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Abstract

Monte Carlo (MC) methods employ a statistical approach to evaluate

complex mathematical models that lack analytical solutions and assess their

uncertainties. To this end, techniques such as Markov chain Monte Carlo

(MCMC), bootstrap, and sequential MC methods repeat the same operations

over a specified range of conditions. Consequently, both the frequentist and

Bayesian statistical approaches are computationally intensive, depending on

the problem formulation. Improving sampling techniques and identifying

sources of error reduce the computational demand but do not guarantee that

the solution reaches the global optimum. Moreover, efficient algorithms and

advances in hardware continue to decrease computation time. MC methods are

applicable to a plethora of problems ranging from medicine to computational

chemistry, economics, and industrial safety, making them integral to the

ongoing industrial digitalization by evaluating the quality of applied models. In

chemical engineering, MC simulations are used in four clusters of research:

design, systems, and optimization; molecular simulation, including CO2 and

carbon capture; adsorption and molecular dynamics; and thermodynamics.

There is limited cross-referencing between the design cluster and the other

three, which presents an interesting area for future research. This mini-review

presents two applications within chemical engineering: emissions and energy

forecasting.
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1 | INTRODUCTION

Mathematical models characterize natural phenomena,
human behaviour, and project economics to forecast
trends or expected viability over a wide range of operating
conditions while minimizing computational cost. The

reliability of models in engineering and science depends
on the quality of the input data and their uncertainties to
derive parameters and define appropriate model assump-
tions. Monte Carlo (MC) methods quantify such uncer-
tainties and increase the confidence of the model forecasts.
They repeat calculations at various input conditions to
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generate a statistical dataset, which quantifies the uncer-
tainty of solutions.[1]

Besides conducting statistical analysis of complex
systems, MC replaces computationally demanding
applications such as those in computational chemistry
while maximizing the fidelity of the model responses. MC
also resolves complex integrals (quadrature), models
buried in simulation packages (blackbox),[2] and it esti-
mates model parameters for safety, economics, and
industrial processes. In chemical engineering, models
to represent physical phenomena are applied to design
unit operations, develop process simulators, derive
reaction kinetics, predict thermodynamic properties,
and project plant economics. Robust plant models
calculate return on investment (ROI), profitability
(internal rate of return—IRR, net present value—NPV,
payback time—tpb) as a function of the factors that
contribute to capital and operating expenditures. The
estimate, Etpb , depends on a volume factor, Q, and vari-
ables that contribute to cost and profitability:

Market fluctuations contribute to the uncertainty in
project feasibility as they are directly related to cost of
materials (capital), labour, financing charges, and the
final sales price of the product. MC simulations evaluate
the risks associated with these fluctuations even for
periods of global crises like high inflation after the
pandemic and wars.[3]

Before exploring the theory of MC methods in chemical
engineering, it is valuable to understand the historical
context that allowed the development of these methods in
scientific applications. In 1687, Jacob Bernoulli published a
treatise related to the law of large numbers that is now the
basis of MC. His brother, Johann Bernoulli, was the first
to quantify probability. A century later, Pierre-Simon de
Laplace evaluated π through an MC experiment (i.e.,
dropping needles)[2]; then, physicist Enrico Fermi applied
sampling methods to his neutron studies, predicting
experimental results accurately.[4] Nicholas Metropolis,
Stanislaw Ulam, and John von Neumann applied statisti-
cal methods on neutron diffusion with the Electronic
Numerical Integrator and Computer (ENIAC), among
the first electronic computers.[2] In 1949, Metropolis and
Ulam published a paper that gives the name to the
renowned method.[5] The name comes from Ulam’s
interest in the game of chance, and it refers to the

Monte Carlo district in Monaco.[2] Following Metropolis’
publication, MC spread to the field of nuclear physics. It
was only from the eighties that researchers applied MC in
other fields like weather forecasting, finance, transporta-
tion, and medicine.

These historical events catalyzed the development of
MC methods that will be presented in this mini-review.
This article is part of a series on experimental methods
in chemical engineering[6] including computational
fluid dynamics–discrete element method (CFD-DEM),[7]

artificial neural network (ANN),[8] density functional
theory (DFT),[9] and process simulation.[10] We apply
MC to assess uncertainty and sensitivity, and identify
relationships between factors in experiments and systems
rather than measuring the data with an instrument. In this
context, model variables can change over time, whereas
parameters are constants derived from experimental data.
In some circumstances, model parameters need an update
when the model behaviour changes, which is also
standard in dynamic problems.

2 | GENERAL THEORY

MC is a technique for numerical integration, optimization,
and inverse problems in chemical engineering. MC simu-
lation is a non-deterministic numerical integration
approach that produces outputs for a large number of
runs (exceeding thousands of runs). It facilitates high-
dimensional integrations while minimizing computational
cost,[11] compares computed values from large sets of
randomly drawn numbers, estimates parameters, quan-
tifies uncertainties, and identifies the most sensitive
parameters of a system. In the case of numerical simu-
lation and optimization, MC solves the deterministic
problems supported by probability theory.

