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Abstract

We propose in this paper a Proper Generalized Decomposition (PGD) solver for
reduced-order modeling of linear elastodynamic problems. It primarily focuses on
enhancing the computational efficiency of a previously introduced PGD solver based
on the Hamiltonian formalism. The novelty of this work lies in the implementation of a
solver that is halfway between Modal Decomposition and the conventional PGD
framework, so as to accelerate the fixed-point iteration algorithm. Additional
procedures such that Aitken’s delta-squared process and mode-orthogonalization are
incorporated to ensure convergence and stability of the algorithm. Numerical results
regarding the ROM accuracy, time complexity, and scalability are provided to
demonstrate the performance of the new solver when applied to dynamic simulation
of a three-dimensional structure.
Keywords: Model reduction, Proper Generalized Decomposition, Hamiltonian
formulation, Symplectic structure, Ritz Pairs

Introduction
Despite remarkable progress achieved in Computational Sciences and Engineering over
the past decades, it is still necessary to develop innovative numerical methods to simplify
models and make them easier to interpret for researchers and engineers in design offices.
In linear structural dynamics, Modal Decomposition [15] with truncation undoubtedly
remains the most popular technique among engineering analysis tools. It relies on com-
puting the eigenvectors to describe the natural response of a given system. Unfortunately,
not all eigenvectors are necessarily relevant to obtain the structural response under exter-
nal loads, or, conversely, it may introduce a large number of these vectors to describe
the mechanical behavior, which is not desirable in reduced-order modeling. Alternative
approaches have been proposed for model reduction in structural dynamics, such as
the Proper Orthogonal Decomposition (POD) or the Proper Generalized Decomposition
(PGD) approaches. The POD method [4,19,21] has been successfully applied to linear
and nonlinear structures subjected to transient load and can be viewed as an a posteriori
approach, in the sense that it takes the state of the full-order model at different time-steps
as input, the so-called snapshots, in order to extract the dominant spatial and tempo-
ral modes in the data. By contrast, the PGD method [5,7,12] constructs a reduced basis
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on-the-fly, eliminating the need for prior knowledge of the solution to the problem. In
that respect, the PGD method is used as an a priori approach and can be assimilated as
a solver: one simultaneously solves the problem and constructs a reduced approximation
subspace.
The strength of the PGD strategy resides in theway it reduces high-dimension problems

into subproblems of lower dimensions. The theoretical complexity of PGD solvers also
decreases compared to conventional solvers. Indeed, following [12], one observes that if
a solution is sought for in a space of a given dimension d, the complexity of conventional
solvers scales exponentially with d while that of PGD solvers scales linearly. However, the
performance of the PGD approach using a space-time separation for transient structural
dynamics has oftenbeen consideredunsatisfactory [5,7].One reason is that thefixed-point
algorithm employed by Galerkin-based PGD solvers tends to exhibit poor convergence,
if it converges at all [7]. In fact, it is open to question whether the PGD framework
using space-time separability is suitable for solving the wave equation, or more generally,
second-order hyperbolic problems. The authors in [6,7] have proposed an alternative
to the Galerkin-based PGD, namely the minimal residual PGD, that would consistently
converge, a proof of which is given in [3].
On another note, the PGD framework has also been extended to perform basic oper-

ations, such as divisions, or more complex operations, such as solving linear systems of
algebraic equations, leveraging the principle of variable separation. The authors in [13]
have thus created a versatile toolbox for PGD algebraic operators, which has been used
in a non-intrusive manner to solve parametric eigen problems arising, for instance, in
automotive applications [10]. Furthermore, notable advancements on the development
of the PGD framework have been achieved using separated representations with respect
to the space and frequency variables [22,24]. Moreover, it provides a means to take into
account the parametric variability of a system due to, for example, material properties
or geometric topology. In this respect, the advantage of PGD solvers seems clear when
geometric or material parameter separation is at stake, offering a considerable reduction
of the computational complexity [5,12]. However, the space-frequency formulation does
not necessarily provide direct insights into the transient behavior of the system. While
it can determine its response at specific frequencies, it may fail to accurately capture
time-dependent loads or dynamical events.
This was themotivation of the previous work [28], in which we introduced a new space-

time Galerkin-based PGD solver based on the Hamiltonian formalism, which leads to an
algorithm that was shown to be more stable than the Galerkin-based solver mentioned
above. The novelty of the solver lied in the implementation of procedures that ensure
linear independence of themodes and stability of the reduced-ordermodel while progres-
sively computing the new modes. However, the relevance of a reduced-order modeling
technique stems from its ability to exceed the computational efficiency of a conventional
Finite Element model, while incurring a relatively low error with respect to the FE solu-
tion of the full model. So far, if space-time PGD solvers have demonstrated a satisfying
level of accuracy with a rather low number of modes, their computational efficiency is
far from being competitive [5]. In this paper, we develop a novel space-time PGD solver
with a focus on computational efficiency. The integration of the PGD strategy within the
Hamiltonian formalism is revisited andwe comment on the preservation of the symplectic
structure on the time parameter by the reducedmodel. The Aitken transformation [2] has
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subsequently been introduced to accelerate the convergence of the fixed-point algorithm.
We will show that it significantly reduces the number of required iterations for conver-
gence. Additionally, a new orthogonal projection, more robust than the one formerly
implemented, is performed on the spatial modes to enforce their linear independence and
ensure the stability of the algorithm. Yet, the computational cost of such solvers mainly
depends on the problem with respect to the spatial variable, which needs to be assembled
and factorized at each fixed-point iteration. An original approach has been developed to
avoid having to repeatedly factorize matrices. It consists in pre-processing the eigen-pair
approximations of the operators, namely the Ritz pairs [27], that provide a subspace in
which the problem in space remains diagonal throughout the fixed-point iterations. In the
manner of Modal Decomposition, all computations are then carried out in the subspace
spanned by the Ritz vectors [16], hence drastically decreasing the computational burden
while capturing using only a small number of modes most of the information from the full
model. Numerical examples dealing with the dynamical behavior of a 3D structure will be
presented in order to demonstrate the efficiency of the proposed approach.
The paper is organized as follows: in “Model problem” section, we describe the model

problem and its spatial Finite Element approximation. In “The Hamiltonian formalism”
section, we present the Hamiltonian formalism and its symplectic structure. The PGD
approaches are described in “PGD reduced-ordermodeling” section alongwith theAitken
acceleration and the orthogonal projectors applied to the fixed-point algorithm, as well
as the projection of the PGD approximation onto the subspace spanned by the Ritz vec-
tors. The numerical experiments are presented in “Numerical examples and discussion”
section to illustrate the performance of the proposed approach. We finally provide some
concluding remarks in “Conclusions” section.

