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RESEARCH PAPER

Macroscopic inelastic scattering imaging
using a hyperspectral line-scanning system

identifies invasive breast cancer in lumpectomy
and mastectomy specimens

Sandryne David ,a,b Hugo Tavera ,a,b Tran Trang ,a,b Frédérick Dallaire,a,b

François Daoust ,a,b Francine Tremblay,c Lara Richer,d Sarkis Meterissian,c,*
and Frédéric Leblond a,b,e,*

aPolytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
bCentre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada

cMcGill University Health Center (MUHC), Department of Surgery, Montreal, Quebec, Canada
dMcGill University Health Center (MUHC), Department of Pathology, Montreal, Quebec, Canada

eInstitut du cancer de Montréal, Montreal, Quebec, Canada

ABSTRACT. Significance: Of patients with early-stage breast cancer, 60% to 75% undergo
breast-conserving surgery. Of those, 20% or more need a second surgery because
of an incomplete tumor resection only discovered days after surgery. An intraoper-
ative imaging technology allowing cancer detection on the margins of breast spec-
imens could reduce re-excision procedure rates and improve patient survival.

Aim: We aimed to develop an experimental protocol using hyperspectral line-
scanning Raman spectroscopy to image fresh breast specimens from cancer
patients. Our objective was to determine whether macroscopic specimen images
could be produced to distinguish invasive breast cancer from normal tissue
structures.

Approach: A hyperspectral inelastic scattering imaging instrument was used to
interrogate eight specimens from six patients undergoing breast cancer surgery.
Machine learning models trained with a different system to distinguish cancer from
normal breast structures were used to produce tissue maps with a field-of-view of
1 cm2 classifying each pixel as either cancer, adipose, or other normal tissues. The
predictive model results were compared with spatially correlated histology maps of
the specimens.

Results: A total of eight specimens from six patients were imaged. Four of the
hyperspectral images were associated with specimens containing cancer cells that
were correctly identified by the new ex vivo pathology technique. The images asso-
ciated with the remaining four specimens had no histologically detectable cancer
cells, and this was also correctly predicted by the instrument.

Conclusions: We showed the potential of hyperspectral Raman imaging as an
intraoperative breast cancer margin assessment technique that could help surgeons
improve cosmesis and reduce the number of repeat procedures in breast cancer
surgery.
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1 Introduction
Breast cancer is the most diagnosed cancer worldwide and the deadliest cancer in women.1 The
most common breast cancer types are ductal carcinoma and lobular carcinoma. Ductal carcinoma
originates in epithelial cells of the ducts carrying milk in the breast, whereas lobular carcinoma
originates from cells of the lobules that constitute the glands producing milk. Both of these car-
cinomas can be in situ or invasive.2 In situ cancers are still contained in their structure of origin,
whereas invasive cancer cells have spread into surrounding tissues.2 Invasive ductal carcinoma
and invasive lobular carcinoma represent 70% to 80%3 and 5% to 15%4,5 of invasive breast can-
cers, respectively. Mucinous carcinoma is a rare type of invasive breast cancer that accounts for
2% of all breast carcinoma. It is characterized by neoplastic epithelial cells floating within extrac-
ellular mucin.6 Other less frequent breast cancer types include tubular carcinoma (1% to 2% of
invasive breast cancers), medullary carcinoma (less than 5% of all invasive breast cancers),8 pap-
illary carcinoma (0.5% of all breast cancers),9 and micropapillary carcinoma (0.9% to 2% of all
breast cancers).10,11 Regardless of the cancer histotype, the standard of care involves surgical
excision of the tumor followed by radiotherapy. Surgical options include breast-conserving sur-
gery (also known as lumpectomy), mastectomy (complete ablation of the breast), and the resec-
tion of lymph nodes. Breast-conserving surgery presents the advantage of minimizing the change
in appearance of the breast and the risk of complications while having the same long-time sur-
vival rate as mastectomy for patients having a tumor under 2 cm (the largest dimension of the
tumor).12–14 This explains why as many as 60% to 75% of patients chose to undergo breast-con-
serving surgery.15 The success of breast-conserving surgery is defined as the complete removal of
the lesional breast tissue with a surrounding margin of normal tissue.16 Since a positive margin
(i.e., cancer cells on the surface of the surgical specimen) is associated with a higher risk of
cancer recurrence, extended tissue resection is required when positive margins are detected.17

This is important because 20% or more of all breast-conserving surgery procedures result in
margins with residual disease.18–21 Because the definitive margin status is only assessed post-
operatively, patients with positive margins require a second operation, which leads to additional
costs, patient anxiety, and an increased risk of post-surgical complications. In the United States
alone, there are 26,550 re-excisions annually, costing approximately $125M.22

A limited number of methods were tested for in vivo breast tissue assessment. Ultrasound
imaging was used intraoperatively but is limited in sensitivity due to a lack of molecular
specificity.17,23 The MarginProbe from Dune Medical, which relies on electrical impedance mea-
surements, is an in vivo imaging method that was approved by the Food and Drug Administration
(FDA). However, both its sensitivity and specificity are low at around 70%.24 Fluorescence im-
aging was also tested in vivo with indocyanine green, resulting in a sensitivity and specificity of
100% and 60%, respectively.25 The use of LUM015 (Lumicell, Newton, Massachusetts, United
States), a protease-activatable fluorescent agent, resulted in a cancer detection sensitivity and
specificity of 100% and 73%, respectively.26 It was approved by the FDA for lumpectomy speci-
men imaging in imaging. Moreover, the use of the fluorescent molecular marker pegulicianine
resulted in a sensitivity and specificity of 85% and 49%, respectively, in a fluorescence-guidance
surgery study.27