2.1 | Sampling techniques

Random sampling draws independent values from a
population or from a probability distribution.[12–14] The
time between decays from a radioactive source is truly
random phenomena, but MC relies on random number
generators based on deterministic computer algorithms
available in software like Excel, Python, or MATLAB. In
Excel, INT(RAND()*100) returns random numbers from

tpb ¼ f Q, capital investment, materials& labour, depreciation, interest,…Þð ð1Þ
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0 to 99 while NORMINV(RAND(),50,20) returns random
real numbers with a mean of 50 and a standard deviation
of 20 following a normal distribution. When compared to
fully randomized sampling, Latin Hypercube achieves
better coverage of the sampling space.[15] It divides the
sampling space into intervals and draws one sample from
each interval. The quasi-random method produces a
more uniform distribution of the samples than pure
random sampling. It divides the sampling space into
intervals and then draws samples on a base 2 to form
finer sequences, called Sobol sequence, but is limited by
its high computational demand when dealing with
multi-dimensional problems.

The sampling method depends on the application but
must cover the entire sampling space while considering
any eventual correlation within the space (Figure 1).
Copula methods isolate variables in complex systems that
have joint probabilities (or correlations).[16]

When sampling from a normal distribution or other
function, the samples are unevenly distributed.[13] The
expectation of samples drawn from a function, f xð Þ, with
a probability distribution p xð Þ is the integral:

E½ f xð Þ� ¼
Z

p xð Þf xð Þdx ð2Þ

The average, f , of the function for a large number of
samples approximate the true integral. Repeating the
operation for a new set of samples returns a different f ,
which is normally distributed around E f xð Þ½ � with vari-
ance Var a½ � ¼ 1=NVar f xð Þ½ �. Large samples (>50)
approximate the mean and standard deviation to within
about 10%–20% (for NORMINV(RAND(), f , σ)). Other
common sampling techniques include importance
sampling (for overly complicated distributions), rejection
sampling, slice sampling, Markov chain Monte Carlo
(MCMC), and efficient Monte Carlo methods such as
Hamiltonian Monte Carlo and the over-relaxation for
Gibbs sampling.[13]

2.2 | Sensitivity analysis

Local sensitivity analysis validates a parameter estimation
problem and assesses the impact of input variables on the
output of a model. To perform a sensitivity analysis using
MC simulation, a sampling space is defined based on a
range of percentage changes of the value of the input
variable for each analyzed variable. A large number of
input conditions are generated for the model from the sam-
ple space, which produces a large number of outputs. We
plot the outputs to identify local first-order partial deriva-
tives. When the derivative of an output value is positive,
the model output increases when incrementing the param-
eter and decreases when the derivative is negative. The
magnitude of the change is proportional to the influence of
the parameter on the output. Statistical and numerical
methods adjust the local derivatives to global sensitivity
indexes while accounting for the simulation noise.[17,18]

2.3 | Uncertainty analysis

MC quantifies the uncertainty of a measure or a model
by defining a function, f xð Þ, and linking input variables,
x, to a response, y. The definition of a sample space or a
sampling distribution for each of the input variables
involves drawing a large number of samples, usually
from a probability distribution processed through the
function f xð Þ. The standard deviation of the response is
the uncertainty of the function. Consider, for example,
the uncertainty of the length of 30mm ruler. The func-
tion y¼ x2� x1 gives the length, where x1 is the measure
at 0mm and x2 is the measure at 30mm. Both measures
have an error of 1mm. Samples for x1 and x2 are drawn
from normal probability distributions centred around the

FIGURE 1 Examples of sample space correlation between

factors x1 and x2 with the NumPy’s generator (blue dots). Top: no
correlation between variables, correlation index ρ¼ 0. Middle: a

negative correlation, ρ¼�0:8. Bottom: a positive

correlation, ρ¼ 0:8.
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means (0 or 30mm) with a standard deviation of 1mm.
We calculate the length, y, 100,000 times with different
variables (Code Listing 1). The mean resulting length is
30.0mm with a standard deviation of 1.4mm (Figure 2).

Code Listing 1: Python code example for the ruler
example.

def myfun(x1,x2):

f = x2-x1

return f

mean = np.array([0,30]); std = ([1,1])

n_samples = 100000; n_variables = 2

x = np.zeros([n_samples,n_variables])

x1 = np.random.normal(mean[0],std[0],n_samples)

x2 = np.random.normal(mean[1],std[1],n_samples)

f = myfun(x1,x2)

The theory of error propagation is a common tool to
estimate the uncertainties of measurements.[19] The error
propagation considers the error introduced by measured
variables, which translates to:

Δ2
f ¼

∂f
∂x1

Δ1

� �2

þ ∂f
∂x2

Δ2

� �2

þ�� �þ ∂f
∂xn

Δn

� �2

: ð3Þ

Considering the uncertainty of the position of the two
endpoints is each 1 mm, the uncertainty, Δf , for the func-
tion y¼ x2� x1 becomes:

FIGURE 3 Samples collected for each parameter and

representation of their distribution.

