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Abstract: We consider two companies that are competing for orders. Let X1(n) denote the number
of orders processed by the first company at time n, and let τ(k) be the first time that X1(n) < j or
X1(n) = r, given that X1(0) = k. We assume that {X1(n), n = 0, 1, . . .} is a controlled discrete-time
queueing system. Each company is using some control to increase its share of orders. The aim of the
first company is to maximize the expected value of τ(k), while its competitor tries to minimize this
expected value. The optimal solution is obtained by making use of dynamic programming. Particular
problems are solved explicitly.
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1. Introduction

Many papers have been published on the optimal control of queueing systems. Often
the authors assume that it is possible to control the service rate; see, for example, Laxmi
et al. [1], Chen et al. [2] and Tian et al. [3]. In other papers, the aim is to control the arrival
of customers into the system; see Wu et al. [4]. Sometimes, it is assumed that there are
different types of customers; see Wen et al. [5] and Dudin et al. [6]. Another problem
that is often considered is to determine the optimal number of servers in the system; see
Asadzadeh et al. [7].

In this paper, we consider a single-server queueing model in discrete time. Orders
arrive one at a time. We assume that the time needed for an order to arrive is a random
variable A that follows a geometric distribution with parameter 2 pA, so that

P[A = n] = (1 − 2 pA)
n−1 2 pA for n = 1, 2, . . . (1)

Moreover, the service time is a random variable S having a geometric distribution
with parameter pS.

There are two competing companies. In equilibrium, orders arrive at each company
according to a random variable Ai having a geometric distribution with parameter pA, for
i = 1, 2.

Instead of solving an optimal control problem, our aim in this paper is to present a
stochastic dynamic game that can serve as a model for the behavior of companies com-
peting for orders. We must, of course, make simplifying assumptions in order to obtain a
mathematically tractable problem. However, we believe that the model is realistic enough
to be useful.

Let X1(n) be the number of orders being processed by the first company at time n,
and let

τ(k) [= τ(k, j, r)] := inf{n ≥ 0 : X1(n) < j or X1(n) = r | X1(0) = k}, (2)
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where j ≤ k ≤ r and j, k, r ∈ N.
Now, suppose that each company can try to use some form of control in order to

increase its share of the orders. More precisely, we assume that the first company uses the
control un ∈ {0, pA} at time n to increase the arrival rate of its orders. Similarly, the second
company uses vn ∈ {−pA, 0} at time n to decrease the order arrival rate of its competitor.

Remark 1. Writing that vn = −pA means that Company 2 is making some efforts (for instance,
by lowering its prices) in order to reduce to zero the rate at which Company 1 receives orders, unless
this company also tries to increase or at least keep its share of the orders.

Let
pA(n) := pA + un + vn for n = 1, 2, . . . (3)

We define the cost function

J(k) =
τ(k)−1

∑
n=0

{
q1 u2

n + q2 v2
n + λ (vn − un)

}
, (4)

where q1, q2 and λ are positive constants. We look for the values u∗
n and v∗n of the control

variables that are such that the expected value of J(k) is minimized.
The idea behind the cost function is as follows: since the parameter λ is positive, if r is

large, then Company 1 wants to maximize the time it stays in business. To do this, it would
like to use the control un = pA; however, this leads to quadratic control costs. Company 2,
for its part, would like to use vn = −pA in order to bankrupt Company 1 as quickly as
possible, but this also entails quadratic control costs.

Problems in which the optimizers try to minimize or maximize the expected value of
a certain cost function until a given random event occurs are known as homing problems.
Whittle [8] considered the case when the optimizer controls an n-dimensional diffusion
process until it leaves a given subset of Rn. Rishel [9] also treated the homing problems for
n-dimensional diffusion processes; these processes were more realistic models for the wear
of devices than those proposed by various authors.

The author has recently extended homing problems to the optimal control of queueing
systems in continuous time; see [10–12]. In these three papers, the aim was to determine
the optimal number of servers working at time t. He also published a paper ([13]) on a
homing problem for a controlled random walk with two optimizers.

Next, we define the value function

F(k) = min
(un, vn)

0 ≤ n ≤ τ(k)− 1

E[J(k)]. (5)

The function F(k) is the expected cost incurred (which can sometimes be a reward) if
both optimizers choose the optimal value of un and vn between the initial time n = 0 and
time τ(k)− 1.

In Section 2, the dynamic programming equation satisfied by the value function F(k) will
be derived, and a particular problem will be solved explicitly. In Section 3, the problem
formulation will be modified. We will then assume that the value of un is known, and we
will look for the value of vn that maximizes the expected value of a certain cost function.
Concluding remarks will be made in Section 4.

