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Modeling and Optimal Control of Infectious Diseases
Mario Lefebvre

Department of Mathematics and Industrial Engineering, Polytechnique Montréal, C.P. 6079, Succursale
Centre-ville, Montréal, QC H3C 3A7, Canada; mlefebvre@polymtl.ca

Abstract: We propose a stochastic model of infectious disease transmission that is more realistic than
those found in the literature. The model is based on jump-diffusion processes. However, it is defined
in such a way that the number of people susceptible to be infected decreases over time, which is the
case for a population of fixed size. Next, we consider the problem of finding the optimal control of
the proposed model. The dynamic programming equation satisfied by the value function is derived.
Estimators of the various model parameters are obtained.

Keywords: SIR model; jump-diffusion processes; parameter estimation; dynamic programming;
homing problem

MSC: 60J70; 93E20

1. Introduction

Let S(t) be the number of people susceptible (S) to a certain disease at time t, I(t) the
number of infected (I) and R(t) the number of recovered (R) persons. In the classic SIR
model proposed by Kermack and McKendrick [1], these variables satisfy the following
system of three coupled non-linear ordinary differential equations:

S′(t) = −β S(t) I(t), (1)

I′(t) = βS(t) I(t)− γ I(t), (2)

R′(t) = γ I(t), (3)

where β is the infection rate and γ is the recovery rate. Depending on the application, it
is sometimes assumed that those who have recovered have developed immunity to the
infectious disease. R(t) can also represent the number of people who have died of the
disease and thus been removed from the population.

Since the COVID-19 pandemic, numerous papers have been published on mathemati-
cal models for the transmission of infectious diseases. One way of making models more
realistic is to incorporate stochastic processes into the equations describing the evolution of
the epidemic over time. Often, the authors add diffusion processes like geometric Brow-
nian motions in the above equations; see, for example, Gray et al. [2], Tornatore et al. [3],
Zhou et al. [4] and Zhang et al. [5]. There are a few papers in which the authors used
jump-diffusion processes in their models. An important question is to determine conditions
that lead to the extinction or persistence of the disease.

Zhang and Wang [6] studied the asymptotic behavior of a stochastic SIR model with
jump-diffusion processes. Zhou and Zhang [7] found a threshold, depending on the
accumulated jump size, that can determine the extinction and persistence in mean of the
epidemic considered. The same problem was addressed by Dieu et al. [8], Nguyen et al. [9],
Tesfay et al. [10] and Privault and Wang [11]. In Zhao and Yuan [12], and also in Albani
and Zubelli [13], this problem was considered with the parameter β (the infection force) that
is assumed to evolve like a jump-diffusion process. In Lefebvre [14], it is the logarithm of
new epidemic cases that is modeled as a Wiener process with jumps.
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A common assumption in deterministic or stochastic SIR models is that the size N of
the population of interest is fixed, so that

S(t) + I(t) + R(t) = N. (4)

This assumption can simply mean that we may neglect the births and deaths over a
short period of time, when the size of the population is very large, for example, several
million people. Notice that S′(t) + I′(t) + R′(t) is indeed equal to zero in Equations (1)–(3).
Some authors replace β by β/N in Equations (1) and (2) (or S(t) by S(t)/N, which is
mathematically equivalent). In the deterministic model, an infected person comes into
contact with βN other persons per unit time (the contact rate).

Now, in the case of a population of fixed size, it is necessary to ensure that the number
of people susceptible to be infected decreases over time. If we simply add a diffusion
process to Equation (1), then S(t) can increase with time. Indeed, any diffusion process
both increases and decreases in any (however small) interval.

Let us denote S(t), I(t) and R(t) by X(t), Y(t) and Z(t), respectively. We propose the
following model:

X(t) = X(0)− β
∫ t

0
X(s)Y(s)ds −

∫ t

0
V(s)ds −

N(t)

∑
i=1

Ri, (5)

V(t) = V(0) + µ
∫ t

0
V(s)ds + σ

∫ t

0
V(s)dB(s), (6)

Y(t) = Y(0) + β
∫ t

0
X(s)Y(s)ds − γ

∫ t

0
Y(s)ds (7)

+
∫ t

0
V(s)ds +

N(t)

∑
i=1

Ri,

Z(t) = Z(0) + γ
∫ t

0
Y(s)ds, (8)

where µ is a real constant, σ is a positive constant, {B(t), t ≥ 0} is standard Brownian
motion, {N(t), t ≥ 0} is a Poisson process (independent of {B(t), t ≥ 0}) with rate λ,
and R1, R2, . . . are continuous non-negative i.i.d. random variables. Therefore, ∑

N(t)
i=1 Ri is a

compound Poisson process.
The process {V(t), t ≥ 0} is a geometric Brownian motion, which is always positive

(if V(0) > 0). It follows that X(t) will strictly decrease with time, as required. This type
of process is used to describe the wear of machines; see Rishel [15]. In the case of wear
processes, V(t) is a random variable that influences the wear of the machine. For instance,
it can be its operating speed. Here, V(t) could be the strength or risk of infection at time t,
which changes over time due in particular to vaccination.