FIGURE 2 Monte Carlo (MC) distribution of length for the

example of a 30 mm ruler.

50,00030,00020,000 40,00010,000

FIGURE 4 Monte Carlo (MC) simulation for the example. Plot

for each variable against the function value (top and middle).

MC error change with different number of trials (bottom).

Δy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1ð Þ2þ Δ2ð Þ2

q
¼

ffiffiffi
2

p
¼ 1:4mm ð4Þ

In another example, the following steps estimate the
uncertainty of y¼ 4x21�5x2:

1. Define the range and the distribution of the parame-
ters (in this case assuming a normal distribution),

2. Sample from the input space (e.g., random sampling)
(Figure 3),

4 PAHIJA ET AL.
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3. Perform the MC simulation on n samples
(Figure 4), and

4. Review the results.

The MC error represents the standard error of the
simulation and it depends on the square root of the num-
ber of trials (s=

ffiffiffiffi
N

p
).

Given a function f xð Þ, where x depends on d vari-
ables, the integral of the function can be approximated
through MC. For a sampling number n tending to infin-
ity, the estimates equals the integral (Equation (5)).

I ¼
Z

f xð Þdx¼ lim
n!∞

1
n

Xn
1

f xnð Þ ð5Þ

The MC integration error drops with increasing n by
σ fð Þ= ffiffiffiffiffiffiffi

nð Þp
, where the standard deviation σ fð Þ can be

obtained from the sample variance (Equation (6)), where
E represents the estimate.

σ2 fð Þ≈ s2 fð Þ¼ 1
n�1

Xn
1

f xnð Þ�Eð Þ2 ð6Þ

2.4 | Parameter estimation problem

MC simulation estimates the sensitivity of a parameter
vector, θ, on the system, f , and a state variable x (Equa-
tions (7) and (8)).[20]

dx
dt

¼ f x,θ, tð Þ ð7Þ

y¼ g x,θ, tð Þ ð8Þ

2.4.1 | Frequentist approach

In the frequentist approach, the model parameters θ are
treated as true and fixed values while their estimators bθ
are considered as random variables occupying a sampling
space.[20] The output vector, y, is:

y¼ f θð Þþ є ð9Þ

where є is the measurement error defined as Gaussian
white noise є�N 0,σ2ð Þ.

In a parameter estimation problem, the maximum
likelihood estimation (MLE) maximizes the like-
lihood function between the model estimated with
the random parameters θ, and the data (Equations (10)
and (11)).

L y,θð Þ¼ 1

σ
ffiffiffiffiffi
2π

p exp � y� f θð Þ½ �2
2σ2

 !
ð10Þ

bθ� argmax L y,θð Þ ð11Þ

The least squares method (LSM) is a special case of
the MLE problem, where the objective is the minimiza-
tion of the squared difference between the data and the
model results (Equations (12) and (13)). Traditional mini-
mization algorithms solve this type of problem.

S y,θð Þ¼ 1

σ
ffiffiffiffiffi
2π

p exp � y� f θð Þð Þ2
2σ2

 !
ð12Þ

bθ� argmin S y,θð Þ ð13Þ

A covariance matrix shows the joint variability of two
or more random variables, by a first- or second-order
approximation (Equation (14)).[21]

Cov bθ� �¼ s2 F 0Fð Þ�1 where F ¼ ∂f θð Þ
∂θ

ð14Þ

where s2 ¼ Smin y,θð Þ= n�pð Þ is the unbiased estimation
of σ2 from residual parameters, n is the number of mea-
surements, and p is the number of parameters. Following
the linear regression theory, a general model is written as
Y ¼X θþ є, where X is an independent variable vector,
Y is a dependant variable vector, θ is a vector of
unknown parameters, and є is the error term. The LSM
estimate of θ is given by the minimum of S θð Þ. The esti-
mate in matrix notations becomes bθ X 0Xð Þ�1X 0Y . The
residual error is є¼Xbθ. Thus, through LSM, the error of
the estimated parameters bθ decreases as n increases,
highlighting the need for a high number of samples dur-
ing MC-assisted parameter estimations. The non-linear
case follows a similar approach.

