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ABSTRACT In the rapidly evolving sixth-generation (6G) networks, achieving ultra-high reliability for
short packets poses a crucial challenge for network designers as classical Shanon capacity bounds become
obsolete. This paper addresses this imperative task and presents a performance analysis of ultra-reliable low-
latency communication (URLLC) systems in clustered networks with short packet communication (SPC)
in the finite blocklength regime. In clustered networks, where multiple interferers are present, multiple
ground users are grouped into a cluster and communicate with a central node called a cluster head (CH).
The system adopts a CH as a wireless relay to accomplish URLLC between a base station and ground users.
In this context, we first derive a closed-form expression for the overall block error rate of the system. The
analysis is based on a theoretical model that considers the packet size, blocklength, and maximum achievable
rate. Moreover, the paper proposes a transfer learning approach using fine-tuned target models with domain
adaptation for real-time prediction of the system’s performance. The prediction is necessary to accurately
assess the performance of URLLC in statistically independent and not necessarily identically distributed
(Non-IID) interference networks. Deep transfer learning is utilized to develop a model that can generalize
interference scenario and provide reliable predictions. The transfer learning approach involves using a source
model and fine-tuning it with domain-specific data to improve the prediction accuracy. Overall, the paper
provides insights into the performance of URLLC systems with SPC and proposes an approach to improve
the real-time prediction’s accuracy. The proposed approach has the potential to facilitate the deployment of
URLLC systems in practical applications where real-time performance prediction is crucial.

INDEX TERMS Ultra-reliable low latency communication (URLLC), transfer learning (TL), block error
rate (BLER), convolutional neural network (CNN), performance analysis, non-IID interference network,
machine learning-based performance prediction.

I. INTRODUCTION
The potential of short-packet communication (SPC) to
deliver high reliability and low end-to-end (e2e) latency
has led to its recognition as one of the core technologies

The associate editor coordinating the review of this manuscript and

approving it for publication was Adao Silva .

for beyond fifth-generation (B5G) and sixth-generation
(6G) networks [1]. The authors in [2] provide a thorough
examination of short-packet transmission in 5G networks by
discussing the challenges in effectively sending small-sized
packets and proposing newmethods to improve performance.
Their study demonstrates the practical applications of SPC
in real-life scenarios, proving its viability and advantages
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through comprehensive simulations and tests.Whereas in [3],
the authors focus on improvements in SPC for upcoming 6G
networks, where they investigate the particular requirements
of ultra-reliable and low latency applications and suggest
innovative approaches to enhance the transmission of small
packets. Their study contains real-world applications and per-
formance assessments that support the practical use of SPC.
SPC supports a broad range of ultra-reliable low latency com-
munication (URLLC) applications, including the Internet-
of-Things (IoT), factory automation, high-speed trains, and
drones [4]. Recent URLLC research has mostly focused on
SPCswith single-hop or dual-hop transmissions for industrial
automation, where the reliability and latency must meet
stringent conditions of 99.999% and 1 ms, respectively.

From the perspective of the physical layer, the commu-
nication systems has witnessed substantial research works
across wide spectrum of applications under the premise
of infinite blocklength [5], [6]. However, it is clear that
the assumption of infinite blocklength is no longer suitable
for URLLC applications with SPC. Future applications that
require high reliability and low latency simultaneously, such
as in tactical wireless networks (TWNs), undoubtedly face
substantial challenges due to the performance losses in both
reliability and latency resulting from the limited blocklength.
Moreover, drawing inferences about the performance of SPC
systems using a Shannon information-theoretic framework
based on infinite blocklength may be inaccurate. Therefore,
it is advisable to reconsider the analysis and design of reliable
transmissions under finite blocklength (FBL).

A. RELATED WORK
Transmission latency holds a pivotal position as the most
frequently examined latency component in physical layer
design [7]. In the FBL regime, the blocklength affects
the throughput and is inversely correlated with the block
transmission delay. However, the majority of earlier research
using FBL assumed a fixed blocklength, where blocklength
optimization was only considered in [8] and [9]. In [8]
the authors investigate a multi-reconfigurable intelligent
surface (RIS)-assisted rate-splitting multiple access (RSMA)
to prompt URLLC service.In the aforementioned study, sim-
ulation results demonstrated that their proposed RIS-aided
RSMA system surpasses both non orthogonal multiple access
(NOMA) and SDMA systems in terms of sum throughput
by approximately 10% and 17%, respectively. Additionally,
employing RSMAwith FBL was found to achieve equivalent
transmission data rates as traditional NOMA and SDMA
schemes with infinite block-length (IFBL) transmission.
These findings validate the remarkable attributes of RIS-
RSMA, including high-reliability, low latency, and enhanced
spectral efficiency. The authors in [9] investigated a wireless
powered IoT network using SPC, in which a hybrid access
point (HAP) transmits radio frequency signals to wireless
power scattered users before the users in turn send short
data packets to the HAP. The authors specifically constructed
two problems, using transmission time and each user’s

packet error rate as variables: a total effective-throughput
maximization problem and a total transmission time reduc-
tion problem. As stated in [10], the assumption that the
channels between different transmit-receive antenna pairs are
statistically identical typically holds when antennas in the
system are co-located; consequently, the large-scale fading of
the signaling branches are identical to each other. However,
in the case where the antennas are distributed, such as in
distributed antenna systems (DAS), the large-scale fading
and small-scale fading on different links are expected to
be different, which results in a statistically independent
and not necessarily identically distributed (Non-IID) fading
environment. Nevertheless, in these works on blocklength
optimization together with re-transmission or power design,
only homogeneous traffic requirements were taken into
account, which is unable to handle the URLLC traffic in time-
sensitive services.

In order to address the problems in the above-mentioned
works, deep convolutional neural networks (CNNs) have
recently gained attention as an effective method for address-
ing a range and time-sensitive issues, including resource
allocation, queue management, and congestion control in
contemporary wireless networks and IoT systems [11].
Since CNN models can accurately estimate desired per-
formance metrics from high-dimensional raw data, even
in dynamic environments and complicated radio scenarios
where mathematical derivations are intractable, CNN-based
prediction assist to improve the performance of real-time
IoT networks. In [12], the authors presented a useful deep
CNN for predicting the secrecy performance of a 6G
wireless networks. Through comprehensive analyses and
predictions, the study shed light on the security aspects
of 6G networks, offering valuable insights for enhancing
their confidentiality and reliability. It is useful to include
projected quantitative requirements for 6Gwireless networks.
Projected metrics such as ultra-low latency ≤1 milliseconds,
peak data rates exceeding 1 terabit per second (1 Tbps),
massive device connectivity up to millions of devices per
square kilometer (>106), and spectral efficiency exceeding
(>100 bits/s/Hz/km2) can be summarized as discussed
in [13]. The research in [14] focused on OP prediction
using CNN for IoT communication networks. Specifically,
the authors address the issues of complexity and energy
consumption in mobile IoT networks by employing transmit
antenna selection (TAS) and cooperative communication
schemes. To assess the performance of these networks,
analytical OP expressions are provided to build a dataset
for training the proposed CNN-based prediction model. The
proposed predictionmethod outperforms other methods, such
as radial basis function (RBF), generalized regression (GR),
Elman, and extreme learning machine (ELM), in terms of
prediction accuracy. Furthermore, time complexity of CNN
models was investigated in [15] to identify crucial parameters
influencing computational complexity. The results reported
in [15] provide insights for designing CNN models. The
authors highlighted differences in computational operations
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between convolution and dense layers, and the impact
of number of layers on computational complexity. The
authors also introduced factor φ expressed by the phase
imperfections that can be generally modeled as a random
variable following the VonMises distribution with zero mean
and concentration parameter κ ∈ [0,∞]. In another relevant
study [16], the authors categorized the 6GURLLC vision into
three connectivity characteristics with their corresponding
unique QoS requirements. The authors considered an indoor
downlink transmission scenario for the coexistence of WiFi
and new radio unlicensed (NR-U) systems in the 5 GHz
band, which occurs in a 120m × 80 m space with a 40m
distance between two neighboring nodes. To verify the
efficacy ofML solutions, both centralized deep reinforcement
learning (CDRL) and federated DRL algorithms applied for
downlink URLLC channel access optimization problems.
The authors in [17] analyzed the performance of state-of-the-
art ML-based channel prediction algorithms in high-mobility
URLLC scenarios. The study evaluated two popular classes
of ML-based algorithms: (i) algorithms using autoregression,
and (ii) algorithms predicting the channel based on trained
neural networks. In contrast to several previous studies that
used various channel models for performance evaluation, this
study compared the algorithms under the same conditions
using modern channel models where the user speed were
modeled at 15, 30, and 60 kmph, and the time axis was
divided into slots having a duration of 0.5 ms. In URLLC,
latency assumed critical significance, particularly concerning
time-sensitive data gathering and accommodating real-time
environmental behavior [18].

In order to meet the need for URLLC in next-generation
networks, it is essential to conduct accurate network time
delay analysis. However, current methods used to predict
network latency in URLLC situations tend to ignore cases
when several downstream activities are involved, such as
identifying operational conditions of the network, detect-
ing network attack, and scheduling network resources.
Furthermore, it is important to strengthen adaptability of
these models. The contrastive convolutional structure for
network delay (CCSND), which is an adaptive contrastive
learning framework with a temporal representation extraction
module designed to capture statistical characteristics and
temporal periodicity, was first presented in [19]. Here, the
MSE and MAE values of the proposed CCSND method
were on average 18.2% and 15.1% lower than CoST [20],
21.8% and 14.6% lower than TS2Vec [21], 26.9% and
19.0% lower than Autoformer [22], 38.7% and 23.4% lower
than Informer [23], and 46.4% and 32.1% lower than
Transformer [24]. In URLLC networks the performance
of 5G networks can be affected by various factors, such
as interference, congestion, signal attenuation, or attacks,
could impact performanceVarious issues, like interference,
congestion, signal attenuation, or attacks, may affect the
performance of 5G networks, resulting in packet loss
and retransmissions. While high retransmission rates were
previously considered to be essential to improve network

strength, they frequently pointed to underlying problems
that network operators had to address. To predict downlink
retransmissions in 5G networks, in [25], a deep learning-
based method was presented, and showed significant gains
over conventional prediction algorithms.

In order to support numerous primary users, in [26],
the authors investigated short-packet communications within
multiple-input multiple-output underlay cognitive multihop
relay networks. In order to guarantee URLLC, transceivers
were used to both send and receive brief packets. In order
to predict system performance metrics such end-to-end
throughput, energy efficiency, latency, and reliability in real-
time scenarios, several innovative machine learning (ML)-
assisted estimators were adapted based on analytical results.
The authors in [17] analyzed the performance of state-of-the-
art ML-based channel prediction algorithms in high-mobility
URLLC scenarios. The study evaluated the following two
popular classes of ML-based algorithms: (i) algorithms
using autoregression and (ii) algorithms predicting the
channel based on trained neural networks. In contrast to
several previous studies using various channel models for
performance evaluation, this study compared the algorithms
under the same conditions using modern channel models.
Full-duplex (FD) energy-harvesting Internet-of-Things (IoT)
networks deployed in automated industries in [27]. In order
to improve BLER and system performance, it presented a
full relay selection (FRS) strategy accounting for residual
interference models into account. Furthermore, to enable
effective packet transmissions, a deep learning framework
based on FRS was created for real-time average BLER and
throughput prediction.