To increase the sensitivity and molecular specificity of breast cancer detection, optical meth-
ods have also been developed for ex vivo specimen interrogation. Whole-specimen imaging tech-
niques included photoacoustics, acousto-optics, spatial frequency domain imaging,28,29 X-ray,30

and fluorescence imaging.31,32 Single-point and microscopic optical imaging methods included
elastic scattering and diffuse reflectance spectroscopy,33 bio-impedance spectroscopy,34 micros-
copy with ultraviolet surface excitation,35 light-sheet microscopy,36 nonlinear microscopy,37–39

optical coherence tomography,40 and Raman spectroscopy (RS).41–45 However, these methods
were sometimes limited by prohibitive imaging times.

Our group previously published a paper on the use of an intraoperative RS point probe sys-
tem to detect invasive breast cancer ex vivo.46 The system was used to interrogate fresh surgical
specimens from 20 patients undergoing breast-conserving surgery, mastectomy, or breast
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reduction surgery. This resulted in 238 measurements that were spatially registered with standard
histology, classifying tissue as cancer, normal, or fat. A technique based on support vector
machines (SVMs) led to the development of predictive models, and their performance was quan-
tified using a receiver operating characteristic (ROC) analysis. The technology was able to detect
invasive breast cancer with a sensitivity of 93% and a specificity of 95%, showing the feasibility
of cancer detection using RS. The classification model used a limited number of spectral features,
emphasizing the importance of the protein band at 940 cm−1 and the phenylalanine band at
1004 cm−1 for breast cancer detection.

However, RS technologies have several hurdles to overcome before being integrated for real-
world use to guide breast-conserving surgery. In particular, the field of view (FOV) of the point
probe system was limited to 500 μm, which is incompatible with specimen margin assessment
within clinically relevant timeframes. Our research group then developed a hyperspectral Raman
imaging system to address this issue. The instrument had a spectral domain and a spectral res-
olution that were similar to the probe, with an FOV in the form of a square with sides of 1 cm. The
system was a line-scanning device collecting hyperspectral data over 42 × 40 pixels, resulting in
1680 spectra per image. Our group demonstrated the system’s ability to detect margins among
different tissue types in biological material, showing its potential for intraoperative machine
learning-based molecular tissue margin characterization.47,48 The system was flexible and could
either be used in vivo live during surgery or ex vivo for specimen analyses.

This work presents the results of a study that led to the acquisition of ex vivo Raman imaging
datasets of human breast specimens, including normal tissue and invasive breast cancer. The
dataset was acquired with the hyperspectral line-scanning Raman system. This study used the
machine learning classification models developed in the previous study with the single-point
probe to detect invasive breast carcinoma. The point probe models were directly applied to each
pixel of the imaging system to form images. This study assessed whether Raman hyperspectral
imaging could detect specific biomolecular features of breast cancer and whether the approach
had potential for surgical guidance in breast-conserving surgery to reduce re-excision pro-
cedure rates.

2 Methods

2.1 RS System
Measurements were made using a macroscopic RS imaging system for which details were pro-
vided elsewhere.48 Briefly, the excitation branch of the Raman line-scanning system was com-
posed of a laser centered at 785 nm providing a line-shaped laser excitation and a white light
source with illumination between 400 and 700 nm. The laser and white light sources were con-
veyed through an excitation fiber bundle onto the sample. The Raman signal and the reflected
white light were collected by the collection fiber bundle and separated by a dichroic mirror
through a galvanometer-based system designed for scanning the tissue surface. An imaging spec-
trometer generated hyperspectral Raman images, and an RGB (red-green-blue) camera was used
to collect white light images. The spatial resolution of the hyperspectral images was 250 μm, and
the spectral resolution was 6 cm−1. The Raman spectra were acquired in the fingerprint region
from 400 to 1900 cm−1. The measurements were made in non-contact mode at a working dis-
tance of 40 mm from the specimen. The FOV of both the Raman hyperspectral images and the
white light images was 1 cm2. The system was controlled using custom software (LabVIEW
2018 version 18.0f2, National Instruments, Austin, Texas, United States) that allowed acquisition
parameters to be set by the user, including laser power, exposure time per line, and number of
repeated measurements (accumulations) for each image.48

2.2 Patient Selection
Six patients who underwent breast surgery (lumpectomy or mastectomy) following a diagnosis
of invasive breast carcinoma (ductal or mucinous) were recruited for this study. All patients
recruited in the study were women undergoing breast surgery for the first time. The patients
did not receive neoadjuvant therapy and had a cancer grade inferior to four.

Fresh patient specimens were utilized to build an ex vivo dataset of Raman hyperspectral
images combined with histopathological and clinical data. Informed consent was obtained before

David et al.: Macroscopic inelastic scattering imaging using a hyperspectral. . .