The confidence interval 1-α of predictions is function
of the covariance matrix (Equation (15)). For large n,
such as those used for MC simulations, the confidence
interval for parameters assumes a t-distribution.[22]

Y 1�α ¼Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag Cov Yð Þð Þ

p
� t N�m,α=2ð Þ ð15Þ

2.4.2 | Bayesian approach

The Bayesian approach considers parameters θ as follow-
ing probability statements.[20] The Metropolis and
Metropolis–Hastings algorithms, as an example, estimate
parameters to build a model explaining a set of data
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points x. They accept or reject random values of θ� gener-
ated by MCMC techniques using Bayes’ theorem, which
connects a set of independent observations x to a set of
probability distribution parameters θ by relating the pos-
terior p θjxð Þ with the likelihood p xjθð Þ, the prior p θð Þ,
and the evidence p xð Þ (Equation (16)).

p θjyð Þ¼ p θð Þp yjθð Þ
p yð Þ ð16Þ

p θð Þ consists of a distribution function (normal, beta,
binomial,…) defined during the initialization of the prob-
lem. The likelihood p xjθð Þ is usually evaluated through a
transition kernel similar to those for MLE and LSM
(Equation (17)).

1ffiffiffiffiffi
2π

p exp �0:5 x�θð Þ2� � ð17Þ

Finally, the probability of evidence p xð Þ is expressed
by the integral:

p xð Þ¼
Z

p θð Þp xjθð Þdθ ð18Þ

The integral is approximated by 1
n

P
p X jθð Þ. Thus, the

posterior p θjxð Þ estimation is possible for any θ. MCMC
technique generates a new random θ� by using θt�1 as an
input for the probability distribution p θð Þ, from which we
draw a random number from this distribution. The
Metropolis algorithm accepts or rejects the new θ� based
on the comparison between the maximum acceptance
probability 1 and the ratio r of p θ�jxð Þ and p θt�1jxð Þ. If
r>1, the new set of θ� is accepted and is used for another
iteration, while if r<1, the θ� is rejected and a new ran-
dom θ� has to be selected. The Metropolis–Hastings algo-
rithm uses a second acceptance criterion for which the
smallest value between the maximum acceptance proba-
bility 1 and the ratio r of p θ�jxð Þ and p θt�1jxð Þ is com-
pared to a randomly drawn number u from a uniform
distribution between 0 and 1. θ� is accepted if u is smaller
than the other compared number. This means that the
set of parameters has improved since the last iteration.
The Metropolis and Metropolis–Hastings algorithms gen-
erate a distribution of parameters which can be used to
build a model explaining a set of data points x.[13]

2.4.3 | Bootstrap method

The bootstrap method evaluates parameters and their
uncertainties from a set of experimental data.[23] The first
step is to estimate parameters by either the MLE or LSM

method. The procedure then randomly generates syn-
thetic sets of data from the distribution of the existing
data set. New parameters are evaluated for each new data
set, for which the error is evaluated by comparing the

parameter estimates from the original data set bθ to the

parameter estimates from the synthetic MC set bθMC
.

The parameter estimates and their uncertainty pro-
vide the relevant statistical descriptors to build a symmet-
ric correlation matrix which represents the relationship
between parameters present in the problem. By increas-

ing the number of sets of evaluated parameters bθMC
, the

error on the mean and standard deviation decrease
substantially. Other deviations from the traditional MC
methods for parameter estimation were presented by
Luengo et al.[24]

3 | APPLICATIONS

Most science categories have adopted Monte Carlo
simulation massively: over 200 of the 250 categories refer-
ence it at least 30 times. Electrical electronic engineering
leads with 37,000 of the 336,000 mentions in the biblio-
graphic database, followed by physical chemistry and
applied physics (each with 30,000 occurrences).[25] This
section presents MC applications in chemical engineer-
ing, with specific application in processes and energy
industry (including sustainable applications), oil & gas,
stretching into computational chemistry, biology, energy,
environmental science, and medicine.[26] Chemical engi-
neering is ranked 34th with almost 6000 articles with MC
as a keyword under the Topic search criteria. The earli-
est research dates back to the mid-1960s, with a couple of
articles per year; 1998 was the first year with over 100
articles in chemical engineering, and it exceeded 300
articles a year in 2018. Each category has libraries like
Speramint, GPyOpt, and BoTorch.[27–29] BoTorch couples
the MC acquisition function with Bayesian optimization
It exploits the sample average approximation while com-
bining sampling with deterministic optimization and var-
iance reduction techniques.[30]

To assess the major research topics in engineering, we
queried the database (2013–2022) and generated a biblio-
metric map with VOSViewer (2900 articles, Figure 5). The
map groups keywords that most often appear in the same
articles into clusters with the same colour and links key-
words that cross- reference these articles with lines. The
size of the nodes (circles) correlates with the number of
articles with that keyword. The red cluster has the most
keywords with 43 and includes uncertainty-249 articles,
optimization (opt’n)-232, systems-209, design-156 and

