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We present a quantum-inspired classical algorithm that can be used for graph-theoretical problems, such
as finding the densest k subgraph and finding the maximum weight clique, which are proposed as appli-
cations of a Gaussian boson sampler. The main observation from Gaussian boson samplers is that a given
graph’s adjacency matrix to be encoded in a Gaussian boson sampler is non-negative and that computing
the output probability of Gaussian boson sampling restricted to a non-negative adjacency matrix is thought
to be strictly easier than general cases. We first provide how to program a given graph problem into our
efficient classical algorithm. We then numerically compare the performance of ideal and lossy Gaussian
boson samplers, our quantum-inspired classical sampler, and the uniform sampler for finding the densest k
subgraph and finding the maximum weight clique and show that the advantage from Gaussian boson sam-
plers is not significant in general. We finally discuss the potential advantage of a Gaussian boson sampler
over the proposed quantum-inspired classical sampler.

DOI: 10.1103/PRXQuantum.5.020341

I. INTRODUCTION

Over the last few years, we have seen the first plausible
quantum computational advantages from random circuit
sampling with superconducting qubits [1–6] and Gaussian
boson sampling [7–12]. While there are numerous inter-
esting debates on the claimed quantum advantage, such
as the effect of noise and the verification [13–19], the
computational cost of classically simulating the existing
quantum devices is still enormous. Therefore, an obvi-
ous next step beyond proof-of-principle experiments is to
take advantage of the computational power of such noisy
intermediate-scale quantum (NISQ) devices to solve more
practical problems.

An interesting and crucial observation to exploit the
potential quantum advantage of Gaussian boson sampling
is that one can embed a graph in the circuit so that a
Gaussian boson sampler can be programmed for various
graph-theoretical problems [20–23]. Such an observation
has led many theoretical proposals to solve problems [23],
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such as finding the densest k subgraph [21] and finding
the maximum weight clique [22]. These problems have
attracted much attention because of their potential appli-
cations in a wide range of fields such as data mining
[24–28] and bioinformatics [29–31] (see Ref. [23] for more
applications). Due to the importance of solving the prob-
lems, such theoretical proposals have recently started to be
experimentally implemented [22,32–34], which opens the
possibility of taking advantage of quantum computational
advantage from NISQ devices to solve practical problems.
In particular, the quantum advantage was claimed by com-
paring it with the uniform distribution, which was referred
to as the classical algorithm.

Meanwhile, potential applications of quantum devices
sometimes turn out to be classically simulable. For exam-
ple, the molecular vibronic spectra problem has been
considered as an application of Gaussian boson sampling
[35–37]. Very recently, classical algorithms have been
developed to solve the problem as accurately as the Gaus-
sian boson sampler for many cases, including the Fock-
state version of the problem [38]. Therefore, to claim and
exploit the potential quantum advantage more rigorously,
it is also crucial to scrutinize the problems’ complexity
and potential ways of simulating the quantum algorithm
using a classical counterpart. Similarly, while the graph-
theoretical problems we consider, such as finding the
densest k subgraph and finding the maximum weight
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clique, have been considered applications of Gaussian
boson sampling, it has been a longstanding open question
whether they provide a provable quantum computational
advantage [39].

In this work, we present a quantum-inspired classical
sampler that can be used for graph-theoretical problems,
such as finding the densest k subgraph and finding the
maximum weight clique. The algorithm is inspired by
the proposals of using Gaussian boson samplers for the
problems [21–23,40]. The main idea behind exploiting a
Gaussian boson sampler to solve such problems is that
the density of a graph is typically proportional to the
number of perfect matchings and that the output proba-
bility of a Gaussian boson sampler is proportional to the
latter. Therefore, a Gaussian boson sampler enables us
to more frequently sample subgraphs with many perfect
matchings, implying a high density. Our proposed classi-
cal algorithm has the same property as a Gaussian boson
sampler in that the sampler more frequently samples sub-
graphs with many perfect matchings. Hence, the crucial
property enjoyed by the Gaussian boson sampler to solve
such problems can also be similarly attained by our clas-
sical algorithm. Thus, our proposal questions the quantum
advantage of the Gaussian boson sampler for solving graph
problems.

The key observation that makes our classical algorithm
efficient is that the adjacency matrix of a graph to be
embedded in Gaussian boson-sampling circuits is always
non-negative. In addition, it is often the case that com-
putational problems associated only with non-negative
quantities are easier than more general cases. For exam-
ple, computing the output probability of Gaussian boson
sampling restricted to a non-negative adjacency matrix in
multiplicative error is in BPPNP, which is thought to be
strictly easier than general cases, the complexity of which
is #P-hard [41,42]. Using this observation, we present a
method that embeds the adjacency matrix of a given graph
into two-photon boson-sampling circuits that can be classi-
cally efficiently simulated. We emphasize that a Gaussian
boson sampler and our classical algorithm depend differ-
ently on the number of perfect matchings; the former is
proportional to its square while the latter is to itself. To
see the effect of such a difference, we then compare the
performance of the Gaussian boson sampler, the quantum-
inspired classical sampler, and the uniform sampler. We
consider Erdős-Rényi random graphs with different param-
eters and show that the average density and maximum
density of subgraphs obtained by a Gaussian boson sam-
pler and our classical sampler do not exhibit a signifi-
cant difference. We also compare the performance of a
heuristic classical algorithm equipped with each sampler
for finding the maximum weighted clique for the graphs
used in Refs. [22,32] and show again that the difference
between our classical sampler and the Gaussian boson
sampler is not significant. We finally discuss whether or

not a Gaussian boson sampler has a potential exponential
advantage over our quantum-inspired classical algorithm.

The paper is organized as follows: In Sec. II, we
review the relation between Gaussian boson sampling
and graph-theoretic problems. In Sec. III, we provide our
quantum-inspired classical algorithm and how to program
graph-theoretic problems to the algorithm. In Sec. IV, we
numerically analyze the algorithm’s performance by com-
paring it with the Gaussian boson sampler and the uniform
sampler. In Sec. V, we discuss the potential advantage of
the Gaussian boson sampler over our classical algorithm.

II. GAUSSIAN BOSON SAMPLING AND ITS
APPLICATION TO GRAPH-THEORETIC

PROBLEMS

Gaussian boson sampling is a sampling task, which is
proven to be hard to classically simulate under plausible
assumptions [11,12,43]. It can be experimentally imple-
mented by injecting squeezed states with squeezing param-
eters {ri}M

i=1 into M linear-optical circuit, characterized
by an M × M unitary matrix, and measuring the photon-
number distribution over the output modes. The output
probability of obtaining the photon-number outcome n ∈
Z

M
≥0 can be expressed by the hafnian of a relevant matrix A

as [11]

p(n) = |hafAn|2
n!

√|� + 1/2| , (1)

where � is the covariance matrix of the output quantum
state [44,45] and A = UDUT with a diagonal matrix D =
diag({tanh ri}M

i=1), and An is obtained by selecting rows and
columns of matrix A corresponding to the outcome n. Here,
the hafnian of a 2n × 2n matrix X is defined as

haf(X ) = 1
2nn!

∑

σ∈S2n

n∏

i=1

Xσ(2i−1),σ(2i), (2)

where S2n is the 2n-element permutation group. The key
idea of using Gaussian boson sampling for various appli-
cations is that one can embed an arbitrary complex sym-
metric matrix A by using the Takagi decomposition of
A = UDUT with an appropriate rescaling to make the diag-
onal component less than one, which is to assure that
tanh ri’s are within their range [20]. We note that there is
freedom of choosing the rescaling factor as long as tanh ri’s
are smaller than one, which changes the total photon-
number distributions but not the relative weight in the same
total photon-number outcome sector. Hence, for a given
adjacency matrix A, one can construct a Gaussian boson-
sampling circuit with squeezing parameters obtained by
the diagonal matrix D and a linear-optical circuit with the
unitary matrix U.
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Most of the proposed applications are related to graph-
theoretic problems due to the hafnian and its relation to
the output probability of Gaussian boson sampling [23,46].
Consider an undirected graph G = (V, E), where V is the
set of vertices and E ⊂ V × V is the set of edges. The graph
can be represented by its |V|-dimensional adjacency matrix
A whose matrix element Aij = 1 when (i, j ) ∈ E, i.e., when
there is an edge between the ith and j th vertices. The key
observation is that the hafnian of a matrix A is the number
of perfect matchings of a graph whose adjacency matrix is
A. Therefore, by embedding the adjacency matrix A into
Gaussian boson sampling, one can obtain a sampler that
favorably samples outcomes corresponding to a subgraph
whose number of perfect matching is large. Such a prop-
erty has been used to apply a Gaussian boson sampling for
finding dense subgraphs based on the observation that the
density of a graph is likely to be large when its number
of perfect matchings is large [21]. Hence, it can lead to an
acceleration of many heuristic classical algorithms, which
employ sampling a subgraph as their subroutines, such as
finding the densest k-subgraph problem [21] or finding the
maximum clique [22].