Model problem
Strong formulation

The model problem we shall consider is that of elastodynamics in three dimensions
under the assumption of infinitesimal deformation. Let � be an open bounded subset
of R

3, with Lipschitz boundary ∂�, and let I = (0, T ) denote the time interval. The
boundary ∂� is supposed to be decomposed into two portions, ∂�D and ∂�N , such that
∂� = ∂�D ∪ ∂�N . The displacement field u : �̄ × Ī → R

3 satisfies the following partial
differential equation:

ρ
∂2u
∂t2

− ∇ · σ (u) = f, ∀(x, t) ∈ � × I , (1)

where, in the case of infinitesimal deformation, the stress tensorσ (u) and strain tensor ε(u)
are given by:

σ (u) = E : ε(u), ∀(x, t) ∈ � × I , (2)

ε(u) = 1
2

(
∇u + (∇u

)T), ∀(x, t) ∈ � × I , (3)

and is subjected to the initial conditions:

u(x, 0) = u0(x), ∀x ∈ �, (4)
∂u
∂t (x, 0) = v0(x), ∀x ∈ �, (5)
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as well as to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂�D × I , (6)

σ (u) · n = gN (x, t), ∀(x, t) ∈ ∂�N × I . (7)

The functions f : � × I → R
3, u0 : � → R

3, v0 : � → R
3, and gN : ∂�N × I → R

3 are
supposed to be sufficiently regular to yield a well-posed problem. The medium occupied
by �̄ is assumed to be isotropic, with density ρ and Lamé coefficients λ, μ (the material
parameters could possibly vary in space). The constitutive equation (2), written above in
terms of the tensor of elasticity E, thus reduces to:

σ (u) = 2με(u) + λtr (ε(u)) I3,

where I3 ∈ R
3×3 is the identitymatrix. In the following, wewill denote the first and second

time derivatives by u̇ = ∂u/∂t and ü = ∂2u/∂t2.

Semi-weak formulation

Weconsider here the semi-weak formulationwith respect to the spatial variable in order to
construct the discrete problem in space using the Finite Element method. Multiplying (1)
by an arbitrary smooth function u∗ = u∗(x) and integrating over the whole domain �,
one obtains:∫

�

ρü · u∗ − (∇ · σ (u)) · u∗ dx =
∫

�

f · u∗ dx, ∀t ∈ I . (8)

By virtue of − (∇ · σ (u)) · u∗ = σ (u) : ∇u∗ − ∇ · (σ (u) · u∗), Eq. (8) can be recast as:
∫

�

ρü · u∗ + σ (u) : ∇u∗ dx =
∫

�

∇ · (σ (u) · u∗) dx +
∫

�

f · u∗ dx, ∀t ∈ I .

Since σ (u) is a symmetric tensor:

σ (u) : ∇u∗ = σ (u) : ε(u∗),

and substituting the constitutive equation for σ (u), one gets:

σ (u) : ε(u∗) = (E : ε(u)) : ε(u∗) = ε(u) : E : ε(u∗).

Applying the divergence theorem and the boundary conditions, and choosing the test
function such that u∗ = 0 on ∂�D, the semi-discrete formulation of the problem then
reads: Find u = u(·, t) ∈ V , for all t ∈ Ī , such that:∫

�

ρü · u∗ + ε(u) : E : ε(u∗) dx =
∫

�

f · u∗ dx

+
∫

∂�N

gN · u∗ dx, ∀u∗ ∈ V, ∀t ∈ I , (9)

and:

u(x, 0) = u0(x), ∀x ∈ �, (10)
∂u
∂t (x, 0) = v0(x), ∀x ∈ �, (11)

where V is the vector space of vector-valued functions defined on �:

V =
{
v ∈ [H1(�)

]3 : v = 0 on ∂�D
}
.
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Spatial discretization

Wepartition thedomain intoNe elementsKe such that� = ∪Ne
e=1Ke and Int(Ki)∩Int(Kj) =

∅, ∀i, j = 1, . . . , Ne, i 	= j. We then associate with the mesh the finite-dimensional Finite
Element space Wh, dim Wh = s, of scalar-valued continuous and piecewise polynomial
functions defined on �, that is:

Wh = {vh : � → R : vh|Ke ∈ Pk (Ke), e = 1, . . . , Ne
}
,

where Pk (Ke) denotes the space of polynomial functions of degree k on Ke. Let
φi, i = 1, . . . , s, denote the basis functions ofWh, i.e.Wh = span{φi}. We then introduce
the finite element subspace Vh of V such that:

Vh = [Wh]3 ∩ V,

and search for finite element solutions uh = uh(·, t) ∈ Vh, ∀t ∈ Ī , in the form:

uh(x, t) =
s∑

j=1
qj(t)φj(x),

where the vectors of degrees of freedom, qj ∈ R
3, depend on time. We introduce the set

of n = 3s vector-valued basis functions as:

χ3i−2(x) =
⎡
⎢⎣

φi(x)
0
0

⎤
⎥⎦ , χ3i−1(x) =

⎡
⎢⎣

0
φi(x)
0

⎤
⎥⎦ , χ3i(x) =

⎡
⎢⎣

0
0

φi(x)

⎤
⎥⎦ , i = 1, . . . , s.

Using the Galerkin method, the Finite Element problem thus reads:

Find uh(·, t) ∈ Vh, such that∫

�

ρχi(x) · üh(x, t) + ε(χi)(x) : E : ε(uh)(x, t) dx

=
∫

�

χi(x) · f (x, t) dx +
∫

∂�N

gN (x, t) · χi(x) ds, ∀i = 1, . . . , n, ∀t ∈ I ,

satisfying the initial conditions

uh(x, 0) = u0,h(x), ∀x ∈ �,

u̇h(x, 0) = v0,h(x), ∀x ∈ �,

where u0,h and v0,h are interpolants or projections of u0 and v0 in the spaceVh. The above
problem can be conveniently recast in compact form as:

Mq̈(t) + Kq(t) = f (t), ∀t ∈ I , (12)

q(0) = u0, (13)

q̇(0) = v0, (14)

where M and K are the global mass and stiffness matrices, respectively, both being sym-
metric and positive definite:

Mij =
∫

�

ρχi · χj dx, Kij =
∫

�

ε(χi) : E : ε(χj) dx, ∀i, j = 1, . . . , n,

f (t) is the load vector at time t whose components are given by:

fi(t) =
∫

�

χi(x) · f (x, t) dx +
∫

∂�N

χi(x) · gN (x, t) ds, ∀i = 1, . . . , n,
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q(t) is the global vector of degrees of freedom:

q(t) =
[
q1(t) . . . qs(t)

]T
,

and u0 and v0 are the initial vectors:

u0 =
[
u0,1 . . . u0,s

]T
,

v0 =
[
v0,1 . . . v0,s

]T
.

Note that u0,i ∈ R
3 and v0,i ∈ R

3, i = 1, . . . , s, are vectors whose components are the
initial displacements and velocities in the three spatial directions.

The Hamiltonian formalism
Hamilton’s weak principle

The Hamiltonian formalism consists in modeling the motion of the system along a trajec-
tory in the phase space by introducing the generalized coordinates q and their generalized
(or conjugate) momenta p as independent variables. For the problem at hand, the Hamil-
tonian functional h reads:

h(q,p, t) = 1
2
qTKq + 1

2
pTM−1p − qT f . (15)

Given the Hamiltonian functional h of the system, the action functional, denoted by
S[q,p], is defined as:

S[q,p] =
∫

I
q̇Tp − h(q,p, t) dt.

The Hamilton’s weak principle then states that the trajectory (q,p) of the system in the
phase space should satisfy:

S ′[q,p](q∗,p∗) =
[
q∗Tp

]T
0
,

whereS ′[q,p](q∗,p∗) denotes the Gâteaux derivative ofS[q,p] with respect to a variation
(q∗,p∗) ∈ Z × Z such that:

Z = {v ∈ [C1(Ī)]n; v(0) = 0
}
.

