



| <b>Titre:</b><br>Title: | Evaluation of stenoses using Al video models applied to coronary angiography                                                                                                                                                                                                                                                                                                                |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auteurs:<br>Authors:    | Élodie Labrecque Langlais, Denis Corbin, Olivier Tastet, Ahmad<br>Hayek, Gemina Doolub, Sebastián Mrad, Jean-Claude Tardif, Jean-<br>François Tanguay, Guillaume Marquis-Gravel, Geoffrey H. Tison,<br>Samuel Kadoury, William Le, Richard Gallo, Frédéric Lesage, &<br>Robert Avram                                                                                                        |
| Date:                   | 2024                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре:                   | Article de revue / Article                                                                                                                                                                                                                                                                                                                                                                  |
| Référence:<br>Citation: | Labrecque Langlais, É., Corbin, D., Tastet, O., Hayek, A., Doolub, G., Mrad, S.,<br>Tardif, JC., Tanguay, JF., Marquis-Gravel, G., Tison, G. H., Kadoury, S., Le, W.,<br>Gallo, R., Lesage, F., & Avram, R. (2024). Evaluation of stenoses using Al video<br>models applied to coronary angiography. NPJ Digital Medicine, 7, 138 (13 pages).<br>https://doi.org/10.1038/s41746-024-01134-4 |

### Document en libre accès dans PolyPublie

Open Access document in PolyPublie

| URL de PolyPublie:<br>PolyPublie URL:      | https://publications.polymtl.ca/58571/                                              |
|--------------------------------------------|-------------------------------------------------------------------------------------|
| Version:                                   | Matériel supplémentaire / Supplementary material<br>Révisé par les pairs / Refereed |
| Conditions d'utilisation:<br>Terms of Use: | СС ВҮ                                                                               |

# **Document publié chez l'éditeur officiel** Document issued by the official publisher

| <b>Titre de la revue:</b><br>Journal Title: | NPJ Digital Medicine (vol. 7)              |
|---------------------------------------------|--------------------------------------------|
| Maison d'édition:<br>Publisher:             | Springer Nature                            |
| URL officiel:<br>Official URL:              | https://doi.org/10.1038/s41746-024-01134-4 |
| Mention légale:<br>Legal notice:            |                                            |

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

## **Supplementary Figures**

**Supplementary Figure 1.** Example of a (a) reference frame, (b) unregistered frame N and (c) registered frame N within a video (white square represents the limits of the reference area)



Legend. Example of an unregistered frame within a video and its registered form in reference to the reference area. White box: Resized stenosis box.



Supplementary Figure 2. Interface for Dataset B Annotations.

Legend. Interface which was used by the two cardiologists to annotate the percentage of stenosis, coronary artery segment being tracked, correctness of the registration and presence of a PCI in Dataset B. Annotations were made on <u>labelbox.com</u>.

Supplementary Figure 3. Scatterplot of DeepCoro's Predictions as a Function of the Annotated Percentage Stenosis for (a) Dataset A, (b) Dataset B and (c) Dataset D



Legend. DeepCoro's predictions at the video-level, in the Test Set, plotted against the annotated percentage stenosis, which is obtained with visual assessment from clinical reports for Dataset A, visual re-assessment for Dataset B and QCA for Dataset D. Abbreviations. QCA: Quantitative Coronary Angiography, r: Pearson's correlation coefficient.

Supplementary Figure 4. DeepCoro's Predictions as a Function of the Annotated Percentage Stenosis for (a) Dataset A, (b) Dataset B and (c) Dataset D Presented with Boxplots



Legend. DeepCoro's predictions at the video-level presented as overlapping boxplots, in the Test Set, plotted against the annotated percentage stenosis, which is obtained with visual assessment from clinical reports for Dataset A, visual re-assessment for Dataset B and QCA for Dataset D. The intervals in part c. of the figure are established to ensure an equal separation of samples within each interval. **Boxplot centerline**: Median of the data. **Boxplot limits**: First quartile (25th percentile) and third quartile (75th percentile) of the data. **Boxplot whiskers**: Range of the data within 1.5 times of the quartiles. **Abbreviations**. QCA: Quantitative Coronary Angiography.



Supplementary Figure 5. Detailed datasets and patients size change.

Legend. Detailed datasets change in size when our algorithms are applied to our datasets. Grey box: Intermediate datasets. Green box: Final datasets. Orange box: Dataset split for the development of an algorithm. Abbreviations: ARCADE: Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography imagEs, CABG: Coronary Artery Bypass Grafting, CAG: Coronary Angiography, DICOM: Digital Imaging and Communications in Medicine, MHI: Montreal Heart Institute, PCI: Percutaneous Coronary Intervention, QCA: Quantitative Coronary Angiography.

Supplementary Figure 6. Summarisation of the number and fractions of sample that could not be processed due to



technical limitations in the creation of Dataset A

Legend. Number of stenosis videos, DICOMs, patients and exams that could not be processed due to the intentional exclusion or limitations of DeepCoro in the creation of Dataset A. Grey box: Dataset size. Purple box: Exclusion box indicating the number of samples being removed. Red text: Samples removed. Abbreviations. DICOM: Digital Imaging and Communications in Medicine, CABG: Coronary Artery Bypass Grafting, PCI: Percutaneous Coronary Intervention.





**Legend**. Video example of DeepCoro being applied to a video of the RCA with the outputs from all algorithms assembled. In the PDF version of this article, please click anywhere on the figure or caption to play the video in a separate window. **Abbreviations**. Mid RCA: middle right coronary artery, RCA: right coronary artery.

# **Supplementary Tables**

| Characteristic                                                          |                |            | Dataset A                  | Dataset B          | Dataset C            | Dataset D   |               |
|-------------------------------------------------------------------------|----------------|------------|----------------------------|--------------------|----------------------|-------------|---------------|
| -                                                                       |                |            |                            | Patient informa    | tion                 |             |               |
| Age (mean $\pm$ SD)      67.6 $\pm$ 11.0      67.6 $\pm$                |                |            |                            |                    |                      | Unspecified | $61.7\pm9.0$  |
|                                                                         |                |            | Female                     | 2,344              | 430                  | 0           | 0             |
| Sex                                                                     |                |            | Male                       | 5,532              | 1,162                | 0           | 0             |
|                                                                         |                |            | Unspecified                | 181                | 36                   | 1,200       | 1,010         |
|                                                                         |                |            |                            | Dataset informa    | tion                 |             |               |
| Data type                                                               | e              |            |                            | Video              | Video                | Image       | Video         |
| Number                                                                  | of videos or i | mages      |                            | 44,139             | 1,926                | 1,200       | 5,904         |
| Number                                                                  | of severe sten | oses (n    | (%))                       | 7,076 (16%)        | 431 (22%)            | Unspecified | 493 (8%)      |
| Number                                                                  | of severe non  | -stenose   | s (n (%))                  | 37,063 (84%)       | 1,495 (78%)          | Unspecified | 5,411 (92%)   |
| Number                                                                  | of stenoses >( | )% (n (%   | <b>(0)</b> )               | 22,626 (51%)       | 1,367 (71%)          | Unspecified | 5,904 (100%)  |
| Number                                                                  | of healthy ves | ssels, 0%  | % stenoses (n (%))         | 21,513 (49%)       | 559 (29%)            | Unspecified | 0 (0%)        |
| Average                                                                 | percentage of  | stenose    | s (mean $\pm$ SD)          | $20.6\pm30.2$      | 32.1 ± 31.3          | Unspecified | 33.7 ± 11.7   |
| Median percentage stenosis and interquartile range<br>(median (Q1, Q2)) |                | 10 (0, 30) | 20 (0, 60)                 | Unspecified        | 31.3 (25.4, 39.0)    |             |               |
| Number                                                                  | of videos for  | each       | LCA                        | 21,892             | 1,011                | 759         | 2,595         |
| artery                                                                  |                |            | RCA                        | 22,247             | 915                  | 441         | 3,309         |
| Number                                                                  | of patients    |            |                            | 8,057              | 1,628                | Unspecified | 1,010         |
| Number                                                                  | of exams       |            |                            | 8,524              | 1,653                | Unspecified | 1,325         |
| Number                                                                  | of videos or i | mages p    | er patient (mean $\pm$ SD) | $5.5 \pm 3.7$      | $1.2\pm0.5$          | Unspecified | $5.8 \pm 5.8$ |
| Number                                                                  | of exams per   | patient (  | (mean ± SD)                | $1.1 \pm 0.3$      | $1.0 \pm 0.1$        | Unspecified | $1.3 \pm 1.5$ |
|                                                                         |                |            | Number of videos from      | n exams in the cor | responding artery so | egment      |               |
| DCA                                                                     | Single stend   | oses       |                            | 7,113              | 211                  | Unspecified | 457           |
| RCA                                                                     | Multiple ste   | enoses     |                            | 12,410             | 638                  | Unspecified | 2,852         |
|                                                                         | A 11           | Single     | stenoses                   | 4,621              | 174                  | Unspecified | 230           |
|                                                                         | All            | Multij     | ple stenoses               | 16,158             | 806                  | Unspecified | 2,365         |
| ICA                                                                     | LCX            | Single     | e stenoses                 | 11,178             | 513                  | Unspecified | 961           |
| LCA                                                                     | LUX            | Multij     | ole stenoses               | 2,992              | 149                  | Unspecified | 803           |
|                                                                         | LAD            | Single     | estenoses                  | 11,305             | 506                  | Unspecified | 622           |
|                                                                         | LAD            |            | Multiple stenoses          | 7,928              | 432                  | Unspecified | 1,831         |

#### Supplementary Table 1. Baseline Characteristics of Datasets

Legend. Detailed table of the characteristics of each dataset. Severe stenoses are ≥70% for Datasets A and B, and ≥50% for Dataset D. Abbreviations. LCA: Left Coronary Artery, RCA: Right Coronary Artery, SD: Standard Deviation.