Remark 1. We emphasize that the main difference between the current paper and the various
papers in which diffusion or jump-diffusion processes have been added to the basic SIR model is
the fact that in the model that we propose, the variable X(t) (= S(t)) representing the number of
susceptible individuals at time t is a decreasing function of time. As mentioned above, to obtain this
characteristic with diffusion processes, it is compulsory to introduce at least one new variable into
the model, in our case, V(t).

In the next section, we will consider a controlled version of the system defined by
Equations (5)–(8) and we will address the problem of finding the optimal control of the
proposed model. We will use the mathematical technique called dynamic programming to
derive the equation satisfied by what is known as the value function. We will see how we can
estimate the expected value of Y′(0), which is an important quantity in epidemiology. We
will also explain how to estimate the various model parameters, and finally an illustrative
example will be presented. We will end this paper with some remarks in Section 3.
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2. Optimal Control

We now consider a controlled version of the system defined by Equations (5)–(8):

X(t) = X(0)− β
∫ t

0
X(s)Y(s)ds −

∫ t

0
V(s)ds −

N(t)

∑
i=1

Ri, (9)

V(t) = V(0) + µ
∫ t

0
V(s)ds + σ

∫ t

0
V(s)dB(s), (10)

Y(t) = Y(0) + β
∫ t

0
X(s)Y(s)ds − γ

∫ t

0
Y(s)ds +

∫ t

0
V(s)ds +

N(t)

∑
i=1

Ri

−b
∫ t

0
u[X(s), V(s), Y(s)]ds, (11)

Z(t) = Z(0) + γ
∫ t

0
Y(s)ds + b

∫ t

0
u[X(s), V(s), Y(s)]ds, (12)

where b is a positive constant and the function u(·) is the control variable, which is assumed
to be a continuous function.

We define the first-passage time

τ(x, v, y) = inf{t > 0 : Y(t) = y1 | X(0) = x, V(0) = v, Y(0) = y > y1 ≥ 0}, (13)

where x and v are positive.
We are looking for the value u∗[X(t), V(t), Y(t)], for 0 ≤ t < τ(x, v, y), of the control

variable that minimizes the expected value of the cost function

J(x, v, y) :=
∫ τ(x,v,y)

0

{
1
2

qu2[X(t), V(t), Y(t)] + θ

}
dt, (14)

where q > 0 and θ are positive constants. There could be a final cost function K(·).
Because the parameter θ is positive, the optimizer must try to minimize the time it takes

Y(t) to decrease to the value y1, taking the quadratic control costs into account. A stochastic
optimal control problem of this type, in which the optimizer controls a stochastic process
until a certain random event takes place, is known as a homing problem; see Whittle [16]
and/or [17].

To solve our homing problem, we will use dynamic programming. We define the
value function

F(x, v, y) = inf
u[X(t),V(t),Y(t)]

t∈ [0,τ(x,v,y))

E[J(x, v, y)]. (15)

The function F(x, v, y) gives the expected cost (or reward, if it is negative) obtained if the
optimizer chooses the optimal value of u[X(t), V(t), Y(t)] in the interval [0, τ(x, v, y)).

Remark 2. Notice that the random variable τ(x, v, y) and the control variable do not depend on the
variable Z(t). Therefore, Z(t) can be dropped from the model for the problem we are interested in.

We will prove the following proposition.