6 PAHIJA ET AL.
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kinetics-124—applied chemical engineering. The other
clusters have about the same number of keywords:
green-18, blue-16, and yellow-13. CO2 (330), molecular sim-
ulation (mol simul’n)-290, and carbon capture utilization
sequestration(ccus)-286 dominate the green cluster, while
adsorption (ads’n)-310, molecular dynamics (MD)-213, and
force field-164, and vapour-liquid equilibrium (VLE)-192,
thermodynamics (thermo)-136, and mixtures-130 are the
main keywords in the blue and yellow clusters. Most of the
links (cross-citations) are between the green, blue, and yel-
low clusters, with very few to the red cluster: of the
200 links, only 6 cross to the red cluster from the others.
This indicates strong connection between physico-chemical
applications but a weak link to the more traditional
engineering topics. Future research should target relating

process optimization and systems with chemistry (experi-
mental or computational) and thermodynamic research.
Indeed, sustainable process intensification exploits com-
putational chemistry and experimental data will be a fun-
damental aspect in the development and adoption of
carbon capture, utilization, and storage (CCUS) and will
advance their technology readiness level towards pilot and
industrial applications.[31]

Applied Energy is the chemical engineering journal that
has published more articles than any other journal with
291 followed by Industrial & Engineering Chemistry
Research (209), Chemical Engineering Science (161), Fluid
Phase Equilibria (146), and Chemical Engineering Journal
(120). The Canadian Journal of Chemical Engineering
published 17 in the same time frame (2013–2022), but

FIGURE 5 Bibliometric map of keywords created with VOSviewer software.[32] The data were derived from articles indexed in Web of

Science[25] with Monte Carlo as search criteria in Topics within the Chemical Engineering Category. The areas of the circles are directly

proportional to the number of keywords occurrences, while related research topics are grouped into coloured clusters. act’d C, activated

carbon; ads’n, adsorption; aggreg’n, aggregration; C, carbon; ccus, carbon capture utilization sequestration; CFD, computational fluid

dynamics; CH4 ads’n, methane adsorption; CO2 ads’n, carbon dioxide adsorption; comp’ve ads’n, competitive adsorption; DFT, density

functional theory; dp, particle diameter; EOS, equation of state; free radical poly’n, free radical polymerization; gas ads’n, gas adsorption;
GCMC, gas chromatography mass spectrometry; kin MC, Monte Carlo kinetics; LCA, life cycle assessment; LES, large eddy simulation; MD,

molecular dynamics; MOF, metal organic framework; mol simul’n, molecular simulation; MM dist’n, molar mass distribution; NG, natural

gas; NP, nanoparticle; opt’n, optimization; oxid’n, oxidation; P, pressure; pop bal, population balance; PSD, particle size distribution; sens

analysis, sensitivity analysis; sep’n, separation; T, temperature; TEA, technoeconomic analysis; thermo, thermodynamics; trans prop,

transport properties; VLE, vapour-liquid equilibrium.
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published seven in 2023 with a heavy emphasis on poly-
mers: ‘Probabilistic Assessment of the Safety Profile of the
Fischer-Tropsch Process with a Supercritical Solvent’,[33]

‘Use of Molecular Simulation for Evaluating Adsorption
Equilibrium of Inhalation Anaesthetic Agents on Metal-
Organic Frameworks’,[34] ‘Propagating Input Uncertainties
Into Parameter Uncertainties and Model Prediction Uncer-
tainties-A Review’,[35] ‘Early Bird Gets the Network: The
Relative Importance of Reactivity Ratios, Ψ Parameter,
and Crosslinker Level on Gel Formation in FRP’,[36]

‘Modelling Textural and Mass Transfer Properties for
Gamma-Alumina Catalysts Using Randomly Generated
Pore Networks’,[37] ‘Monte Carlo Simulation of Terpoly-
merization: Optimizing the Simulation and Post-Processing
Times’,[38] and ‘Mathematical Modelling of Enzymatically
Cross-Linked Polymer-Phenol Conjugates Using Determin-
istic and Stochastic Methods’.[39]

MC contributes to many chemical engineering
problems like model identification to demonstrate how
uncertainties from data and variables propagate in
model predictions (red cluster).[40] When dealing with
process analysis, MC evaluates model quality and
stability by testing it on multiple simulations/predictions.
Thus, there are two challenges associated with the app-
lication of MC: (1) computational cost and (2) problem
formulation.[40] The development of surrogate models,
efficient sampling strategies/algorithms, and parallel
computing tackle the first challenge, while identifying the
uncertainty sources for the sensitivity and uncertainty
analysis deals with the problem formulation.[40]

3.1 | Chemical and bio-processes
(red cluster)

The design of experiments (DOE) maximizes the research
output by reducing the number of required experimental
runs.[41] The Bayesian design of experiments applies an
MC approximation and Gaussian process emulators to
approximate the posterior distribution.[41] The response
surface methodology is a common technique used for
DOE and optimization (red cluster).[42,43] Response
surface methodology combined with dynamic MC predicted
how fast formic acid decomposed on a Cu surface as a func-
tion of T, P, and t (time).[42] Employing DOE and quan-
tum MC simulations discovered candidate compounds as
a corrosion inhibitor of steel.[43]

