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A B S T R A C T

The multiple depot vehicle scheduling problem (MDVSP) is one of the most studied problems in public transport
service planning. It consists of assigning buses to each timetabled trip while respecting vehicle availability at
each depot. Although service quality, and especially reliability, is the core of most transport agencies, the
MDVSP is more often than not solved solely in a cost-efficient way. This work introduces a data-driven model
to the reliable MDVSP with stochastic travel time (R-MDVSP-STT). The reliability of a schedule is assessed and
accounted for by propagating delays using the probability mass function of the travel time of each timetabled
trip. We propose a heuristic branch-and-price algorithm to solve this problem and a labeling algorithm with a
stochastic dominance criterion for the associated subproblems. The solutions obtained are compared based on
three metrics — under normal and extraordinary circumstances. Computational results on real-life instances
show that our method can efficiently find good trade-offs between operational costs and reliability, improving
the reliability of the solutions with little cost increase.
1. Introduction

One of the specificities of public transport is its social mission; most
transit agencies aim at providing a fair access to essential services
and jobs, and strive to offer a service competitive to single occupant
vehicles, that is both time- and cost-efficient for users. The main goal
of the agencies, usually centered on the quality of service, reflects this
mission, whereas almost all other transport organizations, for example
trucking or airline companies, are primarily concerned with making
a profit [1]. However, agencies have access to a limited budget and
therefore seek to provide the best possible service within this budget.
To reach this goal, budget constraints must be considered throughout
the whole planning process which is commonly divided into strategic,
tactical, and operational planning steps. Indeed, the planning process
cannot be addressed as a whole due to tractability issues and is there-
fore often divided into the following sequential problems. Strategic
planning includes the definition of transit routes and networks, tactical
planning includes setting stops and service frequencies, whereas opera-
tional planning concerns vehicle scheduling, duty scheduling, and crew
rostering among others [1,2]. As opposed to the strategic and tactical
planning steps, the operational planning step is traditionally addressed

✩ Area - Production Management, Scheduling and Logistics. This manuscript was processed by Associate Editor Yagiura.
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E-mail addresses: lea.ricard@umontreal.ca (L. Ricard), guy.desaulniers@gerad.ca (G. Desaulniers), andrea.lodi@cornell.edu (A. Lodi),

louis-martin.rousseau@polymtl.ca (L.-M. Rousseau).

only with the objective of cost-efficient running, completely or partially
obliterating the main concern of agencies, namely, service quality. The
vehicle scheduling problem (VSP), one of the most studied operational
planning problems and the one we are interested in this work, makes
no exception. When the bus fleet is spread over two or more depots,
the VSP is referred to as the multiple depot vehicle scheduling problem
(MDVSP) and is proven to be NP-hard [3]. It takes as input a timetable
of trips — a trip is defined by a start time and a location, an itinerary
composed of a sequence of stops, and an end time and a location — and
aims at finding a set of bus schedules that covers exactly once every
timetabled trip while minimizing the operational costs and respecting
the capacity at each depot. The operational costs usually consist of a
fixed cost per vehicle used and a variable cost per kilometer and/or
minute spent outside the depot. Bus schedules outputted by the MDVSP
are sequences of trips (pull-in, pull-out, deadhead, or timetabled trips)
interspersed by waiting times (or idle times) that must start and end at
the same depot. After completing a timetabled trip, a bus can either stay
at its current location before starting another timetabled trip or move to
another bus terminal to start a subsequent timetabled trip, sometimes
after some idle time. This move without passengers is called a deadhead
vailable online 26 April 2024
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trip. Pull-in and pull-out trips are special cases of deadhead trips where
the departure or arrival terminal is a depot, respectively.

Because the MDVSP is traditionally tailored to minimize only oper-
ational costs without considering the quality of the underlying service,
near-optimal bus schedules outputted by the MDVSP are often difficult
to comply with on the day of operation because they typically do
not contain much buffer time [4]. Indeed, disruptions and operational
variability, for example heavy traffic [4,5] and fluctuation of passenger
volume [4,6], can cause delays that, in turn, can make the planned
schedule infeasible when the buffer times cannot absorb these delays.
Thus, dense bus schedules (i.e., schedules with sparse buffer times) are
generally less reliable. In this work, we define schedule reliability in
terms of the invariability of service attributes and, specifically, vehicle
timeliness.

In the literature, two types of delays are distinguished: primary (or
xogenous) and secondary (or propagated) delays [4,5,7,8]. Primary
elays are a measure of the additional time required to complete a
rip due to a disruption or operational variability or, in other words,
he difference between the actual and the planned duration of a trip.

hen the buffer times of a bus schedule do not allow a full recovery
f primary delays, secondary delays are encountered. The secondary
elay of a trip is the difference between its actual departure time and
ts planned departure time. Because primary delays are considered un-
voidable [7,8] and agencies only have control over secondary delays
uring the operational planning step, secondary delays are commonly
sed in the literature as a measure of the reliability of a bus schedule.
n what follows, this measure is also used.

This work approaches the MDVSP from a stochastic perspective in
n attempt to reduce the propagation of delays in vehicle schedules
nd hence increase their reliability. Our main contributions are (i) we
ormulate a data-driven model for the reliable MDVSP with stochastic
ravel time (R-MDVSP-STT) that considers an objective function that
ombines the operational costs and a penalty for the secondary delays,
ii) we introduce a column generation algorithm for solving the R-
DVSP-STT that gives an exact lower bound on the solution value,

s fast enough to be suitable for large-scale instances and is highly
daptable, (iii) we define three reliability metrics to evaluate the solu-
ions of the R-MDVSP-STT, and (iv) we show throughout computational
ests on five real-world instances of the city of Montréal that our
pproach provides solutions that form an approximate Pareto front
ith good trade-offs between operational costs and the three reliability
etrics. The best probabilistic model for predicting the travel time
istributions of the Montréal bus network, as well as its features and
arameters, were selected in a previous work [9] based on a dataset of
arious attributes of more than 41,000 trips collected over a two-month
eriod.

The remainder of this paper is organized as follows. In Section 2,
e discuss related works on the MDVSP and methods for addressing
DVSP reliability. The R-MDVSP-STT model and the integration of a

eliability measurement and control method into the model are detailed
n Section 3. Section 4 introduces the branch-and-price algorithm used
o solve the R-MDVSP-STT. Notably, we explain how vehicle schedules
re generated in the column generation algorithm by solving shortest
ath problems with stochasticity. Three reliability metrics to evaluate
he quality of the R-MDVSP-STT solutions are presented in Section 5
ith a Monte Carlo simulation to compute them. Section 6 evaluates

he heuristic performance of the R-MDVSP-STT as well as the trade-off
etween operational costs and reliability, in terms of the three relia-
ility metrics proposed, and compares the results of the R-MDVSP-STT
ith those of the MDVSP with mandatory buffer times on large-scale

nstances. The robustness and effectiveness of our method are analyzed
n Section 7 for edge cases and relatively small instances. Section 8
ummarizes our findings.
2

a

. Literature review

The MDVSP has been studied since the 1970s [10], but exact algo-
ithms have been proposed only since the end of the 1980s including
hose of Carpaneto et al. [11], Ribeiro and Soumis [12], Löbel [13],
ischetti et al. [14], Hadjar et al. [15], and Kliewer et al. [16]. The
ork of Ribeiro and Soumis [12] was a breakthrough that has paved

he way for other exact algorithms. The authors proposed to first model
he MDVSP using an integer multicommodity flow formulation and
hen reformulated it by applying a Dantzig–Wolfe decomposition to
btain a set-partitioning formulation, where each variable is associ-
ted with a feasible vehicle schedule. This model can be solved by
column generation algorithm (branch-and-price) that generates new

olumns (i.e., vehicle schedules) by solving shortest path problems.
his algorithm was later enhanced to a branch-price-and-cut algorithm
y Hadjar et al. [15] who introduced valid inequalities and a variable
ixing technique. Based on a multicommodity flow formulation similar
o that of Ribeiro and Soumis [12], Löbel [13] developed a column
eneration algorithm that dynamically generates the arc flow vari-
bles of this formulation. However, instead of pricing these variables
ndividually, a so-called Lagrangian pricing which prices groups of
ariables based on two different Lagrangian relaxations is performed.
ater, Kliewer et al. [16] modeled the MDVSP using a time-space
etwork. This type of network contains far fewer arcs and variables
han the networks considered by the above authors. The resulting
rc-flow model can then be solved using a commercial mixed-integer
rogramming (MIP) solver. Furthermore, there are a number of VSP
nd MDVSP extensions including, among others, the (MD)VSP with
ime windows [17] and the mixed-fleet (MD)VSP [18–20]. We refer
nterested readers to Bunte and Kliewer [21], Desaulniers and Hickman
1] for a detailed review on the VSP, the MDVSP, and some of their
xtensions.

Methods found in the literature to address the timeliness of buses
hen forming bus schedules can be divided into two families: dynamic

or online, real-time) and static (or offline) methods. This work focuses
n static methods, which continue to be essential for many public trans-
ort agencies due to technological and logistical considerations. First,
ynamic approaches necessitate technological support for real-time
ommunication between buses and decision-makers [22]. However,
stablishing and maintaining such technological infrastructure can be
ostly and may not be readily available in all urban environments.
econd, vehicle schedules must comply with local employment reg-
lations and collective agreements (where applicable), and respect
rivers’ transfer points. Any deviation from these rules can be costly; for
xample, extending a driver’s working day can result in high overtime
osts. Dynamic approaches require continuous validation of schedules
gainst these criteria, which complicates their implementation in prac-
ice. As a result, many transport agencies decide to react dynamically
nly in the event of major disruptions, and therefore rely mainly
n static approaches. Nevertheless, it is noteworthy to mention the
orks of Huisman et al. [23], He et al. [24], who developed solution
pproaches to the dynamic VSP. After a major disruption, dynamic VSP
elps recover feasible schedules by rescheduling online new vehicle
tineraries.

Table 1 provides a summary of the relevant literature on offline
odels and solution approaches for the reliable (MD)VSP, in particular

he works of Kramkowski et al. [7], Naumann et al. [5], Shen et al.
25], van Kooten Niekerk [26], Amberg et al. [4], and Amberg et al.
8]. The columns display the problem type (either single-depot or
ulti-depot), whether full delay propagation is considered or not (Full
elay propa.), whether a stochastic programming approach is used
r not (Stoch. program.), the type of model proposed (Model), the
olution method (Sol. method), and the size of the largest instance
olved. Instances with fewer than 500 trips, between 500 and 1000
rips, and more than 1000 trips are classified as ‘‘small’’, ‘‘medium’’,

nd ‘‘large’’, respectively. Kramkowski et al. [7] presented an offline
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Table 1
Overview of offline methods for the reliable (MD)VSP.

