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ABSTRACT
There is an increasing need for silicon-compatible high-bandwidth extended-short wave infrared (e-SWIR) photodetectors (PDs) to imple-
ment cost-effective and scalable optoelectronic devices. These systems are quintessential to address several technological bottlenecks in
detection and ranging, surveillance, ultrafast spectroscopy, and imaging. In fact, current e-SWIR high-bandwidth PDs are predominantly
made of III–V compound semiconductors and thus are costly and suffer a limited integration on silicon besides a low responsivity at
wavelengths exceeding 2.3 μm. To circumvent these challenges, Ge1−xSnx semiconductors have been proposed as building blocks for silicon-
integrated high-speed e-SWIR devices. Herein, this study demonstrates vertical all-GeSn PIN PDs consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-
Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon following a step-graded temperature-controlled
epitaxy protocol. The performance of these PDs was investigated as a function of the device diameter in the 10–30 μm range. The devel-
oped PD devices yield a high bandwidth of 12.4 GHz at a bias of 5 V for a device diameter of 10 μm. Moreover, these devices show a high
responsivity of 0.24 A/W, a low noise, and a 2.8 μm cutoff wavelength, thus covering the whole e-SWIR range.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0197018

I. INTRODUCTION

Extended-short wave infrared (e-SWIR) photodetectors (PDs)
featuring high bandwidth and wide spectrum range are critical to
a plethora of applications spanning free-space and fiber-coupled
communications, high temporal resolution light detection and
ranging (LIDAR), environmental gas sensing, and time-resolved
spectroscopy.1–10 This e-SWIR range (1.5–3 μm) of the electro-
magnetic spectrum is currently predominately served by compound
semiconductors. For instance, the III–V e-SWIR PDs, typically
grown on InP or GaSb substrates, can operate at wavelengths exceed-
ing 2.3 μm.1,11–17 These devices are, however, prone to a limited
bandwidth, which remains below 6 GHz. Although the develop-
ment of GeSn e-SWIR photodetectors is still in its infancy, these
semiconductors offer a viable alternative to circumvent the cur-
rent limitations in both wavelength range and operation speed, in
addition to their compatibility with silicon-based complementary
metal–oxide–semiconductor (CMOS) technology. Indeed, GeSn is

an all-group IV alloy with a demonstrated content-dependent tun-
able bandgap energy covering the entire e-SWIR and mid-wave
infrared (3–8 μm) ranges.5,18–34

GeSn PIN PDs can be either free-space or waveguide devices
that are directly integrated on Si substrates.4,5,35–38 Free-space
GeSn/Ge PDs with a Sn composition gradient in the active layer have
recently shown a bandwidth of 50 GHz and a 2.8 μm cutoff, which
highlights the potential of this material system.39 Notwithstanding
this progress, the responsivity of these devices drops significantly
at wavelengths above 2.3 μm owing to the remarkable Sn compo-
sition gradient and high residual compressive strain that is typical
to the GeSn/Ge heterostructures used to implement these PDs. In
contrast, the growth of all-GeSn PIN heterostructures can yield
thicker yet more relaxed GeSn active layers with uniform Sn com-
position.20 These characteristics are needed to achieve a high and
uniform responsivity across a larger wavelength range.40 Up to date,
the bandwidth of the demonstrated all-GeSn e-SWIR PDs oper-
ating at wavelength exceeding 2.3 μm is limited to 7.5 GHz at
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2.6 μm cutoff wavelength.41 Herein, this work demonstrates PIN
GeSn photodetectors with small active area diameters below 30 μm.
These devices are made of vertical all-GeSn PIN PDs consisting
of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-
Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon follow-
ing a step-graded process. It is shown that 12.4 GHz operation at
room temperature for a bias of 5 V is achievable by reducing the
device diameter down to 10 μm to minimize the total capacitance.
The normalized response curves of the PIN devices indicate that
the bandwidth is still RC-limited. It is also shown that these devices
exhibit a responsivity of 0.24 A/W at 1.55 μm and cutoff wavelength
up to 2.8 μm. The responsivity of these devices does not degrade
significantly at wavelengths above 2.3 μm, owing to the relaxed
all-GeSn heterostructures.

