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ABSTRACT Nonlinear circuit modeling is a complex task involving sequential data and time-domain
analysis. While Recurrent Neural Networks (RNNs) handle these tasks, their limitations include low test
accuracy and extended training times. Deep time-domain networks, like deep recurrent neural networks
(DRNNs) and deep long short-termmemory (DLSTM), aim to address these limitations but bring challenges
such as long training times, the vanishing gradient problem, overfitting, and significant test errors due to
their large number of parameters. This paper proposes a novel structure and macromodeling approach for
nonlinear circuits based on deep clockwork recurrent neural networks (DCWRNNs). Deep CWRNNs offer
better feature extraction capability than their shallow counterparts and can generate more accurate and faster
models than conventional DRNN and DLSTM. Its unique structure with deep modules operating at different
clock periods facilitates better extraction of high and low-frequency information, resulting in smaller test
errors. A Heterogeneous-layered DCWRNN (HL-DCWRNN) is also introduced, adjusting module rates
of each layer separately to enhance accuracy and mitigate overfitting. DCWRNN-based models require
less computation effort (20-30 speedup reported) than transistor-level circuit simulator models. Validation
through modeling two nonlinear high-speed interconnect circuits confirms the method’s efficacy compared
to DRNN, DLSTM, and shallow CWRNN methods.

INDEX TERMS Computer-aided design, clockwork recurrent neural network, deep neural network,
heterogeneous structure, macromodeling, nonlinear circuits, recurrent neural network.

I. INTRODUCTION
Complex circuits, systems, and new technologies require
high-accuracy macromodeling. This dynamic and evolving
research area often needs manual trial-and-error to obtain
improved models [1], [2]. The goal of nonlinear macromod-
eling is to create a simplified representation of the circuit
that can capture the relationship between the input and output
signals so that it can be evaluated faster and easier than
simulating the actual circuit [3].
Artificial neural networks (ANNs) have revolutionized

computer-aided design (CAD) by improving the efficiency
and effectiveness of designing and modeling nonlinear,

The associate editor coordinating the review of this manuscript and
approving it for publication was Wu-Shiung Feng.

high-frequency devices and circuits, significantly enhancing
optimization, simulation, and analysis quality [4], [5].
Transistor-level and behavioral models are the two main
means for modeling nonlinear components and circuits.
Transistor-level models, like SPICE models, offer superior
accuracy at the expense of larger computational efforts,
as they require complicated calculations based on the internal
structure of the circuit. Behavioral models, such as IBIS
models [6], have lower accuracy and computational effort
requirements, as they only concentrate on the circuit’s input
and output signals. Therefore, creating efficient models
for nonlinear components and circuits is challenging and
significant.

Artificial neural networks (ANNs) are powerful tech-
niques for representing correlations between inputs and
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outputs, significantly influencing computer-aided design
(CAD) advancement for circuits and systems. ANNs can
alternatively undergo training using simulated data, negating
the necessity to understand intricate circuit details. How-
ever, static feedforward ANNs are inefficient for modeling
complex nonlinear circuits as their behavior is generally
represented in the time domain. So, several time-dependent
neural networks have been proposed for nonlinear circuit
macromodeling in the literature. These include dynamic
neural network (DNN) [7], time-delay neural network
(TDNN) [8], recurrent neural network (RNN) [9], [10],
state-space dynamic neural network (SSDNN) [11] and
adjoint state-space dynamic neural network (ASSDNN)
[12]. Among them, RNNs have gained extensive utiliza-
tion and have been proposed as a promising approach
for nonlinear macromodeling. Indeed, RNNs can capture
and depict the nonlinear dynamic characteristics in the
time domain by leveraging the time domain data of the
circuit.

Artificial neural networks can learn and approximate any
nonlinear input-output relationship, thanks to their universal
approximation property [13]. They can also use measured
or simulated data directly, without requiring the knowledge
of the inner intricacies of the original circuit. Moreover,
they can evaluate the output results more rapidly than the
original models within circuit simulators [3], [9], [14].
While RNNs offer promising capabilities for macromodeling,
they grapple with limitations. Training them can be time-
consuming, demanding iterative backpropagation through
time (BPTT) calculations. This process can lead to vanishing
gradients, hindering weight updates, and compromising
model accuracy.

Many advancements and alternative architectures have
emerged in the literature to overcome these drawbacks. One
of the first applications of RNNs for nonlinear macromodel-
ing is presented in [3], where an RNN was trained to model
the dynamic response of nonlinear circuits using simulated
or measured data. A state-space dynamic neural network
(SSDNN) was proposed in [11] for modeling the transient
behavior of high-speed nonlinear circuits. The SSDNN’s
state-space approach facilitated parameter reduction and
improved training convergence.

An enhanced version of SSDNN was introduced in [12] to
model the transient response of nonlinear electronic/photonic
components, employing the Adjoint State-Space Dynamic
Neural Network (ASSDNN) technique. Augmenting training
data with output signal derivatives reduces the required data
set volume without compromising accuracy, a key strength of
this approach.

Building upon the RNN framework, L. Zhu, et al. [26]
introduced a dynamic neuro-space mapping (Neuro-SM)
technique for accurate nonlinear device modeling. Aiming to
refine existing approximate models, Neuro-SM leverages an
RNN to learn the mapping function between the approximate
and actual device behavior.

Other types of neural networks, such as echo state network
(ESN) [15], long short-term memory (LSTM) [6], and batch
normalized recurrent neural network (BN-RNN) [16] have
been applied for nonlinear macromodeling.

A possible solution to conventional RNNs subject to
the vanishing gradient problem is to use LSTM networks,
which use gates to control the information flow. In [6],
the authors proposed an LSTM-powered macromodeling
approach for capturing the dynamic behavior of nonlinear
circuits. However, LSTMs also have limitations, such as
overfitting and large computational requirements, which
might make them unsuitable for complex nonlinear circuits
with limited resources.

Stacking hidden layers helps to increase the depth and
complexity of the neural network, which can improve its
ability to learn features and patterns from the data [17].
Simple RNNs and LSTM have only one hidden layer,
which limits their capacity to model nonlinear circuits.
Stacking hidden layers empowers the network to delve deeper
into input-output data, unearthing increasingly abstract and
intricate features.