Journal of Biomedical Optics 065004-3 June 2024 • Vol. 29(6)



each patient underwent surgery (McGill University Health Center Ethics Committees, approval
number 2021-7940). Clinical data available included age, tumor type, and size, and patient dem-
ographic details were provided (Tables 1 and 2). Each tumor size was characterized by its largest
dimension measured by the pathologist at the time of intraoperative consultation.

2.3 Specimen Handling and Ex Vivo Spectroscopic Measurements
Eight specimens were extracted from six patients by a surgeon (S.M. or F.T.). The patients were
labeled P1 to P6. In cases where more than one specimen was obtained for the same patient, each
was labeled either S1 or S2. A total of eight samples were analyzed that were all subsequently
sent to pathology for margins assessment as part of the regular clinical workflow. Prior to this, the
specimens were weighed, measured, inked, and sliced into 5 mm sections, as per institutional
protocols.

Depending on the size of the tumor, Raman imaging measurements and spatial registration
with histology were achieved using either of two methods (Fig. 1). All samples imaged with the
system were slices of lumpectomy specimens that had a thickness of ∼5 mm. One method was
used for the cases where the largest dimension of a tumor, measured ex vivo by the pathologist,
was superior to 1 cm. For those cases, it was possible to cut the specimen without compromising
the microscopic margin evaluation and the standard post-surgery clinical diagnostic workflow. A
second method was used in cases where the largest dimension of the tumor was inferior to 1 cm.
A different method was then required to ensure tissue cutting could be made without compro-
mising the diagnosis.

For tumors larger than 1 cm, one or two samples were cut from different slices [Fig. 1(a)].
Those samples were selected by the pathologist (L.R.) based on visual inspection with the

Table 1 Clinical and pathological characteristics of all patients
undergoing breast surgery who were recruited as part of the study.

Number of patients 6

Type of surgery

Breast-conserving surgery 4

Mastectomy 2

Number of patients per tumor type

Invasive ductal carcinoma 5

Invasive mucinous carcinoma 1

Tumor size average (standard deviation) 2.4 cm (0.9 cm)

Table 2 Demographic and clinical information of the six patients included in the study.

Patient # Surgery type

Tumor
size
(cm)

Invasive
cancer
type

Tissue type (according to
classification, after exclusion)

P1 Lumpectomy 2.5 Ductal Fat (1421), cancer (297), and normal (245)

P2 Lumpectomy 2.2 Ductal Fat (318), cancer (345), and normal (132)

P3 Lumpectomy 1.5 Ductal Fat (842), cancer (2), and normal (137)

P4 Mastectomy 6.5 Mucinous Fat (963), cancer (51), and normal (281)

P5 Lumpectomy 0.3 Ductal Fat (1269), cancer (34), and normal (135)

P6 Skin sparing mastectomy 1.1 Ductal Fat (1107) and normal (317)
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objective of having, whenever possible, cancer, fat, and normal breast tissue for each patient. The
samples were placed on a black-coated aluminum sheet disposed on an expanded polystyrene
(EPS) foam sheet. The orientation of the sample relative to the margins of the specimen (superior,
inferior, posterior, and anterior) was noted on the EPS sheet, and a photograph was taken
[Fig. 1(b)]. The EPS sheet was then placed under the imaging probe, and a white light meas-
urement was taken before initiating the Raman imaging sequence [Fig. 1(c)].

For tumors smaller than 1 cm, the entire slice was left intact [Fig. 1(g)]. A slice selected
by the pathologist after visual inspection of the specimen was placed on a black-coated alu-
minum sheet. The slice was then placed on an EPS sheet, and a note was made of the ori-
entation of the margins. A custom 3D-printed guiding grid, for which all squares were the size
of the system FOV, was created. The grid was then placed on top of the slice—without contact
with the tissue—and a photograph was taken [Fig. 1(h)]. The pathologist indicated which
square of the grid contained tumor tissue. The EPS sheet was placed under the imaging probe
and aligned so the square area associated with the region of interest could be imaged. The
selected square was identified, and the grid was carefully removed without moving the tissue
slice. A white light measurement was taken before initiating the Raman imaging sequence
[Fig. 1(i)].