#### Supplementary Table 2. Baseline Characteristics of the Train, Validation, Derivation and Test Sets for Each

Datasets

| C                                         | Characteristic                                              |                 | Dataset A       |                 |                    | Dataset B      |                      | Dataset C    |                                  | Dataset D               |  |
|-------------------------------------------|-------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------|----------------|----------------------|--------------|----------------------------------|-------------------------|--|
|                                           | Task                                                        | Stenosis per    | rcentage predic | ction algorithm | PCI rem<br>algorit | oval<br>1m     | Segmentatio          | on algorithm | Fine-tuning on the<br>QCA labels |                         |  |
|                                           | Split                                                       | Train           | Validation      | Test            | Derivation Test    |                | Train and validation | Test         | Train                            | Test                    |  |
| Patient information                       |                                                             |                 |                 |                 |                    |                |                      |              |                                  |                         |  |
| Ag                                        | e (mean ± SD)                                               | 67.4 ±<br>11.0  | 68.9 ±<br>10.6  | 67.5 ± 11.2     | 67.8 ± 11.2        | 66.9 ±<br>10.8 | Unspecified          | Unspecified  | 61.6±<br>9.0                     | 62.0 ±<br>8.9           |  |
|                                           | Female                                                      | 1,773           | 236             | 335             | 315                | 91             | 0                    | 0            | 0                                | 0                       |  |
| Sex                                       | Male                                                        | 4,163           | 536             | 833             | 836                | 227            | 0                    | 0            | 0                                | 0                       |  |
|                                           | Unspecified                                                 | 131             | 23              | 27              | 29                 | 7              | 1,000                | 200          | 825                              | 206                     |  |
|                                           | Dataset information                                         |                 |                 |                 |                    |                |                      |              |                                  |                         |  |
|                                           | Data type                                                   |                 | Video           |                 | Video              | o              | Ima                  | ige          | Video                            |                         |  |
| Number                                    | of videos or images                                         | 32,629          | 4,608           | 6,902           | 1,335              | 333            | 1,000                | 200          | 4,637                            | 1,267                   |  |
| Number of severe stenoses (n<br>(%))      |                                                             | 4,802<br>(15%)  | 912 (20%)       | 1,353 (20%)     | 300 (22%)          | 71 (21<br>%)   | Unspecified          | Unspecified  | 341<br>(7%)                      | 152<br>(12%)            |  |
| Number of severe non-<br>stenoses (n (%)) |                                                             | 27,827<br>(85%) | 3,696<br>(80%)  | 5,549 (80%)     | 1,005<br>(78%)     | 262 (7<br>9%)  | Unspecified          | Unspecified  | 4,296<br>(93%)                   | 1,115<br>(88%)          |  |
| Number of stenoses >0% (n<br>(%))         |                                                             | 16,493<br>(51%) | 2,521<br>(55%)  | 3,612 (52%)     | 947 (71%)          | 242<br>(73%)   | Unspecified          | Unspecified  | 4,637<br>(100%)                  | 1,267<br>(100%)         |  |
| Number<br>0% s                            | of healthy vessels,<br>stenoses (n (%))                     | 16,136<br>(49%) | 2,087<br>(45%)  | 3,290 (48%)     | 388 (29%)          | 91<br>(27%)    | Unspecified          | Unspecified  | 0 (0%)                           | 0 (0%)                  |  |
| Avera<br>steno                            | ge percentage of ses (mean $\pm$ SD)                        | 19.6 ±<br>29.4  | 23.8 ±<br>32.2  | 23.2 ± 32.1     | 31.8 ± 31.1        | 32.8±<br>31.2  | Unspecified          | Unspecified  | 33.5±<br>11.6                    | 34.4 ± 12.3             |  |
| Median<br>and ir<br>(me                   | percentage stenosis<br>nterquartile range<br>dian (Q1, Q2)) | 10 (0, 30)      | 10 (0, 30)      | 10 (0, 50)      | 20 (0, 60)         | 20 (0,<br>60)  | Unspecified          | Unspecified  | 31.0<br>(25.5,<br>39.0)          | 31.9<br>(25.4,<br>40.1) |  |
| Number                                    | LCA                                                         | 16,208          | 2,268           | 3,416           | 694                | 175            | 625                  | 134          | 2,039                            | 556                     |  |
| of<br>videos<br>for each<br>artery        | RCA                                                         | 16,421          | 2,340           | 3,486           | 641                | 158            | 375                  | 66           | 2,598                            | 711                     |  |
| Nun                                       | nber of patients                                            | 6,067           | 795             | 1,195           | 1,180              | 325            | Unspecified          | Unspecified  | 825                              | 206                     |  |
| Nu                                        | mber of exams                                               | 6,390           | 849             | 1,285           | 1,194              | 326            | Unspecified          | Unspecified  | 1,063                            | 262                     |  |

| Number<br>per pa                                                | of videos<br>tient (mea | or images<br>n ± SD) | 5.4 ± 3.6 | 5.9 ± 3.7 | 5.9 ± 4.0     | $1.1 \pm 0.4$ | 1.0 ± 0.2   | Unspecified | Unspecified  | 5.6 ±<br>5.4 | 6.2 ±<br>7.0 |
|-----------------------------------------------------------------|-------------------------|----------------------|-----------|-----------|---------------|---------------|-------------|-------------|--------------|--------------|--------------|
| Number of exams per patient<br>(mean ± SD)                      |                         | 1.1 ± 0.3            | 1.1 ± 0.3 | 1.1 ± 0.3 | $1.0 \pm 0.1$ | 1.0 ±<br>0.1  | Unspecified | Unspecified | 1.3 ±<br>0.5 | 1.3 ±<br>0.5 |              |
| Number of videos from exams in the corresponding artery segment |                         |                      |           |           |               |               |             |             |              |              |              |
| DCA                                                             | Single                  | stenoses             | 5,348     | 668       | 1,097         | 132           | 46          | Unspecified | Unspecified  | 346          | 111          |
| KCA                                                             | RCA Multiple stenoses   |                      | 8,942     | 1,462     | 2,006         | 469           | 96          | Unspecified | Unspecified  | 2,252        | 600          |
|                                                                 | A 11                    | Single<br>stenoses   | 3,601     | 429       | 591           | 121           | 33          | Unspecified | Unspecified  | 198          | 32           |
|                                                                 | All                     | Multiple<br>stenoses | 11,728    | 1,763     | 2,667         | 551           | 135         | Unspecified | Unspecified  | 1,841        | 524          |
|                                                                 | LOV                     | Single<br>stenoses   | 8,158     | 1,228     | 1,792         | 349           | 90          | Unspecified | Unspecified  | 748          | 213          |
| LCA LCX                                                         | LCX                     | Multiple<br>stenoses | 2,096     | 329       | 567           | 104           | 17          | Unspecified | Unspecified  | 613          | 190          |
|                                                                 | LAD                     | Single<br>stenoses   | 8,431     | 1,135     | 1,739         | 350           | 84          | Unspecified | Unspecified  | 491          | 131          |
|                                                                 | Multiple<br>stenoses    | 5,743                | 880       | 1,305     | 289           | 79            | Unspecified | Unspecified | 1,429        | 402          |              |