In [14], a new deep method for macromodeling nonlinear
electronic circuits, such as boost converters, is introduced.
The method is called local feedback deep recurrent neural
network (LFDRNN). It uses a deep recurrent neural network
(RNN) with feedback connections between the same layers
in adjacent time steps. The feedback connections allow
the hidden layers to remember and use some information
from the previous time step. The LFDRNN method can
model and analyze the dynamic behavior of the circuits
more accurately and efficiently than shallow RNNs. The
paper shows how the LFDRNN method can be used to
model and implement an active voltage balancing circuit
for series-connected supercapacitors in energy harvesting
systems. The experimental results show that the LFDRNN
method is better than the existing transistor-level and other
RNN-based models regarding accuracy and speed. Another
paper also presents a dropout regularization technique to
improve the generalization performance of the LFDRNN
method [18].
In [16], a new method for macromodeling nonlinear and

high-speed circuits using batch-normalized deep recurrent
neural networks (BN-RNN) was introduced. The method
uses batch normalization (BN) to enhance the training and
accuracy of deep RNN and significantly decrease the training
time. The BN technique modifies each neuron’s inputs based
on the batches’ mean and variance and adds scaling and
shifting parameters trained along with the network. The
method lowers the internal covariance shift and improves
the gradient flow of the network. The paper validates the
performance of the BN-RNN method using three nonlinear
circuit examples.

In [19], the authors introduce a heterogeneous method-
ology that integrates recurrent neural network (RNN)
and polynomial regression techniques for macromodeling
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nonlinear electronic circuits. The authors called this method
heterogeneous RNN-polynomial regression (HRPR). The
HRPR method involves two stages: firstly, constructing an
RNN structure and, subsequently, merging the RNN output
with external input(s) of the circuit to perform regression. The
study illustrates that the HRPR method can efficiently model
and simulate three nonlinear circuits with greater speed and
accuracy than conventional RNN and existing models in
simulation tools.

The work in [20] introduces a novel macromodeling
technique employing a deep gated recurrent unit (Deep
GRU) regularized with Gaussian dropout for nonlinear
circuits. The method uses Deep GRU as a new RNN
that can solve the vanishing gradient problem and learn
long-term dependencies. The method also uses Gaussian
dropout as a regularization technique to avoid overfitting and
enhance generalization performance. The paper verifies the
performance of the proposed method using three nonlinear
circuit examples.

A new macromodeling method is proposed. This
method, called shallow clockwork recurrent neural network
(CWRNN), is a recurrent neural network (RNN) that splits
the hidden layer into modules operating at different clock
rates, allowing it to capture different frequencies from the
input signals. CWRNNs perform better than RNNs and
LSTMs in tasks like sequence prediction, audio signal
classification, and nonlinear circuit macromodeling [21],
[22].

This paper proposes new deep clockwork recurrent neural
networks (DCWRNNs), offering a novel structure andmacro-
modelingmethod to better deal with complex dependencies in
sequential data than conventional deep RNN and deep LSTM.
DCWRNNs have some hidden layers composed of different
modules with different clock rates, enabling them to extract
fast and slow changes (happening at different rates) from the
training signals. DCWRNNs have fewer parameters, higher
accuracy than deep RNN and deep LSTM, and a simpler
and more robust architecture. They also have better feature
extraction capability than their shallow version, compared to
conventional deep methods.

Using modules with different clock rates makes the
DCWRNNa strong tool for capturing high- and low-frequency
information from the data, and using the deep structure
leads to better feature extraction and model accuracy.
This paper proposes a heterogeneous structure called
Heterogeneous-layered DCWRNN (HL-DCWRNN), which
uses layers with different numbers of modules. This
heterogeneous structure helps to tune the number of
modules in each layer to reduce overfitting and increase
accuracy.

The rest of the paper is organized as follows: Section II
presents background information on conventional deep
RNN and deep LSTM. Section III explains the proposed
DCWRNNmacromodeling approach, including its structure,
training, and proposed Heterogeneous-layered DCWRNN
(HL-DCWRNN). Section IV showcases numerical results for

two nonlinear examples. Finally, Section V concludes the
paper.

II. BACKGROUND
A. CONVENTIONAL DEEP RECURRENT NEURAL
NETWORK (DRNN)
A recurrent neural network (RNN) comprises similar
feedforward neural networks connected through time by
feedback connections. These connections enable the network
to propagate information across consecutive time steps. RNN
has been widely used in domains such as image and language
processing [21], where complex inputs and outputs can be
handled. RNN has three main layers: the input layer, the
hidden layers, and the output layer. Recently, deep RNNs,
which have multiple hidden layers, have been used to
generate macromodels of nonlinear circuits [14], [17]. These
models can capture the dynamic behavior of the circuits more
accurately and efficiently than conventional shallow RNN-
based models. The output of the i-th hidden neuron in the l-th
hidden layer at the k-th time step, where k is an integer value,
is given by the following equation:

Z li (k) = σ
(Nl−1∑
j=1

WFl−1
i,j Z l−1

j (k)

+

Nl∑
j=1

WRl
i,j Z

l
j (k − 1) + bli

)
(1)

y(k) = σ

( NL∑
i=1

WFL
1,i Z

L
i (k) + by

)
(2)

In this context, equations (1) and (2) correspond to the output
of the i-th hidden neuron at layer l and the ultimate output
of the network, respectively. The structure considered here
features a single output for simplicity. The terms Z l−1

j (k),

Nl−1, σ ,W
Rl
i,j ,W

Fl−1
i,j , andWFL

1,i represent the output of the j-th
node in the (l − 1)-th hidden layer at time step k , the number
of nodes in the (l− 1)-th hidden layer, the sigmoid activation
function, the recurrent weight, the feedforward weight, and
the weight connecting the DRNN output to the final hidden
layer at time step k , respectively. Additionally, bli and by
denote the biases associated with the hidden neuron i in the
l-th hidden layer and the output neuron, respectively.

