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Mean Field Game-Based Algorithms for Charging in Solar-Powered
Parking Lots and Discharging into Homes a Large Population of
Heterogeneous Electric Vehicles
Samuel M. Muhindo 1,2,3

1 Department of Electrical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada;
samuel.muhindo-mugisho@polymtl.ca

2 Groupe d’Études et de Recherche en Analyse des Décisions (GERAD), Montreal, QC H3T 2A7, Canada
3 Réseau Québécois sur l’Énergie Intelligente (RQEI), Trois-Rivieres, QC G9A 5H7, Canada

Abstract: An optimal daily scheme is presented to coordinate a large population of heterogeneous
battery electric vehicles when charging in daytime work solar-powered parking lots and discharging
into homes during evening peak-demand hours. First, we develop a grid-to-vehicle strategy to
share the solar energy available in a parking lot between vehicles where the statistics of their arrival
states of charge are dictated by an aggregator. Then, we develop a vehicle-to-grid strategy so that
vehicle owners with a satisfactory level of energy in their batteries could help to decongest the grid
when they return by providing backup power to their homes at an aggregate level per vehicle based
on a duration proposed by an aggregator. Both strategies, with concepts from Mean Field Games,
would be implemented to reduce the standard deviation in the states of charge of batteries at the
end of charging/discharging vehicles while maintaining some fairness and decentralization criteria.
Realistic numerical results, based on deterministic data while considering the physical constraints of
vehicle batteries, show, first, in the case of charging in a parking lot, a strong to slight decrease in the
standard deviation in the states of charge at the end, respectively, for the sunniest day, an average
day, and the cloudiest day; then, in the case of discharging into the grid, over three days, we observe
at the end the same strong decrease in the standard deviation in the states of charge.

Keywords: aggregator; electric vehicle; grid-to-vehicle; heterogeneous batteries; mean field games;
solar parking lot; vehicle-to-grid; vehicle charging/discharging

1. Introduction

The use of electric vehicles worldwide has exponentially increased, thanks to tech-
nological advances and climate change policies. There were 18 million battery electric
vehicles (BEVs) in 2022, and 28 million in 2023 [1]. Incentives are put in place to achieve
sales of BEVs in 2030 representing 30% of the overall vehicle sales market [2]. At the end of
2023, there were 3.2 million public charging stations (including 1.8 million slow chargers,
i.e., with a charging rate up to 22 kW, and 1.4 million fast chargers, i.e., with a charging
rate of more than 22 kW and up to 350 kW) and almost ten times more home charging
stations than public ones [1]. However, the use of millions of BEVs will inevitably have
significant impacts on the grid [3]. When too many BEVs are charged at the same time, that
may create both local transformer and eventually system-wide overloads [4]. Furthermore,
the adequate management of battery storage associated with an aggregate of BEVs can
transform such an aggregate into a virtual power plant. Thus, in the context of integration
with renewable energy sources, such as photovoltaics, BEVs’ batteries could store the solar
energy available during the day when BEVs are parked [5–7] and then restore part of
the energy in their batteries into the grid during evening peak-demand hours. Multiple
studies worldwide (from Canada, the United States, Brazil, Europe, Asia, and Africa) on
the feasibility of these new attributes of BEVs have been discussed in the literature [8–26].
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Our objective in this paper is to develop control strategies for the charging and dis-
charging of BEVs, with the aim being to offer tools that will possibly lead to the implemen-
tation of a viable economic model exploiting BEVs [27,28]. Our envisioned business scheme,
but by no means the only one, is the daily operation of daytime solar-powered parking
lots. A parking lot operator would share everyday solar energy amongst the present BEVs
in a parking lot. BEVs would be owned by customers working near the parking lot who
could charge their batteries at least partially depending on the available daily solar energy.
The parking lot operator would charge each customer a monthly parking subscription fee
proportional to their battery capacity for the use of a parking space and the associated
charging station. If the customers then decided to recover part of their parking subscription
costs, they could choose to participate in a grid support operation coordinated by the
parking lot operator. More precisely, upon returning to their homes, the customers would
commit to supplying the grid using their batteries during evening peak-demand hours at
an aggregated power level per vehicle based on a duration proposed by the parking lot
operator. The daily amount of energy supplied to the grid, based on grid demand and
participating BEVs, would be negotiated at a reasonable price between the parking lot
operator and the grid operator. An agreed fraction of the resulting income would then be
redistributed to the customers based on their contribution to the grid, allowing everyone to
benefit accordingly.

On the other hand, the parking lot operator should guarantee a competitive monthly
parking subscription fee for each customer. Knowing that the sun shines during the day
in the parking lot, and in the absence of large batteries dedicated to solar energy storage,
which can be costly, the solar energy acquired must be shared instantly and as fairly as
possible between BEVs. An adequate control system for charging BEVs must be developed
by the parking lot operator to maximize the chances that customers can return to their
homes without needing to charge at an arbitrary station. The necessary daily solar energy
forecast should be carried out based on the weather. To avoid having to connect the parking
lot to an external supply grid, the parking lot operator should then announce a daily
expected sunshine level to the customers. Consequently, a daily average state-of-charge
(SOC) level can be expected for the entire aggregate of BEVs upon their arrival in the
parking lot. This expected average SOC level will be dictated by the parking lot operator
so that the expected daily solar energy in the parking lot will be less than the energy that
the entire aggregate of BEVs will need to charge their batteries at a maximum level that
day. Therefore, we shall assume that the solar parking lot supply–demand ratio (SDR)
for charging all BEVs is less than one. Otherwise, any excess energy in the parking lot
at the end of the day could be stored in a battery and restored into the grid during peak
evening hours.

To maximize customer participation in our business scheme, coordinated by the
parking lot operator, so that everyone benefits, the proposed control strategies must be
the following:

(i) As fair as possible: We want, at the end of charging or discharging, for each customer
to have the state of charge of their battery to always be close to the average of the
states of charge of the batteries of all customers, regardless of their state of charge
upon arrival. We are therefore leaning towards a charging or discharging algorithm
a priori favoring BEVs which are the emptiest compared to those that are more full
when they arrive. The justification for this bias in favor of emptier vehicles is the
potential urgency of charging them in the parking lot in the case of early departures,
but also, by the appropriate equalization of vehicle states of charge, we maximize a
priori the chances of participation of a given vehicle in grid support operations during
peak evening hours. However, the emptiest BEVs upon arrival must in no way exceed
those arriving fuller when charging in the parking lot or discharging into the grid.