In [28], the authors provide a generic precoder design
challenge and a unique predictive transmission methodology.
The orthogonal time frequency space (OTFS) transmission
technique was the primary focus of this study. To train a
DL model, the authors used historical delay-Doppler domain
channels (DDCs). This methodology predicts the precoder
a specific time frame by extracting implicit characteristics
from these DDCs, thus avoiding the requirement for real-time
acquisition of instantaneous channel status information at the
transmitter (ICSIT). Using an unsupervised learning mech-
anism, the DL-based predictive precoder design approach is
pragmatic and flexible, promoting improvements in URLLC
performance and driving innovation in wireless communi-
cation systems. Aiming to contribute to the advancement
of URLLC by leveraging innovative methodologies and
machine learning techniques and thus to optimize system
performance and reliability in wireless communication sys-
tems, in [26], the authors focused on URLLC in short-packet
communications in multiple-input multiple-output underlay
cognitive multihop relay networks. In order to estimate
system performance measures including throughput, latency,
and reliability in real-time scenarios, the aforementioned
study investigated machine learning-aided estimators and
developed closed-form expressions for end-to-end (E2E)
block error rate (BLER). Furthermore, asymptotic E2E
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BLER was minimized by deriving optimal power-allocation
and relay-location techniques that met URLLC limits and
accurately tolerated interference power with minimal com-
puting complexity and significant power savings.

By utilizing pre-trained models and knowledge transferred
from one domain to another, transfer learning has evolved
as a remedy for the problem of insufficient data and the
computational cost associated with training deep neural
networks from scratch [29]. On the other hand, learning from
a small dataset poses significant challenges due to the limited
amount of available examples. These challenges include
inadequate representation of the target task, overfitting,
reduced model capacity, and limited exploration of the
feature space. In this context, transfer learning saves time
by allowing models to learn from larger datasets and transfer
this knowledge using trained weights to smaller ones, hence
enhancing generalization and performance [30]. Transfer
learning is a helpful approach for dealing with the problems
of managing an overwhelming volume of data and learning
from small samples, as it effectively utilizes prior knowledge
obtained from pre-trainedmodels on large datasets to enhance
the performance of learning tasks in new domains or with
limited data. As the name implies, this method transfers
the parameters from the previously learned models to the
new model, speeding up model training [31], [32]. Transfer
learning can be categorized into three types: inductive trans-
fer learning approaches, unsupervised transfer learning, and
transductive transfer learning approaches. The transductive
transfer learning approach leads to domain adaptation in the
case of single task with different domains [33].
Recently, deep neural networks (DNNs) were combined

with transfer learning, where the combined approach is
referred to as deep transfer learning. Transfer learning
incorporated into the deep learning system for Industrial
IoT (IIoT) networks was proposed in [34] so that training
data and test data can come from various feature spaces
and distributions. Deep learning networks may construct
models for new but related tasks in the target domain without
utilizing new data by applying transfer learning, which
transfers intrinsic knowledge learned by the deep learning
network from the source domain to the target domain [33].
In [35] and [36], transductive transfer learningmethodologies
were suggested as a way to make use of the knowledge
obtained from other signal types and environments. For
spectrum sensing in cognitive radio networks, the authors
of [35] suggested a fine-tuning source model-based transfer
learning approach. A baseline CNN model trained using data
from different types of signals was specifically applied to a
target task (one type of signal), where the model was then
fine-tuned using the target data. Similarly, a transfer learning
technique that fine-tunes pre-trained models was discussed
in [36]. The method specifically applies a CNN trained with
various signal and noise data types to the target task and
fine-tunes the model with target data. This transfer learning
method is quite similar to that in [35], except that [35] not

take noise data into account. To the best of our knowledge,
transfer learning-based performance prediction of URLLC in
Non-IID interference networks has not yet been investigated
in-depth.

In our approach, we create analytical models that are
based on fixed and well-defined configurations and are
derived from theoretical principles and assumptions [37].
Neural network models are utilized to predict block error
rate (BLER) across a broader and possibly more random
range of configurations. This approach allows the model
to learn from a diverse set of data, making it capable
of handling real-world variations and complexities [38].
By combining these two approaches, we can leverage the
strengths of analytical models for well-understood scenarios
and neural network models for handling a broader, poten-
tially more complex range of configurations in our BLER
predictions.

B. MOTIVATIONS AND CONTRIBUTIONS
Analytical formulas for calculating the average BLER are
generally complex due to the involvement of complex
functions, e.g., Q-function, render them infeasible for time-
sensitive scenarios, such as real-time, low-latency, and
URLLC systems. On the other hand, while CNNs are
excellent at providing accurate predictions, they often require
a large amount of training data, with potentially high network
complexity for accurate predictions. However, having a large
dataset is infeasible in dynamic environments. Similarly,
complex neural network models are unsuitable for URLLC-
based application.

In response, our research aims to find a balance by intro-
ducing a more efficient model that avoids the computational
challenges of the analytical method and the complexity
associated with CNNs, allowing for both speed and accuracy
in predicting BLER for real-time applications. For this,
we propose a transfer learning method for URLLC-based
clustered wireless networks with short packet communi-
cation. Transfer learning allows us to leverage knowledge
gained from a different but related task or dataset. Instead
of starting from scratch, we design machine learning models
that exploit pre-learned features from a source model. The
designed models require small dataset, and significantly
reduces the computational complexity and training time,
making it more applicable for real-time applications and for
dynamic wireless environments. To the best of the authors’
knowledge, such a URLLC system has not been consid-
ered in the literature. We summarize our contributions as
follows:
• Utilizing the Q-function approximation, we derive
closed-form expressions for the average per-hop BLERs
and the average e2e BLER of the considering SPC
system consisting of multiple users operating on a
shared frequency resource with Non-IID co-channel
interference (CCI) at both the cluster head and individual
users. It is noted that the presence of CCI increases the
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FIGURE 1. Illustration of the URLLC system in the presence of non-IID interferers, where a M-antenna base station (S) communicate with the
user equipments (Dk ) with the help of a cluster head (C).

TABLE 1. List of mathematical notations.

computational complexity of the resulting expressions
due to the presence of a bivariate Meijer G-function.

• To mitigate the complexity of the derived expressions,
we propose a novel approximation to express the
average e2e BLER in terms of the average per-hop
per-user BLER using elementary functions, effectively
addressing the analytical complexity challenge. Using
these derived expressions, we assess system reliability
through the error floor, asymptotic performance, and the
diversity order.

• We propose a transfer learning-based performance
prediction approach for real-time accurate predictions
of the overall average BLER of the system. Numer-
ical results show that the proposed fine-tuned target
model requires less training data while achieving
comparable prediction accuracy compared to the source
model.

• Through numerical and simulation results, we val-
idate the use of short packet communication in a
clustered URLLC system. Simulation results show
that the derived closed-form expressions provide a
reasonable approximation for the downlink average e2e
BLER of the system. In addition, the results show
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that IID interference yields lower average e2e BLER
compared to Non-IID interference. We also investigate
the asymptotic analysis and discuss the error floor
results, where the average e2e BLER found unaffected
by the interference power distribution and rather the total
Interference-to-Noise Ratio (INR).

• By incorporating domain adaptation techniques,
we improve the accuracy of our system model.
Specifically, a discrepancy between the source and target
domain decreases, the accuracy of the proposed transfer
learning model increases.

• By investigating the BLER, exploring the impact
of block length (M ), investigating convergence and
performance of transfer learning, and evaluating the
impact of domain adaptation and transferred knowledge,
we provide readers with invaluable insights into the
potential performance and robustness of our proposed
approach. This comprehensive analysis emphasizes the
practical relevance and applicability of our research in
real-world scenarios.

II. SYSTEM MODEL
We consider a system model consisting of a base station
(S) as a gateway, a tentative cluster head (C), multiple
interferers I ∈ {1, 2, . . . , I }, where I denotes the number
of ambient interferers, and K ≥ 1 ground users, denoted as
D1,D2, . . . ,DK . Due to the presence of multiple interferers,
there is aggregated interference at C, and hence C experiences
aggregated INR during the communication from S to C.
This considered clustering strategy is depicted in Fig. 1,
where the cluster head forwards the information from S to
all ground users. Direct connectivity between S and Dk ,
for k ∈ {1, 2, . . . ,K }, is missing due to several obstacles.
Therefore, it is supposed that S delivers short packets to
Dk with the help of C, which functions as a relay and
utilizes a decode-and-forward method while operating in
half-duplex mode. C broadcasts the same information to
each user. When significant message broadcasting delays
are encountered, delivering urgent information requires
URLLC. This need becomes particularly crucial in scenarios
involving downlink multi-casting and broadcasting, where
communication channels are Non-IID.

The S has N antennas while C and Dk have single antennas
and can acquire perfect CSI. The choice of a single antenna
cluster head is deliberate, as it represents a realistic scenario
where resource-constrained devices, such as IoT devices or
sensors, may have limited antenna capabilities. This aligns
with the challenges faced in real-world deployments of
URLLC, where devices frequently have limited power and
hardware capabilities [39]. The transmission is completed
in two phases, i.e., phase I: S-to-C and phase II: C-to-Dk .
During phase I, S delivers messages to C with transmit power
PS. If C successfully decodes the received signals, in phase
II, it delivers the decoded signals to the Dk with transmit
power PC.

A. S-TO-C COMMUNICATION
The received signal at C from S is given as

ySC =
√
PS
√
ℓSChHSCwSxS +

∑
i∈I

√
ℓIiChIiC

√
PIixIi + nC,

(1)

where xS is the normalized signals transmitted by the source
node S for C, nC is the complex additive white Gaussian
noise (AWGN) with zero-mean and variance σ 2, wS ∈

CN×1 is the beamforming vector at S. Herein,
√
ℓSC is the

large-scale fading of the S-to-C link, h(1)SC, h
(2)
SC, . . . , h

(N )
SC

are the complex small-scale fading, hIiC and ℓIiC denote the
complex small-scale fading and the path loss from interferer
i ∈ I to C, respectively. PIi and xIi are the transmit power
and the normalized unit energy signal of the interferer i ∈ I,
respectively. We assume that |hIiC|

2’s are Non-IID Gamma
random variables, each with unit mean and respective shape
parameter mIiC. The system model’s large-scale fading is
presented as follows.

1) CHANNEL MODEL OF THE S-TO-C LINK
We consider the 3GPP Urban Micro (UMi) path loss
model [40, Table B.1.2.1-1]. In particular, the path loss
from a transmitter Tx ∈ {S,C} to a receiver Rx ∈
{C,D1,D2, . . . ,DK } is formulated as

ℓTx-Rx [dB] = GTx + GRx

− 22.7− 26 log10(fc)−36.7 log10

(
dTx-Rx
d0

)
,

(2)

where d0 = 1 [m] is the reference distance, fc [GHz] is the
carrier frequency, dTx-Rx [m] is the distance from the Tx to
Rx, GTx and GRx are the antenna gains (in dBi) at the Tx and
the Rx, respectively.