Training a recurrent neural network (RNN) requires using
a technique known as backpropagation through time (BPTT)
[14], [23], [24]. This technique allows for the computation
of the gradient of the error function for the network weights.
The gradient indicates how to adjust the weights to reduce the
error. BPTT works by unfolding the RNN for a fixed number
of time steps and treating it as a deep feedforward network
with shared weights. Then, the chain rule orchestrates the
calculation of error partial derivatives for all weights at each
time step. When carefully processed, these derivatives guide
weight updates, leading the network towards reduced training
error.
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Deep LSTM is a time-domain neural network that
can better deal with sequential data and learn long-term
dependencies than deep RNN. It has multiple layers of LSTM
units stacked on each other, allowing for more complex and
hierarchical data representations. Deep LSTM was first used
for speech recognition and later for machine translation and
nonlinear circuit modeling [20].

B. DEPTH IN CLOCKWORK RECURRENT NEURAL
NETWORKS VERSUS DEPTH IN CONVENTIONAL
RECURRENT NEURAL NETWORKS
The main idea of the proposed method is to use the
advantage of deep neural networks to improve their modeling
performance. Regarding the clockwork network, it should be
emphasized that deepening the network is not simply adding
or stacking hidden layers, but rather adjusting the number
of modules and neurons inside those modules and the clock
periods used in each layer. Therefore, 3 hyperparameters in
each layer of DCWRNN are to be configured rather than
just the number of neurons in conventional deep RNN. For
example, one layer could have 7 modules, each with a clock
rate of power of 2 containing 5 neurons (21, 22, 23, 24,
25, 26,27), another layer could have 5 modules, each with
4 neurons and clock rates of (21, 31, 22, 23, 32). Hence,
each layer in HL-DCWRNN needs to be carefully designed
rather than simply stacking multiple similar layers on top of
each other. In clockwork RNNs, prime-numbered clock rates
allow modules to update independently at prime intervals,
minimizing overlap and interference, thus capturing diverse
temporal patterns and optimizing learning efficiency.

In Clockwork RNNs, modules within the hidden layer are
connected to the immediate past and previous time steps that
align with their designated clock rates. For instance, with
clock rates set at [1, 2, 4, 8, 16], modules form connections to
time steps that are 1, 2, 4, 8, and 16 steps behind, respectively.
This design ensures that each module processes information
at intervals specific to its clock rate, allowing the network to
handle different aspects of temporal data efficiently and with
a structured update pattern.

C. DEEP LONG-SHORT TERM MEMORY (DLSTM)
In Fig. 1, the LSTM unit is a fundamental component of
an LSTM layer responsible for storing and manipulating
information over time. Comprising essential elements such as
a cell, an input gate, a forget gate, an output gate, and a new
memory cell, the LSTM unit plays a crucial role in processing
sequential data. The cell keeps the long-term memory of
the unit by remembering information from previous inputs
and outputs. The input gate analyzes the current input and
the preceding hidden state to choose new information for
incorporation into the cell. Simultaneously, operating on
comparable criteria, the forget gate identifies information
to discard from the cell. At the same time, the output
gate determines the data to be transmitted from the cell by
considering the present input, the prior hidden state, and the
present cell state. Finally, the newly updated memory cell

FIGURE 1. The architecture of one LSTM cell.

assesses how the current input impacts the unit’s long-term
memory. The formulas for each component are given below:

• Input gate: ik = σ (Wi · xk + Ui · hk−1).
• Forget gate: fk = σ (Wf · xk + Uf · hk−1).
• Output gate: ok = σ (Wo · xk + Uo · hk−1).
• New memory cell: c̃k = tanh(Wc · xk + Uc · hk−1).
• Cell state: ck = fk ⊙ ck−1 + ik ⊙ c̃k .
• Hidden state: hk = ok ⊙ tanh(ck).

where the sigmoid function denoted by σ , the hyperbolic
tangent function represented by tanh, and the element-wise
multiplication operation expressed by ⊙, xk is the input
vector at time step k , hk is the hidden state vector at time
step k , ck is the cell state vector at time step k , and Wi, Wf ,
Wo, Wc, Ui, Uf , Uo, and Uc are weight matrices.
Deep LSTM networks can be used for nonlinear circuit

modeling by training them with the original circuit’s input
and output waveforms as data. These networks can learn
the time-domain responses of nonlinear circuits and generate
efficient and accurate models for simulation and analysis.

III. PROPOSED DEEP CLOCKWORK RNN
MACROMODELING METHOD
A. STRUCTURE OF THE DEEP CLOCKWORK RECURRENT
NEURAL NETWORK
The Clockwork RNN splits the hidden layer into separate
modules that operate at different temporal granularities
and clock rates. The shallow CWRNN has outperformed
RNN and LSTM in tasks such as audio signal genera-
tion and spoken word classification [21]. The following
equations describe the structure of the shallow CWRNN
mathematically:

Zi(a)(k) = σ
( m∑
b=a

h∑
j=1

WR
i(a),j(b)Zj(b)(k − 1)

+

NI∑
j=1

W I
i(a),jIj(k) + bi(a)

)
(3)
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FIGURE 2. Structure of the proposed deep clockwork recurrent neural network (DCWRNN).

y(k) = σ

 m∑
a=1

h∑
j=1

W y
1,j(a)Zj(a)(k) + by

 (4)

Let’s denote (3) and (4) as the output of the i-th hidden
neuron within the module a and the ultimate output of
the network, correspondingly. In this context, a simplified
configuration featuring just one output was considered. The
expressions encapsulated in these equations delineate the
model’s underlying dynamics. In (3), Zj(b)(k − 1) signifies
the output of the j-th node within module b at time step
(k − 1), h characterizes the number of nodes within each
module in the hidden layer, σ denote the sigmoid activation
function,WR

i(a),j(b) responsible for linking neuron i in module
a at time step k to neuron j in module b at time step (k − 1)
in the same hidden layer, W I

i(a),j signifies the feedforward
weight linking neuron j in the input layer to neuron i within
a module a in the hidden layer, simultaneously at time
step k , W y

1,j(a) encapsulates the weight associated with the
connection between the shallowCWRNNoutput and neuron j
within a module a in the hidden layer, simultaneously at time
step k , bi(a) accounts for the bias affecting hidden neuron i
within a module a in the hidden layer. by also represents the
bias of the output neuron.