Author(s) Problem Full delay Stoch. Model Sol. method Instance
propa. program. size

Kramkowski et al. [7] single-depot ∙ MCF MH large
Naumann et al. [5] single-depot ∙ NF BC small
Shen et al. [25] single-depot ∙ ∙ NF H small
van Kooten Niekerk [26] single-depot ∙ NF BC large
Amberg et al. [4] single-depot ∙ MCF CG,LR medium
Amberg et al. [8] multi-depot ∙ MCF CG,LR medium
This paper multi-depot ∙ ∙ SPP CG large

Model: MCF — multi-commodity, NF — network flow, SPP — set partitioning. Sol. method: MH — metaheuristic, BC — branch-and-cut, H —
heuristic, CG — column generation, LR — Lagrangian relaxation.
p
e
f
e
e

metaheuristic to increase the reliability (or delay-tolerance) of the
solutions of the VSP with multiple vehicle types. From an initial so-
lution computed as in Kliewer et al. [16], a simulated annealing for
noisy environments (SANE) seeks valid neighboring solutions. The
method provided small reliability improvements, but SANE appears to
be unable to find solutions with higher reliability gains. A stochas-
tic programming framework for the VSP with stochastic travel time
was proposed by Naumann et al. [5]. The network of Kliewer et al.
[16] (i.e., a time-space network) is expanded with extra waiting and
deadhead arcs in order to add a penalty in the arc cost for delays
between pairwise consecutive timetabled trips (full delay propagation
was not implemented). In experiments on a real-life instance and 100
delay scenarios, several solutions using the same number of vehicles
and with lower penalty costs than the deterministic approach were
found. Shen et al. [25] introduced two models for the VSP with stochas-
tic travel time featuring stochastic trip compatibility (i.e., negative
buffer times are allowed), stochastic idle time, and a penalty for arc
infeasibility. The first model considers only delays between pairwise
consecutive trips, whereas the second enhanced model considers full
delay propagation. A hybrid solution approach combining a matching-
based heuristic and a greedy local search is proposed for the model
considering full delay propagation. Experimental results showed that
both models provide more reliable solutions than the deterministic
model while using the same number of vehicles. The model considering
full delay propagation achieved higher punctuality than the first model
with a little increase in costs. van Kooten Niekerk [26] introduced the
stochastic departure time dependent vehicle scheduling problem. The
model allows negative buffer times and the cost of the arcs between
pairs of trips is modified to include a cost for secondary delays. Dif-
ferent cost calculations with delay propagation between a maximum
of two trips were compared to assess the potential of an approach
incorporating full delay propagation. After carrying out computational
experiments, the authors concluded that accounting for the propagation
of delays over longer trip sequences in their model promised little
benefit. Solutions 2 to 3% more reliable than the baseline approach
of imposing minimum buffer times were achieved. The work of Am-
berg et al. [8] is an extension of Amberg et al. [4] and they both
address the sequential, partially integrated, and integrated vehicle and
crew scheduling problems. In both works, the VSP is modeled as a
multi-commodity problem with an underlying time-space network. In
the first paper, mandatory buffer times between trips covered by the
same vehicle are imposed. Furthermore, novel decomposition schemes
of flows (i.e., bundles of equal-cost solutions) taking into account
secondary delays were proposed. In Amberg et al. [8], the solution
approach of Amberg et al. [4] is used to find a good initial solution
to the Lagrangian relaxation and column generation-based algorithm
that takes into account deterministic delay propagation in vehicle and
crew duties. Experiments on real-life instances from Germany showed
that the integrated scheduling scheme provides the best trade-offs
between reliability and operational costs, compared to the sequential
and partially integrated schemes.
3

In Table 1, we can observe that among the literature on offline
approaches for the reliable (MD)VSP, the work of Shen et al. [25] is
the first to introduce a stochastic model that accounts for full delay
propagation. In their model, the cost of each arc (including a penalty
for delays) is path-dependent and so cannot be computed beforehand.
This fact renders the network flow model of Shen et al. [25] impossible
to solve using a conventional MIP solver. Consequently, their approach
remains limited to small-scale cases, such as the single-depot instance
used in their experiments. Our work addresses this scalability issue by
introducing an alternative set partitioning formulation for the MDVSP
with stochastic travel time and a tailored branch-and-price heuristic
that enables us to tackle instances of up to 2,300 trips and three depots.
The choice of our approach was guided by the needs of our industrial
partner, GIRO Inc., for a solution approach that not only handles the
large instances of medium- to large-scale transit agencies effectively but
also easily adapts to the diverse rules and constraints imposed by their
customers on vehicle schedules.

3. Mathematical model

We first present our model for the R-MDVSP-STT and then describe
how the reliability is integrated into the model.

3.1. The reliable MDVSP with stochastic travel time

Let  be a timetable of 𝑛 trips and  be a set of depots. The number
of vehicles available at depot 𝑑 ∈  is denoted 𝑏𝑑 . Given the long-term
rediction of the probability distributions of the travel time and the
xpected ridership for all trips 𝑖 ∈  , the R-MDVSP-STT consists of
inding feasible vehicle schedules over a one-day horizon that cover
very trip 𝑖 ∈  exactly once while respecting vehicle availability at
ach depot 𝑑 ∈ . The R-MDVSP-STT is a bi-objective optimization

problem that aims at minimizing the operational costs (including a
fixed cost per vehicle used and variable costs) and, at the same time,
maximizing a given service reliability metric. In order to find near
Pareto-efficient solutions, we use a linear scalarization method [27].
Consequently, the R-MDVSP-STT is reformulated as a single-objective
optimization problem by balancing the values of the two objectives by
a weighting factor 𝛽.

A vehicle schedule is defined as a sequence of trips starting and
ending at a depot. The first trip of a vehicle schedule is a pull-out trip
from a depot 𝑑 ∈  to the starting location of the first timetabled
trip of the schedule and the last trip is a pull-in trip from the end
location of the last timetabled trip of the schedule to 𝑑. Meanwhile,
the vehicle performs connections between one or several pairs of trips
𝑖 and 𝑗 ∈  . If trip 𝑖 ends at the same location as the starting location
of trip 𝑗, the vehicle remains at the same location and may have
to wait at the terminal. Otherwise, the vehicle performs a deadhead
trip (i.e., a trip without passengers) from the end location of trip 𝑖
to the starting location of trip 𝑗. Note that due to data availability

constraints, we are considering deterministic travel times for pull-in,
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pull-out, and deadhead trips. These trips are usually short and do not
involve passengers, thus eliminating one main source of travel time
variability. However, if data become available in the future, a similar
approach could incorporate stochastic pull-in, pull-out, and deadhead
travel times.

A vehicle schedule is deemed feasible if it starts and ends at the
same depot 𝑑 ∈  and contains a sequence of pairwise compatible
timetabled trips. Let 𝜅𝑖,𝑗 be the deterministic deadhead travel time
between the end location of trip 𝑖 and the starting location of trip 𝑗
and let 𝜏 be the minimum layover time between two trips. Trips 𝑖 and
𝑗 ∈  are deemed compatible if 𝑑1𝑖 + 𝜅𝑖,𝑗 + 𝜏 ≤ 𝑑0𝑗 , where 𝑑0𝑗 and 𝑑1𝑖 are
the departure and the arrival time of trips 𝑗 and 𝑖, respectively. Let 
e the set of all feasible vehicle schedules and 𝑑 ⊂  be the subset
f these schedules starting and ending at the depot 𝑑 ∈ , such that

 =
⋃

𝑑∈ 𝑑 .
The proposed model for the R-MDVSP-STT uses the following ad-

ditional notation. For every vehicle schedule 𝑠 ∈  and trip 𝑖 ∈  ,
et 𝑦𝑠 be a binary variable that takes value 1 if vehicle schedule 𝑠
s used in the solution and 𝑎𝑖,𝑠 be a binary parameter equal to 1 if
chedule 𝑠 covers trip 𝑖. The complete notation for the R-MDVSP-STT
s summarized in Appendix A.

The R-MDVSP-STT can be expressed as the following integer linear
rogram:

in
∑

𝑠∈
𝑐𝑠𝑦𝑠 (1)

s.t.
∑

𝑠∈
𝑎𝑖𝑠𝑦𝑠 = 1, ∀𝑖 ∈  (2)

∑

𝑠∈𝑑
𝑦𝑠 ≤ 𝑏𝑑 , ∀𝑑 ∈  (3)

𝑦𝑠 ∈ {0, 1}, ∀𝑠 ∈  , (4)

here 𝑐𝑠 is the total cost (weighted sum of the operational costs and
he cost for delays) of vehicle schedule 𝑠.

This set partitioning formulation is similar to those proposed
y Ribeiro and Soumis [12] and Hadjar et al. [15]. The only difference
s in the definition of the cost coefficients 𝑐𝑠, 𝑠 ∈ , which take into
ccount the risks of delay propagation in our model. The objective
unction (1) minimizes the total cost of the selected vehicle schedules,
hile constraints (2) ensure that each timetabled trip is covered exactly
nce by a schedule and constraints (3) ensure that vehicle availability
s respected at each depot.

Because  typically contains a huge number of schedules, it is
ot computationally efficient to enumerate them a priori. Rather, as
escribed in Section 4, a column generation algorithm is used to
dentify vehicle schedules to include in a restricted version of the
odel. This is done by solving shortest path problems by dynamic
rogramming on so-called connection networks similar to those first
ntroduced by Ribeiro and Soumis [12] and defined as follows. With
very depot 𝑑 ∈ , we associate a network 𝐺𝑑 = (𝑉𝑑 , 𝐴𝑑 ) with node
et 𝑉𝑑 =  ∪ {𝑛𝑑0 , 𝑛

𝑑
1} and arc set 𝐴𝑑 . Nodes 𝑛𝑑0 and 𝑛𝑑1 represent depot

𝑑 at the beginning and the end of the day, respectively. Three types
of arcs (𝑖, 𝑗) are defined: pull-out arcs (i.e., (𝑛𝑑𝑜 , 𝑖) for 𝑖 ∈ ), pull-
in arcs (i.e., (𝑖, 𝑛𝑑1 ) for 𝑖 ∈ ), and arcs between pairs of compatible
timetabled trips (i.e., (𝑖, 𝑗) for 𝑖, 𝑗 ∈ ). Since we consider the travel
ime of timetabled trips to be stochastic, we could also use an enlarged
etwork with additional arcs between incompatible trips, as long as
he incompatibility does not exceed a few minutes. However, these
onnections are not considered because they would imply positive
econdary delays on average, which is not welcome in practice.

A path in 𝐺𝑑 starting at the source node 𝑛𝑑𝑜 and ending at the sink
ode 𝑛𝑑1 is a feasible vehicle schedule. We define the cost of a feasible
chedule 𝑠 associated with the set of arcs 𝐴(𝑠) as

𝑠 =
∑

𝑐𝑠𝑖𝑗 , (5)
4

(𝑖,𝑗)∈𝐴(𝑠) m
Table 2
Cost of the arcs (𝑖, 𝑗) ∈ 𝐴(𝑠).

Arc (𝑖, 𝑗) Type 𝑐𝑠𝑖𝑗
(𝑛𝑑𝑜 , 𝑗) pull-out 𝜂 + 𝑟𝑇 𝜅𝑑,𝑗
(𝑖, 𝑗) connection 𝑟𝑇 𝜅𝑖,𝑗 + 𝑟𝑊 (𝑑0𝑗 − 𝑑

1
𝑖 ) + 𝛽𝑞

𝑠
𝑗

(𝑖, 𝑛𝑑1 ) pull-in 𝑟𝑇 𝜅𝑖,𝑑

where 𝑐𝑠𝑖𝑗 is the cost of the arc (𝑖, 𝑗) when it is covered by vehicle
chedule 𝑠, defined as shown in Table 2. In this table, 𝜂 is the cost per
ehicle used, 𝑟𝑇 is the cost per minute of travel, 𝜅𝑑,𝑖 and 𝜅𝑖,𝑑 are the
eadhead travel times between the depot 𝑑 and the starting location
f trip 𝑖 and the end location of trip 𝑖 and the depot 𝑑, respectively,
𝑊 is the cost per minute of waiting outside a depot, and 𝑞𝑠𝑖 is the
ost associated with potential delays in trip 𝑖 when it is covered by
ehicle schedule 𝑠. The cost of connection arcs is a weighted sum
f the operational costs and the cost for delays (𝑞𝑠𝑖 ), with 𝛽 as the
eighting factor. The latter cost 𝑞𝑠𝑖 is path-dependent and its value will
e discussed in Section 3.2. Notice that, given a schedule, the costs for
eadheading and for waiting outside a depot are deterministic, whereas
he delay penalty is stochastic. Hence, even if the waiting time may be
sed to absorb delays due to travel time deviations, we have chosen to
onsider predefined costs for waiting outside the depot to simplify the
roblem. Since these costs are relatively small compared to the overall
ost for the value of 𝑟𝑊 set in our experiments, this simplification does
ot alter our conclusions.

To avoid excessive congestion at the terminals and long idle time
or the drivers, we impose a threshold 𝛥 on the waiting time 𝑑0𝑗 − 𝑑1𝑖
etween two consecutive trips 𝑖 and 𝑗 ∈  . If the waiting time exceeds
, the vehicle must move to the nearest depot after completing trip 𝑖,
ait at the depot, and then move to the starting location of trip 𝑗. We
odified slightly the connection network of Ribeiro and Soumis [12]

o account for this constraint by adding a new type of connection that
rtificially includes the wait-at-depot. The cost of such a connection is
omputed by summing the additional costs for the travel time between
he end location of trip 𝑖 and the depot and between the depot and the
tarting location of trip 𝑗. These modified connections avoid the use of
ull-in and pull-out arcs for waiting at a depot, so that an additional
ehicle is not counted for each waiting at a depot.

