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Review 

A review on mathematical modeling of microbial and plant induced 
permafrost carbon feedback 

Niloofar Fasaeiyan a,1, Sophie Jung a,1, Richard Boudreault a, Lukas U. Arenson b, 
Pooneh Maghoul a,* 

a Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada 
b BGC Engineering Inc., Vancouver, BC, Canada   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Assessing microbial activity's crucial 
role in permafrost carbon feedback; 

• Emphasizing the need for enhanced 
tools to precisely forecast carbon fluxes 
during permafrost thaw; 

• Highlighting the complex nature of 
permafrost ecosystems, influenced by 
various geophysical factors; 

• Recognizing the extensive use of 
process-based models in simulating 
greenhouse gas production, movement, 
and release; 

• Encouraging integrated models for un-
derstanding permafrost dynamics in the 
face of climate change using thermo- 
hydro-biogeochemical processes.  

A R T I C L E  I N F O   

Editor: Sergey Shabala  

Keywords: 
Permafrost carbon feedback (PCF) 
Biogenic activity 
Microbial activity 
Climate change 
Mathematical model 
Plant-microbe interaction 

A B S T R A C T   

This review paper analyses the significance of microbial activity in permafrost carbon feedback (PCF) and em-
phasizes the necessity for enhanced modeling tools to appropriately predict carbon fluxes associated with 
permafrost thaw. Beginning with an overview of experimental findings, both in situ and laboratory, it stresses the 
key role of microbes and plants in PCF. The research investigates several modeling techniques, starting with 
current models of soil respiration and plant-microorganism interactions built outside of the context of perma-
frost, and then moving on to specific models dedicated to PCF. The review of the current literature reveals the 
complex nature of permafrost ecosystems, where various geophysical factors have considerable effects on 
greenhouse gas emissions. Soil properties, plant types, and time scales all contribute to carbon dynamics. 
Process-based models are widely used for simulating greenhouse gas production, transport, and emissions. While 
these models are beneficial at capturing soil respiration complexity, adjusting them to the unique constraints of 
permafrost environments often calls for novel process descriptions for proper representation. Understanding the 
temporal coherence and time delays between surface soil respiration and subsurface carbon production, which 
are controlled by numerous parameters such as soil texture, water content, and temperature, remains a chal-
lenge. This review highlights the need for comprehensive models that integrate thermo-hydro-biogeochemical 
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processes to understand permafrost system dynamics in the context of changing climatic circumstances. 
Furthermore, it emphasizes the need for rigorous validation procedures to reduce model complexity biases.   

1. Introduction 

Permafrost, defined as ground that remains below zero degree 
Celsius for at least two consecutive years, stands as a critical component 
of Earth's system. The top layer of a permafrost site, called the active 
layer, undergoes seasonal freeze-thaw cycles. The thickness of the active 
layer depends on local and climate conditions such as vegetation, soil 
composition, air temperature, solar radiation, snow cover, and wind 
regimes (Liu et al., 2019). Climate warming has adversely affected 
permafrost regions, resulting in accelerated thawing and increase active 
layer thicknesses (Liu et al., 2023; Rossi et al., 2022; Gruber, 2020; 
Duchesne et al., 2015). 

Permafrost is currently estimated to represent the largest source of 
terrestrial carbon sink (Hugelius et al., 2020; Froese et al., 2008; Schuur 
and Abbott, 2011). Permafrost thaw, however, could lead tothe release 
of vast amounts of embedded greenhouse gases into the atmosphere, 
subsequently exacerbating climate change and further permafrost thaw. 
The permafrost carbon pool includes organic carbon stored within the 
top 3 meters of the ground, carbon in deposits deeper than 3 meters, and 
permafrost carbon that formed on land during the ice ages but is now 
found on shallow submarine shelves in the Arctic. Near surface perma-
frost soils which corresponds to the soil layer located between 0 and 3 
meters deep, contain about 1 035 ± 150 Pg carbon (where 1 Pg = 1 
billion tons) (Charles Tarnocai et al., 2009; Hugelius et al., 2014; Schuur 
et al., 2015). This amount is of significant importance considering that 2 
050 Pg carbon is stored in the near-surface soil layer (top 3 m) of the rest 
of Earth’s biomass, excluding the Arctic and boreal regions. This means 
that, based on current understanding, 33% of the global carbon pool is 
actually stored in the permafrost region which only represents 15% of 
the total global soil area (Schuur et al., 2015). Mishra et al. (2021) 
validated the estimate of near-surface permafrost carbon, confirming 
approximately 1 014 Pg with an updated database (Mishra et al., 2021). 
However, this likely represents a conservative minimum, as permafrost 
carbon extends beyond 3 m depth, suggesting a larger portion of global 
soil carbon is stored in permafrost. 

The degradation of permafrost due to climate warming impacts the 
net carbon balance in the ecosystem, as well as other processes such as 
vegetation growth and death, biogenic activities, and subsequently, 
emissions of greenhouse gases such as methane (CH4) and carbon di-
oxide (CO2) into the atmosphere, which are the main drivers of global 
warming (McGuire et al., 2018; Shogren et al., 2019; Vonk et al., 2019). 
Greenhouse gas emissions from permafrost are already estimated at 
between 0.3 and 0.6 billion tons of carbon each year, roughly equivalent 
to 7 % of the world's total carbon emissions from burning coal, oil and 
natural gas (Homer-Dixon and Froese, 2021; Schuur, 2019). By 
considering only gradual and top-down thaw, cumulative permafrost 
emissions could reach 150 billion tons of carbon by the year 2100 
without aggressive climate policies or climate change adaptation stra-
tegies. This amount is nearly half the world's remaining carbon budget if 
we want to keep global warming under 2 ◦C, which is the limit set in 
international climate agreements (Homer-Dixon and Froese, 2021). It is 
worth noting that carbon emissions from permafrost thaw are not even 
fully accounted for in global emissions budgets or in recently updated 
national commitments for emission cuts made under the Paris Agree-
ment. This process, which is called positive carbon feedback, can shift 
the permafrost from a sink of carbon to a source. This has been already 
observed in many different permafrost sites like the Arctic tundra 
(Koven et al., 2013; Lawrence et al., 2012; Schuur et al., 2013; Slater and 
Lawrence, 2013; Hollesen et al., 2011). 

For over 15 years, numerous studies have been conducted to develop 
mathematical models to predict the potential release of carbon from 

permafrost due to global warming and assess its impact on the rate of 
climate change. Different considerations have been made to refine the 
mathematical models and improve the precision of permafrost carbon 
decomposition predictions. For instance, the freeze/thaw state of the 
active layer was incorporated into the models (Lawrence et al., 2008; 
Koven et al., 2011). Another model improvement involved assessing the 
counterbalancing effect of plant carbon uptake, which can partially 
mitigate permafrost carbon release while also contributing to the 
accumulation of new soil carbon (Qian et al., 2010). Based on pro-
jections from these models and under the assumption of the current 
trajectory of climate warming (Representative Concentration Pathway 
RCP 8.5), the permafrost region could release between 5 and 15 % of the 
total permafrost carbon pool by the year 2100 (Schuur et al., 2022). 
Moreover, it is anticipated that the emission of carbon from thawing 
permafrost will have long-lasting consequences on the global climate. 
On average, these models project that about 59% of the total permafrost 
carbon emissions will take place beyond the year 2100 (Schuur et al., 
2015). Estimating carbon releases over such extended time frames is 
challenging and becomes even more complex as it requires accounting 
for the inertia of a warming climate, which leads to the thawing of near- 
surface permafrost and cascading changes in the ecosystems that result 
in the release of greenhouse gases. Over the past few years, the 
biogeochemical scientific community has done tremendous work to 
identify and isolate key factors in soil respiration to incorporate into 
their mathematical models. Progress in microbial ecology has led to an 
improved understanding of the processes driving microbial decompo-
sition, allowing for the development of increasingly complex carbon 
feedback models (Todd-Brown et al., 2012). 

In this review paper, we aim to review existing mathematical models 
for PCF from microbial and plant activities. Particular attention will be 
paid to models which have already been applied to permafrost. Further, 
we will discuss how the soil respiration models developed for different 
soil types can be adapted to thawing permafrost specificity. The paper 
begins by providing key features for understanding the impact of climate 
change on permafrost. It then describes the methodology employed to 
collect the data required to develop this study. This is followed by a 
comprehensive systematic review of the role of microbial communities 
in PCF and the most important influencing factors. The last two sections 
are devoted to the description of mathematical models built to account 
for soil carbon feedback, not limited to the permafrost context to begin 
with, followed by models that incorporate the complexities specific to 
permafrost. Finally, we offer some perspectives on identified research 
gaps and future model advancements. 

2. Climate change and permafrost thaw 

According to Canada's Changing Climate Report (2023) (Lulham 
et al., 2023), in the Arctic regions, temperatures have been warming at 
approximately four times the rate as the average global warming, a 
phenomenon known as Arctic amplification. The Arctic regions are 
located in the northern circumpolar region of the Earth. This area in-
cludes the tundra biome and parts of the boreal biome, which are 
characterized by areas such as continuous and discontinuous permafrost 
zones and persistent winter snow cover. By examining air temperatures 
(2 m above ground surface) between 1981 and 2020 and comparing this 
trend to changes in sea ice concentration and sea surface temperature, 
Isaksen et al. (2022) found that the warming rate for the Northern 
Barents Sea, located in the Arctic Ocean corresponds to 5 to 7 times the 
global warming averages. Changes in air temperature and sea ice are the 
main indicators of the environmental transformation and changes in 
hydrological and ecological processes in permafrost regions (Vaks et al., 
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2020; Wang et al., 2020). 
Permafrost temperature is linked to ground surface temperature, 

which, in turn, is directly influenced by fluctuations in air temperature 
as well as shifts in snow cover, surface hydrology, and vegetation dy-
namics. Consequently, the pace of permafrost warming exhibits varia-
tions across the Arctic landscape, contingent upon dynamic, local 
environmental conditions. The implications of permafrost carbon res-
ervoirs for global climate hinge on the dynamics of permafrost thaw and 
the extent to which this carbon will be released into the atmosphere as 
greenhouse gases. According to a recent assessment by Palmtag et al. 
(2022), nearly half of the Soil Organic Carbon (SOC) in the northern 
circumpolar permafrost region is situated in the top meter of the soil, 
rendering it particularly susceptible to the effects of climate change. It is 
essential to be able to predict the timing of this release and the degree to 
which it could be offset by an increase in plant biomass. 

A study by Berner et al. (2020) has shown that between 1985 and 
2016, tundra greenness (greening) increased by nearly 37 % of sample 
sites and decreased (browning) by nearly 5 % of sample sites. From these 
data, they concluded that in recent decades, summer warming has 
boosted plant productivity in much, but not all, of the Arctic tundra 
biome. This is an important phenomenon to be considered since the 
greening of permafrost regions will increase soil respiration, which is a 
key ecosystem process that releases carbon from the soil in the form of 
CO2 (Mahecha et al., 2010). In fact, soil respiration refers to the pro-
duction of carbon dioxide when soil organisms breathe. It is commonly 
divided into autotrophic and heterotrophic respiration, which corre-
spond to the emission of CO2 from plant and root respiration, and mi-
croorganisms, respectively. Besides CO2 emissions from soil respiration, 
microorganisms called methanogens produce methane as a metabolic 
byproduct in hypoxic conditions. The two entities (plants and micro-
organisms) do not only exist independently of each other but live in 
symbiosis so that the dynamics of one influence those of the other. For 
instance, the vegetation process affects microbial activity and the 
accumulation of soil biomass. Plants affect the availability of soil nu-
trients and subsequently the local microbial activity. This is why the 
results published by Berner et al. (2020) raise concerns and encourage 
further research on the greening of permafrost regions caused by climate 
change. However, there are currently substantial uncertainties 
regarding the effects of vegetation on the carbon cycle in permafrost, 
and whether rates of carbon accumulation exceed the release of 

greenhouse gases at a local scale (Koven et al., 2015; McGuire et al., 
2012). 

The complexity of understanding the effect of climate change on the 
permafrost ecosystem, as depicted in Fig. 1, arises from the fact that 
permafrost thaw triggers repercussions across interlinked dimensions of 
the ecosystem. These ramifications include vegetation growth, microbial 
activity, and soil water content. The more global warming intensifies, 
the more permafrost thaw threatens global warming. The conversion of 
ground ice into water facilitates expedited soil thawing through 
convective heat transfer from flowing water (Magnin and Josnin, 2021). 
This process, accelerated by factors like wildfires (Kuklina et al., 2022; 
Li et al., 2021; Holloway et al., 2020), leads to an accelerated ground 
collapse, giving rise to structures known as thermokarsts or retrogressive 
thaw slumps (Runge et al., 2022; Lewkowicz and Way, 2019; Segal et al., 
2016). As these formations emerge, they not only expose deeper 
permafrost layers to rapid thawing but also induce changes in local 
hydrology. This alteration in hydrology establishes an accelerated 
feedback loop on thaw due to convective heat transfer. Following the 
ground collapse, the heat permeates into deeper soil layers, as sub-
stantiated by recorded temperatures from various long-term monitoring 
sites in the circumpolar permafrost region of the northern hemisphere 
(Biskaborn et al., 2019). This evidence underscores that the temperature 
increase affects the entire ground profile. 

The active layer, where most vegetation and microorganisms reside, 
is the permafrost segment most susceptible to climate change. Rising 
summer temperatures and duration result in the active layer's expansion 
as degrading permafrost extends its depth. This expansion increases the 
thickness of the active layer, which significantly affects the types of 
vegetation that can thrive in the permafrost region. Plant roots are 
constrained by the active layer's thickness, preventing them from 
penetrating deeper. Consequently, the thickening of the active layer 
induces changes in the metabolic respiration pathway and modifies the 
fluxes of CO2 and CH4 (Frolking et al., 2011). 

3. Methodology 

The search strategy employed for data collection and the literature 
review presented in this paper was as follows: data was collected from 
ISI Web of science with different combinations of keywords. The paper 
search was limited to papers in English and the search for keywords was 

Fig. 1. Illustrating the intricacies of the permafrost ecosystem, with a specific focus on the carbon cycle. Permafrost, acting as a significant carbon reservoir, actively 
influences global carbon dynamics. This figure highlights the dual role of vegetation in carbon input to the soil and the contribution of plants and microbial activity to 
CO2 and CH4 emissions. The carbon feedback process is influenced by factors such as vegetation type, thermokarst presence, snow cover, and local soil properties. 
The thermal flux and hydraulic flow, affected by these factors, play a crucial role in the production and transport of carbon back to the atmosphere. 
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done within the titles, abstracts, and author keywords. The number of 
papers found for each search is given in Table 1. 

The objective of this review paper is to provide an overview of the 
existing mathematical models for predicting PCF resulting from global 
warming, and more specifically, existing models to account for the 
greenhouse gas emissions related to microbial activity coupled with 
vegetation growth in permafrost regions. 

The scientific community's attention has recently been directed 
explicitly to the subject of permafrost, and in particular to the quantity 
of carbon stored in these frozen soil layers that may be released into the 
atmosphere due to climate change. Over the last several years, an 
increasing number of scientists have begun to warn about permafrost 
thawing and the ramifications that this could have in terms of increased 
carbon emissions and thus aggravating global warming. Since 2015, one 
can notice a remarkable increase in the number of publications per year, 
with 30 papers published in 2015 and over 50 papers published in 2021. 
Among the first 633 papers found with the keywords Permafrost and 
Carbon feedback, only 7.6 % of them specifically dealt with the microbial 
activity in permafrost. 

As our primary focus revolves around reviewing mathematical 
models describing PCF related to microbial activity, we conducted a 
search using the keywords Permafrost, Carbon feedback, and Microbial 
activity. Among the 48 papers identified, 25 were pertinent to our goal of 
reviewing the literature concerning the influence of permafrost thaw on 
microbial activity. These selected papers are subsequently detailed in 
Section 4. 

Subsequently, we added the keyword Model to the search in order to 
find papers describing the mathematical model of the processes by 
which microbes contribute to PCF. This research returned sixteen pa-
pers. Among those sixteen papers, only two of them proposed a model of 
greenhouse gas emissions related to microbial activity in thawing 
permafrost. The keyword Model appeared in all these abstracts, albeit 
without proposing a model themselves, indicating that they helped lay 
the foundations for future modeling attempts. 