The deep clockwork recurrent neural network (DCWRNN)
is a type of deep recurrent neural network (DRNN) that has
multiple hidden layers, each having a clockwork structure.
As shown in Fig. 2, the DCWRNN is delineated into
three primary sections: the input layer (I (k) and circuit
parameters), the hidden layers, and the output layer (y(k)).

Additionally, the network assimilates the circuit’s input and
output signals. The hidden layers are uniformly structured,
each comprising a fixed number of modules. This uniformity
is a hallmark of the DCWRNN, facilitating synchronized
processing across various time scales due to its clockwork
architecture. Connections WRL

1(m),hl (m)
link slower module

neurons at one time step to faster ones at the next, as depicted
in the right side of Fig. 2. This rule is pivotal in differentiating
the DCWRNN’s information processing capabilities from
those of a standard recurrent network.

Each hidden layer in DCWRNN comprises numerous
modules, each operating at a different clock period and an
equal number of neurons. The clock period of the module i
follows the rule Ti = 2i−1. The modules are interconnected
throughout the layers, with recurrent connections from
module a at time step (k − 1) to module b at time step
k existing only when the clock period of module a, Ta is
greater than or equal to Tb, the clock period of module b,
Ta ≥ Tb. The arrangement of the modules in ascending order
is designed to enable the smooth transfer of the hidden state
from right to left, indicating the transition from slower to
faster ones. So, the feedforward weights of a DCWRNN are
similar to those of a DRNN, but the recurrent weights are
different. In a DCWRNN, the neurons of a slower module
Tj with a larger period at time step (k − 1) are connected
to the neurons of a faster module Ti with a smaller period
(i < j) at time step k . This allows a DCWRNN to capture
rapid and slow variations in the training signals accurately.
A DCWRNN is a simplified DRNN architecture with fewer
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connections and parameters than a DRNN. This makes
it a less complex network and reduces its computational
complexity significantly. The following equations give the
mathematical formulation of the DCWRNN architecture:

Z li(a)(k) = σ
( m∑
b=a

hl∑
j=1

WRl
i(a),j(b)Z

l
j(b)(k − 1)

+

m∑
b=1

hl−1∑
j=1

WFl−1
i(a),j(b)Z

l−1
j(b) (k) + bli(a)

)
(5)

y(k) =

 m∑
a=1

hL∑
j=1

WFL
1,j(a)Z

L
j(a)(k) + bLy

 (6)

where (5) and (6) represent the output of the i-th hidden
neuron within the module a in layer l and the overall output
of the network, both at time step k , correspondingly. For
simplicity, we first focus on a configuration featuring a single
output in this context. In these equations Z l−1

j(b) (k) signifies the
output of the j-th node of b-th module in l-th hidden layer,
hl represents the number of nodes in each module of l-th
hidden layer, σ represents the sigmoid activation function,
the recurrent weight WRl

i(a),j(b) connects neuron i in module a
at time step k to neuron j in module b at time step (k − 1)
in the l-th hidden layer. The feedforward weight WFl−1

i(a),j(b)
links neuron j in module b of the (l − 1)-th layer to neuron
i in module a of the l-th hidden layer at time step k . The
weightWFL

1,j(a) connects the DCWRNN output to the neuron j
in module a of the last hidden layer at time step k . The bias
term bli(a) influences the hidden neuron i in module a within
the l-th hidden layer, and bLy represents the output neuron bias.
M (1, 1)Rlh×h M (1, 2)Rlh×h M (1, 3)Rlh×h . . . M (1,m)Rlh×h

0 M (2, 2)Rlh×h M (2, 3)Rlh×h . . . M (2,m)Rlh×h
0 0 M (3, 3)Rlh×h . . . M (3,m)Rlh×h
...

...
...

...
...

0 0 0 . . . M (m,m)Rlh×h


(7)

Equation. (7) shows a block-matrix representation ofWRl ,
the recurrent weight matrix connecting layer l’s neurons at
time step k to neurons of the same layer at time step (k − 1).
In this figure, in row i, M (i, j)Rlh×h represents the h×h matrix
of recurrent connections for the l-th hidden layer between
neurons in module i at time step k and neurons in module j at
time step (k − 1). The modules at the present step establish
connections internally with modules of shorter periods at the
subsequent time step, resulting in varying connection counts:
h2 × m in row one, h2 × (m− 1) in row two, and so forth.
In a DRNN hidden layer, each neuron is transformed at

every time step by applying an affine operation to the input at
the present step and the hidden state from the prior time step.
However, in a DCWRNN at time step k , only the neurons
of the i-th module update their values if k is divisible by Ti.
Therefore, the modules with large Ti react to “slow” changes

in the input, while others (the ones with small Ti) respond
to “fast” changes. Furthermore, “fast” modules with short
periods get inputs from “slow” modules with long periods
from the previous time step, but not vice versa. It means that
the “slow” changes influence the “fast” changes, but will get
updated without being disturbed by them [25].
The following formula shows the update formula at time

step k for the state Z li(a)(k) of the i-th feedforward neuron in
module a of l-th hidden layer. Assume,

A =
( m∑
b=a

hl∑
j=1

WRl
i(a),j(b)Z

l
j(b)(k − 1)

+

m∑
b=1

hl∑
j=1

WFl−1
i(a),j(b)Z

l−1
i(a),j(b)(k) + bli(a)

)
(8)

Then,

Z li(a)(k) =

{
σ (A) if (k MOD Ta = 0)
Z li(a)(k − 1) Otherwise

(9)

For instance, during the time step k = 8, only modules with
periods T1 = 1, T2 = 2, T3 = 4, and T4 = 8 undergo updates,
demonstrating that not every module receives updates at each
time step. In the equations, the order of the modules satisfies
Ti < Tj for i < j.