II. RESULTS AND DISCUSSION
A. Growth and characterization of GeSn epilayers

The all-GeSn PIN heterostructures were grown in a low-
pressure chemical vapor deposition (CVD) reactor on a 4-inch Si
(100) wafer using Ge virtual substrate (Ge-VS). The growth pro-
tocol41 involves the growth of multiple GeSn buffer layers with
increasing Sn content to accommodate the lattice mismatch between
the device layer and the Ge-VS, followed by PIN growth on top.
The two sets of samples were grown at 305 ○C with the i-GeSn
layer composition of 9 at.% (sample A) and 12 at.% (sample B).
The higher Sn content in sample B was obtained by increasing
the SnCl4 flow by 40% as compared to sample A. Figure 1 dis-
plays a comparison of the structural properties of the as-grown

PIN GeSn stacks. The cross-sectional transmission electron micro-
graphs (TEM) in Figs. 1(a) and 1(b) show that dislocations extend
to p-GeSn layer, while leaving the i-GeSn and n-GeSn regions with
higher crystalline quality. Diborane (B2H6) and arsine (AsH3) pre-
cursors were used to achieve p- and n-type doping, respectively. The
p- and n-layers had carrier concentrations exceeding 1 × 1019 cm−3

as determined by capacitance–voltage (C–V) measurements. The
composition and strain of the as-grown heterostructures were deter-
mined using x-ray diffraction (XRD) Reciprocal Space Mapping
(RSM) measurements around the asymmetrical (-2-24) reflection
peak. The obtained maps for the 9 and 12 at.% samples are shown in
Figs. 1(c) and 1(d), respectively. Both samples exhibit a low residual
compressive strain of −0.2% in the buffer layers No. 1–3, while this
value slightly increases to −0.3% in the GeSn No. 4 layer. For sample
A, the measured residual strain for the PIN layers is −0.11% (p-
Ge0.92Sn0.08), −0.28% (i-Ge0.91Sn0.09), and −0.48% (n-Ge0.89Sn0.11),
while for sample B, the strain values are −0.19% (p-Ge0.91Sn0.09),
−0.36% (i-Ge0.88Sn0.12), and −0.51% (n-Ge0.87Sn0.13).

Furthermore, atom probe tomography (APT) was utilized to
map the composition and doping profiles in the as-grown het-
erostructures down to the atomic level. To facilitate the preparation
of the APT tips, chromium (Cr) was deposited on top of the as-
grown samples using e-beam evaporation before the focused ion
beam processing of the APT specimens. The obtained APT ele-
mental profiles are shown in Figs. 1(e) and 1(f). Starting with
the Sn profile, the uniformity of the Sn composition in the GeSn
buffer layers and the PIN stack is evident in both samples. The
step-wise increase in the Sn content in the four GeSn buffer lay-
ers was achieved by reducing the growth temperature in steps of
10 ○C during the epitaxial growth. This reduction in temperature