As few papers were found proposing mathematical models of carbon 
emission related to the activity of microorganisms in permafrost, we also 
took an interest in existing work related to the modeling of soil respi-
ration. Under the keywords Soil respiration, Carbon feedback, and Math-
ematical model, we found 15 papers. Analyzing the papers, we noted that 
about 90 % of them are analytical, experimental studies, and field 
measurements for specific sites and two of them presented a formulation 
to estimate the soil respiration (CO2 emission from the soil surface) 
(Burke et al., 2017; Luke and Cox, 2011). Because these key phrases did 
not provide the expected results, we conducted a modified search using 
the keywords Modeling, Soil CO2, and Production, and Transport which 
has been led to finding 401 papers. To identify the works among these 
401 papers, which focused on developing numerical models for green-
house gas emission from the soil, we first selected the articles based on 
their titles and abstracts to eliminate research that did not focus on 
mathematical modeling. The remaining articles were thoroughly eval-
uated by reading the entire contents. Through evaluating the full text, 
we identified the works that proposed innovative mathematical models 
or significantly improved existing models related to microbial activity 
and its relationship to greenhouse gas emissions in permafrost regions. 
Priority was given to studies that offered new parameters and processes 

or gave enhanced insights into basic knowledge. To avoid repetition and 
redundancy, papers that presented trivial differences from previously 
reviewed models were excluded. Reviewing the existing literature 
revealed a research gap in mathematical models addressing the inter-
action of microbes, plants, and soil. So, in the next step, we upgraded the 
search strategy once again to search for papers related to plant-microbes 
interaction known as Rhizosphere priming effect (RPE). Using Rhizo-
sphere priming effect and Modeling keywords, we found 81 papers. Since 
the primary concern of this study is on the mathematical modeling of the 
biogeochemical processes contributing to greenhouse gas emission from 
permafrost, the articles regarding the modeling of RPE were chosen by 
thoroughly reviewing their entire content. 

4. Role of microbial communities in PCF 

Microbial communities, which include bacteria, archaea, and fungi, 
have been facing radical changes in their living conditions due to 
climate change. These changes have caused alteration in microbial 
metabolic activity and potentially create a positive feedback loop from 
permafrost (Schuur et al., 2008). In order to accurately model green-
house gas emissions resulting from microbial activity in permafrost soils, 
it is crucial to comprehend the processes that connect the dynamics of 
microbial communities to the breakdown of carbon at various temper-
atures spanning from sub-zero to warmer conditions (Nikrad et al., 
2016; Reyes and Lougheed, 2015). Nevertheless, modeling carbon 
feedback from permafrost microbial activity is challenging because as 
temperatures rise, permafrost thaws, and this triggers a complicated 
interplay of various processes. Research has shown that comprehending 
microbial processes in permafrost thaw necessitates an understanding of 
the impacts of a multitude of physical variables. These variables include 
soil temperature, moisture levels, structure of soil pore network, 
chemical composition, as well as considerations of temporal and spatial 
scales. 

The diagram in Fig. 2 describes the process by which the rise in 
temperature initiates permafrost thaw, setting off a series of sub- 
processes that ultimately culminate in increasing microbial activity, 
subsequently increasing greenhouse gas emissions. When permafrost 
thaws, it adds moisture to the soil and releases trapped substances like 
minerals, organic matter, and nutrients from the frozen ground. This, in 
turn, stimulates microbial activity and facilitates vegetation growth. As 
a result, processes like methanogenesis, which produces methane 
without oxygen, and both heterotrophic and autotrophic respiration, get 
a boost and cause more greenhouse gases to be released. Nevertheless, 
the situation is more complex, given that additional competing mecha-
nisms also play a role in the overall process of greenhouse gas emissions. 
For example, the impact of vegetation on microbial activity can be either 
positive or negative. Vegetation functions as thermal insulation on the 
ground surface, which alters the energy balance and creates a favorable 
environment for microbial activity. It can offer nutrients that promote 
microbial growth. However, conversely, vegetation can also exert a 
detrimental impact on microbial activity by depleting essential nutrients 
required for microbial community development. 

The complex process of greenhouse gas emission is governed by a 
combination of various factors, such as temperature (both atmospheric 
and soil temperatures), vegetation type, soil moisture (including pre-
cipitation levels and water flow from ground ice melt), pore water 
salinity, soil characteristics (quantity and elemental composition of the 
substrate), and the structure of the microbial community (abundance, 
activity, and types of microorganisms). Table 4 in appendix provides an 
overview of the diverse research scopes explored within the recently 
published articles concerning carbon emissions associated with micro-
bial activity in permafrost. 

4.1. Effect of temperature and soil water content on microbial activity 

One of the most complex phenomena in permafrost dynamics is soil 

Table 1 
Keywords for the search strategy.  

Keywords Number of 
publications 

Permafrost & Carbon feedback & Microbial activity  48 
Permafrost & Carbon feedback & Microbial activity & 

Model  
16 

Soil respiration & Carbon feedback & Mathematical model  15 
Modeling & Soil CO2 & Production & Transport  401 
Rhizosphere priming effect & Modeling  81  
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respiration during freeze/thaw cycles. Several studies reveal a rapid 
increase, up to 10 times bigger, in CO2 effluxes as soils shift from frozen 
to unfrozen states (Elberling and Brandt, 2003). A common way to 
measure microbial processes or directly CO2 effluxes sensitivity to 
temperature is through the Q10 parameter. This parameter is used to 
quantify the effect of a 10-degree increase in temperature on any pro-
cesses through the ratio (T + 10◦C)/T, where T is the standard reference 
temperature (Nottingham et al., 2019). For example, Elberling and 
Brandt (2003) demonstrated that the Q10 value for CO2 effluxes is higher 
when assessed based on the change in CO2 effluxes as temperature in-
creases from negative values to 0 ◦C compared to temperatures above 
0 ◦C (e.g., Q10(T < 0◦

) = 21.7 and Q10(T > 0◦

) = 2.0 (Elberling and 
Brandt, 2003)). This reveals that the impact of temperature on CO2 ef-
fluxes is non-linear, emphasizing the need for comprehensive studies to 
gain a deeper understanding of this phenomenon. 

Beyond the effect of freeze/thaw changes, the soil water content also 
plays an important role in microbial respiration, which was investigated 
by Schädel et al. (2016). In their research, they did not confine their 
investigation solely to the impact of a 10-degree rise in soil temperature 
but they also examined the consequences of transitioning from aerobic 
to anaerobic conditions. Aerobic soil conditions refer to soil with ample 
oxygen availability, whereas anaerobic soil conditions relate to soil 
characterized by limited to no oxygen content, typically associated with 
waterlogged or flooded soil. They worked on 25 soil incubation studies 
from the permafrost zone including different ecosystems (boreal forest, 
peatland and tundra). They showed that increasing temperature by 
10 ◦C (from 5 to 15 ◦C) resulted in an increase in carbon release by a 
factor of 2. Furthermore, they demonstrated that when the same tem-
perature increase was coupled with alterations in soil moisture levels 
(corresponding to moving from aerobic to anaerobic soil conditions), 
there was a 3.4-fold greater release of carbon in aerobic conditions 
compared to anaerobic conditions. Song et al. (2020) also published a 

work suggesting that more carbon is released under aerobic conditions 
compared to anaerobic conditions. 

Monson et al. (2006) conducted a field experiment for six years, 
wherein they measured the net ecosystem carbon dioxide exchange in a 
subalpine forest situated within the Rocky Mountains. In their study, 
they demonstrated that the high sensitivity of soil respiration rates to 
temperature changes can be attributed to a soil microbial community 
characterized by exponential growth and rapid substrate utilization. 
Their findings revealed that not only the kinetics of microorganisms 
change with rising temperatures, but the composition of soil microbial 
communities also varies between snow-covered periods and summer. 
The researchers observed that microbes collected from beneath the snow 
cover exhibited exponential growth even at 0 ◦C, with their growth rate 
significantly accelerating as temperatures increased. The respiration 
rates increased by orders of magnitude when the soil temperature rose 
from − 1 ◦C to 0 ◦C. This phenomenon can be attributed to the phase 
change of ice into liquid water, which enhances substrate diffusion 
within the soil and facilitates nutrient accessibility for microorganisms, 
as explained by Stapel et al. (2016). As such, these findings raise several 
key factors to be taken into account when studying the role of microbial 
communities in PCF. Soil water content is for example a crucial factor to 
be considered, given its complex relationship with various mechanisms. 
Climate change not only alters the frequency of freeze/thaw cycles but 
also leads to extreme droughts and intense precipitation events. These 
changes in soil moisture have profound implications for microorgan-
isms, as they rely on it for essential functions such as motility, feeding, 
and reproduction. However, the study provided by Meisner et al. (2021) 
shows the complexity of the effect of soil water content on microbial 
activity. They have shown that freeze/thaw and drying/rewetting cycles 
have slightly different impacts on microbial community structure and 
microbial activity. Their study revealed that drying/rewetting cycles 
exert stronger effects on soil microbial communities and CO2 production 

Fig. 2. Schematic representation of the various mechanisms that drive an increase in greenhouse gas emissions as a result of climate change. The rise in temperature 
initiates permafrost thaw, setting off a series of processes that ultimately culminate in increasing microbial activity, effectively increasing greenhouse gas emissions. 
However, it's important to note that these processes are not linear, meaning that not everything exhibits a simple positive or negative correlation. Various competing 
mechanisms come into play in the context of PCF. 
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compared to freeze/thaw cycles. This discrepancy can be attributed to 
the more gradual change in soil moisture during freeze/thaw cycles, 
allowing soil microorganisms more time to adapt to the altered osmotic 
pressure. Additionally, the magnitude and form of carbon production 
are regulated by moisture conditions and the associated availability of 
oxygen. 

Taken together, these findings highlight the importance of investi-
gating the variation of soil water content, in the form of:  

• freeze/thaw cycles  
• drying/rewetting cycles  
• aerobic/anaerobic conditions 

as it plays a critical role in shaping microbial communities, carbon 
dynamics, and the overall functioning of ecosystems. 

4.2. Temporal and spatial considerations 

Among the different physical parameters involved, time is another 
crucial aspect to be considered, given that numerous mechanisms evolve 
over time. Various processes, including water diffusion across different 
soil layers, the evolution of microorganism communities, plant growth, 
canopy phenology, and seasonal temperature variations, exhibit tem-
poral dynamics that significantly influence the overall system behavior. 
Recognizing the temporal dimension is essential for comprehensively 
understanding the complex interplay of these mechanisms and their 
cumulative effects (Knoblauch et al., 2021; Yun et al., 2022; Qin et al., 
2021; Peng et al., 2020; Bouskill et al., 2020; Yang et al., 2018; 
Schneider von Deimling et al., 2015). For instance, it has been observed 
that short-term experiments tend to overestimate carbon feedback due 
to their failure to capture the non-linear, long-term dynamics occurring 
within the soil layers, including vegetation growth, soil organic matter 
content, and nutrient transformations, as highlighted by Bouskill et al. 
(2020). The complex response of the ecosystem to time is further 
exemplified by the interaction between plants and microorganisms. 
Hicks Pries et al. (2013) investigated the response of autotrophic and 
heterotrophic respiration to permafrost thaw. They divided ecosystem 
respiration into two components for autotrophic respiration (above and 
below plant structures) and two components for heterotrophic respira-
tion (young and old soil). Their findings revealed that permafrost thaw 
leads to an increase in both autotrophic and heterotrophic respiration. 
Initially, autotrophic respiration accounts for a larger portion of 
ecosystem respiration (40 % to 70 %) as plants grow and become more 
active. However, as the newly formed plant biomass decomposes and 
transforms into labile carbon, the heterotrophic microbial respiration in 
the active layer and permafrost eventually outpaces autotrophic respi-
ration, turning the active layer into a significant source of CO2. Addi-
tionally, Schneider Von Deimling et al. (2015) demonstrated through 
their numerical simulations that the highest methane emission rates 
occur once thermokarst lakes reach their maximum extent and when 
abrupt thawing under these lakes is taken into account. This time- 
dependent phenomenon cannot be fully captured in short-term experi-
ments. Another time-dependent factor that cannot be adequately 
demonstrated in short-term experiments is the alteration in microbial 
taxa. Monteux et al. (2020) emphasized that increasing temperatures, in 
addition to enhancing microbial activity, can facilitate the colonization 
of microorganisms by different microbial taxa, such as those from the 
overlying active layer. This process can have significant implications for 
global greenhouse gas emissions. 

The spatial dimension plays also a significant role in governing the 
interactions and processes occurring within permafrost ecosystems, as 
numerous mechanisms are contingent upon the specificities of the local 
environment. Factors such as soil properties (porosity, tortuosity), land 
covers, microbial communities, and even the presence of localized fea-
tures like thermokarst lakes or suprapermafrost taliks can exhibit sub-
stantial spatial variations. The permafrost region exhibits various land 

covers including forests, tundra, wetlands, barren areas, and bedrock 
(Palmtag et al., 2022). These diverse land cover types establish distinct 
conditions influencing the thermal and hydraulic characteristics of the 
local permafrost being studied. This geographical variability un-
derscores the need for region-specific analyses and emphasizes the 
importance of considering local conditions and characteristics when 
studying the effects of global warming on permafrost ecosystems (Torre 
Jorgenson et al., 2001). 

In reality, the various mechanisms involved in permafrost carbon 
dynamics do not operate independently, but all the different parameters 
interact. The fate of carbon stored in permafrost, whether it is released 
as methane or carbon dioxide, depends on which mechanism pre-
dominates. The carbon balance of a given location, determining whether 
it acts as a carbon sink or source, depends on the complex relationship 
between microorganism activity and vegetation activity. This complex 
equilibrium cannot be simply attributed to competition for soil nutri-
ents. Indeed, Sturm et al. (2005) have shown that an increase in shrub 
abundance leads to an increase in snow depth, which in turn promotes 
higher soil temperatures in winter, greater microbial activity, and more 
plant-available nitrogen (N). These factors, in turn, benefit the growth of 
shrubs during the following summer. However, this balance can be 
disrupted over time due to changes in dominant mechanisms, which 
may arise from specific events such as thermokarst formation or extreme 
climate events. This highlights the dynamic nature of the system and the 
potential for shifts in the underlying processes that govern carbon dy-
namics in permafrost ecosystems. 

5. Mathematical models for soil carbon feedback 

The response of terrestrial ecosystems to global warming, whether 
they amplify or mitigate it, depends on various processes that impact the 
carbon cycle in these ecosystems. To account for the global carbon ex-
change between soils and the atmosphere, different models known as 
Earth system models (ESMs) have been developed over the past few 
years. Earth system models incorporate a broad range of components, 
such as the atmosphere, oceans, land, ice, and their interactions in order 
to represent the carbon cycle at the global scale. Land surface models 
(LSMs) are implemented into the global ESMs to account for the 
different mechanisms at stake at a given time and space scale. LSMs 
focus on simulating and representing the physical and biophysical pro-
cesses occurring at or near the Earth's land surface, with a particular 
emphasis on land-based components such as soil, vegetation, and hy-
drology, along with their interactions with the atmosphere. LSMs cap-
ture processes like energy exchange, water balance, vegetation 
dynamics, nutrient cycling, and land-atmosphere interactions. They are 
typically employed at a detailed spatial resolution and are commonly 
used for regional or local-scale studies. The primary objective of LSMs is 
to provide a comprehensive understanding of land surface processes and 
their influences on climate, weather patterns, and ecosystem dynamics. 
They serve as vital components within larger Earth system models, 
supplying essential information on land-related variables to the broader 
system. 

In the context of this review paper, as mentioned above, we are 
interested in the different models and the related mathematical frame-
work that aim to quantify the contribution of microbial activity and 
vegetation to PCF. Different types of LSMs vary in their mathematical 
formulations and approaches, as follows:  

• Physics-based models: Physics-based models rely on physical laws 
and equations to simulate land surface processes. These models use 
principles from physics, such as mass conservation, heat transfer, and 
fluid dynamics to describe and simulate the behavior of the 
ecosystem. Physics-based models aim to capture the physical pro-
cesses and interactions with a high level of detail and accuracy. 

• Process-based models: Process-based models combine both phys-
ical laws with observed mechanisms to provide a mechanistic 
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understanding of land surface processes. These models are typically 
based on scientific understanding and empirical data and aim to 
capture the fundamental processes of energy balance, water balance, 
vegetation dynamics, nutrient cycling, and land-atmosphere 
interactions.  