In analytical techniques applicable to chemical
processes, MC can boost scanning electron microscope
analysis by generating 3D images based on electron–
sample interaction. In material science, a MC grain
boundary optimization algorithm determines the lowest
energy structure of SiO2 and SiC.[44] Ion radiations cause

thermal spikes and atomic relocation within amorphous
structures (e.g., TiO2). MC combined with molecular
dynamics evaluated the displacement in such amorphous
structures.[45]

In polymeric (red cluster) applications, a MC-
simulation-based optimization and an adaptive simula-
tion were tested to maximize the comonomer conversion
ratio to achieving the target chemical composition
distribution.[46] Kinetic MC tracks the arrangement of
monomers and polymer chains and, when coupled with
optimization algorithms, detects the most promising
polymer microstructures.[47] Other applications of kinetic
MC include chemical transport, structure and material
property characterization, and catalysis hierarchical multi-
scale modelling.[48]

MC is often employed in bioprocesses. MC methods
consider uncertainties for each component in biomass to
better approximate pyrolysis compared to an only-cellulose
approximation (red cluster—with combustion).[49] The
traditional and sequential MC have been applied to esti-
mate the parameters of a mechanistic model to monitor lac-
tic acid bacteria fermentation,[50,51] whereas similar models
can estimate parameters of complex biological population
balances.[52] Further applications in biology and medicine
applied active inference to understand biological intelli-
gence or studying high energy beams in radiotherapy to
assess the risk associated with radiation exposure.[53–56]

3.2 | Techno-economic analysis (TEA)
and life-cycle assessment (LCA)
(red cluster)

Chemical plant economics (CAPEX and OPEX) depends
on feedstock and product prices, which vary with time
and depend on location.[57,58] To estimate the sensitivity
of feedstock price and operating parameters (tempera-
ture, pressure, and fuel options–electricity vs. methane)
effect on economics, the cash flow is calculated based on
random or random-normal samples of all prices and/or
parameters.[57] The simulation determines the price inter-
vals for each component to verify the profitability.[59] The
economic evaluation of large plants operating with many
compounds is constrained by computational resources
(i.e., time, memory), thus requiring the selection of key
prices (parameters) to generate scenarios and develop risk
management strategies.[60] For example, researchers
maximized selectivity and profitability of azelaic acid from
vegetable oil rather than minimizing process steps. The
MC simulation supported the decision to purchase higher-
quality oil to reduce payback time and cut CAPEX.[60]

LCA commercial software incorporate uncertainties
in their inventory data, where MC has been used to
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calculate the bounds of the expected emissions and legal
tolerance for populated areas.[61] Such methods have
identified the most relevant parameters affecting the
design, the economics, and the environmental impact.[62]

3.3 | Safety/risk (red cluster)

In mineral extraction applications, the risk of flyrocks
induced by mine blasting can be assessed with a tree-based
model and MC to calculate the distance distribution of
debris.[63] Other MC algorithms are applied to position the
blast ore boundaries.[64]

MC simulations guide laboratory research to contrast
the producer’s risk versus consumer risk: the uncertainty
of HPLC assay of amoxicillin 500 mg tablets is an
example. The decision-making problem demonstrated
that the producer’s risk is significantly higher than the
consumer’s risk.[65] In another HPLC example, MC-based
model evaluated the solute polarity parameter depending
on its molecular structure, whereas it optimizes HPLC
procedures and methods.[66]

3.4 | Computational chemistry
(blue cluster)

MC supports the evaluation of thermodynamic properties
of atomistic systems to complement DFT (blue cluster).[9,67]

Unlike molecular dynamics, MC is incapable of characteriz-
ing dynamic properties as the notion of time is absent.[9]

Characterizing adsorption is a major application
of MC in chemical engineering (blue cluster).[68,69]

High-performance computations incorporating molecular
modelling with tools like grand canonical Monte Carlo
(GCMC—blue cluster) characterize the adsorption pro-
cess in crystalline adsorbents such as metal–organic
frameworks and zeolites. Grounded in statistical mechanics
principles, GCMC is a probabilistic tool to study equilib-
rium adsorption properties (e.g., isotherms) and evaluate
structural characteristics (e.g., pore size distributions of the
adsorbent, surface chemistry [yellow cluster]).[70] Energy
storage in porous media is a common example of GCMC
application. The GCMC method employs the grand canoni-
cal ensemble, allowing for dynamic adjustments in the
number of molecules during simulations. Beyond energy
exchange, this method finds primary application in systems
where the particle count varies in response to external
conditions.[71]

The computational drug design is another application
where binding free energy estimation is essential. MC
sampling methods combined with high-performance
GPU simulations reduced the cost of molecular dynamics

simulations (blue cluster), confirming the significance of
combining sampling methods with regular simulation
techniques to evaluate binding affinity estimates.[72]

