

Titre: Title:	Effet des imperfections initiales sur la stabilité dynamique et la réponse des plaques rectangulaires
Auteur: Author:	Sadok Sassi
Date:	1989
Туре:	Mémoire ou thèse / Dissertation or Thesis
Référence: Citation:	Sassi, S. (1989). Effet des imperfections initiales sur la stabilité dynamique et la réponse des plaques rectangulaires [Master's thesis, Polytechnique Montréal]. PolyPublie. <u>https://publications.polymtl.ca/58282/</u>

Document en libre accès dans PolyPublie Open Access document in PolyPublie

URL de PolyPublie: PolyPublie URL:	https://publications.polymtl.ca/58282/
Directeurs de recherche: Advisors:	
Programme: Program:	Unspecified

UNIVERSITE DE MONTREAL

EFFET DES IMPERFECTIONS INITIALES SUR LA STABILITE DYNAMIQUE ET LA REPONSE DES PLAQUES RECTANGULAIRES

par

Sadok SASSI

DEPARTEMENT DE GENIE MECANIQUE

ECOLE POLYTECHNIQUE

MEMOIRE PRESENTE EN VUE DE L'OBTENTION DU GRADE DE MAITRE ES SCIENCES APPLIQUEES (M.Sc.A.) Décembre 1989

c) Sadok Sassi 1989

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4

Canadä

Service des thèses canadiennes

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-58196-4

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE

Ce mémoire intitulé:

Effet des imperfections initiales sur la stabilité dynamique et la réponse des plaques rectangulaires.

Présenté par **Sadok SASSI** en vue de l'obtention du grade de Maître ès Sciences Appliquées (M.Sc.A.), a été dûment accepté par le jury d'examen constitué de:

M. Jean Rousselet, Ph.D., président

M. Germain Ostiguy, Ph.D.,

M. Aouni A. Lakis, Ph.D.,

A mon père, à ma mère et à toute ma famille, dont le soutien moral et l'amour n'ont jamais fait défaut. Merci pour votre patience.

SOMMAIRE

Le but de la présente recherche est de formuler une théorie suffisamment réaliste pour décrire l'influence des imperfections initiales sur le comportement dynamique d'une plaque rectangulaire, non idéale, simplement supportée et soumise à une excitation paramétrique.

Cette théorie est basée sur des équations non linéaires de grandes déformations, correspondant à la version dynamique modifiée des équations de Von Karman pour tenir compte des imperfections initiales. Ces équations sont exprimées en fonction de la déflexion latérale W, de l'imperfection initiale W_0 et de la fonction d'Airy F.

Le problème consiste donc à déterminer les fonctions W et F qui puissent satisfaire à la fois toutes les conditions aux limites et les équations différentielles de mouvement et de compatibilité.

La réponse est analysée par la méthode asymptotique généralisée, en première approximation, en supposant une solution des équations temporelles du mouvement qui prévoit la possibilité de présence simultanée de vibrations forcées et paramétriques. Quand le mode spatial d'imperfection est du même type que celui des vibrations, le comportement de la plaque en ressort mou change en ressort dur lorsque l'amplitude des vibrations est égale à deux fois la somme de l'imperfection et de la déformation statique.

Les imperfections ont aussi pour effet d'agir en faveur de la stabilité de la plaque en déplaçant les zones d'instabilité vers des valeurs de fréquences plus élevées et en réduisant en même temps l'aire de ces régions.

La théorie démontre éventuellement un phénomène d'hésitation qui prend naissance lors du passage de vibrations forcées à paramétriques, tel qu'il a été observé expérimentalement.

ABSTRACT

The main purpose of the present research is to formulate a realistic theory that can describe the influence of initial imperfections on the dynamic behavior of a simply supported rectangular plate, subjected to the action of periodic in-plane forces, uniformly distributed along two opposite edges.

The nonlinear large deflection plate theory used in this analysis is the dynamic analog of the Von Karman's large-deflection theory modified to take into account the initial imperfections and derived in terms of the stress function F, the lateral deflection W and the imperfection W_0 .

The problem consists in determining the right functions F and W which can satisfy simultaneously the governing equations and the boundary conditions.

The temporal response is analysed by the first-order generalized asymptotic method. The proposed solution for the temporal equations of motion takes into account the possibility of existence of simultaneous forced and parametric vibrations.

The results of the investigation indicate that the presence of initial imperfections may significantly raise the resonance frequency and cause the plate to exhibit a soft spring behavior. When the vibration and initial imperfection are taken to be of the same spatial shape, the plate behavior will change into hard spring type, if the vibration amplitude is twice the sum of initial imperfection and static deflection.

Furthermore, the presence of initial imperfection improve the plate stability by reducing the instability zone area and by shifting its location to higher frequencies.

REMERCIEMENTS

Je désire remercier mon directeur de recherche, le Dr. Germain Ostiguy, pour son aide et pour m'avoir proposé ce sujet de recherche.

Je tiens à exprimer mes sincères remerciements pour mes collègues de la section de mécanique appliquée et surtout à M. François Deshaies pour son aide constante lors de la solution des différents problèmes informatiques.

Finalement, je voudrais souligner l'effort remarquable fournie par Mlle Nathalie Courchesne durant la dactylographie de ce travail.

TABLE DES MATIERES

I	Page
SOMMAIRE	v
ABSTRACT	vii
REMERCIEMENTS	. ix
LISTE DES SYMBOLES	.xiii
LISTE DES FIGURES	xviii
LISTE DES ANNEXES	xxiii
CHAPITRE I: INTRODUCTION	. 1
1.1. Généralités	. 1
1.2. Revue historique	. 3
1.3. But et sommaire de la recherche	. 12
CHAPITRE II: EQUATIONS TEMPORELLES DU MOUVEMENT	. 15
2.1. Définition du problème	. 15
2.2. Les équations de base	. 17
2.3. Les conditions aux limites	. 27

2.4. Solution	des équations de base	28
2.4.1. Sol	ution de l'équation de compatibilité	31
2.4.2. Sol	ution de l'équation de mouvement	39
2.4.3. Cas	particuliers	52
CHAPITRE III: SOLU	TION ASYMPTOTIQUE DES EQUATIONS DE	
MOUV	EMENT	61
3.1. Introduct	ion	61
3.2. Construct	ion de la solution asymptotique en	
première	approximation	62
3.3. Réponse s	tationnaire	77
3.3.1. Etu	de des vibrations forcées	79
3.3.2. Etu	de des vibrations paramétriques	
pri	ncipales	84
3.3.3. Etu	de de stabilité	95
3.3.4. Rég	ions principales d'instabilité	102
3.4. Passage d	e vibrations forcées à vibrations	
paramétri	ques	108
CHAPITRE IV: CONCI	USIONS	111
4.1. Résumé		111
4.2. Conclusio	n	113
4.3. Recherche	s futures	116
BIBLIOGRAPHIE		118

xi

ANNEXES	A	-	Formulation explicite des différents	
			coefficients K et L	128
	в	-	Programmes d'ordinateurs	137

LISTE DES SYMBOLES

SYMBOLE DEFINITION

,	Différentiation partielle par rapport aux
	variables indicées suivant la virgule
	Lorsque au-dessus d'une variable, différen-
	tiation de cette variable par rapport au
	temps
d	Différentiation

д Différentiation partielle

Opérateur de Laplace; Δ^4 $\nabla^4 = \frac{\partial^4}{\partial x^4} + 2\frac{\partial^4}{\partial x^2} \frac{\partial^2 y^2}{\partial y^2} + \frac{\partial^4}{\partial y^4}$

Σ Somme

- $\mathbf{A}_1^{\mathbf{v}}, \mathbf{B}_1^{\mathbf{v}}, \mathbf{E}_1^{\mathbf{r}}, \mathbf{F}_1^{\mathbf{r}}$ Fonctions inconnues dans l'expansion asymptotique.
- A_{ij} Matrice définie par l'équation (2.32a)
- Largeur de la plaque a

Amplitude du mode V des vibrations paramétria, ques

B^{pqrs} Matrice définie par l'équation (2.32b)

Longueur de la plaque b

Terme inconnu dans la solution asymptotique, naissant de la nature non-linéaire du problème. Largeur de base de la réponse stationnaire b,

Rapport de la forme de la plaque; c = b/aС Coefficient d'amortissement linéaire C,

- D, D_o, D_d Rigidité à la flexion de la plaque pour le cas général statique et dynamique respectivement; $D = E h^3 / 12 (1 - \nu^2)$
- Rapport des rigidités dynamique et statique; d $d = D_d / D_o = E_d / E_o$

Amplitude du mode r des vibrations forcées. e, Module d'élasticité général, statique et E, E_{a}, E_{d}

dynamique respectivement

Fonction d'Airy F(x,y,t)

 $F(\tau, \theta, W, W)$ Perturbation

f_{mn}, f_{ij} Coefficients de la fonction d'Airy

G_{uv}nrs Matrice définie par l'équation (2.40a)

Epaisseur de la plaque

 $K_1^{im}, K_2^{ipr}, K_3^{ipr}$ Coefficients définis et donnés par les équations (2.29)

 $K_4^{umr}, K_5^{umr}, K_6^{umr}$ Coefficients définis et donnés par les équations (2.29)

h

- $L_1^{jn}, L_2^{jqs}, L_3^{jsq}$ Coefficients définis et donnés par les équations (2.29)
- $L_4^{vns}, L_5^{vns}, L_6^{vns}$ Coefficients définis et donnés par les équations (2.38)
- M_x , M_y , M_{xy} Moments définis par les équations (2.11)
- $M_{uv}^{klpqrs}, M_{v}^{lqs}$ Coefficients cubiques non linéaires de la plaque définis par l'équation (2.43)
- N_y (t) Charge extérieure par unité de longueur dans le plan de la plaque; N_y (t)= $N_{yo}+N_{yt}$ cos θ (t) N_{yo} Composante statique de la charge périodique N_{yt} Composante dynamique de la charge périodique N_x , N_y , N_{xy} Forces de membrane par unité de longueur
- N_{uv} , N_v Paramètre de la charge critique, défini par l'équation (2.46)

N_{cv} Charge critique du move v

R_{mn} Matrice définie par l'équation (2.34)

s Paramètre de fréquence; $s = \eta/2\Omega$

s₁,s₂ Coefficients de l'équation caractéristique

t Temps

- W(x,y,t) Déflexion latérale totale de la surface moyenne
- W(x,y,t) Déflexion latérale nette de la surface moyenne

W_{okl}, W_{ok} Imperfection géométrique initiale

W _{pq} , W _v	Déplacement latéral
X _m (x), Y _n (y)	Fonctions propres de poutre données par les
	équations (2.26)
x, y, z	Coordonnées spatiales
α _m , β _n	Paramètre de fréquence pour les fonctions
	propres de poutres X _m et Y _n respectivement
β_x , β_y	Angles de rotation, équation (2.5)
Δ_	Décrément logarithmique d'amortissement
¢	Petit paramètre positif
€ _x , € _y , € _{xy}	Déformations du plan central, définies par les
	équations (2.16)
ŋ(t)	Fréquence d'excitation; $\eta(t) = \dot{\theta}(t)$
λ _m	Racines de l'équation transcendante (2.27)
μ _{uv}	Paramètre d'excitation défini par l'équation
	(2.49)
ν	Coefficient de Poisson
da,db,dψ	Petites variations définies par l'équation
	(3.33)
0(t)	Angle de base total de l'excitation harmonique
ρ	Densité de la plaque
σ _χ ,σ _γ ,τ _{χγ}	Contraintes de membrane définies par les
	équations (2.4)
τ	Temps lent; $\tau = \epsilon t$
$\Phi_{p}(\mathbf{x}), \psi_{q}(\mathbf{y})$	Fonctions propres de poutre données par les
	émations (2.26)

xvi

 ψ_{1v} Angle de phase de la réponse paramétrique ψ_{2r} Angle de phase de la réponse forcée ω_{uv} Fréquence naturelle de la plaque parfaitelibre définie par l'équation (2.40b) Ω_{uv} , Ω_v Fréquence naturelle de la plaque parfaite
chargée définie par l'équation (2.48) $\overline{\Omega}_{uv}$, $\overline{\Omega}_v$ Fréquence naturelle de la plaque imparfaite
chargée définie par l'équation (2.52).

LISTE DES FIGURES

- FIGURE 2.1: Plaque non idéale simplement supportée soumise à une excitation paramétrique.... 16
- FIGURE 2.2: Elément dxdy de la plaque en configuration (a) non déformée et (b) déformée.... 20
- FIGURE 2.3: Déformation d'un élément dx après chargement...... 25
- FIGURE 2.4b: Effet des imperfections initiales sur la déflexion statique de la plaque..... 56

- FIGURE 3.1b: Effet des imperfections initiales sur l'amplitude des vibrations forcées......⁸³
- FIGURE 3.2: Comportement en ressort mou de la plaque non-idéale excitée paramétriquement..... 86

FIGURE 3.4:	Effet des imperfections sur les vibrations
	paramétriques d'une plaque ayant:
	 imperfections suivant le mode spatial
	V = 1
	- vibrations suivant le mode spatial
	1 = 1 90
FIGURE 3.5:	Effet des imperfections sur les vibrations
	paramétriques d'une plaque ayant:
	- imperfections suivant le mode spatial
	V = 2
	- vibrations suivant le mode spatial
	1 = 2 91
FIGURE 3.6a:	Effet des imperfections sur les vibrations
	paramétriques d'une plaque ayant:
	 imperfections suivant le mode spatial
	1 = 1
	- vibrations suivant le mode spatial
	V – 3 03

 $\overline{\eta}$

- imperfections suivant le mode spatial 1 = 2

FIGURE 3.6c: Effet des imperfections sur les vibrations paramétriques d'une plaque ayant:

- imperfections suivant le mode spatial
 1 = 3
- FIGURE 3.7: Les différentes branches stables et instables de la réponse paramétrique....101
- FIGURE 3.8a: Régions principales d'instabilité, associées au premier mode de vibration, pour un système amorti......104

FIGURE 3.8c: Effet des imperfections initiales sur les zones d'instabilité......107

LISTE DES ANNEXES

ANNEXE A:	FORMULATION EXPLICITE DES DIFFERENTS	
	COEFFICIENTS K ET L	128
ANNEXE B:	PROGRAMMES D'ORDINATEUR	136
B.1.	Introduction	136
B.2.	Liste des paramètres utilisées dans les	
	différents programmes	138
B.3.	Listage du programme SASS1.m	139
B.4 .	Listage du programme SASS2.m	141
B.5.	Listage du programme SASS3.m	143
В.б.	Listage du programme SASS4.m	145
B.7.	Listage du programme SASS5.m	147
B.8.	Listage du programme SASS6.m	150
B.9.	Listage du programme SASS7.m	153
B.10.	Listage du programme SASS8.m	156

CHAPITRE I

INTRODUCTION

I.1. Généralités

L'intérêt croissant porté à la performance des avions modernes et des engins aérospatiaux, a toujours été un stimulant pour la créativité et le développement de la recherche scientifique et technologique.

La structure de ces appareils n'a jamais cessé d'évoluer, et c'est dans le but de viser à la fois la légèreté et la résistance, que l'utilisation de structures minces à base de plaques ou de coques, est de plus en plus envisagée.

Mais avec tous les problèmes générés par l'utilisation de ces structures légères, et pour pouvoir satisfaire les normes de sécurité, de plus en plus exigeantes et sévères, plusieurs études théoriques et expérimentales ont été mené, pour pouvoir cerner et maîtriser les différents paramètres qui peuvent influencer le comportement dynamique et la stabilité de ces plaques et coques. Parmi ces paramètres, les imperfections initiales représentent un facteur qui est relativement nouveau et qui a été souvent négligé, malgré le fait qu'il est toujours présent, puisque les plaques parfaitement plates n'existent pratiquement pas et que cette présence peut être d'une grande importance sur leur stabilité dynamique.

En effet, plusieurs travaux effectués dans ce domaine, au cours des dix dernières années, confirment que les imperfections géométriques initiales peuvent modifier considérablement le comportement dynamique des plaques rectangulaires, soumises à une excitation paramétrique, en augmentant par exemple la fréquence de résonance ou en modifiant le comportement classique de type "ressort dur" en un nouveau comportement de type "ressort mou".

A quelques exceptions près, la quasi-totalité des travaux publiés à date, se sont imposés des hypothèses restrictives, telles que:

- un seul mode spatial de vibration (le premier mode)
- un seul mode spatial d'imperfection (le premier mode)
- pas de présence simultanée, donc pas d'interaction, entre vibrations forcées et vibrations paramétriques.

De telles hypothèses sont souvent irréalistes car, en essayant de simplifier le problème, elles le présentent sous une forme non réaliste qui cache divers problèmes complexes et réels, ce qui ne permet pas qu'on se propose don d'étudiée, dans le cadre de cette recherche, certains aspects particuliers du comportement dynamique des plaques rectangulaires non idéales, soumises à une excitation paramétrique, en essayant de ne pas tenir compte des hypothèses simplificatrices souvent adoptées par les autres chercheurs.

1.2. <u>Revue historique</u>

Les équations de base décrivant les vibrations nonlinéaires des plaques ont été établies depuis longtemps par plusieurs chercheurs, notamment par Hermann en 1956 [1]. En se basant sur ces équations, de nombreuses recherches théoriques ont été menés conjointement à des travaux expérimentaux [2,4], pour vérifier la validité des hypothèses et l'exactitude des équations. C'est alors, en examinant ces résultats expérimentaux, qu'on a commencé à découvrir le concept d'imperfection géométrique initiale.

En effet, les expériences de Somerset [3,4,5] sur des plaques rectangulaires, ont vérifié qualitativement plu-

sieurs points théoriques, mais elles ont montré en plus l'existence de certains phénomènes nouveaux, non prévus par l'analyse théorique, tels que "sauts" ou "décrochages" qui ont lieu à l'entrée ou à la sortie d'une région de résonance paramétrique. Il a supposé alors que les phénomènes mentionnés étaient dûs aux imperfections initiales de la plaque et cette hypothèse a été vérifié par Silver [6].

Longtemps avant, la stabilité sous une charge statique, des plaques et coques géométriquement imparfaites, a été étudiée par de nombreux auteurs [7,8,9,10]. En effet, l'importance de ces imperfections sur le comportement, avant et après l'atteinte de la charge critique, et le fait que ces types de défauts ou d'irrégularités, aussi petits qu'ils soient, est pratiquement inévitable, a donné une dimension importante au sujet.

Par contre, le même problème avec un chargement dynamique a été relativement délaissé malgré sa grande importance.

Kehagioglov [11] a été parmi les premiers à étudier analytiquement l'influence des imperfections sur le comportement dynamique des colonnes en régime stationnaire et non-stationnaire. Les deux méthodes, directes et asymptotiques, ont été utilisées pour résoudre l'équation différentielle non-linéaire du mouvement. Une comparaison des résultats numériques, montre alors une corrélation remarquable entre les deux méthodes, pour des colonnes parfaites, alors que pour le cas des colonnes imparfaites, les deux méthodes peuvent présenter des résultats différents, selon le paramètre d'excitation.

L'effet des imperfections initiales sur les vibrations paramétriques des plaques rectangulaires simplement supportées, a été étudié théoriquement et expérimentalement par Silver [6]. Utilisant une théorie de grandes déformations et tenant compte de l'inertie longitudinale, il a pu montrer qu'une imperfection de l'ordre d'une fraction de l'épaisseur de la plaque, augmente beaucoup la fréquence de vibration.

L'existence de solutions croissantes et décroissantes, dans son étude, montre un changement de comportement de la plaque, de ressort mou à ressort dur et permet d'expliquer les phénomènes de sauts.

Shiau, Roth et Soong [12] ont de leur côté étudié la stabilité dynamique des coques coniques tronquées, avec plusieurs imperfections géométriques et sous l'effet de plusieurs chargements dynamiques. Ils ont prouvé que l'instabilité des coques coniques tend à décroître avec l'augmentation de l'angle de conicité et que la sensitivité aux imperfections des coques coniques est moins importante que celles des coques cylindriques.

Kisliakov [13], a ensuite réétudié les oscillations forcées et paramétriques des plaques rectangulaires imparfaites. Son étude théorique a permis de préciser les conditions pour lesquelles les vibrations sont du type "double-sided". La vérification de la théorie a été faite sur un ordinateur analogique, et un phénomène de battement a été ainsi observé. Ce phénomène s'amplifie avec l'augmentation des imperfections initiales.

En se basant sur le modèle dynamique des équations de Marguerre, Yamaki, Otomo et Chiba ont étudié théoriquement [14] puis expérimentalement [15] les vibrations nonlinéaires des plaques circulaires encastrées en tenant compte à la fois des imperfections initiales et du déplacement initial des rives.

Le même problème a été traité par Yamaki et Chiba [30], mais pour des plaques rectangulaires.

En augmentant le déplacement initial des rives à partir de zéro, ils ont trouvé que la fréquence naturelle augmente d'une façon monotone, alors qu'en le diminuant, la fréquence diminue pour atteindre un minimum à partir duquel elle remonte de nouveau.

La rigidification des coques cylindriques géométriquement imparfaites a été étudié par Singer et Prucz [16]. Leurs résultats montrent que les coques renforcées sont moins sensibles aux imperfections initiales que les coques non renforcées. Cette sensibilité décroît avec l'augmentation de la rigidité et dépend en général du type de renforcement (cordon ou anneau).

La sensibilité des coques renforcées par cordons dépend en outre de l'excentricité de ceux-ci, alors que pour le cas des coques rigidifiées par anneaux, cet effet d'excentricité est pratiquement négligeable.

Pasic, Juricic et Hermann ont de leur côté étudié la réponse d'une plaque imparfaite durant et après l'application d'une force au delà du domaine critique et durant un laps de temps très court [17]. Les résultats montrent alors, que le spectre de fréquence des vibrations libres, après application du pulse, est contrôlé par les irrégularités initiales, la géométrie de la plaque et le niveau de chargement. Un autre aspect fort intéressant, concernant l'interaction des coques cylindriques imparfaites avec un fluide, a été étudié par Watawala et Nash [18] et Pavlovskii et Filin [27]. C'est le cas d'un cylindre vertical, complètement rempli par un liquide idéal et excité à sa base par une force sismique. Un comportement du type ressort dur a été observé pour certains types de réponse, alors qu'il est du type mou pour d'autres.

Dès le début des années 80, Hui a prêté une attention particulière aux effets des imperfections initiales, en publiant une série d'articles qui traitent différents aspects du problème. Ainsi, il a étudié l'influence des imperfections sur les plaques et les coques de formes rectangulaires, cylindriques et sphériques, de nature isotrope ou laminée et avec plusieurs conditions aux limites.

Hui et Leissa [19] ont étudié l'effet des imperfections géométriques unidirectionnelles sur les vibrations des coques cylindriques pressurisées. Il a été démontré que les imperfections peuvent réduire considérablement la fréquence naturelle de ces systèmes.

L'étude des grandes amplitudes de vibrations, des plaques circulaires imparfaites, mené par Hui [20], a permis de voir qu'une imperfection de l'ordre d'une fraction de

l'épaisseur de la plaque, peut augmenter significativement la fréquence de vibration. De telles imperfections, peuvent même conditionner le caractère non-linéaire de la plaque et changer ainsi la réaction naturelle, en ressort dur, à une nouvelle réaction en ressort mou.

Les travaux ultérieurs de Hui et Leissa [21], de Hui [22] et de Ilanko et Dickinson [28,29], sur les plaques rectangulaires simplement supportées et avec plusieurs types d'imperfections, ont de nouveau confirmé la grande influence des imperfections sur l'élévation de la fréquence naturelle. Il a été observé en outre, que la sensibilité aux imperfections augmente avec la quantité de chargement statique initial.

Dickinson [28] a montré l'existence d'une relation linéaire, entre un paramètre charge-fréquence, qu'il a défini, et le carré de la déflexion de la plaque, pour une certaine gamme de chargement.

Hui a examiné aussi l'effet des imperfections sur les panneaux cylindriques, simplement supportés, sur quatre bords mobiles ou immobiles [23]. Les résultats montrent qu'une augmentation dans la fréquence linéaire de vibration est accompagnée par une diminution dans le paramètre de non-linéarité.

Dans la majorité des travaux précédents, l'inertie de la plaque dans le plan longitudinal a été toujours négligé. En tenant compte de cette inertie, Pasic et Hermann [24], ont montré qu'elle peut être négligée lors de l'étude des résonances paramétriques d'un mouvement vibratoire, alors qu'elle est d'une grande importance pour le cas d'un mouvement pulsatif.

De nouveau, Hui [25] et Kapania et Yang [26], ont clarifié un autre point important, à savoir le comportement dynamique des plaques en matériaux composites, formées de plusieurs couches minces à fibres orientées. Il a été observé que l'orientation des fibres influe sur la fréquence de vibration. En effet, l'augmentation de la fréquence, dûe à une imperfection, est beaucoup plus prononcée pour une faible orientation des fibres que pour une grande orientation.

Une contribution originale et significative à la compréhension des divers interactions possibles, entre vibrations forcées et paramétriques des plaques rectangulaires, géométriquement imparfaites, a été apportée par Ostiguy [36]. Ses travaux expérimentaux ont montré l'influence directe des vibrations forcées sur le comportement paramétrique des plaques. Il a, en outre, mis le point sur les phénomènes de pénétration, de sauts et

d'hésitation ainsi que sur le recouvrement entre les divers zones d'instabilité correspondant aux résonances forcées et paramétriques. Il a constaté aussi que les vibrations forcées dûes à une imperfection géométrique ne sont pas limitées à un mode particulier et que le spectre de réponse d'une plaque rectangulaire imparfaite, présente plusieurs résonances forcées dans divers modes spatiaux de vibration.

L'approche théorique, pour résoudre les équations rencontrées, durant les différentes étapes de l'analyse statique ou dynamique des plaques avec imperfections géométriques, a été souvent variée et différente d'un chercheur à un autre.