Legend. Detailed table of the characteristics of each split of each dataset. Severe stenoses are ≥70% for Datasets A and B, and ≥50% for Dataset D. Abbreviations. LCA: Left Coronary Artery, RCA: Right Coronary Artery, SD: Standard Deviation

| Algorithm                                                                          | Possible class outputs                 | Definitions                                                                                         |  |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                    | A                                      | "Ascending aorta, the arch or descending aorta, as delimited during                                 |  |  |  |  |
|                                                                                    | Aorta                                  | aortography." <sup>1</sup>                                                                          |  |  |  |  |
|                                                                                    |                                        | "Any guiding catheter or diagnostic catheter without any other underlying                           |  |  |  |  |
|                                                                                    | Catheter                               | structure." <sup>1</sup>                                                                            |  |  |  |  |
|                                                                                    | Femoral artery                         | "Either the superficial, deep or common femoral artery." <sup>1</sup>                               |  |  |  |  |
| D. ( )                                                                             | Bypass graft                           | "Venous graft, internal mammary graft or radial graft." 1                                           |  |  |  |  |
| Primary anatomic                                                                   | Left ventricle                         | "Ventricle, as delimited during ventriculography" 1                                                 |  |  |  |  |
|                                                                                    | Left coronary artery                   | "Artery that arises from the aorta above the left cusp of the aortic valve" <sup>1</sup>            |  |  |  |  |
| (Algorithm 1) $\frac{1}{2}$                                                        | Other                                  | "Any images not belonging to the other classes (for example, kidneys,                               |  |  |  |  |
| (Algorithm 1)                                                                      | Other                                  | pacemaker, etc) " <sup>1</sup>                                                                      |  |  |  |  |
|                                                                                    | Pigtail catheter                       | "Pigtail catheter without any other underlying structure" <sup>1</sup>                              |  |  |  |  |
|                                                                                    | Radial artery                          | "Major artery in the forearm" <sup>1</sup>                                                          |  |  |  |  |
|                                                                                    | Right coronary artery                  | "Artery that arises from the aorta above the right cusp of the aortic valve"                        |  |  |  |  |
|                                                                                    | Stenting procedure                     | Stenting procedure                                                                                  |  |  |  |  |
|                                                                                    | Proximal right coronary artery         | "From ostium to one half the distance to the acute margin of the heart."                            |  |  |  |  |
|                                                                                    | Middle right coronary artery           | "From end of first segment to acute margin of heart." <sup>1,2</sup>                                |  |  |  |  |
|                                                                                    | ~                                      | "From the acute margin of the heart to the origin of the posterior                                  |  |  |  |  |
|                                                                                    | Distal right coronary artery           | descending artery." <sup>1,2</sup>                                                                  |  |  |  |  |
|                                                                                    | Posterior descending artery            | "Artery running the posterior interventricular groove." <sup>1,2</sup>                              |  |  |  |  |
|                                                                                    |                                        | "Posterolateral branch originating from the distal coronary artery distal to                        |  |  |  |  |
|                                                                                    | Posterolateral branch from the right   | the crux. If left posterolateral, it was chosen as the artery running to the                        |  |  |  |  |
|                                                                                    | coronary artery                        | posterolateral surface of the left ventricle." <sup>1,2</sup>                                       |  |  |  |  |
|                                                                                    | L off main outoms                      | "From the ostium of the LCA through bifurcation into left anterior                                  |  |  |  |  |
|                                                                                    | Left main artery                       | descending and left circumflex branches. " 1,2                                                      |  |  |  |  |
|                                                                                    | Proximal left anterior descending      | "Vessel between left main and proximal to and including the first septal"                           |  |  |  |  |
| Stanosis dataction                                                                 | artery                                 | 1,2                                                                                                 |  |  |  |  |
| algorithm (Algorithm 2)                                                            |                                        | "LAD immediately distal to the origin of first septal branch and                                    |  |  |  |  |
|                                                                                    | Middle left anterior descending        | extending to the point where the LAD forms an angle (right anterior                                 |  |  |  |  |
|                                                                                    | artery                                 | oblique projection). If angle is not identifiable, this segment ends at one                         |  |  |  |  |
| P<br>P<br>Co<br>L<br>Stenosis detection<br>algorithm (Algorithm 2)<br>1<br>N<br>au |                                        | half the distance form the first septal and the apex of the heart" <sup>1,2</sup>                   |  |  |  |  |
|                                                                                    | Distal left anterior descending artery | "Terminal portion of LAD, beginning at the end of previous segment and                              |  |  |  |  |
|                                                                                    | Distal left anterior descending aftery | extending to or beyond the apex." <sup>1,2</sup>                                                    |  |  |  |  |
|                                                                                    | Provimal left circumfley artery        | "Main stem of circumflex from its origin of left main to and including                              |  |  |  |  |
|                                                                                    | Toxiniar felt circulinicx artery       | origin of first obtuse marginal branch." <sup>1,2</sup>                                             |  |  |  |  |
|                                                                                    |                                        | "The stem of the circumflex distal to the origin of the most distal obtuse                          |  |  |  |  |
|                                                                                    | Distal left circumflex artery          | marginal branch and running along the posterior left atrioventricular                               |  |  |  |  |
|                                                                                    |                                        | grooves. Caliber may be small or artery absent." <sup>1,2</sup>                                     |  |  |  |  |
|                                                                                    | Valve                                  | "Presence of a mechanical valve, annuloplasty or valvular calcifications"                           |  |  |  |  |
|                                                                                    |                                        | 1,2                                                                                                 |  |  |  |  |
|                                                                                    | Catheter                               | "Presence of a catheter, such as a diagnostic catheter, pigtail or guiding catheter" <sup>1,2</sup> |  |  |  |  |

| Supplementary Table | <b>3</b> . Possible Class Outputs of Alg | gorithm 1, Algorithm 2 and Algorithm 4 and Their Definitions |
|---------------------|------------------------------------------|--------------------------------------------------------------|
| 4.1 • 41            |                                          |                                                              |

|                                                   | Sternotomy                             | "Presence of sternotomy wires" <sup>1,2</sup>                                |  |  |  |
|---------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|--|--|--|
|                                                   | Stent                                  | "Stent landmarks on a guidewire or in a vessel" <sup>1,2</sup>               |  |  |  |
|                                                   | Pacemaker                              | "Presence of a pacemaker or pacemaker lead" <sup>1,2</sup>                   |  |  |  |
|                                                   | Guidewire                              | "Presence of a guide wire" <sup>1,2</sup>                                    |  |  |  |
|                                                   | Stenosis*                              | "Any visible stenosis" <sup>1,2</sup>                                        |  |  |  |
|                                                   |                                        | "100% obstruction of an artery, either by thrombus or chronically            |  |  |  |
|                                                   | Obstruction                            | occluded. Defined by a blunt stump at the end to a vessel or by the          |  |  |  |
|                                                   | Obstruction                            | 'absence' of contrast in between two healthy vessel segments with            |  |  |  |
|                                                   |                                        | bridging collaterals. " <sup>1,2</sup>                                       |  |  |  |
|                                                   | Provincel right concernent, orten: (1) | "From the ostium to one half the distance to the acute margin of the         |  |  |  |
|                                                   | Proximal right coronary aftery (1)     | heart." <sup>2</sup>                                                         |  |  |  |
|                                                   | Middle right coronary artery (2)       | "From the end of first segment to acute margin of heart." <sup>2</sup>       |  |  |  |
|                                                   | Distal night concernents antony (2)    | "From the acute margin of the heart to the origin of the posterior           |  |  |  |
|                                                   | Distal right coronary artery (5)       | descending artery. " <sup>2</sup>                                            |  |  |  |
|                                                   | Posterior descending artery (4)        | "Running in the posterior interventricular groove" <sup>2</sup>              |  |  |  |
|                                                   | Laft main automy (5)                   | "From the ostium of the LCA through bifurcation into left anterior           |  |  |  |
|                                                   | Left main artery (5)                   | descending and left circumflex branches." <sup>2</sup>                       |  |  |  |
|                                                   | Proximal left anterior descending      | "Provinal to and including first major contal branch "2                      |  |  |  |
|                                                   | artery (6)                             | Froximat to and including first major septat branch.                         |  |  |  |
|                                                   |                                        | "LAD immediately distal to origin of first septal branch and extending to    |  |  |  |
|                                                   | Middle left anterior descending        | the point where LAD forms an angle (right anterior oblique view). If this    |  |  |  |
|                                                   | artery (7)                             | angle is not identifiable this segment ends at one half the distance from    |  |  |  |
|                                                   |                                        | the first septal to the apex of the heart. " <sup>2</sup>                    |  |  |  |
|                                                   | Distal (apical) left anterior          | "Terminal portion of LAD, beginning at the end of previous segment and       |  |  |  |
|                                                   | descending artery (8)                  | extending to or beyond the apex" <sup>2</sup>                                |  |  |  |
|                                                   | First diagonal (9)                     | "The first diagonal originating from segment 6 or 7." <sup>2</sup>           |  |  |  |
| Compartation algorithm                            | Eirst discours! a (0a)                 | "Additional first diagonal originating from segment 6 or 7, before           |  |  |  |
| Segmentation algorithm $(A \mid aorithm 4)^{2,3}$ | First diagonal a (9a)                  | segment 8. " <sup>2</sup>                                                    |  |  |  |
| (Algorithm 4)                                     | Second diagonal (10)                   | "Originating from segment 8 or the transition between segment 7 and 8."      |  |  |  |
|                                                   | Second diagonal (10)                   | 2                                                                            |  |  |  |
|                                                   | Second diagonal a (10a)                | "Additional second diagonal originating from segment 8." <sup>2</sup>        |  |  |  |
|                                                   | Provingel left aircumflay artemy (11)  | "Main stem of circumflex from its origin of left main and including          |  |  |  |
|                                                   | Floximatient encuminex artery (11)     | origin of first obtuse marginal branch" <sup>2</sup>                         |  |  |  |
|                                                   | Intermediate/anterplateral (12)        | "Branch from trifurcating left main other than proximal LAD or LCX. It       |  |  |  |
|                                                   | intermediate/anterolateral (12)        | belongs to the circumflex territory. " <sup>2</sup>                          |  |  |  |
|                                                   |                                        | "First side branch of circumflex running in general to the area of obtuse    |  |  |  |
|                                                   | Obtuse marginal a (12a)                | margin of the heart. " <sup>2</sup>                                          |  |  |  |
|                                                   |                                        | "The stem of the circumflex distal to the origin of the most distal obtuse   |  |  |  |
|                                                   | Distal left circumflex artery (13)     | marginal branch, and running along the posterior left atrioventricular       |  |  |  |
|                                                   |                                        | groove. Caliber may be small or artery absent." <sup>2</sup>                 |  |  |  |
|                                                   |                                        | "Running to the posterolateral surface of the left ventricle. May be absent  |  |  |  |
|                                                   | Left posterolateral (14)               | or a division of obtuse marginal branch." <sup>2</sup>                       |  |  |  |
|                                                   | Left posterolateral a (14a)            | "Distal from 14 and running in the same direction." <sup>2</sup>             |  |  |  |
|                                                   |                                        | "Most distal part of dominant left circumflex when present. It gives         |  |  |  |
|                                                   | Posterior descending artery (15)       | origin to septal branches. When this artery is present, segment 4 is usually |  |  |  |
|                                                   | /                                      | absent." <sup>2</sup>                                                        |  |  |  |
|                                                   |                                        |                                                                              |  |  |  |