The kinetic MC method (kin MC—red cluster) cut
computational costs to simulate catalytic reactions.
Furthermore, coupling MC with machine learning tech-
niques identifies new catalytic compositions for chemical
reactions.[73] The MC tree search algorithm combines the
classical tree search algorithm with concepts of ML to
synthesize new organic chemicals.[74] The MC tree search
strategy accelerates the evaluation by three orders of
magnitude.[75] To confirm the applicability of MC simula-
tions, a comparison between auxiliary-field MC and other
quantum chemistry methods, followed by geometry
optimization, showed an agreement in equilibrium
geometries with experimental values.[76]

3.5 | Industry 4.0 (red cluster)

Industrial digitalization is introducing advanced compu-
tational and monitoring technologies into traditional
energy and production processes. The transition towards
an optimal industrial reality consists of the selection and
optimization of the most promising process technologies
based on the risk assessment and the application of
sustainable policies. MC methods to estimate the risk of a
specific process or the probability that a specific process is
uneconomic in the former case. This approach simulates
process designs from a superstructure and selects the most
efficient among all options.[77] For the latter case (optimiza-
tion), some researchers reject MC to support decision-
makers due to controversial simulation results.[78]

In renewable energy applications, sequential MC is
computationally expensive compared to pseudo-sequential
and non-sequential MC but simulates time series of variable
energy sources and loads. Pseudo-sequential MC is compu-
tationally less demanding because of the sampling algo-
rithm, while non-sequential MC is the most efficient but is
incapable of simulating chronological aspects.[79] However,
a novel pathway optimization method ‘Global Calculator’
model based on MCMC and genetic algorithm identifies
sustainable pathways such as societal efforts to meet
environmental goals (MCMC—red cluster). This type of
information provides policymakers with valuable insights
on which societal categories to address in future policies.[80]

4 | CASE STUDIES

This section presents a case study on predicting N2O
emissions and a scenario of forecasting renewable energy
networks.

PAHIJA ET AL. 9
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4.1 | N2O emissions

Wastewater treatment plants generate N2O, a global
warming contributor gas 300 times more powerful than
CO2.

[81] Research constructs data driven models to char-
acterize N2O including dissolved oxygen (DO) [gO2

=m3],
ammonia (NHþ

4 ) [gN=m
3], nitrate (NO�

3 ) [gN=m
3], N2O

concentration in the liquid phase (liquid-N2O) [gN=m
3],

temperature [	C], influent flowrate [m3=h], and air flow-
rate [m3=h] (Figure 6).[82,83] To forecast the dynamic
emissions of N2O requires an integrated framework
including process modelling (like Aspen), process sensi-
tivity analysis, signal processing, and fidelity.[84] Machine
learning/deep learning approaches and MC simulation
are capable of processing the data and then forecasting
N2O.

[85,86] The main steps to generate data-driven models
include:[87]

Data preparation: Gather data, merge data, data
cleaning, and scaling.
Model training: The data has to be split (training
vs. test) to train models. Grid search for the purpose
of hyperparameters optimization also should be
considered.
Model feasibility: Proposed models are evaluated
versus statistical metrics such as coefficient of

determination, root-mean-square error, mean abso-
lute error, mean absolute percentage error, weighted
absolute percentage error, Diebold-Mariano test, and
information criteria.
Model analysis: MC-based global sensitivity analysis
(i.e., generating random samples of inputs, performing
MC simulations followed by returning Sobol sensitivity
indices) results in a score of impacts on the developed
model (Figure 6).

MC sampling offers flexibility and robustness in predict-
ing N2O emissions by accommodating uncertainties and
variability in model inputs. It allows for quantification of
risk, sensitivity analysis, and assessment of model perfor-
mance, making it a valuable tool for decision-making in
wastewater treatment plant management. Additionally, it
can integrate expert knowledge and empirical data, enhanc-
ing the reliability of predictions.

4.2 | Energy forecasting

Many countries attempt to design renewable energy
networks and reduce carbon emissions to create a sus-
tainable world.[88] Decision-makers must examine vari-
ous network scenarios forecasting future emissions.[89]

FIGURE 6 Results of global

sensitivity analysis from deep

learning-based model for

biological systems: (A) the

individual Sobol sensitivity

indices and (B) the total Sobol

sensitivity indices.
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The energy system models couple conventional sampling
methods (e.g., random sampling, Latin Hypercube sam-
pling with simple distributions).[90,91] In the case of
renewable energy, fluctuations and unpredictable supply
are inevitable. Advanced sampling methods based on sto-
chastic machine learning characterize these uncer-
tainties.[92] The variational auto-encoder (VAE) and
generative adversarial networks (GANs) artificially gener-
ate a variety of samples that mimic real data.[93,94] The
VAE trains a latent space between the encoder and
decoder to produce new samples. GANs consist of the
generative model and the discriminative model, generat-
ing high-quality samples by competing with each other.
In doing so, they overcome the diversity of time-series
data limitation and makes sense of scenario generation of
renewables to contribute to energy policies. As regards
one of the main results, a set of distributions of perfor-
mance metrics for renewable forecasting models based
on advanced sampling methods can be displayed
(Figure 7).[95]