After Gâteaux derivation and integration by parts with respect to time, we get:∫

I
p∗T q̇ − q∗T ṗ − q∗TKq − p∗TM−1p + q∗T f dt = 0, ∀(q∗,p∗) ∈ Z × Z ,

that is,∫

I
q∗T ṗ − p∗T q̇ + q∗TKq + p∗TM−1p dt =

∫

I
q∗T f dt, ∀(q∗,p∗) ∈ Z × Z ,

or, equivalently,
∫
I q∗T (ṗ + Kq) dt = ∫I q∗T f dt, ∀q∗ ∈ Z ,∫
I p∗T (q̇ − M−1p) dt = 0, ∀p∗ ∈ Z .

(16)

The last weak formulation of (16) leads the so-called Hamilton’s equations:

ṗ + Kq = f ,
q̇ − M−1p = 0.

(17)

This formulation is consistent with (12) in the sense that if we differentiate with respect
to time the second equation and substitute ṗ for the expression in the first equation, we
do exactly recover (12).
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Symplectic structure

Let us introduce z ∈ Z2 that vertically concatenates q and p such that:

z =
[
q
p

]
.

The gradient of the Hamiltonian (15) then reads:

∇z h =
[
∇q h
∇p h

]
=
[
Kq − f
M−1p

]
.

In the symplectic framework, the dynamics of the structure is modeled by the trajectory
in the symplectic vector space (R2n,ω) of dimension 2n for linear systems, where ω is the
so-called symplectic form defined as:

∀z =
[
q
p

]
∈ R

2n, ∀z′ =
[
q′

p′

]
∈ R

2n, ω(z, z′) = qTp′ − q′Tp = zT J2nz′,

with J2n the skew-symmetric operator such that:

J2n =
[

0 In
−In 0

]
,

and J22n = −I2n. It is then possible to recast (17) as:

ż = ∇ωh,

where ∇ω = J2n∇z is defined as the symplectic gradient. The Hamiltonian can be written
as a sum of a quadratic form on R

2n and the external energy term:

h(z, t) = 1
2
zTHz − zT f z ,

with H the Hessian operator of h and f z such that:

H =
[
K 0
0 M−1

]
, f z =

[
f
0

]
.

It follows that one can rewrite the weak formulation (16) as:∫

I
z∗T [J2nż + Hz] dt =

∫

I
z∗T f z dt, ∀z∗ ∈ Z2. (18)

We now introduce the notion of symplectic mapping. A symplectic mapping is a linear
transformation that preserves the symplectic form ω, i.e.:

A ∈ R
2n×2n is symplectic if ω(Az, Az′) = ω(z, z′), ∀(z, z′) ∈ R

2n × R
2n.

As a consequence, such a mapping A verifies:

AT J2nA = J2n.

The notion can actually be generalized to rectangular matrices with the symplectic Stiefel
manifold, denoted Sp(2r, 2n), such that:

Sp(2r, 2n) =
{
A ∈ R

2n×2r : AT J2nA = J2r
}
. (19)

Let (R2r , γ ) be a symplectic vector space,A ∈ Sp(2r, 2n) a symplecticmapping, and y ∈ R
2r

such that x = Ay. One can define a Hamiltonian for y:

g(y) = 1
2
yTGy − yT f y ,
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with G its Hessian operator and f y the projection of the external loads on the symplectic
subspace (in the case r � n), such that:

G = ATHA, and f y = AT f z.

The preservation of the symplectic structure implies that y is governed by Hamilton’s
canonical equations, expressed hereinafter in terms of γ (symplectic form on R

2r) and g
such that:

ẏ = ∇γ g,

with ∇γ = J2r∇y and Hamilton’s weak principle (16) then reads:
∫

I
y∗T [J2r ẏ + Gy] dt =

∫

I
y∗T f y dt, ∀y∗ ∈ R

2r .

Discretization in time of the Hamiltonian problem

The time domain I is divided into nt subintervals I i = [
ti−1, ti

]
, i = 1, . . . , nt , of size

ht = ti − ti−1. The Crank–Nicolson method is then applied to (17) as detailed in the
previous work [28]. The solutions given by the FEM in space, integrated with Crank–
Nicolson in time, will be used as reference solutions when assessing the results of the
PGD solvers.
Althoughnot the primary focus of this article, we acknowledge the relevance of symplec-

tic integrators in the case of Hamiltonian mechanics. These integrators are particularly
robust to compute long-time evolution of Hamiltonian systems [20,25,26]. In addition,
the preservation of the symplectic structure by the reducedmodel is the subject of numer-
ous studies [1,8,23].Wewill also discuss this property on the time parameter with respect
to our PGD solver in “Temporal update and symplectic structure” section.

PGD reduced-order modeling
The proper-generalized decomposition method applied within the Hamiltonian frame-
work aims at approximating both the generalized coordinates q and their generalized
momenta p in separated form. We are thus searching for a space-time separated repre-
sentation of z as:

z(t) � zm(t) =
m∑
i=1

�iψi(t) =
m∑
i=1

i(t)ϕi,

with:

�i =
[
ϕ
q
i 0
0 ϕ

p
i

]
, ψi =

[
ψ

q
i

ψ
p
i

]
,

i =
[
ψ

q
i In 0
0 ψ

p
i In

]
, ϕi =

[
ϕ
q
i

ϕ
p
i

]
,

where �i is a (2n × 2) matrix and ψi a (2 × 1) vector while i is a (2n × 2n) matrix and
ϕi a (2n × 1) vector. The two notations are mathematically equivalent and convenient
whether the weak formulation is solved for ϕ (spatial problem) or ψ (temporal problem).
The vector-valued functions (ϕq

i )1�i�m and (ϕp
i )1�i�m provide the spatial bases for the
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generalized coordinates and conjugate momenta, respectively:

q(t) ≈ qm(t) =
m∑
i=1

ϕ
q
i ψ

q
i (t),

p(t) ≈ pm(t) =
m∑
i=1

ϕ
p
i ψ

p
i (t).

For the sake of clarity in the presentation, we shall drop from now on the subscript i and
write the decomposition of rankm of z as:

zm(t) = zm−1(t) + �ψ(t), or zm(t) = zm−1(t) + (t)ϕ.

The approach considered here is the so-called greedy rank-one update algorithm, where
the separated representation is computed progressively by adding one pair of modes ϕ

and ψ at each enrichment. The goal in this section is to construct the separated spatial
and temporal problems that satisfy the enrichment modes ϕ and ψ, the new unknowns of
the problem, assuming that the previous iterate zm−1 has already been calculated.

Fixed-point strategy

Computing a separated representation of q and p demands an adequate solution strategy
of the weak formulation (18). Substituting the trial solution zm for z in (18) leads to a
non-linear formulation for the modes ϕ and ψ. Several iterative schemes could be used
to solve such a problem. The fixed point algorithm is considered here, which proceeds as
follows:

1. Solve (18) for ϕ with ψ known. This step is referred to as the spatial problem and is
written in a generic format as:

A(ψ)ϕ = b(ψ, zm−1), (20)

where the matrix A(ψ) and vector b(ψ, zm−1) will be specified in “Problem in space”
section.More precisely, in order to enhance robustness, we propose to force the new
spatial mode to preserve the linear independence of the spatial bases (ϕq

i )1�i�m and
(ϕp

i )1�i�m, which can formally be written as:

ϕ = PmA(ψ)−1b(ψ, zm−1),

where Pm is a projector that is orthogonal to the subspace spanned by previousmode
(for a well chosen inner product).

2. Solve (18) for ψ with ϕ known. The temporal problem corresponds to the system of
first-order differential equations:

ψ̇ = fT (ψ,ϕ, zm−1), (21)

where the vector-valued function fT will be explicitly provided in “Problem in time”
section.