|  | Posterolateral branch from the right                         | "Posterolateral branch originating from the distal coronary artery distal to            |  |  |  |
|--|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
|  | coronary artery (16)                                         | the crux. " <sup>2</sup>                                                                |  |  |  |
|  | Posterolateral branch from the right coronary artery a (16a) | "First posterolateral branch from segment 16." <sup>2</sup>                             |  |  |  |
|  | Posterolateral branch from the right coronary artery b (16b) | "Second posterolateral branch from segment 16." <sup>2</sup>                            |  |  |  |
|  | Posterolateral branch from the right coronary artery c (16c) | "Third posterolateral branch from segment 16." <sup>2</sup>                             |  |  |  |
|  | Obtuse marginal b (12b)                                      | "Second additional branch of circumflex running in the same direction as 12" $^{\rm 2}$ |  |  |  |
|  | Left posterolateral b (14b)                                  | "Distal from 14 and 14 a and running in the same direction." <sup>2</sup>               |  |  |  |

Legend. Listing of the classes and definitions of our different multi-class algorithms. Asterix: Only this class was pertinent for for DeepCORO, the other classes are legacy and deprecated, they belong to previous work on CathAI. Abbreviations. LAD: Left Anterior Descending Artery, LCA: Left Coronary Artery, LCX: Left Circumflex.

| Coronary<br>artery | Coronary artery segment                              | Number of<br>instances | Dice Score<br>(%) | PPV (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sensitivity (%)                                                                                                                                                                                                                                                                                                              |
|--------------------|------------------------------------------------------|------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | left main artery                                     | 129                    | 77.84             | 86.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.77                                                                                                                                                                                                                                                                                                                        |
|                    | proximal left anterior descending artery             | 108                    | 70.89             | ce Score<br>(%)      PPV (%)      Sensitivity (%)        77.84      86.48      70.77        70.89      68.70      73.22        74.20      76.53      72.01        71.40      74.13      68.87        75.14      74.35      75.96        60.39      61.15      59.66        80.33      80.92      79.76        72.58      78.87      67.22        77.26      76.92      77.60        63.08      82.44      51.09        74.11      77.02      71.42        72.93      75.96      70.12 | 73.22                                                                                                                                                                                                                                                                                                                        |
| ICA                | middle left anterior descending artery               | 73                     | 74.20             | 76.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PPV (%)      Sensitivity (%)        86.48      70.77        68.70      73.22        76.53      72.01        74.13      68.87        74.35      75.96        61.15      59.66        80.92      79.76        78.87      67.22        76.92      77.60        82.44      51.09        77.02      71.42        75.96      70.12 |
| LCA                | distal left anterior descending artery               | 71                     | 71.40             | 74.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.87                                                                                                                                                                                                                                                                                                                        |
|                    | proximal left circumflex artery                      | 67                     | 75.14             | 74.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.96                                                                                                                                                                                                                                                                                                                        |
|                    | distal left circumflex artery                        | 62                     | 60.39             | Score<br>%)      PPV (%)      Sensitivity (%)        7.84      86.48      70.77        0.89      68.70      73.22        4.20      76.53      72.01        1.40      74.13      68.87        5.14      74.35      75.96        0.39      61.15      59.66        0.33      80.92      79.76        2.58      78.87      67.22        7.26      76.92      77.60        3.08      82.44      51.09        4.11      77.02      71.42        2.93      75.96      70.12                 |                                                                                                                                                                                                                                                                                                                              |
|                    | proximal right coronary artery                       | 65                     | 80.33             | re      PPV (%)      Sensitivity        86.48      70.77        68.70      73.22        76.53      72.01        74.13      68.87        74.35      75.96        61.15      59.66        80.92      79.76        76.92      77.60        82.44      51.09        77.02      71.42        75.96      70.12                                                                                                                                                                              | 79.76                                                                                                                                                                                                                                                                                                                        |
|                    | middle right coronary artery                         | 66                     | 72.58             | 78.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.22                                                                                                                                                                                                                                                                                                                        |
| RCA                | distal right coronary artery                         | 66                     | 77.26             | 76.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.60                                                                                                                                                                                                                                                                                                                        |
|                    | posterolateral branch from the right coronary artery | 49                     | 63.08             | 82.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.09                                                                                                                                                                                                                                                                                                                        |
|                    | posterior descending artery                          | 48                     | 74.11             | 77.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.42                                                                                                                                                                                                                                                                                                                        |
|                    | weighted average                                     |                        | 72.93             | 75.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.12                                                                                                                                                                                                                                                                                                                        |

Supplementary Table 4. Segmentation Performance of DeepCoro's Algorithm 4 on the Test Set of Dataset C

**Legend**. Detailed performance of DeepCoro's Algorithm 4 on the test set of Dataset C across coronary artery segments. **Abbreviations**. LCA: Left Coronary Artery, PPV: Positive Predictive Value, RCA: Right Coronary

Artery.

| C      |                                                            | NT I      | Metric    |              |           |              |           |              |  |
|--------|------------------------------------------------------------|-----------|-----------|--------------|-----------|--------------|-----------|--------------|--|
| orterv | Artery segment                                             | of videos | PF        | PV (%)       | Sensi     | tivity (%)   | F1-s      | core (%)     |  |
| artery |                                                            | of viacos | RetinaNet | Segmentation | RetinaNet | Segmentation | RetinaNet | Segmentation |  |
|        | left main artery                                           | 129       | 47.09     | 81.65        | 75.19     | 68.99        | 57.91     | 74.79        |  |
|        | proximal left<br>anterior descending<br>artery             | 207       | 40.74     | 52.79        | 53.14     | 77.78        | 46.12     | 62.89        |  |
| ICA    | middle left anterior<br>descending artery                  | 207       | 54.76     | 63.69        | 33.33     | 51.69        | 41.44     | 57.07        |  |
| LCA    | distal left anterior<br>descending artery                  | 91        | 65.06     | 85.71        | 59.34     | 65.93        | 62.07     | 74.53        |  |
|        | proximal left<br>circumflex artery                         | 204       | 49.22     | 72.89        | 46.57     | 59.31        | 47.86     | 65.41        |  |
|        | distal left circumflex<br>artery                           | 62        | 37.50     | 43.42        | 9.68      | 53.23        | 15.38     | 47.83        |  |
|        | proximal right coronary artery                             | 281       | 77.42     | 82.57        | 76.87     | 89.32        | 77.14     | 85.81        |  |
|        | middle right coronary artery                               | 361       | 76.56     | 78.69        | 67.87     | 79.78        | 71.95     | 79.23        |  |
| RCA    | distal right coronary<br>artery                            | 185       | 59.57     | 71.59        | 45.41     | 68.11        | 51.53     | 69.81        |  |
|        | posterolateral<br>branch from the<br>right coronary artery | 29        | 19.10     | 53.85        | 58.62     | 48.28        | 28.81     | 50.91        |  |
|        | posterior descending<br>artery                             | 51        | 33.33     | 68.29        | 54.90     | 54.90        | 41.48     | 60.87        |  |
|        | weighted average                                           |           | 59.10     | 71.89        | 56.50     | 70.72        | 56.50     | 70.71        |  |

Supplementary Table 5. Comparative Performance of DeepCoro's Segmentation and CathAI's Bounding Box Method for Stenosis Assignment to Coronary Segments in Dataset B

Legend. Comparative table of the coronary artery segment prediction algorithm from CathAI and DeepCoro. RetinaNet corresponds to CathAI's method to identify coronary artery segments and segmentation referrers to DeepCoro's method. The statistically significant metrics where the confidence intervals don't overlap are shown in bold. Abbreviations, LCA: Left Coronary Artery, PPV: Positive Predictive Value, RCA: Right Coronary Artery.