2. Dynamic Programmic Equation

We will derive the dynamic programming equation satisfied by F(k). We have
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F(k) = min
(un, vn)

0 ≤ n ≤ τ(k)− 1

{
q1 u2

0 + q2 v2
0 + λ (v0 − u0) (6)

+ E
[ τ(k)−1

∑
n=1

{
q1 u2

n + q2 v2
n + λ (vn − un)

}]}
.

Then, making use of Bellman’s principle of optimality (see [14]), we can write that

F(k) = min
(u0,v0)

{
q1 u2

0 + q2 v2
0 + λ (v0 − u0) + E[F(X1(1))]

}
. (7)

Indeed, whatever the two optimizers decide to do at time n = 0, the decisions they
make from time n = 1 to time τ(k)− 1 must be optimal.

Remark 2. Equation (7) is valid because of our assumptions that Ai, for i = 1, 2, and S have a
geometric distribution. Indeed, as is well known, this distribution possesses the memoryless property.
If we assume instead that these random variables have any other (discrete) distribution, then we will
have to take the past into account, rendering the optimization problem almost intractable.

Furthermore, we have

E[F(X1(1))] = F(k + 1) pA(0) (1 − pS) + F(k − 1) [1 − pA(0)] pS (8)

+ F(k)
[
pA(0) pS + [1 − pA(0)] (1 − pS)

]
.

Hence, we can state the following proposition.

Proposition 1. The value function F(k) satisfies the dynamic programming equation (DPE)

F(k) = min
(u0,v0)

{
q1 u2

0 + q2 v2
0 + λ (v0 − u0) (9)

+ F(k + 1) pA(0) (1 − pS) + F(k − 1) [1 − pA(0)] pS

+ F(k)
[
pA(0) pS + [1 − pA(0)] (1 − pS)

]}
.

Moreover, we have the boundary condition F(k) = 0 if k < j or k = r.

Remark 3.

(i) We take for granted that each optimizer does not know what the other has decided to do. In
Section 3, we will assume that Company 2 knows the decision made by Company 1.

(ii) There are four possibilities for (u0, v0): (0, 0), (0,−pA), (pA, 0) and (pA,−pA). If we solve
the difference equation corresponding to each possible value of (u0, v0), we actually obtain
the value of the function F(k) if the optimizers choose the same value of (u0, v0) for any k.
Hence, we cannot obtain the value function and/or the optimal controls for any value of k by
comparing the four expressions for F(k) obtained by solving the four difference equations.

(iii) We can write that (un, vn) = (un(k), vn(k)). The number of possible pairs (u0(k), v0(k)) for
j ≤ k < r is equal to 4r−j. If we have the values of (u0(k), v0(k)) for k = j, . . . , r − 1, we can
solve a system of r − j linear equations to obtain the corresponding values of F(k) for any k. If
r − j is small, it is a simple matter to consider all the possible values of (u0(k), v0(k)) and
compute the function F(k) for k = j, . . . , r − 1. We can then determine the optimal controls
and the associated value function.

In the following subsection, a particular problem will be solved explicitly.
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An Example

Suppose that q1 = q2 = λ = 1, j = 1 and r = 3. Moreover, we take pA = 1/4 and
pS = 1/2. The values of F(1) and F(2) for the 42 = 16 possible choices for (u0(1), v0(1))
and (u0(2), v0(2)) are presented in Table 1.

Table 1. Values of F(1) and F(2) for the 16 possible choices for the control variables.

No. u0(1) v0(1) u0(2) v0(2) F(1) F(2)

1 0 0 0 0 0 0
2 pA 0 0 0 −0.6 −0.45
3 0 −pA 0 0 −0.375 −0.28125
4 0 0 pA 0 −0.107 −0.4286
5 0 0 0 −pA −0.125 −0.5
6 pA −pA 0 0 −0.923 −0.692
7 pA 0 pA 0 −0.75 −0.75
8 pA 0 0 −pA −1.125 −1.5
9 0 −pA pA 0 −0.375 −0.5625

10 0 −pA 0 −pA −0.375 −0.75
11 0 0 pA −pA −0.231 −0.923
12 pA −pA pA 0 −0.964 −0.857
13 pA −pA 0 −pA −1.125 −1.5
14 pA 0 pA −pA −1.2 −1.65
15 0 −pA pA −pA −0.375 −1.03125
16 pA −pA pA −pA −1.154 −1.615

For example, if (u0(1), v0(1)) = (0, 0) and (u0(2), v0(2)) = (0,−pA) (Case no. 5),
then we have pA(0) = pA if k = 1 and pA(0) = 0 if k = 2. We must solve the system of
linear equations

F(1) =
1
8

F(2) +
1
2

F(1) (10)

F(2) = − 3
16

+
1
2

F(2) +
1
2

F(1), (11)

whose solution is F(1) = −1/8 and F(2) = −1/2.
We see that the optimal strategy is to choose Case no. 14; that is, we take (u0(1), v0(1))

= (pA, 0) and (u0(2), v0(2)) = (pA,−pA).