Moreover, for decoding xS, the instantaneous SNR γSC,
is expressed as γSC = γ̄SℓSC|hHSCwS|

2, where γ̄S ≜ PS
σ 2
, (·)H

denotes the conjugate transpose operator and wS =
hSC
∥hSC∥

is the beamforming vector, where ∥hSC∥2 =
∑N

n=1

∣∣h(n)SC

∣∣2.
Hence, γSC is written as follows

γSC = γ̄SℓSC

∣∣∣∣∣hHSChSC∥hSC∥

∣∣∣∣∣
2

= γ̄SℓSC
N∑
n=1

∣∣h(n)SC

∣∣2, (3)

where the first equality is obtained by substituting the value
of wS and adopting the identity hHSChSC = ∥hSC∥

2.
Hence, the SINR at the cluster head is formulated as

0SC =
γ̄SℓSC|hSC|2∑

i∈I γ̄IiℓIiC|hIiC|
2 + 1

=
γSC

IC + 1
. (4)

where IC=
∑

i∈I γ̄IiℓIiC|hIiC|
2 denotes the aggregated INR at

C and γ̄Ii=PIi/σ
2. It is noted that γSC and IC are independent

RVs.
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2) STATISTICALLY NON-IID TO MODEL CCI
Let us first explain the difference between the statistically
independent and identically distributed (IID) and Non-
IID assumptions. Specifically, IID RVs follow the same
distribution with similar statistical characteristics [41, pp.
239]. Thus, it is apparent that the Non-IID assumption is
more general than the IID assumption. On the other hands,
the concept of Non-IID fading is essential and necessary in
spatially distributed systems, and has been widely considered
in the literatures [10], [42], [43], [44], [45], and [46].
Lemma 1: The PDF and CDF of the aggregated interfer-

ence power at the cluster head, denoted as fIC (x) and FIC (x)
for x > 0, respectively, can be obtained as follows

fIC (x) =
ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)
ajI⟨i⟩C
(j− 1)!

x j−1e−xaI⟨i⟩C , (5)

FIC (x) = 1−
ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)e−xaI⟨i⟩C
j−1∑
r=0

(xaI⟨i⟩C)
r

r !
, (6)

where A = diag([aI1C, aI1C, . . . , aI1C︸ ︷︷ ︸
mI1C times

, . . . , aILC, . . . , aILC︸ ︷︷ ︸
mILC times

]),

aIiC≜mIiC/(γ̄IiℓIiC), ϱ(A) is the number of distinct diagonal
elements of A, aI⟨1⟩C>aI⟨2⟩C> · · ·>aI⟨ϱ(A)⟩C are the distinct
diagonal elements in decreasing order, τi(A) is the multiplic-
ity of aI⟨i⟩C, and χi,j(A) is the (i, j)th characteristic coefficient
of A.

Proof: The proof of Lemma 1 is given in Appendix A.

3) PDF AND CDF OF γSC
From (3), the PDF of γSC, which is a Gamma variate with
shape parameter NmSC and scale parameter γ̄SℓSCmSC

, is obtained
as

fγSC (z) =
(aSC)NmSC

0(NmSC)
zNmSC−1e−aSCz, z > 0, (7)

where aSC ≜ mSC
γ̄SℓSC

. In order to obtain the corresponding
CDF, denoted as FγSC (z), we integrate (7) as follows

FγSC (z) =
∫ z

0
fγSC (z)dz =

(aSC)NmSC

0(NmSC)

∫ z

0
zNmSC−1e−aSCzdz,

(8)

where γ (s, x) is the lower incomplete Gamma function
[47, Eq. (8.350.1)]. Hence, we obtain

FγSC(z) =
1

0 (NmSC)
γ (NmSC; aSCz)

= 1− e−aSCz
NmSC−1∑
k=0

(aSCz)k

k!
, z > 0. (9)

Lemma 2: The CDF of 0SC can be expressed as

F0SC (γ ) = 1− e−aSCγ
NmSC−1∑
m=0

(aSCγ )m

m!

ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)

×

m∑
r=0

(
m
r

) (j)ra
j
I⟨i⟩C

(aSCγ + aI⟨i⟩C)r+j
, γ > 0. (10)

Proof: The CDF of γSC, defined as F0SC (γ ) =
Pr
{ γSC
IC+1

< γ
}
, is written as

F0SC (γ ) = 1−e−aSCγ
NmSC−1∑
m=0

(aSCγ )m

m!

ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)

×

ajI⟨i⟩C
(j− 1)!

∫
∞

0
x j−1 (x + 1)m e−(aSCγ+aI⟨i⟩C)xdx.

(11)

Using the definition of the Confluent hypergeomet-
ric function of the second kind, where U (a, b, z) =
1
0(a)

∫
∞

0 e−zt ta−1 (1+ t)b−a−1 dt , and with the fact that

U (a, a+b+1, z) =
∑b

rk=0
( b
rk

)
(ark )(z)

−rk−a, we obtain (10).
This completes the proof of Lemma 2.

B. C-TO-DK COMMUNICATION
The received signal at Dk from C is written as

yCDk =
√
ℓCDkhCDk

√
PCxC +

∑
i∈I

√
ℓIiDkhIiDk

√
PIixIi + nDk ,

(12)

where xC is the normalized short packet signal dedicated
to Dk and nDk is the complex AWGN with zero-mean and
variance σ 2. hIiDk and ℓIiDk denote the complex small-scale
fading and the path loss from interferer i ∈ I to Dk ,
respectively. Additionally, we assume that |hIiDk |

2s for k ∈
K, where K = 1, 2, . . . ,K , are Non-IID Gamma random
variables, each with unit mean and corresponding shape
parameter mIiDk .

1) CHANNEL MODEL OF THE C-TO-DK LINKS
The path loss from C to each Dk , denoted as ℓCDk for k ∈
K, are not necessarily identical and follow the model in (2).
In other words, ℓCDk = GC + GDk − 22.7 − 26 log10(fc) −
36.7 log10(

dCDk
d0

) [dB], where dCDk is the distance from C to
Dk . Moreover, the SINR of the second phase at each user k ∈
K, can be written as

0CDk =
γ̄CℓCDk |hCDk |

2∑
i∈I γ̄IiℓIiDk |hIiDk |

2 + 1
=

γCDk

IDk + 1
. (13)

where γ̄C ≜ PC/σ 2, γCDk ≜ γ̄CℓCDk |hCDk |
2 and IDk ≜∑

i∈I γ̄IiℓIiDk |hIiDk |
2 are the instantaneous SNR and INR at

each Dk , where k ∈ K, respectively.
In this work, we primarily focus on the e2e error

performance, as determined via the user with the lowest e2e
SINR. In other words, the e2e SINR used for evaluated the
error performance is formulated as

0sys = min
k∈K

{
min{0SC, 0CDk }

}
= min

{
0SC,min

k∈K
{0CDk}

}
.

(14)

Lemma 3: The PDF and CDF of the aggregated interfer-
ence power at Dk , denoted as fIDk (x) and FIDk (x) for x > 0,

VOLUME 12, 2024 99077



M. Ghous et al.: Deep Transfer Learning-Based Performance Prediction of URLLC

respectively, are obtained as

fIDk (x) =
ϱ(Bk )∑
i=1

τi(Bk )∑
j=1
χi,j(Bk )

ajI⟨i⟩Dk
(j− 1)!

x j−1e−xaI⟨i⟩Dk , (15)

FIDk (x) = 1−
ϱ(Bk )∑
i=1

τi(Bk )∑
j=1

χi,j(Bk )e
−

x
µI⟨i⟩Dk

j−1∑
r=0

(xaI⟨i⟩Dk )
r

r !
,

(16)

where Bk=diag([aI1Dk , . . . , aI1Dk︸ ︷︷ ︸
mI1Dk times

, . . . , aILDk , . . . , aILDk︸ ︷︷ ︸
mILDk times

]),

aIiDk ≜
mIiDk
γ̄IiℓIiDk

, ϱ(B) denotes the number of distinct diagonal
elements of Bk , aI⟨1⟩Dk > aI⟨2⟩Dk > . . . > aI⟨ϱ(Bk )⟩Dk are the
distinct diagonal elements in decreasing order, τi(Bk ) is the
multiplicity of aI⟨i⟩Dk , and χi,j(Bk ) is the (i, j)th characteristic
coefficient of Bk .

Proof: The proof of Lemma 3 is given in Appendix B.

Lemma 4: The CDF of 0CDk can be expressed as

F0CDk (γ ) = 1− e−aCDk γ
mCDk−1∑
mk=0

(aCDkγ )
mk

mk !

ϱ(Bk )∑
ik=1

τik (Bk )∑
jk=1

× χik ,jk (Bk )
mk∑
rk=0

(
mk
rk

)
ajkI⟨ik ⟩Dk

(jk )rk

(aCDkγ + aI⟨ik ⟩Dk )
rk+jk

, γ > 0. (17)

Proof: The CDF of γCDk , defined as F0CDk (γ ) =
Pr
{ γCDk
IDk+1

< γ
}
, is written as

F0CDk (γ ) = 1− e−aCDk γ
NmCDk−1∑
m=0

(
aCDkγ

)m
m!

ϱ(Bk)∑
i=1

τi(Bk)∑
j=1

× χi,j(Bk)
ajI⟨i⟩C
(j− 1)!

∫
∞

0
x j−1 (x + 1)m

× e−(aCDk γ+aI⟨i⟩C)xdx. (18)

Using the Confluent hypergeometric function of the second
kind, we obtain (17). This completes the proof of Lemma 4.

Lemma 5: The CDF of 0sys can be written as

F0sys (γ ) = 1−
[
1− F0SC (γ )

] ∏
k∈K

[
1− F0CDk (γ )

]
, γ > 0.

(19)

Proof: The SINR of the system is defined as the
minimum SINR obtained by all users

0sys = min
{
0SC,min

k∈K
{0CDk}

}
, (20)

where K≜{1, 2, . . . ,K }. Hence, the CDF of 0sys, defined as
F0sys (γ ) = Pr

{
0sys < γ

}
, is obtained as

F0sys (γ ) = 1− Pr

{
0SC > γ,

⋂
k∈K

[
0CDk > γ

]}

= 1− Pr {0SC > γ }
∏
k∈K

Pr
{
0CDk > γ

}
, (21)

which eventually yields (19). Note that 0SC is a function
of hSC and 0CDk is a function of hCDk and hIiDk , k =
1, . . . ,K and i = 1, . . . , I . Since hSC, hCDk , and hIiDk ,
for k = 1, . . . ,K and i = 1, . . . , I , are statistically
independent, specifically non-IID, we conclude that 0SC and
0CDk , k = 1, . . . ,K , are also statistically independent.
Hence, the intersection (joint event) in the second equality
in Eq. (21) occurs due to the property Pr{E1E2 . . . } =∏

i Pr{Ei} when Ei are mutually independent random events.
This completes the proof of Lemma 5.

III. PERFORMANCE ANALYSIS
To reduce the physical-layer transmission latency, URLLC
often uses short-packet communications. The best design for
short-packet communications is based on a detailed exam-
ination of the relationship between the BLER, maximum
attainable rate (MAR), and blocklength. Given a blocklength
of size M symbol/block, the MAR R(M , γ, ϵ) (in bits per
channel usage (BPCU)) is expressed as [48]

R(M , γ, ϵ) = C(γ )−

√
V (γ )
M

Q−1(ϵ)+ O
(
log2M
M

)
,

(22)

where C(γ ) = log2(1+γ ) is the Shannon capacity, chan-
nel dispersion is denoted by V (γ )= (1− 1

(1+γ )2
)(log2 e)

2,

Q−1(x) is the Gaussian inverse Q-function, and O
(
log2M
M

)
is the remainder term which can be omitted when M ≥ 100
[49]. Hence, the MAR is expressed as R = F

M , where F
denotes the number of data bits for Dk .
We are using a half duplex relaying (HDR) decode-and-

forward (DF) system. Each transmission block in HDR is
divided into two equal-length time slots. The source transmits
information to C during the first time slot, then C decodes and
forwards the received signal to the destination in the second
time slot. Loop interference at C is fully avoided in HDR.

A. BLER ANALYSIS
In this subsection, we study the average e2e BLER. Using DF
relaying at C, errors can arise from two possible scenarios:
(i) C identifies an error in the received data and successfully
corrects it before relaying the data to the destination, (ii) C
correctly relays the data, but the destination still detects errors
in the received data.