Steps 1 and 2 are repeated until a convergence criterion is fulfilled. It is noteworthy
that (20) is a linear system of size 2n associated with the space discretization, similar to
that of a steady-state FEM problem. Equation (21) is a system of two first order scalar
ordinary differential equations in time, solved forψq andψp. Both problems are described
in the next sections.
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Problem in space

We assume that ψ is known and search for the new spatial mode ϕ. We substitute
zm−1 + ϕ for z in (18) and choose test functions in the form z∗ = ϕ∗. Equation (18)
reduces to:∫

I
ϕ∗TT (J2ṅϕ + Hϕ

)
dt =

∫

I
ϕ∗TT (f − J2nżm−1 − Hzm−1) dt,∀ϕ∗ ∈ R

2n,

which, since ϕ∗ and ϕ are independent of time, can be rewritten as:

ϕ∗T
[∫

I
T J2ṅ + TH dt

]
ϕ = ϕ∗T

[∫

I
T (f − J2nżm−1 − Hzm−1) dt

]
,∀ϕ∗ ∈ R

2n.

This leads to the following linear system:

ASϕ = bS , (22)

with:

AS =
[∫

I
T J2ṅ + TH dt

]
=
[
ktK ctIn
dtIn mtM−1

]
,

bS =
∫

I
T (f z − J2nżm−1 − Hzm−1

)
dt,

and (see Appendix for the explicit form of the time operators):

kt =
(∫

I
ψ2
q dt

)
,

ct =
(∫

I
ψqψ̇p dt

)
,

dt = −
(∫

I
ψ̇qψp dt

)
= ct − ψq(T )ψp(T ),

mt =
(∫

I
ψ2
p dt

)
.

The operatorM−1 is not computed explicitly. Instead, the Schur complement ofM−1 in
AS is considered. Equation (22) can thus be expanded as:

ktK ϕq + ct ϕp = bq,
dt ϕq + mtM−1 ϕp = bp,

so that:

[mtktK − ctdtM]ϕq = mtbq − ctMbp, (23)

ϕp = 1
mt

M
[bp − dtϕq

]
. (24)

Therefore, the solution of (22) amounts to solving (23) forϕq by factorization of the sparse
symmetric matrix:

Aq = mtktK − ctdtM, (25)

and inserting the solution ϕq into (24) to determine ϕp.
For a givenmth enrichment, the spatial modes ϕq and ϕp are subsequently projected to

ensure that any new mode is searched in a direction that is orthogonal to the subspaces
generated by the previous modes, respectively (ϕq

i )1�i�m−1 and (ϕp
i )1�i�m−1. At any
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givenm, we want (ϕq
i )1�i�m and (ϕp

i )1�i�m to be orthogonal with respect to K andM−1,
respectively. Let Sq and Sp be defined as:

Sq =
[
ϕ
q
1 . . . ϕ

q
m−1

]
,

Sp =
[
ϕ
p
1 . . . ϕ

p
m−1

]
.

A classical approach consists in using the orthogonal projections:

Pq = In − Sq
(
STq KSq

)−1
STq K,

Pp = In − Sp
(
STp M

−1Sp
)−1

STp M
−1.

At any enrichment step, thepreviousmodes (ϕq
i )1�i�m−1 and (ϕ

p
i )1�i�m−1 are orthogonal

and normalized with respect to K and M−1, respectively. Thus, the projectors above
simplify as:

Pq = In − SqSTq K,

Pp = In − SpSTp M−1.

Therefore, if we denote by ϕ◦
q and ϕ◦

p the modes initially obtained from Eqs. (23) and (24)
and by ϕq and ϕp the modes that one retains after orthonormalization, the procedure
reads:

ϕ⊥
q = Pqϕ◦

q, ϕ⊥
p = Ppϕ◦

p,

ϕq = ϕ⊥
q√

ϕ⊥
q
TKϕ⊥

q
, ϕp = ϕ⊥

p√
ϕ⊥
p
TM−1ϕ⊥

p
.

It is noteworthy that, in practice, the inverse of M is never evaluated. Instead, one per-
forms a Cholesky factorization to obtain the decomposition M = LLT . In particular, the
normalization ofϕp is done by forward and backward substitution, whose cost is negligible
with respect to the overall complexity of the algorithm. Indeed, the main bottleneck is the
factorization of Aq (25), which needs to be performed at each iteration of the fixed point
algorithm. We propose below two approaches that aim at:

• Reducing the number of iterations in the fixed point algorithm in order to reach
convergence (see “Aitken acceleration” section);

• Avoiding repetitive factorization of Aq by carrying out computations in a subspace
provided by the Ritz vectors, which are approximations of the eigenvectors of the
generalized eigenproblem Ku = λMu (see “Projection in Ritz subspace” section).

Problem in time

We assume here that ϕ is known and search for a new temporal mode ψ. We substitute
zm−1 + �ψ for z in (18) and choose test functions in the form z∗ = �ψ∗, with ψ∗ ∈ Y2,
where:

Y = C0(Ī).

Equation (18) reduces in this case to:∫

I
ψ∗T�T (J2n�ψ̇ + H�ψ

)
dt =

∫

I
ψ∗T�T (f z − J2nżm−1 − Hzm−1

)
dt,∀ψ∗ ∈ Y2,

which simplifies to:

�T J2n�ψ̇ + �TH�ψ = �T (f z − J2nżm−1 − Hzm−1
)
.
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Above equation is discretized using the Crank–Nicolson time-marching scheme, such
that, given ψ0, one computes the ith iterate (i > 0) as:

AT ψi = BT ψi−1 + biT , i = 1, . . . , nt (26)

where:

AT =
[
htkx 2cx
−2cx htmx

]
,

BT =
[
−htkx 2cx
−2cx −htmx

]
,

biT = �T
[
ht
(
f iz + f i−1

z − H
(
zim−1 + zi−1

m−1

) )
− 2J2n

(
zim−1 − zi−1

m−1

)]
,

and:

kx = ϕT
q Kϕq,

cx = ϕT
q ϕp,

mx = ϕT
p M

−1ϕp.

For each time step, Eq. (26) represents a 2 × 2 linear system that can be explicitly solved
for ψn. Overall, the time problem is relatively cheap to solve as the cost is linear in the
number of time steps nt . As previously mentioned, ϕq and ϕp are normalized after (22) is
solved, so that kx = mx = 1 and only cx needs to be updated.