Remark 4. The four difference equations that must be solved, subject to the boundary conditions
F(0) = F(3) = 0, are given below. We denote their solutions by Fi(k), for i = 1, 2, 3, 4.

(1) (u0, v0) = (0, 0):

F(k) =
1
8

F(k + 1) +
3
8

F(k − 1) +
1
2

F(k). (12)

We easily find that the solution is F1(k) ≡ 0.
(2) (u0, v0) = (pA, 0):

F(k) = −3
8
+

1
4

F(k + 1) +
1
4

F(k − 1) +
1
2

F(k). (13)

We find that
F2(k) =

3
8

k (−3 + k). (14)

(3) (u0, v0) = (0,−pA):

F(k) = −3
8
+

1
2

F(k − 1) +
1
2

F(k). (15)
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Because pA(0) = 0, X1(n) cannot reach the value 3 if k = 1 or 2. The solution that
satisfies the boundary condition F(0) = 0 is

F3(k) = −3
8

k. (16)

(4) (u0, v0) = (pA,−pA):

F(k) = −3
8
+

1
8

F(k + 1) +
3
8

F(k − 1) +
1
2

F(k). (17)

We have
F4(k) =

3
52

(−3 + 3k+1 − 26k). (18)

The functions Fi(k), for i = 2, 3, 4, are shown in Figure 1. Moreover, the values of Fi(k)
for k = 1, 2 and i = 1, 2, 3, 4 are presented in Table 2.

Figure 1. Functions F2(k) (solid line), F3(k) (dotted line) and F4(k) (dashed line) for k ∈ [1, 2].

Table 2. Values of Fi(k) for k = 1, 2 and i = 1, 2, 3, 4.

i Fi(1) Fi(2)

1 0 0
2 −0.375 −0.75
3 −0.75 −0.75
4 −1.154 −1.615

Notice that F1(k) corresponds to Case no. 1, while F4(k) corresponds to Case no. 16.
We observe that none of the functions F1(k), . . . F4(k) is the value function. However, F4(k)
yields values which are quite close to those obtained with the value function. Therefore, if
r − j is large, so that the number of equations to consider is also large, then a suboptimal
solution can be obtained by assuming that (u0(k), v0(k)) will be the same for any k.

3. Optimal Control When un Is Known

In this section, we assume that Company 2 knows the strategy of Company 1, and
tries to maximize the expected value of the following cost function:

C(k) =
τ(k)−1

∑
n=0

{q1 un + q2 vn}+ K[X1(τ(k))]. (19)

The terminal cost function K(·) is defined by

K[X1(τ(k))] =
{

K1 if X1(τ(k)) = r,
K2 if X1(τ(k)) = j − 1,

(20)
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where K1 < 0 and K2 > 0. The constant r ∈ N could be the maximum number of orders
that Company 1 can process at the same time.

Suppose that Company 1 uses the control un(k) = pA for any n and any k. Company 2
must decide whether to choose vn(k) = 0 or −pA. We define the value function

V(k) = max
vn , 0≤n≤τ(k)−1

E[C(k)]. (21)

Proceeding as in the previous section, we can prove the following proposition.

Proposition 2. The value function V(k) satisfies the dynamic programming equation

V(k) = max
v0∈{−pA ,0}

{
q1 pA + q2 v0 + V(k + 1) pA(0) (1 − pS)

+ V(k − 1) [1 − pA(0)] pS

+ V(k)
[
pA(0) pS + [1 − pA(0)] (1 − pS)

]}
,

where pA(0) = 2 pA + v0. Furthermore, the function V(k) is such that V(r) = K1 and V(j−1) = K2.

There are now 2r−j possible strategies for Company 2. If r − j is small, we can proceed
as in the previous section and calculate the expected value of C(k) for each possible strategy.