B. TRAINING OF DEEP CLOCKWORK RECURRENT
NEURAL NETWORK
Training the DCWRNN structure is necessary to develop
an appropriate model exhibiting a nonlinear component’s
transient behavior. Computing the error and the gradient are
two essential steps in the training process. A collection of
input-output waveforms, called training data, is used to train
the network [26]. In the optimization process of network
training, the subsequent objective function (or error function)
is employed for the necessary calculations:

Es =
1
2

Ny∑
j=1

Nt∑
k=1

(ŷs,j(k) − ys,j(k))2 (10)

The error associated with the s-th training signal, denoted
by Es, is obtained by (10), Ny and Nt , which are the
counts of model outputs and the number of time samples,
correspondingly. ŷs,j(k) and ys,j(k) indicate the anticipated
and desired values for j-th output of s-th training signals
at time step k , respectively. The cumulative error across all
training waveforms is expressed by E and defined as:

E =
1
2

Ns∑
s=1

Ny∑
j=1

Nt∑
k=1

(ŷs(j, k) − ys(j, k))2 (11)

where Ns stands for the total number of training signals. The
training aims to adjust the DCWRNN weights WRl

i(a),j(b) and

WFl−1
i(a),j(b) in (8) to minimize E [27]. This paper utilized The

gradient-based optimization method to train the DCWRNN

VOLUME 12, 2024 89511



M. Azodi et al.: Nonlinear Circuit Macromodeling Using New HL-DCWRNN

weights and generate the model. The derivatives of the error
function for each training parameter (weight) are needed
for applying an effective gradient-based optimization method
in training the macromodel [24], [28]. Furthermore, using
the traditional error back-propagation strategy for training is
not applicable for the DCWRNN due to the dependence of
current output on past outputs [23]. The recursive formula
given in (12) can be used to calculate the gradients, for
WFl
i(a),j(b) (0 < l < L):

∂Es(k)

∂WFl
i(a),j(b)

=
∂Es(k)
∂y(k)

×

m∑
a′=1

hl∑
p=1

∂y(k)

∂ZLp(a′)(k)
×

∂ZLp(a′)(k)

∂WFl
i(a),j(b)

(12)

The computation of (12) continues for several of its
chain-rule steps to demonstrate the recursive process of
gradient calculations. Notice that, first, the last fraction
in (12) should be expanded to reach the desired weight,
as shown below:

∂ZLp(a′)(k)

∂WFl
i(a),j(b)

=

m∑
a′′=1

hl−1∑
p′=1

∂ZLp(a′)(k)

∂ZL−1
p′(a′′)(k)

×

∂ZL−1
p′(a′′)(k)

∂WFl
i(a),j(b)

(13)

Also,
∂y(k)

∂ZLp(a′)(k)
= WFL

1,p(a′) (14)

According to (5), the derived relation is based on the
condition that WFl−1

p(a′),p′(a′′) and Z
L−1
p′(a′′)(k − 1) will be present

in (15) only when p = i and a′
= a, respectively. Assume,

B=WFl−1
p(a′),p′(a′′)+

 m∑
a′′=a′

hl∑
p′=1

WRL−1
p(a′),p′(a′′) ×

∂ZL−1
p′(a′′)(k − 1)

∂WFL−2
i(a),j(b)


Then,

∂ZLp(a′)(k)

∂ZL−1
p′(a′′)(k)

= ZLp(a′)(k) × (1 − ZLp(a′)(k)) × B (15)

Additionally, as per (5), the resulting relation is established
under the condition that ZL−2

i(a),j(b)(k),W
RL−1
p′(a′′),q(b), and Z

L−1
q(b) (k−

1) will be included in (16) and (17) only when p = i and
a′

= a, respectively. Assume,

C = ZL−2
i(a),j(b)(k) +

 m∑
b=a′′

hl∑
q=1

W L−1
p′(a′′),q(b) ×

∂ZL−1
q(b) (k − 1)

∂WFl
i(a),j(b)


Then,

∂ZL−1
p′(a′′)(k)

∂WFl
i(a),j(b)

= σ ′
× C (16)

Moreover, by substituting the feedforward weightWFl
i(a),j(b)

with the recurrent weight WRl
i(a),j(b) in (12), the ensuing

formulas can be derived. Suppose,

D =

 m∑
b=a′′

hl∑
q=1

WRL−1
p′(a′′),q(b) ×

∂ZL−1
q(b) (k − 1)

∂WRl
i(a),j(b)



+ ZL−1
i(a),j(b)(k − 1)

Then,

∂ZL−1
p′(a′′)(k)

∂WRl
i(a),j(b)

= σ ′
× D (17)

For performing the recursive operation, (17) is expanded
into the following detailed formula, provided that ZL−1

q′(b′′)(k −

2) appears in (18) only if q = i and a = b′. Let’s consider,

E =

 m∑
b′′=b′

hl∑
q′=1

WRL−1
q(b′),q′(b′′) ×

∂ZL−1
q′(b′′)(k − 2)

∂WRL−2
i(a),j(b)


+ ZL−1

i(a),j(b)(k − 2)

Then,

∂ZL−1
q(b′) (k − 1)

∂WRL−2
i(a),j(b)

= σ ′
× E (18)

This iterative procedure persists until the gradients are
determined. Simultaneously, it is entirely trainable end-to-
end and can be optimized using the standard BPTT [12], [14].
Leveraging the distinctive structure of the DCWRNN, the
slow modules handle and convey long-term information from
the input signal. In contrast, the fast modules concentrate on
local, high-frequency information (leveraging the informa-
tion from the slow modules).

The error backpropagation follows a procedure similar to
that of the DRNN. However, the key difference is that only
the updated modules at time step k affect the error. The
errors from other modules are retroactively transported in
time and combined with the backward-propagated error [25].
Employing a DCWRNN for training and evaluation, with an
equivalent count of layers and neurons, consumes less time
than a traditional DRNN, as not all modules undergo updates
at every time step [29], [30].