In the following section, we will show that a similar
acceleration is possible using a classical algorithm. The
critical observation is that the adjacency matrix A does not
contain negative elements and that many computational
problems restricted to non-negative elements are often eas-
ier than more general cases. For example, computing the
permanent of non-negative-element matrices in a multi-
plicative error is easy for a classical computer [47] while
the corresponding problem for general matrices is hard
(#P-hard) [47]. Our intuition from a physical perspective
is that Gaussian boson sampling associated with non-
negative-element matrix A might not necessarily require
a complicated multiphoton interference. Indeed, this is
true for Fock-state boson sampling; if we use distinguish-
able particles as an input of Fock-state boson sampling,
which is obviously easy to simulate instead of indistin-
guishable bosons, the output probability is expressed by
the permanent of non-negative-element matrices [42].

III. CLASSICAL SAMPLING ALGORITHM FOR
GRAPH-THEORETIC PROBLEMS

A. Multiple two-photon boson sampling

Before we provide our classical algorithm, let us con-
sider a Fock-state boson sampling with input |20 · · · 0〉,
i.e., two-photon boson sampling. After a linear-optical cir-
cuit U, the probability of obtaining photons at the ith and
j th modes with i �= j is given by

pij = |PerU1,(i,j )|2
2

= 2|U1i|2|U1j |2, (3)

where U1,(i,j ) is the submatrix of U selecting the first rows
twice and the ith and j th columns. When i = j , pii =

|U1i|4. More simply, the probability pij can be thought
of as that of obtaining two photons at i and j ’s modes
after two independent trials with probability pi = |U1i|2.
Hence, two-photon boson sampling can be easily simu-
lated by rolling a dice that produces output i with prob-
ability {|U1i|2}M

i=1 twice independently and then ignoring
the order of two outcomes.

Now, consider K different two-photon boson sampling
circuits with different linear-optical circuits {U(k)}K

k=1. We
will denote p (k)

ij as the kth circuit’s probability of obtain-
ing photons at the ith and j th modes. Let us consider a
sampling such that for N trials, we randomly choose one
circuit out of the set of circuits with probability qk with∑K

k=1 qk = 1 and inject two photons in the first mode.
Finally, we always obtain a 2N number of photons after
finishing N trials. Let us compute the probability of obtain-
ing outcome n = (1, . . . , 1, 0, . . . , 0), i.e., 2N photons are
detected on the first 2N modes. One can intuitively see
that this is related to the perfect matchings, i.e., to hafnian,
because we need to find matchings of photon pairs that
originate from the same circuit. More precisely and for-
mally, the probability is the sum of possible configurations
that provide the corresponding output (see Appendix A for
more details):

p(n) = 1
2N

∑

σ∈S2N

N∏

i=1

K∑

k=1

qkp (k)
σ (2i−1),σ(2i) (4)

=
∑

σ∈S2N

N∏

i=1

K∑

k=1

qk|U(k)
1,σ(2i−1)|2|U(k)

1,σ(2i)|2 (5)

= 2N N !haf(An), (6)

where A is a non-negative M × M matrix with its elements
defined as

Aij ≡
K∑

k=1

qk|U(k)
1,i |2|U(k)

1,j |2 = VQVT = WWT, (7)

and

Vik ≡ |U(k)
1,i |2, Wik ≡ √

qk|U(k)
1,i |2, Q ≡ diag(q1, . . . , qK).

(8)

Also, An is a 2N × 2N submatrix of A with selecting the
part of ones of n. The expression of the probability sug-
gests that if we implement the routine as described above,
the corresponding sampler’s output probability is propor-
tional to the hafnian of the submatrix of A. Thus, such a
construction allows us to find a classical sampler whose
output probability is written as a submatrix of the hafnian
of a matrix A, which can be obtained by U and Q. The
remaining challenge is to prove that we can embed an arbi-
trary non-negative matrix A into a sampler whose output
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probability is proportional to the hafnian of submatrices of
A, which will be addressed in the following section.

It is worth emphasizing that by focusing on the outcome
vector n = (1, . . . , 1, 0, . . . , 0) instead of the individual
outcomes of each trial, we assumed that we forget the
information of the unitary operation, i.e., the index k, for
each trial. In principle, we have the index information
when we run such a procedure, but ignoring the index
information (much like marginalization of the correspond-
ing information) renders the desired property that the out-
put probability is expressed by a hafnian (see Appendix A
for more details).

B. Mapping a general graph to a circuit

Consider an M × M general non-negative symmetric
matrix A, which corresponds to a graph of M vertices.
Although we will call this matrix an adjacency matrix for
simplicity, we require only the matrix to be non-negative
and symmetric. We first note that the hafnian of a matrix
does not depend on its diagonal elements. Thus, we can
freely add an arbitrary diagonal matrix without changing
its hafnian so that the matrix becomes diagonally domi-
nant, i.e., Aii ≥ ∑

j �=i |Aij | for all i’s. Hence, without loss
of generality, we will assume that a given adjacency matrix
A satisfies

Aii =
∑

j �=i

|Aij | for all i′s. (9)

It is known that a non-negative symmetric diagonally dom-
inant matrix is completely positive [48], i.e., A = HH T,
where H is not necessarily a square matrix. Thus, once we
find the matrix H , we can construct W in Eq. (7). Now we
show how to find H such that A = HH T, which is the result
from Ref. [48].

For a given M × M adjacency matrix, after adding
the diagonal matrix to satisfy Eq. (9), we can always
decompose the matrix A as

A =
∑

1≤j <i≤M

B(i,j ), (10)

where the M × M matrices B(i,j ) have Aij in positions ii,
ij , ji and jj and 0 elsewhere. Then, we can rewrite it as
B(i,j ) = b(i,j )(b(i,j ))T with the M -dimensional vector b(i,j )

whose ith and j th elements are
√

Aij . We then construct
M × M 2 matrix H such that H ’s (M (i − 1) + j )th column
is b(i,j ). Here, we set (M (i − 1) + i)th columns to be zero.
Then, we can easily check that A = HH T.

So far, we have shown how to find H , such that A =
HH T. Now we will show how to construct two-photon
boson sampling circuits {U(k)}M2

k=1 to program H . We first
define an M 2 × M 2 diagonal matrix D such that D’s each
element is the sum of H ’s ith column i.e., Dii = ∑M

k=1 Hki
for all i ∈ [M 2]. We then divide H ’s ith column by it, so
that the resultant M × M 2 matrix V satisfies

∑M
k=1 Vki =

1 for all i’s and HH T = VD2VT. Finally, we rescale the
matrix D2 so that its trace becomes 1, i.e., Q ≡ D2/Tr[D2].
Finally, we obtain the same form as Eq. (7),

A = Tr[D2]VQVT, (11)

with a coefficient Tr[D2]. Here, the meaning of the diago-
nal matrix Q is manifest that Q’s kth diagonal element is
qk, i.e., the probability of selecting the kth circuit. Also,
V’s kth column represents |U(k)

1,i |2. Thus, accordingly, for
each k ∈ [M 2] we construct U(k)

1,i , which can be easily done
because we require only a condition for a single row of
the unitary matrix and V is a non-negative matrix. (This is

(a)

(b)

(c)

FIG. 1. (a) Graph related to a given graph-theoretical problem such as finding the densest k subgraph or the maximum weighted
clique. (b) One can embed such a graph into a Gaussian boson sampler [20] (c) We propose a classical sampler, which can solve the
problem in a similar manner to a Gaussian boson sampler.
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to show the correspondence; in practice, one can directly
use |U(k)

1,i |2 as sampling probabilities without constructing
two-photon boson sampling.)

To summarize, we have shown that for a given M × M
adjacency matrix A, we can construct a set of linear-
optical circuits {U(k)}M2

k=1 with associated probabilities
{qk}M2

k=1, which samples outcomes with probabilities pro-
portional to the hafnian of the corresponding 2N × 2N
submatrix of A, i.e., of subgraphs of 2N vertices. Here,
we can freely choose N depending on the size of sub-
graphs we want. Since two-photon boson sampling can
be easily simulated by a classical computer, the entire
procedure can be simulated using a classical computer
efficiently.