Ainsi donc, pour formuler les équations de base, certains auteurs ont utilisé la méthode d'équilibre des forces, alors que d'autres [12,31] ont eu recours à une méthode énergétique.

Pour résoudre ces équations, Hui et Leissa [21] et Yamaki et Chiba [32], ont par exemple utilisé la méthode de Galerkin, alors que Ilanko et Dickinson [28] ont utilisé la méthode de Rayleigh-Ritz.

Plusieurs auteurs ont, par ailleurs, utilisé une autre technique complètement différente, à savoir la méthode des éléments finis. Une revue des travaux publiés jusqu'au début de 1986, sur l'utilisation des éléments finis, dans les problèmes des plaques et coques imparfaites, se trouve dans une série d'articles présentés par Kapania et Yang [32] et Yang et Han [33].

Lan et al. [34,35] ont utilisé le principe généralisé d'Hamilton, conjointement avec la méthode des éléments finis, pour étudier les vibrations non-linéaires des plaques minces, avec un élément de plaque triangulaire à 15 déplacements nodaux.

Une étude par éléments finis a été aussi conduite par Yang et Han [33], pour analyser les vibrations de grandes amplitudes, des plaques rectangulaires. Une comparaison avec les résultats de Bisplinghoff [31], pour un rapport de forme de 3, a été incluse et une bonne concordance a été notée.

1.3. But et sommaire de la recherche

L'objectif essentiel de ce mémoire consiste à formuler une théorie suffisamment générale pour permettre d'étudier l'influence des imperfections géométriques initiales sur plusieurs aspects du comportement dynamique des plaques rectangulaires non idéales.
Le modèle conceptuel utilisé dans ce mémoire consiste en une plaque rectangulaire imparfaite, simplement supportée et soumise à une excitation sinusoïdale dans le plan de la configuration idéale, non déformée. Les équations aux dérivées partielles du mouvement sont exprimées en fonction de la déflexion latérale W, de l'imperfection initiale W_0 et de la fonction d'Airy F. Ces équations non linéaires correspondent à la version dynamique modifiée, des équations de Von Karman pour le cas de grandes déformations et tiennent compte de l'étirement de la surface moyenne.

La déflexion latérale sera représentée par un développement en série des fonctions propres correspondant aux vibrations libres du système linéaire associé. La fonction d'Airy sera supposée sous la forme d'une double série de fonctions propres de poutre, qui satisfont les conditions aux limites. La méthode de Galerkin sera utilisée pour réduire les équations aux dérivées partielles de base à un système d'équations temporelles du mouvement. Ces équations différentielles non-linéaires seront solutionnées en première approximation par la méthode asymptotique généralisée par Hsu, Agrawal et Evan-Iwanowski.

La seconde étape consistera à évaluer l'influence des imperfections initiales sur la stabilité et la réponse stationnaire des plaques rectangulaires à l'aide de la théorie développée.

Ainsi donc, la présente recherche sera composée de quatre chapitres, dont le contenu est le suivant:

- le chapitre II présente la méthodologie et les détails de calcul pour l'optention des équations temporelles du mouvement pour une plaque rectangulaire simplement supportée avec des imperfections initiales.
- le chapitre III traite de la réponse stationnaire et de l'analyse de stabilité. Les équations temporelles du mouvement sont solutionnées en première approximation par la méthode asymptotique. La réponse en régime stationnaire est déterminée pour le cas de résonance forcée et de résonance paramétrique.

- le chapitre IV présente les conclusions dégagées.

CHAPITRE II

EQUATIONS TEMPORELLES DU MOUVEMENT

2.1. Définition du problème

Le modèle conceptuel utilisé dans cette étude consiste en une plaque rectangulaire, élastique, homogène, isotrope, d'épaisseur uniforme, simplement supportée sur son pourtour et excitée dans son plan idéal par une charge périodique uniformément distribuée, tel que montré à la figure 2.1, et de la forme:

$$N_v(t) = N_{vo} + N_{vt} \cos \theta(t)$$

L'origine du système de coordonnées est choisie au coin inférieur gauche du plan médian de la plaque idéale. On suppose en outre que l'épaisseur de la plaque et les déplacements sont relativement petits par rapport à la longueur d'onde des vibrations latérales, pour pouvoir utiliser la théorie des plaques minces.

L'analyse est basée sur les équations non-linéaires correspondant à la version dynamique des équations de Von Karman pour le cas des grandes déformations et tient compte de l'étirement de la surface moyenne ainsi que des imperfections géométriques initiales. Ces équations aux dérivées partielles sont exprimées en fonction du déplacement latéral W, de l'imperfection géométrique initiale W_0 et de la fonction d'Airy F.

FIGURE 2.1.: Plaque non idéale simplement supportée soumise à une excitation paramétrique.

2.2. Les équations de base

Le chargement N_y (t) imposé au plan moyen de la plaque, combiné avec l'étirement de la surface moyenne, donne naissance à des forces de membrane N_x , N_y et N_{xy} (par unité de longueur). Ces forces sont reliées aux contraintes par les expressions suivantes:

$$N_{x} = h \sigma_{x}$$

$$N_{y} = h \sigma_{y}$$

$$N_{xy} = h \tau_{xy}$$
(2.1)

où h est l'épaisseur de la plaque.

Pour simplifier l'écriture ultérieure des équations, on introduit la fonction de contrainte d'Airy, définie par *:

$$F_{\prime yy} = \sigma_{x}$$

$$F_{\prime xx} = \sigma_{y}$$

$$F_{\prime xy} = -\tau_{xy}$$
(2.2)

^{*} Les indices inférieurs placés après la virgule représentent des dérivées partielles par rapport à ces indices; par exemple: $W_{,xy} = \partial^2 W / \partial_x \partial_y$

Ce qui nous permet d'écrire que:

$$N_{x} = h F_{,yy}$$

$$N_{y} = h F_{,xx}$$

$$N_{xy} = -h F_{,xy}$$
(2.3)

Les relations entre les contraintes et les déformations, dans le plan moyen de la plaque, sont définies par:

$$\sigma_{\rm x} = \frac{\rm E}{1-\nu^2} \left(\epsilon_{\rm x} + \nu \epsilon_{\rm y}\right)$$

$$\sigma_{y} = \frac{E}{1-\nu^{2}} \left(\epsilon_{y} + \nu \epsilon_{x}\right) \qquad (2.4)$$

$$\tau_{xy} = \frac{E}{2(1+\nu)} \epsilon_{xy}$$

Pour une plaque initialement imparfaite, les angles de rotation β_x et β_y , montrés à la figure 2.2, sont petits et sont reliés au déplacement latéral total \overline{W} , par:

$$\beta_{x} = -\overline{W}, \quad x$$

$$\beta_{y} = -\overline{W}, \quad y$$

$$(2.5)$$

avec:
$$W(x,y,t) = W_0(x,y) + W(x,y,t)$$
 (2.6)

- où $W_0(x,y)$ est la déviation de la plaque de sa position parfaitement plate (ou encore imperfection géométrique initiale)
- et W(x,y,t) est la déflexion naissante d'un chargement statique et/ou dynamique.

L'équilibre des forces dans les directions de x et de y, nous donne après division par dxdy:

$$N_{x,x} + N_{yx,y} = 0$$

$$N_{y,y} + N_{xy,x} = 0$$
(2.7)

La projection de l'ensemble des forces agissant sur la plaque, sur l'axe des Z, nous donne après simplification et en négligeant les infiniment petits d'ordre supérieur:

 $-(N_{x,x} + N_{y,x,y}) \beta_{x} - (N_{x,y,x} + N_{y,y}) \beta_{y} - N_{x}\beta_{x,x}$

 $- N_{xy} \beta_{y,x} - N_{yx} \beta_{x,y} - N_{y} \beta_{y,y} + Q_{x,x} + Q_{y,y}$

 $= \rho h W_{,tt}$ (2.8)

FIGURE 2.2: Elément dxdy de la plaque en configuration: (a) non déformée et (b) déformée.

1

En tenant compte de (2.7), l'équation (2.8) peut être réécrite sous la forme:

$$- N_{x} \beta_{x,x} - N_{xy} \beta_{y,x} - N_{yx} \beta_{x,y} - N_{y} \beta_{y,y} + Q_{x,x} + Q_{y,y}$$
$$= \rho h W_{,tt}$$
(2.9)

La sommation des moments, relativement aux directions x et y, donne les équations suivantes:

$$- M_{xy,x} - M_{y,y} + Q_{y} = 0$$

$$M_{yx,y} + M_{x,x} - Q_{x} = 0$$
(2.10)

et puisque les moments de flexion ou de torsion dépendent seulement du changement de courbure de la plaque et non de la courbure totale [8,10], la déflexion nette $W = \overline{W} - W_0$, doit être utilisé dans l'expression de ces moments, donc:

$$M_{x} = -D (W_{,xx} + \nu W_{,yy})$$

$$M_{y} = -D (W_{,yy} + \nu W_{,xx})$$

$$M_{xy} = -D (1 - \nu) W_{,xy}$$
(2.11)

où D = $\frac{E h^3}{12 (1-\nu^2)}$ est la rigidité à la flexion de la plaque.

Finalement, en substituant les expressions (2.3), (2.5), (2.6), (2.10) et (2.11) dans l'équation (2.9), on obtient après quelques manipulations:

$$D [W_{1 \times 1 \times 1} + W_{1 \times 1 \times 1} + 2W_{1 \times 1 \times 1}] =$$

 $h[F_{,yy}.(W+W_0)_{,xx}+F_{,xx}.(W+W_0)_{,yy}]$

$$-2F_{,xy} \cdot (W+W_0)_{,xy} - \rho W_{,tt}] \qquad (2.12)$$

Si on adopte la notation suivante:

$$\Delta^4 = \frac{\partial^4}{\partial_x^4} + 2 \frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}$$

on peut alors écrire l'équation d'équilibre dans sa forme finale:

$$\Delta^{4} W = \frac{h}{D} [F_{,yy} (W + W_{0})_{,xx} - 2F_{,xy} (W + W_{0})_{,xy} + F_{,xx} (W + W_{0})_{,yy} - \rho W_{,tt}]$$
(2.13)

La solution de l'équation (2.13) en F et W, ne peut être obtenue d'une manière unique, que si on a une équation différentielle additionnelle; c'est l'équation de compatibilité, obtenue en différentiant les relations cinématiques. Supposons alors que la plaque, géométriquement imparfaite, est initialement indéformée. L'élongation totale d'un élément dx, après déformation, sera égale à dX, telle que (d'après la figure 2.3):

$$dX = dl_2 - dl_1$$
 (2.14)

avec: dl₁: longueur initiale
 dl₂: longueur finale

Г

Γ

$$dl_{1} = \sqrt{[(W_{0} + W_{0,x} dx) - W_{0}]^{2} + dx^{2}}$$
(2.15)

$$dl_{2} = \sqrt{[(\overline{W} + \overline{W}, d_{x}) - \overline{W}]^{2} + [dx + (U + U, dx) - U]^{2}}$$

où U(x,y,t) et $\overline{W}(x,y,t)$ sont les déplacements du plan moyen, dans les directions x et Z respectivement.

$$dX = dx \sqrt{(\overline{W}_{,x} dx)^{2} + (dx + U_{,x} dx)^{2} - (W_{0,x} dx)^{2} + dx^{2}}$$

$$= dx \left[1 + 2U_{,x}^{2} + W_{,x}^{2} - 1 + W_{0,x}^{2} \right]$$

On utilisant l'approximation du ler ordre pour la racine carrée:

$$\sqrt{1 + \alpha} = 1 + \frac{1}{2} \alpha$$

On peut écrire la déformation ϵ_x sous la forme suivante:

$$\epsilon_{x} = \frac{dx}{dx} = \frac{dl_{2} - dl_{1}}{dx}$$

$$= (1 + U_{,x} + \frac{1}{2} U_{,x}^{2} + \frac{1}{2} \overline{W}_{,x}^{2}) - (1 + \frac{1}{2} W_{0,x}^{2})$$

et en notant que $U_{,x} \ll 1$, on aura $U_{,x}^2$ comme infiniment petit, soit finalement:

$$\epsilon_{x} = U_{x} + \frac{1}{2} \overline{W}_{x}^{2} - \frac{1}{2} W_{0}_{x}^{2}$$

et de la même façon:

$$\epsilon_{y} = V_{,y} + \frac{1}{2} \overline{W}_{,y}^{2} - \frac{1}{2} W_{0,y}^{2}$$
 (2.16)

et

$$\epsilon_{xy} = \mathbf{U}_{,y} + \mathbf{V}_{,x} + \mathbf{W}_{,x} \mathbf{W}_{,y} - \mathbf{W}_{0,x} \mathbf{W}_{0,y}$$

En différentiant les expressions (2.16), on obtient:

$$\epsilon_{x'yy} + \epsilon_{y'xx} - \epsilon_{xy'xy} =$$
(2.17)

$$(W+W_0)_{xy}^2 - W_0_{xy}^2 - (W+W_0)_{xx} (W+W_0)_{yy} + W_0_{xx} W_0_{yy}$$

En remplaçant dans cette équation les composantes de la déformation par leurs valeurs en fonction des contraintes données par les expressions (2.4) et en introduisant la fonction d'Airy F, on arrive à l'équation de compatibilité:

$$\Delta^{4} F = E[(W + W_{0})_{xy}^{2} - W_{0}_{xy}^{2} - (W + W_{0})_{xx} (W + W_{0})_{yy} + W_{0}_{xx} W_{0}_{yy}]$$
(2.18)

Les deux équations différentielles (2.13) et (2.18) constituent les équations de base pour l'étude des vibrations non linéaires des plaques rectangulaires avec imperfections géométriques initiales, équations dans lesquelles on a négligé les effets de cisaillement transversal et de l'inertie de rotation.

2.3. Les conditions aux limites

Dans cette étude, les plaques rectangulaires considérées sont simplement supportées sur les quatres côtés. Par conséquent, les déflexions latérales et les moments fléchissants sont nuls tout le long des arètes de la plaque.

Sachant que les deux arètes (x=0) et (x=a) sont libres de contraintes et que les deux arètes (y=0) et (y=b) sont comprimées par le chargement uniformément réparti $N_y(t)$, l'expression des conditions de contrainte, reliée à la fonction d'Airy F, s'écrit:

$$F_{,yy} = 0,$$
 $F_{,xy} = 0$ le long de x = 0,a
(2.19)
 $F_{,xx} = -N_y(t)/h,$ $F_{,xy} = 0$ le long de y = 0,b

Les conditions d'appui au contour, reliées au déplacement latéral W, s'écrivent:

$$W = 0, \qquad W_{,xx} + \nu W_{,yy} = 0 \qquad \text{le long de } x = 0, a$$

$$(2.20)$$

$$W = 0, \qquad W_{,yy} + \nu W_{,xx} = 0 \qquad \text{le long de } y = 0, b$$

2.4. Solution des éguations de base

Une solution approchée pour le système d'équations (2.13) et (2.18) ainsi que (2.19) et (2.20) est obtenue en supposant que:

 Le déplacement latéral de la plaque est représenté par une double série des fonctions propres du système linéaire associé:

$$W(x,y,t) = \sum \sum W_{pq}(t) \Phi_{p}(x) \psi_{q}(y) + W^{*}(x,y) \qquad (2.21)$$

$$p q$$

où W_{pq} (t) sont les coordonnées généralisées du système et W^* est la déformée dûe au chargement statique.

 La fonction d'Airy est représentée par une double série de fonctions propres de poutres, qui satisfont les conditions de contraintes aux appuis:

$$F(x,y,t) = \sum_{m n} \sum_{m n} f_{mn}(t) X_{m}(x) Y_{n}(y) - \frac{x^{2}}{2h} N_{y}(t) + f^{*}(x,y)$$
(2.22)

où $f_{mn}(t)$ sont les coefficients généralisés de contrainte et f^{*} (x,y) est la contrainte dûe au chargement statique, qu'on suppose de la forme:

$$f^{*}(x,y) = \sum \sum \varphi_{mn} X_{m}(x) Y_{n}(y) \qquad (2.23)$$

m n

Pour comprendre l'influence des imperfections géométriques initiales, sur le comportement dynamique des plaques on considère que l'expression des imperfections est semblable à celle du déplacement latéral:

$$W_{0}(\mathbf{x},\mathbf{y}) = \sum_{k=1}^{\infty} W_{0kl} \Phi_{k}(\mathbf{x}) \psi_{l}(\mathbf{y}) \qquad (2.24)$$

où W_{0kl} est l'amplitude des imperfections.

Il est clair que la configuration réelle des imperfections peut nécessiter des termes additionnels; cependant l'analyse et l'effort de calcul peuvent devenir d'une longueur prohibitive.

D'autre part, sous l'influence du chargement statique sur la plaque initialement imparfaite, on peut s'attendre logiquement que la déformation statique naissante aura exactement le même type de déformée que l'imperfection:

$$W^{\bullet}(\mathbf{x},\mathbf{y}) = \sum_{k} \sum_{l} d_{kl} \Phi_{k}(\mathbf{x}) \psi_{l}(\mathbf{y}) \qquad (2.25)$$

Les expressions analytiques des fonctions propres utilisées sont:

$$X_{m}(x) = \frac{\sin(\alpha_{m}x) - \sinh(\alpha_{m}x)}{\sin(\lambda_{m}) - \sinh(\lambda_{m})} - \frac{\cos(\alpha_{m}x) - \cosh(\alpha_{m}x)}{\cos(\lambda_{m}) - \cosh(\lambda_{m})} \quad (2.26a)$$

$$Y_{n}(y) = \frac{\sin(\beta_{n}y) - \sinh(\beta_{n}y)}{\sin(\lambda_{n}) - \sinh(\lambda_{n})} - \frac{\cos(\beta_{n}y) - \cosh(\beta_{n}y)}{\cos(\lambda_{n}) - \cosh(\lambda_{n})} \quad (2.26b)$$

$$\Phi_{p}(x) = \sin \frac{p \pi x}{a} \qquad (2.26C)$$

$$\psi_q(\mathbf{y}) = \sin \frac{q \pi \mathbf{y}}{\mathbf{b}} \qquad (2.26d)$$

où $\lambda_m = \alpha_m a$ et $\lambda_n = \beta_n b$ et sont obtenues à partir des équations transcendantes:

$$1 - \cos (\alpha_m a) \cdot \cosh (\alpha_m a) = 1 - \cos \lambda_m \cdot \cosh \lambda_m = 0$$
(2.27)

1 - cos $(\beta_n b)$. cosh $(\beta_n b) = 1 - \cos \lambda_n$. cosh $\lambda_n = 0$

Les fonctions X_m , Y_n , Φ_p (ou Φ_k) et ψ_q (ou ψ_l) possèdent les propriétés suivantes:

$$\int_{0}^{a} X_{m} X_{i} dx = \begin{cases} 0 & \sin \neq i \\ < & (2.28a) \\ a/(\cos\lambda_{m} - \cosh\lambda_{m})^{2} & \sin = i \end{cases}$$

$$\int_{0}^{b} Y_{n} Y_{j} dy = \begin{cases} 0 & \sin \neq j \\ \langle & & (2.28b) \\ b/(\cos\lambda_{n} - \cosh\lambda_{n})^{2} & \sin = j \end{cases}$$

$$\int_{0}^{a} \Phi_{p} \Phi_{u} dx = \begin{cases} 0 & \text{sip} \neq u \\ < & (2.28c) \\ a/2 & \text{sip} = u \end{cases}$$

$$\int_{0}^{b} \psi_{q} \psi_{v} dy = \begin{cases} 0 & \text{si } q \neq v \\ \\ b/2 & \text{si } q = v \end{cases}$$
(2.28d)

2.4.1. Solution de l'équation de compatibilité

Si on substitue les expressions (2.21), (2.22), (2.23), (2.24) et (2.25) dans l'équation de compatibilité (2.18), on obtient:

- pour le terme de gauche:

LHS (2.18) =
$$\Delta^4 \mathbf{F}$$

= $\sum_{m \in \mathbf{N}} \Sigma_n (\mathbf{f}_{mn} + \varphi_{mn}) \cdot [X_m^{iv} Y_n + 2 X_m^{"} Y_n^{"} + X_m^{'} Y_n^{iv}]$

- pour le terme de droite:

RHS (2.18) = E[(W+W₀), xy² - W₀, xy² - (W+W₀), xx (W+W₀), yy + W₀, xx W₀, yy
or W + W₀ =
$$\sum_{p=q}^{\infty} \sum_{q=q}^{\infty} W_{pq} \Phi_{p} \psi_{q} + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k} \psi_{l}$$

donc: (W+W₀), xy = $\sum_{p=q}^{\infty} \sum_{q=q}^{\infty} W_{pq} \Phi_{p}' \psi_{q}' + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k}' \psi_{l}'$
(W+W₀), xx = $\sum_{p=q}^{\infty} \sum_{q=q}^{\infty} W_{pq} \Phi_{p} \psi_{q}' + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k}' \psi_{l}'$
(W+W₀), yy = $\sum_{p=q}^{\infty} \sum_{q=q}^{\infty} W_{pq} \Phi_{p} \psi_{q}'' + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k} \psi_{l}''$

où les primes désignent une dérivée par rapport à x ou y.

RHS (2.18) = E
$$\begin{cases} \sum_{p=q}^{\infty} \sum_{q=q}^{\infty} W_{pq} \Phi_{p}' \psi_{q}' + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k}' \psi_{l}']^{2} \\ - \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} W_{0kl} \Phi_{k}' \psi_{l}']^{2} \\ - \sum_{p=q}^{\infty} \sum_{q=1}^{\infty} W_{pq} \Phi_{p}'' \psi_{q} + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k}'' \psi_{l}]^{2} \\ \sum_{p=q}^{\infty} \sum_{q=1}^{\infty} W_{pq} \Phi_{p} \psi_{q}'' + \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (d_{kl} + W_{0kl}) \Phi_{k} \psi_{l}''] \\ + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} W_{0kl} \Phi_{k}'' \psi_{l}] \cdot \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} W_{0kl} \Phi_{k} \psi_{l}''] \\ \end{cases}$$

En tenant compte des règles de calcul tensoriel, on a finalement:

$$\Delta^{4} F = \sum_{m} \sum_{n} (f_{mn} + \varphi_{mn}) [X_{m}^{iv} Y_{n} + 2X_{m}^{u} Y_{n}^{u} + X_{m} Y_{n}^{iv}]$$

$$= E \begin{cases} \sum_{m} \sum_{p} \sum_{q} \sum_{r} \sum_{s} W_{pq} W_{rs} [\Phi_{p}' \Phi_{r}' \psi_{q}' \psi_{s}' - \Phi_{p}^{u} \Phi_{r} \psi_{q} \psi_{s}^{u}] \\ + \sum_{p} \sum_{q} \sum_{q} \sum_{h} W_{pq} (d_{gh} + W_{0gh}) [\Phi_{p}' \Phi_{g}' \psi_{q}' \psi_{h}' - \Phi_{p}^{u} \Phi_{g} \psi_{q} \psi_{h}^{u}] \\ + \sum_{r} \sum_{s} \sum_{k} \sum_{l} W_{rs} (d_{kl} + W_{0kl}) [\Phi_{r}' \Phi_{k}' \psi_{s}' \psi_{l}' - \Phi_{r} \Phi_{k}^{u} \psi_{s}^{u} \psi_{s}] \\ + \sum_{r} \sum_{s} \sum_{k} \sum_{l} [(d_{kl} + W_{0kl}) (d_{gh} + W_{0gh}) - W_{0gh} W_{0kl}] [\Phi_{k}' \Phi_{g}' \psi_{l}' \psi_{h}'] \\ - \Phi_{k}^{u} \Phi_{g} \psi_{l} \psi_{h}^{u}] \end{cases}$$

On applique maintenant la méthode de Galerkin,

$$\int_{0}^{a} \int_{0}^{b} \sum \sum (f_{mn} + \varphi_{mn}) [X_{m}^{i\nu}Y_{n} + 2X_{m}^{\mu}Y_{n}^{\mu} + X_{m}Y_{n}^{i\nu}] X_{i} Y_{j} dx dy$$
$$= \int_{0}^{a} \int_{0}^{b} \sum \sum \sum \sum W_{pq}W_{rs} [\Phi_{p}^{\prime}\Phi_{r}^{\prime}\psi_{q}^{\prime}\psi_{s}^{\prime} - \Phi_{p}^{\mu}\Phi_{r}\psi_{q}\psi_{s}^{\mu}]X_{i}Y_{j} dx dy$$

$$+ \int_{0}^{a} \int_{0}^{b} E \sum \sum \sum \sum W_{pq} (d_{gh} + W_{0gh}) [\Phi_{p}' \Phi_{g}' \psi_{q}' \psi_{h}' - \Phi_{p}^{"} \Phi_{g} \psi_{q} \psi_{h}^{"}] X_{i} Y_{j} dx dy + \int_{0}^{a} \int_{0}^{b} E \sum \sum \sum \sum W_{rs} (d_{kl} + W_{0kl}) [\Phi_{k}' \Phi_{r}' \psi_{l}' \psi_{s}' - \Phi_{k}^{"} \Phi_{r} \psi_{l} \psi_{s}^{"}] X_{i} Y_{j} dx dy + \int_{0}^{a} \int_{0}^{b} E \sum \sum \sum \sum [(d_{kl} + W_{0kl}) (d_{gh} + W_{0gh}) - W_{0kl} W_{0gh}] [\Phi_{k}' \Phi_{g}' \psi_{l}' \psi_{h}' - \Phi_{k}^{"} \Phi_{g} \psi_{l} \psi_{h}^{"}] X_{i} Y_{j} dx dy$$