Aitken acceleration

In the context of PGD order-reduced modeling, the number of iterations performed
by the fixed-point algorithm has a direct impact on the efficiency of the approach. We
propose here to employ the Aitken’s �2 process to reduce the number of iterations that
are necessary to reach convergence.
Let lin(n) denote the complexity associated with solving one linear system of n algebraic

equations in n unknown variables (lin(n) ≈ O(n3) for fully-populated matrices). In struc-
tural dynamics simulations, the usual approach is to discretize the continuous equations
with respect to the spatial variables using the finite elementmethod and then obtain a sys-
tem of n ordinary differential equations in the time variable t ∈ I . The system is thereafter
discretized in time by means of an (implicit) integration scheme (e.g. Euler, Newmark,
Crank–Nicolson, Hilber–Hughes–Taylor, …). The degrees of freedom are then evaluated
at each time step by solving a linear system of size n. In the case of nt time steps, the
complexity of the approach amounts to nt lin(n).
In the PGD framework, the solution of the problems in space and time is decoupled such

that at eachfixed-point iteration, one systemof sizen is solved for the spatialmode (23) and
one system of size two is solved nt times (marching scheme) for the temporal mode (26).
The complexity of one fixed-point iteration can be assumed to be of the order of lin(n)+nt .
It follows that the overall complexity of the PGD algorithm will be mkmax(lin(n) + nt ),
wherem denotes the rank of the decomposition, i.e. the number of modes, and kmax is the
maximal number of iterations allowed in the fixed-algorithm, whether or not convergence
is reached. It can be inferred that a space-time separated PGD algorithm is competitive
against a classical full-order solver whenever the following inequality holds:

mkmax(lin(n) + nt ) � nt lin(n),
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highlighting the fact that the efficiency of the PGD algorithm highly depends on the
number of fixed-point iterations.
The computation of an enrichment mode involves the following operators, formally

written, at any given fixed-point iteration k :

• S (k) : ψ(k−1) �→ ϕ(k), the operator that solves the system (22) for ϕ(k) with ψ(k−1)

given;
• T (k) : ϕ(k) �→ ψ(k), the operator that solves the system (26) for ψ(k) with ϕ(k) given.

As a result, the fixed-point algorithm computes two sequences
(
ϕ(k))

1�k�kmax
and(

ψ(k))
1�k�kmax

until convergence. These sequences can be defined by recurrence rela-
tions as follows:

ϕ(k) = S (k) ◦ T (k−1)(ϕ(k−1)),
ψ(k) = T (k) ◦ S (k)(ψ(k−1)).

The fixed-point convergence hinges upon the contraction property of the operators
S (k) ◦ T (k−1) and T (k) ◦ S (k) for ϕ(k) and ψ(k) respectively. One common way to improve
fixed-point iterations is by using relaxation techniques. This helps achieve a contrac-
tion property and usually enhances the convergence rate. The introduction of relaxation
parameters ωϕ and ωψ leads to the following formulation of a fixed-point iteration:

ϕ(k) = ωϕ S (k) ◦ T (k−1)(ϕ(k−1))+ (1 − ωϕ

)
ϕ(k−1),

ψ(k) = ωψ T (k) ◦ S (k)(ψ(k−1))+ (1 − ωψ

)
ψ(k−1).

In practice, it is preferable to adapt ωϕ and ωψ at each iteration. The so-called Aitken’s
delta square method provides a useful heuristic for determining the sequences ω

(k)
ϕ and

ω
(k)
ψ . One can also choose to enforce relaxation on the generalized coordinates modes and

the conjugate momentum modes separately. In the Algorithm 1, Aitken acceleration is
applied on the spatial modes only and separately for ϕq and ϕp. Note that steps 15 and 16
of algorithm 1 are not implemented in practice. Instead, space-time separation should be
leveraged to efficiently compute stagnation coefficients in step 17.

Temporal update and symplectic structure

Greedy algorithms generally incorporate an update procedure that consists in updating
all the temporal modes for a given set of spatial modes. For a decomposition of rank m,
the spatial modes can be conveniently stored in the matrix S of size 2n × 2m, defined as:

S =
[
ϕ
q
1 . . . ϕ

q
m 0

0 ϕ
p
1 . . . ϕ

p
m

]
=
[
Sq 0
0 Sp

]
,

while the temporal modes can be vertically stored in the time-dependent vector ψ of size
2m × 1, defined as:

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ
q
1
...

ψ
q
m

ψ
p
1
...

ψ
p
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Algorithm 1 Fixed point algorithm with Aitken acceleration
1: Initialization: Set k ← 0
2: Set sq ← ε + 1 and sp ← ε + 1 (with ε = 10−9)
3: Set ψ(0) and ϕ(0)

4: while k < kmax and max(sq, sp) > ε do
5: Increment the iteration counter: k ← k + 1
6: Compute new spatial modes: ϕ ← S (k)(ψ(k−1))
7: Project modes: ϕq ← Pqϕq and ϕp ← Ppϕp

8: Normalize modes: ϕ(k)
q ← ϕq

ϕT
q Kϕq

and ϕ
(k)
p ← ϕp

ϕT
p M−1ϕp

9: Update spatial residual: r(k)q = ϕ
(k)
q − ϕ

(k−1)
q and r(k)p = ϕ

(k)
p − ϕ

(k−1)
p

10: if k > 1 then
11: Aitken�2:ϕ(k)

q ← ω
(k)
q ϕ

(k)
q +

(
1 − ω

(k)
q
)

ϕ
(k−1)
q withω

(k)
q = ω

(k−1)
q

r(k−1)
q

T(r(k)q −r(k−1)
q

)
∥∥∥r(k)q −r(k−1)

q
∥∥∥2

12: ϕ
(k)
p ← ω

(k)
p ϕ

(k)
p +

(
1 − ω

(k)
p
)

ϕ
(k−1)
p with ω

(k)
p = ω

(k−1)
p

r(k−1)
p

T(r(k)p −r(k−1)
p

)
∥∥∥r(k)p −r(k−1)

p
∥∥∥2

13: end if
14: Compute new temporal mode: ψ(k) ← T (k)(ϕ(k))

15: Compute: �q ← ϕ
(k)
q ψ(k)

q − ϕ
(k−1)
q ψ(k−1)

q and �q ← 1
2

(
ϕ
(k)
q ψ(k)

q + ϕ
(k−1)
q ψ(k−1)

q

)

16: �p ← ϕ
(k)
p ψ(k)

p − ϕ
(k−1)
p ψ(k−1)

p and �p ← 1
2

(
ϕ
(k)
p ψ(k)

p + ϕ
(k−1)
p ψ(k−1)

p

)

17: Evaluate the stagnation coefficients:sq ← ‖�q‖L2/‖�q‖L2 and sp← ‖�p‖L2/‖�p‖L2
18: end while
19: Return the modes ψ ← ψ(k) and ϕ ← ϕ(k)

such that the decomposition of rankm of z reads:

zm(t) = Sψ(t).

The temporal update is performed by substituting Sψ for z in (18) and choosing test
functions in the form z∗ = Sψ∗. Equation (18) thus reduces to:

∫

I
ψ∗TST

(
J2nSψ̇ + HSψ

)
dt =

∫

I
ψ∗TST f z dt, ∀ψ∗ ∈ Y2m,

which can be rewritten in matrix form, with f ψ = ST f z , as:

ST J2nSψ̇ + STHSψ = f ψ . (27)

Time discretization of the above equation using the Crank–Nicolson marching scheme
leads to:

AUψi = BUψi−1 + biU , i = 1, . . . , nt , (28)

with:

AU =
[
htKx 2Cx

−2CT
x htMx

]
, BU =

[
−htKx 2Cx
−2CT

x −htMx

]
,

biU = htST
(
f iz + f i−1

z

)
,
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and:
Kx = STq KSq,

Cx = STq Sp,

Mx = STp M−1Sp.

The orthonormalization of (ϕq
i )1�i�m and (ϕp

i )1�i�m with K and M−1, respectively,
results in
Kx = Mx = Im.
The update procedure can be interpreted as projecting Hamilton’s equations onto the

subspace generated by the vectors of S. The system to be solved is governed by the
Hamiltonian g whose Hessian is G = STHS. This Hessian can be interpreted as the
rank-2m reduced counterpart of the Hessian operator H , such that:

g(ψ) = 1
2
ψTGψ − ψT f ψ ,

and the full-order vector is given by z � zm = Sψ. Assuming that Hamiltonian g is
canonical, the Hamilton’s canonical equations of such a reduced-order system read:

ψ̇ = ∇γ g,

where the symplectic gradient is given by:

∇γ g = J2m∇g = J2m
(
Gψ + f ψ

)
.