Fig. 1 Schematic representation of the two specimen handling methods leading to ex vivo spectro-
scopic measurements: (a)–(f) tumors larger than 1 cm and (g)–(k) tumors smaller than 1 cm. (a) A
sample was cut from the specimen slices and (b) placed onto a black-coated aluminum sheet
disposed on an EPS sheet. The orientation of the margins was marked on the EPS sheet and
a photograph was taken. (c) The EPS sheet was then placed under the Raman imaging system
for measurements. (e) The sides of the sample were inked with different colors to indicate the
orientation of the margins, and the sample was transferred into a pathology cassette before being
put in formalin for fixation. (f) An H&E-stained image of the sample was analyzed by the patholo-
gist. The white light image and the specimen photograph were used to register the position of the
Raman measurements with the H&E image. (g) The entire specimen slice was put on a black-
coated aluminum sheet (h) that was placed onto an EPS sheet. The orientation of the margins
was marked on the EPS sheet, and a 3D-printed grid was placed on top without direct contact
with the specimen. A photograph was taken, and the pathologist indicated a square of the grid
that contained the structures of interest. (i) The EPS sheet was placed under the Raman imaging
system and the grid was used to record the location of the measurement. The grid was removed
without moving the specimen slice, and the Raman measurements were made. (j) The specimen
slice was then transferred to another EPS sheet where it was pinned alongside the other slices of
the specimen, when applicable. The orientation of the margins was indicated on the EPS sheet,
and it was placed in formalin for fixation as per standard of care. (k) This resulted in an H&E-stained
image of the entire specimen slice where the pathologist indicated the position of the tumor. The
white light image and the specimen photograph were used to register the position of the Raman
measurement on the H&E image.
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For both methods, the laser power was set at maximum, resulting in ∼500 mW being deliv-
ered to the tissue surface over a line of width 350 μm. The line was scanned over the entire FOV,
with each acquisition associated with three repeat measurements that were subsequently aver-
aged to maximize the signal-to-noise ratio. The only exception was the fifth patient where the
time allocated for acquisition was limited. Therefore, for that patient, the number of repeat mea-
surements was set to one. Acquisition time was set at 10 s per line: 40 lines, for a total of 20 min
when doing three repeat measurements. The exposure time was selected to respect the 1-h time-
frame imposed by the pathologist after surgical excision to avoid tissue degradation that could
compromise diagnostic accuracy.

After spectroscopic measurements, the orientation of the margins was marked with ink with
different colors on each side of the sample. The samples were then placed into a pathology cas-
sette [tumors larger than 1 cm, Fig. 1(e)]. The specimen slices were all pined to a new EPS sheet
with the orientation of the margins written on it [(tumors smaller than 1 cm, Fig. 1(j)] as per
standard of care. All tissues were then fixed in 10% neutral buffered formalin, embedded in
paraffin, and sectioned into slides. They were then stained with hematoxylin and eosin
(H&E) as per institutional standards, resulting in one stained image for each sample or one
stained image for the entire slice if the tumor was smaller than 1 cm [Figs. 1(f) and 2(k)].

Digitized slides were reviewed by a pathologist (L.R.), who classified the tissue into three
categories: (1) cancer (tumor cells, tumor stroma, or necrosis); (2) normal: either normal breast
(connective tissue, stroma, fibroblast, collagen) or breast parenchyma (ducts and lobules); and
(3) fat (adipose cells). The areas containing cancerous cells were annotated by the pathologist.

Fig. 2 Average processed Raman spectra from breast tissue with standard deviation shown for
each spectral bin. The spectra were classified into three categories: fat identified by model A, and
cancer or normal predicted by model B after the exclusion of the fat spectra. The five spectral
features used for classification (model A: 940, 1004, 1304 cm−1; model B: 940, 1004, 1129,
1155 cm−1) are identified by vertical lines.
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2.4 Registration with Optical Measurements and Histology Labels
Two three-step methodologies were developed to register spatially the histology images to the
Raman hyperspectral images. For tumors larger than 1 cm, (1) the H&E-stained images were
superposed to the photograph of the sample and rotated to ensure that the contours of the stained
tissue sections matched as much as possible the contours seen in the photograph. The colored ink
marking the margin orientation on the samples, as well as the irregularities associated with its
shape, was used as geometrical landmarks guiding the spatial registration. (2) The white light
image acquired with the system [Fig. 1(f)] was superposed to the picture of the sample with the
margins annotated [Fig. 1(b)]. Again, margin orientation and visible structures, including blood
vessels and regions with high adipose content, were used as tissue-based fiducial markers to
ensure an accurate superposition of the white light image with the photograph of the specimen.
(3) The histopathology image was then truncated to fit the size of the white light image and
rotated 90 deg to compensate for the difference in orientation between white light images and
Raman hyperspectral images. The resulting images were then comparable to the Raman hyper-
spectral image.

Similarly, three steps were followed for tumors smaller than 1 cm. (1) The H&E-stained
images were superposed to the photograph of the specimen slice with the guidance grid
[Fig. 1(h)] and rotated to ensure that the contours of the stained tissue sections matched as much
as possible the contours seen in the photograph. (2) The white light image acquired with the
system [Fig. 1(k)] was superposed to the specimen photograph and aligned with the correspond-
ing square of the grid. (3) The histopathology image was then truncated to fit the size of the white
light image and rotated 90 deg to compensate for the difference in orientation between white light
images and Raman hyperspectral images.

2.5 Data Processing and Exclusion Criteria
The data processing steps preceding the application of the machine learning models led to the
extraction of the inelastic scattering signature for each spectrum within the hyperspectral images.
Background sources of signal non-specific to tissue Raman scattering, e.g., intrinsic fluorescence
from tissue biomolecules,49 were isolated and removed from the spectra. Spectral pre-processing
included the following steps: (1) median filter to each spectrum to eliminate cosmic ray events,
(2) σ-axis (wavenumber shift) calibration based on a Raman spectrum acquired in acetamino-
phen, (3) normalization with a National Institute of Standards and Technology (NIST) Raman
standard (SRM 2214) to correct for the instrument response, (4) removal of background signals
using the custom algorithm BubbleFill,50 (5) removal of the background signal from the chro-
matic triplet of the system by subtracting an image acquired with nothing in focus, with a large
integration time,51 and (6) standard normal variate (SNV) normalization. The five first columns
of the hyperspectral images were excluded. The NIST standard being used to correct the instru-
ment response was smaller than the FOV of the system; therefore, the correction could not be
correctly performed for a small portion of the hyperspectral image.