• Empirical/statistical models: Empirical or statistical models, as the 
name implies, are based on observed data and statistical relation-
ships. These models use historical data or observations to develop 
statistical relationships between input variables and the output of 
interest. They may use regression analysis, machine learning algo-
rithms, or statistical techniques to establish relationships and make 
predictions. Empirical models are often used when detailed physical 
or mechanistic understanding is not available or when a large 
amount of observed data is accessible. 

These categories are not mutually exclusive, and many LSMs incor-
porate elements from different approaches. For instance, process-based 
models combine physics-based formulations for key processes with 
empirical relationships for specific variables or parameters. The choice 
of the type of LSM depends on the research objectives, available data, 
computational resources, and the level of detail and accuracy required 
for the specific application. 

Different LSMs have their own strengths and limitations, and re-
searchers select the most appropriate model based on the specific 
research question and available resources. When it comes to modeling 
PCF, we have already discussed in Section 4 the need to take into ac-
count the effect of global warming on permafrost regions and different 
factors affecting the complex processes involved. McGuire et al. (n.d.) 
have compared 13 different process-based models that simulated the 
permafrost region carbon dynamics between 1960 and 2009 in order to 
assess what factors explain the variability in the sensitivity of permafrost 
carbon pools among the models. The diverse models produced very 
different outcomes when assessing carbon exchange between permafrost 
soil and the atmosphere. This disparity highlights the need for continued 
efforts to gain a thorough understanding of the underlying processes 
governing carbon fluxes in permafrost soils. 

The following two sections present a comprehensive review of the 
various mathematical frameworks present in the literature, which aim to 
capture the mechanisms responsible for carbon emissions associated 
with microbial activity in permafrost degradation. Starting with models 
that were originally designed for any soil type and are not specifically 
aimed at permafrost, followed by a focus on models developed for 
permafrost specifically. 

5.1. Mathematical models for soil respiration 

Various biological processes referred to as soil respiration account 
for the production of CO2 in the soil, which is eventually released into 
the atmosphere. In this section, we provide a review of mathematical 
models that have been developed to simulate soil respiration. As 
mentioned in the methodology section, we have included in our bibli-
ography models, CO2 emissions from microorganism activity, although 
these models have not been specifically developed for permafrost soils. 
By considering a wide range of models, we aim to provide a compre-
hensive overview of the existing mathematical frameworks that have 
been employed to study processes of carbon feedback from soil ecosys-
tems to the atmosphere. So, by discussing CO2 emissions, we are first 
focusing on soil respiration. We noticed that soil respiration models are 
commonly divided into two main components. The first component fo-
cuses on the production of carbon dioxide, while the second component 
deals with the transport of this CO2 through various soil layers, ulti-
mately leading to its release into the atmosphere. In the transport 
mechanisms, CO2 is either transported in its gaseous phase or dissolved 
CO2 in soil's liquid phase, whether the process of CO2 dissolution is 
explicitly modeled or not. Regarding the production terms, soil respi-
ration, as mentioned previously, is further classified into two types: 

autotrophic respiration, which refers to plant and root respiration, and 
heterotrophic respiration, which refers to microorganism respiration. In 
reality, not all of the carbon contained in soil is released as CO2, but 
some of it is converted to methane by metabolic processes involving 
microbes called methanogens. The fate of this methane varies depending 
on the specific reactions that occur during its transport from the soil to 
the atmosphere. Ultimately, this methane can be released into the at-
mosphere as methane itself or as carbon dioxide if it has been oxidized 
before being emitted. 

On one hand, soil CO2 production originates from plant-related 
factors, including root growth respiration and root maintenance respi-
ration. On the other hand, microorganisms contribute to CO2 production 
through the decomposition of plant litter and the breakdown of soil 
organic matter (SOM), particularly associated with older plant litter 
(Pendall et al., 2003). In the overlap between plant and microorganism 
processes, there is another mechanism involving both, known as the 
rhizosphere priming effect. This process occurs when microorganisms 
living in close proximity to plant roots utilize and metabolize organic 
materials found in rhizome deposits. This organic matter can include 
dead plant material, root exudates, decomposed residues, and microbial 
biomass. Rhizome deposits are organic material or biomass that accu-
mulates around the rhizomes of plants over time, while rhizomes are 
living structures that play a vital role in plant growth, propagation, and 
nutrient storage. They are horizontal, underground stems of plants from 
which roots can grow. As rhizomes grow and spread, they interact with 
the surrounding soil and contribute to the accumulation of organic 
matter. 

In our analysis of mathematical models that characterize GHG 
emissions from microorganisms and plants, we choose to begin with 
Šimůnek and Suarez (1993) particular model due to its one-dimensional 
nature, which facilitates an initial understanding of the problem at hand. 
Šimůnek and Suarez (1993) developed a process-based model to 
describe CO2 production and transport in soil. The model is one- 
dimensional and incorporates CO2 production, CO2 transport with 
water flow and heat flux in a porous unsaturated medium. As such, the 
model can be divided into four main components: CO2 production, CO2 
transport, water flow, and heat flux. 

CO2 production (S) is attributed to microbial respiration and plant 
root respiration. The total CO2 production is the sum of these two 
components: 

S = γm + γr (1)  

in which γm 
[
L3 L− 3 T− 1] is the production of CO2 by soil microor-

ganisms and γr 
[
L3 L− 3 T− 1] is the CO2 production by soil plant roots. 

The model assumes that CO2 production deviates from its optimal rate, 
which is considered to occur at 20 ◦C under optimal water and solute 
concentrations. Thus the CO2 production rate is defined as the sum of 
the optimal CO2 production rate by microbes (γm0) and the optimal CO2 
production rate by plant roots which are respectively multiplied by six 
reduction functions. The reduction functions are introduced in order to 
account for the effects of depth, pressure head, osmotic head, temper-
ature, CO2 concentration, and time on CO2 production by microbes and 
plant roots. The mathematical framework is the same for both plant and 
microorganisms CO2 production, which is why we are providing a 
detailed structure only for γm as follows: 

γm = γm0f(z)f(h)f(T)f(ca)f
(
hϕ
)
f(t) (2)  

in which.  

• f(z) [L− 1] is the Depth Dependence factor: Microbial respiration 
decreases with depth due to decreasing root mass and available 
organic matter. Plant root CO2 production depends on a root growth 
function and a depth-dependent root distribution function, which 
have been determined to account for the water uptake by plant roots. 

N. Fasaeiyan et al.                                                                                                                                                                                                                              



Science of the Total Environment 939 (2024) 173144

8

• f(h) [− ] is the Pressure Head and Osmotic Head Dependence factor: 
Microbes' CO2 production is influenced by soil water content. The 
model assumes maximum microbial respiration occurs at a soil water 
pressure head of 0.01–1 MPa. Two threshold values are considered to 
account for reduced microbial respiration at high and low-pressure 
heads. The decrease at high pressure head is due to decreased 
availability of free water, while at low pressure head, oxygen be-
comes unavailable due to high water content.  

• f(T) [− ] is the Temperature Dependence factor: Both microbial and 
plant root CO2 production are assumed to be affected by temperature 
following the Arrhenius law: 

f(T) = exp
(

E
RT

T − T20

T20

)

(3)  

where E [L2 T− 1] is the activation energy of the reaction, T [K] is the 
absolute temperature and R [M L2 T− 2 K− 1 n− 1] is the universal gas 
constant. The optimal CO2 production rate occurs at 20 ◦C. 

• f(ca) [− ] is the CO2 Concentration Dependence factor: The produc-
tion rate of CO2 is related to its own concentration or similarly to 
oxygen deficiency as soil CO2 and O2 concentrations (ca and cO2 ) are 
assumed to be related by ca = 0.21 − cO2 (Šimůnek and Suarez, 
1993). f(ca) is given by the Michaelis-Menten equation that describes 
the reaction rate as function of a substrate concentration in this case 
it's the production rate of CO2 as function of CO2 or O2 concentra-
tion. The general form of the Michaelis-Menten equation is: 

V =
Vmax[S]
Km + [S]

(4)  

where V [L3 L− 3 T− 1] is the reaction rate, Vmax [L3 L− 3 T− 1] is the 
maximum reaction rate, [S] [ML− 3] is the substrate concentration, and 
Km [ML− 3] is the Michaelis constant, indicating the substrate concen-
tration at which the reaction rate is half of Vmax. Reduction functions for 
CO2 production are the same for microbes and plant roots. 

• f(t) [− ] is the Time Dependence factor: The time-dependent reduc-
tion function accounts for changes in CO2 production related to 
different growth stages of plants. Note that the temperature reduc-
tion function already describes the diurnal variation in CO2 pro-
duction and that other reduction functions already cover dependence 
on seasonal dynamics. 

Finally, CO2 production is integrated throughout the soil profile. 
CO2 transport in the soil is modeled using multiphase Fick's law. 

∂CT

∂t
= −

∂
∂z

(Jda + Jdw + Jca + Jcw) − Qcw + S (5) 

Diffusion and convection are the two mechanisms considered for CO2 

transport in both the liquid and gas phases of the soil porous medium. Jda 

[L T− 1] and Jdw [LT− 1] are the coefficients of diffusion, respectively, in 
the gas phase and liquid phase. Jca [L T− 1] and Jcw [L T− 1] are the co-
efficients of convection, respectively, in the gas phase and the liquid 
phase. Qcw [T− 1] is a sink term accounting for the dissolved CO2 removed 
from the soil by root water uptake and S is an additional production/sink 
term. It is worth noting that diffusion accounts for the movement from 
an area of higher concentration to an area of lower concentration while 
convection accounts for transport related to water and air flow. In their 
model, Simunek and Suares consider the dissolved CO2 that is removed 
from the soil by root water uptake, but they ignore the interaction of 
dissolved CO2 with the solid phase. In the water phase, both convection 
and dispersion are considered, while in the gas phase, diffusion is 
assumed to be dominant, and convection is neglected. The diffusion 
coefficients are assumed to be temperature-dependent. The parameters 
are obtained from known material parameters or the resolution of the 

water flow equation. 
One-dimensional Water flux in an unsaturated medium is calculated 

using Richard's equation, in which the effect of temperature is neglected: 

∂θw

∂t
=

∂
∂z

[

K
(

∂h
∂z

− 1
)]

− Q (6)  

in which θw [L3 L− 3] the volumetric water content, K [L T− 1] the un-
saturated hydraulic conductivity and h the pressure head. In this model 
Q [L3 L− 3 T− 1] is a sink term developed to account for plant root water 
uptake, which is the volume of water removed from a volume of soil per 
unit of time. Similarly, as the framework used to describe CO2 produc-
tion, water uptake is described as the amount of water absorbed by the 
plant's roots, taking into account the reduction from the maximum 
amount of water that the roots could potentially absorb within their root 
zone. They considered two reduction functions that are related to os-
motic stress response and water stress response, respectively. The two 
functions have the same form; however, the empirical parameters have 
different values. Osmotic stress refers to the adaptive mechanisms that 
plants employ to maintain osmotic balance during periods of imbal-
anced solute concentrations. As such osmotic stress is a specific type of 
water stress related to imbalances in solute concentrations, water stress 
is a broader term encompassing the overall effects of limited water 
availability on plants. Ultimately, plant water uptake depends on root 
vegetation growth. The model under consideration incorporates a 
formulation for vegetation growth that is both time and temperature 
dependent. 

The heat flux is calculated by considering both conduction and heat 
transported by flowing water: 

C
∂T
∂t

=
∂
∂z

[

λ(θw)
∂T
∂z

]

− Cw
∂qwT

∂z
(7)  

where C [J L− 3 K− 1] and Cw [J L− 3 K− 1] are the volumetric heat ca-
pacities of porous medium and liquid phase, respectively. λ(θw)

[W L− 1 K− 1] is the coefficient of the soil apparent thermal conductivity 
and qw [L T− 1] is the soil water flux. The volumetric heat capacity of the 
porous medium is the sum of contributions from the solid phase, organic 
matter, liquid phase, and gas phase. The resulting soil temperature is 
used in solving the CO2 transport equation. 

Fang and Moncrieff (1999) have also built a one-dimensional, pro-
cess-based model with the same global framework as Šimůnek and 
Suarez (1993) namely by describing the CO2 production and transport in 
a one-dimensional porous unsaturated medium. Despite their similar 
mathematical framework, Fang and Moncrieff have provided a more 
detailed process to account for the CO2 production. More particularly 
they have further detailed the dependence of soil respiration on soil 
water content and soil oxygen concentration. Oxygen is an environ-
mental factor, which has an influence on respiration rates of plant tis-
sues. It has been shown that at low O2 concentrations, the respiration 
rate linearly increases with the oxygen concentration. The increase 
slows down to a maximum for high O2 concentrations. Assuming that 
oxygen concentration has the same effect on microbial respiration, the 
dependence of soil respiration rate on ambient oxygen concentration 
can be described by the Michaelis-Menten equation (Eq. (4)) (Fang and 
Moncrieff, 1999). 

In their model, CO2 production is divided into the root and microbes 
contributions. First, the calculation of heterotrophic respiration, deno-
ted as Rm [L2 T− 1], is based on the effective quantity of decomposing 
material, which corresponds to soil organic matter. To represent mi-
crobial respiration adequately, two distinct rates of decomposition are 
taken into account. This approach considers both the decomposition of 
labile carbon and the more resistant fraction, often referred to as slow 
soil organic carbon: 
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Rm = α dM
dt

= γm

[

λM+
kris

klab
(1 − λ)M

]

(8)  

in which α [M M− 1] is a coefficient representing the amount of CO2 
produced from the decomposition per unit of dry organic matter, M 
[M L− 2] is the amount of effective decomposing organic matter, γm 

[L2T− 1] is the heterotrophic respiration rate, klab [M M− 1 T− 1] is the 
decomposition rates for labile organic matter, kris [M M− 1 T− 1] is the 
decomposition rates for resistant organic matter, and λ [M M− 1] is the 
ratio of labile to total amount of organic matter. All the carbon is 
assumed to be produced as CO2. 

Second, the autotrophic respiration, denoted as Rr 
[
L2 T− 1], is 

associated with two factors: the rate at which roots breathe and the 
quantity of root biomass in the soil. Regarding root respiration, they 
have assumed that a linear relationship can be established between the 
respiration rate and the root biomass for each particular root size class: 

Rr = γr
∑ γri

γr
Bi (9)  

where γr 
[
L− 2 T− 1] is the autotrophic respiration rate, γri 

[
L− 2 T− 1] is 

the respiration rate parameter of root size class i and Bi 
[
M L− 2] is the 

root biomass of size class i. By acknowledging that the rates of respira-
tion in roots per unit of dry mass differ based on root diameter or size 
class, they established a direct correlation between root biomass and 
respiration rate for each specific root size class. 

The total CO2 production is the sum of heterotrophic and autotrophic 
respiration integrated along the soil profile to account for the depth 
dependence of both respiration. Besides, they have accounted for the 
influence of environmental factors on the respiration rates in a similar 
manner as (Šimůnek and Suarez, 1993), which consists of expressing 
autotrophic (γr) and heterotrophic (γm) respiration rates, as a deviation 
from the optimal respiration rates, γr0 and γm0. As such, they have 
multiplied the optimal respiration rates by three scaling functions to 
account for the dependence of soil respiration on temperature, water 
content, and O2 concentration in the soil. The three scaling functions are 
the same for both heterotrophic and autotrophic respiration functions:  

• Temperature dependence: The temperature dependence is treated 
similarly as (Šimůnek and Suarez, 1993) with the Arrhenius law (Eq. 
(3)).  

• Soil moisture dependence: The soil systems are assumed to possess 
a natural respiratory potential that depends on soil moisture content. 
However, this potential remains unrealized when the soil is dry. 
When water is added to the soil, soil respiration increases, but the 
rate of increase gradually decreases as soil moisture further 
increases.  

• Soil oxygen concentration dependence: Similar to (Šimůnek and 
Suarez, 1993), soil respiration rate is assumed to depend on soil 
oxygen concentration according to the Michaelis-Menten equation 
(Eq. (4)). The equation describes that respiration rates first increase 
linearly with increasing O2 concentration until a given O2 concen-
tration, followed by a decrease in respiration rate for further increase 
in O2 concentration. 