It follows that the Hamilton’s equations can be written as:

ψ̇ = J2m
(
Gψ − f ψ

)
.

Multiplying both sides of this equation by J2m (recall that J2mJ2m = −I2m) and rearranging
the terms leads to:

J2mψ̇ + STHSψ = f ψ .

Recalling here Eq. (27):

ST J2nSψ̇ + STHSψ = f ψ ,

one observes that that the two equations are identical if and only if ST J2nS = J2m, i.e. if S is
a symplectic mapping, according to the definition of the symplectic Stiefel manifold (19).
However, in general, S is not symplectic nor g is a canonical Hamiltonian. The product
ST J2nS writes:

ST J2nS =
[

0 STq Sp
−STp Sq 0

]
.

This suggests that the symplectic property could be enforced by biorthogonalization of
(ϕq

i )1�i�m and (ϕp
i )1�i�m, such that:

ST J2nS =
[

0 Im
−Im 0

]
= J2m.

However, this property is not ensured in the current algorithm since we chose to orthog-
onalize (ϕq

i )1�i�m and (ϕp
i )1�i�m with respect to K andM−1, respectively. Yet, it can be

enforced via a post-processing procedure. Let P andQ be twomatrices of sizem×m such
that:

ŜTq Ŝp = Im, with Ŝq = SqQ, and Ŝp = SpP.
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It follows that:
(SqQ)TSpP = QTSTq SpP = Im (29)

In other words, the matrices Q and P recombine the columns of Sq and Sp such that(
ϕ̂
q
i
)
1�i�m and

(
ϕ̂
p
i
)
1�i�m form a biorthogonal system. We can readily conceive two

approaches, among others, to enforce (29):

• The LU factorization STq Sp = LU allows one to define Q = L−T and P = U−1;
• The Singular Value Decomposition STq Sp = U�VT allows one to define

Q = U−T�−1/2 and P = V−T�−1/2 (�−1/2 is defined as the diagonal matrix whose
coefficients are given by the square root of the inverse of the singular values if different
from zero, and zero otherwise).

We note that the two procedures are computationally efficient since they are performed
on reduced matrices (m � n). Therefore, it is possible to construct a symplectic basis by
post-processing the basis calculated by the PGD solver.

Projection in Ritz subspace

As previously mentioned, the main bottleneck of the PGD solver is the solution of (22)
that requires one to factorize the operator Aq at each fixed-point iteration. Even though
Aitken transformation does reduce the PGD solver time, the computational cost of the
repeated factorization makes the solver prohibitively expensive when the dimension of
the finite element space is large.
We recall here the problem in space (22), expressed now at a given fixed-point iteration

indexed by parameter k :
A(k)
S ϕ(k) = b(k)S ,

with:

A(k)
S =

[∫

I
(k−1)T J2ṅ(k−1) + (k−1)TH(k−1) dt

]
=
[
k (k)t K c(k)t In
d(k)t In m(k)

t M−1

]
,

b(k)S =
∫

I
(k−1)T (f z − J2nżm−1 − Hzm−1

)
dt,

wherem(k)
t , k (k)t , c(k)t and d(k)t are computed from the temporal modes ψ

(k−1)
q and ψ

(k−1)
p ,

as defined in “Problem in space” section. In particular:
A(k)
q =

[
m(k)

t k (k)t K − c(k)t d(k)t M
]
.

Therefore, at each fixed-point iteration, the weights associated with the stiffness andmass
operatorsK andM, respectively, have to bemodified and a new factorization ofA(k)

q needs
to be obtained.
Although A(k)

q varies from one iteration to the next, its spectral content remains similar
because the operator is derived from a linear combination of K and M (both remaining
constant). The proposed approach takes advantage of the later observation and consists
in projecting Eq. (23) onto the subspace of approximated eigen-vectors, namely the Ritz
vectors, which verify the following properties (withm � r � n):(

�̂, V̂
) ∈ R

r×r × R
n×r , such that V̂ TKV̂ = �̂, and V̂ TMV̂ = Ir ,

where the Ritz values and the Ritz vectors are:
�̂ = diag

(
λ̂1, . . . λ̂r

)
,

V̂ =
[
v̂1 . . . v̂r

]
.
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We now introduce the mapping R:

R =
[
V̂ 0
0 MV̂

]
,

and remark thatR ∈ Sp(2r, 2n), i.e.R is a symplecticmapping. In otherwords, the structure
of the equations presented above holds, which can be written in terms of ẑ ∈ R

r , that
satisfies z = Rẑ, and the Hamiltonian G defined as:

G(ẑ) = 1
2
ẑTGẑ − ẑT f ẑ ,

with:

G = RTHR =
[
�̂ 0
0 Ir

]
, f ẑ = RT f z.

For the Hamiltonian G, the problem in space (22) using ϕ(k) = Rϕ̂(k) can thus be rewritten
as:

Â(k)
S ϕ̂(k) = b̂(k)S , (30)

with:

Â(k)
S = RTA(k)

S R =
[∫

I
(k−1)T J2ṙ(k−1) + (k−1)TG(k−1) dt

]
=
[
k (k)t �̂ c(k)t Ir
d(k)t Ir m(k)

t Ir

]
,

b̂(k)S = RTb(k)S ,
and (23) becomes a diagonal system expressed as:[

m(k)
t k (k)t �̂ − c(k)t d(k)t Ir

]
ϕ̂(k)
q = b̂(k)q . (31)

The complexity of the spatial problem (22) is now linear in terms of the dimension r of
the Ritz subspace. The number of Ritz vectors r has to be chosen sufficiently high with
respect to the expected rank m of the PGD approximation. Depending on the external
load, one can compute the Ritz vectors associated to the Ritz values corresponding to the
frequency band of interest. Here, we chose to retain the Ritz vectors whose Ritz values
have the lowest magnitudes, as conventionally performed in structural dynamics [15].

Numerical examples and discussion
Test case: asymetric triangle wave Neumann boundary condition

The test case is inspired by an example found in [14] and has the interest of showcasing
a transient phase followed by a steady-state harmonic regime. A 3D beam is considered,
such that the domain � = (0, 6) × (0, 1) × (0, 1) (in meters) is a parallelepiped with a
squared cross-section (see Fig. 1). Its response to an external load on its top surface is
computed in I = (0, 5) (in seconds):

ρ
∂2u
∂t2

− ∇ · σ (u) = 0, ∀(x, t) ∈ � × I ,

with:
σ (u) = 2με(u) + λtr (ε(u)) I3,

ε(u) = 1
2

(
∇u + (∇u)T

)
.

Moreover, the beam is subjected to homogeneous initial conditions:

u(x, 0) = 0, ∀x ∈ �,
∂u
∂t (x, 0) = 0, ∀x ∈ �,
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Fig. 1 Scheme of the test case

0 t1t2
time

0

F

−1
2F

g N
·n

Fig. 2 Evolution in time of the boundary traction gN · n through time

and to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂�D × I ,
σ (u) · n = gN (x, t), ∀(x, t) ∈ ∂�N × I ,
σ (u) · n = 0, ∀(x, t) ∈ ∂�0 × I .