A quantitative spectral quality factor (QF) metric (with a maximum value of 1) was com-
puted for each spectrum of the image. It provided a statistical assessment of the likelihood the
SNV-normalized signal was associated with tissue Raman peaks or stochastic noise.52 Spectra
with a QF metric inferior to 0.5 were excluded from the images. The percentage of pixels asso-
ciated with a QF factor inferior to 0.5 was computed for each image.

2.6 Machine Learning Workflow
A study was previously conducted involving 20 patients undergoing breast surgery.46 An RS
point probe system was used to measure the spectral fingerprint of normal breast and cancer
tissue ex vivo. Overall, 238 Raman spectra were acquired in that study consisting of 93 mea-
surements associated with adipose tissue, 87 with cancer, and 58 with non-fat normal breast
structures. These categories were labeled fat, cancer, and normal, respectively. This dataset was
used to train classifiers using SVM to distinguish fat from normal structures, as well as to detect
cancer out of non-fat normal breast tissue. The dimensional reduction was performed to ensure
that the models used only a small number of biochemically interpretable spectral bands for clas-
sification. This also reduced the likelihood of overfitting and increased the model’s potential to
generalize well to new data.

David et al.: Macroscopic inelastic scattering imaging using a hyperspectral. . .

Journal of Biomedical Optics 065004-7 June 2024 • Vol. 29(6)



Two models trained on breast tissue spectra acquired with the point probe system were
chosen for this study. The first model, model A, distinguished fat tissue from non-fat tissue
(either normal or cancer) and was based on three spectral features centered at 940, 1004, and
1304 cm−1. The second model, model B, classified cancer versus normal tissue (excluding fat
data) and required four spectral features centered 940, 1004, 1129, and 1155 cm−1. Those SVM
models were directly applied to each of the spectra composing the hyperspectral Raman images
acquired with the line-scanning system for eight breast specimens. Models A and B returned, for
each spectrum, a posterior probability 0 ≤ p ≤ 1 that the spectrum belonged to a given class. To
obtain predictions from these probabilities, a threshold of classification was needed. This thresh-
old was chosen to optimize sensitivity and specificity during the previous study. A prediction was
then obtained for the class of each spectrum (i.e., each pixel) composing the hyperspectral
images.

The classification of the hyperspectral images was done in two steps. First, model A was
applied to all spectra to identify fat spectra with the hyperspectral images. Then, model B was
applied to the spectra identified as non-fat to classify them as either cancer or normal. The results
of the classification were expressed through classification maps where each pixel corresponded
to the tissue class predicted. The threshold of classification for model A to classify a spectrum as
fat was increased to maximize sensitivity. This meant that less spectra were classified as fat since
the spectra needed a higher probability p to be classified as fat. This limited the number of
spectra falsely identified as fat. Increasing the threshold minimally affected the classification
performance in the original point probe dataset (initially sensitivity/specificity was 96%/99%
and, after increasing the threshold, it was 100%/95%). Adipose spectra not classified as fat were
all classified as normal, which did not impact possible clinical applications as both normal and
fat tissues are viewed as healthy tissue by pathologists and surgeons.

3 Results

3.1 Spectroscopic Measurements
The application of the Raman imaging protocol resulted in eight hyperspectral images from six
patients with co-located histopathology analyses. A total of 11,520 spectra were acquired, with
each spectrum corresponding to 1 pixel. After the exclusion of the spectra presenting a spectral
QF inferior to 0.5, a total of 8020 spectra remained.

Classification sequentially used models A and B to split the dataset into three categories fat
(n ¼ 6008 spectra), normal (n ¼ 1137), and cancer (n ¼ 875). Figure 2 presents the average
processed spectra for each category and the standard deviation associated with each spectral
bin. The spectral features used for tissue classification by the SVM models are highlighted
in Fig. 2. The Standard deviation for fat spectra was smaller than normal and cancer due to
a higher signal-to-noise ratio in fat spectra.

3.2 Machine Learning Models and Biomolecular Predictions
Figure 3 presents classification results for all eight samples considered in this study. Each row
corresponded to a different sample that was labeled according to an identification number. An
annotation was provided in Fig. 3 (first column) of the microscopic analysis results provided by a
pathologist to establish the main tissue constituents. In cases where only adipose tissue could be
detected by the pathologist, the label fat was used. The second column in Fig. 3 showed the
photograph of the sample region that was imaged with the Raman imaging system, and the third
column showed the corresponding histology image (stains: H&E) cropped to match the FOVof
the Raman system. The fourth, fifth, sixth, and seventh columns showed the intensity maps for
the spectral features 940, 1004, 1129, and 1159 cm−1, respectively. These bands corresponded to
the spectral features included in model B trained to detect cancer from single-point RS measure-
ments. The Raman band images were normalized to their maximum to ensure they were all
represented on the same colormap to ensure relative intensities could be compared across all
samples. The last column in Fig. 3 showed classification results for each spectrum as fat, normal,
or cancer. The spectra with a QF below 0.5 were excluded from the classification maps.