C. RUNTIME COMPARISON BETWEEN THE PROPOSED
DCWRNN AND THE CONVENTIONAL DRNN MODELING
METHODS
A DCWRNN exhibits a reduction in the number of
parameters and computations per time step compared to
a conventional DRNN. Imagine a DCWRNN like Fig. 2.
A neuron in the previous time step, (k − 1), can exclusively
establish connections with neurons having an identical
or shorter time step k . So, it can be demonstrated that
the recurrent matrix WRl (Fig. 7) has almost half of the
n2 parameters in the traditional DRNN recurrent matrix Wh.
Since each module is evaluated only when the time step is
a multiple of the clock rate of that module, the maximum
number of operations needed for WR (Fig. 7) at each time
step for the original shallow CWRNN is 2

mn
2. At the same

time, the conventional RNN requires n2 recurrent calculations
at each time step, which typically constitutes the most time-
intensive operations. Increasing the number of modules in
the DCWRNN can be expected to speed up faster than the
DRNN.
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FIGURE 3. Structure of the proposed Heterogeneous-layered DCWRNN (HL-DCWRNN) a) Heterogenous Layers: The heterogeneous approach adds flexibility
by varying the clock rates and module sizes, potentially improving the network’s ability to model complex data sequences. b) Through Time Connections:
connections exist between the current time step and the previous one and among different modules that update at their own clock rates. (These modules
are part of the hidden layer and are designed to update only at time steps multiples of their assigned clock rates.)

D. THE PROPOSED HETEROGENEOUS-LAYERED
DCWRNN (HL-DCWRNN)
In the Heterogeneous-layered DCWRNN, modules with
varying neuron counts are strategically employed based
on prime numbers (2,3,. . . ) and their powers, as depicted
in Fig. 3. This diverges from the conventional uniform
module usage, leveraging the unique timing advantages
of prime numbers and their powers to enhance network
dynamics across each hidden layer. This method improves
the DCWRNNnetwork’s efficiency byminimizing parameter
count and maximizing module usage efficiency throughout
the hidden layers.

The Heterogeneous Deep Clockwork Recurrent Neural
Network (HL-DCWRNN), while maintaining the core struc-
ture of input (I(k) and circuit parameters), hidden layers,
and output (y(k)), introduces a variation in the hidden layer
architecture. Unlike the DCWRNN’s consistent number of
modules, the HL-DCWRNN allows a variable number of
modules and neurons across different layers, as shown in
Fig. 3. This heterogeneity endows the network with greater
flexibility, enabling it to adapt more dynamically to the
circuit’s behavior by varying the clock rates andmodule num-
bers in accordance with the specific demands of each layer.
This feature not only enhances the HL-DCWRNN’s ability
to handle complex temporal patterns, setting it apart from
the DCWRNN but also augments its processing capabilities,
offering amore nuanced approach compared to its DCWRNN
counterpart.

In deep neural networks, hidden layers are crucial in
feature extraction from the input signal. Each hidden layer

typically extracts distinct features, which can have varying
impacts on the final model’s effectiveness. Our proposed
method selectively activates modules multiples of k in
different hidden layers at time step k . This results in diverse
clock rates within the Heterogeneous-layered DCWRNN,
extracting different features in each layer. For example, the
top layers not only possess their own information but also
integrate data from the active modules in the lower layers.
This heterogeneous approach leads to more efficient training,
enabling the detection of a broader range of input signal
frequencies and enhancing nonlinear circuit modeling over
the original DCWRNN.

The heterogeneous-layered technique consistently out-
performs the DCWRNN in accuracy and efficiency
while maintaining fewer network parameters. As a
result, it doesn’t unnecessarily complicate the network’s
architecture. It is crucial to highlight that the training
procedure for the Heterogeneous-layered DCWRNN remains
consistent with the original DCWRNN as shown in
Fig. 4.

This novel architecture promises enhanced performance
and efficiency without introducing unnecessary complexity
into the network, making it a valuable advancement in deep
learning and nonlinear circuit macromodeling.

IV. NUMERICAL RESULTS
In this section, two nonlinear examples have been used as
evidence to verify the validity of the proposed DCWRNN
and the Heterogeneous-layered DCWRNN macromodeling
techniques.
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FIGURE 4. The diagram of the macromodeling process according to the proposed Heterogeneous-layered DCWRNN (HL-DCWRNN) method.

FIGURE 5. 2-coupled line interconnect driven by 4-stage receiver circuit.

A. 2-COUPLED LINE INTERCONNECT TERMINATED BY
4-STAGE RECEIVER
Fig. 5 shows a 2-coupled high-speed interconnected circuit.
The input signal is Vin (1.2V amplitude, 1ns period). It is
connected to a 10 cm lossy transmission line terminated
by four CMOS receivers with different sizes of PMOS and
NMOS transistors (130nm channel length). The receiver sizes
are (PMOS/NMOS widths in nm): 2500/1000, 7850/3140,
24670/9869, and 77515/31006.

Some square waveforms with a 1ns period were generated
to train the model for the circuit in Fig. 5 using the DCWRNN
approach, and these waveforms’ rise and fall times ranged
from 80 to 120 ps with 10 ps steps. The static parameter
(load capacitance) values varied from 200 to 800 fF with
200fF steps. Some other data not used in the training process
were generated as test signals, and these test signals’ rise and
fall times ranged from 85 to 115ps with 10 ps steps. The
test data were produced with 200, 400, 600, and 800 fF load
capacitances.

The block diagram in Fig.6 illustrates theDCWRNN-based
model employed for this particular circuit. In this diagram,
the error value, denoted E , is the average disparity between
the DCWRNN-based model’s output and the transistor-level
model outputs. Additionally, the diagram features key
elements, including the load capacitance C1, the input
signal represented as Vin(t), and the output signal denoted

FIGURE 6. Structure of the deep clockwork recurrent neural network
(DCWRNN) for modeling the circuit of Fig. 5.

as Vout (t). This representation is a visual overview of the
DCWRNN-based modeling approach applied to the specific
circuit under examination.