On peut intervertir les signes Σ avec les signes \int pour obtenir:

$$\sum_{\mathbf{m},\mathbf{n}} (\mathbf{f}_{\mathbf{m},\mathbf{n}} + \varphi_{\mathbf{m},\mathbf{n}}) \cdot \left[\int_{0}^{\mathbf{a}} X_{\mathbf{n}}^{i \mathbf{v}} X_{i} dx \int_{0}^{\mathbf{b}} Y_{\mathbf{n}} Y_{j} dy + 2 \int_{0}^{\mathbf{a}} X_{\mathbf{n}}^{\mathbf{v}} X_{i} dx \int_{0}^{\mathbf{b}} Y_{\mathbf{n}}^{\mathbf{v}} Y_{j} dy \right]$$

$$+ \int_{0}^{a} X_{i} dx \int_{0}^{b} Y_{i} Y_{j} dy$$

$$= E \sum_{p q r s} \sum_{p q r s} W_{pq} W_{rs} \left[\int_{0}^{a} \Phi_{p}' \Phi_{r}' X_{i} dx \int_{0}^{b} \psi_{q}' \psi_{s}' Y_{j} dy \right]$$

$$-\int_{0}^{\mathbf{d}} \Phi_{\mathbf{p}} \Phi_{\mathbf{r}} \mathbf{X}_{\mathbf{i}} \, \mathrm{d}\mathbf{x} \int_{0}^{\mathbf{d}} \psi_{\mathbf{g}} \Psi_{\mathbf{j}} \, \mathrm{d}\mathbf{y} \right]$$

$$+ \underbrace{E}_{p} \underbrace{\Sigma}_{q} \underbrace{\Sigma}_{p} \underbrace{\Sigma}_{p} \underbrace{W}_{pq} \left(d_{gh} + W_{0gh} \right) \left[\int_{0}^{a} \Phi_{p}' \Phi_{g}' X_{i} dx \int_{0}^{b} \psi_{q}' \psi_{h}' Y_{j} dy \right]$$

$$-\int_{0}^{a} \Phi_{p} \Phi_{g} X_{i} dx \int_{0}^{b} \psi_{q} \psi_{h} Y_{j} dy$$

$$+ \underbrace{E}_{k \mid r \mid s} \underbrace{\Sigma}_{r \mid s} \underbrace{\Sigma}_{r \mid s} \underbrace{W_{r \mid s}}_{k \mid l \mid r \mid s} \left[\int_{0}^{a} \Phi_{k} \cdot \Phi_{r} \cdot X_{i} dx \int_{0}^{b} \psi_{l} \cdot \psi_{s} \cdot Y_{j} dy \right]$$

$$-\int_{0}^{a} \Phi_{k} \Phi_{r} X_{i} dx \int_{0}^{b} \psi_{i} \psi_{s} Y_{j} dy$$

$$+ \sum_{k \in \Sigma} \sum_{j \in K} \left[(d_{kl} + W_{0kl})(d_{gh} + W_{0gh}) - W_{0kl} W_{0gh} \right]$$

$$\begin{bmatrix} a & b \\ \phi_k' \phi_g' X_i dx \\ 0 \end{bmatrix}_{0}^{\psi_l} \psi_h' Y_j dy - \begin{bmatrix} a & b \\ \phi_k & \phi_g X_i dx \\ 0 \end{bmatrix}_{0}^{\psi_l} \psi_h & Y_j dy \end{bmatrix}$$

$$\mathbf{m} \mathbf{n} = \frac{\pi^{4} \mathbf{E}}{4} \sum_{p \neq q} \sum_{r \neq s} \sum_{s} \sum_{r \neq q} \left[pqrs \ \mathbf{K}_{2}^{i p r} \ \mathbf{L}_{2}^{j q s} - p^{2} s^{2} \mathbf{K}_{3}^{i p r} \ \mathbf{L}_{3}^{j s q} \right] \mathbf{W}_{pq} \mathbf{W}_{rs}$$

$$+ \frac{\pi^{4} \mathbf{E}}{4} \sum_{p \neq q} \sum_{r \neq s} \sum_{r \neq q} \sum_{r \neq q} \left[pqgh \ \mathbf{K}_{2}^{i p q} \ \mathbf{L}_{2}^{j q h} - p^{2} h^{2} \mathbf{K}_{3}^{i p q} \ \mathbf{L}_{3}^{j h q} \right] \mathbf{W}_{pq} (\mathbf{d}_{gh} + \mathbf{W}_{0 gh})$$

$$\frac{(c^2 \lambda_i^4 + \lambda_j^4 / c^2)}{(\cos\lambda_i - \cosh\lambda_i)^2 (\cos\lambda_j - \cosh\lambda_j)^2} (f_{ij} + \varphi_{ij}) + 2\Sigma \Sigma (f_{mn} + \varphi_{mn}) \lambda_m^2 \lambda_n^2 K_1^{im} L_1^{jn}$$

On trouve finalement l'expression suivante:

$$K_{2}^{i p r} = \frac{2a}{pr\pi^{2}} \int_{0}^{a} X_{i} \Phi_{p}' \Phi_{r}' dx \qquad L_{2}^{j q s} = \frac{2b}{qs\pi^{2}} \int_{0}^{b} Y_{j} \psi_{q}' \psi_{s}' dy$$
$$K_{3}^{i p r} = \frac{2a}{p^{2}\pi^{2}} \int_{0}^{a} X_{i} \Phi_{p}'' \Phi_{r} dx \qquad L_{3}^{j s q} = \frac{2b}{s^{2}\pi^{2}} \int_{0}^{b} Y_{j} \psi_{s}'' \psi_{q} dy$$

$$\mathbf{x}^{ipr} = \frac{2\mathbf{a}}{2\mathbf{a}} \begin{bmatrix} \mathbf{x} & \mathbf{a}' & \mathbf{d}\mathbf{x} & \mathbf{y}^{jqs} \end{bmatrix} = \frac{2\mathbf{b}}{2\mathbf{b}} \begin{bmatrix} \mathbf{x} & \mathbf{a}' & \mathbf{d}\mathbf{x} \end{bmatrix}$$

$$K_{1}^{im} = \frac{a}{\lambda_{m}^{2}} \int_{0}^{a} X_{i} X_{m}^{"} dx \qquad L_{1}^{jn} = \frac{b}{\lambda_{n}^{2}} \int_{0}^{b} Y_{j} Y_{n}^{"} dy$$

En tenant compte des relations (2.28) et après définition des coefficients suivants:

(2.29)

$$+ \frac{\pi^{4}E}{4} \sum_{k} \sum_{l} \sum_{r} \sum_{s} \sum_{l} \left[k \ln s K_{2}^{i\,k\,r} L_{2}^{j\,l\,s} - k^{2} s^{2} K_{3}^{i\,k\,r} L_{3}^{j\,s\,l} \right] W_{r\,s} (d_{k\,l} + W_{0\,k\,l})$$

$$+ \frac{\pi^{4}E}{4} \sum_{k} \sum_{l} \sum_{g} \sum_{h} \left[k \ln k_{2}^{i\,k\,g} L_{2}^{j\,l\,h} - k^{2} h^{2} K_{3}^{i\,k\,g} L_{3}^{j\,h\,l} \right]$$

$$[(W_{0\,k\,l} + d_{k\,l}) (W_{0\,g\,h} + d_{g\,h}) - W_{0\,k\,l} W_{0\,g\,h}] \qquad (2.30)$$

où c = b/a est le rapport de forme de la plaque.

Les formules explicites des différents coefficients K et L sont bien détaillées dans l'annexe A.

En se servant de la notation tensorielle, on peut écrire l'expression (2.30) sous la forme suivante:

où

$$A_{ij}^{mm} = \delta_{i}^{m} \delta_{j}^{n} \left[\frac{c^{2} \lambda_{m}^{4} + \lambda_{n}^{4} / c^{2}}{(\cos \lambda_{m} - \cosh \lambda_{m})^{2} (\cos \lambda_{n} - \cosh \lambda_{n})^{2}} \right]$$

+ $2\lambda_m^2 \lambda_n^2 K_l^{im} L_l^{jn}$ (2.32a)

$$B_{ij}^{pqrs} = \frac{\pi^{4}E}{4} \left[pqrs \ K_{2}^{ipr} \ L_{2}^{jqs} - p^{2}s^{2} \ K_{3}^{ipr} \ L_{3}^{jsq} \right]$$
(2.32b)

Dans les expressions tensorielles, la répétition d'un indice indique une sommation par rapport à cet indice.

 δ_{i}^{m} est le delta de Kronecker:

$$\delta_{i}^{m} = \langle 0 & \text{si} & i \neq m \\ 0 & \text{si} & i \neq m \\ 1 & \text{si} & i = m \\ 1 & \text{si} & i = m \\ 0 & \text{si} & 1 & \text{si} & 1 \\ 0 & \text{si} & 1 & 1 \\ 0$$

Les équations (2.31) peuvent être réarrangées, pour donner les relations existant entre les coefficients généralisés de contrainte f_{mn} et les coordonnées généralisées W_{pq} :

$$f_{mn}(t) + \varphi_{mn} = R_{mn}^{pqrs} W_{pq}(t) W_{rs}(t) + R_{mn}^{pqgh} W_{pq}(t) [W_{0gh} + d_{gh}] + R_{mn}^{klrs} W_{rs}(t) [W_{0kl} + d_{kl}] + R_{mn}^{klgh} [(W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl} W_{0gh}]$$

$$(2.33)$$

dans lesquelles

$$[R_{mn}^{pqrs}] = [A_{ij}^{mn}]^{-1} [B_{ij}^{pqrs}]$$
(2.34)

En égalisant membre à membre, les termes dépendant et non dépendant du temps dans l'équation (2.33), on obtient finalement:

$$f_{mn}(t) = R_{mn}^{pqrs} W_{pq}(t) W_{rs}(t) + R_{mn}^{pqgh} W_{pq}(t) [W_{0gh} + d_{gh}] + R_{mn}^{klrs} W_{rs}(t) [W_{0kl} + d_{kl}]$$
(2.35a)

$$\varphi_{mn} = R_{mn}^{k lgh} \left[(W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl} W_{0gh} \right]$$
(2.35b)

2.4.2. Solution de l'équation de mouvement

En substituant les équations (2.21), (2.22), (2.23), (2.24) et (2.25) dans l'équation de mouvement (2.13), on obtient:

$$\sum_{p \in Q} \sum_{q \in Q} W_{pq} \left[\Phi_{p}^{iv} \psi_{q} + 2\Phi_{p}^{"} \psi_{q}^{"} + \Phi_{p} \psi_{q}^{iv} \right] + \sum_{k \in Q} \sum_{k \in Q} d_{kl} \left[\Phi_{k}^{iv} \psi_{l} + 2\Phi_{k}^{"} \psi_{l}^{"} + \Phi_{k} \psi_{l}^{iv} \right]$$

$$= \frac{h}{D} \left[\sum_{m \in Q} \sum_{n} (f_{mn} + \varphi_{mn}) X_{m} Y_{n}^{"} \right] \left[\sum_{r \in S} \sum_{m \in Q} W_{rs} \Phi_{r}^{"} \psi_{s} + \sum_{k \in Q} (d_{kl} + W_{0kl}) \Phi_{k}^{"} \psi_{l} \right]$$

$$-2 \left[\sum_{m \in Q} \sum_{n} (f_{mn} + \varphi_{mn}) X_{m}^{"} Y_{n}^{"} \right] \left[\sum_{r \in S} \sum_{m \in Q} W_{rs} \Phi_{r}^{"} \psi_{s}^{"} + \sum_{k \in Q} (d_{kl} + W_{0kl}) \Phi_{k}^{"} \psi_{l}^{"} \right]$$

$$+ \left[\sum_{\mathbf{m}} \sum_{\mathbf{n}} (\mathbf{f}_{\mathbf{m}\,\mathbf{n}} + \varphi_{\mathbf{m}\,\mathbf{n}}) \mathbf{X}_{\mathbf{m}}^{*} \mathbf{Y}_{\mathbf{n}} - \frac{1}{\mathbf{h}} \mathbf{N}_{\mathbf{y}} \right] \left[\sum_{\mathbf{r}} \sum_{\mathbf{s}} W_{\mathbf{r}\,\mathbf{s}} \Phi_{\mathbf{r}} \psi_{\mathbf{s}}^{*} + \sum_{\mathbf{k}} \sum_{\mathbf{l}} (\mathbf{d}_{\mathbf{k}\,\mathbf{l}} + W_{0\,\mathbf{k}\,\mathbf{l}}) \Phi_{\mathbf{k}} \psi_{\mathbf{l}}^{*} \right] \\ - \rho \sum_{\mathbf{r}} \sum_{\mathbf{s}} W_{\mathbf{r}\,\mathbf{s}}^{*} \Phi_{\mathbf{r}} \psi_{\mathbf{s}}^{*} \right]$$

On réarrange encore cette équation

$$\begin{split} \Sigma & \Sigma & W_{pq} \left[\Phi_{p}^{iv} \psi_{q} + 2\Phi_{p}^{*} \psi_{q}^{*} + \Phi_{p} \psi_{q}^{iv} \right] \\ & + \sum_{k \mid l} \Sigma & \Delta_{kl} \left[\Phi_{k}^{iv} \psi_{l} + 2\Phi_{k}^{*} \psi_{l}^{*} + \Phi_{k} \psi_{l}^{iv} \right] \end{split}$$

$$= \frac{h}{D} \begin{bmatrix} \sum \sum \sum \sum (f_{mn} + \varphi_{mn}) W_{rs} & [X_m \Phi_r^{"} Y_n^{"} \psi_s + X_m^{"} \Phi_r^{"} Y_n \psi_s^{"} \\ -2X_m^{'} \Phi_r^{'} Y_n^{'} \psi_s^{'} \end{bmatrix}$$

$$+ \sum \sum \sum \sum (\mathbf{f}_{mn} + \varphi_{mn}) (\mathbf{d}_{kl} + W_{0kl}) \left[X_m \Phi_k^{"} Y_n^{"} \psi_l + X_m^{"} \Phi_k^{} Y_n \psi_l^{"} -2X_m^{'} \Phi_k^{'} Y_n^{'} \psi_l^{'} \right]$$

_

$$-\frac{1}{h}N_{y}(t)\left[\sum_{rs} W_{rs} \Phi_{r} \psi_{s}^{"} + \sum_{kl} (d_{kl} + W_{0kl}) \Phi_{k} \psi_{l}^{"}\right]$$

$$\begin{array}{c} -\rho \Sigma \Sigma W_{rs} \Phi_{r} \psi_{s} \\ rs \end{array} \right]$$
 (2.36)

On applique de nouveau la méthode de Galerkin

- -

$$\int_{0}^{a} \int_{0}^{b} \sum_{p \in \mathbf{q}} \sum_{q} W_{pq} \left[\Phi_{p}^{iv} \psi_{q} + 2\Phi_{p}^{*} \psi_{q}^{*} + \Phi_{p} \psi_{q}^{iv} \right] \Phi_{u} \psi_{v} dx dy$$

$$+ \int_{0}^{a} \int_{0}^{b} \sum_{k \in \mathbf{l}} d_{kl} \left[\Phi_{k}^{iv} \psi_{l} + 2\Phi_{k}^{*} \psi_{l}^{*} + \Phi_{k} \psi_{l}^{iv} \right] \Phi_{u} \psi_{v} dx dy$$

$$= \int_{0}^{a} \int_{0}^{b} \frac{h}{D} \sum_{m \in \mathbf{n}} \sum_{r \in \mathbf{S}} \sum_{r \in \mathbf{I}} (\mathbf{f}_{mn} + \varphi_{mn}) W_{rs} \left[X_{m} \Phi_{r}^{*} Y_{n}^{*} \psi_{s} + X_{m}^{*} \Phi_{r} Y_{n} \psi_{s}^{*} - 2X_{m}^{*} \Phi_{r}^{*} Y_{n}^{*} \psi_{s}^{*} \right] \Phi_{u} \psi_{v} dxdy$$

$$+ \int_{0}^{a} \int_{0}^{b} \frac{h}{D} \sum_{m \in \mathbf{n}} \sum_{k \in \mathbf{I}} \sum_{r \in \mathbf{I}} (\mathbf{f}_{mn} + \varphi_{mn}) (d_{kl} + W_{0kl}) \left[X_{m} \Phi_{k}^{*} Y_{n}^{*} \psi_{l} + X_{m}^{*} \Phi_{k} Y_{n} \psi_{l}^{*} \right]$$

$$-2X_{\rm m}'\Phi_{\rm k}'Y_{\rm n}'\psi_{\rm l}'\Big]\Phi_{\rm u}\psi_{\rm v}\,{\rm d}{\rm x}{\rm d}{\rm y}$$

$$-\frac{1}{h} N_{y}(t) \int_{0}^{a} \int_{0}^{b} \frac{h}{D} \left[\sum_{r s} \sum_{s} W_{rs} \Phi_{r} \psi_{s}^{"} + \sum_{k l} \sum_{l} (d_{kl} + W_{0kl}) \Phi_{k} \psi_{l}^{"} \right] \Phi_{u} \psi_{v} dxdy$$

$$-\rho \int_{0}^{a} \int_{0}^{b} \frac{h}{D rs} \sum \Sigma W_{rs} \Phi_{r} \psi_{s} \Phi_{u} \psi_{v} dxdy \qquad (2.37)$$

En tenant compte des relations (2.28), on obtient pour le membre de gauche:

41

LHS (2.37) =
$$\int_{0}^{a} \int_{0}^{b} \sum_{p q} \sum_{q} W_{pq} \left[\Phi_{p}^{i \nu} \psi_{q} + 2\Phi_{p}^{\mu} \psi_{q}^{\mu} + \Phi_{p} \psi_{q}^{i \nu} \right] \Phi_{u} \psi_{v} dxdy$$
$$+ \int_{0}^{a} \int_{0}^{b} \sum_{k 1} \Delta_{kl} \left[\Phi_{k}^{i \nu} \psi_{l} + 2\Phi_{k}^{\mu} \psi_{l}^{\mu} + \Phi_{k} \psi_{l}^{i \nu} \right] \Phi_{u} \psi_{v} dxdy$$

$$= \sum_{p \in Q} \sum_{q \in Q} W_{pq} \left[\int_{0}^{a} \Phi_{p}^{i} \Phi_{u} dx \int_{0}^{b} \psi_{q}^{i} \psi_{v} dy + 2 \int_{0}^{a} \Phi_{p}^{*} \Phi_{u} dx \int_{0}^{b} \psi_{q}^{*} \psi_{v} dy + \left[\int_{0}^{a} \Phi_{p} \Phi_{u} dx \int_{0}^{b} \psi_{q}^{i} \psi_{v} dy \right] \right]$$

$$+ \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} d_{kl} \left[\int_{0}^{a} \Phi_{k}^{i} \Psi_{u} dx \int_{0}^{b} \psi_{l} \psi_{v} dy + 2 \int_{0}^{a} \Phi_{k}^{i} \Phi_{u} dx \int_{0}^{b} \psi_{l}^{i} \psi_{v} dy + \int_{0}^{a} \Phi_{k} \Phi_{u} dx \int_{0}^{b} \psi_{l}^{i} \Psi_{v} dy \right]$$

$$= \frac{ab}{4} \left[\left(\frac{u\pi}{a} \right)^2 + \left(\frac{v\pi}{b} \right)^2 \right]^2 \left(W_{uv} + d_{uv} \right)$$

$$= \frac{\pi^4 ab}{4} \left[\left(\frac{u}{a} \right)^2 + \left(\frac{v}{b} \right)^2 \right]^2 \left(W_{uv} + d_{uv} \right)$$

D'autre part,

. .

$$\int_{0}^{a} \int_{0}^{b} \sum_{r s} \Sigma W_{rs} \Phi_{r} \Phi_{u} \psi_{s} \psi_{v} dx dy = \rho \frac{ab}{4} W_{u},$$

$$\int_{0}^{a} \int_{0}^{b} \frac{1}{h} N_{y}(t) \sum_{r} \sum_{s} W_{rs} \Phi_{r} \Phi_{u} \psi_{s}^{"} \psi_{v} dx dy = - \left(\frac{v\pi}{b}\right)^{2} \frac{ab}{4h} N_{y}(t) W_{uv}$$

$$\int_{0}^{a} \int_{0}^{b} \frac{1}{h} N_{y}(t) \sum_{k} \sum_{l} \left(d_{kl} + W_{0kl}\right) \Phi_{k} \Phi_{u} \psi_{l}^{"} \psi_{v} dx dy =$$

$$- \left(\frac{v\pi}{b}\right)^{2} \frac{ab}{4h} N_{y}(t) \left[d_{uv} + W_{0uv}\right]$$

Ainsi, on obtient pour le membre de droite:

RHS (2.37) =
$$\frac{abh}{4D} \left\{ \frac{\pi^2}{a^2 b^2} (f_{mn} + \varphi_{mn}) W_{rs} \left[\lambda_n^2 r^2 K_4^{umr} L_5^{vns} + \lambda_m^2 s^2 K_5^{umr} L_4^{vns} - 2\lambda_m \lambda_n rs K_6^{umr} L_6^{vns} \right] + \frac{\pi^2}{a^2 b^2} (f_{mn} + \varphi_{mn}) (d_{kl} + W_{0kl}) \left[\lambda_n^2 k^2 K_4^{umk} L_5^{vnl} + \lambda_m^2 1^2 K_5^{umk} L_4^{vnl} L_4^{vnl} - 2\lambda_m \lambda_n kl K_6^{umk} L_6^{vnl} \right] + \frac{v^2 \pi^2}{b^2 h} N_y (t) W_{uv} + \frac{v^2 \pi^2}{b^2 h} N_y (t) [d_{uv} + W_{0uv}] - \rho W_{uv} >$$

où les coefficients K et L sont données par les formules suivantes:

$$K_{4}^{\text{umr}} = \frac{2a}{r^{2}\pi^{2}} \int_{0}^{a} \Phi_{u} \Phi_{r} \, X_{m} \, dx; \qquad L_{4}^{\text{vns}} = \frac{2b}{s^{2}\pi^{2}} \int_{0}^{b} \psi_{v} \psi_{s} \, Y_{n} \, dy$$

$$K_{5}^{umr} = \frac{2a}{\lambda_{m}^{2}} \int_{0}^{a} \Phi_{u} \Phi_{r} X_{m}^{"} dx; \qquad L_{5}^{vns} = \frac{2b}{\lambda_{n}^{2}} \int_{0}^{b} \psi_{v} \psi_{s} Y_{n}^{"} dy$$
$$K_{6}^{umr} = \frac{2a}{r\pi\lambda_{m}} \int_{0}^{a} \Phi_{u} \Phi_{r}^{'} X_{m}^{'} dx; \qquad L_{6}^{vns} = \frac{2b}{s\pi\lambda_{n}} \int_{0}^{b} \psi_{v} \psi_{s}^{'} Y_{n}^{'} dy$$
(2.38)

Les expressions détaillées de ces coefficients sont donnés dans l'annexe A.

En égalisant finalement le membre de droite à celui de gauche, on obtient:

$$\begin{split} \ddot{W}_{uv} &+ \frac{\pi^4 D}{\rho ha^4 c^2} \left[c^2 u^4 + 2 u^2 v^2 + \frac{v^4}{c^2} \right] (W_{uv} + d_{uv}) \\ &- \frac{v^2 \pi^2}{\rho ha^2 c^2} N_y(t) \left[W_{uv} + d_{uv} + W_{0 uv} \right] \\ &+ \frac{\pi^2}{\rho a^4 c^2} \left[2\lambda_m \lambda_n rs K_6^{umr} L_6^{vns} - \lambda_n^2 r^2 K_4^{umr} L_5^{vns} - \lambda_m^2 s^2 K_5^{umr} L_4^{vns} \right] (f_{mn} + \varphi_{mn}) W_{rs} \\ &+ \frac{\pi^2}{\rho a^4 c^2} \left[2\lambda_m \lambda_n k L K_6^{umk} L_6^{vni} - \lambda_m^2 k^2 K_4^{umk} L_5^{vni} - \lambda_n^2 l^2 K_5^{umk} L_4^{vni} \right] (f_{mn} + \varphi_{mn}) (W_{0 kl} + d_{kl}) = 0 \quad (2.39) \end{split}$$

20

Si on pose que:

$$G_{uv}^{mnrs} = \frac{\pi^2}{\rho a^4 c^2} \left[2\lambda_m \lambda_n r s K_6^{umr} L_6^{vns} - \lambda_n^2 r^2 K_4^{umr} L_5^{vns} - \lambda_m^2 s^2 K_5^{umr} L_4^{vns} \right]$$

$$-\lambda_m^2 s^2 K_5^{umr} L_4^{vns} \left]$$
(2.40a)

$$\omega_{uv}^{2} = \frac{\pi^{4} D}{\rho ha^{4} c^{2}} \left[c^{2} u^{4} + 2u^{2} v^{2} + \frac{v^{4}}{c^{2}} \right]$$
(2.40b)

l'équation (2.39) peut être réécrite d'une façon plus simple:

$$\frac{v^{2}\pi^{2}}{W_{uv}} + \omega_{uv}^{2} (W_{uv} + d_{uv}) - \frac{v^{2}\pi^{2}}{\rho ha^{2}c^{2}} N_{y}(t) [W_{uv} + d_{uv} + W_{0uv}]$$

+
$$G_{uv}^{mnrs}$$
 ($f_{mn} + \varphi_{mn}$) W_{rs} + G_{uv}^{mnkl} ($f_{mn} + \varphi_{mn}$) ($W_{0kl} + d_{kl}$) = 0 (2.41)

En portant les expressions (2.35) dans les équations (2.41), on obtient:

$$\frac{1}{W_{uv}} + \omega_{uv}^{2} (W_{uv} + d_{uv}) - \frac{v^{2} \pi^{2}}{\rho ha^{2} c^{2}} N_{y}(t) [W_{uv} + d_{uv} + W_{0uv}]$$

$$+ M_{uv}^{pqrsab} W_{pq}W_{rs}W_{ab} + 3 M_{uv}^{pqrskl} W_{pq}W_{rs} (W_{0kl} + d_{kl}) + M_{uv}^{klrsgh} W_{rs} [3 (W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl}W_{0gh}] + M_{uv}^{klghij} (W_{0ij} + d_{ij}) [(W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl}W_{0gh}] = 0 (2.42)$$

dans lesquelles

$$[M_{uv}^{klpqrs}] = [G_{uv}^{mlkl}] [R_{mn}^{pqrs}]$$
(2.43)

Dans le cas statique,

 $W_{uv} = 0$, $W_{uv} = 0$, $N_{y}(t) = N_{yo}$

l'équation (2.42) devient:

$$\omega_{uv}^{2} d_{uv} - \frac{v^{2} \pi^{2}}{\rho ha^{2} c^{2}} N_{yo} (d_{uv} + W_{0uv}) + M_{uv}^{k l g h i j} (W_{0ij} + d_{ij}) \left[(W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl} W_{0gh} \right] = 0$$
(2.44)

C'est cette équation qui donne la relation entre le chargement statique initial et la déformation statique initiale.