One interesting difference between our classical
algorithm and a Gaussian boson sampler is that the lat-
ter’s output probability is proportional to the square of
the hafnian, ∝ |haf(An)|2 instead of the hafnian itself
∝ haf(An), which may provide better performance (see
Sec. V for more discussion). In the following section,
we compare their performances for finding the densest
k-subgraph problem and finding the maximum clique prob-
lem. One advantage of our quantum-inspired classical
algorithm is that we can choose the output photon num-
ber as we want, while Gaussian boson sampling has a
fixed total photon-number distribution for a given setup.
Thus, when one wants to focus on a particular size of sub-
graphs, Gaussian boson samplers cost additional overhead
for postselection.

We emphasize that since we require the matrix A to
be non-negative, our algorithm cannot be used for the
standard Gaussian boson sampling where the matrix A is
generally complex. Also, for the relevant problems we con-
sider, we need only to consider collision-free outcomes,
since only collision-free outcomes correspond to proper
subgraphs. Due to this and since the constructed U(k)

1,i is
only nonzero for at most two i’s for each k [see Eq. (10)
and the construction of B, H , and V], we need only to sim-
ply generate two photons for such i’s modes instead of
sampling after we sample a circuit from {qk}M2

k=1.
Finally, our sampling algorithm can also be used to

estimate the hafnian of a non-negative matrix with an
additive error, which is comparable with the algorithms
in Refs. [49–51]. It is worth emphasizing that conversely,
the algorithms that estimate the hafnian of a non-negative
matrix with an additive error do not immediately derive an
exact sampling algorithm proposed in this work because
of the additive error. For instance, Ref. [51] employed the
approximate estimation of the hafnian of a non-negative
matrix to construct a sampling algorithm. However, the
approximation algorithm entails a systematic error due to
the additive error induced by the small number of samples,
which may become exponentially significant as the system
size grows; in stark contrast, our algorithm is exact.

IV. PERFORMANCE COMPARISON

Many applications of the Gaussian boson-sampling rou-
tine are based on generating subgraphs that have high
density. Typically, the performance of Gaussian boson
sampling has been compared to the uniform sampler,
which was treated as a representative classical sampler [21,
22,32,33]. Our quantum-inspired algorithm clearly pro-
vides a better way of exploiting a classical computer than a
simple uniform sampler. In this section, we quantitatively
compare the performances for two different tasks.

A. Finding the densest k subgraph

One of the particularly interesting problems proposed
to use Gaussian boson samplers is finding the densest k-
subgraph problem, the definition of which is as follows:
given a graph G with M vertices, find the subgraph of k <

M vertices with the largest density. This problem is known
to be NP-hard [52]. Thus, generally, it is not believed to
be efficiently solved using quantum devices. Nevertheless,
in Ref. [21], it was shown that a Gaussian boson sam-
pler can accelerate the performance of a heuristic classical
algorithm using the fact that the density of a graph is pro-
portional to the number of perfect matchings and that the
output probability of a Gaussian boson sampler is propor-
tional to the square of the number of perfect matchings.
As we have shown in the previous section, our classical
sampler also enjoys the same property, namely, its output
probability is proportional to the number of perfect match-
ings. Therefore, the key property of exploiting a Gaussian
boson sampler to solve this problem can also be obtained
using our classical algorithm.

For the simulation with the Gaussian boson sampler, for
a given graph, we program the Gaussian boson-sampling
circuit using the method in Sec. II and exactly simulate
it using a classical algorithm [53]. Here, we choose the
covariance matrix whose average photon number is equal
to the target subgraph’s size k. As mentioned before, for
our quantum-inspired classical algorithm, we can fix the
output photon number, corresponding to the size of sub-
graphs. The uniform sampler is also implemented over the
k photon subspace.

For practical consideration, we also consider lossy
Gaussian boson sampling, where we replace the loss-
less squeezed states with squeezing parameter ri by new
squeezing parameter r′

i such that the average photon num-
ber of the new squeezed states after loss equals the
mean photon number of the lossless squeezed states, i.e.,
sinh2 ri = η sinh2 r′

i where η is the transmission rate and
1 − η is the loss rate. Thus, we compensate for the effect
by increasing the input squeezing parameter so that the
output Gaussian state has the average photon number to
be k. Otherwise, the probability of detecting k photons
is highly reduced due to the loss. From the experimental
perspective, such an adjustment inevitably increases the
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(a) (b) (c)

FIG. 2. Density of samples from ideal and lossy Gaussian boson sampler, our classical sampler, and the uniform sampler for random
graphs with n = 30 vertices and k = 10 size subgraphs and various p . (a) Average density for different regimes. (b) Maximum density
for different regimes. We use 102 different graphs with 103 number of samples for each p . (c) The maximum density achieved by a
different number of samples with p = 0.3. We analyze other choices of n = 20, 40, 100 in Appendix B and show that the behaviors are
similar to the presented case of n = 30.

input squeezing parameter, making the experiment more
demanding.

To compare the performance between different strate-
gies, the ideal and lossy Gaussian boson samplers, our
quantum-inspired classical sampler, and the uniform sam-
pler, we generate Erdős-Rényi random graphs with differ-
ent probability p of having edges between vertices and
present the behavior of the density of generated samples
from each sampler in Fig. 2. The figure shows that the
Gaussian boson sampler and our quantum-inspired classi-
cal sampler do not have a significant difference for a wide
range of p , while the uniform sampler tends to generate
lower density graphs than the former two, especially for
low p . We also compare the maximum density obtained for
a different number of samples. Again, the uniform sampler
clearly shows poorer performance than other samplers.
Although our quantum-inspired classical algorithm gener-
ates a slightly lower maximum density, the difference is not
very significant.

To compare lossy Gaussian boson samplers with the
lossless Gaussian boson sampler, we observe that the per-
formance degradation due to loss is insignificant. Hence,
for the task of generating dense subgraphs, adjusting
the input squeezing parameters maintains the perfor-
mance of the ideal Gaussian boson sampler, while prepar-
ing squeezed states with large squeezing becomes more
demanding experimentally and may cause additional loss.
Recently, such noise robustness has been used to pro-
vide another classical way of generating dense graphs in
Ref. [54].

In Fig. 3, we compare the probability distributions of
the ideal Gaussian sampler (normalized to the postselected
sector), the quantum-inspired classical sampler, and the
uniform sampler for Erdős-Rényi random graphs with p =
0.3 and p = 0.75 cases. For the instance that has the largest
probability, i.e., the largest perfect matching, the proba-
bility ratio between the Gaussian boson sampler and the
uniform sampler is large as 280 and 10, respectively, which
can be a large advantage. However, when compared to our

quantum-inspired classical algorithm, the ratio becomes
only about 9 and 3. It implies that we need only approx-
imately 10 times more samples to obtain the instance.
Such a difference comes from the different proportionality
of the probabilities to hafnian. We discuss this difference
and the potential advantage of Gaussian boson samplers
over our algorithm in Sec. V. In Refs. [21,40], the addi-
tional heuristic classical algorithm is applied to find the
densest k subgraph. In the next section for finding the max-
imum weighted clique, we will compare the performance
incorporated with the additional algorithm.

B. Finding the maximum weighted clique

Another relevant interesting problem is finding the max-
imum weighted clique [55,56]. In Ref. [22], the quantum-
classical hybrid algorithm equipped with Gaussian boson
samplers has been proposed to accelerate a heuristic classi-
cal algorithm to solve molecular docking problems, which
is related to drug design [22,57,58]. The problem takes an
input of an undirected graph with vertices and its adja-
cency matrix with an additional vector, which is the weight

(a) (b)

FIG. 3. Examples of probability distributions of samplers for
Erdős-Rényi random graphs with (a) p = 0.3 and (b) p = 0.75
with n = 24, k = 8. The ratio of the largest probability between
the Gaussian boson sampler and the uniform sampler is about
280 and 10, while that between the Gaussian boson sampler and
the quantum-inspired classical algorithm is only about 9 and 3,
respectively.
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vector associated with vertices. Reference [22] provides a
way of embedding the problem to a Gaussian boson sam-
pler, which favorably samples the outcome corresponding
to a high-weight clique. To embed the weight of vertices in
the sampler, we first construct a Gaussian boson sampler
corresponding to a matrix B, which is given by

B = �(D − A)�, (12)

where � is a suitable diagonal matrix and D is degree
matrix (D − A is graph Laplacian). The degree matrix is
the diagonal matrix with the degree of each vertex. Then,
it can be shown that the probability distribution is given by

p(n) ∝ [det(�n)haf(An)]2. (13)

Therefore, by choosing � as a diagonal matrix with the
weight vector as its diagonal elements, we can introduce
the effect of the weight in the probabilities, so that the
sampler favors the outcomes having a large weight. For
collision-free cases, which is our main interest for graph
problems, the dependence from D disappears and we can
set B = �A� without loss of generality.