.2. Controlling schedule reliability

Delay propagation between all consecutive timetabled trips of a
chedule is penalized in the objective function of the R-MDVSP-STT in
n attempt to increase the reliability of the selected vehicle schedules.
or each 𝑖 ∈  and 𝑠 ∈ , we define the cost for delays as 𝑞𝑠𝑖 =
𝑖E(𝑋𝑠

𝑖 ), where 𝛼𝑖 is the relative passenger flow (or demand volume)
n trip 𝑖 such that ∑

𝑖∈ 𝛼𝑖 = 1, 𝑋𝑠
𝑖 is a random variable representing

he secondary delay of trip 𝑖 when it is covered by schedule 𝑠, and
(𝑋𝑠

𝑖 ) its expectation. The parameters 𝛼𝑖, 𝑖 ∈  , put more weight on
elays incurred during timetabled trips with a high ridership in the cost
unction so that, for example, the penalty assigned to a delayed peak
our trip is larger than the one assigned to a delayed off-peak hour trip,
hen the delays of both trips are of the same magnitude.

To be able to compute the expected secondary delay of each trip
∈  covered by any schedule 𝑠 ∈ , an estimate of the discretized
robability density function of the travel time of each timetabled trip
s given in input to the R-MDVSP-STT. These estimations are taken
rom Ricard et al. [9] that compared many probabilistic models for the
ong-term prediction of the density of the travel time (PDTT). The PDTT
s framed as a supervised learning problem that aims at predicting, for
ach trip in a set of unseen (or future) trips, the probability density
unction of its travel time based on its attributes (e.g., day of the week,
istance, scheduled departure time, etc.). Several models were trained
nd tested on a 2-month dataset of the Montréal bus network including

ore than 41,000 trips collected by in-car Advanced Public Transport
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Systems (APTS). A similarity-based density estimation model using a 𝑘-
nearest neighbors method and a log-logistic distribution provided the
best results, both in terms of the estimation of the true conditional
probability density function of the travel time and the approximation
of the expected secondary delays, on this dataset. Thus, this model
(and its selected features and parameters) is used here to estimate
the probability density function of the travel time of each timetabled
trip. Then, for any given vehicle schedule 𝑠 ∈ , the probability mass
function of 𝑋𝑠

𝑖 for all 𝑖 ∈ 𝑠 is recursively computed based on the latter
travel time distributions from the first to the last timetabled trip of the
schedule. Next, we discuss the discretization of the probability density
functions of the travel time and the derivation of the probability mass
functions of 𝑋𝑠

𝑖 for each 𝑖 ∈  and 𝑠 ∈ .
First, for each trip 𝑖 ∈  , let 𝑇̇𝑖 be a random variable representing

its actual travel time and let ℎ̇𝑖(𝑡) = 𝑃𝑟(𝑇̇𝑖 = 𝑡) be the probability
density function of 𝑇̇𝑖. The actual travel time 𝑇̇𝑖 for all 𝑖 ∈  varies from
day-to-day due to random disruptions and demand or capacity reasons
that can either be internal or external to the bus network [28,29]. Due
to data availability constraints and for simplicity, we assume that this
uncertainty is exogenous to resource allocation or, in other words, that
ℎ̇𝑖(𝑡), for each 𝑖 ∈  , stays the same regardless of the selected bus
schedules.

In order to obtain a finite number of possible outcomes, we trans-
pose 𝑇̇𝑖, for all 𝑖 ∈  , onto a discrete space by allocating the density
of all non-integer travel times to the closest rounded down travel
time (using minutes as time unit). Furthermore, for each 𝑖 ∈  , we
truncate the distribution of 𝑇̇𝑖 below its 5th percentile and over its
95th percentile. Let 𝑡̇5𝑖 and 𝑡̇95𝑖 be the value of 𝑇̇𝑖 at the 5th and 95th
percentiles of its probability distribution, respectively. For each 𝑖 ∈  ,
et 𝑇𝑖 be defined over 𝛷𝑖 as

𝑖 = {
⌊

𝑡̇5𝑖
⌋

,
⌊

𝑡̇5𝑖
⌋

+ 1,… ,
⌊

𝑡̇95𝑖
⌋

− 1,
⌊

𝑡̇95𝑖
⌋

}, (6)

nd let ℎ𝑖(𝑡) be the probability mass function with a discrete finite sup-
ort of 𝑇𝑖, where the density of 𝑃𝑟(𝑇̇𝑖 <

⌊

𝑡̇5𝑖
⌋

) and 𝑃𝑟(𝑇̇𝑖 ≥
⌊

𝑡̇95𝑖
⌋

+1) is uni-
formly redistributed to 𝑃𝑟(𝑇𝑖 =

⌊

𝑡̇5𝑖
⌋

), 𝑃 𝑟(𝑇𝑖 =
⌊

𝑡̇5𝑖
⌋

+ 1),… , 𝑃 𝑟(𝑇𝑖 =
⌊

𝑡̇95𝑖
⌋

)
in order to obtain a proper probability distribution (i.e., ∑𝑡∈𝛷𝑖 ℎ𝑖(𝑡) =
1).

Second, based on the above probability mass functions and consid-
ering that 𝑑0𝑖 , for all 𝑖 ∈  , 𝜅𝑖,𝑗 , for all 𝑖, 𝑗 ∈  , and 𝜏 are also stored to
the nearest minute, it is possible to derive, for a given vehicle schedule
𝑠 ∈ , the probability mass function of 𝑋𝑠

𝑖 for all 𝑖 ∈ 𝑠 as follows.
For each 𝑖 ∈ 𝑠, let 𝑌 𝑠𝑖 be a random variable representing the actual
departure time of trip 𝑖 and let 𝑓 𝑠𝑖 (𝑦) = 𝑃𝑟(𝑌 𝑠𝑖 = 𝑦) be the probability
mass function of 𝑌 𝑠𝑖 . We have developed an exact procedure inspired
by the works of Errico et al. [30] and Shen et al. [25] to recursively
compute 𝑓 𝑠𝑖 (𝑦). This procedure is as follows.

We assume that the first timetabled trip of a schedule is never
delayed, i.e., for every schedule 𝑠 ∈ , 𝑓 𝑠𝑣𝑠0

(𝑑0𝑣𝑠0
) = 1, where 𝑣𝑠0 ∈ 𝑠 is

the first timetabled trip of 𝑠. For the other trips 𝑗 ∈ 𝑠∖{𝑣𝑠0}, three cases
are distinguished: when the bus starts trip 𝑗 on time (i.e., 𝑦 = 𝑑0𝑗 ), late
(i.e., 𝑦 > 𝑑0𝑗 ), and early (i.e., 𝑦 < 𝑑0𝑗 ). The last case has zero probability
because we assume a bus cannot start ahead of time. The distribution
𝑓 𝑠𝑗 (𝑦) of a trip 𝑗 ∈ 𝑠∖{𝑣𝑠0} preceded by trip 𝑖 ∈ 𝑠 can be computed as

𝑓 𝑠𝑗 (𝑦) = 𝑃𝑟(𝑌 𝑠𝑗 = 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑘∈𝛷𝑖 ℎ𝑖(𝑘) ×
∑
𝑑0𝑗 −𝜅𝑖,𝑗−𝜏−𝑘

𝑦′=𝑑0𝑖
𝑓 𝑠𝑖 (𝑦

′), if 𝑦 = 𝑑0𝑗 ;
∑

𝑘∈𝛷𝑖 ℎ𝑖(𝑘) × 𝑓
𝑠
𝑖 (𝑦 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘), if 𝑦 > 𝑑0𝑗 ;

0, otherwise,

(7)

where, in the first case, we sum, for each travel time 𝑘 ∈ 𝛷𝑖, the travel
time probability ℎ𝑖(𝑘) multiplied by the probability that trip 𝑖 starts
before 𝑦 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘. Indeed, if a bus arrives ahead of schedule at
the starting location of a timetabled trip, it must wait until the planned
5

start time of the trip to leave on time. In the second case, we sum, for
each travel time 𝑘 ∈ 𝛷𝑖, the travel time probability ℎ𝑖(𝑘) multiplied by
the probability that trip 𝑖 starts exactly at 𝑦 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘.

Let 𝑔𝑠𝑗 (𝑥) = 𝑃𝑟(𝑋𝑠
𝑗 = 𝑥) = 𝑃𝑟(𝑌 𝑠𝑗 = 𝑑0𝑗 + 𝑥) = 𝑓 𝑠𝑗 (𝑑

0
𝑗 + 𝑥) be the

probability mass function of 𝑋𝑠
𝑗 . Its expectation is given by

E(𝑋𝑠
𝑗 ) =

𝑥𝑚𝑎𝑥𝑗,𝑠
∑

𝑥=0
𝑥 × 𝑔𝑠𝑗 (𝑥) =

𝑥𝑚𝑎𝑥𝑗,𝑠
∑

𝑥=0
𝑥 × 𝑓 𝑠𝑗 (𝑥 + 𝑑

0
𝑗 ), (8)

where 𝑖 is the trip that precedes the trip 𝑗 in schedule 𝑠 and 𝑥𝑚𝑎𝑥𝑗,𝑠 =
𝑑0𝑖 + 𝑥

𝑚𝑎𝑥
𝑖,𝑠 + 𝜅𝑖,𝑗 + 𝜏 +

⌊

𝑡̇95𝑖
⌋

− 𝑑0𝑗 is the maximum secondary delay of trip
𝑗.

Note that, by definition, 𝑌 𝑠𝑖 and 𝑋𝑠
𝑖 for all 𝑖 ∈  depend on the

travel times of the previous timetabled trips in 𝑠; their uncertainty
is therefore endogenous to resource allocation. In other words, the
random variables 𝑌 𝑠𝑖 and 𝑋𝑠

𝑖 for 𝑠 ∈  and 𝑖 ∈  are likely to have
different probability distributions than 𝑌 𝑠′𝑖 and 𝑋𝑠′

𝑖 for 𝑠 ≠ 𝑠′ ∈ .
Hence, it is not possible to compute 𝑌 𝑠𝑖 and 𝑋𝑠

𝑖 for all 𝑖 ∈  and
𝑠 ∈  beforehand because, as mentioned earlier, vehicle schedules
are not enumerated but rather generated dynamically when solving the
R-MDVSP-STT.

Overall, we have shown in this section how to compute, for a given
vehicle schedule, the convolution of the probability mass function of
the secondary delay of every timetabled trip in the schedule. These
distributions are used to assess the reliability of the schedule, mea-
sured by the total expected secondary delay per passenger. With this
information, a decision maker can then address the trade-off between
operational costs and the expected secondary delay per passenger by
adjusting the weighting factor 𝛽 that controls the importance given to
the penalty for unreliability.

4. Heuristic branch-and-price algorithm for the R-MDVSP-STT

In real-life R-MDVSP-STT instances, there exists a very large number
of feasible vehicle schedules. Instead of explicitly enumerating the
corresponding variables in the integer program (1)–(4), we propose
to solve the R-MDVSP-STT using a column generation algorithm [31,
32] embedded in a branch-and-bound tree. This solution method is
also referred to as branch-and-price [33]. Furthermore, we propose to
use acceleration strategies to obtain integer solutions in a reasonable
amount of time. On the one hand, we use a heuristic branching strategy
and, on the other hand, we apply a perturbation method to reduce the
strong degeneracy inherent to the set partitioning model (1)–(4).

The algorithmic framework of our tailored branch-and-price algo-
rithm is illustrated in Fig. 1. First, we consider the linear relaxation of
(1)–(4). This relaxation, which is called the master problem (MP), is
solved at the root node of the branch-and-bound tree using a column
generation algorithm. In each iteration of the column generation algo-
rithm, a restricted MP (RMP), i.e., the MP restricted to a small subset
 ′ ⊆  of the schedule variables 𝑦𝑠, is solved. To identify potentially
useful columns to add to the RMP, we solve a set of pricing problems.
In our case, there is one pricing problem per depot, corresponding to
a shortest path problem with stochasticity [34,35]. If we find vari-
ables with a negative reduced cost after solving the stochastic pricing
problems, we add them to  ′, initiating a new column generation
iteration. Otherwise, the column generation algorithm terminates, and
the current RMP solution is guaranteed to be optimal for the MP.
Subsequently, if the solution to the RMP is integer and its cost is
less that the current upper bound (UB), we update the UB. If this
solution is not integer but its cost is still less than the current UB,
we either apply a branching strategy or remove the perturbation and
add the corresponding node(s) to the node list. The branch-and-bound
algorithm then checks whether there are any nodes left in the node list.
If there are, a node is removed from the list, and its corresponding MP
is solved using the column generation algorithm. The branch-and-price
algorithm stops when the node list is empty.