In other words, the beam is clamped on its left end ∂�D = {0}× (0, 1)× (0, 1), an external
load gN · n is applied on its top surface ∂�N = (0, 6) × {1} × (0, 1) such that:

gN (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

t
t1 F, if t < t1,
− 1

2

(
1 − t−t1

t2−t1

)
F, if t1 � t < t2,

0, otherwise,

where t1 = 0.625 and t2 = 0.75. In other words, the external load pulls the beam upwards
for t ∈ [0, t1) and pushes it downwards for t ∈ [t1, t2) (see Fig. 2). Finally, the beam is
free on the remainder of the boundary ∂�0 = ∂�\(∂�D ∪ ∂�N ). In the space-discrete,
time-continuous Hamiltonian formalism, the problem reads:

ṗ = −Kq + f ,
q̇ = M−1p,

with:

q(0) = 0,

p(0) = 0,

where the stiffness andmass matrices,K andM respectively, result from the enforcement
of the homogeneousDirichlet boundary conditions by eliminating the corresponding rows
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and columns; the right-hand side f is computed from the prescribed Neumann boundary
conditions.
The values of the parameters are chosen as follows:

E = 220 GPa,

ν = 0.3,

ρ = 7000 kg/m3,

F = 0.5 GPa,

and the Lamé coefficients are evaluated as:

μ = E
2(1 + ν)

, λ = Eν

(1 + ν)(1 − 2ν)
.

The time domain I is divided into nt = 4800 sub-intervals of equal size. The space
domain � is partitioned into linear tetrahedral elements and five discretizations will
be considered such that the number of spatial degrees of freedom (DOF) 2s is chosen
in {1302, 6204, 36, 774, 67, 032, 244, 926}. The number of Ritz vectors is set to r = 300
regardless of the spatial discretization. Unless otherwise stated, the reduced-ordermodels
are assessed on solutions involvingm = 50 modes.

Comparisonmethod and performance criteria

We shall report the results based on the following four features:

1. The number of fixed-point iterations without and with Aitken acceleration;
2. The accuracy of the PGDapproximationswith respect to full-order solutions, namely

the FEM solutions described in “Spatial discretization” section;
3. The actual execution time of the different approaches and algorithms. The time

efficiency of the PGD solvers will be detailed regarding the successive phases of
the computation, namely the pre-processing, the fixed-point algorithm, the Gram-
Schmidt algorithm, and the temporal update procedure.

4. The scalability of the approaches with respect to the size of the spatial discretization.

The relative error εROM in the reduced-order approximationswith respect to the full-order
solutions computed by the FEM is given by:

εROM = ~uFEM − uROM~
~uFEM~

with ~·~ being the energy norm:

~u~ =
√∫

I

∫

�

1
2
ρu̇ · u̇ + 1

2
ε(u) : E : ε(u) dxdt.

More precisely, in the space-discrete Hamiltonian framework, the energy norm will be
evaluated as follows:

~u~ =
√∫

I

1
2
pTM−1p + 1

2
qTKq dt.

Note that the full-order solution computed by the FEM is obtained using the same
discretization parameters.
The reduced-order approximations that will be considered are the Singular Value

Decomposition (SVD) of the full-order solution, the PGD LU that factorizes the space
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Fig. 3 Number of iterations for 20 modes without and with Aitken acceleration

operator by LU decomposition for each fixed-point iteration and the PGD Ritz that com-
putes the reduced-order model in the subspace spanned by the Ritz vectors. More pre-
cisely, we will present the errors with respect to the number of modes m in the PGD
solutions and compare these errors to those obtained by subsequently performing an
SVD on the full-order solutions.
As far as computer times are concerned, all computations were run on a computer with

the following configuration:

• CPU: AMD Ryzen 7 PRO 4750U @ 1.7 GHz per core (8 cores, 16 threads);
• RAM: 38 GB;
• OS: Arch Linux.

The code was written using Python 3.9.17 with NumPy 1.25.0 [17] and SciPy 1.10.1 [29]
built from sources and linked against BLAS/LAPACK and SuiteSparse [11].

Numerical results

Aitken acceleration The relaxation technique significantly reduces the number of fixed-
point iterations (see Fig. 3). For 20 modes, Aitken acceleration saves five iterations per
enrichment, on average, and a total of over 100 iterations for the full computation. More-
over, it is worth highlighting that without Aitken acceleration, the fixed-point procedure
sometimes terminates without reaching convergence. This is the case for example for
modes 2, 4, and 6, as shown in Fig. 3. Indeed, the maximum number of iterations in this
example is set to 35 iterations, so that if convergence is not reached within the 35 itera-
tions, the fixed-point procedure is aborted and the last computed mode is retained. Thus,
not only Aitken acceleration increases the computational efficiency, but also allows one
to reach the convergence criterion that may not be satisfied otherwise. Eventually, slight
discrepancies in the temporal modes may be noticeable between the results obtained with
and without acceleration (see Fig. 4). On the other hand, there is no significant difference
on the spatial modes, as illustrated in Fig. 8, with Aitken acceleration when using either
one of the two PGD approaches.
ROM accuracy Figure 5 shows the errors of the reduced-order models with respect to the
FEM solutions for 2n = 244,926 spatial degrees of freedom. We observe that the errors
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Fig. 4 Visualization [9] of the first three temporal modes (normalized) with and without Aiken acceleration,
herein denoted ψ̃

q
i and ψ

q
i , respectively
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Fig. 5 (Left) Error between the reference solutions and the SVD or PGD approximations for 244,926 spatial DOF
with 50 modes. (Right) Error between the reference solutions and the SVD, PGD or Modal Decomposition
approximations for 36,774 spatial DOF with 300 modes. (y-axis has log scale)

significantly decrease for both the PGD LU and PGD Ritz approaches during the 20 first
modes. In fact, the accuracy of the PGD Ritz solution is similar to that of the PGD LU
solutions. Moreover, we observe that the convergence of the two PGD approximations is
comparable to that of the SVD, at least for the 20 first modes, before reaching a plateau.

Execution time and scalability Figures 6 and 7 show respectively the total and detailed
real execution times of the different methods. We remark that the PGD solver is not
competitive when the number of degrees of freedom remains low. We also observe that,
except in the case with 1302 spatial degrees of freedom, the PGD Ritz outperforms any
other method. On the one hand, the SVD, as an a posteriori method, requires a full-
order snapshot to build a reduced-order model. Moreover, the extraction of the principal
components from the data takes as much time as the actual full-order computation. On
the other hand, the Ritz version of the PGD solver as an a priorimethod does not require
any prior knowledge of the full-order solution and reaches an error comparable to that
of the SVD for the first 20 modes. More precisely, the PGD Ritz does not reach an error
as low as that of the SVD. However, the difference in error is small enough in view of the
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Fig. 6 Real execution time for the full-order model (FEM) and the reduced-order models (SVD, PGD LU, PGD Ritz)
with respect to different spatial discretizations (y-axis has log scale)

Table 1 Time efficiency of the reduced-order models (SVD, PGD LU, PGD Ritz) with respect to
different spatial discretizations and PGD Ritz speedup compared to other methods

# DOF in space �T1 (s) (FEM and SVD) �T2 (s) (PGD LU) �T3 (s) (PGD Ritz) Gain �T1
�T3

Gain �T2
�T3

1302 2.32 46.23 24.95 0.09 1.85

6204 68.99 280.69 32.38 2.13 8.67

36,774 333.26 2750.84 68.77 4.85 40.00

67,032 760.15 n.a. 115.79 6.57 n.a.