Consider a transmission from S to C, let φSC and φCDk
represent the events related to the transmission process
between S-to-C and C-to-Dk , respectively. The instantaneous
BLER at C can be written as [50, Eq. (12)]

Pr(φSC) = ϵ̃SC ≈ Q
(
C(0SC)− R
√
V (0SC)/M

)
. (23)

Provided that C successfully decodes and forwards that
signal to Dk , the instantaneous BLER at Dk ϵ̃CDk |Csucceeds is
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written as

Pr(φCDk |φ̄SC) = ϵ̃CDk |SC succeeds ≈ Q

(
C(0CDk )− R√
V (0CDk )/M

)
,

(24)

where Pr(φCDk |φSC) is the conditional probability of φCDk
given φSC. It is noted that Dk ’s signal i.e., xCDk can be
received successfully at Dk when the signal at C i.e.,
xSC is decoded correctly. Meanwhile, due to the high
level of interference, xCDk is decoded incorrectly when
xSC is erroneously decoded. As a result, it is assumed
that Pr(φCDk |φSC) is equal to one [48]. Finally, since
Pr(φCDk ) = Pr(φCDk |φSC)Pr(φSC) + Pr(φCDk |φ̄SC)Pr(φ̄SC),
the e2e instantaneous BLER (ϵ̃e2e), where ϵ̃CD|SC succeeds =

ϵ̃CDk is written as

ϵ̃e2e = Q
(
C(0e2e)− R
√
V (0e2e)/M

)
(25)

≈ 1× ϵ̃SC + ϵ̃CDk × (1− ϵ̃SC) = ϵ̃SC + (1− ϵ̃SC)ϵ̃CDk
. (26)

B. AVERAGE BLER OF EACH TRANSMISSION (EACH HOP)
For SPC, the average BLER can be approximated as [51]

ϵ̄χ ≈ E

[
Q

(
C(γχ )− R√
V (γχ )/M

)]
, (27)

where χ ∈ {SC,CD, e2e}, E[·] is the expectation operator,
and Q(·) denotes the Gaussian Q-function. It is intractable
to derive analytically closed-form expression of (27) due to
the Gaussian Q-function. To approximate the expression, the

estimated linear form of Q
(

C(γχ )−R√
V (γχ )/M

)
is invoked as [52]

Z (γχ ) =
1
2
− τ

(
γχ − ω

)
, ψ < γχ < η, (28)

where τ ≜
√
M√

2π(4R−1)
, η ≜ ω + 1

2τ , and ω ≜ 2R − 1.

Hence, substituting (28) in (27), the average BLER is tightly
approximated as

ϵ̄χ ≈

∫
∞

0
Z (γχ )fγχ (x)dx = τ

∫ η

ψ

Fγχ (x)dx, (29)

where Fγχ (x) is the CDF of γχ , and second equality is due to
the partial integration method.

1) AVERAGE BLER OF THE FIRST HOPE (S-TO-C)
We derive the closed-form expression for the average BLER
at C, i.e., ϵ̄SC, in Theorem 1.
Theorem 1: Given a number of transmit data bits, the

average BLER ϵ̄SC at C can be written in closed-form
expression as

ϵ̄SC = 1− τ
NmSC−1∑
m=0

ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)

×

m∑
r=0

ajI⟨i⟩Ca
r−1
SC

r !

[
2(r, ψ)−2(r, η)

]
, (30)

where 2(r, ψ) ≜ ψ re−aSCψU
(
j, r + j, aI⟨i⟩C + aSCψ

)
.

Proof: The proof of Theorem 1 is given in Appendix C.

Corollary 1: Let us assume an interference-free scenario,
where the number of interferers is zero, then we can write the
average BLER without interference at C i.e., ϵ̂SC, as

ϵ̂SC = 1− τ
NmSC−1∑
k=0

k∑
q=0

(aSC)q−1

q!
(e−aSCψψq

− e−aSCηηq).

(31)

Proof: The proof of Corollary 1 is obtained following
the same approach in Appendix C by taking zero interferers.

2) AVERAGE BLER OF THE SECOND HOPE FOR EACH
INDIVIDUAL USER K (C-TO-DK )
In the C-to-Dk (Cluster head to k th user) links, the small
scale fading follows IID Nakagami-m distributions and
hCDk follows IID Gamma distributions. We derive the
closed-form expression of the average BLER at Dk , i.e., ϵ̄CDk ,
in Theorem 2.
Theorem 2: The average BLER at Dk , denoted as ϵ̄CDk ,

is obtained as

ϵ̄CDk = 1− τ
NmCDk−1∑
mk=0

ϱ(Bk )∑
ik=1

τik (Bk )∑
jk=1

χik ,jk (Bk )

×

m∑
rk=0

ajkI⟨ik ⟩C
(aCDk )

rk−1

rk !

[
21(rk , ψ)−21(rk , η)

]
,

(32)

where 21(rk , ψ) ≜ ψ rk e−aCDkψU (jk , rk + jk , aI⟨ik ⟩C +
aCDkψ).

Proof: The proof of Theorem 2 is given in Appendix D.

Corollary 2: Let us assume an interference-free scenario,
where the number of interferers is zero, then we can write the
average BLER at Dk i.e., ϵ̂CDk , as

ϵ̂CDk = 1− τ
NmCDk−1∑

k=0

k∑
q=0

(aCDk )
q−1 e

−aCDkψψq
− e−aCDk ηηq

q!
.

(33)

Proof: The proof of Corollary 2 is obtained following
the same approach in Appendix D by taking zero interferers.

3) AVERAGE e2e BLER
The average e2e BLER of the system is given in Theorem 3.
Theorem 3: The average e2e BLER ϵ̄e2e for the system can

be written as

ϵ̄e2e ≈ 1−
NmSC−1∑
m=0

mCD1−1∑
m1=0
· · ·

mCDk−1∑
mk=0

ϱ(A)∑
i=1

ϱ(B1)∑
i1=1
· · ·

ϱ(Bk )∑
ik=1

×

τi(A)∑
j=1

χi,j(A)
τ1(B1)∑
j1=1
· · ·

τk (Bk )∑
jk=1

{
K∏
k=1

χik ,jk (Bk )
}
31,

(34)
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where 31,32, χk,lk ,33, and χl are given in (35), (36), (37),
(38), and (39), as shown at the bottom of the next page,
respectively. Herein, m6 =

∑K
k=1 mk and a6 = aSC +∑K

k=1 aCDk .
Proof: The proof of Theorem 3 is given in Appendix E.

4) APPROXIMATION FOR ϵ̄E2E
The ϵ̄e2e can be approximated as follow

ϵ̄e2e ≈ ϵ̄SC + (1− ϵ̄SC)
(
1−

K∏
k=1

(1− ϵ̄CDk )
)

= 1− (1− ϵ̄SC)
K∏
k=1

(1− ϵ̄CDk ). (40)

C. ASYMPTOTIC, ERROR FLOOR, AND DIVERSITY GAIN
ANALYSES
1) AVERAGE BLER OF THE FIRST PHASE
In the high transmit SINR regime, where γ̄S is relatively large,
we have FγSC(γ )→ (aSCγ )NmSC/(NmSC)!, for γ > 0. Hence,
the CDF of the SINR at C can be simplified as

F0SC (γ )→ αSC
(aSCγ )NmSC

(NmSC + 1)!
, γ > 0, (41)

where αSC ≜
∑ϱ(A)

i=1
∑τi(A)

j=1 χi,j(A)ajI⟨i⟩CU (j,NmSC + j +
1, aI⟨ik ⟩C).
As a result, the average BLER at C in the high SINR

regime, denoted as ϵ̄∞SC(PS), is obtained as

ϵ̄∞SC(PS) =
ταSC(aSC)NmSC

(NmSC + 1)!
(ηNmSC+1 − ψNmSC+1). (42)

2) AVERAGE BLER OF THE SECOND PHASE
In the high transmit SINR regime, where γ̄CDk is relatively
large, we have FγCDk (γ ) → (aCDkγ )

mCDk /(NmCDk )!, for γ >
0, Hence, the CDF of the SINR at the cluster head can be
simplified as

F0CDk (γ )→ βCDk
(aCDkγ )

mCDk

(mCDk + 1)!
, γ > 0, (43)

where βCDk ≜
∑ϱ(B)

i=1
∑τi(B)

j=1 χi,j(Bk )
(j+mCDk−1)!

(j−1)!
(aI⟨i⟩Dk )

−mCDk .
Hence, the average BLER at Dk in the high SINR regime,

denoted as ϵ̄∞CDk (PC), is obtained as

ϵ̄∞CDk (PC) =
τβCDk

(mCDk + 1)!

× (aCDk )
mCDk (ηmCDk+1 − ψmCDk+1). (44)

3) AVERAGE e2e BLER
Accordingly, the average BLER of the system in the high
SINR regime, denoted as ϵ̄∞e2e, is given by

ϵ̄∞e2e = 1− (1− ϵ̄∞SC(PS))
K∏
k=1

(1− ϵ̄∞CDk (PC)) (45)

= 1−
{
1−

ταSC

(NmSC + 1)!
(aSC)NmSC

× (ηNmSC+1 − ψNmSC+1)
}

K∏
k=1

{
1

−
τβCDk

(mCDk + 1)!
(aCDk )

mCDk (ηmCDk+1 − ψmCDk+1)
}
.

(46)

4) ERROR FLOOR ANALYSIS
In this subsection, we determine the error floor of the average
e2e BLER. The error floor analysis provides useful system
design guidelines. There is a region in which performance
flattens is called the error floor region. We consider the error
floor to be the lower limit achieved by the average e2e BLER
when either PS or PC tends towards infinity [53], while the
counterpart (PC or PS, respectively) remains within a low-to-
middle transmission regime. The error floor of the average
e2e BLER when only PS or PC→∞ is obtained as

ϵ̄∞e2e→

{∏K
k=1 ϵ̄CDk , PS→∞,

ϵ̄SC, PC→∞.
(47)

From (47), we draw the insights that by increasing the
transmission power of the BS or CH alone does not lead to
further improvement in the BLER. This is because the end-
to-end instantaneous BLER is determined by the minimum
BLER equation, which implies that the system’s performance
is limited by the weakest link, such as the user with the worst
channel conditions.

5) DIVERSITY GAIN ANALYSIS
Unlike the error floor analysis, the diversity gain is calculated
at PS = PC ≜ P→∞. In other words, the diversity gain of
the considering URLLC system can be defined as [54]

De2e = − lim
P

log(ϵ̄e2e(P))
log(P)

= − lim
P

log(ϵ̄∞e2e(P))

log(P)
= min{NmSC,mCD1 , . . . ,mCDK }, (48)

where ϵ̄∞e2e(P) = 1−(1−ϵ̄∞SC(P))
∏K

k=1(1−ϵ̄
∞

CDk
(P)) is merely

the average e2e BLER expressed as a function of P.
Remark 1: Specifically, when setting the transmit powers

of the source (PS) and the cluster head (PC) equal (PS =
PC = P), the average end-to-end BLER (ϵ̄∞e2e(P)) can be
modeled as a summation of terms CiP−bi , where Ci and bi
are positive constants with respect to P. In this scenario,
the diversity order of the system (De2e) is determined by
the minimum value of bi across all terms, denoted as
mini{bi}. As a result, when both BS and CH transmission
powers are increased by r [dB] in the high transmit
SINR regime, the average end-to-end BLER decreases by
r mini{bi} [dB]. This relationship highlights the beneficial
impact of increasing transmit powers on improving system
performance, particularly in environments characterized by
high SNR levels.

With such a communication network, locations of the S, C,
and users are treated as random variables (RVs), which make
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the performance analysis intractable. [55]. Thus, relying on
the data driven techniques to develop a CNN model based
on transfer learning that can be trained to predict the average
overall BLER using pre-collected CSI and associated outage
probability data. The multivariate confluent hypergeometric
function having complex BLER expression renders the
calculation of the system average overall BLER specified
in (40) unfeasible for real-time application, as distances
between nodes in the proposed system are now also RVs.
We approach the challenge of determining the system average
overall BLER as a non-linear regression problem in order
to get over this hurdle. Specifically, we produce a data set
that thoroughly describes the considered system. The created
CNN can predict the average overall BLER accurately under
different system settings.

To deal with unpredictable performance at ground users, S
and C can leverage a CNN to predict the user performance
and adjust parameters to satisfy the fairness and quality
of service at each user. Motivated by the aforementioned
performance analysis, this paper offers a methodology for
assessing system performance and then proceeds to evaluate
performance prediction through transfer learning [56].