Proposition 1. Let fR(r) be the common density function of the random variables R1, R2, . . .
Let V(0) = v, u(t) := u[X(t), V(t), Y(t)] and u0 := u(x, v, y). The value function F(x, v, y)
satisfies the dynamic programming equation

0 = inf
u0

{
1
2

qu2
0 + θ − (β x y + v)Fx + µ v Fv +

1
2

σ2 v2 Fvv (16)

+ (β x y − γy + v − bu0)Fy + λ
∫ ∞

0
F(x − r, v, y + r) fR(r)dr

− λ F(x, v, y)
}

.
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Proof. We have

J(x, v, y) =
∫ ∆t

0

{
1
2

qu2(t) + θ

}
dt +

∫ τ(x,v,y)

∆t

{
1
2

qu2(t) + θ

}
dt. (17)

We can write that ∫ ∆t

0

{
1
2

qu2(t) + θ

}
dt =

(
1
2

qu2
0 + θ

)
∆t + o(∆t). (18)

Moreover, making use of Bellman’s principle of optimality, we can express the infimum
with respect to u(t) of the expected value of the second integral in Equation (17) in terms of
the value function:

inf
u(t)

t∈ [∆t,τ(x,v,y))

E
[∫ τ(x,v,y)

∆t

{
1
2

qu2(t) + θ

}
dt
]

(19)

≈ E
[

F
(

x − (β x y + v)∆t −
N(∆t)

∑
i=1

Ri, v + µv ∆t + σ v B(∆t),

y + (β x y − γ y + v − bu0)∆t +
N(∆t)

∑
i=1

Ri

)]
.

Next, let
ξ := x − (β x y + v)∆t,
η := v + µv ∆t + σ v B(∆t),
ζ := y + (β x y − γy + v − bu0)∆t.

 (20)

Using the well-known formula E[X1] = E[E[X1 | X2]], we can write that

E
[

F
(

ξ −
N(∆t)

∑
i=1

Ri, η, ζ +
N(∆t)

∑
i=1

Ri

)]
(21)

= E

[
E
[

F
(

ξ −
N(∆t)

∑
i=1

Ri, η, ζ +
N(∆t)

∑
i=1

Ri

)] ∣∣∣∣ N(∆ t)

]
.

Moreover, N(∆t) has a Poisson distribution with parameter λ ∆t. It follows that

P[N(∆t) = 0] = e−λ∆t = 1 − λ∆t + o(∆t) (22)

and
P[N(∆t) = 1] = λ ∆ t e−λ∆t = λ∆t + o(∆t), (23)

so that
P[N(∆t) ≥ 2] = o(∆t). (24)

Therefore,

E
[

F
(

ξ −
N(∆t)

∑
i=1

Ri, η, ζ +
N(∆t)

∑
i=1

Ri

)]
= E[F(ξ, η, ζ)] (1 − λ ∆t) (25)

+ E[F(ξ − R1, η, ζ + R1)]λ ∆t

+ o(∆t).

Now, assuming that F(x, v, y) is differentiable with respect to x and y, and twice
differentiable with respect to v, we deduce from Taylor’s formula for functions of three
variables that

F(ξ, η, ζ) = F(x, v, y)− (β x y + v)∆t Fx + [µv ∆t + σ v B(∆t)]Fv (26)

+ (β x y − γy + v − bu0)∆t Fy +
1
2
[µ v∆t + σ v B(∆t)]2 Fvv

+ o(∆t).
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For a standard Brownian motion {B(t), t ≥ 0}, we have E[B(∆t)] = 0 and E[B2(∆t)] =
V[B(∆t)] = ∆t. Hence,

E[F(ξ, η, ζ)] = F(x, v, y)− (β x y + v)∆t Fx + µ v ∆t Fv (27)

+ (β x y − γy + v − bu0)∆t Fy +
1
2

σ2 v2 ∆t Fvv

+ o(∆t),

which implies that

E[F(ξ, η, ζ)] (1 − λ∆t) = F(x, v, y)− (β x y + v)∆t Fx + µv ∆t Fv (28)

+ (β x y − γ y + v − bu0)∆t Fy +
1
2

σ2 v2 ∆t Fvv

− F(x, v, y)λ∆t + o(∆t).

Next, by independence, we have

E[F(ξ − R1, η, ζ + R1)] =
∫ ∞

0
E[F(ξ − r, η, ζ + r)] fR(r)dr (29)

and we deduce from Equation (27) that

E[F(ξ − r, η, ζ + r)]λ∆t = F(x − r, v, y + r)λ∆t + o(∆t). (30)

Thus,

E[F(ξ − R1, η, ζ + R1)]λ ∆t = λ ∆t
∫ ∞

0
F(x − r, v, y + z) fR(r)dr + o(∆t). (31)

From what precedes, we can write that

0 = inf
u0

{(
1
2

qu2
0 + θ

)
∆t − (β x y + v)∆t Fx + µv ∆t Fv (32)

+ (β x y − γy + v − bu0)∆t Fy +
1
2

σ2 v2 ∆t Fvv − F(x, v, y)λ∆t

+ λ ∆t
∫ ∞

0
F(x − r, v, y + r) fR(r)dr + o(∆t)

}
.