The stochastic pricing problems as well as the two acceleration
strategies used, namely a heuristic branching strategy and a perturba-
tion method, are detailed in the following.
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Fig. 1. Flowchart of the branch-and-price algorithm.
4.1. Stochastic pricing problems

The pricing problem for depot 𝑑 is defined on the acyclic network
𝐺𝑑 (see Section 3.1) with modified arc costs as detailed next. Let (𝑢𝑖)𝑖∈
and (𝜋𝑑 )𝑑∈ be the dual variables associated with constraints (2) and
(3), respectively. The reduced cost 𝑐𝑠 of a vehicle schedule 𝑠 ∈ 𝑑

housed in depot 𝑑 is given by

𝑐𝑠 = 𝑐𝑠 −
∑

𝑖∈
𝑎𝑖𝑠𝑢𝑖 − 𝜋𝑑 , (9)

with the following cost breakdown per arc

𝑐𝑠𝑖𝑗 =

{

𝑐𝑠𝑖𝑗 − 𝜋𝑑 , if 𝑖 = 𝑛𝑑0 ;
𝑐𝑠𝑖𝑗 − 𝑢𝑖, if 𝑖 ∈  .

(10)

Because the arc costs are stochastic and path-dependent in the
R-MDVSP-STT, the standard labeling algorithm [31] cannot be used
directly to solve the pricing problems. The dependence assumption is
crucial because, as explained by Wellman et al. [34], if the arc costs
were stochastic but independent (i.e., if the probability mass function
of the secondary delay at each node did not depend on the ones of
the previous nodes in the path), the expected arc costs could be used
directly in the standard labeling algorithm. Faced with path-dependent
uncertainty, we must therefore use the modified version of the labeling
algorithm proposed by Wellman et al. [34] and Boland et al. [35] which
employs a stochastic dominance criterion.

This modified version of the labeling algorithm simultaneously
extends multiple paths in 𝐺𝑑 until they reach the sink node (i.e., the
depot). Each of these paths is obtained by starting from a trivial path
𝑝 and extending it by adding one vertex at a time. A vertex can be
added to a path if the corresponding extended path is feasible with
respect to path-structural constraints. The probability mass functions of
the propagated delay and the reduced costs are used in the algorithm to
‘‘discard paths which are not useful either to build a Pareto-optimal set
of paths or to be extended into Pareto-optimal paths’’[31]. This ability
is indeed essential to efficient dynamic programming algorithms [31].
In the R-MDVSP-STT, two paths are not comparable if one has a lower
reduced cost than the other, but higher chances of being unreliable. In
6

this case, no path dominates the other and therefore no path can be
discarded.

The labeling algorithm efficiently encodes paths using labels. Each
label contains information useful to identify paths that can be safely
discarded. We refer interested readers to the work of Ahuja et al. [36]
for an overview of the subject. Next, we define the labels, the extension
functions of these labels (i.e., a procedure to compute a label from a
previous label), and the stochastic dominance rule used in the dynamic
programming algorithm.

4.1.1. Labels
Each label stores a representation of the actual departure time and

the accumulated reduced cost. As of now, many variables and parame-
ters, notably the arc costs and the probability distributions of both the
actual departure time and the secondary delay of each timetabled trip,
have been defined in terms of the vehicle schedule covering them. We
extend these definitions to consider their counterparts in terms of the
path that covers each timetabled trip. To simplify notation, subscripts 𝑠
and 𝑝, associated with a vehicle schedule and a path, respectively, are
used interchangeably in the following.

For each path 𝑝 in 𝐺𝑑 and each trip 𝑖 ∈  included in 𝑝 (written as
𝑖 ∈ 𝑝 afterwards), let 𝐹 𝑝𝑖 (𝑧) be the cumulative distribution function of
𝑌 𝑝𝑖 defined as

𝐹 𝑝𝑖 (𝑧) =
𝑧
∑

𝑦=𝑑0𝑖

𝑓 𝑝𝑖 (𝑦). (11)

The actual departure time of a trip 𝑖 ∈ 𝑝 is represented by 𝐹 𝑝𝑖 (𝑧)
instead of 𝑓 𝑝𝑖 (𝑦) because, as we will explain in the following, the former
is directly used in the dominance rule. The label 𝐿𝑝𝑖 of path 𝑝 at node
𝑖 is defined as

𝐿𝑝𝑖 = (𝐹 𝑝𝑖 (𝑑
0
𝑖 ),… , 𝐹 𝑝𝑖 (𝑑

0
𝑖 + 𝑥

𝑚𝑎𝑥
𝑖,𝑝 ), 𝐶𝑝𝑖 ), (12)

where 𝐶𝑝𝑖 is the current accumulated reduced cost of path 𝑝.

4.1.2. Extension functions
Consider the extension of a label 𝐿𝑝

′

𝑖 = (𝐹 𝑝
′

𝑖 (𝑑0𝑖 ),… , 𝐹 𝑝
′

𝑖 (𝑑0𝑖 +
𝑥𝑚𝑎𝑥), 𝐶𝑝

′
) associated with node 𝑖 along the arc (𝑖, 𝑗) to create a new
𝑖,𝑝′ 𝑖



Omega 127 (2024) 103100L. Ricard et al.

4

t
m

label 𝐿𝑝𝑗 at node 𝑗. First, the equations for the 𝑥𝑚𝑎𝑥𝑗,𝑝 components of type
𝐹 𝑝𝑗 (⋅) are derived from Eq. (7) as detailed in Appendix B. This derivation
results in

𝐹 𝑝𝑗 (𝑧) =
∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘) × 𝐹
𝑝′
𝑖 (𝑧 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘). (13)

When extending a label to the sink node, it is not necessary to
update information on the actual departure time, because a bus cannot
be delayed once it is back at the depot.

Second, 𝐶𝑝𝑗 can be decomposed into route segments (see Eq. (10)
for the cost breakdown per arc) as

𝐶𝑝𝑗 = 𝐶𝑝
′

𝑖 + 𝑐𝑝𝑖,𝑗 , (14)

where 𝑐𝑝𝑖,𝑗 is path-dependent if 𝑖, 𝑗 ∈  .

.1.3. Stochastic dominance rule
Consider two paths 𝑝1 and 𝑝2 in 𝐺𝑑 both ending at node 𝑖 ∈

 (that is, 𝑖 is the resident node of 𝑝1 and 𝑝2) with labels 𝐿𝑝1𝑖 =
(𝐹 𝑝1𝑖 (𝑑0𝑖 ),… , 𝐹 𝑝1𝑖 (𝑑0𝑖 + 𝑥

𝑚𝑎𝑥
𝑖,𝑝1

), 𝐶𝑝1𝑖 ) and 𝐿𝑝2𝑖 = (𝐹 𝑝2𝑖 (𝑑0𝑖 ),… , 𝐹 𝑝2𝑖 (𝑑0𝑖 + 𝑥
𝑚𝑎𝑥
𝑖,𝑝2

),
𝐶𝑝2𝑖 ), respectively. The path 𝑝1 dominates 𝑝2 (and therefore 𝑝2 can be
discarded) when the following two conditions hold:

1. 𝐶𝑝1𝑖 ≤ 𝐶𝑝2𝑖 ,
2. 𝐹 𝑝1𝑖 (𝑧) ≥ 𝐹 𝑝2𝑖 (𝑧), for all 𝑧 ∈ {𝑑0𝑖 , 𝑑

0
𝑖 + 1,… , 𝑑0𝑖 +max{𝑥𝑚𝑎𝑥𝑖,𝑝1

, 𝑥𝑚𝑎𝑥𝑖,𝑝2
}}.

The first condition is straightforward, but we will explain in further
detail the second one. In the shortest path problem with stochasticity,
the uncertain element is the cost of the arcs and, more specifically,
the cost for delays. Even though the arc costs are computed using the
expected secondary delays, the dominance condition cannot be based
on the mathematical expectation, because the probability distributions
of secondary delays are path-dependent. For example, consider again
the two paths 𝑝1 and 𝑝2. If E(𝑋𝑝1

𝑖 ) ≤ E(𝑋𝑝2
𝑖 ), it does not necessarily

imply if we extend 𝑝1 and 𝑝2 with node 𝑗 ∈  that E(𝑋𝑝1⊕𝑗
𝑗 ) ≤ E(𝑋𝑝2⊕𝑗

𝑗 ),
where 𝑝𝑘 ⊕ 𝑗, 𝑘 = 1, 2, denotes the path resulting from appending node
𝑗 to path 𝑝𝑘. Thus, a stochastic dominance condition based on the
cumulative distribution functions of the actual departure time is used
instead. When 𝐹 𝑝1𝑖 (𝑧) ≥ 𝐹 𝑝2𝑖 (𝑧) for some 𝑧 ≥ 𝑑0𝑖 , it means that 𝑃𝑟(𝑌 𝑝1𝑖 >
𝑧) ≤ 𝑃𝑟(𝑌 𝑝2𝑖 > 𝑧) (i.e., path 𝑝1 is less likely to start trip 𝑖 after time 𝑧).
The latter situation is desirable as it means that 𝑝1 is more likely to start
on time. If it holds for all 𝑧 ∈ {𝑑0𝑖 , 𝑑

0
𝑖 +1,… , 𝑑0𝑖 +max{𝑥𝑚𝑎𝑥𝑖,𝑝1

, 𝑥𝑚𝑎𝑥𝑖,𝑝2
}} (i.e., if

the second condition holds), then 𝑝1 is undoubtedly more reliable than
𝑝2 and if we extend 𝑝1 and 𝑝2 along the same path, the extension of
𝑝1 will be at least as reliable as the extension of 𝑝2. An example of
this case is illustrated in Fig. 2(a). This figure and Fig. 2(b) display
the probability mass functions (PMF) and the cumulative distribution
functions (CDF) of the actual departure time of the resident node 𝑖 ∈ 
of two paths 𝑝1 and 𝑝2 in 𝐺𝑑 . If both conditions hold, then 𝑝2 and
the extension of 𝑝2 are dominated by 𝑝1 and its extension. Path 𝑝2
can thus be discarded. If the second condition does not hold for some
𝑧 ∈ {𝑑0𝑖 , 𝑑

0
𝑖 +1,… , 𝑑0𝑖 +max{𝑥𝑚𝑎𝑥𝑖,𝑝1

, 𝑥𝑚𝑎𝑥𝑖,𝑝2
}}, as in the example in Fig. 2(b),

it is not clear if 𝑝1 or 𝑝2 is more reliable. For example, 𝑃𝑟(𝑌 𝑝1𝑖 > 𝑑0𝑖 +1) <
𝑃𝑟(𝑌 𝑝2𝑖 > 𝑑0𝑖 + 1), but 𝑃𝑟(𝑌 𝑝1𝑖 > 𝑑0𝑖 + 2) > 𝑃𝑟(𝑌 𝑝2𝑖 > 𝑑0𝑖 + 2). Thus, both
paths are kept.

4.2. Heuristic branching

An exact branch-and-price algorithm [33] can derive an optimal
solution to a MDVSP. However, medium- and large-scale MDVSP in-
stances are difficult to solve using exact methods because too many
branch-and-bound nodes need to be explored. To avoid exploring too
many nodes, we apply one type of branching decision combined with a
variable rounding strategy. First, we branch on the number of vehicles
used per depot. This decision leads to the creation of one or two child
nodes with upper and lower bounds on the capacity of a given depot.
Second, we impose the rounding of multiple schedule variables. When
7

this strategy is selected, a single node with one or several schedule
variables fixed to 1 is created. To select the variable(s) fixed to 1, all
the variables are first sorted in descending order of their fractional
value. Then, a maximum of three variables with a fractional part
greater than or equal to 0.9, namely, those with the largest fractional
parts, are selected. If there are fewer than three variables fulfilling this
condition, only one or two variables are selected, and if no variable
has a fractional part greater than or equal to 0.9, the first variable in
the list, i.e., the one with the largest fractional part, is selected. Note
that the values of the maximum number of variables to round and of
the fractional part threshold have been determined empirically during
a preliminary test campaign.