IV. TRANSFER LEARNING-BASED PERFORMANCE
PREDICTION
In our paper, we leverage ML for real-time performance
prediction. We specifically use transfer learning, employing a
pre-trained model initially trained on a larger source domain,
to handle a target task on a limited dataset. This method
applies the source model’s knowledge to smaller datasets,
facilitating efficient real-time predictions.

A. UNIVERSAL APPROXIMATION FUNCTION FOR
PERFORMANCE PREDICTION
The average e2e BLER can be mathematically represented
as a function ϒ : X → Y , where X and Y represent the
input and output spaces, respectively. Our goal is to develop

a transfer learning-based universal approximation function
ϒ̃ : X → Ŷ , where Ŷ is an accurate approximation of Y
based on a limited dataset that does not fully capture the
input-output relationship in ϒ . Hence, the developed ML
models utilize regression analysis to accurately characterize
the continuous function ϒ . These models are designed to
exhibit high generalization capabilities, ensuring accurate
predictions even with new inputs.

Here, regression analysis is a statistical technique used to
estimate the relationship between a dependent variable y and
an input feature vector, denoted as x = [x1, . . . , xm]T, where
m denotes the number of features [57]. The goal of regression
analysis is to determine an objective predictive function ϒ
that maps the feature space X to the output space Y , i.e., ϒ :
X → Y , such that

y = ϒ(x; θ ), (49)

where x ∈ X , y ∈ Y , and θ = [θ0, θ1, . . . , θm]T denotes the
unknown parameters with θ0 being the bias that allows for
an offset in the prediction model. In this paper, we focus on
non-linear Regression (NLR) models since the average e2e
BLER is a non-linear function of input system parameters
x. In addition, using NLR models provide more flexible
relationships between y and x using non-linear functions of
the parameters and/or the independent variables. We denote
the average e2e BLER in (51), as shown at the bottom of the
next page, as y = ϒ(x) with

x = [pT
S,p

T
D1
, . . . ,pT

DK ,p
T
I1 , . . . ,p

T
II ,p

T
C,F,M ,mSC,

mCD1 , . . . ,mCDK , ℓSC, ℓCD1 , . . . , ℓCDK ,N ]T, (50)

where pX ≜ [xX, yX, zX]T denotes the 3D Cartesian coordi-
nates of node X. It is noted that the total number of input
parameters L = 11 + 5K + 3I . As a result, predicting the
average e2e BLER of a URLLC system is a complex task
that involves modeling the relationship between these factors
and the average e2e BLER.

31 =
m∑
r=0

(
m
r

)
(j+ r − 1)!
(j− 1)!

ajI⟨i⟩Ca
m
SC

m!

m1∑
r1=0
· · ·

mk∑
rk=0

(32 +33)
K∏
k=1

(
mk
rk

)
(jk + rk − 1)!

(jk − 1)!

ajkI⟨ik ⟩Dk
amkCDk

mk !
, (35)

32 =
K∑
k=1

rk+jk∑
lk=1

χk,lk

alkI⟨ik ⟩Dk

{
3

(
η,m+ m6, a6,

aCDk
aI⟨ik ⟩Dk

η

)
−3

(
ψ,m+ m6, a6,

ψaCDk
aI⟨ik ⟩Dk

)}
, (36)

χk,lk =

(
aCDk
aI⟨ik ⟩Dk

)rk+jk−lk
(rk + jk − lk )!

[
d rk+jk−lk

dsrk+jk−lk

(
aSC
aI⟨i⟩C

γ + 1
)rk+jk−lk]∣∣∣∣

s→−aCDk /aI⟨ik ⟩Dk

, (37)

33 =
r+j∑
l=1

χl

alI⟨i⟩C

{
3

(
η,m+ m6, a6,

ηaSC
aI⟨i⟩C

)
−3

(
ψ,m+ m6, a6,

ψaSC
aI⟨i⟩C

)}
, (38)

χl =

(
aSC
aI⟨i⟩C

)r+j−l
(r + j− l)!

[
d r+j−l

dsr+j−l

(
K∏
k=1

(aCDkγ + aI⟨ik ⟩Dk )
)rk+jk]∣∣∣∣

s→−aSC/aI⟨i⟩C

. (39)
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B. DOMAIN ADAPTATION-BASED TRANSFER LEARNING
SOLUTION
In domain adaptation-based transfer learning, a domain
D = {X , p(x)} consists of a feature space X and a marginal
probability distribution p(x). A task T = {Y, f } consists of an
output spaceY and an objective predictive function f which is
not observed but can be learned from the training data. Here,
the data consist of pairs (x, y), where x ∈ X and y ∈ Y .
In this paper, we consider a pre-trained (source) model

with one source domain Ds and one source target Ts, and
a fine-tuned (target) model with one target domain Dt and
one target task Ts. We can define Ds, Ts, Dt, and Tt as [33]

Ds ≜ {Xs, p(§s)}, §s∈ Xs, Ts ≜ {Ys, fs},
fs : Xs→ Ys, ys = fs(§s) ∈ Ys, (52)

Dt ≜ {Xt, p(§t)}, §t∈ Xt, Tt ≜ {Yt, ft},
ft : Xt→ Yt, yt = ft(§t) ∈ Yt, (53)

respectively, where Xs, Ys, Xt, and Yt denote the feature
space of source domain, output space of source domain,
feature space of target domain, and output space of target
domain, respectively. Similarly, xs and xt denote the
input features vectors of the source and target domains,
respectively. It is noted that the source model is designed
with a complex architecture and high computational costs
to accurately capture the average e2e BLER represented by
the function ϒ in (51). In this context, the source task is
characterized as fs = ϒ , and the output ys is obtained by
applying ϒ to the input xs, where xs corresponds to the
system features x in (50). However, training the source model
requires a substantial dataset and extensive training time.
To overcome this challenge, we aim to develop a target model
with less complex architecture by fine-tuning the source
model with Tt = Ts. By opting for a fine-tuned target model
on a small dataset, benefits such as faster training, reduced
data requirements, and comparable accuracy to the source
model can be achieved.

In practice, exact knowledge of p(xs) and p(xt) is
unknown; instead, these probabilities are empirically esti-
mated using the available dataset, which can vary depending
on the dataset size. When the dataset size is sufficiently large,
such as in the source model, the empirical probabilities p(xs)
can effectively represent the true probabilities. However,
in cases where the dataset is small, the resulting empirical
marginal probabilities in the target model may differ due

to the limited representation of the true probabilities, i.e.,
p(xt) ̸=√ (xs), where xt, §s∈ X . Considering the

constraint of limited data available in the target domain, our
objective is to design a target model that can be effectively
trained and yield comparable accuracy to the source model.
Remark 2: Since Ts=Tt, Xs=Xt and p(xs) ̸=p(§t), our

problem is identified as a closed set domain adaptation in
transductive transfer learning [33]. Specifically, some part of
the dataset belong only to the source domain or to the target
domain, while others belong to both datasets.

C. DATA
• The number of samples of our source dataset, denoted
by nsrc, is 1 × 105, while the number of samples of our
target dataset, denoted by nT, is 1× 102.

• The target dataset contains a relatively smaller number
of samples (102), as it represents a specific domain
or task for which labeled data may be limited or
expensive to obtain. In such scenarios, transfer learning
offers a compelling advantage by leveraging knowledge
acquired from the source domain to enhance learning
and inference in the target domain. By fine-tuning
the pretrained model with the smaller target dataset,
we effectively transfer the learned representations and
knowledge from the source domain to the target domain,
thereby mitigating the challenges posed by limited
labeled data availability.

• The choice of the number of samples in our source
and target datasets is based on several factors. The
source dataset comprises a large number of samples
(105) to ensure a comprehensive coverage of diverse data
instances, thus facilitating robust learning of underlying
patterns and features. This abundance of data allows
our model to capture a wide range of variations and
complexities present in the source domain, which
enhances its ability to effectively generalize and perform
across different scenarios.

1) SOURCE DATASET
The source dataset is the dataset that is used to pre-train the
original model. This dataset is typically large and diverse, and
is used to learn a general feature representation of the data.
All the features of our source dataset are represented in (50).
In our case, for K users, the source dataset is in the form of a
feature matrix and target vector.

y = ϒ
(
[pT

S,p
T
D1
, . . . ,pT

DK ,p
T
I1 , . . . ,p

T
II ,p

T
C,F,M ,mSC,mCD1 , . . . ,mCDK , ℓSC, ℓCD1 , . . . , ℓCDK ,N ]

)
= 1−

K∏
k=1

{
1− τ

NmCDk−1∑
mk=0

ϱ(Bk )∑
ik=1

τik (Bk )∑
jk=1

m∑
rk=0

χik ,jk (Bk )
rk !

( mI⟨ik ⟩C
γ̄I⟨ik ⟩

ℓI⟨ik ⟩C

)jk( mCDk

γ̄CℓCDk

)rk−1[
21(rk , ψ)−21(r, η)

]}
×

{
1− τ

NmSC−1∑
m=0

ϱ(A)∑
i=1

τi(A)∑
j=1

m∑
r=0

χi,j(A)
r !

(
mI⟨i⟩C
γ̄I⟨i⟩ℓI⟨i⟩C

)r−1( mSC

γ̄SℓSC

)r−1[
2(r, ψ)−2(r, η)

]}
, τ =

√
M√

2π (22R − 1)
,

(51)
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2) FEATURE MATRIX
In our paper, we consider the following feature matrix

X =
[
xT
1 ; · · · ; x

T
K

]T
, xk ≜ [pT

S,p
T
Dk ,p

T
I1 , . . . ,p

T
II ,

pT
C,F,M ,mSC,mCDk , ℓSC, ℓCDk ,N ]T. (54)

In addition, the feature set and target set of the source
dataset are written as Xs = {X (1),X(2), . . . ,X(N )

} and Ys =
{ϵ̄

(1)
e2e, ϵ̄

(2)
e2e, . . . , ϵ̄

(N )
e2e }, respectively, where ϵ̄

(n)
e2e = ϒ(X(n)) and

n denotes the instance number. Hence, the structure of the
dataset is [Xs,Ys], in which each data point is [X(n), ϵ̄

(n)
e2e],

whereX(n)
∈ Xs, ϵ̄(n)e2e ∈ Ys, and N is the number of samples.

3) TARGET DATASET
The target dataset is the dataset for which the source model
is adapted to perform a new task. This dataset is much
smaller and more specific than the source dataset. The feature
set and target set of the whole data are written as Xt =
[X ′1,X

′

2, . . . ,X
′
M ]T and Yt = [ϵ̄e2e,1, ϵ̄e2e,2, . . . , ϵ̄e2e,M ]T,

respectively. Hence, the structure of the target dataset is
[Xt,Yt]. Here the important point to note is that the number
of samples used in the source model dataset (N ) is much
greater than the number of samples used in the target model
dataset (M ) i.e., M < N .

D. THE PROPOSED CNN-BASED TL ALGORITHM
First, we design the source model PT (X; θsrc) with Fsrc

being the set of all layers in the sourcemodel. Specifically, the
source model is a CNNmodel designed for training on a large
dataset to achieve a suitable robust performance in terms of
accurate BLER predictions. This well-trained source model
serves as our starting point. After training, layers Ffreeze

⊆

Fsrc are freezed to preserve these learned features.
Our second CNN model, i.e., the NFT target model, has

fewer layers and less training data. We customize the source
model for our task by adding a new fully-connected layer
with appropriate output neurons, trained on our dataset. Since
the source model has pre-trained features, we only train the
newly added layers. We then fine-tune the source model by
unfreezing certain layers in the source model, transferring
its trained parameters to the non-fine-tuned (NFT) target
model to better adapt to our task. After training and fine-
tuning, the model’s performance is evaluated on a validation
set. If unsatisfactory, we modify the hyperparameters for
improved performance and subsequently use this fine-tuned
model for predictions. Details of the transfer learning
algorithm are presented in Algorithm 1, and the descriptions
of the source, NFT, and fine-tuned target models are
explained in subsequent sections.