Finally, dividing both sides of the above equation by ∆t and letting ∆t decrease to zero, we
obtain Equation (16).

Now, we deduce from Equation (16) that the optimal control u∗
0 = u∗(x, v, y) is

given by
u∗(x, v, y) = − b

q
Fy(x, v, y). (33)

Substituting this expression for u∗(x, v, y) into Equation (16), we obtain the following proposition.

Proposition 2. The value function F(x, v, y) satisfies the second-order, non-linear partial integro-
differential equation (PIDE)

0 = θ − 1
2

b2

q
F2

y − (β x y + v)Fx + µv Fv + (β x y − γ y + v)Fy (34)

+
1
2

σ2 v2 Fvv + λ
∫ ∞

0
F(x − r, v, y + r) fR(r)dr − λ F(x, v, y),

subject to the boundary condition (which follows at once from the fact that τ(x, v, y1) = 0)

F(x, v, y1) = 0. (35)

Remark 3. (i) Since X(t) ≥ 0, the integral in Equation (34) can be written as
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∫ x

0
F(x − r, v, y + r) fR(r)dr. (36)

(ii) We can consider the case when µ = σ = 0, so that the jump-diffusion process reduces to a
compound Poisson process. Similarly, if we set λ = 0, then there are no jumps and the noise in the
model is a simple diffusion process. Moreover, we could replace the geometric Brownian motion
by any non-negative diffusion process. We could also replace

∫ t
0 V(s)ds in Equations (9) and (11)

by
∫ t

0 h[V(s)]ds, where h(·) is a non-negative function. Then, we could use any diffusion process
{V(t), t ≥ 0} in the model.

(iii) We can generalize the definition of the first-passage time τ(x, v, y). Let X(0) = x, V(0) = v
and Y(0) = y. We define

τ(x, v, y) = inf{t > 0 : Y(t) = y1 or Y(t) ≥ y2}, (37)

where 0 ≤ y1 < y < y2. If Y(t) increases to a value greater than or equal to y2, we stop the optimal
control problem and we set

K[Y(τ(x, v, y))] =
{

K1 if Y(τ(x, v, y)) = y1,
K2 if Y(τ(x, v, y)) ≥ y2,

(38)

where 0 ≤ K1 < K2. We would then have the following boundary conditions: F(x, v, y1) = K1 and
F(x, v, y) = K2 if y ≥ y2.

2.1. Particular Cases

Case I. The simplest problem that we can consider is the one for which the jumps are of
constant size r0 > 0, so that

fR(r) = δ(r − r0), (39)

where δ(·) is the Dirac delta function. Equation (34) then reduces to

0 = θ − 1
2

b2

q
F2

y − (β x y + v)Fx + µ v Fv + (β x y − γy + v)Fy (40)

+
1
2

σ2 v2 Fvv + λ F(x − r0, v, y + r0)− λ F(x, v, y).

Moreover, if r0 ≥ x, F(x − r0, v, y + r0) = 0. This case can be generalized to any positive
discrete random variable R.

Case II. If R is uniformly distributed on the interval (0, r0), where r0 ≤ x, then∫ ∞

0
F(x − r, v, y + r) fR(r)dr =

1
r0

∫ r0

0
F(x − r, v, y + r)dr. (41)

If r0 > x, we have∫ ∞

0
F(x − r, v, y + r) fR(r)dr =

1
r0

∫ x

0
F(x − r, v, y + r)dr. (42)

Case III. A common assumption for jump-diffusion processes is that R is exponentially
distributed with parameter α. Then, we have∫ ∞

0
F(x − r, v, y + r) fR(r)dr =

∫ x

0
F(x − r, v, y + r)α e−αr dr. (43)

2.2. Estimation of the Expected Value of Y′(0)

The quantity Y′(0) is important in determining whether the epidemic will die out
or continue to spread. In our case, Y′(0) is a random variable. We will try to estimate its
expected value. We have

X(t) + Y(t) + Z(t) ≡ X(0) + Y(0) + Z(0) := N. (44)
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For the uncontrolled process, we have

Y(t)
N

=
Y(0)

N
+ β

∫ t

0

X(s)
N

Y(s)ds − γ
∫ t

0

Y(s)
N

ds (45)

+
1
N

[∫ t

0
V(s)ds +

N(t)

∑
i=1

Ri

]
.