(ii) As decentralized as possible: From the aggregator’s point of view, decentralized
control strategies are quite desirable because they minimize the information exchange
and the need to observe the individual batteries, which could be complex and invasive.
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Additionally, a local policy allows a customer to interrupt their charging or discharging
process at any time (emergency departure, battery life cycle health, etc.).

The coordination of charging or discharging electric vehicles is obtained in most cases
from centralized control strategies in the literature [29–34], or it is a decentralized control
strategy that will allow a customer to determine their own charging pattern depending on
the time of the day, the electricity cost, or the health of their battery. Therefore, decentralized
control strategies provide more guarantee of a viable economic model [35,36] but are
often achievable by more sophisticated approaches (multi-agent system optimization,
optimization by particle swarms, artificial intelligence, etc.) requiring a lot of simulation
time, which sometimes might not be feasible [7,35–37].

In this paper, we rely on Mean Field Game (MFG) theory [38–42], which, when we
use adequate cost functions [43–45], allows us to provide decentralized vehicle charging
and discharging algorithms by favoring the lowest states of charge, which fits perfectly
with our research framework. The problem is therefore formulated as a game with a large
number of agents (here, BEVs). The stochastic model of the state of charge of the battery
of a BEV is linear, and when we consider quadratic costs, the MFG algorithms result in
analytically calculable charging laws that are linear and varying over time.

The MFG concept, in the recent literature, has been successfully applied in the general
context of energy management systems. A Nash equilibrium solution, for the management
of a large population of space heaters, was presented with an integral control approach in
2019 [44], and with a reverse engineering (or inverse Nash) approach in 2021 [45]. It is this
last avenue that we consider in this paper for the charging and discharging of BEVs.

The first formulation of game theory in vehicle charging or discharging problems
associated with the coordination of energy restitution from electric vehicles into the grid
came up in 2011 [46]. In that formulation, each group of hybrid electric vehicles could
decide on the maximum amount of surplus energy they were willing to sell to the grid
to maximize a utility function based on the economic benefits of selling energy and the
associated costs. The trading price governing the energy market between vehicles and the
grid was determined using a double strategic auction defined by the authors. To solve the
game, an algorithm based on the best response dynamics was proposed, thanks to which
the groups of vehicles could reach a Nash equilibrium. Then, in 2012 [47], the authors, in the
same economic context of energy trade-off, presented a formulation of Mean Field Games
theory associated with the coordination of non-hybrid electric vehicles (also known BEVs).

The first rigorous formulations using Mean Field Games theory in the vehicle charging
or discharging problem came up in 2013 and 2015 [35,48]. The authors framed the prob-
lem as a game with a large population of hybrid electric vehicles over a finite charging
interval. They studied the existence, uniqueness, and optimality of the Nash equilibrium
of the problem to minimize the costs of local electricity and also to fully charge vehicles.
In a decentralized mechanism, they showed under deterministic consideration that the
solution converges to a unique Nash equilibrium: it is globally optimal for a homogeneous
population, and almost globally optimal for a heterogeneous population. The problem
was presented in the economic context of the penetration of electric vehicles into the grid,
from which energy was directly drawn. The authors (in 2014 [49], 2015 [50], 2016 [51],
and 2019 [52], respectively) also conducted their research based on economic contexts,
where refs. [49,50] studied the heterogeneous case with constraints in the charging times by
adding an iterative algorithm so that the solution converged towards a Nash equilibrium,
ref. [51] considered simultaneous charging during a flexible period, and ref. [52] added
battery degradation constraints.

The first applications of Mean Field Games theory in the charging of BEVs in solar
parking lots were presented in 2021 [27,28]. In May 2021 [27], the authors solved the
problem when all BEVs were present at the start of charging. The heterogeneous case
was solved by considering homogeneous classes of BEVs resulting in a control policy per
homogeneous class. In this case, the formulation remained the same and therefore did not
require an iterative algorithm, as in [35] for the solution to converge to a Nash equilibrium.
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However, the algorithm in the heterogeneous case became more complex as the number
of different classes of homogeneous BEVs increased. And it was in December 2021 [28]
that the problem when BEVs arrive and leave the parking lot randomly was solved, but
considering the MFG classic formulation where the number of agents is assumed to be
fixed. In both [27,28], a rigorous justification was not given to guarantee that a solution will
exist in the Nash equilibrium problem. More recently, the authors, in 2021 and 2023 [53,54],
added constraints for battery charging and discharging in their mathematical formalism,
and the authors in 2023 [55] they added behavioral considerations of the owners of electric
vehicles (availability, planning, etc.) in their analysis.

The main contribution of this paper’s conclusions as follows:

(i) A novel MFG inverse Nash algorithm for charging heterogeneous BEVs in a solar-
powered parking lot or discharging their energy into the grid.

(ii) A rigorous justification of the existence of the solution to the MFG inverse Nash
problem for deterministic data aimed at achieving a fair and decentralized charging
or discharging algorithm.

(iii) Testing and validation of the MFG inverse Nash algorithm for charging and dis-
charging a large population of heterogeneous BEVs, based on realistic data while
considering the physical constraints of vehicle batteries, on three days in a year (the
sunniest, an average, and the cloudiest).

The rest of this paper is organized as follows. In Section 2, we present the Mean
Field Game-based algorithm for charging or discharging a large population of heteroge-
neous BEVs. The theoretical underpinnings and mathematical details are presented in
Appendix A. We also present a simpler version of the Mean Field Game-based algorithm
in Appendix B. In Section 3, we present the numerical results in the case of charging in the
parking lot. In Section 4, we present the numerical results in the case of discharging into
the grid. The numerical results in Sections 3 and 4 are reported in the case of the sunniest
day, an average day, and the cloudiest day. Other detailed numerical results are presented
in Appendix C (see Table A1). Finally, in Section 5, we conclude and give an outlook on
future research.