En injectant l'équation (2.44) dans (2.42), on a:

$$W_{uv} + W_{uv} \left[\omega_{uv}^{2} - \frac{v^{2} \pi^{2} N_{v}(t)}{\rho ha^{2} c^{2}} \right] - \frac{v^{2} \pi^{2}}{\rho ha^{2} c^{2}} (d_{uv} + W_{0uv}) N_{vt} \cos \theta$$

+
$$M_{uv}^{pqrsab}$$
 W_{pq} W_{rs} W_{ab} + 3 M_{uv}^{pqrskl} W_{pq} W_{rs} (W_{0kl} + d_{kl})

$$+ M_{uv}^{k \, l \, r \, s \, g \, h} W_{rs} \left[3 \left(W_{0 \, k \, l} + d_{k \, l} \right) \left(W_{0 \, g \, h} + \delta_{g \, h} \right) - W_{0 \, k \, l} W_{0 \, g \, h} \right] = 0$$
(2.45)

et puisque, d'après [38],

$$\omega_{uv}^{2} = N_{uv}^{4} d^{*} - \frac{\pi^{2}v^{2}}{\rho ha^{2}c^{2}}$$
 (2.46)

où d^{*} = D_d/D_o = E_d/E_o est le rapport des rigidités dynamique et statique

et $N_{uv} = \frac{\pi^2 D_o}{a^2 v^2} (c^2 u^4 + 2u^2 v^2 + \frac{v^2}{c^2})$ est le paramètre de

la charge critique associée au mode critique de flambement (u,v).

On a alors:

$$\ddot{W}_{uv} + \omega_{uv}^{2} \left[1 - \frac{N_{yv} + N_{yt} \cos \theta}{d^* N_{uv}} \right] W_{uv} - \frac{\omega_{uv}^{2}}{d^* N_{uv}} \left(d_{uv} + W_{0uv} \right) N_{yt} \cos \theta$$

+
$$M_{uv}^{pqrsab} W_{pq} W_{rs} W_{ab}$$
 + 3 $M_{uv}^{pqrskl} W_{pq} W_{rs} (W_{0kl} + d_{kl})$

$$+ M_{uv}^{klrsgh} W_{rs} \left[3 (W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl} W_{0gh} \right] = 0$$
(2.47)

En introduisant:

- Les fréquences naturelles de la plaque chargée, parfaitement plane, qui sont données par:

$$\Omega_{uv}^{2} = \omega_{uv}^{2} \left[1 - \frac{N_{yo}}{dN_{uv}} \right]$$
 (2.48)

- Les paramètres d'excitation, définis par:

$$\mu_{uv} = \frac{N_{yt}}{2(dN_{uv} - N_{vo})}$$
(2.49)
on pourra alors réécrire les équations (2.47) sous la forme:

$$\frac{1}{W_{uv}} + \Omega_{uv}^{2} (1 - 2\mu_{uv} \cos \theta) W_{uv} - 2\mu_{uv} \Omega_{uv}^{2} (W_{0uv} + d_{uv}) \cos \theta$$

$$+ M_{uv}^{pqrsab} W_{pq} W_{rs} W_{ab} + 2 M_{uv}^{pqrskl} W_{pq} W_{rs} (W_{0kl} + d_{kl})$$

$$+ M_{uv}^{klrsgh} W_{rs} \left[3 (W_{0kl} + d_{kl}) (W_{0gh} + d_{gh}) - W_{0kl} W_{0gh} \right] = 0$$

$$(2.50)$$

ou encore

$$\begin{array}{l} & \cdots \\ & W_{uv} + \begin{cases} \Omega_{uv}^{2} + M_{uv}^{k \mid r \mid s \mid g \mid h} & \delta_{r}^{u} \delta_{s}^{v} \left[3 \left(W_{0 \mid k \mid} + d_{k \mid l} \right) \left(W_{0 \mid g \mid h} + d_{g \mid h} \right) - W_{0 \mid k \mid l} W_{0 \mid g \mid h} \right] \\ & - 2 \mu_{uv} \Omega_{uv}^{2} \cos \theta \right] W_{uv} - 2\mu_{uv} \Omega_{uv}^{2} \left(W_{0 \mid uv} + d_{uv} \right) \cos \theta \\ & + M_{uv}^{pqrsab} W_{pq} W_{rs} W_{ab} + 3 M_{uv}^{pqrskl} W_{pq} W_{rs} \left(W_{0 \mid k \mid l} + d_{k \mid l} \right) = 0$$

$$(2.51)$$

On peut alors définir les fréquences naturelles de la plaque chargée, avec imperfections initiales, comme étant:

$$\overline{\Omega}_{uv}^{2} = \Omega_{uv}^{2} + M_{uv}^{k \, l \, r \, s \, g \, h} \quad \delta_{r}^{u} \quad \delta_{s}^{v} \left[3 \left(W_{0 \, k \, l} + d_{k \, l} \right) \left(W_{0 \, g \, h} + d_{g \, h} \right) - W_{0 \, k \, l} W_{0 \, g \, h} \right]$$

$$(2.52)$$

et l'équation (2.51) devient alors:

$$W_{uv} + \left[\overline{\Omega}_{uv}^{2} - 2\mu_{uv} \Omega_{uv}^{2} \cos \theta\right] W_{uv} + M_{uv}^{pqrsab} W_{pq} W_{rs} W_{ab}$$

+ 3
$$M_{uv}^{pqrskl} W_{pq}W_{rs} (W_{okl} + d_{kl}) - 2\mu_{uv} \Omega_{uv}^{2} (W_{0uv} + d_{uv}) \cos \theta = 0$$
(2.53)

Lorsqu'une plaque est comprimée dans son plan moyen par des forces uniformément réparties le long de deux arètes opposées, il a été montré^{*} que le flambement de la plaque s'effectue de telle manière qu'il peut y avoir plusieurs demi-ondes dans la direction de compression, mais une seule dans la direction perpendiculaire à la précédente.

Voir Timoshenko, Référence 39, page 351.

Il est raisonnable de supposer que le système se comportera dynamiquement de la même façon et nous pouvons poser que

u = p = r = a = k = 1v=1,2,3,.., q=1,2,3,.., s=1,2,3,.., b=1,2,3,.., l=1,2,3,...

Pour simplifier le problème, on omettra d'écrire tous les indices relatifs aux modes de vibration suivant l'axe des x. En ajoutant, pour plus de généralité, l'effet de l'amortissement linéaire, dans les équations de mouvement on obtient:

$$W_{v} + \overline{\Omega}_{v}^{2} W_{v} = 2\mu_{v} \Omega_{v}^{2} (W_{v} + W_{0v} + d_{v}) \cos \theta - 2 C_{v} W_{v}$$
$$-M_{v}^{qsb} W_{q} W_{s} W_{b} - 3 M_{v}^{lsq} W_{q} W_{s} (W_{0l} + d_{l})$$
(2.54)

En tenant compte de la règle de calcul tensoriel, qui dit qu'un indice répété est considéré comme muet et donc peut être remplacé par n'importe quel autre indice, sans changer le résultat, on peut réarranger l'équation (2.54), pour obtenir:

$$W_v + \overline{\Omega}_v^2 W_v = 2\mu_v \Omega_v^2 (W_v + W_{0v} + d_v) \cos \theta - 2 C_v W_v$$

$$-M_{v}^{rqs} W_{r} W_{q} W_{s} - 3 M_{v}^{qsl} W_{q} W_{s} (W_{0l} + d_{l}) (2.55)$$

Les équations (2.55) représentent la forme finale des équations du mouvement d'une plaque rectangulaire imparfaite et simplement supportée sur les quatres côtés.

2.4.3. Cas particuliers

Une grande partie des travaux de recherche concernant le comportement dynamique des plaques imparfaites s'intéresse spécialement aux lois de variation des fréquences de vibration en fonction du type et de l'amplitude de l'imperfection initiale.

Pour pouvoir donc comparer nos résultats à ceux fournis par d'autres auteurs, on considérera le cas particulier le plus fréquemment étudié, à savoir le premier mode spatial de vibration avec le premier mode spatial de déformation statique et le premier mode d'imperfection initiale.

Dans ces conditions, la relation entre chargement et déformation statique pour la plaque géométriquement imparfaite, est donnée par:

$$\omega^2 d - \frac{\pi^2}{\rho ha^2 c^2} N_{\gamma o} (d + W_0) + M (W_0 + d) [(W_0 + d)^2 - W_0^2] = 0$$

avec $M \equiv M_1^{111}$, $\omega = \omega_1$, $W_0 = W_{01}$, $d = d_1$

ou encore après réarrangement:

$$(W_0 + d)^3 + (W_0 + d) [-W_0^2 + \frac{\omega^2}{M} (1 - \frac{N_{yo}}{N_{crit}})] - \frac{\omega^2}{M} W_0 = 0$$

(2.56)

On peut alors, d'après ce polynôme du 3e degré en (W_0+d) , trouver la variation de la déformation statique d, en fonction du chargement N_{yo} , pour plusieurs valeurs de W_0 , comme le montre les figures 2.4.

On remarque alors que pour la plaque parfaite $(W_0=0)$, il y a présence d'une force critique (N_{crit}) , à partir de laquelle la déformation cesse d'être nulle pour augmenter après d'une façon progressive, contrairement à la théorie linéaire qui prévoit une déformation infinie à partir de N_{crit} .

Pour la plaque imparfaite $(W_0 \neq 0)$, la déformation augmente, presque linéairement, pour des faibles valeurs de N_{yo} . Pour des charges plus élevées, la déformation augmente brusquement et tend asymptotiquement à la courbe correspondant à $W_0 = 0$. Ainsi donc, connaissant la charge appliquée, la déformation statique et l'imperfection initiale, on peut évaluer la fréquence chargée de la plaque géométriquement imparfaite, par la formule suivante:

$$\overline{\Omega}^{2} = \Omega^{2} + M [3 (W_{0} + d)^{2} - W_{0}^{2}]$$

$$= \omega^{2} [\frac{N_{crit} - N_{\gamma 0}}{N_{crit}}] + M [3 (W_{0} + d)^{2} - W_{0}^{2}] \qquad (2.57)$$

Les figures 2.5a et 2.5b, montrent les lois de variation de la fréquence chargée en fonction de l'imperfection W_0 , pour différentes valeurs de chargement N_{vo} .

On remarque alors que la fréquence de vibration d'une plaque imparfaite est très sensible aux imperfections initiales. En effet, la présence d'une imperfection de l'ordre de la fraction de l'épaisseur de la plaque, peut augmenter énormément la fréquence de vibration.

La figure 2.6, montre la variation de la fréquence chargée en fonction de la charge statique N_{yo} , pour différentes valeurs d'imperfections W_0 .

Deflection statique , d / h

FIGURE 2.4b: Effet des imperfections initiales sur la deflexion statique de la plaque.

- La fréquence de vibration d'une plaque parfaite $(W_0 = 0)$ décroît avec l'augmentation de N_{yo}. Elle s'annule pour N_{yo} = N_{crit}.
- Pour une plaque imparfaite $(W_0=0)$, la fréquence de vibration ne décroît pas jusqu'à zéro, mais atteint plutôt un minimum après lequel, elle commence à croître.
- Plus la valeur de l'imperfection est grande, moins est la charge pour laquelle la fréquence est à son minimum.

8

59

×

FIGURE 2.6 : Variation de la fréquence de la plaque chargée en fonction du chargement statique, pour différentes valeurs d'imperfections initiales.

CHAPITRE III

SOLUTION ASYMPTOTIQUE DES EQUATIONS DE MOUVEMENT

3.1. Introduction

La méthode asymptotique représente un outil mathématique très efficace pour l'analyse des équations différentielles non-linéaires des systèmes en vibration.

Connue encore sous le nom de la méthode des paramètres faiblement variables, cette technique d'analyse a été développée par Bogolioubov et Mitropolski et généralisé par Hsu, Agrawal et Evan-Iwanowski. Son hypothèse de base^{*} est que certaines quantités sont des fonctions du temps lent $\tau = \epsilon t$, où ϵ est un paramètre petit et positif, et que par conséquent, leurs dérivées par rapport au temps normal t, sont proportionnelles à ϵ .

La caractéristique principale du développement asymptotique suivant les puissances croissantes de ϵ , n'est pas basée sur le critère de convergence de la série quand l'exposant m de ϵ tend à l'infini, mais plutôt par les propriétés asymptotiques de la série, pour une valeur donnée

Voir Référence [40], page 26

de m, quand le paramètre ϵ tend vers zéro. On exige uniquement que, lorsque ϵ est petit, le développement sériel fournit une solution suffisamment précise, pour un temps suffisamment long.

Cependant, à cause de la complication rapide dans la construction des solutions asymptotiques et compte tenu des critères de convergence de la méthode, seuls les termes d'ordre ϵ° et ϵ^{1} seront retenus et on se limitera ainsi à un développement asymptotique en première approximation.

3.2. <u>Construction de la solution asymptotique en première</u> approximation

Pour pourvoir appliquer cette technique d'analyse à l'équation (2.55) et trouver les solutions asymptotiques en première approximation, on supposera que l'amortissement, le paramètre d'excitation et les coefficients non-linéaires sont petits:

$$C_{v} = \epsilon C_{v} \qquad \mu_{v} = \epsilon \mu_{v} \qquad M_{v}^{lqs} = \epsilon M_{v}^{lqs} \qquad (3.1)$$

et on supposera, en outre, que la fréquence d'excitation et le paramètre d'excitation varient lentement avec le temps, c'est-à-dire:

$$\frac{d\theta}{dt} = \eta (\tau); \qquad \mu_{v} = \mu_{v}(\tau) \qquad (3.2)$$

Ainsi donc, en tenant compte des suppositions (3.1) et (3.2) l'équation temporelle du mouvement (2.55) sera transformée sous la forme suivante:

$$\widetilde{W_{v}} + \widetilde{\Omega_{v}}^{2} W_{v} = \epsilon \left[2\mu_{v}\Omega_{v}^{2} (W_{v} + W_{0v} + d_{v})\cos\theta - 2 C_{v}W_{v} - M_{v}^{rqs}W_{r}W_{q}W_{s} - 3 M_{v}^{qsl}W_{q}W_{s} (W_{0l} + d_{l}) \right]$$

$$(3.3)$$

ou symboliquement par:

$$\dot{W}_{v} + \bar{\Omega}_{v}^{2} W_{v} = \epsilon F(\tau, \theta, W, W)$$
(3.4)

où le terme de gauche représente un oscillateur linéaire et le terme de droite F (τ , θ , W, W), représentant la perturbation, est une fonction périodique en θ , de période 2π .

Quand la perturbation est absente ($\epsilon = 0$) et τ est constant, l'équation (3.4) est réduite à:

$$\overline{W}_{v} + \overline{\Omega}_{v}^{2} W_{v} = 0$$

et les solutions, qui sont évidement purement harmoniques, auront une amplitude et un déphasage constants dans le temps et dépendant des conditions initiales.

En présence de perturbation ($\epsilon = 0$), un certain nombre de phénomènes supplémentaires peuvent avoir lieu. Des harmoniques supérieures peuvent apparaître dans les solutions et la fréquence instantanée ne sera plus constante et pourra dépendre de l'amplitude des oscillations.

REMARQUES IMPORTANTES

L'étude expérimentale de la stabilité dynamique des plaques rectangulaires [36,37] permet d'observer, outre les vibrations paramétriques, d'autres oscillations de faible amplitude, dont la fréquence correspond à celle de l'excitation, qui sont induites automatiquement par les imperfections initiales. Ces oscillations sont qualifiées de forcées ou dynamiques. Lorsque la fréquence de ces dernières se trouve dans le voisinage de la fréquence naturelle de la plaque, celle-ci entre lentement en résonance. L'amplitude augmente alors graduellement, contrairement aux cas des vibrations paramétriques où elle augmente de façon soudaine et abrupte.

Prenant en considération tous ces phénomènes physiques et constations expérimentales, on suppose alors que la solution de l'équation du mouvement (3.3), s'écrit sous la forme:

$$W_v = b_v(\tau) + a_v(\tau) \cos(\frac{1}{2}\theta + \psi_{1v}) + e_r(\tau) \cos(\theta + \psi_{2r})$$
 (3.5)

- où a_v: est l'amplitude des vibrations paramétriques principales
 - e.: est l'amplitude des vibrations forcées
 - b_v: est un terme inconnu dans la solution, naissant de la nature non-linéaire du système.

avec:

$$\begin{cases} \frac{db_{v}}{dt} = \epsilon D_{1}^{v}(a_{v}, b_{v}, e_{r}, r) \end{cases}$$
(3.6a)

$$\begin{bmatrix} \frac{da_v}{d_t} = \epsilon A_1^v (a_v, b_v, \psi_{1v}, \tau)$$
(3.6b)

$$\begin{cases} \frac{d\psi_{1v}}{d_t} = \overline{\Omega}_v - \frac{1}{2} \eta + \epsilon B_1(a_v, b_v, \psi_{1v}, \tau) \end{cases} (3.6c) \end{cases}$$

$$\begin{bmatrix} \frac{de_r}{d_t} = \epsilon E_1^r (e_r, b_v, \psi_{2r}, \tau)$$
(3.6d)

$$\begin{cases} \frac{d\psi_{2r}}{d_t} = \overline{\Omega}_r - \eta + \epsilon F_1^r (e_r, b_v, \psi_{2r}, \tau) \end{cases}$$
(3.6e)

En dérivant l'équation (3.5), par rapport au temps, et en gardant seulement les termes du premier ordre, on obtient:

$$\dot{W}_{v} = \epsilon D_{1}^{v} + \epsilon A_{1}^{v} \cos \left(\frac{1}{2}\theta + \psi_{1v}\right) - a_{v} \left(\overline{\Omega}_{v} + \epsilon B_{1}^{v}\right) \sin \left(\frac{1}{2}\theta + \psi_{1v}\right)$$

+
$$\epsilon E_1^{\Gamma} \cos (\theta + \psi_{2\Gamma}) - e_{\Gamma} (\overline{\Omega}_{\Gamma} + \epsilon F_1^{\Gamma}) \sin (\theta + \psi_{2\Gamma})$$
 (3.7)

et

$$\widetilde{W}_{v} = \epsilon \frac{\partial A_{1}}{\partial \psi_{1v}} (\overline{\Omega}_{v} - \frac{1}{2} \eta) \cos \left(\frac{1}{2} \theta + \psi_{1v}\right) - 2 \epsilon A_{1}^{v} \overline{\Omega}_{v} \sin \left(\frac{1}{2} + \psi_{1v}\right)$$

$$-a_{v}\epsilon \frac{\partial B_{1}^{v}}{2\psi_{1v}}(\overline{\Omega}_{v}-\frac{1}{2}\eta)\sin \left(\frac{1}{2}\theta+\psi_{1v}\right)-a_{v}(\overline{\Omega}_{v}^{2}+2\epsilon\overline{\Omega}_{v}B_{1}^{v})\cos \left(\frac{1}{2}\theta+\psi_{1v}\right)$$

$$+\epsilon \frac{\partial \mathbf{E}_{1}^{r}}{\partial \psi_{2r}} (\overline{\Omega}_{r} - \eta) \cos (\theta + \psi_{2r}) - 2 \epsilon \mathbf{E}_{1}^{r} \overline{\Omega}_{r} \sin (\theta + \psi_{2r})$$

$$-\mathbf{e}_{r} \quad \epsilon \quad \frac{\partial \mathbf{F}_{1}'}{\partial \psi_{2r}} (\overline{\Omega}_{r} - \eta) \sin \left(\theta + \psi_{2r}\right) - \mathbf{e}_{r} (\overline{\Omega}_{r}^{2} + 2 \epsilon \overline{\Omega}_{r} \mathbf{F}_{1}') \cos \left(\theta + \psi_{2r}\right)$$

$$(3.8)$$

En reportant les expresions (3.5), (3.6), (3.7) et (3.8) dans l'équation (3.3), on obtient pour le membre de gauche:

LHS (3.3) = W_v + $\overline{\Omega}_v^2$ W_v

$$= \overline{\Omega}_{v}^{2} b_{v} + \epsilon \left[\frac{\partial A_{1}^{v}}{\partial \psi_{1v}} (\overline{\Omega}_{v} - \frac{1}{2} \eta) - 2 a_{v} \overline{\Omega}_{v} B_{1}^{v} \right] \cos \left(\frac{1}{2} \theta + \psi_{1v} \right)$$

$$+ \epsilon \left[-2 \overline{\Omega}_{v} A_{1}^{v} - a_{v} \frac{\partial B_{1}^{v}}{\partial \psi_{1v}} (\overline{\Omega}_{v} - \frac{1}{2} \eta) \right] \sin \left(\frac{1}{2} \theta + \psi_{1v}\right)$$

$$+ \epsilon \left[\frac{\partial \mathbf{E}_{1}^{r}}{\partial \psi_{2r}} (\overline{\Omega}_{r} - \eta) - 2 \mathbf{e}_{r} \overline{\Omega}_{r} \mathbf{F}_{1}^{r} \right] \cos \left(\theta + \psi_{2r} \right)$$

$$+ \epsilon \left[-2 \overline{\Omega}_{r} E_{1}^{r} - e_{r} \frac{\partial F_{1}^{r}}{\partial \psi_{2r}} (\overline{\Omega}_{r} - \eta) \right] \sin (\theta + \psi_{2r})$$
(3.9)

et pour le membre de droite:

RHS (3.3) =
$$\epsilon \left\{ 2\mu_{v}\Omega_{v}^{2} \cos \theta (W_{v}+W_{0v}+d_{v}) - 2C_{v}W_{v} - M_{v}^{bqs}W_{b}W_{q}W_{s} \right\}$$

$$-3 M_{v}^{lqs} W_{q} W_{s} (W_{0l} + d_{l}) > (3.10a)$$

Sachant que l'équation (3.3) ne contient pas des termes de couplage linéaire, et que les forces n'excitent qu'un seul mode à la fois, l'équation (3.10) s'écrira alors sous la forme:

RHS (3.3) =
$$\epsilon \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$-3 M_{v}^{vvl} W_{v} W_{v} \cdot (W_{0l} + d_{l}) > \qquad (3.10b)$$

ou encore:

RHS (3.3) =
$$\epsilon \left\{ 2 \mu_{v} \Omega_{v}^{2} \cos \theta \cdot [b_{v} + W_{0v} + d_{v}] \right\}$$

+
$$2\mu_{v}\Omega_{v}^{2}a_{v}\cos\theta \cdot \cos\left(-\frac{\theta}{2}+\psi_{1v}\right)+2\mu_{v}\Omega_{v}^{2}e_{r}\cos\theta \cdot \cos\left(\theta+\psi_{2r}\right)$$

+ 2
$$C_v a_v \overline{\Omega}_v \sin\left(\frac{1}{2}\theta + \psi_{1v}\right)$$
 + 2 $C_v e_r \overline{\Omega}_r \sin\left(\theta + \psi_{2r}\right)$

$$- M_{v}^{v v v} [b_{v} + a_{v} \cos (\frac{1}{2} \theta + \psi_{1v}) + e_{r} \cos (\theta + \psi_{2r})]^{3}$$

$$-3 M_{v}^{vvl} (W_{0l} + d_{l}) [b_{v} + a_{v} \cos \left(\frac{1}{2}\theta + \psi_{1v}\right) + e_{r} \cos \left(\theta + \psi_{2r}\right)]^{2} > \int$$

En négligeant les termes d'harmoniques supérieures, on obtient:

RHS (3.3) =
$$\epsilon \begin{bmatrix} -\mu_v \Omega_v^2 e_r \cos \psi_{2r} - 3 M_v^{v} (W_{0l} + d_l) [b_v^2 + \frac{1}{2}(a_v^2 + e_r^2)] \end{bmatrix}$$

$$- M_{v}^{vvv} [b_{v}^{3} + \frac{3}{2} b_{v} (a_{v}^{2} + e_{r}^{2}) + \frac{3}{4} a_{v}^{2} e_{r} \cos (2\psi_{1v} - \psi_{2r})]$$

+
$$\cos(\frac{1}{2}\theta + \psi_{1v}) [\mu_v \Omega_v^2 a_v \cos 2\psi_{1v} - M_v^{vvv} (\frac{3}{4}a_v^3 + 3b_v^2 a_v + \frac{3}{2}a_v e_r^2)$$

- 6
$$M_v^{v l}$$
 ($W_0 l + d_l$) b_v a_v]

$$+\sin\left(\frac{1}{2}\theta + \psi_{1v}\right) \left[\mu_{v}\Omega_{v}^{2} a_{v} \sin 2\psi_{1v} + C_{v} a_{v} \overline{\Omega}_{v}\right]$$

+ cos
$$(\theta + \psi_{2r}) [-M_v^{vv} (\frac{3}{4}e_r^3 + 3b_v^2 e_r + \frac{3}{2}a_v^2 e_r) - 6M_v^{vv} (W_{0l} + d_l)b_v e_r]$$

+ sin $(\theta + \psi_{2r})$ [2 C_v e_r $\overline{\Omega}_{v}$]

+ $2\mu_{v}\Omega_{v}^{2}$ ($b_{v}+W_{0v}+d_{v}$) cos θ

$$-\frac{3}{2} a_v^2 \left[M_v^{\vee \vee \vee} b_v + M_v^{\vee \vee \vee} (W_{0l} + d_l)\right] \cos \left(\theta + 2\psi_{1v}\right)$$

$$-3 a_{v} e_{r} [M_{v}^{vvv} b_{v} + M_{v}^{vvl} (W_{0l} + d_{l})] \cos (\frac{1}{2} \theta + \psi_{2r} - \psi_{1v}) > \frac{1}{2}$$

et sachant que:

 $\cos\left(\theta+2\psi_{1\,\nu}\right)=\cos\left(\theta+\Psi_{2\,\Gamma}\right)\cos\left(2\psi_{1\,\nu}-\psi_{2\,\Gamma}\right)-\sin\left(\theta+\psi_{2\,\Gamma}\right)\sin\left(2\psi_{1\,\nu}-\psi_{2\,\Gamma}\right)$

$$\cos \left(\frac{1}{2}\theta + \psi_{2r} - 2\psi_{1r}\right) = \cos \left(\frac{1}{2}\theta + \psi_{1r}\right) \cos \left(\psi_{2r} - 2\psi_{1r}\right) \\ -\sin \left(\frac{1}{2}\theta + \psi_{1r}\right) \sin \left(\psi_{2r} - 2\psi_{1r}\right)$$

 $\cos \theta = \cos (\theta + \psi_{2r}) \cos \psi_{2r} + \sin (\theta + \psi_{2r}) \sin \psi_{2r}$

On aura alors:

RHS (3.3) =
$$\epsilon < \mu_v \Omega_v^2 e_r \cos \psi_{2r}$$

$$-M_{v}^{vvv} [b_{v}^{3} + \frac{3}{2}b_{v}(a_{v}^{2} + e_{r}^{2}) + \frac{3}{4}a_{v}^{2}e_{r}\cos(2\psi_{1v} - \psi_{2r})]$$

$$-3 M_{v}^{vvl} (W_{0l} + d_{l}) [b_{v}^{2} + \frac{1}{2} (a_{v}^{2} + e_{r}^{2})]$$

+ cos
$$\left(\frac{1}{2}\theta + \psi_{1v}\right) \left[\mu_v \Omega_v^2 a_v \cos 2\psi_{1v}\right]$$

$$-M_{v}^{vvv} \left(\frac{3}{4} a_{v}^{3} + 3b_{v}^{2} a_{v} + \frac{3}{2} a_{v}e_{r}^{2}\right)$$

+ $3b_{v}a_{v}e_{r}\cos(\psi_{2r}-2\psi_{1v}))$

 $- M_{v}^{vvl} (W_{0l} + d_{l}) (6b_{v}a_{v} + 3a_{v}e_{r} \cos (\psi_{2r} - \psi_{1v}))]$

+ sin
$$\left(\frac{1}{2}\theta + \psi_{1v}\right) \left[\mu_v \Omega_v^2 a_v \sin 2\psi_{1v} + 2C_v a_v \overline{\Omega}_v\right]$$

+
$$3a_{v}e_{r}$$
 $(M_{v}^{vvv}b_{v} + M_{v}^{vvl} (W_{0l}+d_{l}) \sin (\psi_{2r}-2\psi_{1v})]$

+ cos
$$(\theta + \psi_{2r}) [2\mu_v \Omega_v^2 (b_v + W_{0v} + d_v) \cos \psi_{2v} - M_v^{vv} (W_{0l} + d_l) (6b_v e_r)$$

$$-\frac{3}{2} a_v^2 \cos (2\psi_{1r} - \psi_{2r}))$$

$$- M_{v}^{vvv} \left(\frac{3}{4} e_{r}^{3} + 3b_{v}^{2} e_{r} + \frac{3}{2} a_{v}^{2} e_{r} + \frac{3}{2} a_{v}^{2} b_{v} \cos \left(2\psi_{1r} - \psi_{2r} \right) \right]$$

+ sin $(\theta + \psi_{2r})$ [2 C_v e_r Ω_v + 2 $\mu_v \Omega_v^2 (b_v + W_{0v} + d_v)$ sin ψ_{2r}

$$+\frac{3}{2}a_{v}^{2}(M_{v}^{vvv}b_{v}+M_{v}^{vvl}(W_{0l}+d_{l}))\sin(2\psi_{1v}-\psi_{2r})] >]$$
(3.11)

En égalisant les coefficients de même puissance en ϵ et d'harmoniques semblables, dans les membres de droite (3.11) et de gauche (3.9), on trouve le système d'équations suivant:

$$\begin{vmatrix} \frac{\partial A_{1}^{v}}{\partial \psi_{1v}} (\overline{\Omega}_{v} - \frac{1}{2} \eta) - 2a_{v} \ \overline{\Omega}_{v} B_{1}^{v} = \mu_{v} \Omega_{v}^{2} a_{v} \cos 2\psi_{1v} - 6M_{v}^{vv} (W_{01} + d_{1}) b_{v} a_{v} \\ - M_{v}^{vvv} (\frac{3}{4} a_{v}^{3} + 3 b_{v}^{2} a_{v}) \quad (3.12a) \\ - 2 \overline{\Omega}_{v} A_{1}^{v} - a_{v} \frac{\partial B_{v}^{1}}{\partial \psi_{1v}} (\overline{\Omega}_{v} - \frac{1}{2} \eta) = \mu_{v} \Omega_{v}^{2} a_{v} \sin 2\psi_{1v} + 2 C_{v} a_{v} \overline{\Omega}_{v} \\ (3.12b) \end{vmatrix}$$

$$\begin{bmatrix} \frac{\partial E_{r}^{1}}{\partial \psi_{2r}} (\overline{\Omega}_{r} - \eta) - 2e_{r} \overline{\Omega}_{r} F_{1}^{r} = 2\mu_{v} \Omega_{v}^{2} (b_{v} + W_{0v} + d_{v}) \cos \psi_{2r} \\ -6M_{v}^{vvl} (W_{0l} + d_{l}) b_{v} e_{r} - M_{v}^{vvv} (\frac{3}{4} e_{r}^{3} + 3 b_{v}^{2} e_{r}) \\ < (3.13a) \\ (3.13a) \\ -2 \overline{\Omega}_{v} E_{1}^{r} - e_{r} \frac{\partial F_{r}^{1}}{\partial t} (\Omega_{r} - \eta) = 2\mu_{v} \Omega_{v}^{2} (b_{v} + W_{0v} + d_{v}) \sin \psi_{2r} + 2 C_{v} e_{r} \overline{\Omega}_{r} \end{bmatrix}$$

$$\begin{bmatrix}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & \psi_{2r}
\end{bmatrix}$$
(3.13b)

$$\begin{bmatrix} v^{v}v^{v} \\ \leq M_{v}^{v} \end{bmatrix} \begin{bmatrix} b_{v}^{3} + \frac{3}{2} b_{v} (a_{v}^{2} + e_{r}^{2}) \end{bmatrix} + 3M_{v}^{v^{v}} (W_{0l} + d_{l}) \begin{bmatrix} b_{v}^{2} + \frac{1}{2} (a_{v}^{2} + e_{r}^{2}) \end{bmatrix} = 0$$
(3.14)

Pour résoudre le système d'équations (3.12), on supposera que la solution s'écrit:

$$A_1^{v} = -C_v a_v + X_v \sin 2 \psi_{1v}$$
 (3.15)

$$B_{1}^{v} = \frac{3M_{v}^{v \vee v}}{8\tilde{\Omega}_{v}} \left[a_{v}^{2} + 4 b_{v}^{2} + 8 \frac{M_{v}^{v \vee l}}{M_{v}^{v \vee v}} b_{v} (W_{0l} + d_{l}) \right] + Q_{v} \cos 2 \psi_{1v}$$

En reportant les valeurs de A_1^v et B_1^v , données en (3.15), dans le système (3.12), on trouve que:

r

$$\begin{vmatrix} A_{1}^{v} = -C_{v} & a_{v} - \frac{\mu_{v} \Omega_{v}^{2} a_{v}}{\eta} & \sin 2 \psi_{1v} \\ \\ B_{1}^{v} = \frac{3M_{v}^{vvv}}{8\bar{\Omega}_{v}} & \left[a_{v}^{2} + 4 b_{v}^{2} + \frac{8M_{v}^{vlv}}{M_{v}^{vvv}} & (W_{0l} + d_{l}) \right] - \frac{\mu_{v} \Omega_{v}^{2}}{\eta} & \cos 2 \psi_{1v} \\ \\ \end{bmatrix}$$

De la même façon, pour résoudre le système d'équations (3.13), on supposera que:

$$\begin{bmatrix} E_{1}^{r} = -C_{v} e_{r} + X_{r} \sin \psi_{2r} \\ \\ \\ F_{1}^{r} = \frac{3M_{v}^{vvv}}{8\bar{\Omega}_{r}} \begin{bmatrix} e_{r}^{2}+4 b_{v}^{2} + \frac{8M_{v}^{vvl}}{M_{v}^{vvv}} b_{v} (W_{0l}+d_{l}) \end{bmatrix} + Q_{r} \cos \psi_{2r} \end{bmatrix}$$
(3.18)

et on trouve après substitution de (3.18) dans (3.13) que:

$$\begin{bmatrix} X_{\Gamma} &= -\frac{2\mu_{\nu}\Omega_{\Gamma}^{2}(b_{\nu}+W_{0\nu}+d_{\nu})}{(\overline{\Omega}_{\Gamma} + \eta)} \\ Q_{\Gamma} &= -\frac{2\mu_{\nu}\Omega_{\Gamma}^{2}(b_{\nu}+W_{0l}+d_{\nu})}{e_{\Gamma}(\overline{\Omega}_{\Gamma} + \eta)} \end{bmatrix}$$
(3.19)

Soit encore:

$$\begin{bmatrix} E_{1}^{r} = -C_{v} e_{r} - \frac{2\mu_{v}\Omega_{r}^{2}(b_{v}+W_{0v}+d_{v})}{(\overline{\Omega}_{r} + \eta)} & \sin \psi_{2r} \\ \\ \\ \\ F_{1}^{r} = \frac{3M_{v}^{vv}}{8\overline{\Omega}_{r}} [e_{r}^{2}+4b_{v}^{2} + \frac{8M_{v}^{vv}}{M_{v}^{vv}} b_{v}(W_{0l}+d_{l})] - \frac{2\mu_{v}\Omega_{r}^{2}(b_{v}+W_{0l}+d_{v})}{e_{r}(\overline{\Omega}_{r} + \eta)} \cos \psi_{2r} \\ \end{bmatrix}$$
(3.20)

En reportant les expressions (3.17) et (3.20), dans les équations de départ (3.6) et en tenant compte des premières hypothèses concernant C, M et μ , on trouve que:

$$\begin{bmatrix} \frac{da_{v}}{dt} = -C_{v} a_{v} - \frac{\mu_{v} \Omega_{v}^{2} a_{v}}{\eta} & \sin 2 \psi_{1v} \\ \frac{d\psi_{1v}}{dt} = \overline{\Omega}_{v} - \frac{1}{2} \eta + \frac{3M_{v}^{vvv}}{8\overline{\Omega}_{v}} [a_{v}^{2} + 4b_{v}^{2} + 8\frac{M_{v}^{vvl}}{M_{v}^{vvv}} (W_{0l} + d_{l})] - \frac{\mu_{v} \Omega_{v}^{2}}{\eta} \cos 2\psi_{1v} \\ (3.21a) \\ (3.21b) \end{bmatrix}$$

$$\begin{vmatrix} \frac{de_{r}}{dt} &= -C_{v} e_{r} - \frac{2\mu_{v}\Omega_{r}^{2}(b_{v}+W_{0v}+d_{v})}{(\bar{\Omega}_{r}+\eta)} \sin\psi_{2r} & (3.21c) \\ \\ \frac{d\psi_{2r}}{dt} &= -\Omega_{r}^{2} - \eta^{2} + \frac{3M_{v}^{vv}}{8\bar{\Omega}_{r}} \left[e_{r}^{2} + 4b_{v}^{2} + 8\frac{M_{v}^{vv}}{M_{v}^{vv}} (W_{0l}+d_{l})\right] \\ \\ \frac{d\psi_{2r}}{dt} &= -\Omega_{r}^{2} - \eta^{2} + \frac{3M_{v}^{vv}}{8\bar{\Omega}_{r}} \left[e_{r}^{2} + 4b_{v}^{2} + 8\frac{M_{v}^{vv}}{M_{v}^{vv}} (W_{0l}+d_{l})\right] \\ \end{cases}$$

E.

$$-\frac{2\mu_{v}\Omega_{r}^{2}(b_{v}+W_{0v}+d_{v})}{e_{r}(\overline{\Omega}_{r}+\eta)}\cos\psi_{2r}$$
(3.21d)

$$M_{v}^{vvv}b_{v}^{3} + 3 M_{v}^{vvl}(W_{0l} + d_{l})b_{v}^{2} + \frac{3}{2} M_{v}^{vvv}b_{v}(a_{v}^{2} + e_{r}^{2})$$

$$+ \frac{3}{2} M_{v}^{vvl} (W_{0l} + d_{l}) (a_{v}^{2} + e_{r}^{2}) = 0$$
 (3.21e)

3.3. <u>Réponse stationnaire</u>

En régime stationnaire, μ_{v} , η et τ seront considérés comme des paramètres constants ainsi que les amplitudes a_{v} et e_r et les déphases ψ_{1v} et ψ_{2r} , c'est-à-dire:

$$\begin{bmatrix} \frac{da_{v}}{dt} = 0 & (3.22a) \\ \frac{d\psi_{1v}}{dt} = 0 & (3.22b) \\ \end{bmatrix} \begin{pmatrix} \frac{d\psi_{1v}}{dt} = 0 & (3.22b) \\ \frac{d\psi_{2r}}{dt} = 0 & (3.22d) \\ \end{bmatrix}$$

A partir de l'équation (3.22a), on trouve:

$$\sin 2 \psi_{1v} = - \frac{\eta C_v}{\Omega_v^2 \mu_v}$$
(3.23)

et par conséquent:

$$\cos 2 \psi_{1v} = \pm \left[1 - \left[\frac{\eta C_{v}}{\Omega_{v}^{2} \mu_{v}} \right]^{2} \right]^{1/2}$$
(3.24)

En substituant l'expression (3.2a) dans l'équation (3.22b), on obtient:

$$a_{v}^{2} + 4b_{v}^{2} + 8b_{v} \frac{M_{v}^{v \vee 1}}{M_{v}^{v \vee v}} (W_{01} + d_{1}) = \frac{4\overline{\Omega}_{v}}{M_{v}^{v \vee v}} \left[\eta - 2\overline{\Omega}_{v} \pm \sqrt{\left[\frac{2\mu_{v}\Omega_{v}^{2}}{\eta}\right]^{2} - (2C_{v})^{2}} \right]$$

$$(3.25)$$

De la même manière, on peut déduire de l'équation (3.22c) que:

$$\sin \psi_{2r} = - \frac{C_v e_r (\overline{\Omega}_r + \eta)}{2\mu_v {\Omega_r}^2 (b_v + W_{0v} + d_v)}$$
(3.26)

et en substituant l'expression (3.26) dans l'équation (3.22d), on trouve:

$$e_{r}^{2} + 4b_{v}^{2} + 8 - \frac{M_{v}^{v v l}}{M_{v}^{v v v}} b_{v} (W_{0 l} + d_{l}) =$$

$$\frac{8\overline{\Omega}_{v}}{3M_{v}^{vvv}} \left[\eta - \overline{\Omega}_{r} \pm \left[\frac{2\mu_{v}\Omega_{r}^{2}(b_{v}+W_{0v}+d_{v})}{e_{r}(\overline{\Omega}_{r} + \eta)}\right]^{2} - C_{v}^{2}\right] \quad (3.27)$$

L'étude de la réponse stationnaire, revient donc à résoudre le système d'équation suivant:

$$a_{v}^{2}+4b_{v}^{2}+8 b_{v} \frac{M_{v}^{v}}{M_{v}} (W_{0}+d_{1}) = \frac{4\overline{\Omega}_{v}}{3M_{v}^{v}} \left[\eta - \overline{\Omega}_{v} \pm \sqrt{\left[\frac{2\mu_{v}\Omega_{v}^{2}}{\eta}\right]^{2} - (2C_{v})^{2}}\right]$$

$$e_{r}^{2} + 4b_{v}^{2} + 8b_{v} - \frac{M_{v}^{v v l}}{M_{v}^{v v v}} (W_{0 l} + d_{l}) = M_{v}^{v v v}$$

$$\frac{8\overline{\Omega}_{r}}{3M_{v}^{vvv}}\left[\eta-\overline{\Omega}_{r}\pm\left[\frac{2\mu_{v}\Omega_{r}^{2}\left(b_{v}+W_{0v}+d_{v}\right)}{e_{r}\left(\Omega_{r}+\eta\right)}\right]^{2}-C_{v}^{2}\right]$$

$$M_{v}^{vvv} b_{v}^{3} + 3 M_{v}^{vvl} (W_{0l} + d_{l}) b_{v}^{2} + \frac{3}{2} M_{v}^{vvv} b_{v} (a_{v}^{2} + e_{r}^{2})$$

$$+ \frac{3}{2} M_v^{vvl} (W_{0l} + d_l) (a_v^2 + e_r^2) = 0 \qquad (3.28)$$

3.3.1. Etude des vibrations forcées

Pour pouvoir visualiser les caractéristiques des vibrations forcées des plaques rectangulaires avec imperfections initiales, on va considérer le cas particulier où la plaque vibre simultanément suivant le premier mode forcé (Ω_1) et le premier mode paramétrique $(2\Omega_1)$. Dans ce cas, les vibrations forcées prennent naissance longtemps avant les vibrations paramétriques, de telle manière qu'on peut considérer $a_1 = 0$, dans la région de résonance forcée (près de Ω_1).

Si on considère en outre que les vibrations, les imperfections et les déformations initiales sont toutes du premier mode spatial et on fait abstraction de tous les indices v, r et l qui sont égaux à l, on a alors le système d'équations suivant:

$$\begin{vmatrix} e^{2} + 4b^{2} + 8b & (W_{0} + d) = \frac{8\overline{\Omega}}{3M} \left[\eta - \overline{\Omega} \pm \sqrt{\left[\frac{2\mu\Omega^{2} (b + W_{0} + d)}{e (\overline{\Omega} + \eta)}\right]^{2}} - C^{2} \right] \\ < \\ b^{3} + 3 & (W_{0} + d) \quad b^{2} + \frac{3}{2} e^{2}b + \frac{3}{2} (W_{0} + d) e^{2} = 0 \qquad (3.29) \end{aligned}$$

٢.

où e = e₁, b = b₁,
$$W_0 = W_{01}$$
, $M = M_1^{111}$, $\overline{\Omega} = \overline{\Omega}_1$

La résolution de ce système nous permet de déterminer la réponse forcée de la plaque non idéale, telle que présentée par la figure (3.1a). On remarque alors que la présence de non-linéarité dans le problème fait pencher la courbe de résonance forcée vers la droite, ce qui induit automatiquement:

- l'élimination d'amplitude infinie à la fréquence de résonance, comme dans le cas classique correspondant à des plaques idéales.
- la présence de phénomène de sauts, qui prennent naissance lors d'un balayage croissant ou décroissant de fréquence.

En faisant varier la valeur de l'imperfection initiale, on remarque, d'après la figure (3.1b), que l'amplitude des vibrations forcées diminue avec la diminution de l'amplitude des imperfections, ce qui confirme que l'existance des vibrations stipulant l'hypothèse forcées est strictement reliée à la présence d'imperfections.

FIGURE 3.1b : Effet des imperfections initiales sur l'amplitude des vibrations forcées.

8 3

.

3.3.2. Etude des vibrations paramétriques principales

Pour étudier qualitativement les vibrations paramétriques principales des plaques avec imperfections initiales, et pour pouvoir dégager des conclusions réalistes et objectives sur l'effet de ces imperfections, on considèrera le cas particulier et simple où la plaque vibre seulement suivant le premier mode paramétrique (2Ω) .

Pour cela, on suppose que $e_v = 0$, et on obtient le système d'équations suivant:

$$a_{v}^{2}+4b_{v}^{2}+8 \ b_{v} \ \frac{M_{v}^{v \vee l}}{M_{v}^{v \vee v}} (W_{0 l}+d_{l}) = \frac{4\overline{\Omega}_{v}}{3M_{v}^{v \vee v}} \left[\eta - 2\overline{\Omega}_{v} \pm \sqrt{\left[\frac{2\mu_{v} \Omega_{v}^{2}}{\eta}\right]^{2} - \left[2C_{v}\right]^{2}}\right]$$
(3.30a)

$$M_{v}^{vvv}b_{v}^{3}+3M_{v}^{vvl}(W_{0l}+d_{l})b_{v}^{2}+\frac{3}{2}M_{v}^{vvv}b_{v}a_{v}^{2}+\frac{3}{2}M_{v}^{vvl}(W_{0l}+d_{l})a_{v}^{2}=0$$
(3.30b)

Le signe ± devant le radical dans l'équation (3.29a), indique l'existence de deux solutions pour chaque cas. Une solution est stable et l'autre est instable.
On remarque qu'en l'absence d'imperfections initiales $(W_{0l}=0)$, et pour un chargement inférieur au chargement critique N_{crit} , la déformation statique initiale est aussi nulle $(d_l=0)$ et le système précédent est réduit simplement à:

$$a_{v}^{2} = \frac{4}{3} \frac{\Omega_{v}}{M_{v}^{v v v}} \left[\eta - 2\Omega_{v} \pm \sqrt{\left[\frac{2\mu_{v}\Omega_{v}^{2}}{\eta}\right]^{2} - (2C_{v})^{2}} \right]$$

où $\overline{\Omega}_{v} = \Omega_{v}$

qui n'est autre que l'équation classique décrivant les vibrations paramétriques d'une plaque parfaitement plane [38].

La procédure de résolution du système (3.29), en fonction de la fréquence consiste à varier, pas à pas, l'excitation η et regarder à chaque fois, les solutions possibles pour l'ensemble des équations du troisième degré en b_v et du second degré en a_v. En procédant de la sorte, on arrive aux résultats suivants:

si 0 < η < η₁ (pour la première solution) et 0 < η < η₃ (pour la deuxième solution)
Il y a une seule valeur réelle de b_v, à chaque fois.
Pour cette valeur, a_v² < 0. Donc a_v est imaginaire.

FIGURE 3.2 : Comportement en ressort mou de la plaque non idéale excitée parametriquement.

° si $\eta > \eta_1$ (pour la première solution) et $\eta > \eta_3$ (pour la deuxième solution) Il y a, à chaque fois, trois valeurs réelles de b_v - si b_v=b_{vi}, alors:a_v² < 0 pour $\eta > \eta_1$ (lère sol.) et $\eta > \eta_3$ (2ème sol.) - si b_v=b_{vii}, alors:a_v²>0 pour $\eta_1 < \eta < \eta_2$.(lère sol.) et $\eta_3 < \eta < \eta_4$ (2ème sol.) a_v² < 0 pour $\eta > \eta_2$ (lère sol.) et $\eta > \eta_4$ (2ème sol.) - si b_v = b_{viii}, alors:a_v² > 0 pour $\eta > \eta_1$ (lère sol.) et $\eta > \eta_4$ (2ème sol.)

Ainsi donc, des trois valeurs réelles de b_v , existant pour $\eta_1 < \eta < \eta_2$, seulement deux d'entre elles (b_{vii} , b_{viii}) donnent naissance à des vibrations paramétriques.

D'autre part, si on met $b_v = b_{vii}$, la valeur induite de a_v sera toujours décroissante et le système aura un comportement du type ressort dur alors qu'en mettant $b_v = b_{viii}$, la solution a_v sera décroissante et le système se comportera comme un ressort mou tel qu'indiqué par la figure 3.2.

Pour $\eta = \eta_1$, les deux solutions b_v et b_{viii} sont égales, ce qui donne aussi la même valeur de a_v dans les deux cas. En faisant varier l'amplitude des imperfections, comme l'indique la figure 3.3, on observe que:

- En augmentant la valeur des imperfections, le caractère mou de la plaque est de plus en plus amplifié.
- Pour le cas où les imperfections et les vibrations sont du même mode spatial,
 - le changement de comportement, de ressort mou à ressort dur, se produit à chaque fois que l'amplitude des vibrations est égale à deux fois la somme des amplitudes de l'imperfection et de la déformation statique.
 - le caractère mou est beaucoup plus prononcé pour les modes supérieurs, comme le confirme les figures (3.4), (3.5) et (3.6c).

Dans le cas où les imperfections et les vibrations ne sont pas du même mode spatial, Figures (3.6a) et (3.6b), on continue toujours à observer un comportement en ressort mou, mais ce comportement est moins accentué que pour le cas où les modes d'imperfection et de vibration sont les mêmes.

FIGURE 3.3 : Effet des imperfections initiales sur les vibrations paramétriques d'une plaque non idéale.

68

٠

FNGURE 3.4 6 Effet des impérifections sur les vibrations parametriques d'une plaque ayant ; - imperifections suivant le mode spatial () =) ; - vibrations suivant le mode spatial (v =);

FIGURE 3.5 : Effet des impérfections sur les vibrations parametriques d'une plaque ayant : - imperfections suivant le mode spatial (l = 2) - vibrations suivant le mode spatial (v = 2).

FIGURE 3.6a : Effet des impérfections sur les vibrations parametriques d'une plaque ayant : - imperfections suivant le mode spatial (l = 1) - vibrations suivant le mode spatial (v = 3).

FRGURE 3.6D : Effet des impérfections sur les vibretions parametriques d'une plaque event : - imperfections suivent le mode spatial (b = 3) - vibrations suivent le mode spatial (v = 3).

FIGURE 3.6c : Effet des impérfections sur les vibrations parametriques d'une plaque ayant : - imperfections suivant le mode spatial (1 = 3) - vibrations suivant le mode spatial (v = 3).

3.3.3. <u>Btude de stabilité</u>

A cause de la complexité de notation et d'écriture dans les équations (3.28), on choisit de faire l'étude de stabilité seulement pour le cas particulier suivant:

$$v = 1$$
, $l = 1$, $e_r = 0$

mais on se rappelera toujours que les conclusions dégagées resteront valables pour les autres cas.