#### Supplementary Table 6. Artery-Level Performance of CathAI on the Test Set of Dataset A and Comparison to

DeepCoro

|                |                            | Coronary artery         |                |                |                |                |                |  |  |
|----------------|----------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|--|--|
| Task           | Motric                     | LC                      | CA             | RO             | CA             | RCA -          | + LCA          |  |  |
| TASK           | Methic                     | Image-based Video-based |                | Image-based    | Video-based    | Image-based    | Video-based    |  |  |
|                |                            | model                   | model          | model          | model          | model          | model          |  |  |
| Number         | of exams                   | 25                      | 68             | 22             | 59             | 4827           |                |  |  |
| Number of seve | ere stenoses, ≥            | 53                      | 36             | 34             | 45             | 88             | 31             |  |  |
| 70             | %                          |                         |                |                |                |                |                |  |  |
| Number of heal | thy vessels, 0%            | 12                      | 53             | 10             | 75             | 23             | 28             |  |  |
| sten           | oses                       |                         |                |                |                |                |                |  |  |
|                |                            | 0.7418                  | 0.8017         | 0.8561         | 0.8643         | 0.7953         | 0.8294         |  |  |
|                | AUROC                      | (0.7303 -               | (0.7919 -      | (0.8455 -      | (0.8537 -      | (0.7875 -      | (0.8215 -      |  |  |
|                |                            | 0.7526)                 | 0.8124)        | 0.8682)        | 0.8745)        | 0.8038)        | 0.8373)        |  |  |
|                | AUPRC                      | 0.4235                  | 0.5092         | 0.5312         | 0.5578         | 0.4670         | 0.5239         |  |  |
|                |                            | (0.4029 -               | (0.4868 -      | (0.5008 -      | (0.5242 -      | (0.4497 -      | (0.5041 -      |  |  |
|                |                            | 0.4429)                 | 0.5329)        | 0.5619)        | 0.5890)        | 0.4849)        | 0.5421)        |  |  |
| C1 : C         | Sensitivity                | 61.01 (59.00 -          | 70.70 (68.75 - | 78.02 (75.87 - | 76.20 (73.98 - | 67.64 (66.09 - | 72.86 (71.24 - |  |  |
| Classification | (%)                        | 63.05)                  | 72.73)         | 80.28)         | 78.60)         | 69.31)         | 74.47)         |  |  |
|                | Specificity                | 74.61 (73.68 -          | 74.51 (73.56 - | 80.75 (79.86 - | 79.03 (78.10 - | 77.57 (76.92 - | 76.71 (76.05 - |  |  |
|                | (%)                        | 75.55)                  | 75.43)         | 81.57)         | 80.04)         | 78.22)         | 77.36)         |  |  |
|                | DDV (0/.)                  | 38.78 (37.15 -          | 41.06 (39.48 - | 42.25 (40.23 - | 37.08 (35.11 - | 40.25 (38.97 - | 39.42 (38.15 - |  |  |
|                | 11 V (70)                  | 40.32)                  | 42.70)         | 44.11)         | 39.00)         | 41.55)         | 40.68)         |  |  |
|                | E1 score $(9/2)$           | 47.41 (45.81 -          | 51.95 (50.32 - | 54.81 (52.81 - | 49.88 (47.86 - | 50.46 (49.23 - | 51.15 (49.81 - |  |  |
|                | 1 <sup>-1-score</sup> (70) | 48.96)                  | 53.58)         | 56.53)         | 51.78)         | 51.72)         | 52.39)         |  |  |
|                | MAE (%)                    | 23.81 (23.42 -          | 22.19 (21.82 - | 19.11 (18.76 - | 17.82 (17.48 - | 21.61 (21.35 - | 20.15 (19.88 - |  |  |
|                | MALE (70)                  | 24.22)                  | 22.52)         | 19.46)         | 18.16)         | 21.87)         | 20.40)         |  |  |
| Regression     |                            | 0.3704                  | 0.4890         | 0.5554         | 0.6200         | 0.4571         | 0.5497         |  |  |
|                | r                          | (0.3520 -               | (0.4704 -      | (0.5349 -      | (0.6018 -      | (0.4430 -      | (0.5360 -      |  |  |
|                |                            | 0.3880)                 | 0.5087)        | 0.5770)        | 0.6372)        | 0.4711)        | 0.5630)        |  |  |

Legend. Comparative table of the artery-level performance of the percentage of stenosis prediction algorithm from CathAI and DeepCoro. The image-based refers to the retrained classifier from CathAI and the video-based refers to DeepCoro Algorithm 6. The statistically significant metrics where the confidence intervals don't overlap are shown in bold. DeepCoro and CathAI predictions were binarized with a threshold of 0.23 and 0.22 respectively, as determined on the validation set. The range in parentheses is the 95% confidence interval generated by bootstrapping. Abbreviations. AUPRC: Area Under the Precision-Recall Curve, AUROC: Area Under the Receiver Operating Curve, LCA: Left Coronary Artery, MAE: Mean Absolute Error, PPV: Positive Predictive Value, *r*: Pearson's correlation coefficient, RCA: Right Coronary Artery.

#### Supplementary Table 7. Video-Level Performance of CathAI on the Test Set of Dataset A and Comparison to

DeepCoro

|                |                      | Coronary artery |                |                |                 |                |                |  |  |
|----------------|----------------------|-----------------|----------------|----------------|-----------------|----------------|----------------|--|--|
| Task           | Motric               | LC              | CA             | R              | CA              | RCA -          | + LCA          |  |  |
| I ASK          | Methic               | Image-based     | Video-based    | Image-based    | Video-based     | Image-based    | Video-based    |  |  |
|                |                      | model           | model          | model          | model           | model          | model          |  |  |
| Number         | of videos            | 34              | 16             | 34             | 86              | 69             | 02             |  |  |
| Number of seve | ere stenoses, $\geq$ |                 | 16             | E.             | 77              | 12             | 50             |  |  |
| 70             | %                    | 1               | /0             | 5              | //              | 15             | 33             |  |  |
| Number of heal | thy vessels, 0%      | 17              | 82             | 18             | 30              | 36             | 12             |  |  |
| sten           | oses                 |                 |                |                |                 | 5012           |                |  |  |
|                |                      | 0.7197          | 0.7798         | 0.8355         | 0.8463          | 0.7767         | 0.8114         |  |  |
|                | AUROC                | (0.7099 -       | (0.7713 -      | (0.8265 -      | (0.8378 -       | (0.7700 -      | (0.8052 -      |  |  |
|                |                      | 0.7292)         | 0.7886)        | 0.8452)        | 0.8452) 0.8552) |                | 0.8177)        |  |  |
|                | AUPRC                | 0.4266          | 0.5220         | 0.5132         | 0.5776          | 0.4637         | 0.5428         |  |  |
|                |                      | (0.4095 -       | (0.5039 -      | (0.4911 -      | (0.5547 -       | (0.4498 -      | (0.5279 -      |  |  |
|                |                      | 0.4449)         | 0.5415)        | 0.5350)        | 0.5989)         | 0.4780)        | 0.5586)        |  |  |
|                | Sensitivity          | 58.39 (56.68 -  | 67.15 (65.54 - | 76.28 (74.67 - | 77.31 (75.65 -  | 65.98 (64.78 - | 71.45 (70.31 - |  |  |
| Classification | (%)                  | 60.16)          | 68.89)         | 78.02)         | 79.10)          | 67.21)         | 72.74)         |  |  |
|                | Specificity          | 73.03 (72.20 -  | 73.53 (72.63 - | 78.30 (77.53 - | 77.37 (76.61 -  | 75.77 (75.22 - | 75.55 (75.02 - |  |  |
|                | (%)                  | 73.85)          | 74.41)         | 79.02)         | 78.12)          | 76.36)         | 76.13)         |  |  |
|                | DDV (0/.)            | 38.88 (37.46 -  | 42.74 (41.40 - | 41.06 (39.54 - | 40.38 (38.93 -  | 39.87 (38.94 - | 41.61 (40.54 - |  |  |
|                | FFV (70)             | 40.26)          | 44.15)         | 42.64)         | 41.85)          | 40.82)         | 42.56)         |  |  |
|                | E1 acore (0/)        | 46.67 (45.31 -  | 52.23 (50.89 - | 53.38 (51.89 - | 53.05 (51.63 -  | 49.71 (48.77 - | 52.59 (51.57 - |  |  |
|                | F1-score (%)         | 48.00)          | 53.50)         | 54.83)         | 54.53)          | 50.63)         | 53.59)         |  |  |
|                | MAE (0/)             | 24.60 (24.26 -  | 22.97 (22.66 - | 19.60 (19.32 - | 18.25 (17.96 -  | 22.07 (21.86 - | 20.59 (20.38 - |  |  |
|                | WIAL (70)            | 24.93)          | 23.29)         | 19.87)         | 18.51)          | 22.30)         | 20.80)         |  |  |
| Regression     |                      | 0.3470          | 0.4624         | 0.5389         | 0.6027          | 0.4432         | 0.5312         |  |  |
|                | r                    | (0.3312 -       | (0.4476 -      | (0.5223 -      | (0.5878 -       | (0.4321 -      | (0.5210 -      |  |  |
|                |                      | 0.3631)         | 0.4771)        | 0.5553)        | 0.6179)         | 0.4545)        | 0.5423)        |  |  |