2. Mean Field Game-Based Control for Charging or Discharging a Large Population of
Heterogeneous BEVs
2.1. Battery Model
2.1.1. Heterogeneous Batteries

We consider a population of N heterogeneous BEVs in a parking lot. The assumption
of a large population is needed only if, as we do in (1) below, we assume randomness
in the dynamics of battery charging, and later on in our analysis we will assimilate the
empirical mean of states of charge (SOCs) with its mathematical expectation (a predictable
deterministic quantity) by virtue of the law of large numbers. Because of the linearity of
the model, the analysis will be perfectly exact for arbitrarily small numbers of BEVs if the
battery charging processes remain deterministic. Each BEV, i, i = 1, . . . , N, has a state of
charge (SOC) xi,0 upon arrival which is the result of a daily traffic pattern from home to the
parking lot. We can then write the SOC stochastic dynamics for BEV i as follows [28,35]:

dxi,t =
α

βi
Ui,tdt + νdωi, (1)

where t ∈ [t0, T] is the time in h, xi,t is the SOC in pu (per unit) of capacity, α ∈ [−1, 1] is
the charger efficiency in pu/h (where α > 0 when charging and α < 0 when discharging),
βi ∈ N∗ is the battery capacity in kWh, Ui,t ∈ R+ is the charging or discharging rate in kW
(note that Ui,t is maximally bounded by Pmax, a physical maximum charging or discharging
rate), ωi is a normalized Brownian process, ν is the intensity of that Brownian noise, and ωi
is assumed to be independent of ωj for i ̸= j. The term νdωi defines the stochasticity of the
battery model, which can result physically from fluctuations when charging or discharging.
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2.1.2. Homogeneous Batteries

We consider an elementary battery model to replace the N heterogeneous BEVs with
capacities βi with n elementary homogeneous batteries with a capacity of 1 kWh, i.e.,

n =
N

∑
i=1

βi. (2)

We can then rewrite (1) as follows:

dxi,t = α
Ui,t

βi
dt + νdωi

= αui,tdt + νdωi.
(3)

In conclusion, we use heterogeneous batteries as integer multiples of the elemental
building block batteries of 1 kWh. In effect, once the charging or discharging rate policy
u∗

i,t for the elemental battery building block is determined, the real charging or discharging
rate policy U∗

i,t will be a multiple of that associated with the building block, i.e.,

U∗
i,t = βiu∗

i,t. (4)

This results in one simple control policy U∗
i,t, in contrast to [27], for the N heteroge-

neous BEVs.

2.2. Establishment of Individual Battery Cost Function

In a game theory context [27,28,44,45], the local cost function of charging or discharging
a BEV, i, i = 1, . . . , N, to be minimized is given by

Ji(xi,0, ui,t) = E
[ ∫ T

t0

e−δt[ r
2

u2
i,t +

qy
t

2
(xi,t − y)2 +

qx0

2
(xi,t − xi,0)

2]dt | xi,0

]
, (5)

where the variables are as follows:

(i) [t0, T] is the control horizon.
(ii) δ > 0 is a discount coefficient to guarantee the convergence of the cost J in a context

of extension to an infinite horizon (T → ∞). Then, δ = 0 for a finite horizon [t0, T].
(iii) r is a coefficient common to all BEVs which penalizes charging or discharging intensity.

Therefore, we would like it to be as small as possible.
(iv) xi,t is the state of charge of BEV i at time t. Note that at t0, the states of charge

xi,0, i = 1, . . . , N of BEVs are assumed to be known, with a finite mean x0 and a finite
standard deviation (STD) σxi,0 .

(v) y is a state-of-charge value serving as a possible final destination for xi,t Therefore,
y = 1 in the vehicle charging problem and y = 0 in the vehicle discharging problem.

(vi) qy
t is a coefficient, at time t, common to all BEVs which penalizes any distance from

y. Then, qy
t is the pressure field that would give priority to the less-full BEVs upon

arrival. It would be calculated in the reverse engineering mechanism (called inverse
Nash) [27,28,45] detailed in Appendix A, the aim of which is to reduce the standard
deviation in the states of charge of BEVs at the end of charging or discharging. It is qy

t
that creates the link between agents (here, BEVs) in the game (i.e., as the mean field).

(vii) qx0 is a coefficient common to all BEVs which penalizes any distance from xi,0. Then,
qx0 would preserve the order of the states of charge upon arrival and so, added with
the effect of qy

t , the emptiest BEVs upon arrival must in no way exceed those arriving
fuller. We consequently obtain a fair and decentralized algorithm.
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2.3. Implementation of the MFG Inverse Nash Algorithm

The MFG inverse Nash algorithm, with mathematical details in Appendix A, is devel-
oped in this paper to charge BEVs in a solar-powered parking lot and discharge BEVs into
the grid under the following assumptions:

(i) The MFG inverse Nash algorithm is implemented under deterministic consideration,
i.e., the data on solar acquisition in the parking lot, the duration of the evening peak,
and the numbers of arriving and departing BEVs are assumed to be known in advance,
such that all BEVs start and finish charging or discharging at the same time.

(ii) There exists a two-way communication infrastructure to coordinate BEVs charging in
the parking lot or discharging into the grid.

(iii) BEV owners use chargers that are equipped with microprocessors allowing them to
compute and implement a local feedback-based algorithm for charging or discharging
their batteries.

(iv) BEV owners communicate their battery energy on their usable capacity upon arrival
(for example, 25 kWh/100 kWh = 0.25 of SOC) and then the aggregator provides
them with the common pressure field trajectory qy

t that each BEV owner uses to locally
compute their optimal feedback-based charging or discharging policy U∗

i,t.

2.4. MFG Inverse Nash Algorithm for Charging or Discharging Heterogeneous BEVs

Figure 1 shows the outline of the operation of the MFG inverse Nash algorithm
(Algorithm 1) for charging or discharging heterogeneous BEVs. Note that we propose also
a simpler version of the Algorithm in Appendix B.

Algorithm 1 MFG Inverse Nash algorithm for Charging or Discharging Heterogeneous
BEVs

Require:
[
DATA

]
time t ∈ [t0, T] (control horizon), dt > 0 (step time), uWt ∈ R+ (power

generation at time t for charging BEVs), N > 0 (number of heterogeneous BEVs upon
arrival, i.e., at t0), xi,0 ∈ [0, 1], i = 1, 2, 3, . . . , N, (N BEVs’ SOCs at t0), βi ∈ N∗ (N BEVs’
capacities), n, n = ∑N

i=1 βi, (elementary homogeneous batteries of 1 kWh), x0 (average
of N BEVs’ SOCs at t0), α ∈ [−1, 1], y ∈ [0, 1], ν > 0, qx0 > 0, r > 0, δ ≥ 0.
Part I—The aggregator computes the pressure field (qy

t ) of N heterogeneous BEVs using the steps:

1. Compute the average target SOC trajectory xtarget
t by using (7) in the case of charging

or (8) in the case of discharging, and then the corresponding dxtarget
t
dt .

2. Calculate the steady-state values qy
T = qx0

(
xtarget

T −x0

y−xtarget
T

)
, πT =

−δ+
√

δ2+4
[

α2
r (qx0+qy

T)
]

2
(

α2
r

)
and sT = πT(y − xtarget

T ).