Ainsi donc, on aura:

$$\frac{da}{dt} = -Ca - \frac{\Omega^2 \mu a}{\eta} \sin 2 \psi$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \overline{\Omega} - \frac{1}{2} \eta + \frac{M}{\overline{\Omega}} \left[\frac{3}{8} \mathrm{a}^2 + 3\left(W_0 + \mathrm{d} \right) \mathrm{b} + \frac{3}{2} \mathrm{b}^2 \right] - \frac{\Omega^2 \mu}{\eta} \cos 2\psi$$

$$b^{3} + 3(W_{0}+d)b + \frac{3}{2}a^{2}b + \frac{3}{2}(W_{0}+d)a^{2} = 0$$

On pose alors que a_s , ψ_s et b_s sont des solutions stationnaires et que Da, D ψ et Db sont des petites perturbations, telles que:

(3.31)

$$a = a_{s} + Da$$

$$b = b_{s} + Db$$
 (3.32)

$$\psi = \psi_{s} + D\psi$$

avec:	$Da = Ae^{\lambda t}$	
	$Db = Be^{\lambda t}$	(3.33)
	$D\psi = \Phi e^{\lambda t}$	

En portant les expressions (3.32) et (3.33) dans les équations (3.31), et en négligeant les termes infiniment petits, on obtient:

$$A \left[\lambda + C + \frac{\Omega^{2} \mu}{\eta} \sin 2\psi_{s}\right] + \Phi \left[\frac{2 \Omega^{2} \mu}{\eta} a_{s} - \cos 2\psi_{s}\right] = 0$$

$$A \left[\frac{3 M}{4 \overline{\Omega}} a_{s}\right] + B \left[3 (W_{0} + d + b_{s}) \frac{M}{\Omega}\right] + \Phi \left[-\lambda + \frac{2\Omega^{2} \mu}{\eta} \sin 2\psi_{s}\right] = 0$$

$$A \left[3a_{s} (b_{s} + W_{0} + d)\right] + B \left[3 b_{s}^{2} + 6 W_{0} b_{s} + \frac{3}{2} a_{s}^{2}\right] = 0$$

$$(3.34a)$$

ou sous forme matricielle:

$$\begin{bmatrix} \lambda + C + \frac{\mu \Omega^2}{\eta} \sin 2\psi_s & 0 & \frac{2\Omega^2 \mu a_s}{\eta} \cos 2\psi_s \\ - \frac{3M}{4\overline{\Omega}} a_s & -3 (W_0 + d + b_s) \frac{M}{\overline{\Omega}} & \lambda - \frac{2\Omega^2 \mu}{\eta} \sin 2\psi_s \\ 3a_s (b_s + W_0 + d) & 3b_s^2 + 6 (W_0 + d) b_s + \frac{3}{2} a_s^2 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ \Phi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix}$$

(3.34b)

Pour avoir une solution non triviale, le déterminant de cette matrice doit être nul. L'équation caractéristique est alors:

$$\lambda^{2} + \lambda \left[C - \frac{\Omega^{2} \mu}{\eta} \sin 2\psi_{s} \right] - \frac{2\Omega^{2} \mu}{\eta} \sin 2\psi_{s} \left[C + \frac{\Omega^{2} \mu}{\eta} \sin 2\psi_{s} \right]$$

$$-18a_{s}^{2} \frac{M}{\bar{n}} \frac{\Omega^{2} \mu}{\eta} \cos 2\psi_{s} \left[\frac{(W_{0} + d + b_{s})^{2}}{3 b_{s}^{2} + 6 (W_{0} + d)b_{s} + \frac{3}{2} a_{s}^{2}} - \frac{1}{12} \right] = 0$$
(3.35)

Les coefficients de l'équation caractéristique (3.35), sont:

97

$$S_1 = C - \frac{\Omega^2 \mu}{\mu} \sin 2\psi_s = 2 C > 0$$
 (3.36a)

$$S_2 = -\frac{2\Omega^2 \mu}{\eta} \sin 2\psi_s \left(C + \frac{\Omega^2 \mu}{\eta} \sin 2\psi_s\right)$$

$$-18a_{s}^{2} \frac{M}{\overline{\Omega}} \frac{\Omega^{2} \mu}{\eta} \cos 2\psi_{s} \left[\frac{(W_{0} + d + b_{s})^{2}}{3 b_{s}^{2} + 6(W_{0} + d)b_{s} + \frac{3}{2} a_{s}^{2}} - \frac{1}{12} \right]$$
(3.36b)

Si on revient au système d'équations suivant:

$$\begin{bmatrix} a^2 = F(\eta) - 8(W_0 + d)b - 4b^2 \\ b^3 + 3(W_0 + d)b^2 + \frac{3}{2}a^2(b + W_0 + d) = 0 \end{bmatrix}$$
 (3.37a)

où
$$F(\eta) = \frac{4\overline{\Omega}}{3M} \left[\eta - 2 \overline{\Omega} \pm \sqrt{\left[\frac{2\mu\Omega^2}{\eta}\right]^2 - (2 C)^2} \right]$$
 (3.37b)

et on dérive par rapport à la fréquence, on obtient:

98

$$2a \quad \frac{da}{d\eta} = F'(\eta) - 8(W_0 + d) \quad \frac{db}{d\eta} - 8b \quad \frac{db}{d\eta}$$

$$3b^2 \quad \frac{db}{d\eta} + 6(W_0 + d)b \quad \frac{db}{d\eta} + \frac{3}{2} \left[2a \quad \frac{da}{d\eta} \quad (b+W_0 + d) + a^2 \quad \frac{db}{d\eta}\right] = 0$$

ce qui revient à dire que:

$$\frac{da}{d\eta} = \frac{F'(\eta)}{2a \left[1 - \frac{4(W_0 + b)^2}{b^2 + 2W_0 b + \frac{1}{2} a^2}\right]}$$
(3.38)

où F'(
$$\eta$$
) = $\frac{4\overline{\Omega}}{3M}$ (on remplace $\eta = 2\overline{\Omega}$) (3.39)

Si on tient compte des expressions (3.38) et (3.39), le coefficient S_2 sera:

$$S_2 = \frac{\Omega^2 \mu a_s}{\eta} \cos 2\psi_s \frac{1}{da/d\eta}$$

ou encore:

$$S_{2} = \pm a_{s} \sqrt{\left[\frac{\Omega^{2} \eta}{\eta}\right]^{2} - C^{2}} \cdot \frac{1}{da/d\eta}$$
(3.40)

puisque cos
$$2\psi_s = \pm \left[1 - \left[\frac{C\eta}{\Omega^2 \eta}\right]^2\right]^{1/2}$$

Ainsi donc, le coefficient $S_2 > 0$, si et seulement si:

$$\frac{da}{d\eta} > 0 \text{ et signe } +$$

$$\frac{da}{d\eta} < 0 \text{ et signe } -$$

$$\frac{da}{d\eta} < 0 \text{ et signe } -$$

Comme l'indique la figure (3.7), les branches stables da seront celle où la pente $\frac{da}{d\eta}$ est positive avec un signe + $\frac{d\eta}{d\eta}$ $\frac{da}{d\eta}$ est négative avec un signe - devant le radical, autrement la branche est instable et on doit s'attendre à un phénomène de sauts.

Amplitude , a (h)

FIGURE 3.7: LES DIFFERENTES BRANCHES STABLES ET INSTABLES DE LA REPONSE PARAMETRIQUE.

3.3.4. Régions principales d'instabilité

La largeur de base de la réponse stationnaire, est la seule région dans laquelle les vibrations peuvent normalement commencer.

En mettant $a_v = 0$ dans (3.29), on obtient:

$$M_v^{vvv} b_v^3 + 3 M_v^{vvl} (W_{0l} + d_l) b_v^2 = 0$$
 (3.42a)

$$8\frac{M_{v}^{v v l}}{M_{v}^{v v}}b_{v}(W_{0 l}+d_{l})+4b_{v}^{2}=\frac{4\overline{\Omega}_{v}}{3M_{v}^{v v}}\left[\eta-2\overline{\Omega}_{v}\pm\sqrt{\left[\frac{2\mu_{v}\Omega_{v}^{2}}{\eta}\right]^{2}-(2C_{v})^{2}}\right]$$

$$(3.42b)$$

Si on pose:

$$2g_{v} = \frac{3M_{v}^{vvv}}{4\overline{\Omega}_{v}} \begin{bmatrix} 8 & \frac{M_{v}^{vvl}}{M_{v}} \\ M_{v}^{vvv} \end{bmatrix} b_{v} & (W_{0l} + d_{l}) + 4b_{v}^{2} \end{bmatrix} + 2 \overline{\Omega}_{v} \qquad (3.43)$$

on peut alors réécrire l'équation (3.42b) sous la forme:

$$\eta^{4} - 4 g_{\nu} \eta^{3} + 4 (g_{\nu}^{2} + C_{\nu}^{2}) \eta^{2} - 4 \mu_{\nu}^{2} \Omega_{\nu}^{4} = 0 \quad (3.44)$$

En définisant un paramètre de fréquence:

$$S = \frac{\eta}{2\Omega_{v}}$$
(3.45)

l'équation (3.44) sera écrite sous la forme adimentielle suivante:

$$s^4 - 2H_v s^3 + (H_v^2 + \frac{\Delta_v^2}{4\pi^2}) s^2 - \frac{1}{4} \mu_v^2 = 0$$
 (3.46)

où Δ_v représente le décrément logarithmique d'amortissement des vibrations libres d'une plaque comprimée dans son plan moyen et est donnée par:

$$\Delta_{v} = \frac{2\pi C_{v}}{\Omega_{v}}$$
(3.47)

et H, représente une autre fonction, définie par:

$$H_{v} = \frac{g_{v}}{\Omega_{v}}$$
(3.48)

L'équation (3.46) permet donc de déterminer les limites de la région principale d'instabilité.

103

FIGURE 3.8a : Régions principales d'instabilité,associées au premier mode de vibration parametrique, pour un système non amortie.

FIGURE 3.8b : Régions principales d'instabilité,associées au premier mode de vibration parametrique, pour un système amortie.

En examinant les figures (3.8a) et (3.8b), montrant la première région d'instabilité pour des systèmes amortis et non amortis, on remarque que les imperfections agissent en faveur de la stabilité de la plaque.

Cet effet de stabilisation se manifeste de deux manières (figure 3.8c):

- réduction de l'aire de la zone d'instabilité
- translation de la zone d'instabilité vers des valeurs de fréquence plus élevées.

FIGURE 3.8c : Effet des impérfections initiales sur les zones d'instabilité.

3.4. Interaction entre résonance paramétrique et résonance forcée

Dans le but d'avoir une théorie plus réaliste, on supposera maintenant un cas pratique où les vibrations forcées d'ordre r et paramétrique d'ordre V peuvent exister simultanément.

Les équations du mouvement dans ce cas sont les suivantes:

$$a_{v}^{2}+4b_{v}^{2}+8b_{v} \frac{M_{v}^{v}}{M_{v}^{v}}(W_{0l}+dl) = \frac{4\overline{\Omega}_{v}}{3M_{v}^{v}} \left[\eta-2\overline{\Omega}_{v}\pm\sqrt{\left[\frac{2\mu_{v}\Omega_{v}^{2}}{\eta}\right]^{2}-(2C_{v})^{2}}\right]$$

$$e_{r}^{2} + 4b_{v}^{2} + 8b_{v} \frac{M_{v}^{vvv}}{M_{v}^{vvv}} (W_{0l} + dl) = \frac{8\overline{\Omega}_{r}}{M_{v}^{vvv}} \left[\eta - \overline{\Omega}_{r} \pm \sqrt{\left[\frac{2\mu_{v}\Omega_{r}^{2} (b_{v} + W_{ov} + d_{v})}{e_{r} (\overline{\Omega}_{r} + \eta)}\right]^{2} - C_{v}^{2}} \right]$$

$$M_{v}^{vvv} b_{v}^{3} + 3M_{v}^{vvl} (W_{0l} + dl) b_{v}^{2} + \frac{3}{2} M_{v}^{vvv} b_{v} (a_{v}^{2} + e_{r}^{2}) + \frac{3}{2} M_{v}^{vvl} (W_{0l} + dl) (a_{v}^{2} + e_{r}^{2}) = 0$$

La résolution de ce système d'équations, montre que lors d'un passage de résonance forcée à résonance paramétrique, Figure 3.9, la transition n'est pas nette et elle est accompagné plutôt par un phénomène d'hésitation tels qu'il a été souvent observé expérimentalement. Immédiatement après un phénomène de saut, prend naissance à la partie instable de la réponse paramétrique pour rejoindre la partie stable tels qu'il a été attendu après l'étude de stabilité.

Les vibrations forcées continuent toujours à exister pendant les vibrations paramétriques, mais leurs amplitudes sont réduites d'une façon appréciable (de l'odre de 10⁻⁴ h).

FIGURE 3.9 : Passage de résonance forcée à résonance paramétrique.

110

.

CHAPITRE IV

CONCLUSIONS

4.1. Résumé

A chaque fois qu'une plaque est assujettie à des imperfections géométriques initiales, son comportement dynamique est fortement influencé, et sa réaction peut être différente de celle qu'on a prévu par les théories classiques concernant les plaques idéales.

Ainsi donc, cette recherche représente l'ébauche d'une théorie, qu'on aimerait être assez générale et réaliste pour pouvoir décrire le phénomène physique réel et converger à des résultats confirmés par l'expérience.

Le modèle conceptuel utilisé dans ce mémoire consiste en une plaque rectangulaire imparfaite, simplement supportée et soumise à une excitation sinusoïdale dans le plan de sa configuration idéale. L'analyse est basée sur les équations non linéaires correspondant à la version dynamique des équations de Von Karman pour le cas de grandes déformations et tiennent compte de l'étirement de la surface moyenne. Les équations aux dérivées partielles sont exprimées en fonction de la fonction d'Airy F, de la déflexion latérale W et de l'imperfection initiale W_o . Les équations de base sont satisfaites par la méthode de Galerkin, ce qui nous conduit à un système d'équations non linéaires de mouvement, solutionnées en première approximation par la méthode asymptotique généralisée.

La solution proposée pour l'équation du mouvement tient compte de la présence simultanée de vibrations forcées et vibrations paramétriques et les résultats de l'analyse prouvent la grande influence des imperfections sur ces deux types de résonances. En effet par leur présence même, les imperfections donnent automatiquement naissance aux vibrations forcées dont le caractère non linéaire fait que la courbe de réponse soit penchée vers la droite, évitant ainsi les vibrations d'amplitude infinie à la résonance comme dans le cas classique de résonance des plaques idéales et induisant en plus des phénomènes de sauts des branches instables vers les branches stables.

La présence d'imperfections géométriques influe également sur les vibrations paramétriques en obligeant la plaque à se comporter au début comme un ressort mou au lieu du comportement classique en ressort dur.

Ce type de comportement crée deux branches stables et deux autres instables dans la courbe de réponse paramétrique et induit ainsi des phénomènes de sauts ramenant toujours le système vers les zones stables comme le démontre l'étude de stabilité.

Le comportement en ressort mou est conditionné par l'amplitude et le mode de l'imperfection ainsi que du mode de vibration.

4.2. Conclusions

Comme résultat des constations dégagées durant cette étude, on peut tirer les conclusions suivantes:

- 1- La fréquence naturelle de la plaque chargée non idéale est fortement influencée par la présence d'imperfections initiales. En effet, aussi petites qu'elles soient, ces imperfections, même de l'ordre d'une fraction de l'épaisseur, font augmenter considérablement la fréquence de résonance.
- 2- Cette sensibilité de la fréquence aux imperfections augmente avec l'augmentation de la charge statique appliquée à la plaque.
- 3- La théorie développée pour décrire l'influence des imperfections géométriques initiales sur le comportement dynamique des plaques rectangulaires simplement supportées, semble bien décrire les phénomènes de sauts

observés souvent durant les études expérimentales des résonances forcées ou paramétriques des plaques.

- 4- Le comportement de la plaque en ressort mou dépend de l'amplitude des imperfections et de la concordance des modes spatiaux d'imperfection et de vibration. Pour le cas d'une plaque élancée (b/a = 2.9), le 3e mode de vibration est le plus important. Dans ce cas, des imperfections géométriques du 2e ou du 3e mode spatial génèrent également un comportement du type ressort mou, mais ce comportement n'est pas aussi prononcé que pour le cas où l'imperfection est du 3e mode spatial.
- 5- En examinant le cas où il y a coïncidence des modes d'imperfection et de vibration, on observe que le caractère mou de comportement est de plus en plus important pour les modes de plus en plus élevés et il dure tant que l'amplitude des vibrations est inférieur à deux fois la somme de l'imperfection et de la déflexion statique.
- 6- La présence d'imperfections géométriques initiales agit en faveur de la stabilité dynamique de la plaque. Ceci s'observe par deux phénomènes:
 - La présence de sauts dans la réponse paramétrique empêche celle-ci de se produire en entier.

- La zone d'instabilité principale de la plaque non idéale a une aire plus réduite et elle est translatée vers des valeurs de fréquences plus élevées.
- 7. La présence conjointe de vibrations forcées et paramétriques génère une interaction entre les deux et le passage de forcée à paramétrique ne se produit pas d'une façon nette mais plutôt accompagnée d'un phénomène d'hésitation.

Dans le cas où le recouvrement entre les réponses forcées et paramétriques est assez important, la théorie actuelle ne peut pas prévoir exactement le comportement résultant, à cause des hypothèses (36). Pour y arriver, il faut donc modifier les hypothèses de la solution asymptotique, en améliorant la relation de dépendance d'un type de vibration sur l'autre. La solution sera alors de la forme:

$$\begin{vmatrix} db_{v} \\ -dt \end{vmatrix} = \epsilon D_{1}^{v} (a_{v}, b_{v}, e_{r}, \psi_{1v}, \psi_{2r}, \tau)$$

Г

$$\begin{bmatrix} \frac{da_{v}}{dt} = \epsilon A_{1}^{v} (a_{v}, b_{v}, e_{r}, \psi_{1v}, \psi_{2r}, \tau) \\ \frac{d\psi_{1v}}{dt} = \overline{\Omega}_{v} - \frac{1}{2} \eta + \epsilon B_{1}^{v} (a_{v}, b_{v}, e_{r}, \psi_{1v}, \psi_{er}, \tau) \end{bmatrix}$$

$$\frac{de_{r}}{dt} = \epsilon E_{1}^{r} (e_{r}, b_{v}, a_{v}, \psi_{2r}, \psi_{1v}, \tau)$$

$$\frac{d\psi_{2r}}{dt} = \Omega_{r} - \eta + \epsilon F_{1}^{r} (e_{r}, b_{v}, a_{v}, \psi_{2r}, \psi_{1v}, \tau)$$

où $A_1^{\vee} = \alpha_{1\nu} + \alpha_{2\nu} \sin 2\psi_{1\nu} + \alpha_{3\nu} \sin (2\psi_{1\nu} - \psi_{2r})$

$$B_{1}^{v} = \beta_{1v} + \beta_{2v} \cos 2\psi_{1v} + \beta_{3v} \cos (2\psi_{1v} - \psi_{2r})$$

4.3. Recherches futures

4

* Les vibrations forcées et les vibrations paramétriques secondaires se produisent toutes les deux à la même fréquence (Ω_1) . Dans ce cas, il y a recouvrement total entre les deux résonances et l'identification du type de réponse obtenue est pratiquement impossible à déceler jusqu'à maintenant.

Ainsi donc, la modification de la présente théorie pour ce cas particulier pourrait amener des éclaircissements à ce problème.

* Quand l'équation de mouvement est linéaire, la structure de la solution est simple. Il y a deux parties combinées additivement:

- la solution homogène qui dépend des conditions initiales
- la solution forcée qui est proportionnelle au chargement et indépendante des conditions initiales.

Mais quand l'équation est non linéaire, il n'y a plus de séparation évidente entre les deux solutions homogènes et forcées. L'interaction entre les deux solutions et l'importance des conditions initiales dans certains cas, génère tout un paquet de nouveaux phénomènes. Il sera donc intéressant de voir si la solution homogène est importante pour notre cas.

BIBLIOGRAPHIE

- [1] HERMANN, J., "Influence of Large Amplitude on Flexural Motions of Elastic Plates," National Advisory Committee for Aeronautics, Technical Note No. 3578, 1956.
- [2] SOMERSET, J.H. et EVAN-IWANOWSKI, R.M., "Influence of Nonlinear Inertia on the Parametric Response of Rectangular Plates," Int. J. Nonlinear Mech., Vol. 2 (3), 1967, pp. 217-232.
- [3] SOMERSET, J.H., "Large Amplitude Stabilization of Parametrically Excited Plate Vibrations," Syracuse University Research Institute, Technical Report 1620-1053, No. 30, May 1965, Applied Mechanics Laboratory, Syracuse Univ., Ph.D., Dissertation, Syracuse University, Syracuse, N.Y., 1965.
- [4] SOMERSET, J.H. et EVAN-IWANOWSKI, R.M., "Experiments on Large Amplitude Parametric Vibrations of Rectangular Plates," Developments in Theoritical and Applied Mechanics, Vol. 3, Proc. Third Southestern Conference on Theoretical and Applied

Mechanics, Columbia, S.C., April 1966, Pergamon Press.

- [5] SOMERSET, J.H., "Transition Mechanisms Attendant to Large Amplitude Parametric Vibrations of Rectangular Plates," Transactions of the ASME, Journal of Engineering for Industry, Series B, Vol. 89, No. 4, No. 1967, pp. 619-625.
- [6] SILVER, R.L., "The Effect of Initial Curvature on the Parametric Vibration of Rectangular Plates Subjected to an In-Plane Sinusoidal Load," Ph.D. Dissertation, Syracuse Univ., Syracuse, N.Y., Jan. 1972.
- [7] LEVY, S., "Large Deflection Theory of Curved Sheet," National Advisory Committee for Aeronautics, Technical Note No. 895, Washington, D.C., Jan. 1943.
- [8] HU, P.C., LUNDQUIST, E.E. et BATDORF, S.B., "Effect of Small Deviations from Flatness on Effective Width and Buckling of Plates in Compression," Langley Memorial Aeronautical Laboratory, Technical Note No. 1124, Virginia, Set. 1946.

- [9] YAMAKI, N., "Elastic Stability of Circular Cylindrical Shells," North-Holland Series in Applied Mathematics and Mechanics, 1984.
- [10] CHAJES, A., "Principles of Structural Stability Theory," Civil Engineering and Engineering Mechanics Series, Prentice-Hall, Inc., 1974.
- [11] KEHAGIOGLOV, T., "Analytical Investigation of Parametrically Excited Column with Initial Geometric Imperfections and Nonlinearities in Non Stationary Mode," M.Sc.A. Dissertation, Graduate School of Syracuse University, Syracuse, N.Y., October 1969.
- [12] SHIAU, A.C., ROTH, R.S. et SOONG, T.T., "Dynamic Buckling of Conical Shells with Imperfections," AIAA Journal, Vol. 12, No. 6, June 1974.
- [13] KISLIAKOV, S.D., "Forced and Parametrically Excited Nonlinear Vibrations of Thin Elastic Plates with Initial Imperfections," Bulgarian Academy, Theoretical and Applied Mechanics, Year VII, No. 4, Sofia, 1976.
- [14] YAMAKI, N., OTOMO, K. et CHIBA, M., "Nonlinear Vibrations of a Clamped Circular Plate with Initial Deflection and Initial Edge Displacement, Part I: Theory," Journal of Sound and Vibration (1981), 79 (1), pp. 23-42.
- [15] YAMAKI, N., OTOMO, K. et CHIBA, M., "Nonlinear Vibratins of a Clamped Circular Plate with Initial Deflection and Initial Edge Displacement, Part II: Experiment," Journal of Sound and Vibration (1981), 79 (1), pp. 43-59.
- [16] SINGER, J. et PRUCZ, J., "Influence of Initial Geometrical Imperfections on Vibrations of Axially Compressed Stiffned Cylindrical Shells," Journal of Sound and Vibration (1982), 80 (1), pp. 117-143.
- [17] PASIC, H., JURICIC, D. et HERMANN, G., "Dynamic Response of a Rectangular Plate with Initial Imperfections Under Large In-Plane Forces," Journal of Mechanical Design, Paper No. 81-DET-80, June 1981.

- [18] WATAWALA, L. et NASH, W.A., "Influence of Initial Geometrical Imperfections on Vibrations of Thin Circular Cylindrical Shells," Computers & Structures, Vol. 16, No. 1-4, pp. 125-130, 1983.
- [19] HUI, D. et LEISSA, A.W., "Effects of Uni-Directional Geometric Imperfections on Vibrations of Pressurized Shallow Spherical Shells," Int. J. of Nonlinear Mechanics, Vol. 18, No. 4, pp. 279-285, 1983.
- [20] HUI, D., "Large Amplitude Axisymmetric Vibrations of Geometrically Imperfect Circular Plates," Journal of Sound and Vibration (1983) 91 (2), pp. 239-246.
- [21] HUI, D. et LEISSA, A.W., "Effects of Geometric Imperfections on Vibrations of Biaxially Compressed Rectangular Flat Plates," Journal of Applied Mechanics, Vo. 50, pp. 751-756, December 1983.
- [22] HUI, D., "Effects of Geometric Imperfections on Large-Amplitude Vibrations of Rectangular Plates with Hysteresis Damping," Journal of Applied Mechanics, Vol. 51, pp. 217-220, March 1984.