Legend. Comparative table of the video-level performance of the percentage of stenosis prediction algorithm from CathAI and DeepCoro. The image-based refers to the retrained classifier from CathAI and the video-based refers to DeepCoro Algorithm 6. The statistically significant metrics where the confidence intervals don't overlap are shown in bold. DeepCoro and CathAI predictions were binarized with a threshold of 0.23 and 0.22 respectively, as determined on the validation set. The range in parentheses is the 95% confidence interval generated by bootstrapping. Abbreviations. AUPRC: Area Under the Precision-Recall Curve, AUROC: Area Under the Receiver Operating Curve, LCA: Left Coronary Artery, MAE: Mean Absolute Error, PPV: Positive Predictive Value, *r*: Pearson's correlation coefficient, RCA: Right Coronary Artery.

|                      | Number      | Number                   |           | Class     | Regression         |                    |          |           |
|----------------------|-------------|--------------------------|-----------|-----------|--------------------|--------------------|----------|-----------|
| Category             | of<br>exams | of<br>severe<br>stenoses | AUROC     | AUPRC     | Sensitivity<br>(%) | Specificity<br>(%) | MAE (%)  | r         |
| Sexes                | Sexes       |                          |           |           |                    |                    |          |           |
|                      |             |                          | 0.8420    | 0.4950    | 72.29              | 77.51              | 19.13    | 0.5649    |
| Female               | 2655        | 605                      | (0.8283 - | (0.4565 - | (69.23 -           | (76.27 -           | (18.62 - | (0.5392 - |
|                      |             |                          | 0.8564)   | 0.5350)   | 75.48)             | 78.81)             | 19.59)   | 0.5907)   |
|                      |             |                          | 0.8203    | 0.5260    | 72.30              | 76.25              | 20.53    | 0.5438    |
| Male                 | 1069        | 198                      | (0.8115 - | (0.5055 - | (70.62 -           | (75.40 -           | (20.20 - | (0.5284 - |
|                      |             |                          | 0.8295)   | 0.5491)   | 74.06)             | 77.05)             | 20.83)   | 0.5596)   |
| Age group            | )S          |                          |           |           |                    | 1                  |          |           |
|                      |             |                          | 0.8549    | 0.5747    | 67.72              | 83.83              | 17.98    | 0.5696    |
| < 60                 | 1127        | 155                      | (0.8400 - | (0.5331 - | (64.17 -           | (82.82 -           | (17.51 - | (0.5431 - |
|                      |             |                          | 0.8729)   | 0.6197)   | 71.54)             | 84.94)             | 18.47)   | 0.5970)   |
| > 60  and            |             |                          | 0.8107    | 0.5116    | 69.10              | 78.34              | 19.62    | 0.5425    |
| $\geq 00$ and $< 67$ | 1030        | 175                      | (0.7943 - | (0.4745 - | (65.54 -           | (76.99 -           | (19.06 - | (0.5144 - |
| < 07                 |             |                          | 0.8281)   | 0.5508)   | 72.66)             | 79.71)             | 20.14)   | 0.5702)   |
| > 67 and             |             |                          | 0.8064    | 0.4523    | 71.82              | 73.53              | 20.64    | 0.5123    |
| $\geq 0/$ and        | 1233        | 213                      | (0.7919 - | (0.4163 - | (68.82 -           | (72.22 -           | (20.12 - | (0.4868 - |
| < /5                 |             |                          | 0.8216)   | 0.4841)   | 75.14)             | 74.82)             | 21.15)   | 0.5382)   |
|                      |             |                          | 0.8308    | 0.5580    | 77.48              | 72.57              | 21.54    | 0.5646    |
| ≥ 75                 | 1369        | 271                      | (0.8180 - | (0.5244 - | (75.24 -           | (71.23 -           | (21.07 - | (0.5429 - |
|                      |             |                          | 0.8440)   | 0.5911)   | 79.91)             | 73.98)             | 21.97)   | 0.5885)   |

Supplementary Table 8. Performance of DeepCoro at the Arterial Level on Dataset A's Test Set, Segregated by Age

and Sex

Legend. DeepCoro's performance stratified across ages and sexes. The range in parentheses is the 95% confidence interval generated by bootstrapping. Abbreviations. AUPRC: Area Under the Precision-Recall Curve, AUROC: Area Under the Receiver Operating Curve, MAE: Mean Absolute Error, PPV: Positive Predictive Value, r: Pearson's correlation coefficient.

| Matrian          | Coronary artery          |                          |                          |  |  |  |  |  |
|------------------|--------------------------|--------------------------|--------------------------|--|--|--|--|--|
| wietrics         | LCA                      | RCA                      | RCA + LCA                |  |  |  |  |  |
| Artery-level     |                          |                          |                          |  |  |  |  |  |
| Number of exams  | 310                      | 319                      | 629                      |  |  |  |  |  |
| MAE (%)          | 8.18 (7.71 - 8.59)       | 7.31 (6.82 - 7.72)       | 7.75 (7.37 - 8.07)       |  |  |  |  |  |
| r                | 0.2858 (0.1997 - 0.3609) | 0.3899 (0.3353 - 0.4492) | 0.3439 (0.2970 - 0.3898) |  |  |  |  |  |
|                  | Vi                       | deo-level                |                          |  |  |  |  |  |
| Number of videos | 568                      | 699                      | 1267                     |  |  |  |  |  |
| MAE (%)          | 8.43 (8.11 - 8.75)       | 8.43 (8.11 - 8.75)       | 8.43 (8.21 - 8.64)       |  |  |  |  |  |
| r                | 0.2688 (0.2222 - 0.3146) | 0.3276 (0.2866 - 0.3683) | 0.3090 (0.2779 - 0.3396) |  |  |  |  |  |

Supplementary Table 9. Video-level and Artery-level Performance DeepCoro on Dataset D

Legend. DeepCoro's performance when fine-tuned on QCA labels. The range in parentheses is the 95% confidence interval generated by bootstrapping. Abbreviations. LCA: Left Coronary Artery, MAE: Mean Absolute Error, QCA: Quantitative Coronary Angiography, *r*: Pearson's correlation coefficient, RCA: Right Coronary Artery.

#### Supplementary Table 10. Parameters and Validation Set of Dataset C Dice Coefficient of the Seven Selected

| Training nonomotors          | Dice coefficient on the |  |  |  |
|------------------------------|-------------------------|--|--|--|
| Training parameters          | validation set          |  |  |  |
| Model = FPN                  |                         |  |  |  |
| Loss function = Lovasz Loss  | 0.6730                  |  |  |  |
| Batch size $= 64$            | 0.0750                  |  |  |  |
| Learning rate = 0.00107809   |                         |  |  |  |
| Model = DeepLabV3+           |                         |  |  |  |
| Loss function = Lovasz Loss  | 0.6816                  |  |  |  |
| Batch size $= 64$            | 0.0010                  |  |  |  |
| Learning rate = 0.00242160   |                         |  |  |  |
| Model = PAN                  |                         |  |  |  |
| Loss function = Tversky Loss | 0.6744                  |  |  |  |
| Batch size $= 64$            | 0.0744                  |  |  |  |
| Learning rate = 0.00129894   |                         |  |  |  |
| Model = DeepLabV3            |                         |  |  |  |
| Loss function = Tversky Loss | 0.6294                  |  |  |  |
| Batch size $= 4$             | 0.0294                  |  |  |  |
| Learning rate = 0.00059902   |                         |  |  |  |
| Model = FPN                  |                         |  |  |  |
| Loss function = Lovasz Loss  | 0.6297                  |  |  |  |
| Batch size = 16              | 0.028/                  |  |  |  |
| Learning rate = 0.00993245   |                         |  |  |  |
| Model = DeepLabV3            |                         |  |  |  |
| Loss function = Lovasz Loss  | 0.6225                  |  |  |  |
| Batch size $= 16$            | 0.0223                  |  |  |  |
| Learning rate = 0.00232125   |                         |  |  |  |
| Model = PAN                  |                         |  |  |  |
| Loss function = Dice Loss    | 0.6693                  |  |  |  |
| Batch size $= 64$            | 0.0065                  |  |  |  |
| Learning rate = 0.00646546   |                         |  |  |  |

#### Models as Part of Algorithm 4

Legend. Parameters used for training the several selected segmentation model and the validation set Dice coefficient that allowed them to be selected. The Dice Coefficient here was calculated over the 25 coronary artery segments available in the ARCADE dataset.