3. Solve dst
dt =

s2
t α2

r(y−xtarget
t )

+ st
[
δ +

dxtarget
t
dt

y−xtarget
t

]
+ qx0(x0 − y) backwards, knowing sT .

4. Compute πt =
1

y−xtarget
t

(
st +

r
α2

dxtarget
t
dt

)
, and then dπt

dt by using mean value theorem.

5. Compute qy
t = α2

r π2
t + δπt − dπt

dt − qx0 .
Part II—Each BEV i, i = 1, . . . , N, computes its local optimal feedback strategy using the steps:

1. Solve dsi,t
dt = α2

r πtsi,t + δsi,t + qx0(xi,0 − y) backwards, knowing si,T =
πTqx0 (y−xi,0)

qx0+qy
T

.

2. Compute U∗
i,t = − α

r
[
πt(xi,t − y) + si,t

]
βi, and then solve dx∗i,t =

α
βi

U∗
i,tdt + νdωi.
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Use (7) or (8) Compute qy
t Compute U∗

i,t

Use battery model

Required Data xtarget
t πt, xi,t si,t, U∗

i,t

Figure 1. Diagram of the MFG inverse Nash algorithm for charging or discharging a BEV i at time t.

3. Charging a Large Population of Heterogeneous BEVs in a Parking Lot
3.1. Experimental Platform and Data Sources in the Case of Charging

(i) Population of BEVs based on realistic data [56,57]: We consider BEVs with 10 different
capacities β, and a charger efficiency α = 0.85. Each BEV could use at most a charger
which can deliver up to Pmax = 20 kW of charging rate (i.e., max(U∗

i,t) ≤ 20 kW).
(ii) Simulation prerequisites: We consider charging N = 400 heterogeneous BEVs between

t0 = 6 and T = 18 (i.e., the charging of all BEVs in the parking lot starts at 6 a.m. and
stops at 6 p.m.) with a random normal distribution of SOCs upon arrival (with an
average of 0.15 and a standard deviation of 0.10), which is the result of a daily traffic
pattern from home to the parking lot, and dt = 0.01 h, δ = 0, ν = r = 0.001, qx0 = 1,
and y = 1. Finally, the MFG inverse Nash algorithm and numerical results are carried
out in MATLAB 2021b software.

The number n of elementary batteries of 1 kWh, as in (2), and the average x0 of
400 heterogeneous BEVs’ SOCs upon arrival, illustrated in Figure 2, are given by

n =
10

∑
k=1

βk Nβk , x0 =
1
n

10

∑
k=1

βk Nβk x0,βk . (6)

(iii) Solar generation based on realistic data [28]: we consider installing 250 solar panels in a
parking lot (45.50 North, 73.58 West) in the city of Montréal (Québec, Canada) to obtain,
in a year, daily solar power curves uWt and daily solar energies W =

∫ T
t0

uWt dt between
6 a.m. and 6 p.m., by using data from the Photovoltaic Geographical Information
System (PVGIS) website and the Transient System Simulation (TRNSYS) tool.

We determined three different realistic solar power curves to compare the differences
in solar generation on the behavior of the MFG inverse Nash charging algorithm. Note
that the aggregator broadcasts the weather forecast the day before so that a majority of
customers arrive in the parking lot with a state of charge with which they will not need
to recharge their vehicle at another station at the end of the day. However, in this paper,
for comparison purposes, we work with the same distribution of SOCs upon arrival, in
Figure 2, as for the three days (the sunniest, an average, and the cloudiest), in Figure 3.

3.2. Calculation of the Average Target SOC Trajectory in the Case of Charging

In a reverse engineering mechanism for obtaining their optimal SOC trajectories x∗i,t,
which we explain in detail in Appendix A, all N heterogeneous BEVs use the average target
SOC trajectory xtarget

t (such that the empirical average SOC per BEV, x∗t = 1
N ∑N

i=1 x∗i,t, is

equivalent to xtarget
t , ∀t ∈ [t0, T]), calculated as follows:

dxtarget
t
dt

=
1
n

αuWt , xtarget
t0

= x0.

⇒ xtarget
t = x0 +

α

n

∫ T

t
uWt dτ, α > 0,

(7)

where uWt is the assumed deterministic power curve such that, with the known quantities
of n and x0 in (6) and α, xtarget

t will stabilize at a steady state xtarget
T < 1.
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3.3. Numerical Results in the Case of Charging

In Figures 4–6, we first notice that the trajectories, xtarget
t , obtained in (7) by integrating

the solar power curve uWt , then qy
t , obtained in (A15) by inverse Nash while using xtarget

t ,
finally x∗i,t, obtained in (1) when BEVs locally apply their optimal control laws while using
qy

t , respectively, follow the fluctuations in the solar power curves for the three days (sunniest,
average, and cloudiest). Then, we see that the reduction in the standard deviation in the
optimal SOC trajectories x∗i,t is proportional to qy

t , where its steady state qy
T is proportional to

qx0 and xtarget
T , with the latter proportional to the available solar energy W.

In Figures 7–9, as expected, we first see a reduction in the standard deviation, pro-
portional to qy

T , in the SOCs upon departure xi,T for the three days (89% for the sunniest
case, 41% for an average case, and 3% for the cloudiest case) regardless of their SOCs upon
arrival xi,0 and their battery capacities βi (as confirmed in Table A1). Then, we notice that
the maximum charging rates U∗

i,max of BEVs at a given time depend on the quantity of
energy available W, their SOCs upon arrival xi,0, and their battery capacities βi. We also
confirm that the condition of the maximum charging rate of 20 kW, for a BEV charger, is
well respected (i.e., U∗

i,max ≤ 20 kW). Note that we chose an adequate value of qx0 , with
respect to Appendix A in (A18), to satisfy the latter condition. Finally, the results upon
departure of the BEVs’ energies Wi,T and the fractions of total energy fWT,β depend on
the available solar energy W, their energies upon arrival Wi,0, and their battery capacities
βi. More detailed numerical results in Appendix C in the case of charging confirm all
these tendencies.
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Figure 4. Sunniest day in the case of charging: (top left)—daily solar power curve (uW); (bottom
left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t ); (bottom right)—400 BEVs’

optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ), dotted line.
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Figure 5. Average day in the case of charging: (top left)—daily solar power curve (uW); (bottom
left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t ); (bottom right)—400 BEVs’

optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ), dotted line.
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left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t ); (bottom right)—400 BEVs’

optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ), dotted line.
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Figure 7. Sunniest day in the case of charging: (top left)—400 BEVs’ SOCs upon arrival (xi,0) and
upon departure (xi,T); (top right)—400 BEVs’ maximum charging rates (U∗

i,max); (bottom left)—400
BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of total
energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).
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Figure 8. Average day in the case of charging: (top left)—400 BEVs’ SOCs upon arrival (xi,0) and
upon departure (xi,T); (top right)—400 BEVs’ maximum charging rates (U∗

i,max); (bottom left)—400
BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of total
energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).
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Figure 9. Cloudiest day in the case of charging: (top left)—400 BEVs’ SOCs upon arrival (xi,0) and
upon departure (xi,T); (top right)—400 BEVs’ maximum charging rates (U∗

i,max); (bottom left)—400
BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of total
energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).

