according to the 

application. In light of the obtained results the following can be concluded: 

 

• Novel techniques aimed at characterize and quantify mixing mechanisms such as TLD 

analysis and the acid-base discoloration method coupled with the image analysis 

technique, were successfully applied for the first time in a continuous mixer. They 
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allowed for the description of the mixing mechanism in the Co-Kneader, which was found 

to be mainly in the axial direction, as well as the clarification of how process variables 

impacted axial mixing and backflow. 

 

• By means of the 3D CFD model which incorporated all geometrical and mechanical 

characteristics of the Co-Kneader, it was possible to better assess the impact provided by 

the pins in the overall flow and mixing capabilities of the machine. It was found that 

besides making the flow split and recombine in the screw channels, they also promote 

extensional flow where otherwise there would only be shear flow. 

 

• The characterization of commonly used screw elements was achieved by analyzing the 

RTD and shear rate produced by each individual screw element. This information can 

then be used towards the design of new screw profiles specially created for the needs of a 

particular application. 

 

Overall, the experimental and CFD results suggest that the Co-Kneader screw extruder can be 

better designed and operated. The strategy followed allows for a detailed analysis of the Co-

Kneader hydrodynamic performance. This analysis will then help identify and investigate 

suitable measures, such as different screw profiles or optimal operating conditions, for product 

design and process improvement. 
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CHAPTER 9 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

9.1 Experimental Flow Visualization 

• This is the first time that the acid-base discoloration technique and image analysis method 

are applied in continuous systems. More experiments at different operating conditions, 

tracer concentrations and fluid viscosities are needed to investigate the capabilities of this 

methodology. 

• The flow visualization analysis proved to be helpful towards the evaluation of the degree 

of backmixing. Well-known geometries like single-screw extruders in which the 

backmixing is known to be minimal should be investigated in order to have a reference 

point and corroborate the results. 

• Application of the acid-base discoloration technique and image analysis to higher 

viscosity fluids as well as non-Newtonian fluids, pastes, etc. 

• Investigation of the effect of rheological behavior on the axial mixing rate. 

• Application of the acid-base discoloration technique and image analysis in other 

continuous systems like twin screw extruders or static mixers, as well as other Co-

Kneader screw configurations. 

 

9.2 Numerical Flow Simulation 

• When the screw flight travels near the pins small gaps are created. Refinement of the 

mesh surrounding the pins is necessary in order to have higher resolution on the flow field 

in these gaps and better predict extreme shear rate values found in this area. 

• Take advantage of the particle tracking technique to obtain trajectory length distributions 

and perform mixing analysis on other continuous systems. 
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• Simulations performed with non-Newtonian fluid properties. 

 

9.3 Screw Profiles 

• Optimization of existing screw profiles or conceptualization of new ones. The 

manufacturer of the Co-Kneader recommends a standard screw profile for all 

applications. However, given the flexibility that this mixer has, it seriously limits the 

scope of applications in which it can perform. The flow and mixing characterization of the 

conveying and mixing screw elements presented in this thesis can be used in order to 

optimize or design new screw configurations for different applications. These new screw 

configurations should be investigated and evaluated relative to the requirements of each 

particular application (e.g., High shear rate, short residence time). 
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APPENDIX 1 

DESIGN AND CONFIGURATION DRAWINGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1- 1. Screw profile with unrolled barrel showing pin perforations. 
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Figure A1- 2. Pins configuration. 