In the proposed DCWRNN framework, the network
architecture for the circuit in Fig. 5 is characterized by two
inputs, a three-layered hidden structure, each layer including
four modules that module sizes are 5, 4, and 3 from the
first hidden layer to the last one respectively, and a single
output. This configuration is succinctly encapsulated as
(2, [4 × 5], [4 × 4], [4 × 3], 1).
Table 1 shows the modeling structure and the number of

model parameters. It compares the training and testing errors
for the circuit of Fig. 5 using the DRNN, the DLSTM, the
shallow CWRNN, and the proposed DCWRNN. Moreover,
the proposed method achieves a much lower testing error
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TABLE 1. Comparison among the DRNN, the DLSTM, the shallow CWRNN, and the proposed DCWRNN for modeling the circuit of Fig.5.

TABLE 2. Five models’ CPU time speedup for Fig.5: DRNN, DLSTM, shallow
CWRNN, proposed DCWRNN, and transistor-level.

FIGURE 7. Comparison of the test data outputs generated by four different
models: The conventional DRNN-based, the conventional DLSTM-based,
the proposed DCWRNN-based, and the transistor-level models. The models
are applied to the circuit shown in Fig. 5.

FIGURE 8. Comparison of the absolute test errors of three models:
The conventional DRNN-based, the conventional DLSTM-based, and the
proposed DCWRNN-based for the circuit shown in Fig. 5.

in the table, which makes the DCWRNN-based model a
suitable option for large-scale modeling problems such as
high-frequency and complex nonlinear circuits.

The CPU time and the speed-up of the DRNN, the
DLSTM, the shallow CWRNN, the proposed DCWRNN,
and the transistor-level models for the circuit of Fig. 5 are
compared in Table 2. The table reveals that the output of
the DCWRNN model is generated much quicker than the
transistor-level model (and other models). Thus, the proposed
method generates a much faster model suitable for nonlinear
applications.

Fig. 7 displays the simulated waveforms for the circuit
of Fig. 5. It contrasts the test output signals generated by

FIGURE 9. Comparison of the output test data generated by four different
models: The DRNN-based, the DLSTM-based, the proposed DCWRNN-
based, and the transistor-level models for the circuit shown in Fig. 5.

FIGURE 10. Comparison of the absolute test errors of two models: The
shallow CWRNN-based and the proposed DCWRNN-based for the circuit
shown in Fig. 5.

the DCWRNN, the DRNN, the DLSTM, and transistor-level
models. The results in Fig. 7 demonstrate that the DCWRNN
model resembles the original circuit output more closely,
while the DRNN, and DLSTM perform inadequately in
this case. Therefore, the DCWRNN method offers a better
model. Furthermore, Fig. 8 presents the output error (absolute
error) resulting from comparing the outputs of the DRNN,
the DLSTM, and the DCWRNN with that of the original
transistor-level model for the circuit in Fig. 5. The figure
shows that the DCWRNN performs better according to its
smaller output error.

Fig. 9 presents the simulated waveforms of the circuit
depicted in Fig. 5, providing a comparative analysis of
test output signals generated by the shallow CWRNN,
the proposed DCWRNN, and the transistor-level models.
The results depicted in Fig. 9 unambiguously establish
that the DCWRNN model closely approximates the output
characteristics of the original circuit. This observation
underscores its capacity to faithfully emulate the circuit’s
operational behavior. In contrast, the shallow CWRNN

VOLUME 12, 2024 89515



M. Azodi et al.: Nonlinear Circuit Macromodeling Using New HL-DCWRNN

FIGURE 11. 5-coupled transmission line driven by 2-stage driver circuit.

FIGURE 12. Structure of the deep clockwork recurrent neural network
(DCWRNN) for modeling the circuit of Fig. 11.

exhibits suboptimal performance within this context, thus
reaffirming the preeminence of the DCWRNN model.

Furthermore, Fig. 10 provides a rigorous examination
of output error, precisely the absolute error, ensuing from
the comparative evaluation of the shallow CWRNN and
the DCWRNN outputs with the output of the original
transistor-level model associated with the circuit presented
in Fig. 5. This graphical representation substantiates that the
DCWRNN surpasses the shallow CWRNN, as shown by its
diminished output error.

B. 5-COUPLED LINE INTERCONNECT WITH 2-STAGE
DRIVER
Demonstrating the DCWRNN method’s effectiveness in
modeling nonlinear circuits, our second example involves a
2-stage driver connected to a 5-coupled line interconnect.
Fig. 11, illustrates the circuit schematic, with Vin as the input
signal and Vpulse as a square wave with an amplitude of 1.2
V and a period of 4.5 ns. Each line functions as a lossy
transmission line, spanning a length of 25 cm. The CMOS
drivers, featuring a channel length of 130nm, exhibit varied
PMOS and NMOS widths. Specifically, the smaller driver

FIGURE 13. Comparison of the test data outputs generated by four different
models: The conventional DRNN-based, the conventional DLSTM-based,
the proposed DCWRNN-based, and the transistor-level models. The models
are applied to the circuit shown in Fig. 11.

FIGURE 14. Comparison of the absolute test errors of three models:
The conventional DRNN-based, the conventional DLSTM-based, and the
proposed DCWRNN-based for the circuit shown in Fig. 11.

has 2500nm and 1000nm widths, while the larger driver
boasts PMOS and NMOS widths of 7850nm and 3140nm,
respectively.

Fig. 12 outlines the application of the DCWRNN-based
model to simulate the circuit depicted in Fig. 11. This
representation visually depicts the error metric, E , which
quantifies the average deviation between the output of
the DCWRNN-based model and the transistor-level model
outputs. Additionally, it highlights key components such as
the load capacitanceC1, the input signal Vin(t), and the output
signalVout (t). This graphical depiction offers insights into the
specific implementation of the DCWRNN-based modeling
approach for the analyzed circuit.

The characteristics of this circuit necessitate a higher
number of sampled time steps, making conventional RNN
models inadequate for accurately modeling the circuit.
Physical source swiping is used to generate different voltage
signals for modeling the circuit of Fig. 11 with the proposed
DCWRNN, the conventional DRNN, and the DLSTM meth-
ods. Variations in rise/fall time are introduced incrementally
in steps of 10ps, ranging from 100ps to 180ps, to generate
square wave signals for the training procedure using the
simulation tool. Additionally, for testing purposes, square
wave signals with rise/fall times ranging from 105 to 165ps in
10ps increments and amplitudes of 1.12V, 1.15V, and 1.17V
are generated. However, they are not utilized in the training
process.
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TABLE 3. Comparison between the DRNN, the DLSTM, the shallow CWRNN, and the proposed DCWRNN for modeling the circuit of Fig.11.