CO2 transport is treated with the same framework as in (Šimůnek 
and Suarez, 1993). They have considered both gaseous diffusion and 
liquid phase dispersion. In contrast to Simunek and Suares' proposed 
model, Fang and Moncrieff's (1999) model disregarded the aspects of 
liquid phase diffusion and the transport mechanisms related to root 
water uptake. 

Jassal et al. (2004) also proposed a process-based model. The 
mathematical framework of their model is very similar to Fang and 
Moncrieff (1999) and Šimůnek and Suarez (1993). Again this one- 
dimensional model incorporates CO2 production and CO2 transport 

while considering the water flow and heat flux in a porous unsaturated 
medium. The model proposed considers both heterotrophic and auto-
trophic respiration as sources of carbon dioxide production in the soil, in 
line with other existing models. Their approach stands out from the 
others due to its consideration of the variability in the quantity and 
distribution of organic matter within the soil profile. To address this, 
they model the soil as a multi-layered system, acknowledging the 
distinct organic matter characteristics across different layers. The 
organic matter content varies with soil depths, with specific amounts 
allocated to each layer. Consequently, each layer is divided into two sub- 
pools: labile carbon CsoilL 

[
M L− 3], representing easy to decompose and 

reactive organic compounds that microorganisms can readily utilize for 
energy production, and resistant carbon CsoilR 

[
M L− 3], comprising more 

challenging-to-decompose carbon compounds. 3 % of the total soil 
organic matter is assumed to represent the portion of labile carbon, 
while 45 % is considered as resistant carbon. The remaining portion is 
categorized as passive carbon, meaning that it does not contribute to 
CO2 production. 

CO2 production from microbial respiration is separately calculated 
for each pool as two reaction terms with two specific rate constants, kL 
[
T− 1] and kR 

[
T− 1], related to the decomposition of labile and resistant 

carbon, respectively. The overall CO2 production from heterotrophic 
respiration is as follows: 

RCS = kLCsoilL + kRCsoilR (10) 

As mentioned above, labile organic matter, known for its easy 
decomposition, acts as a readily accessible carbon source that is rapidly 
decomposed by soil microbes. On the other hand, resistant organic 
matter is less susceptible to microbial degradation, resulting in a slower 
decomposition rate. In a similar vein as in Fang and Moncrieff's model, 
the estimation of carbon dioxide production resulting from autotrophic 
respiration depends on root size. They consider two classes: fine and 
coarse roots. The calculation involves multiplying the products of the 
respective rate constants and root mass density for each class in the 
following manner: 

RCR = kFroot MFroot + kCroot MCroot (11)  

where MFroot 

[
ML− 3] and MCroot 

[
M L− 3] represent the carbon mass den-

sities of fine and coarse roots, respectively, while kFroot 

[
T− 1] and kCroot 

[
T− 1] stand for the corresponding respiration rate constants. To deter-

mine the total carbon dioxide production in the soil profile, they sum 
RCR 

[
ML− 3 T− 3] and RCS 

[
M L− 3 T− 3] in all layers multiplied by scaling 

factors. The scaling factors are defined to account for the influence of 
temperature and soil moisture. The temperature scaling factor is defined 
based on Q10 coefficient, which represents the relative increase in 
respiration rate for a 10◦C temperature increase: 

α(T) = Q10

(
T− Tref

10

)

(12) 

The soil moisture scaling factor, as CO2 production decreases at both 
very low and very high soil water contents, is defined as a piece-wise 
linear function of relative water-filled porosity as represented in Fig. 3. 

The CO2 transport in the soil is modeled by diffusion in both the 
gaseous and liquid phases. They also took into account CO2 uptake by 
plant roots associated with root water uptake. 

The model is then calibrated against in situ measurements. The CO2 
concentration measurements were done on easy-to-access soil during 
three 1-week rainless periods in August, October, and December 2000. 
The soil temperatures, soil CO2 concentration, and soil water contents 
obtained from numerical modeling were then compared to the respec-
tive field observations. In situ measurements show that soil CO2 pro-
duction and efflux are correlated with soil temperature, which is 
accordingly reproduced by the model. The variation in soil temperature 
is quite well reproduced by the model. The variation in soil water con-
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tent, on the other hand, seems to deviate from in situ measurements. 
Following the rain on October 3rd and 19th, the soil water content, 
within the first few centimeters of the soil, increased by 1 %, which 
resulted in a considerable increase in observed soil CO2 concentration. 
The most likely explanation for this increase seems to be a rapid change 
in soil microbial activity resulting from a slight increase in soil water 
content during a rain event, which the model could not accurately 
simulate. The presence of ‘bypass flow’ in macropores, like old dead root 
canals, made it challenging to match the modeled and actual soil water 
levels after rain events. This discrepancy reveals a significant difference 
between the measured soil CO2 emissions and soil moisture levels at 
shallow soil depths and the expected values. Furthermore, starting from 
December 11th, the measured soil CO2 concentration and soil water 
contents at a 2 cm depth were found to be lower than the values pre-
dicted by the model. This variation is attributed to the occurrence of 
freezing within the top few centimeters at the soil surface, as the air 
temperature drops below − 1 ◦C. This freezing effect, which has a direct 
effect on soil water content, is not taken into account in their model. The 
model does not account for the CO2 uptake by photosynthesis. However, 
the measurements show that this hypothesis had no significant effect on 
the modeled CO2 efflux compared to the measured value. This is prob-
ably due to the vegetation distribution and low light levels on the forest 
floor, which limited the photosynthetic uptake of CO2 during the 
daytime. 

Samuels-Crow et al. (2018) developed a process-based model to 
simulate soil CO2 production and transport. This model bases itself on 
the work of Fang and Moncrieff (1999). Besides, the model is assessed by 
comparing its results to the environmental field observations obtained 
for a single growing season. 

CO2 production occurs as a result of heterotrophic and autotrophic 
respiration. The description of microbial and plant CO2 production is 
based on Fang and Moncrieff's model (Fang and Moncrieff, 1999). The 
production term SM [M L− 3 T− 1] of microbial respiration is expressed 
as the multiplication of an assumed maximum possible rate at which 
carbon decomposition occurs Vmax [M L− 3 T− 1], which depends on 
water content and temperature, and two different carbon pools CSOL 

[M− 3 L− 3 T− 1] and CMIC [M− 3 L− 3 T− 1]. The model accounts for a 
certain carbon use efficiency CUE [− ], which corresponds to the fact 
that not all of the assimilated carbon by microbes is emitted during 
respiration but a fraction of it is allocated for microbial growth: 

SM(z, t) = Vmax(z, t)
CSOL(z)

Km + CSOL(z)
CMIC(z)(1 − CUE) (13)  

where Km 
[
M L− 3 T− 1] is the half-saturation constant related to the 

assumption that the respiration production from the CSOL carbon pool 
follows Michaelis-Menten kinetics, with CSOL the soluble soil carbon 
concentration. CMIC is the carbon pool from organic matter produced by 
microbes. CSOL and CMIC are depth dependent carbon concentration 
fitted upon measured values (Ryan et al., 2018). 

In their model, Samuels-Crow et al., have neglected the effect of O2 
concentration on microbial respiration to make it suitable for systems 
where O2 availability is typically not a limiting factor. This adaptation is 
relevant for the semi-arid site that they have focused on. The CO2 pro-
duction resulting from root respiration (SR [M L− 2 T− 1]) is based on a 
reference root respiration rate RRbase [− ], which corresponds to root 
respiration rate under standard soil temperature Ts [K], standard soil 
water content θ 

[
L L− 1], the antecedent temperature Tant

s [K] and ante-
cedent water content θant

R [L L− 1] values: 

SR(z, t) = RRbaseCR(z, t)f
(
θ(z, t) , θant

R
(
z, t)

)
g
(
Ts(z, t) ,Tant

s
(
z, t)

)
(14)  

in which the mass of root carbon modeled by the CR [M L− 3 T− 1] 
function is calibrated on field data (Ryan et al., 2018). The f [− ] and g 
[− ] functions are used to express the dependency of autotrophic respi-
ration on soil temperature and soil water content: 

f
(
θ(z, t) , θant

R
(
z, t)

)
= exp

(
α1θ(z, t)+ α2θant

R
(
z , t)+α3θ(z, t

)
θant

R
(
z, t)

)

(15)  

g
(
Ts(zt) ,Tant

s
(
z, t)

)
= exp

(

E0(zt).
(

1
Tref − T0

−
1

Ts(zt) − T0

))

(16)  

E0(z, t) = E*
0 +α4Tant

s (z, t) (17) 

The parameters RRbase 
[
M L− 3 T− 1], α1 [− ], α2 [− ], α3 [− ], α4 [− ], T0 

[K], and E0
* [K] in the model need to be assigned specific numerical 

values. The values of θ and TS are direct field measurements, while θant
R 

and Tant
S are calculated based on field measurements. E0

* represents the 
apparent temperature sensitivity of root respiration. Finally, the total 
CO2 production rates for the entire soil column of a 1-meter depth, at a 
given time t are calculated by summing the depth specific production 
rates from heterotrophic and autotrophic respiration rates: 

S(t) =
∑1m

z=0.01
(SM(z, t)+ SR(z , t)) (18) 

CO2 transport is modeled by Fick's law considering gas diffusion. 
The diffusivity coefficient is a function of atmospheric pressure, soil 
temperature, soil water content, and soil properties given at each depth z 
and time t. The description of diffusion does not consider the alterations 
to soil physical properties caused by plants and overlooks any potential 
chemical reactions occurring in the soil water. Additionally, the diffu-
sion of dissolved CO2 in the liquid phase is not taken into account. 

To assess the performance of the model in predicting CO2 flux Rsoil, 
the results were compared with in situ CO2 flux measurements acquired 
twice a month in 2008 (from April 1th to September 30th), from soil 
chambers placed in vegetated plots. The model output Rsoil followed the 
trend observed in the field data. However, median Rsoil measurements 
during the August precipitation event were up to 3 times lower than 
model prediction during this period. These errors are likely due to the 
idealized soil water content treatment in the model, different from the in 
situ conditions (e.g., variations in infiltration). However, despite some 
discrepancies, the model output fell within the 95 % credible interval of 
the measurements, and the coefficient of determination between 
measured and modeled Rsoil indicated a high level of agreement. 

The approach proposed by Ebrahimi and Or (2016) is very different 
from the other soil respiration models presented previously. They pro-
posed to approach the simulation of gas fluxes from microbial commu-
nities at the millimetric scale of aggregates. They argue that it is already 
at this millimetric scale that the mechanisms governing the structure 

Fig. 3. Scaling of CO2 production with soil moisture scaling factor defined as a 
piece-wise linear function of relative water-filled porosity based on (Jassal 
et al., 2004). 
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and activities of microorganisms take place. For a comprehensive un-
derstanding of processes driven by trophic dependencies, it is crucial to 
account for cellular movement, nutrient assimilation, and growth, 
acknowledging how cells interact at a microscopic level within their 
immediate environment. Conversely, continuum or mean field models 
tend to overlook these intricate local interactions. The use of a model 
that describes trophic dependencies is justified by the fact that, even 
though the considered macroscopic medium is unsaturated, one can find 
anoxic microsites at the scale of aggregates making it possible for both 
aerobic and anaerobic microbial communities to coexist. In the model, 
the soil profile is discretized into different layers of Δz thickness, which 
contains aggregates of different sizes located in the bulk soil. The 
arrangement of aggregates within the soil profile, determined by their 
respective sizes, and the environmental conditions such as water, car-
bon, and oxygen levels vary with depth. Thus, the model can be struc-
tured into two parts, first the description of microbial activity in a single 
aggregate, then the upscaling technique to go from one aggregate to the 
whole soil profile description. 

Ebrahimi and Or (2015) define the water and oxygen concentrations 
along with the microbial population size, composition, activity, and 
spatial location, at the pore scale. They simulate microbial aerobic and 
anaerobic activity including local interactions such as nutrient con-
sumption, growth, division and motility, which is the microbial ability 
to move using their metabolic energy, with their individual-based model 
(Ebrahimi and Or, 2015). Ebrahimi and Or (2015) have developed a 
pore-scale model to quantify the spatial organization of aerobic and 
anaerobic microbial communities in a single soil aggregate. They as-
sume that local GHG production rates along the aggregate radius is 
described by a log-normal function given by: 

Qrep(rʹ, μaer, σaer) =
Qmax

rep

Ωaer(rʹ)
e
(ln(ŕ )− μaer )

2

2σ2
aer (19)  

where ŕ = r
R 
[
L L− 1] is the distance from the aggregate center scaled by 

the aggregate radius R [L]. μ and σ are the mean and standard deviation 
of the variable's natural logarithm, respectively. Ω is the normalization 
coefficient that defines gas production rate Q at the global maximum of 
the log-normal function. Qmax 

[
M L− 3 T− 1] is the maximum rate of gas 

production at the stationary state of the microbial population. The gas 
production depends on the carbon concentration, oxygen concentration, 
and water content. The reaction-diffusion Eq. (20), considering micro-
bial consumptions, is solved to determine local carbon concentrations 
[C], as follows: 

∂[C]
∂t]

= D0,[C]
∂2
[C]

∂u2 − νcJik = − D0,[C]Aw,t
∂[C]
∂u

(20)  

where D0,[C]
[
L2 T− 1] is the carbon diffusion coefficient in pure water, u 

is the spatial coordinate along the geometric description of a pore, νc 
[
M T− 1] (units of mass/time or concentration/time) is the carbon con-

sumption rate by microbial activity, and Jik 
[
M L− 2 T− 1] is the local 

carbon flow rate through a connecting pore between ith site to kth site 
described by Fick's law. Aw,t 

[
L2] is the aqueous cross section of the pore. 

The oxygen concentration profile within an aggregate is determined by 
the macroscopic conditions and the aggregate location in the soil profile. 
Oxygen transport in the liquid phase, necessary for aerobic microbial 
activity, is controlled by gas diffusion through the aggregate and 
dissolution rate from gas-liquid interface and then diffusion of oxygen in 
the liquid phase. The distributions of gas phase and water in the 
aggregate model are jointly determined by the matric potential in the 
aggregate's immediate vicinity and by geometrical characteristics of the 
pore network. For each aggregate size, they have considered similar 
pore space properties (e.g., mean pore radius sizes of 10− 5 m and bond 
angularity) and similar boundary conditions for carbon and oxygen 
diffusions. The pore network for the simulation is constituted by 1000 to 

30,000 sites for different aggregates size ranging from 1 mm to 14 mm. 
The total gas emitted from an individual aggregate is obtain by inte-
grating Qrep over the aggregate: 

Vres =

∫

ran
R

1 4πQrep([C], [O2], θ, rʹ)drʹ
/

4πR3

3
(21) 

Eventually, the upscaling is operated by integrating respiration and 
denitrification rates from individual aggregates to estimate fluxes from 
an assembly of log-normally distributed aggregates of different sizes: 

f(R) =
1

Rσ
̅̅̅̅̅̅
2π

√ e
(ln(R)− μ )2

2σ2 (22)  

where R is the radius of an aggregate, μ and σ are the mean and standard 
deviation of the aggregate size natural logarithm. Thus, the respiration 
rate for an assembly of aggregates Vass,res 

[
M L− 3 T− 1] is obtained by 

summing up the individual contributions of each aggregate class size's 
respiration. This calculation is based on the understanding that Vres 
[
M L− 3 T− 1] represents the respiration produced by a single aggregate: 

Vass,res =

∑
R3Vres([C], [O2]θ ,R)f(R)

∑
R3f(R)

(23)  

where [C]
[
M L− 3] is the carbon concentration, [O2] 

[
M L− 3]is the ox-

ygen concentration and θ is water content. The total gas production rate 
is obtained per unit volume of the assembly of aggregates all of which 
are subjected to similar macroscopic boundary conditions within a given 
depth element in the soil profile. The gas production rates from an as-
sembly of aggregates may vary depending on the location in the soil 
profile resulting in different macroscopic boundary conditions. In their 
model, the soil depth is divided into different soil layers. The gas pro-
duction at each layer is combined by superpositioning from the deepest 
layer to the surface, assuming that it is not affected by microbial activity 
at upper or lower depths. The resulting gas diffusion flux at depth z of 
the soil profile is obtained from the superposition of fluxes described by 
Eq. (23) that are integrated from the bottom of the soil profile: 

Jass(ź ) =
∑m

dind=1
(Vass([C], [O2], θ, z) ), m =

ź
Δz

and ź = Za − z (24)  

in which dind is the layer index starting from the soil bottom, z the soil 
depth, and Za the maximum depth of the soil considered. Their formu-
lation assumes steady-state conditions and no consumption and inter-
action of produced gases along the soil profile (Table 2). 