For medium-sized instances (less than 1,400 timetabled trips), the
first technique (i.e., branching on the number of vehicles used per
depot) is applied in priority. When this number is integer for all depots,
the algorithm switches to rounding schedule variables to yield integer
solutions. Our experimental results suggest that when this branching
decision and this strategy are used to partially explore the branch-
and-bound search tree, a good trade-off between computing time and
solution quality is achieved. When the number of timetabled trips
exceeds 1,400, the latter approach is not sufficient to reduce the
computing time and only the rounding strategy is applied. Thus, only
one branch is explored, which is equivalent to a diving heuristic. Our
experimental results show that this does not significantly sacrifice the
quality of the derived solutions.

4.3. Constraint perturbation

Problems like (1)–(4) generally exhibit a high degree of degeneracy.
In order to cope with this issue, we use a constraint perturbation
strategy [37]. We introduce perturbation variables 𝜂+𝑖 and 𝜂−𝑖 that allow
limited under- and over-covering of trip 𝑖 for all 𝑖 ∈  , respectively. The
perturbed MP is defined as

min
∑

𝑠∈
𝑐𝑠𝑦𝑠 +

∑

𝑖∈
(𝛿+𝑖 𝜂

+
𝑖 + 𝛿−𝑖 𝜂

−
𝑖 ) (15)

s.t.
∑

𝑠∈
𝑎𝑖𝑠𝑦𝑠 + 𝜂+𝑖 − 𝜂−𝑖 = 1, ∀𝑖 ∈  (16)

∑

𝑠∈𝑑
𝑦𝑠 ≤ 𝑏𝑑 , ∀𝑑 ∈  (17)

0 ≤ 𝜂+𝑖 ≤ 𝜉+𝑖 , ∀𝑖 ∈  (18)

0 ≤ 𝜂−𝑖 ≤ 𝜉−𝑖 , ∀𝑖 ∈  (19)

0 ≤ 𝑦𝑠 ≤ 1, ∀𝑠 ∈  , (20)

where 𝛿+𝑖 and 𝛿−𝑖 are the penalties in the objective function for under-
and over-covering trip 𝑖 ∈  , respectively, and 𝜉+𝑖 and 𝜉−𝑖 are the upper
bounds of 𝜂+𝑖 and 𝜂−𝑖 , respectively, for every trip 𝑖 ∈  . Perturbation is
removed when no other branching decision or strategy can be applied.

5. Assessing schedule reliability

To mitigate delay propagation, the R-MDVSP-STT selects vehicle
schedules that typically include buffers to absorb recurring delays.
Pushed to the extremes, the lowest level of reliability is achieved
when these schedules contain no buffer and the highest level when a
different vehicle is assigned to each timetabled trip (i.e., the number
of vehicles is equal to the number of timetabled trips). However, the
former solution is likely to displease passengers and the latter is highly
cost-inefficient. The problem is thus to address the trade-off between
operational costs and the expected secondary delay per passenger. This
is done by adjusting the factor 𝛽 in the cost of connection arcs (see
Table 2). After solving several times the R-MDVSP-STT while adjusting
the factor 𝛽, it is possible to compare more carefully the solutions
hereby obtained. In this respect, we define next three new reliability
etrics that planners can use as a decision-support tool to navigate
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Fig. 2. Examples of the second dominance condition applied to the trip 𝑖 of paths 𝑝1 and 𝑝2.
the trade-off between operational costs and reliability when faced with
multiple feasible vehicle scheduling solutions, helping them select the
most suitable one. Furthermore, we provide a Monte Carlo simulation
framework [38,39] to compute these metrics.

5.1. Reliability metrics

The reliability of a bus service can be assessed at various levels,
including the stop, route, and network levels [40]. It can also be evalu-
ated from both the passenger and operator perspectives [41,42]. van
Oort [42] pointed out that reliability metrics are typically designed
with a focus on the operator’s viewpoint, primarily considering vehicles
rather than passengers and their perception of service reliability. They
recommended that the actual number of passengers be factored into
the aggregation of reliability metrics, in order to take account of pas-
sengers’ interests. Additionally, different reliability metrics are defined
in the literature for frequent services (with headways of 10 min or
less) and infrequent services. For frequent services, passengers arrive
randomly at bus stops, making headway regularity the most critical
factor [40]. On the other hand, for infrequent services, on-time per-
formance is typically the primary indicator because passengers plan
their arrival time at the bus stop [43]. Various reliability metrics have
been proposed in the literature, e.g., metrics related to travel time and
waiting time, punctuality, headway variability, additional budgeted
travel time, and overcrowding [see, e.g., 40–44].

When solving the MDVSP, operators can only adjust the allocation
of buffer time between timetabled trips to enhance schedule reliability.
Therefore, in the context of the MDVSP with infrequent service, the
most common and relevant approach to measure service reliability
is to look at service punctuality, specifically focusing on secondary
delays (as seen in works by [4,7,8,26]).

Building upon the insights from the literature, we propose to com-
pare the R-MDVSP-STT solutions using the following punctuality met-
rics: the expected secondary delay per passenger, the probability that
a passenger boards a delayed timetabled trip, and the average number
of timetabled trips needed to recover from secondary delays. The first
two metrics are inspired by the ones proposed in Kramkowski et al. [7]
and Amberg et al. [4], whereas the third is derived from information
provided by our industrial partner on the challenges faced by transport
agencies. These three metrics are computed as follows.
Expected secondary delay per passenger (𝛾):

𝛾 =
∑

𝑠∈∗

∑

𝑖∈
𝑎𝑖𝑠𝛼𝑖E(𝑋𝑠

𝑖 ), (21)

where ∗ is the set of vehicle schedules selected in a solution.
8

Probability that a passenger boards a delayed timetabled trip (𝜓):

𝜓 =
∑

𝑠∈∗

∑

𝑖∈
𝑎𝑖𝑠𝛼𝑖𝑃𝑟(𝑋𝑠

𝑖 > 𝜖), (22)

where 𝜖 is a grace period (i.e., if the secondary delay of a trip 𝑖 ∈  is
less than or equal to 𝜖, the trip is considered on time and otherwise it
is considered delayed).
Average number of timetabled trips needed to recover from sec-
ondary delays (𝜃):

𝜃 = 1
|∗

|

∑

𝑠∈∗
𝛺̄𝑠, (23)

where 𝛺𝑠 is a set containing, for every timetabled trip in the schedule
𝑠, the expected number of trips needed to get back on schedule every
time it is delayed (i.e., if its secondary delay is larger than 𝜖) and 𝛺̄𝑠
its average. To approximate this metric, two counters, 𝜑𝑠,𝑘 and 𝜌𝑠,𝑘,
counting the number of first delayed timetabled trips and subsequent
delayed timetabled trips in schedule 𝑠 at iteration 𝑘, respectively,
are used. If ∑𝐾

𝑘=1 𝜑
𝑠,𝑘 > 0, where 𝐾 is the number of iterations of

the simulation, 𝛺̄𝑠 is approximated by ∑𝐾
𝑘=1(𝜌

𝑠,𝑘∕𝜑𝑠,𝑘). Otherwise, the
approximation of 𝛺̄𝑠 takes value 0. To better understand how these
counters work, let us consider the toy example presented in Fig. 3.
The timetabled trips with a striped background are delayed whereas
trips with a plain background are on time. In this example, it takes one
timetabled trip to recover the first delay impacting trip 𝑣𝑠1, whereas the
second delay does not affect the departure time of the next timetabled
trip. Thus, 𝜑𝑠,𝑘 = 2 and 𝜌𝑠,𝑘 = 1 + 0 = 1 in this example.

Fig. 3. Example of the potential delay propagation in schedule 𝑠 = {𝑣𝑠0 , 𝑣
𝑠
1 ,… , 𝑣𝑠5} of 6

timetabled trips at iteration 𝑘. Delayed trips are striped.

Metrics 𝛾 and 𝜓 reflect the secondary delay a passenger is expected
to encounter in the bus network and how likely a passenger is to travel
on a timetabled trip that is late, respectively. The novelty of these
metrics lies in the addition of the parameters 𝛼𝑖, 𝑖 ∈  , that weight
the contribution of each trip 𝑖 ∈  by their relative passenger flow
(or demand volume). Thus, these metrics are user-oriented, a point
of view often overlooked in the evaluation of public transportation
services [45]. The third metric is more agency-oriented, as it provides
useful information for assessing the potential savings on recovering
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methods. Indeed, an extra bus is often dispatched when a severe
cascade effect of delays is observed, i.e., when the number of timetabled
trips needed to get back on schedule is relatively large. The first metric
is minimized when solving (1)–(4), whereas the two other metrics are
not directly minimized. Thus, the first metric should improve as 𝛽
increases and we expect the other two metrics to follow this trend as
well, since the three metrics are interrelated. Indeed, 𝛾 and 𝜓 are linked
y the following relationship E(𝑋𝑠

𝑖 ) = E(𝑋𝑠
𝑖 |𝑋

𝑠
𝑖 > 0)∕𝑃𝑟(𝑋𝑠

𝑖 > 0) [7],
hereas 𝜃 is positively correlated with E(𝑋𝑠

𝑖 |𝑋
𝑠
𝑖 > 0).

5.2. Monte Carlo simulation

In this section, two simulation cases will be presented. We start with
the first one. The pseudo-code in Algorithm 1 summarizes the Monte
Carlo simulation of 𝐾 = 1, 000 iterations performed to compute the
pproximations of the three metrics: 𝛾̂, 𝜓̂ , and 𝜃̂. At each iteration 𝑘 =
,… , 𝐾, delay propagation in each vehicle schedule 𝑠 ∈ ∗ is assessed.
n Step 8, a travel time 𝑡𝑘𝑖 is randomly sampled from ℎ̇𝑖(𝑡) for each 𝑖 ∈ 𝑠
xcept for the last timetabled trip in 𝑠. Note that, in the simulation,
e use the travel time probability density functions ℎ̇𝑖(𝑡) instead of the
robability mass functions ℎ𝑖(𝑡) like in the R-MDVSP-STT because the
robability density functions offer more complete information. Then,
n Steps 6 and 9, the value of 𝑦𝑠,𝑘𝑖 , the actual departure time of trip
covered by schedule 𝑠 at iteration 𝑘, is recursively computed for all

𝑖 ∈ 𝑠, from the first timetabled trip of the schedule to the last timetabled
trip, as

𝑦𝑠,𝑘𝑣𝑠0
= 𝑑0𝑣𝑠0

(24)

𝑦𝑠,𝑘𝑗 = max{𝑦𝑠,𝑘𝑖 + 𝑡𝑘𝑖 + 𝜅𝑖,𝑗 + 𝜏, 𝑑
0
𝑖 }, (25)

where 𝑖 is the trip preceding 𝑗 in 𝑠 and 𝑣𝑠0 is the first timetabled trip of
𝑠. In Step 10, the secondary delay 𝑥𝑠,𝑘𝑗 of trip 𝑗 in schedule 𝑠 at iteration
𝑘 is computed for all 𝑗 ∈ 𝑠 ⧵ {𝑣𝑠𝑜} as

𝑥𝑠,𝑘𝑗 = 𝑦𝑠,𝑘𝑗 − 𝑑0𝑗 . (26)

Finally, the approximations of the three metrics are computed in Steps
11–28. When a trip 𝑖 ∈ 𝑠 preceded by trip 𝑖 − 1 is delayed at iteration
𝑘 (i.e., when it has a secondary delay larger than 𝜖) and when the trip
𝑖− 1 was not delayed, the counter 𝜑𝑠,𝑘 is incremented by one (see Step
15). Otherwise, the counter 𝜌𝑠,𝑘 is incremented by one (see Step 17).

Furthermore, we study the effect of external and extraordinary
factors (e.g., a severe snowstorm) resulting in delays of the same
magnitude on all timetabled trips in the so-called second case of the
simulation. For each trip 𝑖 ∈  , let 𝑡̇75𝑖 and 𝑡̇95𝑖 be the values of
𝑇̇𝑖 at the 75th and 95th percentiles of its probability distribution,
respectively. To generate random travel time values, we truncate the
probability density function ℎ̇𝑖(𝑡) below 𝑡̇75𝑖 and above 𝑡̇95𝑖 , utilizing the
procedure proposed in Thomopoulos [38]. At each iteration and for
each timetabled trip, a random value 𝑢 ∼ 𝑈 (0, 1) is generated. Then,
we compute 𝑣 = 𝐻̇𝑖(𝑡̇75𝑖 ) + 𝑢 × (𝐻̇𝑖(𝑡̇95𝑖 ) − 𝐻̇𝑖(𝑡̇75𝑖 )), where 𝐻̇𝑖(𝑡) is the CDF
of ℎ̇𝑖(𝑡), before finding the travel time value 𝑡 such that 𝐻̇𝑖(𝑡) = 𝑣.