4. Discharging a Large Population of Heterogeneous BEVs into the Grid
4.1. Experimental Platform and Data Sources in the Case of Discharging

(i) Population of BEVs based on realistic data [56–58]: We consider BEVs with a charger
efficiency α = −0.85 and an average consumption of 0.2 kWh/km. Each BEV could
use at most a charger which can deliver up to Pmax = 100 kW of discharging rate (i.e.,
max(U∗

i,t) ≤ 100 kW). Also, the commute distances are a random normal distribution
with an average of 9 km and a standard deviation of 5 km. Therefore, a BEV with a
roundtrip commute distance superior to its range according to its energy stored would
not participate in the discharging operation into the grid during peak evening hours.

(ii) Simulation prerequisites: We consider discharging all participating BEVs into their
homes during the evening peak of 2 h (i.e., t0 = 0, T = 2), and dt = 0.01 h, δ = 0,
ν = r = 0.001, qx0 = 1, and y = 0. The MFG inverse Nash algorithm and numerical
results are carried out in MATLAB 2021b software.

4.2. Calculation of the Average Target SOC Trajectory in the Case of Discharging

The vehicle discharging problem presents a particular difficulty if it is not correctly
formulated. Indeed, the energy demand of the grid corresponds to a constant power over a
finite horizon [t0, T]. So, we need to remove the energy at a constant power over a finite
horizon, [t0, T], by dropping the power exponentially to compute the average target SOC
trajectory xtarget

t , ∀t ∈ [t0, T], which will stabilize at a steady state xtarget
T > 0.

dxtarget
t
dt

= αxtarget
t , xtarget

t0
= x0.

⇒ xtarget
t = eαt+ln x0 , α < 0, t0 = 0.

(8)

The resulting average target SOC trajectory xtarget
t in (8), with the known quantities

of α and x0 (as calculated in (6) with only the participating BEVs), is then used by all
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participating heterogeneous BEVs to obtain their optimal SOC trajectories x∗i,t in a reverse
engineering mechanism, as in the case of charging, which we explain in Appendix A.

4.3. Numerical Results in the Case of Discharging

In Figures 10–12, we first notice that the trajectories xtarget
t , obtained in (8) by expo-

nentially dropping the energy in the participating BEVs (as observed in top left of these
figures) for two straight hours during the evening peak, then qy

t , obtained in (A15) by
inverse Nash while using xtarget

t , finally x∗i,t, obtained in (1) when BEVs locally apply their
optimal control laws while using qy

t , are, respectively, smooth exponential functions for the
three days (sunniest, average, and cloudiest). From the trajectories xtarget

t , we expect for the

three days that all BEVs restore into the grid approximately 82%(
x0−xtarget

T
x0

) of their total
energy upon arrival Wi,total . Therefore, for the three days, we have the same trajectory qy

t
and the same reduction in standard deviation in the optimal SOC trajectories x∗i,t.

In Figures 13–15, as expected, we first see the same reduction of 82% in the standard
deviation in the SOCs at the end of discharging xi,T for the three days regardless of their
SOCs upon arrival xi,0 and their battery capacities βi (as confirmed in Table A1). Then, we
notice that the maximum discharging rates U∗

i,max of BEVs at a given time depend on the
quantity of available energy Wi,total , their SOCs upon arrival xi,0 and their battery capacities
βi. We also confirm that the condition of the maximum discharging rate of 100 kW, for
a BEV charger, is well respected (i.e., U∗

i,max ≤ 100 kW). Note that we chose an adequate
value of qx0 , with respect to Appendix A in (A19), to satisfy the latter condition. Finally
the results at the end of discharging of the BEVs’ energies Wi,T and the fractions of total
energy fWT,β depend on the available energy Wi,total , their energies upon arrival Wi,0, and
their battery capacities βi. The more detailed numerical results in Appendix C in the case
of discharging confirm all these tendencies.
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Figure 10. Sunniest day in the case of discharging: (top left)—400 BEVs’ roundtrip commute and
range distances; (bottom left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t );

(bottom right)—400 BEVs’ optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ),
dotted line.
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Figure 11. Average day in the case of discharging: (top left)—400 BEVs’ roundtrip commute and
range distances; (bottom left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t );

(bottom right)—398 BEVs’ optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ),
dotted line.

BEVs ordered according their capacities
50 100 150 200 250 300 350 400

D
is
ta
n
ce
s
[k
m
]

50

100

150

200

roundtrip commute distance, [min, max, median, mean] = [0.02,56.03,17.14,17.16] km
range depending on the energy stored, [min, max, median, mean] = [2.6,231.4,41.0,51.4] km

Time [hours]
0 0.5 1 1.5 2

M
ea
n
ta
rg
et

S
O
C

tr
a
je
ct
or
y
[p
.u
.]

0.03

0.058

0.086

0.114

0.142

0.17

320 participated BEVs' xi;0, [min, max, median, mean, STD] = [0.024, 0.456, 0.165, 0.170, 0.092]

Time [hours]
0 0.5 1 1.5 2

P
re
ss
u
re
-
el
d
[p
.u
.]

-0.043

0.859

1.761

2.664

3.566

4.468

Time [hours]
0 0.5 1 1.5 2

O
p
ti
m
al

S
O
C

tr
a
je
ct
or
ie
s
[p
.u
.]