244,926 4428.65 n.a. 676.87 6.54 n.a.

speedup to justify the use of the PGD Ritz over the SVD (see Table 1). Conversely, the use
of the PGD LU in this context cannot really be justified over the SVD.
Regarding the detailed execution times, it seems that the pre-processing phase has

comparable computational efficiency. In other words, the computation of a Cholesky
factorization for M is as costly as computing Ritz pairs. Nevertheless, carrying out the
PGD computation in the subspace provided by the Ritz vectors drastically increases the
performance of each of the subsequent phases, namely the fixed-point, Gram-Schmidt,
and the temporal update procedures.

Further discussion

The PGD Ritz solver is overall much more efficient than the other approaches and offers
a remarkably good compromise in terms of error decay. Moreover, this novel approach
displays good scalability with respect to the number of spatial degrees of freedom, with a
reasonable error for a relatively small number ofmodes, which is highly suitable inmodel-
order reduction. The PGD Ritz solver could be interpreted as a hybrid approach between
classic PGD solvers and Modal Decomposition methods. In that respect, the relevance of
the PGD Ritz over classic PGD solvers is unequivocal in a space-time separated context.
Yet, its advantage over Modal Decomposition must be discussed, as well as its potential
to perform well if separation with additional parameters (material, geometric, etc.) had to
be accounted for.
Around the 20th mode, we observe on Fig. 5 that the error decay slows down or even

stagnates for the PGD Ritz. Since computations are carried out in the subspace spanned
by the Ritz vectors, it is intuitively understandable that the quality of the PGD approxima-
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Fig. 7 Detail on the real execution time for the full-order model (FEM) and the reduced-order models (SVD, PGD
LU, PGD Ritz) with respect to different space discretizations (y-axis has log scale)

tion is bounded by the information contained in the Ritz vectors. Indeed, Fig. 5 illustrates
this idea: the error in the solution obtained by the PGD Ritz after the first 20 enrichments
matches the error of the response computed byModal Decomposition (MD)with r = 300
modes (number of Ritz vectors). On the one hand, Ritz vectors are describing the natu-
ral response of the system. Thus, not all the Ritz vectors will be relevant to describe the
structural response under external loads. Mode participation factors or methods such as
sensitivity analysis or mode shape analysis may provide insights to select a set of vectors
that capture a given dynamic behavior. However, these approaches can be tedious as they
may require user intervention to interpret the results, which makes the process subjective
and less repeatable. On the other hand, the PGD solver inherently accounts for external
loads to compute relevant modes that describe the structural response accurately. In the
PGD Ritz framework, it translates to find linear combinations of the Ritz vectors that
satisfy the PGD spatial formulation (22) that derives from the Galerkin finite element for-
mulation. This is well illustrated by Fig. 8: the first three modes for Modal Decomposition
are the dominant deformation modes for the beam geometry, respectively vertical bend-
ing, lateral bending, and torsion. However, for the given external load, lateral bending and



Vella et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:15 Page 24 of 27

Fig. 8 Visualization of the first three spatial modes (normalized) for the Modal Decomposition, PGD LU and PGD
Ritz on the first, second and third columns, respectively and undeformed configuration in low opacity

torsion are not relevant.We can thus see that, like modal decomposition, the PGD solvers
compute a first mode corresponding to vertical bending, but the subsequent modes also
contribute to the description of vertical bending, which is effectively the dominant mode
to describe the structure’s response to the prescribed load.
Figure 5 also shows that while the error in the PGD Ritz solution reaches a plateau,

that in the PGD LU solution eventually keeps decreasing when the number of modes is
increased. Thus, if error stagnation is detected while the accuracy remains above a given
tolerance, two strategies can be considered:

• Restarting the Arnoldi algorithm to find subsequent Ritz vectors (i.e. increase r), so
as to enrich the research space for new PGD modes;

• Switch back to the PGD LU algorithm.

The methodology can be straightforwardly extended to viscoelastic systems modeled
withRayleighdamping, allowing for the constructionof aparametric reduced-ordermodel
with respect to the Rayleigh damping coefficients. Indeed, the damping term does not
change the matrix pattern of the system (22) to be solved for the spatial mode. In [10], the
parametric eigenproblem Kμu(μ) = λ(μ)Mμu(μ) is solved for applications in structural
dynamics, where the stiffness Kμ and mass Mμ operators depend on material or geo-
metric parameters μ. The authors introduce an original method to solve this parametric
eigenproblem within the PGD framework, so as to find approximations of the eigen-pairs
(λ(μ),u(μ)) in a parameter-separated format. Their approach may be considered to pro-
vide a parametrized subspace, onto which the spatial problem (22) can be projected to
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recover a diagonal structure as in (31). The PGD Ritz would optimize the selection of
the eigenvectors that contribute to the structure response. Therefore, the PGD Ritz could
present a proficient tool to compute the dynamic response of structures subjected to
time-dependent loads, even in a parametrized setting.
Furthermore, the possibility to choose a symplectic time integrator in combination with

the preservation of symplecticity of the spatial modes offers an appropriate foundation for
a potential extension of this work. It may allow for the development of a reduction tech-
nique suited to the treatment of elastodynamics problems that involve large rotations and
small strains as presented in [26]. Finally, the proposed approach allows one to consider
the construction of a PGD Ritz aimed at minimizing an error with respect to a Quantity
of Interest (QoI) [18]. The PGD subproblems would be modified so that combinations of
the Ritz vectors are now sought for as to minimize a residual over a QoI. These topics will
be studied in future works.

Conclusion
The PGD solver developed here combines good accuracy and efficiency, even with an
increased number of degrees of freedom. The calculation of the PGD modes in the sub-
space spanned by the Ritz vectors proves to be proficient, as it substantially accelerates the
computation without introducing a significant approximation error. Aitken acceleration
and the orthogonalization procedures are not as important for computational efficiency,
but guarantee convergence and stability properties that are essential to the solver. In addi-
tion, the solver, which is based on the Hamiltonian formalism, builds reduced models for
both the generalized coordinates and conjugatemomenta. It has been shown that it allows
the construction of a symplectic reduced basis, thus respecting the structure of canonical
Hamiltonian mechanics. This is an interesting feature, as it opens up a variety of avenues
related to this fundamental structure in dynamics. The numerical results also show great
promise regarding the viability of this approach for solving linear elastodynamics prob-
lems on three-dimensional structures.
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Appendix: Time operators
The computation of time integrals is required to evaluate the coefficients of the problem
in space presented in “Problem in space” section, i.e. kt , ct , dt , and mt . Let u = u(t) and
v = v(t) be two functions of time and assume they are sufficiently regular. We consider
continuous, piecewise linear approximations of u and v, which read in the case of u, and
in a similar manner for v:

u(t) �
(
1 − t − ti−1

ht

)
u
(
ti−1

)
+ t − ti−1

ht
u
(
ti
)
, t ∈

[
ti−1, ti

]
, i = 1, . . . , nt ,

with ht = ti − ti−1. We can now define the vectors u, v ∈ R
nt as:

u =
[
u(t0) . . . u(tnt )

]T
,

v =
[
v(t0) . . . v(tnt )

]T
.

The time integrals are then approximated as:∫

I
uv dt � uTAtv,

∫

I
u̇v dt � uTCtv,

with At and Ct the time operators such that:

At = ht
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1

4
. . . [0]
. . . . . .

sym. 4 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Ct = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1

1 0
. . . [0]

. . . . . . . . .

[0]
. . . 0 −1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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