As reviewed above, process-based models provide an effective 
method for modeling soil respiration as they combine a physical 
description of transport mechanisms (such as mass and heat conserva-
tion), complemented with additional terms and equations to capture 
complex biological processes that cannot be adequately represented by 
purely physical models. In this section, we have presented various 
process-based models, which share a consistent framework, dividing the 
model into two primary processes: CO2 production and CO2 transport 
(5.1). These models make simplifying assumptions to handle the highly 
complex nature of the ecosystem, which, when translated into a math-
ematical framework, becomes a set of highly nonlinear coupled mech-
anisms. By simplifying the models, the focus is on capturing the essential 
dynamics while disregarding negligible phenomena. However, the 
challenge lies in the dependence of such models on specific ecosystems, 
and achieving spatial and temporal resolution is not straightforward. It 
is worth mentioning that current models often assume an ideal rate of 
microbial respiration at positive temperatures, typically around 20 ◦C, 
which are rarely observed in permafrost conditions. Besides, carbon is 
not always produced as carbon dioxide but it can also be emitted back 
into the atmosphere as methane under specific conditions. Conse-
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quently, in order to effectively apply soil respiration models to perma-
frost regions, certain modifications are required to account for these 
specific conditions. 

5.2. Plant-microorganisms interaction: the rhizosphere priming effect 

In this review paper, we are particularly interested in the de-
scriptions of the processes involved in CO2 and CH4 productions by 
plants and microorganisms, as well as their interaction, which is also 
known as Rhizosphere Priming Effect (RPE), illustrated in Fig. 4. The 
rhizosphere priming effect refers to the phenomenon where the presence 
of plant roots stimulates microbial activity and the turnover of soil 
organic matter in the surrounding soil, leading to an increase in the 
decomposition of soil organic matter. The presence of fresh organic in-
puts, which enhances microbial activity leads to increased decomposi-
tion rates of older more refractory organic materials, which is known as 
priming. The plant's inputs essentially “prime” the microbial population 
to break down soil organic materials faster than it would otherwise 
(Dijkstra et al., 2013; Jackson et al., 2019). On the one hand, it can 
improve plant nutrient availability by enhancing organic matter turn-
over and nutrient release from soil organic pools, which has the po-
tential to boost plant productivity and thus carbon capture (New Phytol., 

2018). On the other hand, rhizosphere priming effect can result in 
increased soil carbon dioxide emissions, as it accelerates microbial 
decomposition of soil organic matter. Such a scenario has the potential 
to elevate greenhouse gas emissions, thereby making a significant 
contribution to climate change (Kuzyakov et al., 2018). In fact, Keuper 
et al. (2020) showed, by incorporating an empirical description of the 
rhizosphere priming effect into their model, that this mechanism could 
lead to a 12 % increase in soil respiration in the permafrost ecosystem 
(Keuper et al., 2020). 

Currently, most models used to describe the rhizosphere priming 
effect are based on meta-analyses of empirical data, thus relying mainly 
on a combination of information provided by laboratory experiments 
and field data measurements. 

Bengtson et al. (2012) have developed a model for RPE based on an 
experimental framework designed in-house. The model aims to under-
stand the complex interactions between root exudation, carbon and ni-
trogen availability, and the decomposition of organic matter in the 
rhizosphere. The key components of the model include: the release of 
root exudates by plants into the rhizosphere, the activity of microbial 
communities in the rhizosphere, and the decomposition of organic 
matter. 

The rate of root exudation is measured using an experimental 

Table 2 
Summery of soil respiration models.  

Paper Autotrophic 
respiration 

Microbial 
activity 

Transport Mechanisms water flux Heat transport Nutrient 
concentration 

Specificity 

Šimůnek and 
Suarez 
(1993) 

CO2 CO2 Fick's law: Gas 
(diffusion and 
convection), liquid 
(diffusion and 
convection) 

Richard's 
equation 

Conduction and 
heat transported 
by flowing water 

CO2 

concentration 
Root water uptake: phenomena 
considered as sink term in the transport 
of CO2 (sink term) and in the water flux. 

Fang and 
Moncrieff 
(1999) 

CO2 CO2 Fick's law: Gas 
(diffusion and 
convection), liquid 
(convection) 

Not described Not described O2 

concentration 
Assume a linear relationship between 
root size and root respiration rate. 
Assume different types of carbon (labile 
and more resistant to decomposition). 

Jassal et al. 
(2004) 

CO2 CO2 Fick's law: Gas 
(diffusion), liquid 
(diffusion) 

Richard's 
equation 

Conduction and 
heat transported 
by vapor water 

CO2 

concentration 
Assume different types of carbon (labile 
and more resistant to decomposition). 

Samuels- 
Crow et al. 
(2018) 

CO2 CO2 Fick's law: Gas 
(diffusion and 
convection) 

Richard's 
equation 

Advection– 
dispersion 
equation 

CO2 

concentration 
Heterotrophic respiration depends on 
soluble carbon pool and microbial 
carbon pool. Autotrophic respiration 
defined based on a reference root 
respiration rate. 

(Ebrahimi 
and Or, 
2015) 

Not 
considered 

CO2, N2O Radial diffusion 
reaction 

Van 
Genuchten's 
law 

Constant C, O2, N Gas diffusion in aggregates.  

Fig. 4. Representation outlining the intricate interaction between plant roots and microbes in the carbon feedback process to the atmosphere. The Rhizosphere 
Priming Effect (RPE) denotes the alteration in soil organic matter (SOM) decomposition induced by root activity, leading to an increased release of nutrients that 
stimulate microbial activity. The figure is segmented into three sections: a) depicts the location of RPE in the vicinity of plant roots, where this local system con-
tributes to both carbon input into the soil and carbon emissions to the atmosphere. Zooming in on the roots, b) illustrates the local input of exuded carbon provided 
by roots. The presence of fresh organic inputs increases microbial activity and thus the decomposition of older, more refractory organic materials. c) Microbial carbon 
use efficiency, which quantifies how much of the carbon decomposed by a microorganism is used for building new cellular structures, rather than being respired. 
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technique known as the 13C pulse-chase experiment. Boxes containing 
grown roots are sealed and inoculated with 13C-enriched CO2. Six days 
after the pulse labeling, the total exudation of the 13C-labeled photo-
synthates is determined. The rate of the supply of root exudates to the 
soil Cexuded 

[
M M− 1 T− 1] is thus deduced from the measurement of 

13Csoil concentration: 

Cexuded=
13Csoil

t1
t2

1
(
1 − f13Clost

) (25) 

f13Clost 
[
M M− 1 T− 1] refers to the fraction of exuded carbon that is 

lost, t1 [T] indicates the length of the light period, and t2 [T] is the 
duration of the labeling period. 

The activity of microbial communities in the rhizosphere or rate 
of microbial carbon assimilation Cassimilated refers to the process by which 
microorganisms in the soil take up and incorporate, into their biomass, 
carbon from organic matter. It is indeed easier to determine the mi-
crobial assimilation of native SOM from the microbial Nassimilated, which 
can be measured using a method involving 15N, which is a stable isotope 
of nitrogen. Thus, Cassimilated is calculated as the multiplication of the 
average C : Nmicroorganisms ratio, corresponding to the proportion of car-
bon to nitrogen in microbial biomass, and Nassimilated 

[
M M− 1 T− 1]: 

Cassimilated = NassimilatedC : Nmicroorganisms (26) 

The decomposition of SOM 
(
SOMdecomposed

)
in response to root exu-

dates, which represents the total carbon required by microbes for both 
their assimilation and respiration processes, is calculated using Cassimilated 

as follows: 

SOMdecomposed =
Cassimilated

CUE
(27)  

in which CUE [− ] is the microbial carbon use efficiency, which quan-
tifies how much of the carbon acquired by an organism is retained and 
used for building new cellular structures, such as tissues and biomass, 
rather than being respired. A high CUE indicates that a significant 
portion of the acquired carbon is converted into new biomass, reflecting 
efficient carbon utilization and high growth potential. Conversely, a low 
CUE suggests that a larger proportion of the acquired carbon is lost 
through respiration or other metabolic processes (Adingo et al., 2021; 
Geyer et al., 2016). 

Finally, the researchers have compared the total SOM decomposition 
(
SOMdecomposed

)
with the amount of SOM decomposition in the absence 

of root exudates. The difference of these two quantities enables them to 
define the SOM decomposition related to priming, in other words, 
related to the release of root exudates. Their experiments have shown 
that the priming effect resulted in an increase in SOM decomposition of 
between 56 % and 244 % depending on the vegetation species consid-
ered in the experiment (Bengtson et al., 2012). 

Chertov et al. (2022) have developed a model to account for the 
process of the plant-soil interaction. The model considers how increased 
SOM mineralization, influenced by the C : N ratio of both soil and root 
exudates, compensates for nitrogen deficiency required for microbial 
growth. Moreover, the model introduces a food web procedure that 
computes interactions between soil fauna and microorganisms, corre-
sponding to faunal by-products returning to SOM and the production of 
mineral nitrogen that can be taken up by plant roots. 

Root exudates are known to contain nitrogen compounds, which 
serve as crucial resources for the growth of soil microorganisms. 
Nonetheless, it is acknowledged that the exudates may sometimes lack 
sufficient nitrogen content to efficiently support microbial growth. The 
model's structure comprises three subroutines:  

• Modeling of microbial growth related to the available carbon and 
nitrogen derived from root exudates and the related microbial 
respiration.  

• Modeling of microbial growth related to the utilization of residual 
carbon from root exudates and the nitrogen extracted from the soil 
organic matter in the rhizosphere, which is what they call “N min-
ing”, and the corresponding microbial respiration.  

• Modeling of the formation of faunal by-products, which corresponds 
to the creation of nitrogen compounds through the feeding of soil 
fauna on microorganisms. 

The modeling of microbial growth related to root exudates is based 
on the description of changes in microbial biomass carbon, CMO 
[
M L− 2], due to root exudate consumption over time, which they 

formulate as follows: 

CMO(t+Δt) = CMO(t)
(
1 − Kf

)
+ΔCMOKAS (28)  

where Kf 
[
T− 1] is the rate at which soil fauna feed on microorganisms, 

KAS 
[
T− 1] is the rate at which microorganisms assimilates root exudates, 

ΔCMO 
[
M L− 2] is the daily increment of microbial biomass, which is 

estimated as the multiplication of the microbial community's C : N ratio, 
and ΔNRE 

[
M L− 2] is the nitrogen daily flow in root exudates. 

Besides, a part of the root exudates consumed by microbes is used for 
respiration and this respiration daily flow is given by: 

ΔRMO = ΔCMO

(
1 − Keff

)

Keff
(29)  

where Keff [− ] is the carbon-assimilated exudates growth efficiency 
factor for microorganisms. 

Within the second subroutine, the microbial growth related to the 
use of excessive carbon of exudates and mined nitrogen from the 
rhizosphere soil organic matter are evaluated. They assumed that a re-
sidual part of the carbon remains in exudates as it cannot be utilized for 
microbial growth when all nitrogen in exudates has already been used. 
However, nitrogen is recovered, which they called nitrogen mining, by 
the mineralization of rhizosphere soil organic matter. Eventually, an 
additional daily flux of microbial respiration related to the consumption 
of the residual carbon ΔR+

MO is given by: 

ΔtR+
MO = ΔCrest

RE

(
1 − Keff

)
(30)  

in which ΔCrest
RE 

[
M L− 2] is the daily increment in residual carbon. 

Another flux of microbial respiration is taken into account, which is 
related to the process of nitrogen mining necessary to the use of exces-
sive carbon Crest

RE 
[
M L− 2]. This flux of CO2 emission related to microbial 

respiration during N mining corresponds to what is called the real 
priming effect given by: 

RNM = NNMCNSOM (31)  

where NNM 
[
M L− 2] is the amount of nitrogen that needs to be mined, 

and CNSOM 
[
M L− 2] is the rhizosphere soil C : N ratio. 

In the third subroutine of the model, Chertov et al. (2022) account 
for the carbon production related to the consumption of microorganisms 
by microbial grazers (protozoans, nematodes, and microarthropods), 
and the related respiration. The respiration of microbial grazers, ΔRMG, 
is calculated as follows: 

ΔRMG = ΔCfa(1 − KMG) (32)  

where ΔCfa 
[
M L− 2] is the total carbon of microorganisms assimilated 

by soil fauna, and KMG [− ] is the coefficient of assimilation of food by 
microbial grazers (production efficiency). 

The cumulative rhizosphere priming effect is determined by sum-
ming up the three components calculated in each of the three sub-
routines. The total daily CO2 emission related to root exudates input into 
the rhizosphere is given by: 
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ΔRtot = ΔRMO +ΔR+
MO +ΔRMN +ΔRMG (33)  

where ΔRMO + ΔR+
MO 
[
M L− 2 T− 1] represents microbial respiration due 

to root exudation consumption, ΔRMN relates to soil organic matter 
mineralization at nitrogen mining, and ΔRMG corresponds to the respi-
ration of food web. The simulation results provide a quantitative eval-
uation of the priming effect's contribution to the overall CO2 emission, 
estimating that this process can account for 30 to 40 % of the total CO2 
emission from the entire soil. 

Keuper et al. (2020) proposed a model to better understand the in-
fluence of climate change on carbon release from permafrost soils in the 
northern circumpolar areas, with a particular emphasis on the function 
of the rhizosphere in accelerating carbon loss. This large-scale model 
consists of three modules: Soil module, Plant module and Soil 
Respiration module. 

The soil module focuses on estimating the quantity of soil organic 
carbon (SOC) stored in the northern permafrost region. They obtain the 
amount of SOC in soil from the Northern Circumpolar Soil Carbon 
Database. This module also assumes that microbial carbon limitation 
can be an effective factor in estimating RPE. Microbial carbon limitation 
occurs when the C : N ratio of the soil organic matter falls below a 
specific amount. 

In the plant module, since the RPE is driven by the transfer of 
organic compounds from plants to the soil, the activity of plant roots 
seems to be an important factor to be considered. Therefore, for evalu-
ating this connection, they derive the RPE ratio function, representing 
the relationship between the CO2 released from the soil because of RPE 
and the carbon absorbed by plants via photosynthesis. This correlation 
between root respiration and RPE ratio has been established through a 
meta-analysis of previous studies, which led to the following empirical 
relationship: 

RPEratio = 1+
2.47(root respiration)

13.01 + (root respiration)
(34)  

where root respiration is obtained from Gross Primary Production (GPP), 
which represents the amount of energy that plants create through 
photosynthesis in a given length of time. Previous studies provided 
current annual GPP estimates for the northern permafrost area (Beer 
et al., n.d.). The projected GPP in the year 2100 is estimated for two 
different representative concentration pathways, RCP 4.5 and RCP 8.5, 
which are used to represent different greenhouse gas emission scenarios 
and their potential impacts on global climate change. RCP 4.5 represents 
a scenario where global greenhouse gas emissions peak around the year 
2040 and then gradually decline. It is considered a medium-to-low 
emissions scenario and assumes significant efforts to reduce green-
house gas emissions. RCP 8.5, on the other hand, represents a high 
emissions scenario with no specific climate mitigation policies or efforts 
to curb greenhouse gas emissions. 