6. Computational results

In this section, we test our model on five real-life instances, I1–
I5, with up to 2,341 timetabled trips taken from the Montréal bus
network and provided by our industrial partner. The probability density
functions of the travel time of all the timetabled trips in five instances
have been computed as in Ricard et al. [9] (see Section 3.2). The main
properties of instances I1–I5, namely the instance name (Instance), the
number of timetabled trips (||), the number of arcs (|𝐴|), the number
of depots (||), and the number of bus lines (# lines), are listed in
Table 3.

Throughout our experiments, the cost per vehicle used 𝜂, the cost
per minute of travel 𝑟𝑇 (either deadhead or pull-in/pull-out trips), the

𝑊

9

cost per minute of waiting time outside a depot 𝑟 , the threshold on
Algorithm 1: Monte Carlo simulation to compute 𝛾̂ , 𝜓̂ and 𝜃̂
1 𝛾̂ ← 0, 𝜓̂ ← 0, 𝜃̂ ← 0
2 for 𝑘← 1 to 𝐾 do
3 for 𝑠 ∈ ∗ do
4 𝜑𝑠 ← 0 // counter of the number of first

delayed timetabled trips
5 𝜌𝑠 ← 0 // counter of the number of

subsequent delayed timetabled trips
6 𝑦𝑠,𝑘𝑣𝑠0

← 𝑑𝑜𝑣𝑠0
7 for 𝑖 ∈ 𝑠 ⧵ {𝑣𝑠0} do
8 Randomly generate 𝑡𝑘𝑖−1 from ℎ̇𝑖−1(𝑡)
9 𝑦𝑠,𝑘𝑖 ← max{𝑦𝑠,𝑘𝑖−1 + 𝑡

𝑘
𝑖−1 + 𝜅𝑖−1,𝑖 + 𝜏, 𝑑

0
𝑖 }

10 𝑥𝑠,𝑘𝑖 ← 𝑦𝑠,𝑘𝑖 − 𝑑0𝑖
11 𝛾̂ ← 𝛾̂ + (𝛼𝑖 × 𝑥

𝑠,𝑘
𝑖 )

12 if 𝑥𝑠,𝑘𝑖 > 𝜖 then
// delayed timetabled trip

13 𝜓̂ ← 𝜓̂ + 𝛼𝑖
14 if 𝑥𝑠,𝑘𝑖−1 ≤ 𝜖 then
15 𝜑𝑠 ← 𝜑𝑠 + 1
16 else
17 𝜌𝑠 ← 𝜌𝑠 + 1
18 end
19 end
20 end
21 if 𝜑𝑠 > 0 then
22 𝜃̂ ← 𝜃̂ + 𝜌𝑠

𝜑𝑠

23 end
24 end
25 end
26 𝛾̂ ← 𝛾̂∕𝐾
27 𝜓̂ ← 𝜓̂∕𝐾
28 𝜃̂ ← 𝜃̂∕|∗

|

Table 3
Properties of real-life instances I1–I5.

Instance || |𝐴| || # lines

I1 1,175 628,064 2 8
I2 1,446 928,539 4 6
I3 1,916 1,622,134 3 8
I4 2,195 2,119,534 2 8
I5 2,341 2,434,675 3 10

the maximum waiting time outside a depot 𝛥, and the grace period 𝜖 are
set to 1,000, 0.4, 0.2, 45 min, and 3 min, respectively. The penalties for
under- and over-covering trip 𝑖 ∈  , 𝛿+𝑖 and 𝛿−𝑖 , are set to 1 for every
rip 𝑖 ∈  and the upper bounds 𝜉+𝑖 and 𝜉−𝑖 are randomly selected in
[0, 0.1] for every trip 𝑖 ∈  .

We conduct our experiments on a Linux machine equipped with
16 Intel Xeon ES-2637 v4 processors running at 3.50 GHz and a RAM
of 125 GB. The branch-and-price algorithm is implemented using the
GENCOL library, version 4.5, and the pricing problems are solved by
the commercial solver CPLEX 12.8.

Next, we compare the R-MDVSP-STT to the traditional MDVSP
and the MDVSP with minimum buffer time. On the one hand, we
evaluate the heuristic performance of our algorithm and analyze how
the operational costs and the reliability metrics change with the factor
𝛽 in the MDVSP and the R-MDVSP-STT. On the other hand, we compare
the values of the reliability metrics of the solutions of the R-MDVSP-STT
to those of the MDVSP with minimum buffer time to be able to establish
the best approach for improving bus schedule reliability.
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Table 4
Heuristic performance without considering reliability (MDVSP).

Inst. UB LB Gap (%) BBn CPU time (s)

Total Root Pric.
(%) (%)

I1 78,850.8 78,846.3 0.01 58 2,706.8 28.5 56.1
I2 94,853.6 94,848.5 0.01 56 3,231.2 56.5 67.2
I3 135,920.4 135,912.2 0.01 91 6,297.5 45.6 60.0
I4 167,751.2 167,742.9 <0.01 120 9,000.4 41.6 53.6
I5 182,792.8 182,783.5 0.01 126 10,991.2 40.9 54.2

Table 5
Operational costs versus the three reliability metrics of solutions obtained without
considering reliability (MDVSP).

Inst. Op. costs # Bus # Trips/bus Reliability

1st case 2nd case

𝛾 𝜓 𝜃 𝛾 𝜓 𝜃

I1 78,850.8 75 16 0.67 0.07 0.43 3.03 0.27 1.05
I2 94,853.6 91 16 1.45 0.17 0.65 9.57 0.55 1.63
I3 135,920.4 131 15 2.11 0.23 0.92 11.96 0.64 1.33
I4 167,751.2 162 14 1.45 0.17 0.71 9.24 0.58 1.77
I5 182,792.8 176 13 8.50 0.30 0.68 18.58 0.75 1.52

6.1. MDVSP results

In this section, we provide baseline results obtained by solving
heuristically instances I1–I5 without considering reliability (i.e., 𝛽 = 0).
This is equivalent to using the traditional MDVSP formulation. We first
study the performance of our algorithm in terms of computing time and
solution quality and then we assess the trade-off between operational
costs and reliability of MDVSP solutions in terms of the three reliability
metrics.

Table 4 reports the UB and the lower bound (LB) obtained, the
relative difference in percentage between the UB and the LB (Gap),
the number of branching nodes explored (BBn), and the computing
times (CPU time) in seconds, including the total CPU time (Total), the
percentage of the total time spent to solve the root node (Root), and
the percentage of the total time spent to solve the pricing problems
(Pricing).

All instances are solved in less than about 3 h with approximately
one third to half of the computing time spent on solving the root node.
Also, the optimality gaps are small (below 0.01%), suggesting that our
heuristic algorithm can find near-optimal solutions.

The trade-offs between operational costs and reliability metrics for
the instances I1–I5 solved without considering reliability are presented
in Table 5. The columns display the operational costs (Op. costs), the
number of vehicles used (# Bus), the average number of timetabled
trips per bus (# Trips/bus), and the reliability metrics (𝛾, 𝜓 and 𝜃)
based on the first and the second cases (i.e., normal conditions and
external and extraordinary factors, respectively). See Section 5 for the
definition of the simulation cases and the method to approximate these
metrics using the travel time probability density functions.

Of instances I1–I5 , I5 is the most prone to unreliability. It has an
expected secondary delay per passenger of 8.50 min, a probability that
a passenger boards a delayed timetabled trip of 30%, and an average
number of timetabled trips needed to recover from secondary delays of
0.68 trips. These values are not negligible, especially for the last metric
if we consider that each bus performs an average of 13 timetabled
trips per day, but were expected because no buffer time nor stochastic
optimization is considered.

6.2. R-MDVSP-STT results

This section investigates the performance of our algorithm when
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solving the R-MDVSP-STT, i.e., when taking into account reliability t
(𝛽 > 0). Moreover, we present the operational costs and the reliability
metrics of several R-MDVSP-STT solutions. This allows us to compare
the solutions of our model with the baseline MDVSP solutions and
assess how the reliability metrics and operational costs fluctuate. Given
the bi-criteria nature of the objective function, we obtained multiple
R-MDVSP-STT solutions (an approximate Pareto frontier) for each in-
stance by solving the problem multiple times with a different 𝛽 value
each time. A total of 10 values within the range of 𝜂∕20 to 20𝜂, where
= 1, 000 is the cost per vehicle used, have been tested.

Table 6 provides the heuristic performance of our algorithm for
ifferent 𝛽 values. The upper bounds (UB) on the optimal values include
he cost related to delays, whereas it is not the case in Table 4 because
= 0. It may be noted that the optimality gaps of the R-MDVSP-

TT are similar to those of the MDVSP. Furthermore, total computing
imes do not increase much compared to those obtained for the MDVSP,
hanks to the use of a branching heuristic that controls the number of
ranching nodes explored (see Section 4.2). However, the proportion of
ime dedicated to solving pricing problems is increased. For instance I5,
4.2% of the computing time is allocated to solving pricing problems
or the MDVSP. This proportion increases to 80.2% to 86.9% for the
-MDVSP-STT.

The trade-offs between operational costs and the three reliability
etrics of the vehicle schedules obtained with different 𝛽 values are
rovided in Table 7. The operational costs displayed in this table
re computed by subtracting to the solution values (UBs) the costs
elated to delays. Since, in our experiments, all the solutions to the
-MDVSP-STT use the same number of vehicles as the corresponding
DVSP schedules, the cost increase is evaluated in terms of the variable

perational costs (that exclude the cost per vehicle used). The variable
perational costs increase (Va. cost inc.) values are obtained by com-
aring the R-MDVSP-STT solutions to the corresponding solutions of
he MDVSP found in Table 5.

The R-MDVSP-STT solutions have variable operational costs up to
5.66% higher than the base solutions, but all use the same number
f buses. This is desirable in practice because it implies that taking
eliability into account does not affect the optimal fleet size. Signifi-
ant reliability gains can be achieved without much deterioration in
perational costs. For example, with 𝛽 = 𝜂∕5, the probability that a
assenger boards a delayed timetabled trip in instance I5 is reduced
rom 30% to 13% with a variable operational costs increase of 2.88%.
urthermore, all three reliability metrics, namely 𝛾, 𝜓 , and 𝜃, improve
lmost monotonically when the penalty factor 𝛽 increases in the first
nd second simulation cases, i.e., under normal conditions and under
xtraordinary factors, respectively (compare columns under ‘‘1st case’’
nd ‘‘2nd case’’ in Tables 5 and 7). Overall, our model produces good
rade-offs between the three reliability metrics and operational costs,
ven if some minor inconsistencies are observed. We will analyze in
he next section how our model compares to a classical approach to
ddress bus schedules’ reliability.