MC sampling is a general method for generating sam-
ples from a probability distribution to estimate quantities
of interest, often used for uncertainty quantification.
Advanced sampling based on stochastic machine learn-
ing, on the other hand, involves leveraging machine
learning techniques to adaptively sample from complex

and high-dimensional distributions. While both methods
aim to sample from probability distributions, advanced
sampling techniques typically employ sophisticated
algorithms and may incorporate machine learning
models for more efficient exploration of the parameter
space compared to traditional MC methods.

5 | UNCERTAINTY

Mechanistic models rely on physico-chemical properties
and phenomenological characterization to build an
approximate model that describes complex systems
(e.g., plastic deformation of biomass). Network models
like MC techniques combined with molecular dynamics
make the computation complex and time-consuming.[49]

When increasing the number of simulations, the approxi-
mation towards the optimal solution improves. However,
the global or local optimum evaluated through MC is not
guaranteed to be the exact value. When the exact value is
needed, other numerical methods represent a better option.

Despite the great utility of MC applications in uncer-
tainty and sensitivity analysis, common inaccuracies and
mistakes can be found in the literature[96]: Both uncertainty
and sensitivity analysis should depend on a global explora-
tion of the space of input factors.

FIGURE 7 Distribution of

performance metrics for

renewable electricity supply

forecasting models based on

samples generated from deep

learning-based sampling method

(DNN, deep neural network;

GRU, gated recurrent unit;

LSTM, long short-term

memory). Adapted with

permission from Lee et al.

‘Generative Model-Based Hybrid

Forecasting Model for

Renewable Electricity Supply

Using Long Short-Term Memory

Networks: A Case Study of

South Korea’s Energy Transition
Policy’.[95]
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It is advisable to perform both uncertainty and sensitiv-
ity analysis. The uncertainty analysis informs of the
robustness of the inference, ascertaining where volatility/
uncertainty is coming from. Most models have many out-
puts, and these outputs can be used to answer a range of dif-
ferent questions. The relationship between the input factors
and each different model output can vary significantly.[96]

For this reason, it is essential to focus the sensitivity analysis
on the question addressed by the model rather than just
focusing on the model itself. Sensitivity and uncertainty
analysis are themselves uncertain because there is consider-
able uncertainty in quantifying the uncertainty in input
factors, thus not guaranteeing the absence of errors.

6 | CURRENT INDUSTRIAL
APPLICATIONS AND FUTURE
DIRECTIONS

MC methods find application to real industrial problems
and guide industrial decision-makers in the selection of
process operations.[97] These methods have a key role as
monitoring approaches of dynamic systems, especially in
resampling training data.[97] Data-driven models can
make use of MC methods. For example, Bayesian neural
networks (BNN) have the same topology as conventional
ANN, but each parameter incorporates uncertainty.[97]

Considering a trending topic such as CCUS that is transi-
tioning to the industrial scale, MC plays a key role in
multi-scenario studies, providing techno-economic, envi-
ronmental, and supply chain estimations.[98] In another
example that can be extended to chemical production,
the uncertainties of cost demonstrated how Gen III
nuclear plants today would bring significant economic
losses in some countries.[99] Given the numerous applica-
tions presented in the previous sections, MC methods
support economic, safety, and environmental decisions in
the industry and these methods shine in fundamental
applications in science and R&D, including chemical
engineering. The areas of future development for MC in
the industrial applications will concern economics and
safety, and these methods will be integrated with funda-
mental scientific models. The fast growth of artificial
intelligence applications will foster the integration of
Bayesian approaches with deep learning algorithms and
physical models to monitor, forecast, and simulate pro-
ductions and economic scenarios.

7 | CONCLUSIONS

This mini review wants to emphasize the importance of
MC methods in chemical engineering. MC supports

engineers and scientists in analyzing complex problems
and it proved its reliability in a wide range of chemical
engineering applications. We presented examples of sam-
pling methods including tools (e.g., Excel and Python),
and uncertainty and sensitivity analysis to get started
with MC simulations. The uncertainty and sensitivity
analysis has a relevant role in engineering and defines
the quality and reliability of mathematical models. Fur-
thermore, we presented two case studies related to emis-
sions and energy forecasting to demonstrate potential
applications as well as the connection with trending arti-
ficial intelligence research. The application of MC
methods relies on the development of an efficient algo-
rithm and sampling methods whereas technological
advances in computational capabilities will provide
resources to run larger simulations when the necessity
arises.
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