Assume that q1 = q2 = 1, pA = 1/4, pS = 1/2, K1 = −10, K2 = 10, r = 5 and j = 1.
We present in Table 3 the value of V(1), . . . , V(4) for each of the 16 possible strategies
that Company 2 can choose. These values are obtained by solving the system of four
linear equations

V(k) =
1
4
+ v0(k) + V(k + 1)

(
1
2
+ v0(k)

)
1
2

(22)

+ V(k − 1)
(

1
2
− v0(k)

)
1
2
+ V(k)

1
2

,

for k = 1, 2, 3, 4, together with the boundary conditions V(0) = −10 and V(5) = 10.
We conclude that the optimal strategy is the one that corresponds to Case no. 15; that is,
v0(1) = 0 and v0(k) = −pA for k = 2, 3, 4.

Table 3. Values of V(1), . . . V(4) for the 16 possible choices for the control variables v0(1), . . . , v0(4).

No. v0(1) v0(2) v0(3) v0(4) V(1) V(2) V(3) V(4)

1 0 0 0 0 8 5 1 −4
2 −pA 0 0 0 8.92 5.69 1.46 −3.77
3 0 −pA 0 0 9.36 7.73 2.82 −3.09
4 0 0 −pA 0 9.56 8.11 5.67 −1.67
5 0 0 0 −pA 9.29 7.57 4.86 1.14
6 −pA −pA 0 0 9.45 7.81 2.81 −3.06
7 −pA 0 −pA 0 9.52 8.08 5.64 −1.68
8 −pA 0 0 −pA 9.42 7.68 4.95 1.21
9 0 −pA −pA 0 10.13 9.26 6.65 −1.17
10 0 −pA 0 −pA 10 9 6 2
11 0 0 −pA −pA 10.47 9.93 8.40 3.80
12 −pA −pA −pA 0 9.72 8.87 6.31 −1.34
13 −pA −pA 0 −pA 9.67 8.69 5.76 1.82
14 −pA 0 −pA −pA 9.84 9.35 7.86 3.40
15 0 −pA −pA −pA 10.49 9.98 8.44 3.83
16 −pA −pA −pA −pA 9.83 9.34 7.85 3.39
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Remark 5. As in the previous section, we can obtain at least a suboptimal solution which is close
the optimal one by solving the difference equations obtained by assuming first that v0(k) ≡ 0,
namely

V(k) = q1 pA + V(k + 1)2 pA (1 − pS) + V(k − 1) (1 − 2 pA) pS (23)

+ V(k)
[
2 pA pS + (1 − 2 pA) (1 − pS)

]
,

and then that v0(k) ≡ −pA:

V(k) = q1 pA − q2 pA + V(k + 1) pA (1 − pS) + V(k − 1) (1 − pA) pS (24)

+ V(k)
[
pA pS + (1 − pA) (1 − pS)

]
.

The first equation corresponds to Case no. 1, and the second one to Case no. 16. We find that
the solutions to these equations in the particular case considered above are, respectively,

V1(k) = 10 − 3
2

k − 1
2

k2 (25)

and
V16(k) =

1220
121

− 10
121

3k. (26)

See Figure 2.

Figure 2. Functions V1(k) (solid line) and V16(k) (dotted line) for k ∈ [1, 4].

Notice that the solution obtained when v0(k) ≡ 0 (Case no. 1) actually gives the minimum
of the expected value of the cost function C(k). Moreover, we see in Table 3 that the choice that
corresponds to Case no. 11 almost yields the optimal solution that we are looking for.

4. Conclusions

In this paper, a homing problem for a queueing model in discrete time has been
considered. The problem can be seen as a dynamic game because there are two optimizers
with opposing objectives.

In Section 2, dynamic programming was used to derive the equation satisfied by
the value function. From this equation, one can deduce the optimal values of the control
variables. However, we have seen that, in order to do this, one has to solve a possibly large
number of systems of linear equations, subject to the appropriate boundary conditions.
Although solving each system is straightforward, repeating this procedure a large number
of times can become tedious. We have also seen that it is possible to obtain a good
suboptimal solution to our problem fairly quickly.

In Section 3, the problem formulation was modified. We assumed that the strategy of
Company 1 was known, and we looked for the strategy that Company 2 should adopt to
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maximize the expected value of a certain cost function. We treated the case when the control
variable un is always equal to pA. However, the same type of analysis could be carried
out for any choice of un. In particular, we could find the optimal strategy of Company 2 if
un ≡ 0.

In theory, we could easily extend the problems considered to the case when each
optimizer can choose between more than two possible values for the variable it controls.
The calculations would, however, become quite complex. One could possibly use numerical
simulations to determine the optimal solutions. Indeed, instead of solving a large number of
difference equations, simulating the proposed model can enable us to determine the optimal
solution by computing the value function for each simulation. Simulating geometric
random variables is not a difficult task.

Finally, it is also possible to consider optimal control problems for queueing models in
continuous time with two optimizers.
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