If t is small, we can write that X(t)
N

≈ 1. (46)

It follows that

E[Y(t)] ≈ Y(0) + β N
∫ t

0
E[Y(s)]ds − γ

∫ t

0
E[Y(s)]ds (47)

+
∫ t

0
E[V(s)]ds + E

[
N(t)

∑
i=1

Ri

]

≈ Y(0) + β N Y(0) t − γY(0) t +
∫ t

0
E[V(s)]ds + E

[
N(t)

∑
i=1

Ri

]
.

We have (see Lefebvre [18])

E[V(t)] = V(0) exp
{(

µ +
σ2

2

)
t
}

(48)

and

E

[
N(t)

∑
i=1

Ri

]
= λ t E[R1]. (49)

Therefore, assuming that µ + σ2

2 ̸= 0,

E[Y(t)]− Y(0) ≈ (β N − γ)Y(0) t (50)

+
V(0)

µ + σ2

2

[
exp

{(
µ +

σ2

2

)
t
}
− 1

]
+ λ t E[R1].

We estimate E[Y′(t)] for small t values as follows:

E[Y′(t)] ≈ E[Y(t)]− Y(0)
t

≈ (β N − γ)Y(0) (51)

+
V(0)

µ + σ2

2

[
exp

{(
µ + σ2

2

)
t
}
− 1

]
t

+ λ E[R1].

Hence, we can write that

E[Y′(0)] ≈ (β N − γ)Y(0) + V(0) + λ E[R1]. (52)

Remark 4. If µ + σ2

2 = 0, then E[V(t)] ≡ V(0) and we obtain the same approximate formula
for E[Y′(0)].

2.3. Model Parameters Estimation

The problem of estimating the various parameters in stochastic SIR models has been
considered, in particular, by Rica and Ruz [19]. El Kharrazi and Saoud [20] studied this
problem in the case of a SIR model with jump-diffusion.

In the model that we propose, there are five parameters that must be estimated: β, γ,
µ, σ2 and λ. Moreover, we must also estimate the expected value of the random variables
Ri, i = 1, . . . As mentioned above, a common assumption in applications of jump-diffusion
processes is that Ri has an exponential distribution with parameter α. In our case, it is
rather Ri − κ that could be exponentially distributed, where κ is the threshold chosen in the
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definition of a jump. We must then estimate the parameter α and perform a goodness-of-fit
statistical test to check whether the exponential distribution assumption is plausible.

First, to estimate λ and E[Ri] from a particular random sample, we define what
constitutes a jump (which is always rather subjective) and we can then easily determine
point estimates of λ and E[Ri] from the data collected.

Next, we can estimate the parameter γ by making use of Equation (8). In practice, we
need to determine the value of t0 at which the epidemic began. We write

Z(t)− Z(t0) = γ
∫ t

t0

[Y(s)− Y(t0)]ds. (53)

It is not difficult to approximate the above integral from the observed values of Y(t).
The point estimate of the parameter γ can be obtained by using the formula for linear
regression through the origin.

For the parameters β, µ and σ2, we can proceed as follows: we replace V(s) in
Equation (7) by its expected value, namely

E[V(s)] = V(0) exp
{(

µ +
σ2

2

)
s
}

,

as well as ∑
N(t)
i=1 Ri by its expected value λ̂ t Ê[Ri], where q̂ denotes the point estimate of the

quantity q.

Remark 5. It is generally assumed that a geometric Brownian motion starts at 1, because V(t) = eW(t)

and W(0) is usually taken to be 0. However, we could estimate V(0) to be more general.

It follows (setting t0 = 0 and V(0) = 1) that

Y(t) ≈ Y(0) + β
∫ t

0
X(s)Y(s)ds − γ̂

∫ t

0
Y(s)ds (54)

+
∫ t

0
exp

{(
µ +

σ2

2

)
s
}

ds + λ̂ t Ê[Ri],

which implies that

Y′(t) ≈ β X(t)Y(t)− γ̂Y(t) + exp
{(

µ +
σ2

2

)
t
}
+ λ̂ Ê[Ri]. (55)

Let
η(t) := Y′(t) + γ̂Y(t)− λ̂ Ê[Ri] (56)

and

ν := µ +
σ2

2
. (57)

We have the equation
η(t) = β X(t)Y(t) + exp{ν t}. (58)

We can estimate η(t) from the data and perform non-linear regression to find point estimates of β
and ν.