0

0.1

0.2

0.3

0.4

0.5

Figure 12. Cloudiest day in the case of discharging: (top left)—400 BEVs’ roundtrip commute and
range distances; (bottom left)—mean target SOC trajectory (xtarget

t ); (top right)—pressure field (qy
t );

(bottom right)—320 BEVs’ optimal SOC trajectories (x∗i,t) and empirical average SOC per BEV (x∗t ),
dotted line.
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Figure 13. Sunniest day in the case of discharging: (top left)—400 BEVs’ SOCs upon arrival (xi,0)
and upon departure (xi,T); (top right)—400 BEVs’ maximum discharging rates (U∗

i,max); (bottom
left)—400 BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of
total energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).
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Figure 14. Average day in the case of discharging: (top left)—398 BEVs’ SOCs upon arrival (xi,0)
and upon departure (xi,T); (top right)—398 BEVs’ maximum discharging rates (U∗

i,max); (bottom
left)—398 BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of
total energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).
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Figure 15. Cloudiest day in the case of discharging: (top left)—320 BEVs’ SOCs upon arrival (xi,0)
and upon departure (xi,T); (top right)—320 BEVs’ maximum discharging rates (U∗

i,max); (bottom
left)—320 BEVs’ energies upon arrival (Wi,0) and upon departure (Wi,T); (bottom right)—fractions of
total energy per BEVs’ capacity upon arrival ( fW0,β ) and upon departure ( fWT,β ).

5. Conclusions

In this paper, we have considered a large daytime work solar-powered parking lot
with heterogeneous BEVs. We first developed a Mean Field Game-based algorithm to
charge heterogeneous BEVs under deterministic consideration, i.e., the data of the parking
lot for the number of BEVs upon arrival and the solar power generation are supposed to be
known in advance. Then, we considered a large amount of energy restitution to the grid
during peak evening hours using heterogeneous BEVs with a satisfactory level of energy
in their batteries. We then developed a Mean Field Game-based algorithm to discharge
heterogeneous BEVs also under deterministic consideration, i.e., the data for the number
of participating BEVs in their residences and the duration of the evening peak are also
supposed to be known in advance.

Both algorithms, fair and decentralized, were developed based on realistic data while
considering the physical constraints of vehicle batteries for the sunniest day, an average day,
and the cloudiest day of the year, where the goal was to reduce the BEVs’ SOC standard
deviation at the end of charging and discharging. This resulted in the following:

(i) In the case of charging: we elevated the BEVs’ SOCs upon departure , by using all the
solar energy in the parking lot, to a satisfactory level (on average, an increase of 500%
for the sunniest day, 230% for an average day, and 20% for the cloudiest day) while
reducing their standard deviation regardless of their SOC upon arrival to maximize
the number of participating BEVs, which would help to decongest the grid during
peak evening hours.

(ii) In the case of discharging: we restored into the grid the same fraction of 82% of the
total energy of BEVs upon arrival for the three days.

A comparison was carried out with the results for the three days and, as expected,
showed the following:
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(i) In the case of charging: we achieved a strong to slight reduction in the standard
deviation in the states of charge at the end, respectively, for the sunniest day (89%), an
average day (41%), and the cloudiest day (3%).

(ii) In the case of discharging: for the three days, we achieved the same reduction of
82% in the standard deviation in the states of charge at the end and the same frac-
tions of energies at the beginning and the end of discharging BEVs with the same
battery capacity.

In future research, we shall extend this work by considering stochastic solar acquisition
in the parking lot and explore Mean Field Game-based algorithms when the number of
BEVs arriving at the parking lot and their homes and when departing from the parking
lot fluctuates.
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Abbreviations

E mathematical expectation
N∗ set of natural numbers without zero
R+ set of positive real numbers
∑△

j=1 □ sum of △ elements of □
d△ differential of △∫
□ integral of □

e△ exponential of △
ln□ natural logarithm of □
t time in h
t0 starting time
T length of the horizon
[t0, T] control horizon
N number of heterogeneous battery electric vehicles (BEVs)
i = 1, . . . , N a user of a BEV
α charger efficiency in pu/h
β battery capacity of a BEV in kWh
Nβ number of BEVs per battery capacity
n number of elementary homogeneous batteries of 1 kWh
Ji cost of BEV i to minimize
δ discount coefficient for the convergence of cost Ji
ui,t charging or discharging rate of an elementary homogeneous battery at time t in kW
u∗

i,t optimal charging or discharging rate of an elementary homogeneous battery at time t
U∗

i,t optimal charging or discharging rate of BEV i at time t in kW
U∗

i,max maximum optimal charging or discharging rate of BEV i
U∗

max,β maximum optimal charging or discharging rate of BEVs per battery capacity
Pmax physical maximum charging or discharging rate of BEVs
uWt solar power in the parking lot at time t
W total solar energy in the parking lot in kWh
Wi,0 energy of BEV i upon arrival
Wi,total total energy of BEVs upon arrival

https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en
https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en
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W0,β total energy of BEVs per battery capacity upon arrival
Wi,T energy of BEV i upon departure
WT,total total energy of BEVs upon departure
WT,β total energy of BEVs per battery capacity upon departure
fW0,β percentage fraction of W0,β from Wi,total
fWT,β percentage fraction of WT,β from WT,total
fW0−T,β variation from fW0,β to fWT,β

xi,t SOC of BEV i at time t in pu of capacity
xi,0 SOC of BEV i upon arrival
xi,T SOC of BEV i upon departure
x0 average of BEVs’ SOCs upon arrival
x0,β average of BEVs’ SOCs per battery capacity upon arrival
xT average of BEVs’ SOCs upon departure
xT,β average of BEVs’ SOCs per battery capacity upon departure
x0−T,β percentage variation from x0,β to xT,β
xt mathematical expectation of the SOCs of BEVs at time t
xtarget

t target for the mean SOC of BEVs at time t
xtarget

T target for the steady-state mean SOC of BEVs
σxi,0 standard deviation in BEVs’ SOCs upon arrival
σxi,0,β standard deviation in BEVs’ SOCs per battery capacity upon arrival
σxi,T standard deviation in BEVs’ SOCs upon departure
σxi,T,β standard deviation in BEVs’ SOCs per battery capacity upon departure
σxi,0−T,β percentage variation from σxi,0,β to σxi,T,β

qy
t pressure field trajectory of BEVs at time t

qt
T steady-state pressure field of BEVs

qx0 comfort coefficient of BEVs
ω Brownian motion
ν Brownian noise intensity
r charging or discharging rate penalty coefficient of BEVs
y SOC value serving as a possible final destination for xi,t
V optimal cost-to-go
π, s, γ coefficients of the quadratic form of V

Appendix A. Mathematical Details of the MFG Inverse Nash Algorithm for Charging or
Discharging a Large Population of Heterogeneous BEVs

Appendix A.1. Obtaining the Agent’s Best Response

First, we rewrite the cost function J of (5) as follows:

Ji(xi,0, ui,t) = E
[ ∫ T

t0

( r
2
[ui,te−

δt
2 ]2 +

qy
t

2
[(xi,t − y)e−

δt
2 ]2 +

qx0

2
[(xi,t − xi,0)e−

δt
2 ]2

)
dt | xi,0

]
. (A1)