- [23] HUI, D., "Influence of Geometric Imperfections and In-Plane Constraints on Nonlinar Vibrations of Simply Supported Cylindrical Panels," Journal of Applied Mechanics, Vol. 51, pp. 383-390, June 1984.
- [24] PASIC, E. et HERMANN, G., "Effect of In-Plane Inertia on Buckling of Imperfect Plates with Large <u>Deformations,</u>" Journal of Sound and Vibration (1984), 95 (4), pp. 469-478.
- [25] HUI, D., "Effects of Geometric Imperfections of Frequency-Load Interaction of Biaxially Compressed Antisymmetric Angle Ply Rectangular Plates," Journal of Applied Mechanics, Vol. 52, pp. 155-162, March 1985.
- [26] KAPANIA, R.K. et YANG, T.Y., "Buckling, Postbuckling and Nonlinear Vibrations of Imperfect Plates," AIAA Journal, Vol. 25, No. 10, pp. 1338, 1346, October 1987.
- [27] **PAVLOVSKII, V.S. et FILIN, V.G.**, <u>"Nonlinear Parame-</u> <u>tric Vibrations of Liquid-Filled Cylindrical</u> <u>Shells with an Initial Deflection,"</u> Mechanics

Institute, Academy of Sciences of the Ukranian SSR, Translation from Prikladnaya Mekhanika, Vol. 21, No. 3, pp. 46-56, March 1985.

- [28] ILANKO, S. et DICKINSON, S.M., "The Vibration and Post-Buckling of Geometrically Imperfect, Simply Supported, Rectangular Plates Under Uni-Axial Loading, Part I: Theoretical Approach," Journal of Sound and Vibration (1987) 118 (2), pp. 313-336.
- [29] ILANKO, S. et DICKINSON, S.M., "The Vibration and Post-Buckling of Geometrically Imperfect, Simply Supported Rectangular Plates Under Uni-Axial Loading, Part II: Experimental Investigation," Journal of Sound and Vibration (1987) 118 (2), pp. 337-351.
- [30] YAMAKI, N. et CHIBA, M., "Nonlinear Vibrations of a Clamped Rectangular Plate with Initial Deflection and Initial Edge Displacement, Part I: <u>Theory,</u>" Thin-Walled Structures I, pp. 3-29, 1983.

- [31] BISPLINGHOFF, R.L. et PIAN, T.H.H., "On the Vibration of Thermally Buckled Bars and Plates," Aeroelastic and Structures Research Laboratory, Massachusetts Institutes of Technology, Technical Report 25-22, 1956.
- [32] KAPANIA, R.K. et YANG, T.Y., "Formulation of an Imperfect Quadrilateral Doubly-Curved Shell Element for Post-Buckling Analysis," AIAA Journal, Vol. 24, No. 2, pp. 310-311, February 1986.
- [33] YANG, T.Y. et HAN, A.J., "Buckled Plate Vibrations and Large Amplitude Vibrations Using High-Order <u>Triangular Elements,"</u> AIAA Journal, Vol. 21, pp. 758-766, May 1983.
- [34] LAU, S.L., CHEUNG, Y.K. et WU, S.Y., "Nonlinear Vibration of Thin Elastic Plates, Part I: Generalyzed Incrimental Hamilton's Principle and Element Formulation," Journal of Applied Mechanics, ASME, Vol. 52, No. 4, pp. 837-844, Dec. 1984.

- [35] LAU, S.L., CHEUNG, Y.K. et WU, S.Y., "Nonlinear Vibrations of Thin Elastic Plates, Part II: Internal Resonance by Amplitude Incrimental Finite Element," Journal of Applied Mechanics, ASME, Vol. 52, No. 4, pp. 837-851, Dec 1984.
- [36] OSTIGUY, G.L., "Effects of Aspect Ratio on Parametric Response of Nonlinear Rectangular Plates," Ph.D. Dissertation, Syracuse University, Syracuse, N.Y., Oct. 1976.
- [37] SAMSON, L.P., "Etude expérimentale de la stabilité dynamique des plaques rectangulaires excitées paramétriquement," Mémoire de Maîtrise en Sciences Appliquées, Ecole Polytechnique de Montréal, Juillet 1987.
- [38] NGUYEN, H., "Instabilité dynamique et réponse des plaques rectangulaires," Mémoire de Maîtrise en Sciences Appliquées, Ecole Polytechnique de Montréal, Octobre 1982.
- [39] TIMOSHENKO, S.P. et GERE, J.M., "Theory of Elastic Stability," Second Edition, Engineering Societies Monographs, Mc Graw Hill Book Co., N.Y. 1961.

[40] EVAN-IWANOWSKI, R.M., "Resonance Oscillations in Mechanical Systems," Elsevier Scientific Publishing Company, Amsterdam, 1976.

<u>ANNEXE A</u>

FORMULATION EXPLICITE DES DIFFERENTS COEFFICIENTS K et L.

$$K_{1}^{i} = \left[\frac{\lambda_{m} (\sin\lambda_{i} \cos\lambda_{m} + \sinh\lambda_{i} \cosh\lambda_{m}) - \lambda_{i} (\sin\lambda_{m} \cos\lambda_{i} + \sinh\lambda_{m} \cosh\lambda_{i})}{\lambda_{m}^{2} - \lambda_{i}^{2}}\right]$$

+
$$\frac{\lambda_{i} (\sin \lambda_{m} \cosh \lambda_{i} + \sinh \lambda_{m} \cos \lambda_{i}) - \lambda_{m} (\cos \lambda_{m} \sinh \lambda_{i} + \cosh \lambda_{m} \sin \lambda_{i})}{\lambda_{m}^{2} + \lambda_{i}^{2}}$$

$$\times \frac{1}{(\sin\lambda_{i} - \sinh\lambda_{i}) (\sin\lambda_{i} - \sinh\lambda_{i})}$$

$$- \frac{\lambda_{m} (\cos \lambda_{m} \cos \lambda_{i} + \cosh \lambda_{m} \cosh \lambda_{i} - 2) + \lambda_{i} (\sin \lambda_{m} \sin \lambda_{i} - \sinh \lambda_{m} \sinh \lambda_{i})}{\lambda_{m}^{2} - \lambda_{i}^{2}}$$

$$+ \frac{\lambda_{i} (\sin \lambda_{i} - \sin \lambda_{i} - \sin \lambda_{i} \sin \lambda_{i}) - \lambda_{i} (\cos \lambda_{i} \cosh \lambda_{i} + \cosh \lambda_{i} \cos \lambda_{i} - 2)}{\lambda_{i}^{2} + \lambda_{i}^{2}}$$

$$x \frac{1}{(\sin\lambda_{m} - \sinh\lambda_{m}) (\cos\lambda_{1} - \cosh\lambda_{1})}$$

+
$$\frac{\left[\lambda_{m}(\sin\lambda_{m}\sin\lambda_{i}-\sinh\lambda_{m}\sinh\lambda_{i})+\lambda_{i}(\cos\lambda_{m}\cos\lambda_{i}+\cosh\lambda_{m}\cosh\lambda_{i}-2)\right]}{\lambda_{m}^{2}-\lambda_{i}^{2}}$$

$$\frac{\lambda_{i} (\cos\lambda_{m} \cosh\lambda_{i} + \cos\lambda_{i} \cosh\lambda_{m} - 2) + \lambda_{m} (\sin\lambda_{m} \sinh\lambda_{i} - \sinh\lambda_{i} \sinh\lambda_{m}) + \lambda_{m}^{2} + \lambda_{i}^{2}}{\lambda_{m}^{2} + \lambda_{i}^{2}}$$

$$\frac{1}{(\cos\lambda_{m} - \cosh\lambda_{m}) (\sin\lambda_{i} - \sinh\lambda_{i})}$$

$$- \left[\frac{\lambda_{m} (\sin\lambda_{m} \cos\lambda_{i} - \sinh\lambda_{m} \cosh\lambda_{i}) - \lambda_{i} (\sin\lambda_{i} \cos\lambda_{m} - \sinh\lambda_{i} \cosh\lambda_{m})}{\lambda_{m}^{2} - \lambda_{i}^{2}} + \frac{\lambda_{i} (\sin\lambda_{i} \cosh\lambda_{m} - \cosh\lambda_{m} + \lambda_{i}^{2}) + \lambda_{m} (\cos\lambda_{i} \sinh\lambda_{m} - \sinh\lambda_{m} \cosh\lambda_{i})}{\lambda_{m}^{2} + \lambda_{i}^{2}}\right]$$

$$\lambda_{1}^{2} + \lambda_{1}^{2}$$

$$\frac{1}{(\cos\lambda_{\rm m} - \cosh\lambda_{\rm m}) (\cos\lambda_{\rm i} - \cosh\lambda_{\rm i}) }$$

pour m ≠ i,

et

$$K_{1}^{im} = \frac{\sin\lambda_{m}\cos\lambda_{m} + \sinh\lambda_{m}\cosh\lambda_{m}}{2\lambda_{m}(\sin\lambda_{m} - \sinh\lambda_{m})^{2}} - \frac{\sin\lambda_{m}\cos\lambda_{m} - \sinh\lambda_{m}\cosh\lambda_{m}}{2\lambda_{m}(\cos\lambda_{m} - \cosh\lambda_{m})^{2}}$$

$$+ \frac{\sin \lambda_{1} + \sinh \lambda_{2}}{\lambda_{1} (\cos \lambda_{1} - \cosh \lambda_{2})}$$

pour m = i.

$$K_{2}^{ipr} = \left\{ \frac{1 - \cos[\lambda_{i} - \pi(p+r)]}{2 [\lambda_{i} - \pi(p+r)]} + \frac{1 - \cos[\lambda_{i} + \pi(p+r)]}{2 [\lambda_{i} + \pi(p+r)]} - \frac{\lambda_{i} [\cos\pi(p+r) \cosh\lambda_{i} - 1]}{\lambda_{i}^{2} + [\pi(p+r)]^{2}} \right\}$$

$$+\frac{1-\cos[\lambda_{i}-\pi(p-r)]}{2[\lambda_{i}-\pi(p-r)]}+\frac{1-\cos[\lambda_{i}+\pi(p-r)]}{2[\lambda_{i}+\pi(p-r)]}-\frac{\lambda_{i}[\cos\pi(p-r)\cosh\lambda_{i}-1]}{\lambda_{i}^{2}+[\pi(p-r)]^{2}}\right)$$

$$1 = \cos(\lambda_{1} - \pi (p - r)) = 1 = \cos(\lambda_{1} + \pi (p - r)) = \lambda_{1} [\cos(\pi - r) \cos(\lambda_{1} - 1)]$$

$$K_{2}^{ipr} = < \frac{1 - \cos[\lambda_{i} - \pi(p+r)]}{\left[2 \left[\lambda_{i} - \pi(p+r)\right]\right]} + \frac{1 - \cos[\lambda_{i} + \pi(p+r)]}{2[\lambda_{i} + \pi(p+r)]} - \frac{\lambda_{i} \left[\cos(p+r) + \cos(\lambda_{i} - r)\right]}{\lambda_{i}^{2} + [\pi(p+r)]^{2}}$$

$$\frac{1}{2[\lambda_i - \pi (p-r)]} + \frac{1}{2[\lambda_i + \pi (p-r)]} - \frac{1}{\lambda_i^2 + [\pi (p-r)]^2}$$

$$x \frac{1}{\sin\lambda_i - \sinh\lambda_i}$$

$$-\left\{\frac{\sin[\lambda_{i}-\pi(p+r)]}{2[\lambda_{i}-\pi(p+r)]}+\frac{\sin[\lambda_{i}+\pi(p+r)]}{2[\lambda_{i}+\pi(p+r)]}-\frac{\lambda_{i}\sinh\lambda_{i}\cos\pi(p+r)}{\lambda_{i}^{2}+[\pi(p+r)]^{2}}\right\}$$

$$+\frac{\sin[\lambda_{i}-\pi(p-r)]}{2[\lambda_{i}-\pi(p-r)]}+\frac{\sin[\lambda_{i}+\pi(p-r)]}{2[\lambda_{i}+\pi(p-r)]}-\frac{\lambda_{i}\sinh\lambda_{i}\cos\pi(p-r)}{\lambda_{i}^{2}+[\pi(p-r)]^{2}}\right\}$$

$$x \frac{1}{\cos\lambda_i - \cosh\lambda_i}$$

pour $p \neq r$.

et

$$K_{2}^{ipr} = \left[\frac{\lambda_{i} (1 - \cos\lambda_{i})}{\lambda_{i}^{2} - (2p\pi)^{2}} - \frac{\lambda_{i} (\cosh\lambda_{i} - 1)}{\lambda_{i}^{2} + (2p\pi)^{2}} + \frac{2 - \cos\lambda_{i} - \cosh\lambda_{i}}{\lambda_{i}}\right] \frac{1}{\sin\lambda_{i} - \sinh\lambda_{i}}$$

$$-\left[\frac{\lambda_{i} \sin \lambda_{i}}{\lambda_{i}^{2} - (2p\pi)^{2}} - \frac{\lambda_{i} \sinh \lambda_{i}}{\lambda_{i}^{2} + (2p\pi)^{2}} + \frac{\sin \lambda_{i} - \sinh \lambda_{i}}{\lambda_{i}}\right] \frac{1}{\cos \lambda_{i} - \cosh \lambda_{i}}$$

pour p = r.

$$K_{3}^{i p r} = \left\{ \frac{1 - \cos[\lambda_{i} - \pi (p+r)]}{2 [\lambda_{i} - \pi (p+r)]} + \frac{1 - \cos[\lambda_{i} + \pi (p+r)]}{2[\lambda_{i} + \pi (p+r)]} - \frac{\lambda_{i} [\cos \pi (p+r) \cosh \lambda_{i} - 1]}{\lambda_{i}^{2} + [\pi (p+r)]^{2}} \right\}$$

$$-\frac{1-\cos[\lambda_{i}-\pi(p-r)]}{2[\lambda_{i}-\pi(p-r)]}-\frac{1-\cos[\lambda_{i}+\pi(p-r)]}{2[\lambda_{i}+\pi(p-r)]}+\frac{\lambda_{i}[\cos\pi(p-r)\cosh\lambda_{i}-1]}{\lambda_{i}^{2}+[\pi(p-r)]^{2}}$$

$$x \frac{1}{\sin \lambda_i - \sinh \lambda_i}$$

$$- \left\{ \frac{\sin[\lambda_{i} - \pi (p+r)]}{2[\lambda_{i} - \pi (p+r)]} + \frac{\sin[\lambda_{i} + \pi (p+r)]}{2[\lambda_{i} + \pi (p+r)]} - \frac{\lambda_{i} \sinh \lambda_{i} \cos \pi (p+r)}{\lambda_{i}^{2} + [\pi (p+r)]^{2}} \right\}$$

$$-\frac{\sin[\lambda_{i}-\pi(p-r)]}{2[\lambda_{i}-\pi(p-r)]}-\frac{\sin[\lambda_{i}+\pi(p-r)]}{2[\lambda_{i}+\pi(p-r)]}+\frac{\lambda_{i}\sinh\lambda_{i}\cos\pi(p-r)}{\lambda_{i}^{2}+[\pi(p-r)]^{2}}\right\}$$

$$x \frac{1}{\cos\lambda_i - \cosh\lambda_i}$$

pour p **†** r.

$$K_{3}^{i p r} = \left[\frac{\lambda_{i} (1 - \cos \lambda_{i})}{\lambda_{i}^{2} - (2p\pi)^{2}} - \frac{\lambda_{i} (\cosh \lambda_{i} - 1)}{\lambda_{i}^{2} + (2p\pi)^{2}} + \frac{2 - \cos \lambda_{i} - \cosh \lambda_{i}}{\lambda_{i}} \right] \frac{1}{\sin \lambda_{i} - \sinh \lambda_{i}}$$

$$-\left[\frac{\lambda_{i} \sin \lambda_{i}}{\lambda_{i}^{2} - (2p\pi)^{2}} - \frac{\lambda_{i} \sinh \lambda_{i}}{\lambda_{i}^{2} + (2p\pi)^{2}} - \frac{\sin \lambda_{i} - \sinh \lambda_{i}}{\lambda_{i}}\right] \frac{1}{\cos \lambda_{i} - \cosh \lambda_{i}}$$

pour p = r.

$$K_{6}^{umr} = \left\{ \frac{1 - \cos[\lambda_{m} - \pi(r+u)]}{2[\lambda_{m} - \pi(r+u)]} + \frac{1 - \cos[\lambda_{m} + \pi(r+u)]}{2[\lambda_{m} + \pi(r+u)]} - \frac{\lambda_{m}[\cos\pi(r+u)\cosh\lambda_{m} - 1]}{\lambda_{m}^{2} + [\pi(r+u)]^{2}} \right\}$$

$$-\frac{1-\cos[\lambda_{m}-\pi(\mathbf{r}-\mathbf{u})]}{2[\lambda_{m}-\pi(\mathbf{r}-\mathbf{u})]}-\frac{1-\cos[\lambda_{m}+\pi(\mathbf{r}-\mathbf{u})]}{2[\lambda_{m}+\pi(\mathbf{r}-\mathbf{u})]}+\frac{\lambda_{m}[\cos\pi(\mathbf{r}-\mathbf{u})\cosh\lambda_{m}-1]}{\lambda_{m}^{2}+[\pi(\mathbf{r}-\mathbf{u})]^{2}}\right]$$

$$= \frac{1}{\left\{\frac{\sin[\lambda_{m} - \pi (r+u)]}{2[\lambda_{m} - \pi (r+u)]} + \frac{\sin[\lambda_{m} + \pi (r+u)]}{2[\lambda_{m} + \pi (r+u)]} - \frac{\lambda_{m} \sinh\lambda_{m} \cos\pi (r+u)}{\lambda_{m2 + [\pi (r+u)]}^{2}}\right\}$$

$$-\frac{\sin[\lambda_{m}-\pi(r-u)]}{2[\lambda_{m}-\pi(r-u)]} - \frac{\sin[\lambda_{m}+\pi(r-u)]}{2[\lambda_{m}+\pi(r-u)]} + \frac{\lambda_{m}\sinh\lambda_{m}\cos\pi(r-u)}{\lambda_{m}^{2}+[\pi(r-u)]^{2}} >$$

$$\times \frac{1}{\cos\lambda_{m} - \cosh\lambda_{m}}$$

pour u + r.

$$K_{4}^{\text{umr}} = \frac{1}{\sin\lambda_{\text{m}} - \sinh\lambda_{\text{m}}} \left[\frac{\lambda_{\text{m}} (1 - \cos\lambda_{\text{m}})}{\lambda_{\text{m}}^{2} - (2\pi r)^{2}} - \frac{\lambda_{\text{m}} (\cosh\lambda_{\text{m}} - 1)}{\lambda_{\text{m}}^{2} + (2\pi r)^{2}} + \frac{\cos\lambda_{\text{m}} - \cosh\lambda_{\text{m}} - 2}{\lambda_{\text{m}}} \right]$$

$$-\frac{1}{\cos\lambda_{m}-\cosh\lambda_{m}}\left[\frac{\lambda_{m}\sin\lambda_{m}}{\lambda_{m}^{2}-(2\pi r)^{2}}-\frac{\lambda_{m}\sinh\lambda_{m}}{\lambda_{m}^{2}+(2\pi r)^{2}}+\frac{\sinh\lambda_{m}-\sinh\lambda_{m}}{\lambda_{m}}\right]$$

pour u = r.

$$K_{5}^{u \equiv r} = \left\{ \frac{1 - \cos[\lambda_{n} - \pi (r+u)]}{2 [\lambda_{n} - \pi (r+u)]} + \frac{1 - \cos[\lambda_{n} + \pi (r+u)]}{2 [\lambda_{n} + \pi (r+u)]} - \frac{\lambda_{n} [\cos\pi (r+u) \cosh\lambda_{n} - 1]}{\lambda_{n}^{2} + [\pi (r+u)]^{2}} \right\}$$

$$- \frac{1 - \cos[\lambda_{n} - \pi (r-u)]}{2 [\lambda_{n} - \pi (r-u)]} - \frac{1 - \cos[\lambda_{n} + \pi (r-u)]}{2 [\lambda_{n} + \pi (r-u)]} - \frac{\lambda_{n} [\cos\pi (r-u) \cosh\lambda_{n} - 1]}{\lambda_{n}^{2} + [\pi (r-u)]^{2}} \right\}$$

$$\times \frac{1}{\sin\lambda_{n} - \sinh\lambda_{n}}$$

$$+ \left\{ - \frac{\sin[\lambda_{n} - \pi (r+u)]}{2 [\lambda_{n} - \pi (r+u)]} - \frac{\sin[\lambda_{n} + \pi (r+u)]}{2 [\lambda_{n} + \pi (r+u)]} - \frac{\lambda_{n} \sinh\lambda_{n} \cos\pi (r+u)}{\lambda_{n}^{2} + [\pi (r+u)]^{2}} \right\}$$

$$+ \frac{\sin[\lambda_{n} - \pi (r-u)]}{2 [\lambda_{n} - \pi (r-u)]} + \frac{\sin[\lambda_{n} + \pi (r-u)]}{2 [\lambda_{n} + \pi (r-u)]} + \frac{\lambda_{n} \sinh\lambda_{n} \cos\pi (r-u)}{\lambda_{n}^{2} + [\pi (r-u)]^{2}} \right\}$$

$$\times \frac{1}{\cos\lambda_{n} - \cosh\lambda_{n}}$$
pour $u \neq r$.

$$K_{5}^{\text{umr}} = \frac{1}{\sin\lambda_{m} - \sinh\lambda_{m}} \left[\frac{\lambda_{m} (1 - \cos\lambda_{m})}{\lambda_{m}^{2} - (2\pi r)^{2}} + \frac{\lambda_{m} (\cosh\lambda_{m} - 1)}{\lambda_{m}^{2} + (2\pi r)^{2}} + \frac{\cos\lambda_{m} - \cosh\lambda_{m}}{\lambda_{m}} \right]$$

$$+\frac{1}{\cos\lambda_{m}-\cosh\lambda_{m}}\left[-\frac{\lambda_{m}\sin\lambda_{m}}{\lambda_{m}^{2}-(2\pi r)^{2}}-\frac{\lambda_{m}\sinh\lambda_{m}}{\lambda_{m}^{2}+(2\pi r)^{2}}+\frac{\sinh\lambda_{m}+\sinh\lambda_{m}}{\lambda_{m}}\right]$$

pour u = r.

$$K_{6}^{\text{umr}} = \left\{-\frac{1-\cos[\lambda_{m}-\pi(r+u)]}{2[\lambda_{m}-\pi(r+u)]} - \frac{1-\cos[\lambda_{m}+\pi(r+u)]}{2[\lambda_{m}+\pi(r+u)]} - \frac{\lambda_{m}[\cos\pi(r+u)\cosh\lambda_{m}-1]}{\lambda_{m}^{2}+[\pi(r+u)]^{2}}\right\}$$

$$+\frac{1-\cos[\lambda_{m}-\pi(\mathbf{r}-\mathbf{u})]}{2[\lambda_{m}-\pi(\mathbf{r}-\mathbf{u})]}+\frac{1-\cos[\lambda_{m}+\pi(\mathbf{r}-\mathbf{u})]}{2[\lambda_{m}+\pi(\mathbf{r}-\mathbf{u})]}-\frac{\lambda_{m}[\cos\pi(\mathbf{r}-\mathbf{u})\cosh\lambda_{m}-1]}{\lambda_{m}^{2}+[\pi(\mathbf{r}-\mathbf{u})]^{2}}$$

$$x \frac{1}{\cos \lambda_{m} - \cosh \lambda_{m}}$$

$$+ < - \frac{\sin[\lambda_{m} - \pi (r+u)]}{2[\lambda_{m} - \pi (r+u)]} - \frac{\sin[\lambda_{m} + \pi (r+u)]}{2[\lambda_{m} + \pi (r+u)]} + \frac{\lambda_{m} \sinh \lambda_{m} \cos \pi (r+u)}{\lambda_{m}^{2} + [\pi (r+u)]^{2}}$$

$$+\frac{\sin[\lambda_{m}-\pi(r-u)]}{2[\lambda_{m}-\pi(r-u)]}+\frac{\sin[\lambda_{m}+\pi(r-u)]}{2[\lambda_{m}+\pi(r-u)]}-\frac{\lambda_{m}\sinh\lambda_{m}\cos\pi(r-u)}{\lambda_{m}^{2}+[\pi(r-u)]^{2}}$$

$$x \frac{1}{\sin \lambda_{m} - \sinh \lambda_{m}}$$

pour $u \neq r$.

$$K_{\delta}^{\text{umr}} = \frac{1}{\cos\lambda_{\text{m}} - \cosh\lambda_{\text{m}}} \left[\frac{\lambda_{\text{m}} (1 - \cos\lambda_{\text{m}})}{\lambda_{\text{m}}^{2} - (2\pi r)^{2}} - \frac{\lambda_{\text{m}} (\cosh\lambda_{\text{m}} - 1)}{\lambda_{\text{m}}^{2} + (2\pi r)^{2}} - \frac{\cos\lambda_{\text{m}} - \cosh\lambda_{\text{m}}}{\lambda_{\text{m}}} \right]$$

$$+\frac{1}{\sin\lambda_{m}-\sinh\lambda_{m}}\left[-\frac{\lambda_{m}\sin\lambda_{m}}{\lambda_{m}^{2}-(2\pi r)^{2}}+\frac{\lambda_{m}\sinh\lambda_{m}}{\lambda_{m}^{2}+(2\pi r)^{2}}-\frac{\sinh\lambda_{m}-\sin\lambda_{m}}{\lambda_{m}}\right]$$

pour u = r.

Les expressions pour les coefficients L_1^{jn} , L_2^{jqs} , L_3^{jqs} , L_4^{jsq} , L_5^{jqs} , L_6^{jqs} , sont obtenues en remplacant respectivement les indices i, p, r par j, q, s dans les expressions de K_1^{jm} , K_2^{ipr} , K_3^{ipr} , K_4^{ipr} , K_5^{ipr} , K_6^{ipr} .

ANNEXE B

PROGRAMMES D'ORDINATEUR

B.1. Introduction

Les différents programmes utilisés dans cette recherche sont écrits en langage "Mat lab". Ils permettent à chaque fois d'étudier un point particulier de l'influence des imperfections initiales sur le comportement dynamique des plaques rectangulaires simplement supportées et soumises à une excitation paramétrique.