FIG. 1. Structural properties of the as-grown GeSn PIN heterostructures. (a,b) Cross-sectional TEM images of sample A (p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11) and
sample B (p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13), respectively. (c,d) RSM (-2-24) maps for both samples A and B, respectively. (e,f) 3D atom-by-atom reconstructions
of the atom probe tips showing the elemental distribution of the As, B, Ge, Sn, and Cr atoms for both samples. Panel (e) was adapted from M. R. Atalla, S. Assali, S. Koelling,
A. Attiaoui, and O. Moutanabbir, ACS Photonics 9, 1425–1433 (2022). Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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allows more Sn to be incorporated in the lattice and produces sharp
interfaces without any composition gradient. However, the p-GeSn
layer exhibits a wider interface owing to the slow incorporation of
B dopants in the GeSn lattice as evidenced by the gradually increas-
ing B concentration in the p-GeSn layer. The n-GeSn is doped by
As; however, a careful analysis had to be carried out to decouple
the signal of As in the APT mass spectra from that of the Ge due
to the small difference between their atomic masses. In addition, it is
inferred from Figs. 1(e) and 1(f) that the interface between n-/i-GeSn
layers is abrupt and that the Sn content increases as the As dopants
are easily incorporated into the lattice of the growing GeSn layer in
sharp contrast to the case of B dopants. It is worth mentioning that
sample A has higher As and B concentrations as compared to sam-
ple B. For instance, the As atomic composition is ∼0.6 at.% in the
n-layer of sample A compared to just ∼0.3 at.% in sample B. In addi-
tion, the B atomic composition is ∼0.03 at.% in the p-layer of sample
A compared to just ∼0.01 at.% in sample B. This reduction in the As
and B dopant concentrations in sample B is mostly likely related to
the increased supply of Sn during the growth of this sample.

B. GeSn PIN photodetectors
Samples A and B were subsequently used to fabricate the PIN

PDs following a top–down microfabrication process. The device

processing started with an inductively coupled plasma (ICP) Cl2
etch down to Ge-VS to a depth of ∼950 nm followed by a second
ICP Cl2 etch of circular bumps of various diameters down to the
p-GeSn layer, which forms a double mesa structure to help isolate
every device from its neighboring ones. To passivate the Cl2-etched
sidewall, wet chemical treatment in HCl/HF (1:1) solution for 10 s
was used. This is because Ge and tin oxides form at the sidewalls, and
it is much better to remove these defective oxides using wet chem-
istry. Then PECVD deposition of 1.5 μm-thick SiO2 was performed
as an insulation layer. Next, openings in the SiO2 layer atop the
p- and n-GeSn regions were created in a double-step etch consist-
ing of an ICP dry etch of 1100 nm followed by a wet buffered oxide
etch (BOE) etch of 400 nm. Finally, a 700-nm-thick Al metal was
sputtered, followed by contact patterning and Al wet etch. A scan-
ning electron micrograph (SEM) of a representative 10 μm-diameter
device is shown in Fig. 2(a).

The processed PIN devices were then subjected to various sets
of electrical and optoelectronic analyses. The recorded I–V curves
without illumination are displayed in Fig. 2(b) for both samples A
and B for devices with diameters 10, 20, and 30 μm. It is notice-
able that sample A has a relatively high rectification ratio around
an order of magnitude at 1 V, whereas sample B exhibits a very low
rectification ratio approaching unity at the same voltage. This can
be attributed to the high defect density in the PIN stack of sample
B as compared to sample A, which significantly increases the leak-

FIG. 2. GeSn PIN photodetectors fabrication and characterization. (a) SEM micrograph of a representative PIN PD with 10 μm in diameter. (b) Room-temperature I–V curves
of dark current at various device diameters of sample A compared to sample B. (c) The same as (b) but for the dark current density. (d) Spectral responsivity of sample A
compared to that of sample B along with the measured room-temperature PL for both samples.
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age current as the reverse bias increases. In addition, the relatively
lower As composition [Fig. 1(e) and 1(f)] in the n-GeSn of sample
B compared to sample A explains the reduced forward bias cur-
rent of sample B at 1 V. Note that the dark current, which is the
PD current under no illumination, increases monotonically as the
device diameter increases for both samples in reverse bias. This can
be attributed to bulk and/or surface leakage current. In Fig. 2(c), the
dark current density is plotted as a function of applied bias, and it
shows that it is almost independent of device diameter. This indi-
cates a low surface leakage current and suggests that the bulk leakage
in sample B is most likely the reason underlying its high reverse
leakage current.