Then, following the standard procedure for analyzing linear quadratic optimal control
problems [59], we hypothesize the following quadratic value function for the optimal
cost-to-go with arbitrary xi,t:

Vi(xi,t) =
1
2

πi,t[(xi,t − y)e−
δt
2 ]2 + si,t(xi,t − y)e−δt + γi,t, (A2)

with, recalling (A1),

Vi(xi,t) = min
{u}

∫ T

t

( qy
t

2
[(xi,t − y)e−

δt
2 ]2 +

qx0

2
[(xi,t − xi,0)e−

δt
2 ]2 +

r
2
[ui,te−

δt
2 ]2

)
dτ. (A3)

Considering the Hamilton–Jacobi–Bellman equation with the system dynamics in (3)
and the optimal cost-to-go function in (A3), and using the same procedure as in [28], the
agent’s best response u∗

i,t is given by
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u∗
i,t = −α

r
[
πi,t(xi,t − y) + si,t

]
, (A4)

where π and s are solutions of the following differential equations:

dπi,t

dt
=

α2

r
π2

i,t + δπi,t − qy
t − qx0 ,

dsi,t

dt
=

α2

r
πi,tsi,t + δsi,t + qx0(xi,0 − y).

(A5)

Appendix A.2. Obtaining the Pressure Field by Inverse Nash Mechanism

qy
t in the equation of π in (A5) still remains unknown at this stage. According to MFG

theory [38,39,42], when all N BEVs apply their optimal control laws u∗
i,t over the control

horizon [t0, T] for a sufficiently large N, by virtue of the law of large numbers, the empirical
averages of trajectories,

{x∗t , u∗
t , st} =

1
N

N

∑
i=1

{x∗i,t, u∗
i,t, si,t}, (A6)

are approximated by their deterministic mathematical expectations

E
[
{x∗i,t, u∗

i,t, si,t}
]
, i = 1, . . . , N. (A7)

Recalling (3), (A4) and (A5) and also knowing that π is common to all N BEVs (i.e.,
πt = πi,t, ∀i, i = 1, . . . , N), we have

dx∗t
dt

= −α2

r
[
πt(x∗t − y) + st

]
,

dπt

dt
=

α2

r
π2

t + δπt − qy
t − qx0 ,

dst

dt
=

α2

r
stπt + δst + qx0(x0 − y).

(A8)

The trajectory pressure field qy
t defined in (5) is reverse engineered so that the average

target SOC trajectory xtarget
t in (7) or (8) corresponds to full absorption of the available

assumed deterministic energy, i.e.,

x∗t ≡ xtarget
t . (A9)

Appendix A.3. Solving the Riccati Equation

The first Equation in (A8) and (A9) yields

πt =
1

y − xtarget
t

(
st +

r
α2

dxtarget
t
dt

)
. (A10)

With (A10) in the last Equation in (A8), we obtain the following Riccati equation:

dst

dt
=

s2
t α2

r(y − xtarget
t )

+ st
[
δ +

dxtarget
t
dt

y − xtarget
t

]
+ qx0(x0 − y). (A11)

To solve this Riccati equation, it is necessary to know sT since the solution of (A11) is
obtained backwards. We consider a control horizon T that is sufficiently long for energy to
completely subside at T, i.e.,

uWT = 0. (A12)
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Recalling (A8), (A9), (7) and (A12), and imposing that πt and st settle at time T,
we have

0 = −α2

r
[
πT(xtarget

T − y) + sT
]
,

0 =
α2

r
π2

T + δπT − qy
T − qx0 ,

0 =
α2

r
πTsT + δsT + qx0(x0 − y).

(A13)

These yield

qy
T = qx0

( xtarget
T − x0

y − xtarget
T

)
,

πT =
−δ ±

√
δ2 + 4

[
α2

r (qx0 + qy
T)
]

2
(

α2

r
) ,

sT = πT(y − xtarget
T ) or sT =

πTqx0(y − x0)

qx0 + qy
T

.

(A14)

Knowing the boundary condition sT , we can solve st in (A11).

Appendix A.4. Computing the Pressure Field

We calculate πt in (A10), and then dπt
dt by using the mean value theorem. Finally, we

calculate the pressure field qy
t in the second Equation in (A8).

qy
t =

α2

r
π2

t + δπt −
dπt

dt
− qx0 . (A15)

Appendix A.5. Computing the Agent’s Best Response

We solve si,t in the last equation of (A5) backwards, knowing that its boundary condi-
tion si,T for each BEV i, from the last equation in (A14), is given by

si,T =
πTqx0(y − xi,0)

qx0 + qy
T

. (A16)

Finally we have si,t and πi,t = πt, which will give us the optimal control law u∗
i,t

in (A4).

Appendix A.6. Guaranteeing the Existence of a Solution to the MFG Inverse Nash Problem

There will always be a solution to the inverse Nash problem if we can demonstrate
that the solution of (A11) exists, ∀t. Let us rewrite the Riccati equation in (A11) as follows:

−dst

dt
= qx0(y − x0) + st

[ dxtarget
t
dt

xtarget
t − y

− δ
]
− (bst)2

r(y − xtarget
t )

. (A17)

In the vehicle charging problem where we have x0 < xtarget
t < y, ∀t, the following con-

ditions are sufficient to have a bounded solution of st (which is, from (A4), a monotonically
decreasing function) [60]:
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qx0(y − x0) > 0,
1

r(y − xtarget
t )

> 0,

sT > 0.

(A18)

In the vehicle discharging problem where we have y < xtarget
t < x0, ∀t, the fol-

lowing conditions are sufficient to have a bounded solution of st (which is, from (A4), a
monotonically increasing function) [60]:

−qx0(y − x0) > 0,

− 1

r(y − xtarget
t )

> 0,

−sT > 0.

(A19)

The conditions of (A18) or (A19) are respected if, in (A14), we choose

qx0 > 0,

r > 0,

πT > 0.

(A20)

Appendix B. A Simpler Version of the MFG Inverse Nash Algorithm for Charging or
Discharging Heterogeneous BEVs

Using (A14), we can extrapolate the following simpler version of the MFG inverse
Nash algorithm for charging or discharging a large population of heterogeneous BEVs.

Algorithm A1 A Simpler Version of the MFG inverse Nash algorithm for Charging or
Discharging Heterogeneous BEVs

Require:
[
DATA

]
as in Algorithm 1 in Section 2.4.

Part I—The aggregator computes the pressure field (qy
t ) and πt of N heterogeneous BEVs using

the steps:
1. Compute the average target SOC trajectory xtarget

t by using (7) in the case of charging
or (8) in the case of discharging.