Supplementary Table 11. Video-based model trainings for stenosis severity (Algorithm 6) as part of DeepCoro's

| •    | 1.     |
|------|--------|
| pipe | eline. |
|      |        |

|                                                                              |                          |            | Validation  |
|------------------------------------------------------------------------------|--------------------------|------------|-------------|
|                                                                              |                          | Best       | AUC         |
| Training description                                                         | Training parameters      | valdiation | associated  |
|                                                                              |                          | loss       | to the best |
|                                                                              |                          |            | loss        |
|                                                                              | LR = 1e-3                |            |             |
| Swin3D (B) training for regression on Dataset A                              | Loss = Mean square error | 0.07432    | 0.8143      |
|                                                                              | Model = Swin3D (B)       |            |             |
|                                                                              | LR = 1e-4                |            |             |
| Swin3D (B) training for regression on Dataset A                              | Loss = Mean square error | 0.07724    | 0.8085      |
|                                                                              | Model = Swin3D (B)       |            |             |
|                                                                              | LR = 1e-5                |            |             |
| Swin3D (B) training for regression on Dataset A                              | Loss = Mean square error | 0.08225    | 0.7789      |
|                                                                              | Model = Swin3D (B)       |            |             |
| Swin3D (B) training for regression on Dataset A without adding age and       | LR = 1e-4                |            |             |
| artery segments in the last feature layer using different parameters for PCI | Loss = Mean square error | 0.07305    | 0.7549      |
| cleaning (v2) and RetinaNet for coronary artery assignment                   | Model = Swin3D (B)       |            |             |
| SlowFast training for regression on Dataset A without adding age and         | LR = 1e-4                |            |             |
| artery segments in the last feature layer using different parameters for PCI | Loss = Mean square error | 0.07627    | 0.7237      |
| cleaning (v2) and RetinaNet for coronary artery assignment                   | Model = SlowFast (R101)  |            |             |
| X3D (L) training for regression on Dataset A using RetinaNet for             | LR = 1e-4                |            |             |
| coronary artery assignment, and without adding age and artery segments       | Loss = Mean square error | 0.07337    | 0.7281      |
| in the last feature layer using different parameters for PCI cleaning (v2)   | Model = X3D (L)          |            |             |
| Swin3D (B) training for classification on Dataset A using RetinaNet for      | LR = 1e-4                |            |             |
| coronary artery assignment, and without adding age and artery segments       | Loss = Cross entropy     | 0.5384     | 0.7658      |
| in the last feature layer using different parameters for PCI cleaning (v2)   | Model = Swin3D (B)       |            |             |
| Swin3D (S) training for classification on Dataset A using RetinaNet for      | LR = 1e-4                |            |             |
| coronary artery assignment, and without adding age and artery segments       | Loss = Cross entropy     | 0.5483     | 0.7422      |
| in the last feature layer using different parameters for PCI cleaning (v2)   | Model = Swin3D(S)        |            |             |
| Swin3D (S) training for classification on Dataset A using RetinaNet for      | LR = 1e-3                |            |             |
| coronary artery assignment, and without adding age and artery segments       | Loss = Cross entropy     | 0.5209     | 0.7639      |
| in the last feature layer using different parameters for PCI cleaning (v2)   | Model = Swin3D(S)        |            |             |
| Swin3D (S) training for classification on Dataset A using RetinaNet for      | LR = 1e-3                |            |             |
| coronary artery assignment, and without adding age and artery segments       | Loss = Cross entropy     | 0.5519     | 0.7390      |
| in the last feature layer using different parameters for PCI cleaning (v1)   | Model = Swin3D (S)       |            |             |
| MViT training for classification on Dataset A (2017, 2018, 2019) using       | LR = 1e-2                |            |             |
| RetinaNet for coronary artery assignment, and without adding age,            | Loss = Cross entropy     | 0.5423     | 0.6423      |
| removal of CAGB and artery segments in the last feature layer using          | Model = MviT             |            |             |
| different parameters for PCI cleaning (v1)                                   |                          |            |             |
| X3D (L) training for classification on Dataset A (2017, 2018, 2019) using    | LR = 1e-2                |            |             |
| RetinaNet for coronary artery assignment, and without adding age,            | Loss = Cross entropy     | 0.5151     | 0.6889      |
| removal of CAGB and artery segments in the last feature layer using          | Model = $X3D(L)$         |            |             |
| different parameters for PCI cleaning (v1)                                   |                          |            |             |

| X3D (M) training for classification on Dataset A (2017, 2018, 2019) using<br>RetinaNet for coronary artery assignment, and without adding age,<br>removal of CAGB and artery segments in the last feature layer using<br>different parameters for PCI cleaning (v1) | LR = 1e-2<br>Loss = Cross entropy<br>Model = X3D (M) | 0.5244 | 0.6678 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|--------|
| R(2+1)D training for classification on Dataset A (2017, 2018, 2019) using<br>RetinaNet for coronary artery assignment, and without adding age,                                                                                                                      | LR = 1e-2                                            |        |        |
| removal of CAGB and artery segments in the last feature layer using different parameters for PCI cleaning (v1)                                                                                                                                                      | Loss = Cross entropy<br>Model = R(2+1)D              | 0.5505 | 0.5334 |

Legend. Various examples of trainings performed as part of the development process of DeepCoro for stenosis assessment. Abbreviations. CABG: Coronary Artery Bypass Grafting, LR: Learning Rate, PCI: Percutaneous Coronary Intervention.



## Supplementary Table 12. Examples of CathAI's vs. DeepCoro's Approach for Coronary Artery Segment Assignment





| (CathAI mistakenly identified | the LCX sub-segments and | (No Dist LCX pixels were                    | (No Dist LCX pixels were detected, and DeepCoro |  |  |  |
|-------------------------------|--------------------------|---------------------------------------------|-------------------------------------------------|--|--|--|
| LAD sub-segments in the LC    | X branch of the LCA. The | mistakenly identified the LC                | X sub-segments and LAD                          |  |  |  |
| stenosis box only overl       | aps with Prox LAD.)      | sub-segments in the LCX branch of the LCA.) |                                                 |  |  |  |
|                               | Legends                  |                                             |                                                 |  |  |  |
| RCA:                          | LCA:                     | RCA:                                        | LCA:                                            |  |  |  |
| 🗌 Prox RCA                    | Left main                | Prox RCA                                    | Left main                                       |  |  |  |
| 🗌 Mid RCA                     | Prox LAD                 | Mid RCA                                     | Prox LAD                                        |  |  |  |
| Dist RCA                      | Mid LAD                  | Dist RCA                                    | Mid LAD                                         |  |  |  |
| DPDA                          | Dist LAD                 | PDA                                         | Dist LAD                                        |  |  |  |
| Posterolateral                | Prox LCX                 | Posterolateral                              | Prox LCX                                        |  |  |  |
| 🔲 Stenosis                    | Dist LCX                 | Stenosis                                    | Dist LCX                                        |  |  |  |
| Other:                        |                          |                                             |                                                 |  |  |  |
| Catheter                      |                          |                                             |                                                 |  |  |  |
|                               |                          |                                             |                                                 |  |  |  |

Legend. Visual representation of results used to assign a coronary artery segment with CathAI and DeepCoro for four different cases. Unlike DeepCoro, which assesses the coronary artery tree as an interconnected structure,
 CathAI employs a method that identifies individual elements within an image using bounding boxes, without linking the various artery segments together. This approach results in CathAI assigning stenoses to specific bounding boxes without considering the underlying anatomy of the vessel. Green highlight: Correct output by the coronary artery

segment assignment algorithm. **Red highlight**: Incorrect output by the coronary artery segment assignment algorithm. **Abbreviations**. Dist LAD: distal left anterior descending artery, Dist LCX: distal left circumflex artery, Dist RCA: distal right coronary artery, Left main: left main artery, LCA: Left Coronary Artery, Mid LAD: middle

left anterior descending artery, Mid RCA: middle right coronary artery, PDA: posterior descending artery, Posterolateral: posterolateral branch from the right coronary artery, Prox LAD: proximal left anterior descending artery, Prox LCX, proximal left circumflex artery, Prox RCA: proximal right coronary artery, RCA: Right Coronary

Artery.