In the soil respiration module, soil respiration is calculated based 
on two different scenarios: baseline soil respiration in which RPE is not 
considered and RPE-affected soil respiration. They estimate basal 
respiration rate based on GPP values, which is the production of CO2 
under the current climate situation. GPP can serve as an indicator of 
favorable climate conditions that support both plant growth and carbon 
release. Higher GPP values generally indicate more favorable environ-
mental conditions for plant growth, such as higher temperatures, suffi-
cient water availability, and adequate sunlight. The basal soil 
respiration has been estimated as an exponential function of GPP: 

Rh
SOC

= A*GPPB (35)  

where Rh
SOC is the heterotrophic respiration, A and B are model constants 

calculated based on experimental data. For the second scenario, which is 
calculating the carbon release related to plant-microbe interaction, they 
used the RPEratio, which shows the influence of plants, and the basal soil 

carbon respiration rates calculated in the first scenario. For specific 
areas where the soil is seasonally thawed, plants are actively growing 
(GPP > 0), and the microbial carbon limitation becomes relevant below 
a C : N threshold of 20. They calculated the carbon release affected by 
both plants and microbes by multiplying the basal soil carbon respira-
tion estimate Rh

SOC with the RPEratio. Finally, they assessed soil respiration 
in permafrost with and without RPE under current and future climatic 
conditions. According to their findings, the RPE would result in an in-
crease in carbon release from permafrost by 0.40 petagrams (Pg) of 
carbon per year under the current climate change scenario. In 2100, the 
predicted extra soil respiration due to RPE would be 0.43 Pg/yr for RCP 
4.5 and 0.49 Pg/yr for RCP 8.5. They predict that between 2010 and 
2100, the RPE might result in a cumulative loss of 38 Pg SOC to the 
atmosphere for RCP 4.5, and 40 Pg SOC for RCP 8.5. This suggests the 
importance of RPE in determining the carbon budget of permafrost. 

RPE models provide detailed descriptions of microorganism-scale 
processes, which were not explicitly considered in the large-scale car-
bon feedback models discussed in subsection 5.1. The earlier-presented 
land surface models merely accounted for carbon feedback contribu-
tions from plants and microorganisms, without describing the underly-
ing processes and interactions between roots and microbes. 
Consequently, the explicit consideration of the interaction between 
plants and microbes was absent from the models, with their combined 
contributions treated as a whole. However, research on RPE has 
demonstrated that neglecting the mechanisms linking the behavior of 
plants and microbes leads to an underestimation of carbon emissions. 
Recently, several papers have been published to describe microbial ac-
tivity, growth, and respiration, which are influenced not only by carbon 
availability but also by the quantity of nitrogen (Aqeel et al., 2023; Singh 
et al., 2023; Stark et al., 2023). These studies have highlighted that 
microbial activity is stimulated by the nutrients supplied by plant roots, 
a phenomenon that was not previously well-documented or described. 
Fig. 4 illustrates this relationship. 

Nevertheless, the reliance of the current model on experimental data 
obtained from specific microcosms may limit its ability to encapsulate 
any ecosystems. As an example, Bengtson et al. (2012) conducted ex-
periments that showcased how RPE led to varying increases in SOM 
decomposition across different vegetation types. Their findings revealed 
a 154 % increase in SOM decomposition for western hemlock and a more 
substantial 244 % increase for sitka spruce (Bengtson et al., 2012). In 
addition to different vegetation types and microorganism species, the 
effects of seasonal changes in permafrost ecosystems must also be 
considered. The freezing and thawing of the active layer, and the po-
tential for a suprapermafrost talik, has an impact on the quantity of 
nutrients available, and therefore on the activity of plants and microbes. 
The seasonal changes also bring attention to the time frame considered 
in the model. In some instances, the model assumes rapid consumption 
of all nitrogen in exudates and a fraction of carbon by microbes within 
fixed time steps. These simplifications may oversimplify microbial 
nutrient uptake kinetics, which could introduce potential inaccuracies in 
predictions, especially when nutrient availability fluctuates, or other 
factors influence microbial growth responses. 

6. Mathematical models for PCF 

Permafrost ecosystems, in particular, pose a significant challenge for 
process-based modeling due to their diverse range of temperatures, 
moisture content, unfrozen water content, vegetation types, and mi-
crobial communities. The complexity stems from the presence of distinct 
conditions within permafrost, including a permanently frozen layer and 
a seasonally thawing active layer. Moreover, the presence of thermo-
karsts and taliks, which are thawed regions penetrating the permafrost 
and potentially forming subterranean lakes, contributes to distinct 
ecosystem characteristics at a local level. Additionally, permafrost eco-
systems exhibit a wide range of vegetation types, from mosses and 
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lichens to shrubs and trees, which impact nutrient distribution, carbon 
inputs, and root-associated microbial communities. Vegetation also 
plays a role in soil insulation, influencing both soil temperature and soil 
moisture. As a result, permafrost is home to diverse microbial commu-
nities with varying metabolic capacities, which can interact in complex 
ways. For that, developing a comprehensive process-based model that 
accurately captures the dynamics of GHG emissions in permafrost eco-
systems is a substantial challenge. 

When it comes to modeling carbon production and carbon transport 
from permafrost ecosystems, as represented schematically in Fig. 5, 
many interacting mechanisms and parameters need to be taken into 
account. We have already discussed in the previous section, the CO2 
production from plants and microorganisms by what is called soil 
respiration. But the production of CH4 also needs to be addressed as it is 
responsible for up to one-third of near-term global warming, according 
to the Intergovernmental Panel on Climate Change (IPCC) (Core Writing 
Team et al., 2023). Moreover, the permafrost ecosystem is particularly 
favorable to methane production, with the presence of talik creating 
anaerobic conditions and the presence of methanogens among endoge-
nous microorganisms. The mechanisms of carbon transport are also 
modified in permafrost regions as compared with the mechanisms 
described previously for soil respiration due to the fact that water is 
present in both liquid and solid phases. The phase change has conse-
quences on the water flux and thus on the soil moisture along the soil 
profile. Permafrost is a complex and evolving ecosystem, and mathe-
matical models for predicting carbon feedback in these regions are 
continually being refined and updated to improve our understanding of 
the underlying mechanisms. Numerical modeling can prove to be an 
effective approach for researching permafrost microbiology and its in-
fluence on greenhouse gas emissions. In practice, numerical models 
provide a means to test hypotheses and simulate the large-scale and 
long-term carbon feedback from a challenging-to-access region of the 
world. Furthermore, these models allow for the exploration of various 
climate change scenarios. The ability to simulate different climatic 
conditions becomes particularly valuable since scientists are still strug-
gling to predict the extreme climatic events likely to occur in the coming 
years. Nevertheless, constructing a sufficiently robust numerical model 
is a complex process that requires significant effort to identify and 

integrate the key mechanisms responsible for greenhouse gas emissions. 
Wania et al. (2010) developed the LPJ (Lund-Potsdam Jena Dynamic 

Global Vegetation Model) model, which is a large-scale process-based 
model, that they modified to make it able to model methane emissions 
from northern peatlands. They implemented a dynamic global vegeta-
tion model to estimate methane emission from the active layer. LPJ 
includes plant physiology, carbon allocation, methane production, 
oxidation and transport, and hydrological fluxes. 

Plant physiology: The LPJ model categorizes vegetation into groups 
called Plant Functional Types (PFTs) based on similar characteristics. It 
models the survival and growth of these PFTs by accounting for their 
required temperature for growth, as well as the minimum and maximum 
temperatures they can endure. Climate conditions, such as precipitation, 
are also considered to define soil moisture, influencing methane and 
carbon dioxide production and transport. To adapt LPJ for peatland 
regions, Wania et al., introduced two new plant types: flood-tolerant C3 
graminoids and Sphagnum mosses, which are typical plant types found 
in wetland areas. 

Carbon allocation: The carbon pool available consists mainly of 
root exudates, easily degradable plant material, and in a smaller portion 
of more recalcitrant organic matter. The carbon pools are distributed 
across the soil layers and weighted by root distribution. More carbon is 
allocated to the upper layers where root density is greater than in the 
bottom layers. At that point, the model can be divided into two main 
components. First, methane and carbon dioxide production then their 
transport through the soil layers. The transport of O2 is also modeled to 
account for the oxidation of a fraction of the methane into carbon di-
oxide. A schematic of the processes represented in the model are pre-
sented in Fig. 6. In their model, they assumed that both methane and 
carbon dioxide are produced through microbial decomposition of car-
bon originating from different carbon pools. The potential carbon pool 
forms through the breakdown of litter into slow and fast soil carbon 
pools, along with exudates. Each of these soil carbon pools is charac-
terized by decomposition rates dependent on temperature and moisture. 
These rates govern their conversion into the potential carbon pool for 
methanogens. From the potential carbon pool, methane and carbon di-
oxide are produced, with the methane-to‑carbon dioxide ratio varying 
between 0.001 and 1.7. This ratio hinges on the level of anoxia within 

Fig. 5. Emissions of greenhouse gases from permafrost occur in two stages: initially, the production of CO2 and/or CH4, followed by their transport through the soil 
towards the atmosphere. Both production and transport are highly affected by local permafrost conditions (vegetation type, microorganisms types, soil moisture, soil 
temperature, soil porosity and tortuosity). 1) The production of carbon depend on the quality of the organic matter, the presence of nutrients such as nitrogen and the 
interaction between the different types of vegetation and the microorganisms. 2) Different transport mechanisms explained the emissions of CO2 and/or CH4 to 
the atmosphere. 
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the particular soil layer under consideration. The parameters are 
initially calibrated for condition of full inundation and subsequently 
refined considering the level of anoxia, determined by the air content in 
the layer. This adjustment influences the decomposition process 
accordingly. 

The second part of the model deals with the transport of methane, 
carbon dioxide and oxygen across different soil layers. Specifically, the 
model accounts for the transport of oxygen, to account for the fact that a 
portion of the produced methane is converted into carbon dioxide dur-
ing transport, thereby reducing the overall methane emissions. Methane 
transport is assumed to happen through three different pathways: 
diffusion, plant-mediated transport, and gas-bubble ebullition. On the 
other hand, oxygen and carbon dioxide are assumed to be only trans-
ported either by diffusion or plant-mediated transport. 

The transport of CH4, CO2, and O2 through diffusion obeys Fick's 
law, except when approaching the water-air interface. To accurately 
calculate the gas flux J from the upper layer into the overlying air layer, 
an adjusted method is employed given in Eq. (36). This adaptation ac-
counts for the substantial four-order-of-magnitude rise in gas diffusivity 
at this boundary, ensuring a more precise estimation of the gas 
movement. 

J = − Ψ
(
Csurf − Ceq

)
(36)  

in which Ψ is the gas exchange coefficient with units of velocity, Csurf is 
the concentration of gas measured in the surface water, and Ceq is the 
equilibrium concentration of gas in the atmosphere. To accommodate 
diffusion in both liquid and gaseous fluids, the diffusivity coefficient is 
modified to reflect diffusion in either the gaseous or liquid phase. This 
adjustment relies on the percentage of air contained within that specific 
soil layer. When the air fraction fair is less than or equal to 0.05, the 
dominant mechanism is considered to be diffusion in the water pore. 
However, when fair is higher than 0.05, gas diffusion is assumed to be the 
dominant mechanism. The diffusivity coefficients both for gaseous 
diffusion and diffusion in water are adapted to vary with soil tempera-
ture. Moreover, they also account for the effect of soil porosity on gas 

diffusivity, by multiplying the gas diffusivity coefficients by f
10
3

air/Φ2, with 
Φ the soil porosity. 

Another transport pathway for methane from the soil to the atmo-
sphere, along with the transport of oxygen entering the soil, occurs 
through gas-filled tissues found in roots, rhizomes, stems, and leaves, 
known as transport through aerenchyma. The gas movement through 
plant tissues is generally either passive, following concentration gradi-
ents, or actively pumped upwards. This model only considers the passive 
aerenchyma transport. Key parameters selected to describe the transport 

mechanisms are as follows:  

• The presence and abundance of specific plant species capable of 
aerenchyma transport.  

• The quantity of methane being transported within these plants, as a 
significant proportion of methane is oxidized in the highly oxic zone 
around the roots. The extent of methane oxidation, ranging from 20 
% to 100 %, depends on the vegetation type (Ström et al., n.d.).  

• The availability of plant cells for gas transport. 
• The allocation of plant cells to facilitate gas transport in correspon-

dence with the quantity of plant roots present in each soil layer. 

The third transport mechanism considered in this model for methane 
transport is gas-bubble ebullition. It occurs when the concentration of 
dissolved gases in the water exceeds the equilibrium concentration, 
which corresponds to the methane maximum solubility. When the 
gaseous molecules of methane cannot dissolve in water anymore the 
pressure build up leading to the formation and subsequent release of gas 
bubbles. The solubility coefficient SB is fitted Yamamoto et al.'s obser-
vations (Yamamoto et al., n.d.): 

SB = 0.05708 − 0.001545T+0.00002069T2 (37)  

in which SB represents the volume of gas dissolved per volume of liquid 
at the atmospheric pressure and at a given temperature T. 

The overall CH4 flux from the soil to the atmosphere is represented 
by the sum of ebullition, diffusion, and plant-mediated transport. The 
parameters of the model are calibrated using monthly measurements of 
the different methane fluxes, i.e. plant-mediated, diffusion, ebullition, 
and total flux, in seven different sites, except for seven parameters (CH4

CO2 

production ratio under anaerobic conditions, Fraction of available ox-
ygen used for methane oxidation, Fraction of Net Primary Production 
put into exudates pool, Turnover rate for exudates pool, Moisture 
response used to weight decomposition rates for carbon pools, Tiller 
porosity and Tiller radius) for which the lack of available data forced 
them to estimate their values by conducting sensitivity tests. The in situ 
observations were conducted between 1989 and 2006. They identified a 
unified set of model parameters applicable across all sites, selecting the 
parameter set that minimizes the overall error, as measured by RMSE 
(root mean square error). Yet, they also demonstrate the enhanced 
performance potential of the model through site-specific calibration. 
With the optimal overall parameter set, they were able to estimate the 
contributions of each flux type to the total flux across the seven sites. The 
plant-mediated transport represents between 69.9 % and 84.5 %, the 
diffusion between 15.5 % and 30.9 % and the gas-bubble ebullition 

Fig. 6. Scheme representing LPJ model developed by Wania et al. (2010). This figure shows the different processes involved in this model. k stands for a constant rate 
to account for the decomposition of more or less easy to decompose carbon and f represents the proportion of the carbon pool that goes directly to another pool. 
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between 0 % and 1.4 %. Naturally, calibrating parameters for a specific 
local area and subsequently using them to model a larger area introduces 
some error. The comparison of the model to measured values for specific 
sites enables the authors to address these errors. Further, the spatial and 
temporal resolution of the model parameters may be at stake. The au-
thors could associate lower predicted methane emission values from 
their model than measured field data and incorrect timing of emissions 
with local topographic heterogeneity that were not taken into account in 
the model parameters, which results from the overall best parameter set. 
In the same way using monthly data rather than daily data may prevent 
the model from predicting peak emissions. 

Schneider von Deimling et al. (2015) have developed a large-scale 
two-dimensional multi-pool model to predict the release of carbon di-
oxide and methane from thawed permafrost in Yedoma regions. Yedoma 
is a type of permafrost landscape found in the Arctic and subarctic re-
gions. It is characterized by extensive deposits of organic-rich soil. This 
model is based on the model for the assessment of greenhouse gas 
induced by climate change (MAGICC) developed by Meinshausen et al. 
(2011). MAGICC is a compartmental model, which simplifies the ex-
change of carbon dioxide between distinct components of the Earth's 
terrestrial ecosystems by employing a series of compartments to repre-
sent different carbon pools. The definition of the different compartments 
is based on the assumption that carbon permafrost feedback stems from 
both near surface carbon pool, which corresponds to the active layer, 
and from deeper carbon pool, which corresponds to frozen soil. The 
objective is to comprehend the division of vulnerable carbon stored in 
permafrost into pools that are near the surface and those that extend 
deeper within the permafrost layers. The carbon is subdivided into 
different sub-pools based on soil-physical parameters, hydrologic cir-
cumstances, and organic matter quality. The distribution of soil carbon 
content in each pool has been estimated based on data from the 
Northern Circumpolar Soil Carbon Database which is a geographical 
dataset of the organic carbon storage in soils in the northern circumpolar 
permafrost zone. 

To estimate CO2 and CH4 production from each carbon pool, the 
researchers make assumptions about fast and slow carbon decomposi-
tion within these pools. In the fast carbon pools, CH4 production pri-
marily results from acetate fermentation of labile organic matter. They 
apply a 1:1 production ratio of CH4:CO2 for anaerobic conditions, 
following the stoichiometry of CH4 production through this pathway. 
However, for the slow carbon pools, CH4 production follows alternative 
pathways with different electron acceptors. This leads to reduced 
CH4:CO2 production ratios for anaerobic conditions, which is assumed 
to be 1:7. The transport mechanism for CO2 and CH4 depends on the 
depth of the carbon pool. For the release of CH4 from thermokarst pools, 
ebullition is the primary pathway, while other modes of transport are 
negligible. For CH4 release from wetlands pools, methane emitted from 
pools travels through numerous pathways, with oxidation being an 
important process that influences its eventual release into the atmo-
sphere. 