E. SOURCE CNN MODEL FOR SOURCE TASK
The source model, which consists of convolutional layers,
pooling layers, fully connected layers, and output layers,
is written as

PT (X; θsrc)
=
[
f (11)fc6

(θsrcfc6 ) ◦ f
(10)
fc5

(θsrcfc5 ) ◦ f
(9)
fc4

(θsrcfc4 )

Algorithm 1 Proposed Adaptation Algorithm Based on
Transfer Learning

1 Initialize: BATCH_SIZE = Sbatch,
NUM_EPOCH = 30, SPLIT_SIZE = 0.1;

2 Load: Source dataset
Ss = {(X (i)

s , y
(i)
s ) :X (i)

s ∈ Xs, y
(i)
s ∈ Ys, i ∈ [1,Ls]};

3 Load: Target dataset
St = {(X (i)

t , y
(i)
t ) :X (i)

t ∈ Xt, y
(i)
t ∈ Yt, i ∈ [1,Lt]};

4 Phase 1: Source model training phase,
5 input Source training dataset Strains ⊂ Ss, where
|Strains | = Ltrains and Ltrains

Ls
= 1− SPLIT_SIZE;

6 build Source CNN model following structure in (55);
7 i← 0;
8 while i < NUM_EPOCH do
9 i← i+ 1; j← 0; θsrc(i,j) ← θsrc(i−1,j);
10 while j < NO_BATCH do
11 j← j+ 1; θsrc(i,j) ←

Optimizer(θsrc(i,j−1),∇Lbatch(B
(i,j)
s ; θ

src
(i,j−1)));

12 return: trained parameters θ̃
src
← θsrc(i,j) and

pre-trained source model PT (X; θ̃src);
13 Phase 2: FT model training phase
14 input Target training dataset Straint ⊂ St, where
|Straint | = Ltraint and Ltraint

Lt
= 1− SPLIT_SIZE;

15 build FT CNN model with structure in (65);
16 i← 0;
17 while i < NUM_EPOCH do
18 i← i+ 1; j← 0; θft(i,j)← θft(i−1,j);
19 while j < NO_BATCH do
20 j← j+ 1;

θft(i,j)← Optimizer(θft(i,j−1),∇Lbatch(B
(i,j)
t ; θ

ft
(i,j−1)));

21 return: trained parameters θ̃
ft
← θft(i,j) and

fine-tuned model FT (X; θ̃ft);
22 Phase 3: Inference phase,
23 Input: Test dataset
Stest = {(X (i)

test, y
(i)
test) :X

(i)
test∈ Xtest, y

(i)
test ∈

Ytest, i ∈ [1,Ltest]};

24 Compute: RMSE =
√

1
Ltest

∑Ltest
i=1

(
ŷ(i)test − y

(i)
test

)2,
where ŷ(i)test = FT (X

(i)
test; θ̃

ft
);

25 if RMSE > criterion then
26 Go to Phase 2;
27 else

28 Output: Trained FT model FT (X; θ̃ft);

◦ f (8)fc3
(θsrcfc3 ) ◦ f

(7)
fc2

(θsrcfc2 ) ◦ f
(6)
fc1

(θsrcfc1 ) ◦ f
(5)
flat

◦ f (4)p2 ◦ f
(3)
c2 (θ

src
c2 ) ◦ f (2)p1 ◦ f

(1)
c1 (θ

src
c1 )

]
(X), (55)

where (f2 ◦ f1(θ ))(x) ≜ f2(f1(x; θ )), (f2(θ ) ◦ f1)(x) ≜
f2(f1(x); θ ) and (f2(θ2) ◦ f1(θ1))(x) ≜ f2(f1(x; θ1); θ2),
θlay represents the weights of layer lay, f (l)layt

(θlayt )
represent the operation at the layer lay ∈ {c,p,flat,fc},
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t ≥ 1 denotes the index of the layer lay, and θsrc =

{θsrcc1 , θsrcc2 , . . . , θsrcfc3
, . . .}.

1) ARCHITECTURE
Our CNN is composed two main parts, a convolution feature
extraction part and a regression part. Specifically, the feature
extraction part consists of several convolutional (Conv2D)
layers and max-pooling (MaxPooling2D) layers, followed
by the regression part, which consists of multiple fully-
connected (Dense) layers. To ensure proper handling of
regression tasks, it is essential to position a fully connected
layer before the regression layer in the network’s output.

a: 2D CONVOLUTIONAL LAYER (CONV2D-T )
First, pt padding is applied to the input A(l−1) of size
H (l−1)

× W (l−1)
× C (l−1) to increase its spatial dimension,

which involves adding extra rows and columns of zeros
around the input. Let A(l−1)

t be the input after padding,
the relationship between A(l−1)

t and the input A(l−1) is
[A(l−1)

t ]i,j,c = [A(l−1)]i−pt ,j−pt ,c if 1+ pt ≤ i ≤ H
(l−1)
+ pt

and 1+ pt ≤ j ≤ W (l−1)
+ pt , otherwise [A(l−1)

t ]i,j,c = 0.
It is noted that A(0)

= X and A(0)
t is the padded matrix.

The next step consists of applying a CNN operation using
a kernel that applies a convolutional operation to the input
data. Given C (l) kernels, we define each l-th kernel as
a matrix [W (l)

t ]c with P(l) rows and Q(l) columns, where
[W (l)

t ]p, q, c = w(l)
p,q,c. Each kernel yields a feature map

[Z (l)]c of size H (l)
×W (l), where H (l)

=
H (l−1)

+2 pt−P(l)

s + 1

and W (l)
=

W (l−1)
+2 pt−Q(l)

s + 1 with s being the stride. The
feature map [Z(l)

t ]c is presented as

[Z(l)]c = b(l)c + [W(l)
t ]c ∗ [A

(l−1)
t ]c, (56)

[Z(l)]i,j,c = b(l)c +
P∑
u=1

Q∑
v=1

w(l)
v,u,cā

(l−1)
s(i−1)+u−pt ,s(j−1)+v−pt ,c

,

(57)

∀c ∈ [1,C (l)], where ā(l)i,j,c = [A(l)
t ]i,j,c and b(l)t =

[b1, b2, . . . , bC (l) ]T is the bias of the t-th convolutional layer.
After the convolution operation, an element-wise non-

linear activation function φ
(l)
ct is applied to introduce

non-linearity into the network. The output of Conv2D-1 is
A(l) ≜ f (l)ct (A(l−1)

; θsrcct ), that is a 3D matrix of size H (l)
×

W (l)
× C (l). The c-th channel of A(l), denoted as [A(l)]c,

is formulated as

A(l)
= φ(l)ct (Z

(l)). (58)

Herein, the parameters of the Conv2D-t layer are denoted as
θsrcct = {⌊

(l)
t ,W

(l)
t }.

b: MAX POOLING LAYER (MAXPOOLING2D-T )
Maxpooling is a pooling operation that reduces the spatial
dimension of the feature map while retaining the most
important features. Let A(l)

= f (l)pt (A(l−1)) be the output of

the t-th maxpooling layer, we have

[A(l)]c = max
1≤u≤P(l)

max
1≤v≤Q(l)

ā(l−1)s(i−1)+u,s(j−1)+v,c, (59)

where P(l) and Q(l) specify the kernel size and s is the
stride. It is noted that given the input A(l−1) of size H (l−1)

×

W (l−1)
× C (l−1), the size of A(l) of the MaxPooling2D-

t layer is obtained with H (l)
=

⌊
H (l−1)

−P(l)
s

⌋
+ 1, W (l)

=⌊
W (l−1)

−Q(l)

s

⌋
+ 1, and C (l)

= C (l−1).

c: FLATTEN LAYER (FLAT)
Before transforming our CNN into a multi-layer FC CNN,
we flatten the input matrix A(l−1) to the flatten output vector
a(l) ∈ Rd (l) where d (l) = H (l−1)W (l−1)C (l−1).

d: FULLY CONNECTED (FC) LAYER (DENSE-T )
Followed by the flatten layer, FC layers compute a linear
transformation followed by an activation function φ(l)fct on the

preceding layer’s flattened output. Let a(l−1) ∈ Rd (l−1) , the
output vector a(l) ≜ ffct (⊣(l−1), θsrcfct ) is formulated as [58]

a(l) = φ(l)fct (‡
(l)), (60)

z(l) = b(l)t + (W(l)
t )Ta(l−1), (61)

where W(l)
t ∈ Rd (l−1)×d (l) is the weight and b(l)t ∈ Rd (l) is the

bias of the t-th fully connected layer. Herein, the parameters
of the Dense-t layer are denoted as θsrcfct = {⌊

(l)
t ,W

(l)
t }.

2) LOSS FUNCTIONS IN TRAINING A MODEL
We assess the performance of our model in terms of root
mean square error (RMSE) function. The RMSE is used to
determine the discrepancy between the predicted value and
the actual output value across the entire test set. During the
training phase, the loss function for each (i, j)-th mini-batch
B(i,j) of each i-th epoch is calculated. This loss function is
formulated as

Lbatch(B(i,j)
; θsrc) =

1
|B(i,j)|

|B(i,j)
|∑

k=1

(ϵ̄(k)e2e − ϵ̂
(k)
e2e)

2, (62)

where ϵ̄(k)e2e and ϵ̂
(k)
e2e = PT (X(k)

; θsrc) for X(k)
∈ B(i,j) are

the true average e2e BLER and the predicted average e2e
BLER, respectively. After training each i-th epoch, the loss
function over all mini-batches is formulated as

Lepoch(B(i,1), . . . ,B(i,Nbatch); θsrc)

=
1

Nbatch

Nbatch∑
j=1

Lbatch(B(i,j)
; θsrc), (63)

where Nbatch denotes the number of mini-batches in the
training dataset.
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F. NFT MODEL FOR TARGET TASK
We utilize a reduced version of the original dataset in this
part. This allows us to run the models more quickly, which
is beneficial for applications with limited compute power.
The mathematical representation of the NFT target model is
formulated as

NFT (X; θnft) =
[
f (4)fc1

(θnftfc1 ) ◦ f
(3)
flat(θ

nft
flat) ◦ f

(2)
c1 (θ

nft
c1 )

◦ f (1)out(θ
nft
out)

]
(X), (64)

where θnft ≜ {θnftc1 , θ
nft
flat, θ

nft
fc1 , θ

nft
out}.

The training set for a NFT target model is a subset of
the dataset used for the NFT target model that is used to
train the model. We take a smaller subset of the training
data by randomly selecting a subset of size M (where M <

N ) from the original dataset of size N . Let Dtrain
nft and

Dtest
nft denote the train and test sets for the NFT models.

The training set Dtrain
nft can be written as Dtrain =

(x̄j, ȳj)nj=1, (xj, yj) ∈ {Dt, Tt}, where n is the number of
samples in the training set for the NFT target model. The
loss function during the training phase of our NFT model,
denoted asLbatch(B(i,j)

; θnft), is similar to (62) with ϵ̂(k)e2e =

NFT (X(k)
; θnft).

G. FINE-TUNED (FT) MODEL FOR THE TARGET TASK
We create a new model with the same architecture as the
source model, but with the frozen layers excluded. This
new model is used for fine-tuning. We begin by transferring
the weights from the unfrozen layers in the pre-trained
source model to the fine-tuned model, preserving the learned
knowledge from the source dataset. Subsequently, we train
this fine-tuned model using the fine-tuning dataset. The new
fine-tuned target model can be formulated as

FT (X; θft) =
[
f (13)out ◦

new layer︷ ︸︸ ︷
f (12)fc7

(θftfc7 )

◦

trainable layers︷ ︸︸ ︷
f (11)fc6

(θsrcfc6 ) ◦ · · · ◦ f
(lt )
fct

(θsrcfct )

◦ ffreeze(θ̃
src
freeze)

]
(X), (65)

where lt and t are the indices of the last trainable FC layer,
ffreeze presents the non-trainable (freezing) layers, θ̃

src
freeze

are the non-trainable parameters of the source model due to
freezing layers, and θft ≜ {θftfc7 , θ

src
fc6

, . . . , θsrcfct } are the
trainable parameters of the FT model.