Using the fact that for � = diag(w1, . . . , wn) [59],

haf(�A�) =
(

n∏

i=1

wi

)
haf(A), (14)

we can apply the same classical algorithm with the matrix
�A� because if A is completely positive, then so is �A�.
As pointed out in Ref. [22], one might choose � as a
weight matrix, but one can also choose �ii = 1 + αwi to
give some freedom that might weigh more on the haf-
nian than weight. For simplicity, we choose α = 1 for our
numerical results.

We consider two graphs corresponding to different types
of protein, which are studied in Ref. [22]: binding inter-
action between the tumor necrosis factor-α converting
enzyme (TACE) and a thiol-containing aryl sulfonamide
compound (AS) and a different protein structure (PBD
ID: 1ow7), corresponding to Paxillin LD4 motif bound
to the focal adhesion targeting (FAT) domain of the focal
adhesion kinase.

With the graphs and weights used in Ref. [22], we
first obtain 105 samples from each sampler and count
the number of samples corresponding to the maximum
weighted clique. While the Gaussian boson sampler found
approximately 20 samples corresponding to the maximum
weighted clique for both cases, our quantum-inspired clas-
sical sampler and the uniform sampler found only one
or two samples for both cases, which implies that Gaus-
sian boson sampling indeed performs better than the other
samplers. The difference in the performance from the
previous densest subgraph case is that the problems we

(a) (b)

FIG. 4. Probability distributions of samplers for (a) TACE-AS
and (b) 1ow7, used in Ref. [22]. The ratio of the largest prob-
ability between the Gaussian boson sampler and the uniform
sampler is about 323 and 385, while that between the Gaussian
boson sampler and the quantum-inspired classical algorithm is
only about 11 and 15, respectively.

consider for the maximum weight clique have only a sin-
gle subgraph solution over many subgraphs. In contrast,
the previous density problems may have many subgraphs
having the same density. To be clearer, in Fig. 4, we
compare the probability distributions of the ideal Gaus-
sian sampler, the quantum-inspired classical sampler, and
the uniform sampler. For the instance that has the largest
probability, i.e., the largest perfect matching, the proba-
bility ratio between the Gaussian boson sampler and the
uniform sampler is large as 323 and 385, respectively,
which can be a large advantage. However, when com-
pared to our quantum-inspired classical algorithm, the ratio
becomes only about 11 and 15. It implies that we need only
about approximately 10 times more samples to obtain the
instance.

After sampling from each sampler, we have also imple-
mented additional heuristic procedures, so-called shrink-
ing and searching [60,61]. The basic idea is to shrink the
sampled subgraphs to a smaller clique by truncating ver-
tices that do not constitute a clique and to locally search
larger cliques by adding vertices that compose cliques
maximizing the weight. After the procedures, we compare
the success probability of finding the maximum weighted
cliques for the graphs used in Ref. [22] and a 32-node
graph used in an experiment to claim an advantage over
a classical uniform sampler [32], which is shown in Fig. 5.
One can see that after the additional step, the difference
is not as dramatic as in the first step and that our quantum-
inspired classical sampler performs better than the uniform
sampler, which has frequently been used as a benchmark.

It is worth emphasizing that the experiment in Ref. [32]
using a Gaussian boson sampler and the shrinking and
searching postprocessing with 30 iterations obtained a suc-
cess probability around 16% while we obtain at least 40%
of success probability even with the uniform sampler.
The difference is that for the searching postprocessing, we
aim to find a clique that maximizes the weight, whereas
Ref. [32] aims to maximize the size of the clique without
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(a) (b) (c)

FIG. 5. Success probability of finding the maximum weighted clique with different iteration steps for shrinking and searching with
the graphs (a) TACE-AS, (b) 1ow7, used in Ref. [22] and (c) 32-node graph used in a recent experiment [32].

taking into account the weight. Such a different postpro-
cessing leads to a significant gap. Also, for this case, we
used only 300 samples, unlike 105 samples for the pre-
vious cases, to make the number of samples the same as
the experiment. Consequently, the very small gap between
the performances of the Gaussian boson sampler and our
sampler implies that the advantage over a classical sampler
does not exist or is insignificant in this case.

Now we compare the maximum squeezing parameters
required for ideal and lossy Gaussian boson samplers. For
the ideal case, for the first graph, the maximum squeez-
ing parameter is rmax = 1.380. On the other hand, for
the lossy case, when the loss rate is 1 − η = 0.3, rmax =
1.557 and when the loss rate is 1 − η = 0.5, rmax = 1.725.
For the second graph, for the ideal case and lossy cases
with 1 − η = 0.3, 0.5, the maximum squeezing parameters
are given by rmax = 1.121, 1.312, 1.499, respectively. For
the third graph, the maximum squeezing parameters are
given by rmax = 1.200, 1.381, 1.555, respectively. There-
fore, although theoretically, the lossy case is comparable
to or even better than the lossless case, the initial squeez-
ing parameters to compensate for the realistic photon loss
become more demanding in experiments.

V. DISCUSSION ON POTENTIAL QUANTUM
ADVANTAGE FROM THE GAUSSIAN BOSON

SAMPLER

We now discuss how much improvement a Gaussian
boson sampler might achieve over our classical algorithm
and if a Gaussian boson sampler can provide an expo-
nential speedup over our algorithm. We emphasize that
finding the densest k subgraph or the maximum weighted
clique relies on the heuristic argument for the proportion-
ality between the number of perfect matchings and the
density. To avoid the subtlety due to this, in this section,
we will focus on the problem that finds the subgraphs
with the maximum number of perfect matchings, which
is directly related to the output probabilities [40]. To do
this, we consider the problem of obtaining a specific sam-
ple n∗ having the largest number of perfect matchings,

say the solution of the problem, and compare how much
time cost is required for each sampler with fixing a certain
photon-number sector.

Recall that for a given adjacency matrix A, a Gaussian
boson sampler generates samples following the probability
distribution (normalized within a particular photon number
sector):

pQ(n) = |haf(An)|2
ZQ

= haf(An)
2

ZQ
, (15)

and the proposed quantum-inspired classical algorithm
generates samples following the probability:

pC(n) = haf(An)

ZC
. (16)

Here, ZQ and ZC are normalization factors. Then the two
distributions are related as

pC(n) =
√

pQ(n)
∑

n

√
pQ(n)

. (17)

First, we assume that the solution n∗ is unique, which
can be generalized to polynomially many solutions. In
this case, when pQ(n∗) is inverse-exponentially small,
the Gaussian boson sampler already takes exponential
time to obtain the corresponding sample. Thus, we will
focus on the case that pQ(n∗) is only inverse-polynomially
small, which guarantees that a Gaussian boson sampler
can generate the corresponding sample in a polynomial
time. Now, suppose that the probabilities pQ(n) are con-
centrated on polynomially many outcomes including n∗,
i.e., pQ(n) = O(1/poly(M )) for some polynomially many
n and pQ(n) = 0 otherwise. Then, using the Cauchy-
Schwarz inequality,

∑

n

√
pQ(n) ≤

√∑

n

pQ(n)
∑

n

12 =
√∑

n

12

= O(poly(M )), (18)
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where the sum is over the support of pQ(n), we obtain for n
such that pQ(n) = O(1/poly(M )), pC(n) is at least inverse-
polynomially large. Therefore, the classical sampler also
takes only polynomial time to obtain the sample n∗, which
implies that the Gaussian boson sampler provides at most
a polynomial speedup.

Now, suppose that pQ(n) = O(1/poly(M )) for polyno-
mially many n including n∗ and pQ(n) = O(1/exp(M ))

for other exponentially many outcomes. For simplicity,
let us consider an example: pQ(n∗) = 3/4 and pQ(n) =
1/4M+1 for 4M number of n. For such a distribution, the
corresponding probability pC(n∗) becomes

pC(n∗) =
√

3/2√
3/2 + 1/2M+1 × 4M

= O(1/ exp(M )),

(19)

which is inverse-exponentially small. Therefore, for this
example, running the quantum-inspired classical algorithm
we proposed would take an exponential time to gener-
ate n∗, which shows an exponential separation between
the Gaussian boson sampling and our quantum-inspired
classical algorithm.

The pertinent question is whether such a nontrivial prob-
lem with the above distribution exists. Unfortunately, this
might not be the case. Let us consider a similar problem
in the Fock-state boson-sampling setting [42], where the
probability is expressed by the permanent of the submatri-
ces of a unitary matrix. Mathematically, it was shown that
if the output probability (permanent) is large as 1/poly, the
relevant matrix has to be very close to a trivial matrix, such
as the identity matrix, or permutation matrices [62,63].
We expect that a similar result holds for the hafnian and
the Gaussian boson sampling, although it has not been
proven to the best of our knowledge. (If it turns out
to be false for hafnian, it can provide an exponential
speedup over our algorithm, as shown above.) In addi-
tion, since the relevant graph-theoretic problems, such as
finding the densest k subgraphs and finding the maximum
weight clique, are NP-hard, such instances are not the
hardest instances of the problems unless quantum devices
can solve NP-hard problems efficiently. Nevertheless, the
above example implies that if a relevant problem associ-
ated with an adjacency matrix A has an outcome n∗ with
large |haf(An∗)|2 with other exponentially many outcomes
having very small probabilities, running a Gaussian boson
sampler can provide a significant improvement over our
algorithm.