.3. Comparison with the MDVSP with minimum buffer time

In Naumann et al. [5], van Kooten Niekerk [26], Amberg et al.
4], and Amberg et al. [8], models that are aimed to improve the
eliability of vehicle schedules are compared to a simple approach:
dding hard minimum buffer time constraints to the traditional MDVSP.
s in Naumann et al. [5], van Kooten Niekerk [26], Amberg et al. [4],
nd Amberg et al. [8], we have observed that all solutions found using
he latter approach are very costly, use many additional vehicles, and
ost of them are largely dominated by the R-MDVSP-STT solutions (see
ppendix C for a comparison of our approach with the MDVSP with
ard minimum buffer time on instances I4 and I5). Instead, we propose
o compare our model to the MDVSP with soft minimum buffer time
onstraints. The soft constraints penalize, in the cost function, connec-

ions that do not meet the minimum buffer time. In our experiments,
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Table 6
Heuristic performance considering reliability (R-MDVSP-STT).
𝛽 UB Gap (%) BBn CPU time (seconds)

Total Root Pric.
(%) (%)

Instance I1

𝜂/20 78,881.1 0.01 43 3,716.0 43.8 81.6
𝜂/10 78,907.4 0.01 42 3,940.0 43.1 81.0
𝜂/5 78,953.9 0.01 49 3,079.1 49.4 81.1
𝜂/2 79,051.3 0.01 45 3,118.7 49.1 80.3
𝜂 79,169.9 0.01 43 3,352.4 47.0 79.3
2𝜂 79,340.0 0.01 43 3,684.6 41.3 78.8
4𝜂 79,582.1 0.01 42 4,287.8 35.6 78.2
8𝜂 79,940.0 0.01 43 4,216.2 34.4 76.9
10𝜂 80,097.6 0.01 60 5,277.0 27.5 77.2
20𝜂 80,734.6 0.01 63 6,170.7 22.7 74.5
avg. 79,465.8 0.01 47 4,084.3 39.4 78.9

Instance I2

𝜂/20 94,933.1 0.01 49 9,376.0 60.4 91.2
𝜂/10 95,005.3 0.01 55 10,144.4 57.1 91.4
𝜂/5 95,111.5 0.01 42 8,820.9 57.2 91.2
𝜂/2 95,321.4 0.01 65 8,890.2 52.0 90.0
𝜂 95,544.5 0.01 63 7,607.9 56.9 87.9
2𝜂 95,824.9 0.01 69 8,092.0 48.8 86.2
4𝜂 96,184.4 0.01 46 5,718.0 65.4 85.5
8𝜂 96,704.2 0.01 60 6,222.4 59.5 81.3
10𝜂 96,926.9 0.01 51 7,103.8 54.5 79.5
20𝜂 97,922.4 0.01 47 6,547.3 65.0 82.2
avg. 95,947.9 0.01 55 7,852.3 57.7 86.7

Instance I3

𝜂/20 136,021.0 0.01 64 13,812.6 57.0 87.4
𝜂/10 136,114.5 0.01 76 15,521.0 54.8 87.0
𝜂/5 136,275.5 0.01 95 15,768.2 51.1 86.3
𝜂/2 136,605.0 0.01 94 15,513.4 51.1 86.0
𝜂 136,966.4 0.01 106 14,531.5 47.6 84.5
2𝜂 137,451.7 0.01 92 12,320.2 52.0 82.5
4𝜂 138,152.7 0.01 87 11,135.1 53.5 81.6
8𝜂 139,234.8 0.01 81 9,948.8 55.1 80.5
10𝜂 139,716.8 0.01 90 9,569.6 57.3 80.3
20𝜂 141,917.0 0.01 84 10,599.3 53.0 78.4
avg. 137,845.5 0.01 87 12,872.0 53.2 83.4

Instance I4

𝜂/20 167,821.9 <0.01 58 14,512.4 60.8 85.4
𝜂/10 167,886.7 0.01 74 14,109.5 57.6 84.1
𝜂/5 168,002.4 0.01 92 14,682.6 54.2 83.0
𝜂/2 168,250.8 0.01 76 14,188.1 55.1 82.9
𝜂 168,525.4 0.01 126 16,177.3 45.9 80.5
2𝜂 168,852.2 0.01 99 13,696.4 53.1 79.7
4𝜂 169,232.0 0.01 106 13,342.7 51.8 77.6
8𝜂 169,667.9 0.01 70 12,058.3 59.1 79.3
10𝜂 169,814.9 0.01 85 11,466.7 59.7 78.6
20𝜂 170,370.0 <0.01 62 13,661.5 61.6 78.0
avg. 168,842.4 0.01 85 13,789.6 55.9 80.9

Instance I5

𝜂/20 182,980.7 <0.01 63 17,610.5 61.7 85.1
𝜂/10 183,104.3 <0.01 69 16,815.7 61.4 84.9
𝜂/5 183,295.8 <0.01 72 16,664.1 60.9 84.6
𝜂/2 183,636.3 0.01 102 17,545.9 56.0 82.6
𝜂 183,993.2 0.01 89 18,419.1 57.5 86.9
2𝜂 184,441.1 <0.01 88 16,282.0 57.4 81.7
4𝜂 185,086.6 0.01 73 15,250.5 61.7 81.1
8𝜂 186,046.9 0.01 93 15,672.9 58.7 80.2
10𝜂 186,480.7 0.01 85 15,549.5 61.3 80.7
20𝜂 188,499.8 <0.01 61 15,425.0 63.4 81.5
avg. 184,756.5 0.01 80 16,523.5 60.0 82.9

we set the numerical values of this penalty to 0.2, 0.4, 0.8, 1.2, and 2.4
per minute below the minimum buffer time.

We tested several minimum buffer time rules that are drawn from
the literature. The rules and the numerical values tested are the follow-
ing:
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Table 7
Operational costs versus the three reliability metrics of the R-MDVSP-STT solutions.

Reliability

𝛽 Va. cost 1st case 2nd case
inc.(%)

𝛾 𝜓 𝜃 𝛾 𝜓 𝜃

Instance I1

𝜂/20 0.06 0.47 0.05 0.31 2.12 0.22 0.98
𝜂/10 0.23 0.39 0.05 0.23 1.86 0.21 0.91
𝜂/5 0.58 0.33 0.04 0.20 1.60 0.19 0.84
𝜂/2 1.57 0.22 0.02 0.13 1.00 0.13 0.46
𝜂 2.95 0.16 0.02 0.07 0.68 0.08 0.30
2𝜂 5.46 0.10 0.01 0.04 0.42 0.04 0.18
4𝜂 8.06 0.08 0.01 0.03 0.29 0.03 0.11
8𝜂 11.60 0.06 0.01 0.01 0.21 0.02 0.04
10𝜂 13.02 0.06 0.01 0.01 0.19 0.02 0.03
20𝜂 19.50 0.05 0.01 0.01 0.14 0.02 0.03

Instance I2

𝜂/20 0.06 1.31 0.16 0.60 8.65 0.53 1.98
𝜂/10 0.55 1.11 0.13 0.49 7.18 0.52 2.50
𝜂/5 1.99 0.76 0.10 0.35 5.24 0.48 1.88
𝜂/2 4.94 0.45 0.06 0.23 3.03 0.34 1.14
𝜂 8.84 0.27 0.03 0.15 1.44 0.19 0.65
2𝜂 13.02 0.18 0.02 0.09 0.88 0.11 0.34
4𝜂 18.67 0.12 0.01 0.05 0.45 0.05 0.17
8𝜂 23.71 0.09 0.01 0.03 0.32 0.04 0.09
10𝜂 25.54 0.08 0.01 0.03 0.29 0.03 0.09
20𝜂 30.24 0.07 0.01 0.03 0.25 0.03 0.07

Instance I3

𝜂/20 0.08 1.65 0.20 0.71 10.34 0.63 1.27
𝜂/10 0.30 1.53 0.19 0.63 9.48 0.62 1.34
𝜂/5 1.37 1.20 0.15 0.54 7.95 0.60 1.35
𝜂/2 5.02 0.71 0.09 0.36 5.05 0.50 1.48
𝜂 8.80 0.50 0.06 0.25 3.07 0.37 1.09
2𝜂 14.48 0.33 0.04 0.14 1.57 0.20 0.59
4𝜂 20.30 0.25 0.03 0.10 1.02 0.13 0.41
8𝜂 27.46 0.20 0.03 0.10 0.75 0.10 0.34
10𝜂 29.49 0.19 0.02 0.09 0.70 0.09 0.31
20𝜂 35.66 0.18 0.02 0.09 0.62 0.08 0.26

Instance I4

𝜂/20 0.06 1.14 0.14 0.54 7.62 0.57 1.98
𝜂/10 0.18 1.06 0.13 0.47 7.25 0.55 1.99
𝜂/5 0.70 0.88 0.11 0.39 6.08 0.52 1.85
𝜂/2 2.86 0.55 0.07 0.24 3.70 0.41 1.18
𝜂 5.62 0.35 0.04 0.16 2.34 0.29 0.92
2𝜂 10.44 0.19 0.02 0.08 1.01 0.12 0.37
4𝜂 15.23 0.11 0.01 0.04 0.50 0.05 0.18
8𝜂 22.30 0.06 0.00 0.01 0.22 0.02 0.05
10𝜂 24.14 0.05 0.00 0.01 0.18 0.02 0.05
20𝜂 29.40 0.03 0.00 0.01 0.12 0.01 0.03

Instance I5

𝜂/20 0.64 2.65 0.20 0.40 9.64 0.68 1.60
𝜂/10 1.32 2.00 0.17 0.36 8.20 0.65 1.55
𝜂/5 2.88 1.35 0.13 0.29 6.52 0.58 1.33
𝜂/2 5.78 0.76 0.08 0.19 3.70 0.43 0.89
𝜂 9.33 0.47 0.04 0.11 2.00 0.24 0.50
2𝜂 13.23 0.31 0.02 0.07 1.03 0.11 0.25
4𝜂 17.30 0.23 0.02 0.03 0.63 0.05 0.12
8𝜂 21.43 0.19 0.01 0.01 0.43 0.03 0.05
10𝜂 23.12 0.19 0.01 0.02 0.39 0.03 0.04
20𝜂 26.47 0.18 0.01 0.01 0.34 0.03 0.03

• Global buffer time, i.e., the same buffer time is imposed after each
timetabled trip (1, 2, 3, 4, 5, and 10 min);

• Buffer times proportional to the duration of each timetabled trip
(5%, 10%, 15%, and 20% of the expected trip duration);

• Buffer times to cover the primary delay of each timetabled trip
𝑥% of the time (50th, 75th, 90th, and 95th percentiles of 𝑇̇𝑖, for
𝑖 ∈ );

• Buffer times provided by our industrial partner.
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Fig. 4. Reliability metrics — instance I4.
Figs. 4 and 5 show the relationship between the values of the relia-
bility metrics and the increase in variable operational costs (relative to
the corresponding baseline solution) of the MDVSP, MDVSP with soft
minimum buffer time and R-MDVSP-STT solutions for the two largest
instances I4 and I5, respectively. Non-dominated solutions are circled.
The simulation results under normal conditions and under external and
extraordinary factors are displayed in the left-hand and right-hand side
graphs, respectively.

Under normal and extraordinary circumstances, the large majority
of R-MDVSP-STT solutions for instances I4 and I5 are non-dominated
by those of the MDVSP and the MDVSP with soft minimum buffer time.
Conversely, a large portion of the solutions of the MDVSP with soft
minimum buffer time are dominated by those of our approach. Addi-
tionally, for instance I5, many of the minimum buffer time rules exhibit
a large disparity in terms of their effectiveness in improving reliability
12
compared to our approach. The minimum buffer time rule that delivers
the best results corresponds to the third rule, which involves setting
buffer times to cover the primary delay of each timetabled trips 𝑥%
of the time. As this rule is the only one to use information on the
probability distributions of the travel time, it suggests that taking into
account the stochasticity of travel time is also relevant in deterministic
approaches.

The proportions of all non-dominated solutions that are R-MDVSP-
STT solutions for all combinations of instance, scenario, and metric are
shown in Table 8. Each entry of this table represents the number of
non-dominated R-MDVSP-STT solutions (where the maximum possible
value is 10) on the total number of non-dominated solutions (including
MDVSP, MDVSP with soft minimum buffer time, and S-MDVSP-STT).
The table reports that the number of non-dominated R-MDVSP-STT so-
lutions for instances I1–I3 is similar to the number for instances I4 and
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Fig. 5. Reliability metrics — instance I5.
I5. Specifically, at least 90% of the R-MDVSP-STT solutions are non-
dominated for the first and second reliability metrics in both simulation
cases and the third reliability metric in the first simulation case. Also,
at least 60% of the R-MDVSP-STT solutions are non-dominated for the
third metric under extraordinary factors.

Furthermore, the solutions of the R-MDVSP-STT form approximate
Pareto-fronts in both simulation cases. This feature is interesting for
transport agencies because it allows them to easily adjust the level of
reliability. Note that the shape of the travel time probability distribu-
tions, such as their skewness, can impact the form of the approximate
Pareto frontier. Specifically, it may cause the frontier to shift either
downward or upward, and it can also influence the curvature, either
compressing it or spreading it out.
13
Table 8
Ratio of R-MDVSP-STT solutions among all non-dominated solutions.