The loss function in our FT model, denoted as
Lbatch(B(i,j)

; θft), is similar to (62) with ϵ̂
(k)
e2e =

FT (X(k)
; θft).

H. TESTING OF THE PROPOSED TL ALGORITHM AND ALL
MODELS
1) PERFORMANCE COMPARISON OF SOURCE VERSUS NFT
VERSUS FINE-TUNED TARGET MODEL
The RMSE performance comparison among source model
with 5 hidden layers, the NFT target model with double the

number of hidden layers, and the fine-tuned target model
(transfer learning model) with double the number of hidden
layers of trainable parameters value is given in Table 4.

2) INFERENCE ON NEW DATA
Deep learning inference is the process of using a fully
trained CNN to generate inferences (predictions) based on
novel (unknown) data. For inference on new data, in our
work, we load the qualified trained models PT (θsrc),
NFT (θnft), andFT (θft) and feed new inference data x′ =
[p′S

T
,p′D1

T
, . . . ,p′DK

T
,p′I1

T
, . . . ,p′II

T
,p′C

T
,F ′,M ′,m′SC,

m′CD1 , . . . ,m
′
CDK , ℓ

′
SC, ℓ

′
CD1 , . . . , ℓ

′
CDK ,N ]T into these

trained networks. The output ϵ̂(i)e2e is calculated through the
fine-tuned trained model as follows ϵ̄(i)e2e = FT (θ

ft)(§′), and
then compared ϵ̂(i)e2e with analytical results.

3) EVALUATION OF THE TESTING
We can predict our output from the trained model as
FT (Xtest

; θft) → ϵ̂
(i)
e2e,test . To determine whether or not

transfer learning works, we consider the RMSE in order to
assess the fine-tuned model. The RMSE is a typical means
of quantifying the quality of a model’s fit in statistical
modelling, particularly regression analysis. It is given as

RMSE =

√∑Ltest
i=1

(
ϵ̂
(i)
e2e−ϵ̄

(i)
e2e,test

)2
Ltest where, L test = Ldata ∗

10% and Ldata denotes the total number of datapoints of
the dataset. In addition, the RMSE of the transfer-model is
significantly lower than that of the NFT model and is even
comparable to that of the source model. The CNN structure
of our proposed method is given in Fig. 2, where Eq. (55))
and Eq. (65) represent the output functions of the network.

I. COMPLEXITY ANALYSIS
For input A(l−1) with C (l−1) channels, C (l) kernels with
size P(l) × Q(l−1), and feature map of size H (l)

× W (l),
the time complexity is given in Tab. 2: Complexity (O) of
Algorithm 1.

FIGURE 2. Proposed neural network structure a) CNN structure of
pre-trained model, b) CNN with transfer learning.

V. RESULTS AND DISCUSSIONS
In this section, we present illustrative numerical results to
show the performances of the proposed schemes in-terms
of average e2e BLER. In order to evaluate the performance
of our system model we first validate our system model
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TABLE 2. Complexity (O) of Algorithm 1.

TABLE 3. Simulation parameters.

and verify the average e2e BLER of the system (ϵ̄e2e).
We investigate the effect of SNR, block-length, number of
bits transmitted, and transmit power on the average overall
BLER of the system. Finally, in this section, the comparison
between simulation based prediction and analytical results
are also discussed in this section. This section is further
divided into following subsections.

A. AVERAGE BLOCK ERROR RATE
This subsection explains the average BLER as influenced
by the distribution of transmission powers (PS and PC)
and interference power distribution. We further incorporated
Fig. 3 to facilitate comparison with a benchmark technique
previously reported in [59].

FIGURE 3. Performance comparison of proposed method and [59] using
no interferer.

In Fig. 3, we present the results of the comparative analysis
with [59]. With an increase of PS , we observed a notable
enhancement in the BLER of both proposed method and [59].

Specifically, Fig. 3 illustrates that, under no interferer, our
proposed method showed superior BLER performance as
compared to the method discussed in [59]. Furthermore,
we found that, by increasing the value ofM , a better BLER is
achieved for both methods. This emphasizes the significance
of optimizingM to achieve improved performance in wireless
communication systems.

FIGURE 4. Average e2e BLER as a function of transmission powers with
M = 500 symbol/block.

In Fig. 4, the average BLER of the first hop, second
hop, and e2e BLER are observed under different values of
PS and PC. First, it is observed that the analytical results
matched well with the simulation results, which shows the
high accuracy of the proposed approximation. It is observed
that when both PS and PC increase, the average BLER of
each hop and of the system also increase. This is because the
system achieves diversity gain as PS → ∞ and PC → ∞.
However, when fixing either PS or PC and varying PC or PS,
respectively, we observe error floor levels. Specifically, the
error floor at PC = 15 dBm is shown in Fig. 4.

The insights obtained from Fig. 4 regarding the impact of
power levels on BLER directly enlighten the analysis pre-
sented in Fig. 5, where we explore the broader implications
of transmission parameters, such as block length, on network
performance.

FIGURE 5. Source transmission power as a function of the average e2e
BLER with different values of blocklengths.
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In Fig. 5, we show the transmit power PS versus the
average e2e BLER with different blocklengths, i.e., M =

128, 256, and M = 512. The analytical, simulation, and
asymptotic curves are shown in this figure when the number
of information bits received by the Dk (F) = 100, and
PC = 15 dBm. Once more, the analytical curves match well
with the simulation curves, which confirms the validity of our
analysis. Furthermore, as shown in Fig. 5, for fixed channel
conditions, when the blocklengthM is increased, the average
e2e BLER and the required PS drop. Next, we observe
the average e2e BLER when varying the blocklength. The
insights gained from subsection V-A regarding the impact
of power levels on BLER directly enlighten the analysis
presented in subsection V-B where we explore the broader
implications of transmission parameters such as block length,
on network performance.

B. IMPACT OF BLOCKLENGTH
Here, we explore into the impact ofM on the average BLER
under varying values of PS . Building upon this foundation
from Fig. 5, where we utilized both analytical and simulation
results to examine the impact of varying BS power levels PS
and M on BLER, helped us to delved into the influence of
interference power distribution on the average block length
in Fig. 6.

FIGURE 6. Impact of blocklength to the average BLER with different
values of source transmission power.

In Fig. 6, we investigate the impact of the blocklength on
the average e2e BLER with a maximum blocklength, M , set
to 500 symbol/block and a source power, PS, of 33 dBm. The
observed trend shows a decrease in the average e2e BLER
as the blocklength increases. Specifically, at a blocklength
of M = 100 symbols/block, elevating the source power, PS,
from 13 dBm to 23 dBm induces an approximately two orders
of magnitude decrease in the average e2e BLER. However,
an additional 10 dBm increase in PS results in only a single
order of magnitude reduction in the average e2e BLER. This
phenomenon is due to the presence of an error floor in the
system at a fixed cluster head power, PC, as detailed in the
discussion of Fig. 5.

In Fig. 7, we examine the influence of M on the average
e2e BLER, with a maximum block M set to 300 symbols
per block and a source power Psrc of 30 dBm. The observed
trend indicates a decrease in the average e2eBLER with

FIGURE 7. Impact of block length M and number of users K with
constant Psrc, PC, and M.

an increase of M . However, we observe an increase in the
average end-to-end block error rate is observed when the
number of users k is increased, while Psrc, PC, andM remain
constant. Fig. 7 provides valuable insights into how both
block length and the number of users affect the reliability and
delay of transmissions in the system.

FIGURE 8. Impact of interference power distribution on the average
blocklength, where mIi C = mIi Dk

for all i ∈ [1, I] and k ∈ [1, K ].

In Fig. 8, the impact of the interference power distribution,
denoted asµ, on the average e2e (system) BLER is discussed.
It is noted that

µ =
1∑I

i=1 PIiCℓIiC
[PI1CℓI1C, . . . ,PIICℓIIC]

=
1∑I

i=1 PIiDk ℓIiDk
[PIiDk ℓIiDk , . . . ,PIIDk ℓIiDk ];

∀k ∈ [1,K ] (66)

The interference-free condition, i.e., I = 0 interferers,
results in the lowest average e2e BLER. Interestingly, the
system performance is not only impacted by the presence of
interference but also by the variation ofµ under the same INR
values. Specifically, the lowest average e2e BLER is observed
in an IID interference environment.

Building upon this foundation from Fig. 6, where we
utilized both analytical and simulation results to examine
the impact of varying BS power levels PS and M on
BLER, helped us to delved into the influence of inter-
ference power distribution on the average block length in
Fig. 8.
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FIGURE 9. Training convergence of the source, non-fine-tune, and
fine-tune models.

C. CONVERGENCE AND PERFORMANCE OF TRANSFER
LEARNING
This subsection addresses the convergence of training for the
source, non-fine-tuned, and fine-tuned models, along with a
comparative analysis between the true (analytical) curve and
the predicted results derived from the proposed method.

In Fig. 9, we present the convergence speeds of the
NFT model, the source model, and the fine-tuned model.
The source model requires approximately 35 epochs to
converge, while the NFT model fares better, converging at
about 21 epochs. Remarkably, the fine-tuned model reaches
convergence swiftly, within just 5 epochs. Furthermore, the
fine-tuned model’s training and validation accuracies closely
align with the validation accuracy of the source model.

FIGURE 10. Impact of source’s transmission power on the true and
predicted BLER of the source and the fine-tuned models.

More specifically, in Fig. 10, the error bars representing
the confidence intervals of the NFT, source, and fine-tuned
models are clearly visible. Importantly, it is observed that as
the transmission power increases, these confidence intervals
(error bars) decrease, implying reduced variability and
enhanced precision in the models’ predictions. This reduction
in the size of the confidence intervals as transmission
power increases can be attributed to the fact that a higher

transmission power typically results in stronger signal
quality, thereby reducing uncertainty in the data and leading
to more consistent and reliable model predictions.

Fig. 9 and Fig. 10 offered insights into the training conver-
gence and performance evaluation of our models. In Fig. 9,
we thoroughly analyzed the training convergence of the
source, non-fine-tuned, and fine-tuned models, providing a
detailed understanding of their respective learning processes.
Building upon this analysis, Fig. 10 delved into the impact
of the source’s transmission power on the true and predicted
BLER of both the source and fine-tuned models.

FIGURE 11. Impact of adaptation domain on prediction accuracy.

FIGURE 12. Impact of transferred knowledge amount on prediction
accuracy.

D. IMPACT OF DOMAIN ADAPTATION AND TRANSFERRED
KNOWLEDGE
In subsection V-D, we explain the significance of the
intersection between the source domain and target domain
models for the overall prediction of our average BLER.
Additionally, we examine the effect of transferred knowledge,
specifically non-trainable parameters, on prediction accuracy.

The impact of the size of the intersection between source
domain and target domain can be seen in Fig. 11. Some part of
source domain dataset is used for target domain dataset, i.e.,
Ds ̸= Dt and Ds ∩ Dt ̸= ∅. It is noteworthy that increasing
the mutuality from 10% to 60% enhances the average e2e
BLER predictions with the fine-tuned target model, with 50%
overlap yielding notably accurate e2e BLER ϵ̄e2e.
In Fig. 12, the size of the non-trainable parameter

implies the amount of transferred knowledge. The more
the number of non-trainable parameters, the greater the
transferred knowledge and hence, the better the performance
of fine-tuned target model. Specifically, at 192,396 shared
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TABLE 4. Test performance comparison (Source vs. NFT Target Model vs.
Fine-tuned-based Transfer Learning Target Model).

parameters, we obtain a high prediction accuracy for the fine-
tuned model. This behavior is due to the domain adaptation
principle, where increasing shared knowledge, the more the
target model can learn from the source, resulting in better
prediction accuracy as it more effectively models the target
domain’s characteristics.