PCF is released to atmosphere, as CO2 and CH4, from each different 
soil carbon pool C, under aerobic or anaerobic conditions, from different 
organic matter qualities, at specific latitudes, and depth levels is 
described as follows: 

C(t) = R(t)VC(t) (38)  

where R is the carbon release rate and VC is the pool-specific amount of 
carbon vulnerable to decomposition. The model comprises a total of 24 
carbon pools, which can be categorized into four main types: organic 
and mineral pools for both surface and deep carbon, resulting in a total 
of four distinct pools. Besides the production of methane and carbon 
dioxide is either under anaerobic and aerobic conditions for each pools, 
which means that eight different C coefficients are defined. These pa-
rameters have specific amounts for each soil carbon pool. 

The model is calibrated with field data and predicts CO2 and CH4 

emission from Yedoma regions of Siberia and Alaska under different 
climate change scenarios. While forecasting PCF under medium and 
high greenhouse gas emission scenarios, the researchers discovered that 
short-term studies suggested a relatively small permafrost feedback, 
which appeared unreasonable. They found that the climatic impacts of 
thawing permafrost became more apparent after the 21st century. 
Additionally, when projecting methane transport under the worst-case 
scenario, the model presented lower values compared to measured 
field data, particularly in wetland-affected sediments. This discrepancy 
may be attributed to the fact that the model calculates greenhouse gas 
emissions from newly thawed permafrost but neglects to consider car-
bon fluxes from the current active layer. Another potential reason for 
this mismatch is the oversight of abrupt thawing under thermokarst 
lakes, which could lead to peak CH4 emissions. 

There are only a few mathematical models that thoroughly account 
for the complexities of microbial activity within permafrost when 
simulating carbon feedback. Comprehending the metabolic rates and 
behaviors of microbes within soil aggregates on a smaller scale could 
hold considerable importance in the broader model of PCF. Ebrahimi 
et al. explored this aspect in their work (Ebrahimi, 2017). The bio-
physical model designed to quantify methane production, consumption, 
and transport is first created for individual soil layers. Subsequently, it's 
scaled up to simulate methane dynamics across the entire soil profile. 
The transport processes of methane across the soil layers are assumed to 
be diffusion and ebullition, while vegetation as transport mechanism has 
been neglected. The model is coupled with permafrost freezing and 
thawing, along with hydrological processes that consider variations in 
water table levels and liquid saturation along the soil depth. This 
coupling provides depth-dependent macroscopic boundary conditions 
for oxygen, water, and temperature across the soil profile. 

In their study, Ebrahimi (2017) simulated the methane production 
by modeling the physiological mechanisms of methanogens and meth-
anotrophs cells. They employed an Individual-Based Model, which they 
previously developed in another paper (Ebrahimi and Or, 2014), to 
simulate microbial communities within simplified soil pore spaces. This 
involves accounting for processes such as their dispersal, growth, divi-
sion, as well as nutrient and oxygen consumption. They also account for 
enzymatic activity, which is the producing of enzymes by microorgan-
isms that facilitate the breakdown of complex soil organic matter. 
Through enzymatic action, organic matter is transformed into simpler 
compounds like dissolved organic carbon and nitrogen. The production 
rate of dissolved carbon D[C] is determined by the amount of enzyme 
carbon present in each tiny space of the pore network as follows: 

D[C] = KD
E[C]

Ks,enz + E[C]
(39)  

where the constant KD 
[
M L− 3] represents the rate of decomposition for 

particulate soil organic carbon. The half-saturation constant, Ks,enz 
[
M L− 3], indicates the concentration at which the enzymatic activity 

becomes half of its maximum. The overall enzyme carbon, E[C]
[
M L− 3], 

accounts for the total enzyme concentration, including enzymes present 
both within and outside the cells. The process of decomposing soil 
organic carbon is linked to the decomposition of soil organic nitrogen 
through the soil C : N ratio, which is assumed to be evenly distributed 
across the soil profile. 

The simulation starts by uniformly introducing 1000 methanotrophs 
and 1000 methanogen cells into each pore of the networks. Following 
cell inoculation, they disperse throughout the entire network and un-
dergo various processes, including enzyme production, nutrient con-
sumption (carbon for methanogens and methane/oxygen for 
methanotrophs), growth, and division into new daughter cells. The 
growth dynamics of both methanogens and methanotrophs is modeled 
by two Monod-kinetic Eqs. (40) and (41). The rate at which dissolved 
organic carbon is uptaken by methanogens ν[C] is as follows: 
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ν[C] = s
VMgen

max [C]
K[C] + [C]

Kinh

[O2] + Kinh
(40)  

and the rate at which methane is uptaken by methanotrophs ν[CH4 ]: 

ν[CH4 ] = s
VMtroph

max [CH4]

K[CH4 ] + [CH4]

[O2]

[O2] + K[O2 ]

(41)  

in which [C], [CH4], and [O2] refer to the concentrations of carbon, 
methane, and oxygen, respectively. s[M] is the cell dry mass of the in-
dividual bacteria calculated by multiplying the cell density by the cell 
volume. The model incorporates the influence of carbon and oxygen by 
considering their respective half-saturation constants, denoted as K[C]

and K[O2 ]. Additionally, an oxygen inhibition constant, Kinh, is included 
in the anaerobic growth kinetics to account for the oxygen-sensitive 
growth of anaerobic species. The maximum specific growth rate VMgen

max 
[
T− 1] and VMtroph

max 
[
T− 1] denotes the highest rate at which methanotrophs 

and methanogens can consume specific nutrients. For permafrost con-
ditions, the maximum specific growth rate for either methanotrophs or 
methanogens is modeled as a function of the surrounding temperature: 

Vmax =
(b3(T − Tmin) )

2
(1 − exp(c3(T − Tmax) ) )

Ymax
(42)  

where b3 and c3 are empirically fitted parameters, Ymax 
[
T− 1] represents 

the growth rate of microbes, and Tmin and Tmax are minimum and 
maximum temperature of the surrounding area. 

The principal methane transport pathways in their study are gas 
diffusion through unsaturated soil and gas bubble ebullition, while 
transport through the plant tissues is not described here. The methane 
production and consumption in each soil layer are upscaled to simulate 
them over the soil profile. Each layer within the soil profile contains a 
volume fraction of soil aggregates fagg and a bulk soil fraction fbulk. The 
total gas production or consumption rates at each layer are obtained by 
integrating the production/consumption rates 

(
Sagg

)
over aggregates of 

different sizes and considering the fraction of bulk soil (Sbulk) to give the 
gas production/consumption rate from a specific layer. The total 
methane diffusive flux from aggregates and bulk soil for a given layer 
Sd,diff is given as: 

Sd,diff = fagg

(∫ 3
R Saggf(R)dR
∫ 3

R f(R)dR

)

+ fbulkSbulk (43)  

where R is the aggregate size and f(R) is the assumed lognormal dis-
tribution of aggregates in a soil layer. The process of gas bubble ebul-
lition occurs when the concentration of dissolved gases in the water 
exceeds the equilibrium concentration, which corresponds to the 
methane solubility. This condition is frequently associated with poor 
dissolved methane diffusion. As a result, bubbles of methane nucleates 
in soil pores and aggregates every time that the concentration of 
methane goes above a specific threshold value. The methane solubility is 
assumed to be exponentially related to temperature: 

SolCH4 = 38.76exp( − 0.021T) (44)  

As a first approximation, gas bubble ebullition is modeled by consid-
ering a threshold value for bubble sizes, which introduces stochasticity 
in the relationship between methane gas storage and release dynamics. 
When methane storage in a model domain exceeds the release threshold, 
the entire stored methane gas is instantaneously released, travels to the 
soil surface, and is emitted to the atmosphere. Ultimately, the total 
methane flux at the soil surface comprises two components: a relatively 
steady diffusive flux and sudden bursts of methane bubbles released 
through ebullition. 

The model is coupled with heat and mass transfer to account for the 
thawing process. The changes of soil temperature and the thickness of 

the active layer are assumed to be coupled. So, they divide the tem-
perature changes into two separate transient heat conduction equations 
based on the thickness of the active layer as follows: 

α ∂2T
∂z2 =

∂T
∂t

for 0 <= z <= Z (45) 

Frozen zone: 

αf
∂2Tʹ

∂z2 =
∂Tʹ

∂t
for Z < z < ∞ (46)  

in which T and Tʹ represent the temperature distribution in the thawed 
and frozen zones, respectively. The variables α 

[
L2 T

]
and αf 

[
L2 T

]

correspond to the bulk thermal diffusivity of the thawed and frozen 
zones, respectively. Additionally, Z denotes the position of the thawing 
front within the soil. 

At the boundary between the frozen and thawed zones, the energy 
balance is established by equaling the conductive heat flux from the 
thawed zone to the energy needed for thawing, considering the enthalpy 
of fusion, and the conductive heat flux to the frozen zone as follows: 

− λ
∂T(Z, t)

∂z
= Swf ρwϵLf

dZ
dt

− λf
∂Tʹ(Z, t)

∂z
(47)  

in which Swf represents the liquid water saturation in the thawed zone, 
ρw 
[
M L− 3] is the density of liquid water, ϵ is the soil porosity, Lf 

[
M L2 T− 2 M− 1] is the enthalpy of fusion for water, and λ 
[
M L2 T− 3 C

]
and λf 

[
M L2 T− 3 C

]
represent the bulk thermal con-

ductivity of the thawed and frozen zones, respectively. 
During the arctic fall season, the refreezing phenomenon in unsatu-

rated soil was depicted using a simplified solution of energy and mass 
conservation. The water state within the soil profile is characterized by a 
one-dimensional mass conservation model, as follows: 

∂(Mw + Mi)

∂t
+∇(Jw)+ Sw = 0 (48)  

where Mw and Mi represent the mass of water and ice, respectively, 
within the soil volume. Sw is a sink term denoting water loss due to 
processes like evaporation or root water uptake, while Jw 

[
L T− 1] rep-

resents the water flux obtained from the Richards equation. For 
simplicity, the assumption is made that both Sw and Jw are equal to zero, 
meaning that no drainage is considered in the model. 

The energy conservation within the soil volume is expressed as fol-
lows: 

∂U
∂t

+
∂(qc + Jadv)

∂z
+ Sloss = 0 (49)  

where U represents the total internal energy of the solid particles, ice, 
and liquid phases, qc represents the conductive heat flux, Jadv is the 
convective heat flux, and Sloss represents the sink term accounting for 
energy losses to the soil depth. 

For an unfrozen profile, the two main unknowns are the water con-
tent and temperature profiles, which are directly obtained from the mass 
and energy conversion equations (). For two growing seasons, they 
forecast the seasonal change of methane content, production, con-
sumption, and storage within the soil depth. 

The model is calibrated with laboratory experiments and field 
measurements of peatland. They showed the importance of aggregate 
size on methane emission. Increasing mean aggregate size leads to 
higher methane emissions during the growing season and fall refreezing, 
as discussed by the authors. They also explored the impact of water table 
position on methane emission. Lowering the water table level and 
increasing the oxygenated percentage of the soil profile result in reduced 
net methane emissions from the soil surface, according to the model's 
results. This reduction is likely due to changes in the relative size and 
activity of methanogenic and methanotrophic microbial communities as 
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the water table position decreases. However, the model predicts lower 
methane emission amounts when simulating changes in water table 
position compared to field data. This discrepancy could be attributed to 
potential underestimation of anoxic conditions, which are necessary for 
methane production, or the model's failure to account for local varia-
tions in water table position that may differ from the average value 
utilized in the simulations. 

In another study, Knoblauch et al. (2021) has developed a model to 
measure greenhouse gas emissions from permafrost which is based on 
field measurement. During two summer seasons, they measured CO2 
and CH4 fluxes from soils affected by sudden thaw slump in permafrost, 
also referred to as thermokarst, in Siberia. These field observations 
alongside with long-term incubation data were used to calibrate two 
models that simulate CO2 and CH4 productions from microbial activity. 
Thermokarst are excellent environments for studying the in situ 
decomposition of organic matter (OM) in freshly thawed permafrost. 
Due to rapid erosion, the surface of the active thaw slump is free of 
recent vegetation, and only microbes' respiration contributes to CO2 and 
CH4 emissions at the site. 

The results from this experiment have been used as input for their 
two‑carbon-pool model. They divided the carbon pool into labile and 
resistant. For each pool, the following equation is used: 

−
dC
dt

= kC (50)  

where k is the rate constant that indicates varying decomposition rates 
for the organic matter in each pool. A portion (fraction h) of the fast 
decomposing material from the labile pool moves to the slower 
decomposing stable pool, which represents humification. Humification 
is a process in which organic matter, such as plant and animal residues, 
decomposes and transforms into more stable forms of organic matter 
called humus. The rest of the material (1 − h) becomes trace gas and 
exits the system. The degradation of carbon in the stable pool is assumed 
to fully contribute to the trace gas emission. The starting amount of total 
soil organic carbon is based on observations. The initial fraction of the 
labile pool is considered a fixed value, and the initial fraction of the 
stable carbon pool is calculated as the difference from the total carbon 
content. Then, by using a regression method, they determined the values 
of decomposition rates, initial labile carbon pool fraction, and the hu-
mification coefficient. In another approach, they used Q10 model to 
calibrate their model. This calibrated model was then applied to esti-
mate CO2 emissions. They obtained topsoil temperatures from the 
JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) 
land surface scheme which is a land surface model used to simulate the 
exchange of energy, water, and carbon between the Earth's surface and 
the atmosphere. Following this approach, they developed a formula in 
order to estimate CO2 and CH4 areal fluxes as follows: 

fp =
∑2

i=1

(

ρi⋅di⋅ri⋅Q
Ti − 4
10

10

)

(51)  

where ri 
[
M− 1 T− 1] indicates aerobic or anaerobic gas production rate 

calculated at 4 ◦C in samples incubated from layer i, ρi 
[
M L− 3] is dry 

bulk density of soil layer, di is the soil layer depth, Ti [C] is the mean 
temperature of layer i during the field measurement day. Q10 is the 
temperature sensitivity factor. 

Finally, the study estimated the annual carbon dioxide (CO2) emis-
sions from heterotrophic respiration in tundra soil at different thaw 
slump sites using two modeling approaches. The model was validated 
with field data. Comparing two approaches used for the calibration of 
the model they found that the Q10 model simulates CO2 fluxes at any 
temperature below 0 ◦C, while the ICBM model simulates microbial CO2 
production only at temperatures above − 10 ◦C. From January 1, 2016, 
to May 24, 2016, the simulated surface soil temperatures were below 
− 10 ◦C, and the ICBM assumed zero CO2 production during this time. 

This indicates the importance of calibration method in mathematical 
models and shows that calibrating a mathematical model is not the same 
as validating. As different calibration methods can lead to different re-
sults and interpretations. 

7. Parameters interdependency 

In this section, we conduct a comprehensive study to analyze the 
effective parameters in soil respiration modeling. Per reviewing the 
mathematical models presented in the area of soil respiration and PCF, 
five key factors that play important roles in developing a mathematical 
model are temperature, soil moisture, soil organic matter content time, 
and soil depth. Table 3 shows an overview of these factors based on the 
models reviewed. 

8. Discussions and conclusion 

The objective of this review paper is to emphasize the significant role 
of microbial activity in the context of the PCF. The main motivation is to 
identify research directions that can contribute to enhancing model 
development for accurately projecting carbon feedback associated with 
permafrost thaw. Thus, after having provided an overview of experi-
mental studies, including both in situ and laboratory investigations, that 
demonstrate the involvement of microorganisms and plants in PCF, we 
then have presented different approaches used to model these complex 
mechanisms. In order to provide a wider range of mathematical 
frameworks, our review initially incorporates models of soil respiration 
and plant-microorganism interactions, which were originally developed 
outside the specific context of permafrost soil. Finally, the last section of 
the paper focuses on mathematical models dedicated to PCF, specifically 
including the influence of plants and microorganisms. 