Spectral images were acquired by summing data over three accumulations (i.e., three con-
secutive imaging sequences) to increase the signal-to-noise ratio. The same process as above was
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applied to spectral imaging data associated with only one accumulation, effectively reducing the
image time by a factor of three (Fig. 5). The only specimen for which this was not done is P5 for
which only one imaging sequence had been performed, i.e., no accumulation was possible.

The first four samples shown in Fig. 3 (P1-S1, P2, P4-S1, P5) contained cancer cells. The
histology for P4-S1 showed that the sample was entirely composed of invasive mucinous carci-
noma albeit with lower cellularity in the lower part of the image when compared with the upper
area. The Raman models predicted that all pixels with QF > 0.5 were cancer. However, the
spectral quality of the spectra in the image was very low for this specimen, and only 3% of
all spectra remained after exclusion based on the spectral QF. The lower QFs associated with
P4-S1 were associated with a larger fluorescence background—relative to the inelastic scattering
signal—when compared with the other specimens in the study.

The histology for P2 showed that half of the sample was constituted of invasive ductal car-
cinoma and the other half was adipose tissue. Model A identified adipose structures in a manner
that was consistent with histology. Model B predicted that 74% of the remaining spectra
belonged to the cancer category, providing an overall agreement with histology. As shown
by the photograph of the sample, P2 was not large enough to fill the FOVof the imaging system.

Fig. 3 Imaging results for the eight samples considered in the study. Each line is for a different
specimen, with the first column presenting an identification number and a label indicating tissue
type. The second column presents a photograph of each specimen, and the third column shows
the collocated H&E image used for microscopic analysis by a pathologist. The fourth, fifth, sixth,
and seventh columns show inelastic scattering contrast for the Raman bands at 940, 1004, 1129,
and 1159 cm−1, respectively. All images were normalized to their maximum value, and thus, all
have a maximum value of 1 and a minimum value of 0. The eighth column presents the results of
applying the machine learning models to each pixel image with the Raman system. Spectra that
were classified as fat are in pink, spectra identified as normal or benign tissue are in yellow, and
cancer predictions are represented by the color purple.
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Spectra taken on regions where there was no biological sample (i.e., the black-coated aluminum
substrate) were mostly excluded from classification due to low QF. However, spectra taken on the
edge of the sample contained tissue signal and traces of black-coated aluminum Raman signal. In
fact, classification results showed that spectra surrounding an adipose region were classified as
normal instead of fat. This was due to the contamination of the adipose signal by the aluminum
signal that contained an inelastic scattering signal around 1004 cm−1. The presence of an arti-
factual signal from the substrate confounded model predictions around the border of that speci-
men. This issue appeared on the boundary of all samples that were not large enough to fill the
entire FOV of the system, i.e., P2, P1-S1, P4-S2, P3, and P1-S2. The effect of this signal con-
tamination is illustrated in Fig. 4. This effect also resulted in the presence of individual pixels that
were predicted as cancer around the periphery of specimens, including P4-S2.

For P1-S1, histology showed the sample contained invasive ductal carcinoma with high
cellularity in the upper part of the image and adipose tissue in the upper right corner of the image.
Model A correctly identified a fat region in the same region as the one shown by histology. Sixty-
two percent of the remaining spectra were classified as cancer by model B. P5 contained a tumor
of 3 mm size that was an invasive ductal carcinoma surrounded by adipose tissue and normal
breast. Most of the spectra were classified as fat except for a small region at the bottom of the
image that appeared to correspond to the tumor seen on histology, here slightly shifted to the left.
After the exclusion of all fat-predicted spectra, model B classified 21% of the remaining spectra
as cancer (34 spectra). The intensity map of the 1004 cm−1 band showed a content in the phenyl-
alanine band for the entire tumor region that was like that associated with P4, P2, and P1-S1. The
content in proteins, using the band at 1155 cm−1 as a surrogate, also appeared comparable to the
other tumors.

The last four samples (P4-S2, P6, P3, P1-S2) contained no cancer cells. P4-S2 contained
adipose and other normal breast tissue structures. Predictions of the models for that sample were
consistent with histology, with most of the spectra being classified as normal or fat, and less than
1% of all pixels classified as cancer. The eight spectra on the edge of the sample classified as
cancer contained a mix of normal tissue and aluminum signal, which resulted in a higher spectral
feature around 1004 cm−1 (Fig. 4). The two other spectra classified as cancer had similar spectral
features as normal spectra with a phenylalanine peak slightly higher. P6 contained mostly adi-
pose tissue and a thin strip associated with other normal breast tissue structures. Model A clas-
sified 80% of all spectra as fat, with all other spectra being classified as normal. The histology for
P3 showed mostly adipose and other normal breast tissue. The white light image of that specimen
also showed residual black ink used for margin identification by the pathologist. This led to the
exclusion of most of the spectra in the upper left part of the image based on low QF. Most of the

Fig. 4 Classification results for specimen P1-S2 illustrating that the presence of non-tissue arti-
facts can confound machine learning model predictions: (a) classification map obtained when
applying model A (trained to distinguish adipose tissue from either normal/benign or cancer tissue)
followed by the application of model B (trained to distinguish normal/benign from cancer tissue) to
pixels classified as non-adipose by model A. Pixels in pink are classified as fat, pixels in yellow as
normal, and the only pixel classified as cancer is in purple. (b) Three representative Raman spectra
are shown as follows: a spectrum from black-coated aluminum, a spectrum acquired at the border
between the sample and the substrate, and a spectrum of adipose tissue. The location of each
spectrum is indicated by a cross in panel (a) that has the same color as its corresponding spectrum
in panel (b). A vertical line is used to indicate the spectral feature at 1004 cm−1 in panel (b).
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remaining pixels for that sample were classified as fat. Histology for P1-S2 showed adipose and
normal breast tissues. Most of the pixels in that image were classified as fat.