Another more interesting possibility for quantum advan-
tage is the problem in which there exist exponentially
many solutions among a much larger number of possi-
ble instances, instead of a unique solution. Suppose that
we have 4N /2 number of solutions that have probability
pQ(n) = 1/4N and 4M/2 number of instances that are not

solutions whose probabilities are 1/4M , where N is a pos-
itive integer. Then, the probability of obtaining a solution
is given by 1/2 for the quantum case. If we translate this
into our classical algorithm, the probability of obtaining a
solution is given by

∑

n:sol

pC(n) =
∑

n:sol

√
pQ(n)

∑
n

√
pQ(n)

= 2N

2N + 2M = 1
1 + 2M−N .

(20)

Hence, when M − N = �(N ), e.g., M = 2N , the prob-
ability of obtaining a solution becomes exponentially
small. Therefore, in this case, whereas the Gaussian boson
sampler can efficiently obtain a solution, our classical
algorithm takes exponential samples, 2M−N , to obtain a
solution. Unlike the unique-solution case, the Gaussian
boson sampler may still provide an advantage over our
algorithm.

VI. DISCUSSIONS

In this work, we have presented a quantum-inspired
classical algorithm for finding the densest k subgraph and
finding the maximum weighted clique. We numerically
show that although the Gaussian boson sampler may pro-
vide an advantage over our algorithm for a fixed number
of samples, the advantage is generally not very significant.
On the other hand, we provide a potential advantage of
a Gaussian boson sampler over our classical algorithm in
Sec. V.

However, it might be possible to find a better classi-
cal algorithm than our algorithm; in principle, a classical
algorithm following the same probability distribution as
the Gaussian boson sampler associated with a non-negative
matrix A is not prohibited because computing the haf-
nian of a non-negative matrix within a multiplicative error
is in BPPNP not #P-hard, which is crucial for hardness
proof of boson sampling [42,64]. Furthermore, since find-
ing the densest k subgraph and the maximum weighted
clique relies on the proportionality between the density and
the number of perfect matchings, there may exist a clas-
sical sampler whose output probability is proportional to
a quantity that is easy to sample from but is still highly
proportional to the density. Again, we emphasize that our
algorithm is irrelevant to the standard Gaussian boson-
sampling hardness [11,65] because the associated matrix
for the standard setting is not generally non-negative. In
addition, analyzing and generalizing our algorithm for
other applications [23,66], such as optimization [67] and
graph similarity [33,68–70], would be an interesting future
work.

Moreover, in general, more extensive studies on whether
the sampler-based algorithms, such as Gaussian boson
sampler or our sampler, can outperform other exist-
ing methods are another important future work. In
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Appendix C, we consider an ant-colony-optimization
(ACO) algorithm [71] as an example of classical algo-
rithms for solving the densest k-subgraph problem and
show that for typical cases, the ACO algorithm outper-
forms the sampling-based algorithms (even with the simu-
lated annealing method proposed in Ref. [21]). Neverthe-
less, there may be some ensemble of graphs for which the
sampler-based method surpasses existing classical algo-
rithms, which we leave an open question. Also, it may be
possible to incorporate the samplers into existing classical
algorithms to enhance the performance such as the ACO
algorithm (see Appendix C for more analysis).

In Ref. [72], the so-called independent pairs and singles
(IPS) distribution, which was developed for a different pur-
pose, is shown to be classically efficiently samplable. For
our purpose, we focus only on pairs. For a given M × M
non-negative matrix A, i.e., Ajk ≥ 0, the distribution is
defined as follows:

Q(n) = e− 1
2

∑M
j ,k=1 Ajk

∏
i ni!

haf(An), (21)

where n corresponds to the output photon-number vec-
tor. The sampling algorithm is implemented by generat-
ing photon pairs for each mode pairs (j , k) (with j ≤ k)
from a Poisson distribution with mean given by Aj ,k and
combining the photon numbers. First, if we postselect
collision-free outcomes for a fixed total photon number,
then the probability distribution is equivalent to our pro-
posed algorithm. However, for a given matrix A, the total
photon-number distribution of the IPS sampler is fixed,
which potentially costs an additional overhead. (This is the
case for Gaussian boson samplers as well.) More specifi-
cally, when one wants to focus on subgraphs with a fixed
number of vertices, the postselection overhead is addi-
tionally required. On the other hand, our algorithm can
generate the desired photon number only, which does not
cause any postselection cost (except for collision-free post-
selection, which applies to Gaussian boson samplers and
IPS samplers as well).
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APPENDIX A: OUTPUT PROBABILITY OF
QUANTUM-INSPIRED CLASSICAL ALGORITHM

Let us first consider a probability of obtaining
{(ki, n(i))}N

i=1, where 1 ≤ ki ≤ K , i.e., we obtain ki from
the probability distribution {qi}K

i=1 and n(i) from the two-
photon boson sampling from U(ki) for ith trial,

p((k1, n(1)), . . . , (kN , n(N ))) =
N∏

i=1

p((ki, n(i))) (A1)

=
N∏

i=1

(
2qki |Uki

1,n(i)
1

|2|Uki

1,n(i)
2

|2
)

,

(A2)

where n(i)
1,2 denotes the indices of the first and the second

ones in the vector, respectively. The second line is from
Eq. (3) with qki for the probability of obtaining ki.

If we marginalize the information of which two-photon
boson sampling we used and individual two-photon out-
comes, i.e., ki’s and n(i)’s, we obtain the probability
distribution

p(n) =
K∑

k1,...,kN =1

∑

n(1),...,n(N ):∑N
i=1 n(i)=n

p((k1, n(1)), . . . , (kN , n(N )))

(A3)

=
K∑

k1,...,kN =1

∑

n(1),...,n(N ):∑N
i=1 n(i)=n

N∏

i=1

(
2qki |U(ki)

1,n(i)
1

|2|U(ki)

1,n(i)
2

|2
)

(A4)

=
∑

n(1),...,n(N ):∑N
i=1 n(i)=n

N∏

i=1

K∑

ki=1

(
2qk|U(k)

1,n(i)
1

|2|U(k)

1,n(i)
2

|2
)

(A5)

= 1
2N

∑

σ∈S2N

N∏

i=1

K∑

k=1

qkp (k)
σ (2i−1),σ(2i), (A6)
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where the sum over n(i) stands for the sum over all possi-
ble vectors {n(i)}N

i=1 such that each vector n(i) is composed
of only two ones with other elements being zeros and the
sum of the vectors is equal to n. Here, the first line is
the marginalization of the information of ki’s and n(i)’s,
and the second line is from Eq. (A2), and the third line is
obtained by changing the order of the product and the sum-
mation, and the last line is by changing the summation for
n(i) by partitioning 2N ones in n into N pairs. Hence, we
derived Eq. (4) in the main text.

APPENDIX B: ADDITIONAL PLOTS

In this Appendix, we present additional plots to com-
pare the performance of the Gaussian boson sampler, our
quantum-inspired sampler, and the uniform sampler with
different random graphs, the number of vertices to be n =
20, 40, 100 with fixing k = 10, which are shown in Fig. 6.
Although we focused on the case of n = 30, k = 10 in the
main text, the additional figure clearly shows that the per-
formance difference is not significant for different choices
of the size of graphs n.

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Density of samples from ideal and lossy Gaussian
boson sampler, our classical sampler, and the uniform sampler
for random graphs with (a),(b) n = 20, (c),(d) n = 40, (e),(f) n =
100 vertices and k = 10 size subgraphs and various p . (a),(c),(e)
Average density for different regimes. (b),(d),(f) Maximum den-
sity for different regimes. We use 102 different graphs with 103

number of samples for each p .

APPENDIX C: DISCUSSION ON EXISTING
CLASSICAL ALGORITHMS

Besides the algorithm using Gaussian boson sampler
[21,40], there have been numerous studies to find classi-
cal algorithms for solving the densest k-subgraph problem
or finding the maximum weight clique problem due to
their importance for many applications. We refer readers
to Refs. [55,56,73–77] for the survey.