To investigate the device performance under illumination,
Fourier transform infrared (FTIR) spectrometer was used to mea-
sure the relative spectral responsivity of the PIN GeSn PDs for
both samples. The absolute spectral responsivity can be estimated
by using a calibrated e-SWIR InGaAs PD. The obtained spectral
responsivities of the PIN PDs are plotted in Fig. 2(d) as a function
of the incident illumination wavelength. Responsivities of 0.221 and
0.235 A/W were measured at 1.55 μm for both samples A and B,
respectively. In both cases, a monotonic decrease in the responsiv-
ity is visible until their spectral responsivity reaches cutoff at 2.6 μm
(sample A) and 2.8 μm (sample B). It is important to note that the
all-GeSn heterostructures are characterized by a uniform high Sn
content in the i-layers, thus yielding a high responsivity that reduces
only close to the cutoff wavelength. This is a clear advantage of the
all-GeSn PIN PDs as compared to GeSn/Ge heterostructures that
can suffer from high residual strain and Sn composition gradient,
which limit the responsivity as the wavelength increases. The spe-
cific detectivity at 2.5 μm wavelength of the 10 μm device (sample B)
is calculated41 to be 2.85 × 108 cm W−1 Hz1/2 at room temperature,
which still has room to improve if the device contact resistance is
reduced and the i-layer thickness is increased. The FTIR spectrom-
eter is also used to measure the photoluminescence (PL) spectra of
the as-grown samples A and B as displayed in Fig. 2(d). The room
temperature PL spectra of samples A and B show peaks at 2.4 and
2.65 μm and their decay extends beyond 2.6 and 2.8 μm, respectively.
This strong room-temperature emission rules out any dominating
contribution of dislocations to the recorded PL spectra.42,43 This is
consistent with the estimated cutoff wavelength values mentioned

previously. It is important to note that the high responsivity and
low dark current increase both the PD sensitivity and signal-to-noise
ratio, which in turn voids the need for a lock-in technique to extract
the photocurrent.40,41,44

C. Photoresponse bandwidth of GeSn PDs
There are several factors that affect the photoresponse band-

width of a PD device. In PIN devices, photocarriers generated out-
side the depletion region in the n- and p-layers transport to the con-
tacts by diffusion. This diffusion current can slow down the device’s
photoresponse. Owing to the remarkably short lifetime of photo-
carriers in GeSn, the diffusion current is most likely too small and
shall be neglected in the calculation of the photoresponse bandwidth.
In addition, photocarrier trapping and release at the heterojunction
interfaces produces a slow photoresponse component; however, this
component also reduces as the applied reverse bias increases and
shall be neglected as well. Finally, the photocarrier transit lifetime
through the depletion region and the resistance–capacitance (RC)
delay are considered the main components limiting the photore-
sponse bandwidth. Consequently, the 3 dB bandwidth, f−3 dB, can
be written as45,46 ftotal = ( f −2

RC + f −2
trans)−0.5, where fRC = 1/(2πRC) is

the RC-limited bandwidth and R and C are the total resistance and
the total capacitance, respectively. The total resistance includes the
contact resistance, semiconductor resistance, series resistance, and
load resistance, while the total capacitance includes the contacts
parasitic capacitance and depletion region junction capacitance.
ftrans = 0.45vs/d is the transit lifetime-limited bandwidth, where
vs is the saturation velocity and d is the i-layer thickness. The tran-
sit velocity is estimated using Ge saturation velocity and i-layer
thicknesses of 300 and 350 nm for samples A and B, respectively.
This limits the photoresponse to 90 GHz (sample A) and 77 GHz
(sample B). For the fRC, the series resistance was determined from
the forward bias I–V curve to be 120.5 Ω with a load resistance of
50 Ω. The device capacitance was measured for a 10 μm-diameter
device to be 0.07 pF at 5 V yielding fRC = 13.34 GHz.