As previously mentioned, P2, P3, P4-S2, P3, and P1-S2 did not fill the entire FOV of the
system, and Fig. 3 shows that the spectra at the border between the samples and the substrate
were misclassified as normal or cancer. This was attributed to the contamination of the Raman
signal by spectral features from the black-coated aluminum substrate, particularly around
1004 cm−1. Figure 4 presents the impact of the aluminum signal in the sample P1-S2.
Figure 4(b) shows a spectrum of black-coated aluminum (excluded from the classification due
to low QF), a spectrum from the edge of the sample, and a spectrum from adipose tissue. The
location of each spectrum was indicated by a cross in the classification map [Fig. 4(a)].
Figure 4(b) shows an aluminum spectral feature around 1004 cm−1 that was present in the spec-
trum acquired on the edge of the sample, leading to the normal classification. Raman signal
contamination by black ink was also observed in P3, and the spectra in the region with black
ink were classified as normal. The samples P1-S2, P3, and P4-S2 also showed spectra classified
as cancer on the edge of the samples where there was contamination by aluminum signal.

Table 3 reports that, for each Raman image, the percentage of pixels that had a QF inferior to
0.5, the percentage of all remaining pixels that were predicted as fat, and the percentage of pixels
that were predicted as cancer. The latter metric was computed based only on the pixels that were
predicted by model A not to belong to the fat category. Table 3 also includes the average posterior
probability p (and its standard deviation) computed only based on the non-fat pixels. The latter
metric could be used as a quantitative cancer burden marker, with larger values being associated
with a more important burden. All specimens that contained cancer cells had an average p that
was larger than 0.3, whereas all specimens that did not contain cancer had a value of 0.15 or
inferior.

4 Discussion and Conclusion
This work demonstrated the potential of applying low-complexity machine learning models on
hyperspectral Raman images acquired with a line-scanning macroscopic RS imaging system, to
distinguish invasive breast cancer from healthy tissues. It also showed that to perform this task, it
is feasible to use models trained using spectra acquired with a different system, i.e., a single-point
RS system. Using two models developed from an ex vivo dataset acquired with the point probe,
four tumors of different sizes and types were identified on the images from the hyperspectral

Table 3 Statistics for several metrics associated with specimen images acquired with the hyper-
spectral Raman images. Computed quantities include the percentage of pixels excluded from the
analyses because they had a spectral QF inferior to 0.5, percentage of the remaining pixels that
were classified as fat (model A), percentage of the pixels predicted as cancer by model B from non-
fat measurements, and average and standard deviation (std) of the posterior probability value p
that the non-fat pixels were predicted to belong to the cancer rather than the normal category
(model B).

Pathology
% excluded
(QF < 0.5)

% classified
as fat

% classified
as cancer p [avg ± std]

P4 S1 Invasive mucinous carcinoma 97 0 100 0.98 ± 0.07

P2 Invasive ductal carcinoma 45 41 74 0.64 ± 0.28

P1 S1 Invasive ductal carcinoma 46 39 62 0.56 ± 0.32

P5 Invasive ductal carcinoma 0 91 22 0.31 ± 0.18

P4 S2 Fibrous tissue 13 79 4 0.15 ± 0.12

P6 Fibrous tissue 1 81 0 0.12 ± 0.07

P3 Adipose tissue 32 86 1 0.06 ± 0.09

P1 S2 Adipose tissue 17 96 2 0.06 ± 0.10
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imaging system. The overwhelming majority of image pixels associated with samples that were
identified as healthy breast tissues by the pathologist were classified as non-cancer. However, not
all classification results were consistent with histology results. Limitations included the potential
misclassification of pixels where there were multiple contributors to the signal. For example, the
aluminum substrate was shown to contaminate regions close to the edges of the specimens.

The accuracy of histopathology as a gold standard depended on the accuracy of the super-
position between the Raman hyperspectral images and the histology maps. This was limited by
the change in shape between the specimen photograph and the H&E-stained image of the cor-
responding tissue section. The samples were manipulated and rotated before being processed and
stained, which sometimes made superposing the photograph with the H&E images difficult. This
was particularly the case for samples composed of mostly adipose tissue since they did not retain
their form as well as others.

Moreover, the H&E analysis was done on a tissue section of ∼5 μm thickness that was
acquired before imaging with the Raman system. As a result, the surface on which the
Raman measurements were made could be different than the surface from which histopathology
information was derived. Another factor that can affect the spatial registration accuracy between
histology and Raman-predicted classification is the diffuse nature of light propagation at near-
infrared wavelengths. Because this phenomenon introduces a certain blurriness relating to the
conveyed optical information, it limits the spatial resolution associated with the machine learning
model predictions both axially and longitudinally. For example, diffusion enables light penetra-
tion into the tissue and leads to depth sampling up to a few hundred micrometers.53

Those limitations in spatial registration accuracy between histology and Raman-predicted
maps did not allow a direct comparison of pixels from both image sets. This prevented an ROC
analysis from being performed that would otherwise have allowed us to compute the cancer
detection sensitivity and specificity of the new system. Rather, the overall ability of the system
to detect cancer was assessed by computing the average posterior probability that pixels belonged
to the cancer class across the whole image, after removal of the pixels that were predicted to be
adipose tissue (Table 3).