In this Appendix, we discuss the performance of the
algorithm using the Gaussian boson sampler and uni-
form sampler, our quantum-inspired classical algorithm
against a particular classical algorithm focusing on find-
ing the densest k-subgraph problem [71]. The classi-
cal algorithm we consider is based on an ant-colony-
optimization approach [78], which has been successful
for various optimization problems such as the traveling
salesman problem [79]. We chose this particular algorithm
because of its efficiency despite its simplicity, while we
emphasize that we do not claim that this is the best-
known classical algorithm and there are various classical
algorithms to be compared against.

The high-level idea of this algorithm is based on the
behavior of ants to find a path; ants communicate with
pheromones, and based on the information obtained by
the communication, they can find the shortest path to the
destination (e.g., the food source). Therefore, the qual-
ity of the previous solutions changes the configuration of
pheromones, and the subsequent trials adaptively change
the path based on it.

More specifically, suppose ants move along a graph
along its edges. When an ant is at the ith vertex, the
probability of moving to j th vertex is calculated as

p(i, j ) = (τij )
α(ηij )

β

∑
k∈Ni

(τik)α(ηik)β
, if j ∈ Ni, (C1)

where τij is called the pheromone level between nodes i
and j , and ηij is the heuristic information, and Ni is the
set of the neighbors of the vertex i. Here, we choose the
heuristic information as the density of the j th vertex in
the subgraph obtained by subtracting the vertices the ant
has moved through from the entire graph (one may choose
it differently). After an ant finishes, i.e., the ant moves
through k vertices, we obtain a solution and update the
pheromone using the quality of the obtained solution:

τij → ρτij + Q, (C2)

where ρ is called the evaporation coefficient and Q is the
quality of the solution, i.e., the density of the obtained
solution. Thus, the algorithm is stochastic and adaptive.
For the performance comparison, we fix the parameters as
the number of ants to be 10 and α = 1, β = 3, ρ = 0.9
while the choice of parameters may be further optimized
for different graphs.
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(a) (b) (c)

FIG. 7. Maximum density obtained by Gaussian boson sampler, our classical sampler, and the uniform sampler for random graphs
of n = 30 and k = 10 (a) without and (b),(c) with the simulated annealing (SA) of the number of steps to be 10 and 100, respectively.

We first compare the Gaussian, quantum-inspired, uni-
form samplers to the ACO algorithm for Erdős-Rényi
random graphs with n = 30 and k = 10, which is shown
in Fig. 7(a). Clearly, the ACO algorithm’s results are
significantly denser than the simple sampling methods,
namely, random search. However, Refs. [21,40] suggested
that such a random search algorithm can be employed for
a more sophisticated stochastic method, such as explo-
ration, tweaking, and simulated annealing. The simulated
annealing algorithm runs as follows [21]. (1-1) Generate
a random l-vertex subgraph R of an input subgraph S of
l < k vertices. (1-2) Extend R by picking a uniform ran-
dom number 0 ≤ m ≤ k − l of the vertices remaining from
S, along with the corresponding edges, which yields an
l + m-vertex graph. (2-1) Generate a random subgraph T
of k − l vertices using a sampler. (2-2) Reduce T by ran-
domly picking m vertices. (3) Attach the graph R and T
if R and T are disjoint; otherwise, redo until the condition
is satisfied. We then use the above step as a subroutine of
the so-called simulated annealing; the latter is a stochastic
method that replaces the candidate S with a new candidate
with probability determined by the temperature and the
quality of the candidates. (In our case, density corresponds
to the quality.) When the temperature is high, it is likely
to replace the candidate if the new candidate is low qual-
ity. When the temperature is low, it is unlikely to replace
the candidate if the new candidate is low quality, and the
temperature decreases as the running time increases. The
initial candidate S is chosen by a sampler, and the simu-
lated annealing processes the candidate afterwards. Thus,
we introduce an additional classical algorithm to further
process samples generated by Gaussian, quantum-inspired,
uniform samplers to enhance the performance beyond the
simple random search.

With certain parameters, the initial temperature T =
0.01 and linear cooling schedule with the number of steps
10 and 100, we again compare with the ACO algorithm
in Figs. 7(b) and 7(c). Whereas the improvement by
the simulated annealing with the number of steps 10 is
not sufficiently significant, we achieve almost the same

performance when the number of steps is 100. To ana-
lyze the difference more extensively, we also consider
structured graphs, i.e., not a generic random graph. We
employ the same graph used in Ref. [21], which was gen-
erated by (i) generating a random graph of 20 vertices with
p = 0.5, (ii) generating another random graph of ten ver-
tices with p = 0.875, and (iii) selecting eight vertices at
random in both graphs and adding an edge between them.
We compare the maximum density obtained for different
numbers of samples by each method, random search and
simulated annealing with different samplers and the ACO
algorithm, which are shown in Fig. 8. We can observe
from the figure that although adding more steps for the
simulated annealing improves the performance for this
structured graph, the ACO algorithm finds a higher-density
subgraph much faster than other methods. Therefore, over-
all, the simulated annealing algorithm with Gaussian or
quantum-inspired classical samplers does not outperform
the ACO algorithm for this case. It is worth noting that
the uniform sampler with simulated annealing performs
better than other samplers when the number of steps is
100, which may be attributed to the sufficiently large num-
ber of steps for the simulated annealing that makes more
exploration by uniform sampler beneficial over Gaussian
or quantum-inspired sampler weighs on certain patterns.

Since the ACO algorithm seems very powerful, we may
also attempt to incorporate the Gaussian boson sampler or

(a) (b)

FIG. 8. Maximum density obtained by different schemes for a
structured graph of n = 30 and k = 10 with the number of steps
(a) 10 and (b) 100 for simulated annealing (SA).
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(a) (b)

FIG. 9. Maximum density obtained for (a) n = 30, k = 10 and
(b) n = 180, k = 16 structured graphs by the ACO algorithm
with different methods of choosing the initial positions of ants.
Here, we generate 100 samples to determine the initial posi-
tions of ants for the cases of the Gaussian boson sampler and
quantum-inspired classical sampler.

our classical sampler into the ACO algorithm. Much like
the simulated annealing method, one way to do this is to
use the samplers to choose the initial positions of ants. The
intuition is that if the ants start from the vertices of dense
subgraphs (more precisely, subgraphs with a large hafnian)
instead of a random choice of the initial vertices, there may
be a higher chance of finding the densest subgraph. To real-
ize the intuition, we first generate a number of samples of k
subgraph using a Gaussian boson sampler or the quantum-
inspired classical sampler and pick the subgraph with the
largest density, and then ants begin at the vertices of the
subgraph.

To see whether it actually enhances the performance,
we again compare the performance between the ACO
algorithms with uniform random initial vertices, degree-
weighted random initial vertices, and sampler-assisted ini-
tial vertices. Here, the degree-weighted method randomly
chooses the initial vertices with probabilities weighted
by each vertex’s degree, inspired by the sampler-assisted
method. We again consider structured graphs and present
the results in Fig. 9. For the n = 30 and k = 10 case, the
graph was generated by (i) generating a random graph
of n vertices with p = 0.4 and (ii) replacing 1–5, 11–15,
21–25 subgraphs by random graphs of five vertices with
p = 0.8. For the n = 180 and k = 16 case, the graph was
generated by (i) generating a random graph of n vertices
with p = 0.4 and (ii) replacing 1–30, 116–135, 156–180
subgraphs by random graphs of 30, 20, 25 vertices with
p = 0.8. For those cases, we can indeed observe that the
initial vertices chosen using a Gaussian boson sampler and
our classical sampler enhance the performance of the ACO
algorithm. (For the latter, we did not implement the Gaus-
sian boson sampler due to the large computational cost.)
Thus, it also shows that the sampling methods may be able
to enhance the performance of existing stochastic classical
algorithms other than the simulated annealing proposed in
Refs. [21,40].

Although we compared the sampling-based algorithms
to a specific classical algorithm and provided a possibility

of extending it to a hybrid method, we emphasize that more
extensive studies of how the Gaussian boson sampler or
our classical sampler compares to other existing classi-
cal algorithms and whether such a hybrid method can be
extended to other classical algorithms are necessary.

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, and D. A.
Buell, et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[2] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen,
T.-H. Chung, H. Deng, Y. Du, and D. Fan, et al., Strong
quantum computational advantage using a superconducting
quantum processor, Phys. Rev. Lett. 127, 180501 (2021).

[3] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H.
Chung, H. Deng, Y. Du, D. Fan, and M. Gong, et al., Quan-
tum computational advantage via 60-qubit 24-cycle random
circuit sampling, Sci. Bull. 67, 240 (2022).

[4] A. Morvan, B. Villalonga, X. Mi, S. Mandra, A. Bengtsson,
P. Klimov, Z. Chen, S. Hong, C. Erickson, and I. Droz-
dov, et al., Phase transition in random circuit sampling,
arXiv:2304.11119.