The normalized responses for both samples are measured, and
the representative ones are displayed in Fig. 3. The normalized
response as a function of frequency for the 20 μm device at var-
ious reverse biases is shown in Fig. 3(a). The measurements were

FIG. 3. Photoresponse bandwidth of GeSn PIN PDs. (a) Normalized photoresponse as a function of the incident optical pulse frequency, indicating the photoresponse
bandwidth of a 20 μm diameter device at various applied biases. (b) The same as (a) but showing a comparison of the normalized response for the 10, 20, and 30 μm
diameter devices at 5 V reverse bias.
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TABLE I. Comparison of the state-of-the-art high-speed photodetectors operating close to 2.5 μm.

Material
Cutoff wavelength

(μm)
Bandwidth

(GHz)
Responsivity

(A/W)
Current density
(A/cm2) at −1 V Device

Ge/GeSn 2.5 1.78 0.19 at 1.55 μm 40 Ref. 36
InGaAs/GaAsSb 2.4 3.7 0.35 at 2 μm 0.007 Ref. 14
GaInAsSb 2.4 2–5 1.15 at 2.2 μm ⋅ ⋅ ⋅ Ref. 17
GaInAsSb 2.5 6 0.4 at 1.55 μm 1.63 Ref. 1
All-GeSn 2.6 7.5 0.15 at 2.5 μm 5.4 Ref. 41

Ge/GeSn 2.8 36 0.04 at 2.5 μm ⋅ ⋅ ⋅ aRef. 39(D 10 μm)

All-GeSn 2.8 12.4 0.18 at 2.5 μm 2.5 This work(D 10 μm)
aReference 39 reported higher bandwidth devices as well but at much smaller device sizes. In this table, similar size devices are compared.

carried out using a 1.55 μm single-frequency continuous-wave laser
that was fiber-coupled to a 40 GHz electro-optical modulator, and
the output pulsed light was incident on the PD using a fiber focuser
lens. To apply DC bias and an RF signal to the PIN PD and to
collect the output current, a bias tee was used along with a para-
meter analyzer (Keithely 4200A) and a network analyzer (Anritsu
37369D) was used to provide the RF signal. The PIN PD output
current is connected to a broadband RF amplifier that amplifies the
RF signal before it is fed into the network analyzer input. The −3
dB response values for the 20 μm device at biases of 1, 3, 5, and
7.5 V were 1.95, 3.99, 7.6, and 7.9 GHz, respectively. Below the
RC limit, as the reverse bias increases, the capacitance reduces and
the device bandwidth increases. The normalized response of PIN
devices with different diameters 30, 20, and 10 μm are compared at
5 V, as shown in Fig. 3(b). These devices exhibit a −3 dB response
of 5.6, 7.6, and 12.4 GHz, respectively. A comparison of the state-
of-the-art high-speed photodetectors operating close to 2.5 μm is
provided in Table I. The 10 μm device bandwidth remains below
the estimated RC-limited bandwidth value most likely because of the
slow diffusion current component contributing to the total device
photoresponse.

III. CONCLUSION
This work demonstrates and investigates vertical all-GeSn

heterostructures consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-
Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13
heterostructures grown on silicon following a step-graded
process. The obtained heterostructures enabled PIN photodetec-
tors to exhibit a high speed reaching 12.4 GHz, low noise, and
high responsivity across the whole e-SWIR range. The devel-
oped all-GeSn heterostructures offer a viable path to achieve
thick, high, and uniform Sn content in the i-layer of the PDs,
besides a significant relaxation of the compressive strain that
is inherent to these epitaxial materials. Consequently, devices
based on these all-GeSn heterostructures exhibit a high and
stable responsivity over a broader wavelength range. These char-
acteristics highlight the potential of GeSn PIN PDs as effective
building blocks for scalable and silicon-compatible e-SWIR
technologies.
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