Finally, the variance of V(t) is given by

V[V(t)] = exp
{(

µ +
σ2

2

)
2 t
}(

eσ2t − 1
)

, (59)

so that
E
[
V2(t)

]
= exp{2ν t} eσ2t. (60)

Once we have calculated β̂, we can define

ϕ(t) = Y′(t)− β̂ X(t)Y(t) + γ̂Y(t)− λ̂ Ê[Ri]. (61)
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We have
ϕ2(t) ≈ exp{2 ν̂ t} eσ2t. (62)

With the help of the data, it is possible to use non-linear regression to estimate σ2, from which we
deduce the value of

µ̂ = ν̂ − 1
2

σ̂2.

2.4. An Illustrative Example

Baldé [21] has used the data for (China and) France from Wolfram Research for the
COVID-19 pandemic, for the time period 22 January–31 March 2020. The data can be
viewed on the https://www.wolframcloud.com website. The number of daily infected,
recovered and death cases are shown in Figures 1–3. The random variable Y(t) is the total
number of infected persons at time t, while Z(t) is the sum of the persons who have
recovered from the disease and the dead ones. Moreover, X(t) ≈ N, where N is the total
population of France, which was 65,241,903 people during the time period considered.

Figure 1. Daily infected COVID-19 cases in France for the time period 22 January–31 March 2020.

Figure 2. Daily recovered COVID-19 cases in France for the time period 22 January–31 March 2020.

We estimate that the pandemic really began on 7 March (that is, t0 = 36). There are
therefore 35 observations of Y(t) and Z(t) in the data set, which is rather small. How-
ever, it is sufficient to illustrate the technique that we propose to estimate the various
model parameters.

On 7 March, we have Y(t0) = 220 and Z(t0) = 68 + 13 = 81. We define a jump to be
an increase of at least 500 infected persons in one day. We find that there are 18 jumps from
7 to 31 March, so that our point estimate of the rate λ of the Poisson process is λ̂ = 18/35.

The average jump size is 2113. Hence, we set Ê[Ri] = 2113.

https://www.wolframcloud.com
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Figure 3. Daily COVID-19 deaths in France for the time period 22 January–31 March 2020.

Moreover, the histogram of the jumps is presented in Figure 4. We see that the
form of the histogram corresponds to a shifted exponential distribution. Performing
Pearson’s goodness-of-fit test with the subintervals [500, 1500), [1500, 2500), [2500, 3500)
and [3500, ∞), we find that we can easily accept the hypothesis that Ri − 500 follows
(approximately) an exponential distribution with parameter α = 1/2113. The p-value of
the test is equal to 0.51.

Figure 4. Histogram of the jumps from 7 to 31 March 2020.

Next, proceeding as explained above, we find that γ̂ ≈ 0.1753. It follows that
β̂ ≈ 1.78 ×10−8 and ν̂ ≈ 0.2461. Notice that we have β̂ N ≈ 1.1615. Finally, we obtain that
σ̂2 ≈ 0.0491, from which we calculate µ̂ ≈ 0.2216.

3. Conclusions

In this paper, we proposed a stochastic SIR model that respects the constraint that the
number S(t) of people susceptible to becoming infected decreases over time, as it should
if the population size is fixed. To do this, when a diffusion process is used in the model,
the derivative of S′(t) must depend, for instance, on the integral of a non-negative diffusion
process. Therefore, we must add at least one equation to the basic model.

In Section 2, we considered the problem of finding the optimal control of the model
in a homing problem. We derived the equation satisfied by the value function, which is a
second-order, non-linear partial integro-differential equation. Finding the explicit solution
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to this equation, under the appropriate conditions, is of course a very difficult task. We
can, however, use numerical methods to obtain the solution in any particular case. We
can also simulate the model. All we need is a generator of Gaussian, exponential and
Poisson distributions.

At the end of Section 2, an example was presented to illustrate how the various
parameters of the model can be estimated. More data would be needed to check whether
the model can successfully forecast the evolution of the epidemic. However, even if the
proposed model is more realistic than those found in the literature, this does not mean that
it will give better results in all cases in practice. Indeed, it is well known that very simple,
but clearly wrong, models often give good results, because they are easier to implement.
However, if we can implement our model, the results should generally be at least as good
as with simpler models, while being closer to reality.

The same kind of work that we have presented in this paper could be carried out for
more complex models of infectious disease transmission than the basic SIR model. There
could also be more than one diffusion process in the model.

Finally, it would be interesting to obtain the moments of the first-passage time random
variable τ, whether in the case of the controlled or uncontrolled process. Again, this could
be carried out using simulations.
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