[5] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, On
the complexity and verification of quantum random circuit
sampling, Nat. Phys. 15, 159 (2019).

[6] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H.
Neven, Characterizing quantum supremacy in near-term
devices, Nat. Phys. 14, 595 (2018).

[7] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, and Y. Hu, et al.,
Quantum computational advantage using photons, Science
370, 1460 (2020).

[8] H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen,
L.-C. Peng, Y.-H. Luo, D. Wu, S.-Q. Gong, and H. Su,
et al., Phase-programmable Gaussian boson sampling using
stimulated squeezed light, Phys. Rev. Lett. 127, 180502
(2021).

[9] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T.
Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt,
and M. J. Collins, et al., Quantum computational advantage
with a programmable photonic processor, Nature 606, 75
(2022).

[10] Y.-H. Deng, et al., Gaussian boson sampling with
pseudo-photon-number-resolving detectors and quantum
computational advantage, Phys. Rev. Lett. 131, 150601
(2023).

[11] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Sil-
berhorn, and I. Jex, Gaussian boson sampling, Phys. Rev.
Lett. 119, 170501 (2017).

[12] A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M.
Hinsche, M. Ioannou, L. Madsen, J. Lavoie, H. Qi, and
J. Eisert, et al., Quantum computational advantage via
high-dimensional Gaussian boson sampling, Sci. Adv. 8,
eabi7894 (2022).

[13] B. Villalonga, M. Y. Niu, L. Li, H. Neven, J. C. Platt, V.
N. Smelyanskiy, and S. Boixo, Efficient approximation of
experimental Gaussian boson sampling, arXiv:2109.11525.

020341-13

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://arxiv.org/abs/2304.11119
https://doi.org/10.1038/s41567-018-0318-2
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1103/PhysRevLett.131.150601
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1126/sciadv.abi7894
https://arxiv.org/abs/2109.11525


OH, FEFFERMAN, JIANG, and QUESADA PRX QUANTUM 5, 020341 (2024)

[14] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin, B.
Barak, and S. Choi, Limitations of linear cross-entropy as a
measure for quantum advantage, PRX Quantum 5, 010334
(2024).

[15] A. Bouland, B. Fefferman, Z. Landau, and Y. Liu, in 2021
IEEE 62nd Annual Symposium on Foundations of Com-
puter Science (FOCS) (IEEE, Denver, CO, USA, 2022), pp.
1308–1317.

[16] C. Oh, L. Jiang, and B. Fefferman, Spoofing cross-entropy
measure in boson sampling, Phys. Rev. Lett. 131, 010401
(2023).

[17] D. Aharonov, X. Gao, Z. Landau, Y. Liu, and U. Vazirani,
in Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC, New York, NY, USA, 2023).

[18] C. Oh, L. Jiang, and B. Fefferman, On classical simulation
algorithms for noisy boson sampling, arXiv:2301.11532.

[19] C. Oh, M. Liu, Y. Alexeev, B. Fefferman, and L. Jiang,
Classical algorithm for simulating experimental Gaussian
boson sampling, arXiv:2306.03709.

[20] K. Brádler, P.-L. Dallaire-Demers, P. Rebentrost, D. Su,
and C. Weedbrook, Gaussian boson sampling for perfect
matchings of arbitrary graphs, Phys. Rev. A 98, 032310
(2018).

[21] J. M. Arrazola and T. R. Bromley, Using Gaussian boson
sampling to find dense subgraphs, Phys. Rev. Lett. 121,
030503 (2018).

[22] L. Banchi, M. Fingerhuth, T. Babej, C. Ing, and J. M. Arra-
zola, Molecular docking with Gaussian boson sampling,
Sci. Adv. 6, eaax1950 (2020).

[23] T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N.
Quesada, A. D. Gran, M. Schuld, J. Swinarton, Z. Zabaneh,
and N. Killoran, Applications of near-term photonic quan-
tum computers: Software and algorithms, Quantum Sci.
Technol. 5, 034010 (2020).

[24] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins,
Trawling the web for emerging cyber-communities,
Comput. Netw. 31, 1481 (1999).

[25] V. Boginski, S. Butenko, and P. M. Pardalos, Mining market
data: A network approach, Comput. Oper. Res. 33, 3171
(2006).

[26] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava,
Dense subgraph maintenance under streaming edge weight
updates for real-time story identification, Proc. VLDB
Endow. 5, 574 (2012).

[27] B. Balasundaram, S. Butenko, and I. V. Hicks, Clique relax-
ations in social network analysis: The maximum k-plex
problem, Oper. Res. 59, 133 (2011).

[28] J. Pattillo, N. Youssef, and S. Butenko, in Handbook of
Optimization in Complex Networks: Communication and
Social Networks (Springer, Berlin, 2011), p. 143.

[29] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou,
Motifcut: Regulatory motifs finding with maximum density
subgraphs, Bioinformatics 22, e150 (2006).

[30] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang,
in Annual International Conference on Research in Com-
putational Molecular Biology (Springer, Berlin, 2010),
p. 456.

[31] N. Malod-Dognin, R. Andonov, and N. Yanev, in Interna-
tional Symposium on Experimental Algorithms (Springer,
Berlin, 2010), p. 106.

[32] S. Yu, Z.-P. Zhong, Y. Fang, R. B. Patel, Q.-P. Li, W. Liu, Z.
Li, L. Xu, S. Sagona-Stophel, and E. Mer, et al., A universal
programmable Gaussian boson sampler for drug discovery,
Nat. Comput. Sci. 3, 839 (2023).

[33] S. Sempere-Llagostera, R. B. Patel, I. A. Walmsley, and W.
S. Kolthammer, Experimentally finding dense subgraphs
using a time-bin encoded Gaussian boson sampling device,
Phys. Rev. X 12, 031045 (2022).

[34] Y.-H. Deng, S.-Q. Gong, Y.-C. Gu, Z.-J. Zhang, H.-L.
Liu, H. Su, H.-Y. Tang, J.-M. Xu, M.-H. Jia, and M.-C.
Chen, et al., Solving graph problems using Gaussian boson
sampling, Phys. Rev. Lett. 130, 190601 (2023).

[35] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and
A. Aspuru-Guzik, Boson sampling for molecular vibronic
spectra, Nat. Photonics 9, 615 (2015).

[36] H. Jnane, N. P. Sawaya, B. Peropadre, A. Aspuru-Guzik,
R. Garcia-Patron, and J. Huh, Analog quantum simula-
tion of non-condon effects in molecular spectroscopy, ACS
Photonics 8, 2007 (2021).

[37] S. Jahangiri, J. M. Arrazola, N. Quesada, and A. Delgado,
Quantum algorithm for simulating molecular vibrational
excitations, Phys. Chem. Chem. Phys. 22, 25528 (2020).

[38] C. Oh, Y. Lim, Y. Wong, B. Fefferman, and L.
Jiang, Quantum-inspired classical algorithms for molecular
vibronic spectra, Nat. Phys. 20, 225 (2024).

[39] There was a claim that there exists an efficient classical
algorithm to solve the problems (e.g., Refs. [80,81]), but
to the best of our knowledge, the algorithm and its details
have not been presented.

[40] J. M. Arrazola, T. R. Bromley, and P. Rebentrost, Quantum
approximate optimization with Gaussian boson sampling,
Phys. Rev. A 98, 012322 (2018).

[41] L. G. Valiant, The complexity of computing the permanent,
Theor. Comput. Sci. 8, 189 (1979).

[42] S. Aaronson and A. Arkhipov, in Proceedings of the
forty-third annual ACM symposium on Theory of comput-
ing (Association for Computing Machinery, New York NY
USA, 2011), p. 333.

[43] D. Grier, D. J. Brod, J. M. Arrazola, M. B. de Andrade
Alonso, and N. Quesada, The complexity of bipartite Gaus-
sian boson sampling, Quantum 6, 863 (2022).

[44] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[45] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Boca Raton, FL, 2017).

[46] C. Oh, Y. Lim, B. Fefferman, and L. Jiang, Classical sim-
ulation of boson sampling based on graph structure, Phys.
Rev. Lett. 128, 190501 (2022).

[47] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time
approximation algorithm for the permanent of a matrix with
nonnegative entries, J. ACM 51, 671 (2004).

[48] A. Berman and N. Shaked-Monderer, Completely Positive
Matrices (World Scientific, Singapore, 2003).

[49] A. Barvinok, Polynomial time algorithms to approximate
permanents and mixed discriminants within a simply expo-
nential factor, Random Struct. Algor. 14, 29 (1999).

[50] M. Rudelson, A. Samorodnitsky, and O. Zeitouni, Hafni-
ans, perfect matchings and Gaussian matrices, Ann. Probab.
44, 2858 (2016).