TABLE 4. Five models’ CPU time speedup for Fig.11: DRNN, DLSTM, shallow
CWRNN, proposed DCWRNN, and transistor-level.

To model the interconnect circuit, the signal situated at
the end of line 4 in Fig. 11 is used as the desired output
signal. Table 3 compares the models’ structure and accuracy
obtained from the proposed DCWRNN, the conventional
DRNN, and DLSTM methods. The table reveals that the
proposed DCWRNN method has a suitable training error,
while the traditional methods perform poorly. This is because
the vanishing gradient problem is mitigated more efficiently
by the proposed DCWRNN method than by the traditional
DRNN method.

The proposedmethods architecture for the circuit in Fig. 11
is presented by a DCWRNN model with a single input
and output, and four hidden layers, each consisting of five
modules with six neurons, represented as (1, [5 × 6], [5 ×

6], [5×6], [5×6], 1). TheHL-DCWRNNvariant for the same
circuit introduces heterogeneity within its hidden layers,
featuring a variable number of modules and neurons across
four layers, detailed as (1, [6×6], [5×6], [4×7], [3×8], 1).
Table 4 depicts the assessment time for the current

transistor-level model, the proposedDCWRNN, the proposed
HL-DCWRNN, the DRNN, and the DLSTM methods
while simulating the interconnect circuit in Fig. 11. The
DCWRNN-based models, compared to the transistor-level
model, provide a shortened evaluation time, leading to
a significantly accelerated model with an approximately
20-fold speed improvement. Therefore, the proposed method
also outperforms the DRNN and DLSTM methods in speed
because it has fewer recurrent connections.

In Fig. 13, the output from the transistor-level model for
test data is shown with the predicted signals. These predic-
tions stem from various methods, including the proposed
DCWRNN, alongside conventional DRNN and DLSTM
approaches, all applied to the interconnect circuit showcased
in Fig. 11. This figure shows that the DCWRNN method
can more accurately model the target waveform. In contrast,
the DRNN and DLSTM methods fail to capture the circuit’s
dynamics due to a long data sequence and overfitting,
respectively. Fig. 14 also confirms this by showing the
absolute error of each method.

FIGURE 15. Structure of the Heterogeneous-layered DCWRNN
(HL-DCWRNN) for modeling the circuit of Fig. 11.

The structural representation of the HL-DCWRNN mod-
eling approach for the circuit of Fig. 11 is illustrated in the
block diagram of Fig. 15. This method is characterized by
a four-hidden-layer architecture, wherein each hidden layer
accommodates a variable number of modules. The diagram
depicts key components such as the input signal denoted
as Vin(t), the output signal represented as Vout (t), the load
capacitance identified as C1, and the error value denoted
as E . The latter signifies the average disparity between
the outcomes derived from the HL-DCWRNN-based and
transistor-level models. The block diagram is an illustrative
overview of the HL-DCWRNN methodology applied to the
circuit under consideration.

Leveraging the waveform at line 4 in the circuit of
Fig. 11 as the target, the interconnect circuit is modeled
using HL-DCWRNN and shallow CWRNNmethods. Table 3
then contrasts their structure and accuracy, highlighting the
strengths of the proposed HL-DCWRNN and DCWRNN
compared to the shallow CWRNN. The table reveals that
the proposed HL-DCWRNN method has a lower error
and a higher efficiency than the proposed DCWRNN
and the shallow CWRNN methods. This is because the
HL-DCWRNN method can learn different frequencies from
the data and more accurately model the complex features of
nonlinear and high-frequency circuits.

Fig. 16 demonstrates the predictive power of
HL-DCWRNN, DCWRNN, and shallow CWRNN for the
circuit in Fig. 11 circuit against the actual transistor-level
output for a specific test case. This figure shows that the
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FIGURE 16. Comparison of the test data outputs generated by four different
models: The shallow CWRNN-based, the proposed DCWRNN-based, the
proposed HL-DCWRNN-based, and the transistor-level models. The models
are applied to the circuit shown in Fig. 11.

FIGURE 17. Comparison of the absolute test errors of three proposed
models: The shallow CWRNN-based, the proposed DCWRNN-based, and
the proposed HL-DCWRNN-based for the circuit shown in Fig. 11.

HL-DCWRNNmethod can more accurately model the target
waveform than the DCWRNN method, while the shallow
CWRNNmethod fails to capture some nonlinear dynamics of
the circuit. Fig. 17 also confirms this by showing the absolute
error of each method.

Table 4 showcases evaluation times for various mod-
els tackling the same circuit. Compared to the proposed
DCWRNN and the shallow CWRNN methods, the proposed
HL-DCWRNN achieves a 22x speedup over the traditional
transistor-level model. Its fewer recurrent connections also
give it an edge over DCWRNN.

V. CONCLUSION
This paper introduced an innovative macromodeling tech-
nique called deep clockwork recurrent neural networks
(DCWRNN) that allows creating accurate and computation-
ally light macromodels. The DCWRNN technique is based
on a simple deep recurrent neural network (DRNN) structure
that operates on multiple time scales. It can also capture
complex dependencies without requiring many parameters,
which reduces the computational cost. The DCWRNN
technique is easy to understand and implement and allows
for flexible architectural design. This can significantly speed
up the training process of deep neural networks. Two
test cases were developed in this paper. These circuits
demonstrate that the DCWRNN technique outperforms con-
ventional DRNN, DLSTM, and shallow CWRNN techniques

regarding accuracy and speed. DCWRNN-based models
exhibit substantially faster execution times compared to
simulation tools. Another new modeling technique, called
Heterogeneous-layered DCWRNN (HL-DCWRNN), is also
proposed in this paper. To boost model accuracy compared
to the original DCWRNN, this work introduces a novel
architecture incorporating heterogeneous layers with dif-
ferent modules. The reported fast training and promising
results demonstrate the suitability of these macromodeling
techniques for complex nonlinear circuits.
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