Ainsi,

- le programme "SASS1.m" permet de déterminer la variation de la déformation statique de la plaque en fonction de la charge statique appliquée.
- le programme "SASS2.m" permet de déterminer la variation de la déformation statique de la plaque en fonction de l'imperfection initiale.
- le programme "SASS3.m" permet d'évaluer la variation de la fréquence chargée de la plaque en fonction de la déformation statique et de l'imperfection initiale.

- le programme "SASS4.m" détermine la variation de la fréquence chargée de la plaque en fonction de la charge appliquée.
- le programme "SASS5.m" détermine l'influence des imperfections sur les vibrations forcées de la plaque.
- le programme "SASS6.m" détermine l'influence des imperfections sur les vibrations paramétriques de la plaque.
- le programme "SASS7.m" permet de déterminer l'influence des imperfections sur les régions principales d'instabilité.
- le programme "SASS8.m" permet d'étudier comment se passe le passage de vibrations forcées en vibrations paramétriques.

B.2. <u>Liste des paramètres utilisés dans les différents</u>

programmes

mu	=	paramètre d'excitation
h	=	épaisseur de la plaque
rho	=	densité de la plaque
la	=	largeur de la plaque
r	=	rapport de forme de la plaque
nu	=	coefficient de poisson
Е	=	module de Young
D	=	rigidité
с	=	coefficient d'amortissement
m	=	coefficient de non linéarité
Wo	=	imperfection initiale
Nyo	=	chargement statique
Ncrit	=	charge critique
Omo	=	fréquence naturelle de la plaque idéale
		libre
Ome	=	fréquence naturelle de la plaque idéale
¢.		chargée
Omb	H	fréquence naturelle de la plaque non
		idéale chargée
delta	=	déformation statique

```
8
  8
   VARIATION DE LA DEFORMATION STATIQUE D'UNE PLAQUE
2
   .
        EN FONCTION DE : - LA CHARGE APPLIQUEE (Nyo) -
X
   .
8
  .
                ( nom du programme : SASS1.m )
   2
8
8
clc
disp('')
disp('')
disp('**
         programme en execution **')
clear
*
         Données numeriqes du probleme
            rho = 1187.85;
            h
               = 0.914e-03:
            || = 0.1746:
            P
                = 2.9095:
                = 0.1505075e10;
            חֹע = 10:3$;-----
                = 4.412645e09;
            E
                = E*b^3/12/(1-nu^2);
            D
            omo = sqrt( pi 4*D/(rho*h*la 4*r*2)*(r+1/r)*2 );
           ncrit = 1128;
 wo = 0.25*h; % Imperfections Initiates
 n = 251:
 nyo = [0:8:2000]:
 init = 0;
 for i = 1:n,
    const = pi^2*nyo(i)/(rho*h*)*2*r^2*m);
    p = [1 \ 0 \ (-wo^2 + omo^2/m - const) - omo^2 wo/m];
    sol = roots(p);
    delta = sol-wo;
    del1(i) = delta(1);
        if imag(del1(1)) ~= 0,
        de]1(1) = 0;
        end
    del2(1) = delta(2);
        if imag(del2(1)) ~= 0,
        del2(1) = 0;
        end
```

```
del3(i) = delta(3);
       if imag(del3(i)) ~= 0,
       del3(1) = 0;
       end
3 Determination du chargement critique (ncrit)
% dans le cas ou " Wo = 0 "
      % shan = [del1(i) del2(i) del3(i)];
      X mshan = max(shan);
      % if mshan "= 0,
% if init == 0,
      2
          ncrit = nyo(i);
          init = 1;
      8
      8
           end
X end
end
vect = [(nyo/ncrit)' (del1/h)' (del2/b)' (del3/b)'];
X Tracage de la courbe
clg
axis([0 3 0 1.6])
plot(del1/h, nyo/ncrit, del2/h, nyo/ncrit, del3/h, nyo/ncrit)
 ylabel('CHARGEMENT STATIQUE (Nyo/Ncrit)')
 xlabel('DELTA/H')
 title(' VARIATION DE delta EN FONCTION DE Nyo')
 iext(0.2,2,'Wo = 0.00 * h')
 pause
```

```
2
   2
   ...
          VARIATION DE LA DEFORMATION STATIQUE D'UNE PLAQUE
8
   ...
          EN FONCTION DE : - L'IMPERFECTION INITIALE (Wo) -
8
   ...
2
   ....
                   ( nom du programme : SASS2.m )
2
   2
2
clc
disp('')
disp('')
disp('**
          programme en execution **')
clear
2
           Donnees numeriges du probleme
              rho = 1187.85;
              Ъ
                 = 0.914e-03;
              1a = 0.1746;
                 = 2.9095:
              r
                 = 0.1505075e10;
              nu = 0.38;
                 = 4.412645e09;
              E.
              D = E^{h^{3}/12/(1-nu^{2})};
omo = sqrt( pi^4*D/(rho*h*la^4*r^2)*(r+1/r)^2 );
              nyo = 0.4*1128;
 D = 101;
 wo = h^{*}[0:0.02:2];
 for i = 1:n,
    const = pi<sup>2</sup>*nyo/(rho*h*la<sup>2</sup>*r<sup>2</sup>*m);
     p = [1 0 (-wo(i)^2 + omo^2/m - const) - omo^2 wo(i)/m];
     sol = roots(p);
     delta = sol-wo(i);
     del1(i) = delta(1);
         if imag(del1(i)) *= 0,
del1(i) = 0;
         end
     del2(i) = delta(2);
         if imag(del2(1)) ~= 0,
         de]2(i) = 0;
         end
```

.....

```
8
  3
   .
          VARIATION DE LA FREQUENSE CHARGEE D'UNE PLAQUE
          EN FONCTION DE : - L'IMPERFECTION INITIALE (Wo)
- LA DEFORMATION STATIQUE (delta)
   .
2
$
   .
2
   8
   8
                  ( nom du programme : SASS3.m )
                    X
   ***************
clc
disp('')
disp('')
disp('***
           programme en execution ***')
clear
2
              Donnees numeriques du probleme
                   rho = 1187.85;
                       = 1.000e-03;
                   h
                   la = 0.1746;
                   r
                       = 1;
                       = 0.4850643e11;
                   •
                   nyo = 0.10*528:
                   nu = 0.3;
                       = 4.412645e09;
                   E
                       = E*h^3/12/(1-nu^2);
                   D
                   omo = sqrt( pi^4*D/(rho*b*la*4*r*2)*(r+1/r)*2
                                                                  2
                   ncrit = 1128:
                   ncrit = 528:
                    ome = sqrt(omo'2*(ncrit-nyo)/ncrit);
  w_0 = h^{o}[0:0.02:2];
  m = 101;
   for i = 1:n,
     const = pi<sup>2</sup><sup>n</sup>yo/(rho<sup>*</sup>h<sup>1</sup>a<sup>2</sup>r<sup>2</sup><sup>m</sup>);
     p = [1 0 (-wo(i)^2 + omo^2/m - const) - omo^2 wo(i)/m];
     sol = roots(p);
     delta = sol-wo(i);
```

```
del1(i) = delta(1);
    omb1(i) = sqrt(ome<sup>2</sup>+m<sup>*</sup>(3<sup>*</sup>(wo(i)+del1(i))<sup>2</sup>-wo(i)<sup>2</sup>));
       if imag(oub1(i)) = 0,
       omb1(i) = 0;
       end
    del2(i) = delta(2);
    omb2(i) = sqrt(ome<sup>2</sup>+m<sup>2</sup>(3<sup>2</sup>(wo(i)+del2(i))<sup>2</sup>-wo(i)<sup>2</sup>));
        if imag(omb2(i)) = 0,
       omb2(i) = 0;
        end
    if imag(omb3(i)) <sup>-=</sup> 0,
        omb3(i) = 0;
        end
 end
 vect = [(wo/h)' ((omb1+omb2+omb3)/omo)' ((omb1+omb2+omb3)/ome)
 axis([0 1.5 0.0 2.0])
 plot(wo/b, (omb1+omb2+omb3)/omo)
 xlabel('wo/b')
 ylabel('omb/omo')
title('RELATION : FREQUENCE CHARGEE / DEFORMATION INITIALE')
%text(0.2,1.1,'Nyo = 0.23% * Nyo.crit')
 pause
                                          90 - Cal - Cal
 95 = [0 2];
 77 = (1 1);
 bold on
 plot(ss,yy,'-.')
 bold off
 Dause
 bold on
 plot(wo/h, (omb1+omb2+omb3)/ome)
 bold off
```

```
$
$
   .
          VARIATION DE LA FREQUENSE CHARGEE D'UNE PLAQUE
8
   .
          EN FONCTION DE : - LA CHARGE APPLIQUEE (Nyo) -
8
   .
2
   8
                  ( nom du programme : SASS4.m )
   X
clear
clc
disp('')
disp('')
disp('*** programme en execution ***')
        S Donnees numeriques du probleme
                 rho = 1187.85;
                 b = 0.914e-03;
                 | = 0.1746;
                     = 2.9095;
                 = 0.1505075e10;
                 nu = 0.38;
                     = 4.412645e09;
                 E
                    = E*h^3/12/(1-nu^2);
                 D
                  omo = sqrt( pi^4*D/(rho*h*la^4*r^2)*(r+1/r)*2 );
                  // 1 = 28.5365;
                ncrit = 1128;
              * ----- *
 n = 301;
 nyo = [0:4:1200];
 xo = 0.00<sup>s</sup>b;
  for i = 1:n,
     const = pi<sup>2</sup><sup>g</sup>nyo(i)/(rho<sup>g</sup>h<sup>g</sup>la<sup>2</sup><sup>g</sup>r<sup>2</sup><sup>g</sup>m);
p = [1 0 (-wo<sup>2</sup>+omo<sup>2</sup>/m-const) -omo<sup>2</sup><sup>g</sup>wo/m];
     sol = roots(p);
     delta = sol-wo;
```

```
del1(i) = delte(1);
   ome(i) = sqrt( omo^2*(ncrit-nyo(i))/ncrit );
        if imag(ome(i)) ~= 0,
        ome(i) = 0;
        end
   omb1(i) = sqrt(ome(i)<sup>2</sup>+m*(3*(wo+del1(i))<sup>2</sup>-wo<sup>2</sup>));
    if imag(omb1(i)) <sup>= 0</sup>,
        omb1(i) = 0;
        end
 del2(i) = delta(2);
 omb2(i) = sqrt(ome(i)^2+m^{o}(3^{o}(wo+del2(i))^2-wo^2));
        if imag(omb2(i)) = 0,
        omb2(i) = 0;
        end
 del3(i) = delta(3);
 omb3(i) = sqrt(ome(i)<sup>2</sup>+m<sup>2</sup>(3<sup>2</sup>(wo+de]3(i))<sup>2</sup>+wo<sup>2</sup>));
        if imag(omb3(i)) = 0,
        omb3(i) = 0;
         end
           = [omb1(i) omb2(i) omb3(i)];
vecomb
maxomb(i) = max(vecomb);
end
vect = [(nyo/ncrit)' (omb1/omo)' (omb2/omo)' (omb3/omo)'];
🎗 fin des calculs iteratifs et impression des resultats
axis([0 1 0 1.4])
plot(nyo/ncrit,omb1/omo,'-.',nyo/ncrit,omb2/omo,'--',..
                                           nyo/ncrit,omb3/omo)
 xlabel('chargement statique (Nyo/N.crit)')
 ylabel('omb/omo')
 title('RELATION : FREQUENCE CHARGEE / FORCE STATIQUE')
%text(0.2,0.5,'Wo = 0.0 * h')
 pause
```

* * * 88 **VIBRATIONS FORSEES D'UNE PLAQUE RECTANGULAIRE** 2 nom du programme : SASS5.m ---* -----* ... * clc clear casesen disp('') programme en execution (---*') disp(' *---> mu = 0.049; = 0.914e-03;h rho = 1187.85; 1. = 0.1746; 2 = 2.9095; ٢ = 1; P nu = 0.38; = 4.633277e09; E = E*b^3/12/(1-nu^2); D = 0.1505075e10:* = 0.4850643e11;-----= 3.4244; C = 11.4146; 8 C wo = $0.10^{\circ}h;$ nyo = 267.98; ncrit = 432;omo = sqrt(pi^4*D/(rho*b*la^4*r^2)*(r+1/r)^2); ome = sqrt(omo^2@(ncrit-nyo)/ncrit); const = pi²^{*}nyo/(rho^{*}h^{*}l²^{*}r²^{*}n) ; po) = [1 0 (-wo²+omo²/m-const) -omo²/mo/m]; sol = roots(pol); delta = sol-wo;

```
for s = 1:3,
   if imag(delta(s)) = 0,
   delta(s) = 0;
   end
end
del = max(delta);
omb = sqrt( ome<sup>2</sup> + m<sup>*</sup>(3*(wo+del)<sup>2</sup>-wo<sup>2</sup>) );
n = 451;
exc = [0:1:450];
e = 0:
P = [1 3*(wo+del) 3/2*e<sup>2</sup> (3/2*(wo+del)*e<sup>2</sup>)];
b = roots(p)
b = input('valeur initiale de b --> ');
for i = 1:n,
   ecc = erc(i);
   t = 3*m/(8*omb)*(8*(wo+del)*b+4*b^2)+omb-ecc;
   q = [(3*m/8/omb)^2 0 2*1*3*m/8/omb 0 (t^2+c^2) 0 ...
                     -(2*mu*ome^2*(b+wo+del)/(omb+ecc))^2];
   e = roots(q);
   for k = 1:6,
     if imag(e(k)) = 0.
      e(k) = 0;
      end
      if e(\mathbf{k}) < 0,
      e(k) = 0;
      end
   end
   x1(i) = e(1);
   x2(i) = e(2);
   x3(i) = e(3);
   x4(1) = e(4);
   x5(1) = e(5);
   x6(i) = e(6);
   ce = max(e);
  v = [x1(i) x2(i) x4(i)]
8
$ mx(1) = mex(v);
   P = [1 3*(vo+del) 3/2*ee*2 (3/2*(wo+del)*ee*2)];
   bb = roots(p);
```

```
....
                                                             ....
8
        VIBRATIONS PARAMETRIQUES D UNE PLAQUE RECTANGULAIRE
2 ...
                                                             ...
                   plexiglas-specimen(P.4)
2
  ....
                                                             ...
             --- nom du programme : SASS6.m ----
2
   2
8
clear
casesen
disp('
         *** PROGRAMME EN EXECUTION *** ')
                   h
                         = 0.914e-03;
                         = 1187.85;
                   rho
                         = 0.1746;
                   14
                         = 2.9095;
                   = 0.38;
                   nu
                   E
                         = 4.412645e09;
                   D
                         = E*h^3/12/(1-nu^2);
                         = 0.049;
                   = 3.4244;
                    C
                         = 0.1505075e10;
                    WO
                          = 0.2*b:
                    D30
                         = 267.98;
                    ncrit = 1128;
            omo = sgrt( pi^4*D/(rbo*h*la^4*r^2)*(r*1/r)^2);
            one = sqrt(omo^2*(ncrit-nyo)/ncrit);
 const = pi<sup>2</sup>*nyo/(rho*h*)a<sup>2</sup>*r<sup>2</sup>*m);
      = [1 0 (-wo<sup>2</sup>+ono<sup>2</sup>/m-const) -omo<sup>2</sup>*wo/m];
 POI
 sol
       = roots(pol);
 delta = sol-wo:
 for = 1:3,
     if imag(delta(s)) ~= 0,
     delta(s) = 0;
     end
  end
  del = max(delta):
        = sqr1( ome<sup>2</sup> + m<sup>*</sup>(3*(wo+del)<sup>2</sup>-wo<sup>2</sup>) );
  omb
```

```
n = 401;
   exc = [330:0.3:450];
              $--- Premiere branche ---$
   for i = 1:n,
      f = 4^{\circ}omb/3/m^{\circ}(exc(i)-2^{\circ}omb+sqrt((2^{\circ}mu^{\circ}ome^{\circ}2/exc(i))^{2}-(2^{\circ}c)^{2})
      p = [5 15*(wo+del) (12*(wo+del)*2-1.5*f) (wo+del)*(-1.5*f)];
      b = roots(p);
      for j=1:3,
        b1(j,i)=b(j);
      end
      a1(i) = sqrt( f - 8*(wo+del)*b1(1,i) - 4*b1(1,i)*2 );
         if imag(al(i)) ~= 0.
         al(i) = 0;
         end
      a2(i) = sqrt( f - 8*(wo+del)*b1(2,i) - 4*b1(2,i)^2 );
         if imag(a2(i)) = 0,
         a2(i) = 0;
         end
      a3(i) = sqr1( f - &*(wo+del)*b1(3,i) - 4*b1(3,i)^2 );
         if imag(a3(i)) ~= 0,
         a3(i) = 0;
         end
   v = [n2(i) a3(i)];
   aa(i) = max(v);
   end
   clc
   clr
axis(|330/2/pi 420/2/pi 0 3])

plot(exc,a1/b,'--',exc,as/b)
   plot(exc/2/pi,a1/h,exc/2/pi,aa/h)
   xlabel('excitation (Hz)')
ylabel('amplitude (h)')
   text(340,2.5,'Wo = 0.00 h')
   text(335,2.0,'M = 0.15 e10')
   title('VIBRATIONS PARAMETRIQUES')
   vect1 = [(exc/2/pi)' (a1/b)' (a2/h)' (a3/h)'];
```

```
$--- Deuxieme branche ---%
   for i = 1:n,
      f =4*omb/3/m*(exc(i)-2*omb-sqrt((2*mu*ome*2/exc(i))*2-(2*c)
      P = [5 15*(wo+del) (12*(wo+del)*2-1.5*f) (wo+del)*(-1.5*f)]
      b = roots(p);
      for j=1:3,
        b1(j,i)=b(j);
      end
      al(i) = sqrt( f - 8*(wo+del)*b1(1,i) - 4*b1(1,i)*2 );
          if imag(a1(i)) = 0.
          a1(1) = 0;
          end
      a2(i) = sqrt( f - 8*(wo+del)*b](2,i) - 4*b1(2,i)*2 );
          if imag(a2(i)) ~= 0,
          a2(i) = 0;
          end
      a3(i) = sqrt( f - 8*(wo+del)*b1(3,i) - 4*b1(3,i)*2 ) ;
          if imag(a3(i)) = 0,
          a3(i) = 0;
          end
   u = [a2(i) a3(i)];
   aa(i) = max(u);
   end
   !\utilites\norton\beep /f300 /r3
   bold on
* plot(exc,al/h,exc,aa/h,'--')
   plot(exc/2/pi,a1/h,'--',exc/2/pi,aa/h)
text(380,1.5,'---- stable')
   text(380,1.2,'- - - instable')
   bold off
   vec12 = [(exc/2/pi)' (a1/h)' (a2/h)' (a3/h)'];
   Pause
```

```
2
    ...
8
2
    ....
                  REGIONS PRINCIPALES D'INSTABILITE
    ...
2
2
    ...
                    ( nom du programme : SASS7.m )
2
    2
2
cl c
clear
casesen
disp(' *** PROGRAMME EN EXECUTION *** ')
                      = 0.914e-03;
                 Ъ
                 s ho
                       = 1187.85;
                       = 0.1746:
                 1
                       = 2.9095;
                 T.
                       = 0.38;
                 nu
                       = 4.412645e09;
                 E
                       = E*b^3/12/(1-nu^2);
                 D
                       = 3.4244;
                 C
                       = 0.1505075e10;
                 = 0.70*b;
                 ....
                  frq = 28.5365;
                 nyo = 267.98;
                  ncrit = 1128;
            omo = sgrt( pi^4*D/(rho*h*la^4*r*2)*(r+1/r)*2 );
            ome = sqrt(omo^2*(ncrit-nyo)/ncrit);
 const = pi<sup>2</sup>*nyo/(rho*h*la<sup>2</sup>*r<sup>2</sup>*m);
pol = [1 0 (-wo<sup>2</sup>*omo<sup>2</sup>/m-const) -omo<sup>2</sup>*wo/m];
       = roots(pol);
  sol
 delta = sol-wo;
```

```
for ss = 1:3,
    if imag(delta(ss)) "= 0,
    delta(ss) = 0;
    end
del = max(delta);
omb = sqrt( ome^2 + m*(3*(wo+del)^2-wo^2) );
P = [1 3*(wo+del) 0 0];
b = roots(p);
```

```
Deelta = 0;
n = 101;
mu = [0:0.005:0.5];
```

```
bb = min(b);
g = 1/2*(3*m/4/omb*(8*(wo+del)*bb+4*bb*2)+2*omb);
k = g/ome;
for j=1:n,
  man = au(j);
  q = [1 (-2*k) (k^2+Deelta^2/4/pi^2) 0 (-1/4*mmu^2)];
  s = roots(q);
  for 1 = 1:4,
    if s(t) < 0,
    s(1) = 0;
    end
    if imag(s(1)) "= 0,
    s(1) = 0;
    end
    if a(t) < 0.5.
    s(t) = 0;
    end
  end
  x1(j) = s(1);
  x2(j) = s(2);
  x_3(j) = s(3);
  x4(j) = s(4);
end
```

```
2.1
2 .
         interaction entre resonances parametriques
2 .
                et resonances forcees
2 .
8 .
            - nom du programme : SASS8.m -
clear
casesen
disp(' ')
disp(' ')
               *** Programme en Execution *** ')
disp('
              mul = 0.049;
                  = 0.914e-03;
              h
              rho = 1187.85;
                  = 0.1746;
              1.
                  = 2.9095;
              C
                  = 0.38;
              שמ
                  = 4.4633277e09;
              E
                  = E*h^3/12/(1-nu^2);
              D
              C1 = 3.4244;
              M1111 = 0.150507e10;
              M3113 = 0.283734e11;
              M3131 = 0.314653e10;
              M3311 = 0.249926e10;
               wo = 0.30°b;
               nyo = 267.98;
               frq1 = 28.536560;
               [rg] = 37.877419;
               Omel = 2°pi*frq1;
               Ome3 = 2*pi*frq3;
```

```
!\utilites\norton\beep /f300 /r3
clg
axis([0 2 0 0.6])
plot(x1,mu,x2,mu,x3,mu,x4,mu)
xlabel('excitation = S')
ylabel('frequense = Mu')
title('REGIONS PRINCIPALES D INSTABILITES')
text(1.5,0.4,'Wo = 0.70 b')
text(1.5,0.3,'delta = 0.0')
pause
```
```
omo = sqrt(pi^4*D/(rho^h*la^4*r^2)*(r+1/r)^2);
  const = pi<sup>2</sup>*nyo/(rho*h*la<sup>2</sup>*r<sup>2</sup>*M1111);
         = [1 0 (-wo<sup>2</sup>; omo<sup>2</sup>/M1111-const) -omo<sup>2</sup>; wo/M1111];
  Pol
  sol
         = roots(pol);
  delta = sol-mo:
for s = 1:3,
    if imag(delta(s)) ~= 0,
      delta(s) = 0;
    end
 end
 del = max(delta);
Omb1 = sqrt(Ome1<sup>2</sup> + M1111<sup>3</sup>(3<sup>*</sup>(wo+del)<sup>2</sup>-wo<sup>2</sup>));
Omb3 = sqrt(Ome3<sup>2</sup> + (M3113+M3131+M3311)*(3*(wo+del)<sup>2</sup>-wo<sup>2</sup>));
            Omev = Ome1:
            Omer = Ome3:
            Omby = Omb1:
            Ombr = Omb3;
            muv = mul:
                = C1;
            C۷
  av = 0;
  er = b*0.005:
  p = [1 (3*(wo+del)) 3/2*(av<sup>2</sup>+er<sup>2</sup>) (3/2*(wo+del)*(av<sup>2</sup>+er
  bb = roots(p);
 n = 460;
 exc = [1:1:460];
for i = 1:n.
  bv = bb(3);
   f(i) = 4*Ombv/3/W1111*(exc(i)-2*Ombv+sqrt((2*muv*Omev*2/exc
                                                                     -(2°Cv)
   av(i) = sqrt(f(i)-8*bv*W1111*(wo+del)/W1111-4*bv*2):
   if imag(av(i)) = 0,
   av(i) = 0;
   end
   tv(i) = 3*M1111/8/Ombr*(8*bv*M1111*(wo+del)/M1111+4*bv*2)..
                                                                    +Ombr
   q = [((3*M1111/8/Ombr)^2) 0 (3*M1111/4/Ombr*tv(i)) 0 ...
          (tv(i)<sup>2</sup>+Cv<sup>2</sup>) 0 -(2*muv*Omer<sup>2</sup>*(bv+wo+del)/(Ombr+exc
  er = roots(q);
```

```
for k = 1:6,
     if imag(er(k)) ~= 0,
      er(k) = 0;
      end
     if er(k) < 0,
     er(k) = 0;
     end
   end
   x1(i) = er(1);
   x2(i) = er(2);
   x_3(i) = er(3);
   x4(i) = er(4);
   x5(i) = er(5);
   x6(j) = er(6);
   vec = [av(i) x1(i) x2(i) x3(i) x4(i) x5(i) x6(i)]';
   mx(i) = max(vec);
   xx(i) = er(2);
   P = [W1111 3*W1111*(wo+del) 3/2*W1111*(av(i)*2*xx(i)*2) ...
                        (3/2*W1111*(wo+del)*(av(i)*2+xx(i)*2));
   bb = roots(p);
  end
  axis([220/2/pi 480/2/pi 0 5])
  clg
  plot(exc/2/pi,av/h)
  xlabel('Excitation : (Hz)')
ylabel('Amplitude (mm)')
  litle(' PASSAGE : FORCEES / PARAMETRIQUES')
$ lext(16,15,'Wo = 0.2 b')
X text(100,2.5,'M = 0.1505075 e10')
  hold on
$ plot(exc/2/pi,(x1+x2+x3+x4)/h,exc/2/pi,x5/h,exc/2/pi,x6/h)
  plot(exc/2/pi,mx/h)
  hold off
  PAUSE
```

158