020341-14

https://doi.org/10.1103/PRXQuantum.5.010334
https://doi.org/10.1109/FOCS52979.2021.00127
https://doi.org/10.1103/PhysRevLett.131.010401
https://arxiv.org/abs/2301.11532
https://arxiv.org/abs/2306.03709
https://doi.org/10.1103/PhysRevA.98.032310
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1126/sciadv.aax1950
https://doi.org/10.1088/2058-9565/ab8504
https://doi.org/10.1016/S1389-1286(99)00040-7
https://doi.org/10.1016/j.cor.2005.01.027
https://doi.org/10.14778/2168651.2168658
https://doi.org/10.1287/opre.1100.0851
https://doi.org/10.1093/bioinformatics/btl243
https://doi.org/10.1038/s43588-023-00526-y
https://doi.org/10.1103/PhysRevX.12.031045
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1021/acsphotonics.1c00059
https://doi.org/10.1039/D0CP03593A
https://doi.org/10.1038/s41567-023-02308-9
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.22331/q-2022-11-28-863
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.128.190501
https://doi.org/10.1145/1008731.1008738
https://doi.org/10.1002/(SICI)1098-2418(1999010)14:1<29::AID-RSA2>3.0.CO;2-X
https://doi.org/10.1214/15-AOP1036


QUANTUM-INSPIRED CLASSICAL ALGORITHM. . . PRX QUANTUM 5, 020341 (2024)

[51] A. Uvarov and D. Vinichenko, On randomized estimators
of the hafnian of a nonnegative matrix, arXiv:2312.10143.

[52] U. Feige, D. Peleg, and G. Kortsarz, The dense k-subgraph
problem, Algorithmica 29, 410 (2001).

[53] B. Gupt, J. Izaac, and N. Quesada, The walrus: A library
for the calculation of hafnians, hermite polynomials and
Gaussian boson sampling, J. Open Source Softw. 4, 1705
(2019).

[54] N. R. Solomons, O. F. Thomas, and D. P. S. McCutcheon,
Effect of photonic errors on quantum enhanced dense-
subgraph finding, Phys. Rev. Appl. 20, 054043 (2023).

[55] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo,
in Handbook of Combinatorial Optimization (Springer,
Boston, MA, 1999), p. 1.

[56] Q. Wu and J.-K. Hao, A review on algorithms for maximum
clique problems, Eur. J. Oper. Res. 242, 693 (2015).

[57] I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T.
E. Ferrin, A geometric approach to macromolecule-ligand
interactions, J. Mol. Biol. 161, 269 (1982).

[58] F. S. Kuhl, G. M. Crippen, and D. K. Friesen, A combina-
torial algorithm for calculating ligand binding, J. Comput.
Chem. 5, 24 (1984).

[59] A. Barvinok, Combinatorics and Complexity of Partition
Functions (Springer, Berlin, 2016), Vol. 9.

[60] W. Pullan and H. H. Hoos, Dynamic local search for the
maximum clique problem, J. Artif. Intell. Res. 25, 159
(2006).

[61] W. Pullan, Phased local search for the maximum clique
problem, J. Comb. Optim. 12, 303 (2006).

[62] S. Aaronson and H. Nguyen, Near invariance of the hyper-
cube, arXiv:1409.7447.

[63] R. Berkowitz and P. Devlin, A stability result using the
matrix norm to bound the permanent, Israel J. Math. 224,
437 (2018).

[64] L. Stockmeyer, in Proceedings of the fifteenth annual
ACM symposium on Theory of computing (Association for
Computing Machinery, New York, NY, USA, 1983) p. 118.

[65] A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M. Hin-
sche, M. Ioannou, L. Madsen, J. Lavoie, H. Qi, J. Eisert,
D. Hangleiter, B. Fefferman, and I. Dhand, Quantum com-
putational advantage via high-dimensional Gaussian boson
sampling, Sci. Adv. 8, eabi7894 (2022).

[66] R. Mezher, A. F. Carvalho, and S. Mansfield, Solving graph
problems with single photons and linear optics, Phys. Rev.
A 108, 032405 (2023).

[67] J. Arrazola, V. Bergholm, K. Brádler, T. Bromley, M.
Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev,
and L. Helt, et al., Quantum circuits with many photons
on a programmable nanophotonic chip, Nature 591, 54
(2021).

[68] K. Brádler, S. Friedland, J. Izaac, N. Killoran, and D. Su,
Graph isomorphism and Gaussian boson sampling, Spec.
Matrices 9, 166 (2021).

[69] M. Schuld, K. Brádler, R. Israel, D. Su, and B. Gupt,
Measuring the similarity of graphs with a Gaussian boson
sampler, Phys. Rev. A 101, 032314 (2020).

[70] K. Bradler, R. Israel, M. Schuld, and D. Su, A duality at the
heart of Gaussian boson sampling, arXiv:1910.04022.

[71] Z. Tasnádi and N. Gaskó, in 2022 24th International Sym-
posium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC) (IEEE, Linz, Austria, 2022),
p. 208.

[72] J. F. F. Bulmer, B. A. Bell, R. S. Chadwick, A. E. Jones,
D. Moise, A. Rigazzi, J. Thorbecke, U.-U. Haus, T. V.
Vaerenbergh, R. B. Patel, I. A. Walmsley, and A. Laing,
The boundary for quantum advantage in Gaussian boson
sampling, Sci. Adv. 8, eabl9236 (2022).

[73] P. M. Pardalos and J. Xue, The maximum clique problem,
J. Glob. Optim. 4, 301 (1994).

[74] S. Khuller and B. Saha, in International Colloquium on
Automata, Languages, and Programming (Springer, Berlin,
2009), p. 597.

[75] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, A Survey
of Algorithms for Dense Subgraph Discovery (Springer,
Boston, MA, 2010), p. 303.

[76] R. Sotirov, On solving the densest k-subgraph problem on
large graphs, Optim. Methods Softw. 35, 1160 (2020).

[77] T. Lanciano, A. Miyauchi, A. Fazzone, and F. Bonchi, A
survey on the densest subgraph problem and its variants,
arXiv:2303.14467.

[78] M. Dorigo and G. Di Caro, in Proceedings of the 1999
Congress on Evolutionary Computation-Cec99 (Cat. No.
99TH8406), Vol. 2 (IEEE, Washington, DC, USA, 1999),
p. 1470.

[79] T. Stützle and M. Dorigo, ACO algorithms for the traveling
salesman problem (John Wiley & Sons, Inc., New York,
NY United States, 1999).

[80] S. Aaronson, https://scottaaronson.blog/?p=5159.
[81] S. Aaronson and S.-H. Hung, Certified randomness from

quantum supremacy, arXiv:2303.01625.

020341-15

https://arxiv.org/abs/2312.10143
https://doi.org/10.1007/s004530010050
https://doi.org/10.21105/joss.01705
https://doi.org/10.1103/PhysRevApplied.20.054043
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/0022-2836(82)90153-X
https://doi.org/10.1002/jcc.540050105
https://doi.org/10.1613/jair.1815
https://doi.org/10.1007/s10878-006-9635-y
https://arxiv.org/abs/1409.7447
https://doi.org/10.1007/s11856-018-1655-7
https://doi.org/10.1126/sciadv.abi7894
https://doi.org/10.1103/PhysRevA.108.032405
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1515/spma-2020-0132
https://doi.org/10.1103/PhysRevA.101.032314
https://arxiv.org/abs/1910.04022
https://doi.org/10.1126/sciadv.abl9236
https://doi.org/10.1007/BF01098364
https://doi.org/10.1080/10556788.2019.1595620
https://arxiv.org/abs/2303.14467
https://scottaaronson.blog/?p=5159
https://arxiv.org/abs/2303.01625

	I.. INTRODUCTION
	II.. GAUSSIAN BOSON SAMPLING AND ITS APPLICATION TO GRAPH-THEORETIC PROBLEMS
	III.. CLASSICAL SAMPLING ALGORITHM FOR GRAPH-THEORETIC PROBLEMS
	A.. Multiple two-photon boson sampling
	B.. Mapping a general graph to a circuit

	IV.. PERFORMANCE COMPARISON
	A.. Finding the densest k subgraph
	B.. Finding the maximum weighted clique

	V.. DISCUSSION ON POTENTIAL QUANTUM ADVANTAGE FROM THE GAUSSIAN BOSON SAMPLER
	VI.. DISCUSSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: OUTPUT PROBABILITY OF QUANTUM-INSPIRED CLASSICAL ALGORITHM
	. APPENDIX B: ADDITIONAL PLOTS
	. APPENDIX C: DISCUSSION ON EXISTING CLASSICAL ALGORITHMS
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