The literature review concerning the role of microorganisms and 
plants in PCF has revealed the complex nature of the ecosystem under 
consideration. Numerous physical parameters have emerged as signifi-
cant factors in this process. Table 4 provides a summary of these pa-
rameters, which have been investigated over the last two decades. Soil 
temperature, soil unfrozen water content, soil properties (e.g. soil 
texture, porosity, size of the aggregates), vegetation type, soil salinity, 
quantity, and quality of organic matter (fast or slow carbon decompos-
ability), as well as the types and abundance of microorganisms, are all 
local soil characteristics that profoundly influence the greenhouse gas 
emissions to the atmosphere. Additionally, the chosen spatial resolution 
of the model and the time scale have been shown to exhibit diverse 
behaviors. Noting that 10 out of 25 conducted studies have covered a 
duration of at least one year. 

Process-based models have shown to provide an effective method for 
modeling soil respiration as they combine a physical description of 
transport mechanisms complemented with additional equations to 
capture complex biological processes that cannot be adequately repre-
sented by purely physical models. The challenge lies on the reliance of 
these models on a particular description of a specific ecosystem. Often, 
model parameters are calibrated based on field or laboratory measure-
ments, limiting the effectiveness of the considered process model to only 
specific spatial and temporal resolutions. As an illustration, numerous 
respiration models are based on the deviation of carbon production from 
optimal conditions, typically assumed to occur at 20 degrees Celsius 
(Šimůnek and Suarez, 1993; Fang and Moncrieff, 1999). In these models, 
no respiration is considered to occur around zero degrees Celsius. 
Therefore, it is necessary to develop entirely new descriptions of certain 
processes to adapt some of these respiration models for permafrost en-
vironments. The same remarks hold true for the description of the 
rhizosphere priming effect, thus the modeling of plant-microorganisms 
interaction. 

More recently, models have emerged to describe methane and car-
bon dioxide emissions from permafrost. However, permafrost ecosys-
tems themselves present a significant challenge to describe due to their 
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Table 3 
Summary of soil respiration models.  

Parameter Temperature (T) Soil moisture (θ) Organic carbon content 
([c]) 

Oxygen content ([O2]) Soil depth (z) Soil Respiration (CO2 

emission) rate 

Temperature 
(T) 

– In general, high 
temperature leads to 
decreasing soil moisture 
due to evaporation. For 
permafrost condition, 
the temperature 
increase leads to higher 
availability of liquid 
water. 

Temperature increase can 
accelerate the 
decomposition rate and 
increase the availability of 
organic carbon. 

This is directly affected 
by soil moisture, so, in 
general, increasing the 
temperature will lead to 
enhancing oxygen 
levels. In permafrost, 
thawing may lead to 
waterlogged conditions, 
causing limited oxygen 
availability. 

Temperature 
increase may 
cause an increase 
in the active 
layer depth. 

The respiration rate highly 
depends on temperature 
changes. Temperature 
leads to raising the 
respiration rate, and 
declining the temperature 
decreases it. For permafrost 
condition, when the 
temperature is below 
freezing point, there is a 
very low rate of 
respiration. 

Soil moisture 
(θ) 

Soil moisture can affect 
thermal conductivity. 
So, it impacts the heat 
conduction through the 
soil profile. Higher 
moisture content leads 
to higher heat 
conductivity. 

– It can be considered 
effective in very high or 
low moisture levels as it 
directly impacts microbial 
activity. 

High moisture content 
creates anaerobic (low 
oxygen) conditions. On 
the other hand, in low 
moisture conditions, 
soil pores may become 
air-filled. 

– Soil moisture is considered 
a parameter effective when 
the moisture level is too 
high or too low. High 
moisture means anaerobic 
conditions and so low 
respiration rate. Low 
moisture availability 
means aerobic conditions 
and high respiration rate. 
However, in very low 
moisture conditions, or 
drying soil, the respiration 
rate may decline due to low 
moisture availability for 
microbial activity. 

Oxygen 
content 
([O2]) 

Can affect the thermal 
conductivity of soil. 
Lower oxygen means 
higher thermal 
conductivity. 

Soil moisture and 
oxygen content are 
highly dependent. Any 
changes in soil moisture 
content affect oxygen 
availability. 

It can be considered 
effective in very high or 
low moisture levels as it 
directly impacts microbial 
activity and subsequently 
the decomposition rate. 

– – Low oxygen availability 
may cause a low 
respiration rate but it does 
not always mean less 
carbon emission from the 
soil. In anoxic conditions, 
some kinds of 
microorganisms can keep 
their activity and release 
methane. This is one of the 
persisting drawbacks in 
PCF modeling. 

Soil depth (z) Temperature 
distribution through 
the soil profile changes 
depending on the 
thermal conductivity of 
the soil. So, the 
temperature changes 
spatially. 

Moisture content 
changes with the soil 
depth. The presence of 
plant roots, and the 
uptake rate, microbial 
activity, and the 
temperature changes are 
the parameters that 
affect soil moisture 
content through the soil 
profile. 

The availability of organic 
carbon is different in each 
soil layer. The depth is 
one of the most important 
parameters to be 
considered while 
modeling organic carbon 
content. 

Oxygen content 
changes with soil depth, 
as it is directly affected 
by the soil moisture 
content. 

–  

Time (t) Temperature is a time- 
dependent parameter. 
Daily, monthly, and 
seasonal temperature 
changes can be 
considered through 
time. 

As moisture content 
depends on the 
temperature, this 
parameter is also a time- 
dependent one. The soil 
moisture level is 
changing through time. 

The effect of time on the 
concentration of organic 
carbon is one of the most 
important parameters that 
are challenging to 
consider while developing 
a numerical model. 
Usually, in the models, we 
have carbon pools 
available in which the 
concentration does not 
change with time. The 
spatial effect is mostly 
considered in the models, 
but time is missing. 

Oxygen content 
changes with soil depth, 
as it is directly affected 
by the soil moisture 
content. Due to the 
direct impact of 
moisture on oxygen 
content, it is clear that 
oxygen content is also a 
time-dependent 
parameter. However, 
this is one of the gaps in 
most PCF models, as 
oxygen is not usually 
considered a time- 
dependent parameter 
and is considered 
constant. 

– Time is one of the 
important factors while 
calculating soil respiration 
rate. Short-term and long- 
term studies proved to have 
different results. A nice 
example would be a high 
participation rate over a 
period of time. If we 
compute the respiration 
rate for that period, our 
results will be imprecise 
and may lead to an 
incorrect conclusion.  
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inherent complexity. Even at the regional scale, permafrost conditions 
can vary greatly, with diverse characteristics ranging from permanently 
frozen layers to seasonally thawing layers and permanently thawed 
layers (i.e., taliks). Besides, when studying carbon dynamics in perma-
frost, it is essential to take a detailed assessment of temporal factors. The 
key question of whether permafrost will transition from a carbon sink to 
a carbon source lies on the balance of carbon fluxes over several 
consecutive years. The cyclical process of carbon sequestration in the 
soil during plant growth in spring, followed by its release through soil 
respiration during the plant regeneration phase in fall, plays a key role in 
predicting the overall net carbon feedback in permafrost ecosystems. 
Incorporating transport processes such as diffusion, convection, trans-
port through plant tissues, and water flow into models becomes crucial 
to provide a more realistic representation of carbon dynamics and 
facilitate predictions under diverse climate scenarios and time frames. 
Furthermore, these transport mechanisms are not only relevant for 
describing the movement of greenhouse gases from the soil to the at-
mosphere but also play a critical role in regulating the availability of 
substrates, such as organic matter and nutrients. These substrate avail-
ability factors significantly influence microbial activity and carbon 
decomposition rates. 

Most existing models operate under the common assumption that 
soil respiration measured at the surface reliably reflects the concurrent 
subsurface production of CO2 by roots and microbes. However, Samuels- 
Crow et al. (2018) conducted an extensive study to explore the validity 
of this hypothesis across different time scales. Their research demon-
strated that, under specific conditions of soil textures, root and microbial 
depth distributions, soil temperature, and soil water content, the 
assumption holds true at seasonal time scales. However, at subdaily to 
monthly time scales, variations in temporal coherence and time lags 
between measured soil respiration and total soil CO2 production were 
observed, challenging the notion that soil respiration provides an ac-
curate snapshot of subsurface CO2 production. This raises questions not 
only about the comparison of models to field measurements but also 
about the appropriate construction of models regarding the treatment of 
carbon production and carbon transport. Soil texture, along with the 
associated soil water content and soil temperature profiles, emerges as a 
pivotal factor influencing the temporal coherence and time lags between 
subsurface and surface CO2 fluxes. The complexity arises from the 
multitude of potential mechanisms that may come into play for each 
factor, making the model description either highly complex or valid only 
at a very regional scale. For example, some studies have attributed 
increased soil respiration following precipitation events to physical 
mechanisms, such as the displacement of CO2 stored in dry soil pores 
(water flux description in (Jassal et al., 2004; Suarez and Šimůnek, 
1993)) or biological mechanisms such as increased microbial activity 
(Keuper et al., 2020). However, soil respiration can also decrease 
following precipitation events, which has also been attributed to phys-
ical mechanisms such as a decreased diffusivity (Suarez and Šimůnek, 
1993) and biological processes as a shift from aerobic to anaerobic 
decomposition (Ebrahimi and Or, 2016). Besides, soil bulk density and 
particle size distribution exert direct control over CO2 diffusivity 
because they control pore size distribution, water retention, and air- 
filled and total porosity at each depth and time (Ryan et al., 2018). As 
a result, there will be a drop in CO2 diffusivity in all soil types if pre-
cipitation declines and subsequently affects soil temperature profiles 
and soil moisture content. Due to its direct control over CO2 diffusivity 
through soil bulk density and particle size distribution, which determine 
pore size distribution, water retention, and air-filled and total porosity at 
each depth and time, this impact is more noticeable in fine-grained (e.g., 
clay) soils. 

Another significant aspect in the numerical modeling of the perma-
frost ecosystem is related to boundary conditions and initial conditions. 
In other words, the initial description of the ecosystem in terms of soil 
properties (e.g. soil texture, porosity, size of the aggregates, 

temperature), vegetation type, quantity, and quality of organic matter 
(fast or slow carbon decomposability), as well as the types and abun-
dance of microorganisms should be predefined. Adding to the 
complexity is considering climate nonstationarity in numerical 
modeling of PCF. In fact, it's likely that precipitation events will grow 
more powerful but less frequent, with longer periods of dry weather in 
between storms (Zelikova et al., n.d.). In the Arctic, a change from solid 
(snow) to liquid precipitation (rain) is very likely, impacting surface 
hydrology, increasing the level of complexity. Moreover, the combina-
tion of a changing climate (for instance, hot and dry conditions) is ex-
pected to escalate the potential, frequency, and severity of wildfires in 
northern regions, leading to sudden and profound transformations in the 
affected ecosystems (Singh, n.d.) and permafrost areas. 

Undoubtedly, the complex and dynamic nature of permafrost eco-
systems, characterized by the convergence of physical, chemical, and 
biological processes, underscores the need for the construction of 
comprehensive thermo-hydro-biogeochemical models. Integrating 
multiple processes and factors within these models offers a quantitative 
framework to comprehend the behavior and dynamics of permafrost 
systems amidst evolving environmental conditions. By developing such 
a model, enhanced predictions, effective mitigation strategies, and 
informed management approaches can be achieved for permafrost re-
gions, thereby preserving, or slowing down the degradation of, these 
distinctive and vulnerable ecosystems in the context of ongoing climate 
change. For the moment, the wide range of approaches across the 
different models results in a large discrepancy in the predicted carbon 
dynamic, which is a call for developing robust validation procedures (Le 
Noë et al., 2023). In this review paper, we have looked into the devel-
opment of a mathematical framework to describe the contribution of 
microbial activity and plants to the PCF. However, we have not 
addressed the question of model validation, which is a critical phase of 
model development. By adding processes to the carbon feedback model, 
they are becoming increasingly complex, which might end up in hidden 
compensating biases arising from the overfitting of model parameters. 
One idea could be to use different processed-based models, with 
different levels of complexity, to simulate the same observation of car-
bon dynamics in order to identify the mathematical framework allowing 
the best performance. 
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Appendix A  

Table 4 
Summary of the various parameters affecting microbial activity in thawing permafrost, studied in the literature review.  

Paper Soil 
Temperature 

Vegetation Water 
Content 

Soil 
Properties 

Microbial 
Life 

Nature of the 
Experiment 

Carbon 
Feedback 

Duration 

Sun et al., (2023) ⋄   ⋄  in situ CO2 9 years (June 2011–2020) 
Dong et al., (2023) ⋄    ⋄ Lab / / 
Sipes et al., (2022)    ⋄ ⋄ Lab CO2 / 
Knoblauch et al., 

(2021) 
⋄ ⋄    in situ CO2, CH4 3 years (July 2016–2019), long- 

term incubation (6 months) 
Yun et al., (2022) ⋄  ⋄ ⋄ ⋄ in situ CO2 6 years (June 2012–October 2018) 
Qin et al., (2021) ⋄   ⋄  Lab CO2 Long-term (>400 days), short- 

term (28 days) 
Song et al., (2021) ⋄   ⋄ ⋄ Lab CO2 90 days 
Meisner et al., (2021)   ⋄  ⋄ Lab CO2, CH4 1 month incubation +1 week for 

each phase of the cycle 
Monteux et al., (2020)     ⋄ Lab CO2 160 days 
Peng et al., (2020) ⋄    ⋄ in situ CO2 9 years 
Bouskil et al., (2020) ⋄ ⋄   ⋄ in situ CO2 10 years 
Song et al., (2020)   ⋄   Lab CO2, CH4 239 days 
Li et al., (2020) ⋄   ⋄  in situ CO2, CH4 4 years 
Lynch et al., (2018)  ⋄    in situ CO2 1 year (May 2014–2015) 
Yang et al., (2018) ⋄  ⋄   in situ CH4 2 years 
Voigt et al., (2017) ⋄ ⋄    in situ CO2, CH4 2 years 
Yang et al., (2017)   ⋄  ⋄ in situ CH4 Measurement in August 2012 
Stapel et al., (2016) ⋄  ⋄  ⋄ Lab CO2, CH4 / 
Coolen and Orsi, 

(2015) 
⋄    ⋄ Lab CO2, CH4 / 

Chowdhury et al., 
(2015) 

⋄  ⋄  ⋄ Lab CO2, CH4 60 days 

Shi et al., (2015)  ⋄   ⋄ Lab / / 
Schneider Von 

Deimling et al., 
(2015) 

⋄  ⋄   in situ CO2, CH4 / 

Waldrop et al., (2010) ⋄    ⋄ Lab CO2, CH4 98 days aerobic treatment, 117 
days anaerobic 

Sturm et al., (2005)  ⋄ ⋄  ⋄ in situ CO2 /  

References 

Adingo, Samuel, Jie-Ru, Yu, Xue-Lu, Liu, Li, Xiaodan, Jing, Sun, Xiaong, Zhang, 2021. 
Variation of soil microbial carbon use efficiency (cue) and its influence mechanism 
in the context of global environmental change: a review. PeerJ 9 (e12131), 10. 

Aqeel, Muhammad, Ran, Jinzhi, Weigang, Hu, Irshad, Muhammad Kashif, 
Dong, Longwei, Akram, Muhammad Adnan, Eldesoky, Gaber E., Aljuwayid, Ahmed 
Muteb, Chuah, Lai Fatt, Deng, Jianming, 2023. Plant-soil-microbe interactions in 
maintaining ecosystem stability and coordinated turnover under changing 
environmental conditions. Chemosphere 318, 137924. 

Christian Beer, Markus Reichstein, Enrico Tomelleri, Philippe Ciais, Martin Jung, Nuno 
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Harden, Jennifer W., Hayes, Daniel J., Hugelius, Gustaf, Koven, Charles D., 
Kuhry, Peter, Lawrence, David M., et al., 2015. Climate change and the permafrost 
carbon feedback. Nature 520 (7546), 171–179. 

Schuur, Edward A.G., Abbott, Benjamin W., Commane, Roisin, Ernakovich, Jessica, 
Euskirchen, Eugenie, Hugelius, Gustaf, Grosse, Guido, Jones, Miriam, 
Koven, Charlie, Leshyk, Victor, Lawrence, David, Loranty, Michael M., 
Mauritz, Marguerite, Olefeldt, David, Natali, Susan, Rodenhizer, Heidi, 
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