Another limitation of the study was the small number of samples used to test the classifi-
cation models developed with the single-point RS probe. There were two types of tumors
included in the study, invasive ductal carcinoma and mucinous carcinoma. The latter was not
present in the original training dataset and was nevertheless correctly classified as cancer in the
present study. Invasive lobular carcinomas, included in the previous training dataset, were absent
from the hyperspectral dataset, limiting the diversity of pathologies in this study.

Other practical limitations relate to the maximal permissible exposure (MPE) for skin as set
by American National Standards Institute (ANSI) standards for research laboratory laser safety
(ANSI Z136.1-2014 American National Standard for Safe Use of Lasers). For a total light expo-
sure duration of 10 s and more, MPE for skin is 0.3 W∕cm2. To respect this guideline, the laser
power used with the Raman system should not be higher than 400 mW when computed for
hazard evaluation (i.e., 3.5-mm diameter limiting aperture), whereas the power delivered at the
surface of the tissue in this study was somewhat lower than 500 mW. However, it should be noted
that those skin MPE values do not correspond to absolute thresholds beyond which tissue dam-
age will necessarily result in breast tissue damage. For example, no morphological alterations
were observed during histology analyses of the specimens in which RS measurements were
made, suggesting that no heat-generated tissue damage was made. More work will be required
to determine acceptable photodiagnostic exposure levels in breast tissue. They will likely be
significantly larger than the current MPE values set for skin.

The total measurement time was 20 min per sample. This is too long for intraoperative clini-
cal applications in which multiple measurements would be required to assess margins. However,
measurement time could be lowered by taking one acquisition (i.e., one accumulation) instead of
three, as was done for P5. This would bring the total imaging time to less than 7 min and allow for
multiple measurements in approximately the same timeframe (20 to 30 min) as an intraoperative
consultation by pathology.54 Raman-based classification maps were obtained for N ¼ 1 accu-
mulation (Fig. 5). This led to results that associated approximately the same areas to fat, normal,
and cancer categories, when compared with predictions associated with N ¼ 3 accumulations
(Fig. 3).

David et al.: Macroscopic inelastic scattering imaging using a hyperspectral. . .

Journal of Biomedical Optics 065004-12 June 2024 • Vol. 29(6)



The system could also be re-developed as a fiber-less system without the excitation and
detection imaging bundles that were historically introduced to allow in situ and in vivo inter-
rogation during surgery. This would limit light losses by at least a factor of 10, thereby potentially
allowing more rapid imaging times by the same factor.47 Although outside of the scope of the
work presented in this paper, such a system re-design would allow the development of a practical
imaging workflow where all sides of a specimen could be imaged within a clinically compatible
to fully assess whether residual cancer remains or not. Those improvements in light collection
efficiency would allow for enhancing the imaging FOV, thereby allowing the development of
workflows where whole lumpectomy specimens could be imaged. Future improvements in the
technique should lead to a device and the development of clinical workflows allowing all sides of
whole lumpectomy specimens—with their largest dimension typically nor larger than 5 cm—to
be imaged in no more than 20 to 30 min. The latter figure was derived from the experience of the
two surgeons involved in the study (S.M, F.T). The timeframe was established by weighing
potential benefits to patients (diminishing risk of recurrence, improving cosmesis) against the
impact of adding time to the procedure.

Other practical considerations include the requirement to develop clinical workflows
whereby the surfaces of whole specimens are imaged prior to the use of pathology inks.
This is because RS is a surface imaging modality sampling tissue at sub-millimeter depths.
However, the line-scanning system was developed to allow variable software-controlled spatial
offset between the excitation and detection lines to allow depth probing based on spatial offset
RS.48 The use of this mode of operation is currently being evaluated as a means to image through
a layer of ink, potentially alleviating the need to image the specimens prior to inking.

Another limitation of the current study is related to the fraction of measurements that were
rejected based on the QF metric, ranging from 0% to 97% with an average of 31% (Table 3).
Visual assessment of the rejected spectra showed that the vast majority were associated with
measurements at the border of the specimens where tissue may have been thinner. The spectra
associated with those measurements were all associated with Raman peaks from the aluminum
substrate. This aspect was particularly dramatic for specimen P4-S1. In later work, this should be
dealt with through the development of algorithms for automated spectral detection of substrate
artifacts leading to the rejection of measurements.

This project showed the potential of line-scanning hyperspectral Raman imaging to provide
intraoperative molecular analysis of ex vivo breast-conserving surgery specimens. This could be
an important complement to gross margin evaluation and would offer a wide-field alternative to
microscopic imaging methods such as frozen section techniques.

Fig. 5 Imaging results for the samples considered in the study using only one out of three accu-
mulations. P5 is not shown since only one accumulation was used for this specimen.
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