VI. CONCLUSION
This paper presents a performance analysis of an ultra-
reliable low-latency communication system for clustered
networks with short packet communication in the finite
blocklength regime. The system utilizes a cluster head as
a wireless relay to achieve ultra-reliable and low-latency
communications between a base station and ground users
in the presence of multiple interferers. The paper derives a
closed-form expression for the overall block error rate of the
system based on a theoretical model that considers the packet
size, blocklength, and maximum achievable rate as the main
factors affecting the system’s performance. Additionally,
the paper proposes a transfer learning approach that uses
fine-tuned models with domain adaptation for real-time
prediction of the system’s performance. This approach has
the potential to improve the prediction accuracy and facilitate
the deployment of URLLC systems in practical applications
where real-time performance prediction is crucial.

APPENDIX A
PROOF OF LEMMA 1
In order to evaluate the PDF of IC, let γIiC = γ̄IiCℓIiC|hIiC|

2.
Since |hIiC|

2 follows a gamma distribution, the PDF and CDF
of γIiC are obtained as

fγIiC (γ ) =
1

(mIiC − 1)!

(
mIiC
γ̄IiℓIiC

)mIiC
× γmIiC−1 exp

(
−

mIiC
γ̄IiℓIiC

γ

)
, (67)

FγIiC (γ ) = 1− exp
(
−

mIiC
γ̄IiℓIiC

γ

) mIiDk−1∑
m=0

1
m!

(
mIiC
γ̄IiℓIiC

γ

)m
,

(68)

where γ > 0. The characteristic function (c.f.) of γIiC is given
by

8γIiC
(jω) = E

{
ejωγIiC

}
=

(
mIiC
γ̄IiℓIiC

)mIiC
(mIiDk − 1)!

∫
∞

0
γmIiC−1e

−

(
mIiC
γ̄Ii
ℓIiC
−jω

)
γ

(69)

Using the identity [Eq. (3.381.3), R1], the c.f. of γIiDk can
be derived in closed-form as 8γIiC =

(
1− jω/aIiC

)−mIiC .
Hence, the c.f. of IC, denoted as 8IC (jω) = E

{
ejωIC

}
, is

given by

8IC (jω) = E

{
exp

(
jω
∑
i∈I
γIiC

)}
=
∏
i∈I

E
{
ejωγIiC

}
=
∏
i∈I
8γIiC

(jω)

=
∏
i∈I

(
1− jω/aI⟨i⟩C

)−mI⟨i⟩C , (70)

where γIiC for i ∈ I are mutually independent.
Consider an n×nmatrix3with eigenvalues λ1, λ2, . . . , λn

in any order. Let ϱ(3) be the number of distinct eigenvalues,
λ⟨1⟩, λ⟨2⟩, . . . , λ⟨ϱ(3)⟩ be the distinct eigenvalues in decreas-
ing order, and τi(3) be the multiplicity of λ⟨i⟩. Then, the
(i, j)th characteristics coefficient χi,j(3), i = 1, 2, . . . , ϱ(3),
j = 1, 2, . . . , τi(3), is defined as a partial fraction expansion
coefficient of det(In + ξ3)−1 such that

det(In + ξ3)−1 =
ϱ(3)∏
i=1

(
1+ ξλ⟨i⟩

)−τi(3)

=

ϱ(3)∑
i=1

τi(3)∑
j=1

χi,j(3)
(
1+ ξλ⟨i⟩

)−j
, (71)

where ξ is a scalar constant such that (In+ξ3) is non singular
and χi,j(3) can be determined by

χi,j(3)

=
1

(τi(3)− j)!λτi(3)−j
⟨i⟩

×

[
dτi(3)−j

dξ τi(3)−j (1+ ξλ⟨i⟩)
τi(3) det(In + ξ3)−1

] ∣∣∣∣
s→− 1

λ⟨i⟩

,

(72)

where
∑ϱ(3)

i=1
∑τi(3)

j=1 χi,j(3) = 1. Using a partial fraction
decomposition of 8IC (jω) we obtain

8IC (jω) =
ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)
(
1+

jω
aI⟨i⟩C

)−j
. (73)

The PDF of IC, defined as fIC (x) =
1
2π

∫
∞

−∞
e−jωx8IC (jω)

dω, can be written as,

fIC (x) =
ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)
1
2π

∫
∞

−∞

ejωx
(
1+ jω/aI⟨i⟩C

)−jdω.
(74)

Hence we achieve the final expression of the PDF of IC given
in (5). Now, the CDF of IC, defined as FIC (x) =

∫ x
0 fIC (t)dt ,

is obtained as

FIC (x) = 1−
ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)
ajI⟨i⟩C
(j− 1)!

∫
∞

x
t j−1e−taI⟨i⟩Cdt.

(75)
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Using [47, Eq. (aaa)], we obtain (6). This completes the proof
of Lemma 1.

APPENDIX B
PROOF OF LEMMA 3
In order to evaluate the PDF of IDk , let γIiDk = γ̄IiDk
ℓIiDk |hIiDk |

2, since |hIiDk |
2 follows a Gamma distribution, the

PDF and CDF of γIiDk are obtained as

fγIiDk (γ ) =
(aIiDk )

mIiDk

(mIiDk − 1)!
γmIiDk−1e−aIiDk γ ,

FγIiDk (γ ) = 1− e−aIiDk γ
mIiDk−1∑
m=0

(aIiDk )
m

m!
, (76)

where γ > 0. Now, following the steps used in Lemma 1, the
c.f. of IDk is derived as

8IDk
(jω) =

ϱ(Bk)∑
i=1

τi(Bk)∑
j=1

χi,j(Bk)
(
1+ jωµI⟨i⟩Dk

)−j
. (77)

Hence, the PDF of IDk , defined as fIDk (x) =
1
2π

∫
∞

−∞

e−jωx8IDk
(jω)dω, and the CDF of IDk , defined as FIDk (x) =∫ x

0 fIDk dt , are obtained as

fIDk (x) =
ϱ(Bk )∑
i=1

τi(Bk )∑
j=1

χi,j(Bk )
1
2π

∫
∞

−∞

ejωx

×
(
1+ jωµI⟨i⟩Dk

)−jdω, (78)

FIDk (x) = 1−
ϱ(Bk )∑
i=1

τi(Bk )∑
j=1

χi,j(Bk )
(j− 1)!

0(j, µI⟨i⟩Dk ), (79)

respectively. After some mathematical manipulations,
we obtain (15) and (16). This completes the proof of
Lemma 3.

APPENDIX C
PROOF OF THEOREM 1
From (28), we have Z (0SC) ≈ 1

2 − τ (0SC − ω) for ψ <

0SC < η. Hence, the average BLER for the S-to-C, link i.e.,
ϵ̄SC, can be written as

ϵ̄SC ≈

∫
∞

0
Z (0SC)f0SC (x)dx

(a)
= τ

∫ η

ψ

F0SC (x)dx, (80)

where (a) is due to the partial integration method. Plug-
ging (11) into (80), we obtain

ϵ̄SC = 1− τ
NmSC−1∑
m=0

ϱ(A)∑
i=1

τi(A)∑
j=1

χi,j(A)
m!

aI⟨i⟩C
(j− 1)!∫

∞

0
x j−1e−aI⟨i⟩Cxdx

∫ η

ψ

(aSCγ )m e−aSC(x+1)γ dγ.

(81)

It is noted that the second integral can be derived in
closed-form expression as∫ η

ψ

(γ )me−aSC(x+1)γ dγ

=

m∑
r=0

m!
r !
(aSC(x + 1))r−1[

ψ re−aSC(x+1)ψ − ηre−aSC(x+1)η
]
. (82)

Hence, substituting the above results and after some math-
ematical manipulations, we obtain (30). This completes the
proof of Theorem 1.

APPENDIX D
PROOF OF THEOREM 2
From (28), we have Z (0CDk ) ≈

1
2 − τ

(
0CDk − ω

)
for ψ <

0CDk < η. Hence, the average BLER for the C-to-Dk link,
i.e., ϵ̄CDk , is derived as ϵ̄CDk ≈ τ

∫ η
ψ
F0CDk (x)dx.

Now, from (17), we obtain

ϵ̄CDk = 1− τ
NmCDk−1∑
m=0

ϱ(Bk )∑
ik=1

τik (Bk )∑
jk=1

χik ,jk (Bk )
mk !

ajkI⟨ik ⟩C
(jk − 1)!∫

∞

0
x jk−1e

−aI⟨ik ⟩C
x
dx
∫ η

ψ

(
aCDkγ

)mk
× e−aCDk (x+1)γ dγ. (83)

where the second integral can be derived in closed-form as∫ η

ψ

(γ )mk e−aCDk (x+1)γ dγ

=

m∑
rk=0

mk !
rk !

ψ rk e−aCDk (x+1)ψ − ηrk e−aCDk (x+1)η

(aCDk (x + 1))1−rk
. (84)

Hence, substituting the above results and with the help of
the Confluent hypergeometric function of the second kind,
we obtain (32). This completes the proof of Theorem 2.

APPENDIX E
PROOF OF THEOREM 3
The average e2e BLER of the system can be approximated
as ϵ̄e2e ≈ τ

∫ η
ψ
F0sys (γ )dγ . Substituting F0sys from (19),

we obtain

ϵ̄e2e ≈ 1− τ
∫ η

ψ

1−
[
1− F0SC (γ )

] ∏
k∈K

[
1− F0CDk (γ )

]
dγ.

(85)

Substituting the CDF of 0SC and 0CDk and after some
mathematical manipulations, we obtain ϵ̄e2e expressed in
terms of 32 +33, where

32 +33

=

∫ η

ψ

eγ (aSC+
∑K

k=1 aCDk )γm+
∑K

k=1 mk

(aSCγ + aI⟨i⟩C)r+j
K∏
k=1

(aCDkγ + aI⟨ik ⟩Dk )
rk+jk

dγ.

(86)

Performing partial fraction decomposition yields 32 and
33 as shown in (36) and (38), where

.3(x, a, b, c)

=

∫ x

0
γ ae−bγ (1+ cγ )−qdγ
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=
1

(q− 1)!

∫ x

0
γ aG1,1

1,1

[
1−q
0

∣∣∣cγ ]G1,0
0,1

[
−

1

∣∣bγ ] dγ. (87)

We can rewrite 3(x, a, b, c) in terms of bivariate Meijiers’s
G-function as

Gp,q,s,r,tA,[C,E],B,[D,F]


ap, aa

x cq, cc; es, eE
y bB

dr ,dD; ft , fF

 = 1
(2π i)2

∫
L1

∫
L2

×
0(1− ap + p+ η)0(cq + p)

0(1− cC − p)0(1− dD + p)0(1− eE − η)

×
0(dr − p)0(es + η)0(ft − η)

0(1− fF + η)0(aA − p− η)0(bB + p+ η)
xpyηdpdη,

(88)

where G[·] is the Meijer G-function and 0(·) denotes the
Gamma function. The following identity holds∫ x

0
tν−1Gm,np,q

[
αn,αp
βm,βq

∣∣∣µt]GM ,NP,Q

[
γ N ,γ P
δM ,δQ

∣∣∣ωt] dt = xν

G1,n,N ,m,M
1,[n,N ],1,[p+q−n,P+Q−N ]

×

µxωx
∣∣∣∣∣∣∣∣

1− ν
1− αn; 1− γ N

ν + 1
βm,βq, 1− αp; δM , δQ, 1− γ P

. (89)

Hence, ϵ̄e2e can be expressed in terms of Meijer-G function
of two variables [60], as given in (34).
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