2. Compute the trajectories qy
t = qx0

(
xtarget

t −x0

y−xtarget
t

)
and πt =

−δ+
√

δ2+4
[

α2
r (qx0+qy

t )
]

2
(

α2
r

) .

Part II—Each BEV i, i = 1, . . . , N, computes its local optimal SOC trajectory using the steps:

1. Compute the trajectory si,t =
πtqx0 (y−xi,0)

qx0+qy
t

backwards.

2a. Solve dx∗i,t = − α2

r
[
πt(xi,t − y) + si,t

]
dt + νdωi, for stochastic battery model.

2b. Compute x∗i,t = y − si,t
πt

, for deterministic battery model (i.e., when ν = 0).

Appendix C. Detailed Numerical Results

Below are detailed the numerical results per battery capacity β when charging a large
population of heterogeneous BEVs in the parking lot and discharging their energy into
the grid.
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Table A1. Detailed numerical results per battery capacity when charging and discharging heteroge-
neous BEVs.

Charging
Heterogeneous
BEVs

β [kWh] 16 22 31 40 54 62 70 80 93 100
Nβ 44 38 42 36 27 55 35 42 40 41
x0,β 0.125 0.193 0.166 0.140 0.126 0.152 0.134 0.143 0.170 0.156

σxi,0,β 0.102 0.115 0.095 0.104 0.095 0.114 0.073 0.082 0.112 0.107
W0,β [kWh] 88 161 216 202 183 520 327 479 632 641

fW0,β 2.5% 4.7% 6.3% 5.8% 5.3% 15.1% 9.5% 13.9% 18.3% 18.6%

Sunniest day

x0−T,β ↑ 623% ↑ 372% ↑ 445% ↑ 544% ↑ 617% ↑ 493% ↑ 575% ↑ 533% ↑ 433% ↑ 478%
σxi,0−T,β ↓ 88.60% – – – – – – – – –

WT,β [kWh] 634 760 1179 1300 1314 3083 2210 3034 3371 3709
fW0−T,β ↑ 21.2% ↓ 20.9% ↓ 8.7% ↑ 7.8% ↑ 20.1% ↓ 0.6% ↑ 13.1% ↑ 6.1% ↓ 10.7% ↓ 3.1%

U∗
max,β [kW] 3.2 4.4 5.6 7.8 9.8 12.0 12.7 15.1 17.4 20.0

Average day

x0−T,β ↑ 288% ↑ 172% ↑ 205% ↑ 251% ↑ 285% ↑ 228% ↑ 266% ↑ 246% ↑ 200% ↑ 221%
σxi,0−T,β ↓ 40.96% – – – – – – – – –

WT,β [kWh] 340 437 661 709 705 1703 1196 1659 1896 2057
fW0−T,β ↑ 17.7% ↓ 17.5% ↓ 7.3% ↑ 6.6% ↑ 16.8% ↓ 0.5% ↑ 11.0% ↑ 5.1% ↓ 9.0% ↓ 2.6%

U∗
max,β [kW] 2.9 3.9 5.6 7.2 9.4 11.0 12.6 14.6 17.0 17.8

Cloudiest day

x0−T,β ↑ 24.0% ↑ 14.1% ↑ 17.1% ↑ 20.9% ↑ 23.7% ↑ 18.9% ↑ 22.3% ↑ 20.6% ↑ 16.8% ↑ 18.4%
σxi,0−T,β ↓ 3.28% ↓ 3.20% ↓ 3.07% ↓ 3.42% ↓ 2.91% ↓ 3.16% ↓ 3.24% ↓ 3.20% ↓ 3.39% ↓ 3.10%

WT,β [kWh] 109 184 253 244 227 618 400 578 740 759
fW0−T,β ↑ 4.1% ↓ 4.2% ↓ 1.7% ↑ 1.5% ↑ 3.9% ↓ 0.2% ↑ 2.7% ↑ 1.2% ↓ 2.0% ↓ 0.6%

U∗
max,β [kW] 1.6 1.8 2.9 3.2 4.4 5.6 6.1 7.2 7.8 9.3

Discharging
Heterogeneous
BEVs

β [kWh] 16 22 31 40 54 62 70 80 93 100
x0−T,β ↓ 81.50% – – – – – – – – –
σxi,0−T,β ↓ 81.50% – – – – – – – – –
fW0−T,β ↓ 0% – – – – – – – – –

Sunniest day

Nβ 44 38 42 36 27 55 35 42 40 41
x0,β 0.785 0.829 0.850 0.862 0.869 0.877 0.878 0.881 0.891 0.886

σxi,0,β 0.072 0.045 0.039 0.031 0.022 0.022 0.013 0.019 0.015 0.015
W0,β [kWh] 553 693 1106 1242 1267 2992 2151 2959 3313 3633

fW0,β 2.8% 3.5% 5.6% 6.2% 6.4% 15% 10.8% 14.9% 16.6% 18.2%
WT,β [kWh] 102 128 205 230 235 554 398 548 614 673
U∗

max,β [kW] 13.5 18.5 25.9 34.1 45.5 53.2 58.6 67.5 79.1 85.8

Average day

Nβ 44 37 41 36 27 55 35 42 40 41
x0,β 0.382 0.439 0.454 0.452 0.451 0.473 0.464 0.471 0.494 0.483

σxi,0,β 0.080 0.080 0.066 0.071 0.060 0.071 0.041 0.055 0.066 0.065
W0,β [kWh] 269 357 577 651 658 1611 1137 1583 1839 1981

fW0,β 2.6% 3.4% 5.4% 6.1% 6.2% 15.1% 10.7% 14.8% 17.2% 18.6%
WT,β [kWh] 50 66 107 120 122 298 211 293 340 367
U∗

max,β [kW] 11.7 12 17 22.4 29.7 35.7 35.1 43.6 56.3 61.2

Cloudiest day

Nβ 38 31 34 27 19 43 27 35 34 32
x0,β 0.173 0.195 0.166 0.172 0.198 0.150 0.141 0.202 0.139 0.188

σxi,0,β 0.086 0.075 0.089 0.095 0.102 0.073 0.063 0.098 0.093 0.103
W0,β [kWh] 105 133 175 185 203 401 267 565 439 603

fW0,β 3.9% 5.2% 6.7% 7.8% 6.8% 12.6% 8.6% 17.8% 13.0% 17.6%
WT,β [kWh] 20 25 32 34 38 74 49 105 81 112
U∗

max,β [kW] 7.4 10.1 13.2 22.1 22.7 20.4 18.1 37.9 30.9 42.1
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