## Supplementary Table 13. Performance of DeepCoro's Algorithm 6 at the Video Level on Dataset A's Test Set, Segregated by According to the Number of Stenoses Associated to the Exam

|                |               | Coronary artery             |                             |                             |                             |                             |                             |  |  |
|----------------|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|
|                |               |                             | L                           | CA                          |                             | RCA                         |                             |  |  |
| Task           | Metric        | А                           | 11                          | LCX                         | LAD                         | RCA                         |                             |  |  |
|                |               | Single stenosis             | Multiple<br>stenosis        | Multiple<br>stenosis        | Multiple<br>stenosis        | Single stenosis             | Multiple<br>stenosis        |  |  |
| Number o       | of videos     | 591                         | 2,667                       | 567                         | 1,305                       | 1,097                       | 2,006                       |  |  |
| Number of se   | vere stenoses | 52                          | 724                         | 191                         | 451                         | 102                         | 475                         |  |  |
|                | AUROC         | 0.8493 (0.8259<br>- 0.8754) | 0.7542 (0.7447<br>- 0.7634) | 0.7270 (0.7063<br>- 0.7483) | 0.7576 (0.7454<br>- 0.7689) | 0.8988 (0.8839<br>- 0.9166) | 0.7999 (0.7878<br>- 0.8129) |  |  |
|                | AUPRC         | 0.4405 (0.3616<br>- 0.5025) | 0.5394 (0.5207<br>- 0.5587) | 0.5745 (0.5365<br>- 0.6133) | 0.6112 (0.5878<br>- 0.6354) | 0.5968 (0.5441<br>- 0.6479) | 0.5913 (0.5670<br>- 0.6156) |  |  |
|                | Sensitivity   | 63.34 (57.14 -              | 67.42 (65.75 -              | 63.87 (60.66 -              | 69.84 (67.74 -              | 86.21 (83.33 -              | 75.37 (73.42 -              |  |  |
| Classification | (%)           | 70.01)                      | 69.11)                      | 67.31)                      | 71.86)                      | 89.61)                      | 77.45)                      |  |  |
| Classification | Specificity   | 82.58 (80.92 -              | 69.58 (68.61 -              | 66.68 (64.38 -              | 66.32 (64.76 -              | 80.88 (79.63 -              | 70.75 (69.58 -              |  |  |
|                | (%)           | 84.30)                      | 70.54)                      | 69.08)                      | 67.75)                      | 82.12)                      | 71.83)                      |  |  |
|                | PPV (%)       | 25.99 (22.00 -<br>29.70)    | 45.25 (43.87 -<br>46.62)    | 49.35 (46.28 -<br>52.24)    | 52.28 (50.21 -<br>54.19)    | 31.60 (28.69 -<br>34.11)    | 44.42 (42.81 -<br>46.08)    |  |  |
|                | F1-score      | 36.83 (31.94 -              | 54.15 (52.89 -              | 55.67 (52.78 -              | 59.79 (58.06 -              | 46.23 (42.90 -              | 55.89 (54.25 -              |  |  |
|                | (%)           | 41.03)                      | 55.46)                      | 58.29)                      | 61.47)                      | 49.17)                      | 57.52)                      |  |  |
|                | MAE (%)       | 17.64 (17.06 -              | 24.72 (24.36 -              | 27.21 (26.33 -              | 25.89 (25.34 -              | 16.06 (15.64 -              | 20.69 (20.27 -              |  |  |
| Regression     | MAE (70)      | 18.17)                      | 25.06)                      | 28.04)                      | 26.42)                      | 16.48)                      | 21.11)                      |  |  |
| Kegression .   | r             | 0.4385 (0.3816<br>- 0.4832) | 0.4325 (0.4157<br>- 0.4500) | 0.3911 (0.3529<br>- 0.4276) | 0.4607 (0.4399<br>- 0.4823) | 0.6126 (0.5813<br>- 0.6407) | 0.5539 (0.5346<br>- 0.5737) |  |  |

Legend. DeepCoro's performance stratified across the number of stenoses. The range in parentheses is the 95% confidence interval generated by bootstrapping. Abbreviations. AUPRC: Area Under the Precision-Recall Curve, AUROC: Area Under the Receiver Operating Curve, LAD: Left Anterior Descending Artery, LCA: Left Coronary Artery, LCX: Left Circumflex Artery, MAE: Mean Absolute Error, PPV: Positive Predictive Value, r: Pearson's correlation coefficient, RCA: Right Coronary Artery.

## Supplementary Table 14. Time per DICOM to Analyse Every DICOM in the Test Set of Dataset A with DeepCoro from End-to-End

| Part                                               | The algorithm is applied to                                                     | Time per DICOM (second)<br>(mean ± SD) |
|----------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| Algorithm 1                                        | Every frame of the DICOM                                                        | $3.41\pm0.72$                          |
| Algorithm 2                                        | Every frame of the DICOM                                                        | $8.73 \pm 1.49$                        |
| Algorithm 3                                        | Every frame of the DICOM, in reference to each stenosis detected by Algorithm 2 | 24.31 ± 28.24                          |
| Algorithm 4                                        | Every frame of the DICOM                                                        | $4.67\pm2.14$                          |
| Algorithm 5                                        | Every registered segmented stenosis video                                       | $0.84\pm0.97$                          |
| Algorithm 6                                        | Every registered stenosis video kept                                            | $10.12\pm5.00$                         |
| Model loading and operations<br>between algorithms |                                                                                 | $10.50 \pm 2.38$                       |
|                                                    | 62.60 ± 33.34                                                                   |                                        |

Legend. Average time and standard deviation for DeepCoro to analyse every DICOM in the test set of Dataset A, which have been separated per component of DeepCoro. Samples were analysed on a single NVIDIA RTX3090 GPU with a batch size of 1 for this analysis. Abbreviations. SD: Standard Deviation.

|                                        | Coronary artery             |                                |                             |                             |                                |                             |                             |                                |                             |  |
|----------------------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|-----------------------------|--|
| Metric                                 | LCA                         |                                |                             | RCA                         |                                |                             | RCA+LCA                     |                                |                             |  |
|                                        | Diagnostic<br>Exam          | PCI                            | CABG                        | Diagnostic<br>Exam          | PCI                            | CABG                        | Diagnostic<br>Exam          | PCI                            | CABG                        |  |
| Number of videos                       | 475                         | 479                            | 15                          | 490                         | 409                            | 15                          | 965                         | 409                            | 30                          |  |
| Number of severe stenoses, $\geq 70\%$ | 105                         | 107                            | 6                           | 92                          | 106                            | 6                           | 197                         | 106                            | 12                          |  |
| MAE (%)                                | 20.26<br>(19.51 -<br>21.00) | 21.53<br>(20.70<br>-<br>22.37) | 21.60<br>(18.09 -<br>24.52) | 18.31<br>(17.56 -<br>18.98) | 21.29<br>(20.53<br>-<br>22.09) | 26.09<br>(21.41 -<br>30.61) | 19.27<br>(18.70 -<br>19.76) | 21.44<br>(20.83<br>-<br>21.98) | 23.86<br>(20.68 -<br>26.63) |  |

Supplementary Table 15. DeepCoro's MAE in Videos from Dataset B Associated to Exam, PCI and CABG Procedures

Legend. Difference in DeepCoro's performance observed in the LCA and RCA for videos during the diagnostic coronary angiogram, during PCI (detected by the PCI detection algorithm) and in patients with previous CABG (detected by the CABG detection algorithm). Abbreviations. CABG: Coronary Artery Bypass Grafting, LCA: Left Coronary Artery, MAE: Mean Absolute Error, PCI: Percutaneous Coronary Intervention, RCA: Right Coronary

Artery.

## **Supplementary References**

- 1 Avram, R. *et al.* CathAI: fully automated coronary angiography interpretation and stenosis estimation. *NPJ Digital Medicine* **6**, 142 (2023).
- 2 Sianos, G. *et al.* The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. *EuroIntervention* **1**, 219-227 (2005).
- Maxim Popov, A. A., Nuren Zhaksylyk, Alsabir Alkanov, Adilbek Saniyazbekov, Temirgali Aimyshev,
  Eldar Ismailov, Ablay Bulegenov, Alexey Kolesnikov, Aizhan Kulanbayeva, Arystan Kuzhukeyev, Orazbek
  Sakhov, Almat Kalzhanov, Nurzhan Temenov, & Siamac Fazli1. (ed Zenodo) (2023).