Instance 1st case 2nd case

𝛾 𝜓 𝜃 𝛾 𝜓 𝜃

I1 10/11 10/11 9/10 10/11 10/11 10/11
I2 10/11 9/10 9/10 10/11 10/11 7/9
I3 10/11 10/11 10/11 10/11 10/12 6/9
I4 10/11 10/11 9/10 10/12 10/11 7/8
I5 10/11 10/11 9/10 10/11 10/11 8/12
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Fig. 6. Parameter setting tests — instance I1.
6.4. Analysis of the algorithm performance and parameters selection

The algorithmic parameters were set in order to achieve reasonable
computing times and ensure high-quality solutions. The parameter
setting tests for the upper bound values of the perturbation method
(𝜉+𝑖 , 𝜉

−
𝑖 ) and the maximum number of schedule variables rounded at

each branching are illustrated in Fig. 6. These tests were carried out on
instance I1 by varying one algorithmic parameter at a time and keeping
all the other ones constant.

On the one hand, the values of 𝜉+𝑖 and 𝜉−𝑖 are set to 0.01. We observe
that this value results in the shortest computing time and the best gap
between the UB and the LB. For these parameters, we find that when
values are less than 0.0005 or greater than 0.01, both the computing
time and the gap between the UB and the LB increase. On the other
hand, we set the value of the maximum number of schedule variables
rounded at each branching to 3. The variation of this algorithmic
parameter does not affect the gap between the UB and the LB, while it
does have an impact on the computing time.

7. Discussion on robustness and effectiveness

To evaluate how effective our approach is compared to the tradi-
tional MDVSP, we start by examining edge cases where our approach
and its benchmark (i.e., the MDVSP) produce identical solutions. Then,
we determine the minimum prerequisites needed for our approach to
offer solutions with lower expected secondary delay per passenger than
the MDVSP. Finally, we present additional results on relatively small
instances to demonstrate the impact of key factors on our approach’s
relevance and robustness.

In the R-MDVSP-STT, we achieve more reliable solutions by man-
aging the allocation of buffer times in vehicle schedules. When a
timetabled trip might be delayed, we allocate buffer time to absorb
such delays. If the MDVSP solution already includes sufficient buffer
time after each timetabled trip, our approach yields the same solution.
This is because the part of our objective function related to expected
secondary delay per passenger becomes zero, regardless of its weight.
An example of this edge case is shown in Fig. 7. For this instance,
our approach with 𝛽 ∈ {𝜂∕20, 𝜂∕10, 𝜂∕5, 𝜂∕2, 𝜂, 2𝜂, 4𝜂, 8𝜂, 10𝜂, 20𝜂} and
the MDVSP (without considering reliability) provide the same solution
with an expected secondary delay per passenger of 0 min. The solution
consists of two vehicle schedules, the first containing five timetabled
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trips highlighted in green and the second containing two timetabled
trips highlighted in yellow.

Building upon this edge case, we aim to identify the minimum
requirements for our approach to offer solutions with lower expected
secondary delay per passenger. We find that at least one tight con-
nection in the MDVSP solution is necessary for this. Tight connections
occur when buffer time is insufficient to accommodate all potential
travel time deviations. To show this, we have modified the edge case
presented in Fig. 7 by shifting only the last timetabled trip. The solution
obtained by the MDVSP to this modified edge case (see Fig. 8(a))
has one tight connection, operational costs of 2,042, and an expected
secondary delay per passenger of 0.32 min. For this instance, our
approach with 𝛽 ∈ {𝜂∕20, 𝜂∕10, 𝜂∕5, 𝜂∕2, 𝜂, 2𝜂, 4𝜂, 8𝜂, 10𝜂, 20𝜂} finds an-
other solution, that we have illustrated in Fig. 8(b). The operational
costs of this solution are slightly higher, at 2,054, but the expected
secondary delay per passenger is down to 0 min.

We have observed that our approach becomes effective when the
MDVSP solution contains at least one tight connection. Such instances
typically involve dense vehicle schedules, where there are many
timetabled trips per bus. We confirm this through tests on smaller,
single-line, and single-depot instances denoted S1–S6, each contain-
ing 197, 100, 394, 354, 264, and 288 timetabled trips, respectively.
In Fig. 9, we compare the MDVSP solution and the R-MDVSP-STT
solutions for the complete instances S1–S6 with the solutions of the
corresponding reduced versions.1 These reduced instances are created
by randomly eliminating half of the timetabled trips from instances
S1–S6. We notice that by reducing the size of instances S1–S6, the
average density of vehicle schedules in the MDVSP solutions decreases.
For example, the average density of the MDVSP solution for the full
S6 instance is 18.0 trips per vehicle schedule, and drops to 11.1 trips
per schedule for the reduced S6 instance. Comparing solutions between
complete and reduced instances allows us to examine how schedule
density affects the effectiveness of our method.

Fig. 9 shows that when the density of vehicle schedules decreases
(i.e., when instance size is reduced), the expected secondary delay per

1 All instances are solved under 774.6 s, with an average computing time
of 94.2 s. Furthermore, the average relative difference in percentage between
the UB and the LB (gap) is always less than 0.03% and the average gap is
0.01%. The parameters used are the same as the ones presented in Section 6.
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Fig. 7. Optimal solution of an edge case (for 𝛽 ≥ 0).
Fig. 8. Modified edge case with one timetabled trip shifted.
passenger (𝛾) obtained by the MDVSP also decreases. In such cases,
our approach may offer fewer improvements compared to the MDVSP.
Indeed, the approximate Pareto frontiers in red (associated with the re-
duced instances) generally present less advantageous gains in terms of
expected secondary delay per passenger compared to the blue ones (as-
sociated with the full instances). However, in larger, real-life instances
where vehicle schedule density is usually high, our approach provides a
good balance between operational costs and expected secondary delay
per passenger (see Section 6 for more details).

8. Conclusions

In this work, we proposed a model for the R-MDVSP-STT that can be
solved using MIP technology featuring column generation. This model
addresses the trade-off between two conflicting objectives, namely min-
imizing the operational costs and minimizing the expected secondary
delay per passenger. To evaluate the second objective, we introduced
a method to compute the convolution of the probability mass function
15
of the secondary delay of every timetabled trip in a vehicle schedule
based on the discretized probability density functions of the travel time.
Furthermore, a heuristic branch-and-price algorithm for solving the R-
MDVSP-STT is proposed. In order to generate new columns (i.e., vehicle
schedules) that are both cost- and delay-efficient, a modified version of
the labeling algorithm that features a stochastic dominance criterion is
used to solve the pricing problems.

We introduced three reliability metrics, two of which are passenger-
oriented, and a simulation framework to compute them after solving
the R-MDVSP-STT. Two simulation cases are tested. Delay propagation
is assessed, first, under normal conditions (i.e., when travel times
are subject to day-to-day variability) and second, under external and
extraordinary factors (e.g., a severe snowstorm).

We conducted our experiments on five real-world instances of 1,175
to 2,341 timetabled trips and 2 to 4 depots from the city of Mon-
tréal. Our experimental results indicate that our approach provides
near-optimal trade-offs between operational costs and reliability in

a reasonable amount of time. Specifically, under normal conditions,
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Fig. 9. Additional results on small, single-line, single-depot instances.
the R-MDVSP-STT solutions are more reliable in terms of the three
reliability metrics than the corresponding solutions of the MDVSP. A
large majority of the solutions of our model were not dominated by
a MDVSP or MDVSP with minimum buffer time (enforced by soft or
hard constraints) solution in both simulation cases. What is more, our
approach allows to easily reach a targeted reliability level by tuning the
value of a weighing factor and selecting the solution in the approximate
Pareto frontier with the desired trade-off between operational costs and
reliability.

Further research avenues include extending this work to electric
buses where recharging operations can induce even more delays, es-
pecially if energy consumption is also considered stochastic.
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Appendix A. Overview of the notation of the R-MDVSP-STT

Notation Description

Set
 set of 𝑛 timetabled trips
 set of depots
 set of feasible vehicle schedules
𝑑 set of feasible vehicle schedules starting and

ending at depot 𝑑 ∈ 

𝑉𝑑 node set of network 𝐺𝑑 for depot 𝑑 ∈ 

𝐴𝑑 arc set of network 𝐺𝑑 for depot 𝑑 ∈ 

Parameter
𝑏𝑑 capacity of depot 𝑑 ∈ 

𝛽 weighting factor of the two objectives of the
R-MDVSP-STT

𝜅𝑖,𝑗 deadhead travel time between the end and
starting locations of trips 𝑖, 𝑗 ∈  , respectively

𝜅𝑑,𝑖 deadhead travel time between the depot 𝑑 ∈ 
and the starting location of trip 𝑖 ∈ 

𝜅𝑖,𝑑 deadhead travel time between the end location of
trip 𝑖 ∈  and the depot 𝑑 ∈ 

𝜏 minimum layover time between two trips
𝑑0𝑖 departure time of trip 𝑖 ∈ 

𝑑1𝑖 arrival time of trip 𝑖 ∈ 

𝑎𝑖𝑠 binary parameter equal to 1 if schedule 𝑠 ∈ 
covers trip 𝑖 ∈ 

𝑐𝑠 cost of vehicle schedule 𝑠 ∈ 

𝑐𝑠𝑖𝑗 cost of arc (𝑖, 𝑗) when covered by schedule 𝑠 ∈ 

𝜂 cost per vehicle used
𝑟𝑇 cost per minute of travel (either deadhead or

pull-in/pull-out trips)
𝑟𝑊 cost per minute of waiting outside depot
𝑞𝑠𝑖 cost associated with potential delays in trip 𝑖 ∈ 

covered by schedule 𝑠 ∈ 

𝛥 maximum waiting time between two trips in 

𝛼𝑖 relative passenger flow on trip 𝑖 ∈ 

𝑐𝑠 reduced cost of schedule 𝑠 ∈ 

𝑐𝑠𝑖𝑗 reduced cost of arc (𝑖, 𝑗) when covered by
schedule 𝑠 ∈ 

𝐶𝑝𝑖 accumulated reduced cost of path 𝑝 ending at
node 𝑖 ∈ 𝑉

𝜂+𝑖 , 𝜂−𝑖 penalties in the objective function for under- and
over-covering trip 𝑖 ∈ 

𝜉+𝑖 , 𝜉−𝑖 upper bounds of 𝜂+𝑖 and 𝜂−𝑖
Decision variable
𝑦𝑠 binary variable equal to 1 if schedule 𝑠 ∈  is

selected
(𝑢𝑖)𝑖∈ dual variables associated with constraints (2)
(𝜋𝑑 )𝑑∈ dual variables associated with constraints (3)
𝜂+𝑖 , 𝜂−𝑖 perturbation variables that allow limited under-

and over-covering of trip 𝑖 ∈ 
17
Notation Description
Random variable
𝑋𝑠
𝑖 random variable of the secondary delay of trip

𝑖 ∈  covered by schedule 𝑠 ∈ 
𝑇̇𝑖 random variable of the actual travel time of trip

𝑖 ∈ 
𝑇𝑖 random variable with discrete and finite supports

of the actual travel time of trip 𝑖 ∈ 
𝑌 𝑠𝑖 random variable of the actual departure time of

trip 𝑖 ∈  covered by schedule 𝑠 ∈ 
Function
ℎ̇𝑖(𝑡), ℎ𝑖(𝑡) PDF of 𝑇̇𝑖 and 𝑇𝑖
𝑓 𝑠𝑖 (𝑦) PDF of 𝑌 𝑠𝑖
𝐹 𝑠𝑖 (𝑧) CDF of 𝑌 𝑠𝑖
𝑔𝑠𝑖 (𝑥) PDF of 𝑋𝑠

𝑖

Appendix B. Derivation of the cumulative distribution functions
of the actual departure time

Let a path 𝑝 containing trips 𝑖 and 𝑗, such that trip 𝑖 precedes trip 𝑗.
The equation for 𝐹 𝑝𝑗 (𝑧), the cumulative distribution function of 𝑌 𝑝𝑗 , can
e derived from Eq. (7) as

𝑝
𝑗 (𝑧) =

𝑧
∑

𝑦=𝑑0𝑗

𝑓 𝑝𝑗 (𝑦) (27)

=

⎡

⎢

⎢

⎢

⎣

∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘) ×
𝑑0𝑗 −𝜅𝑖,𝑗−𝜏−𝑘

∑

𝑦′=𝑑0𝑖

𝑓 𝑝
′

𝑖 (𝑦′)

⎤

⎥

⎥

⎥

⎦

+
𝑧
∑

𝑦=𝑑0𝑗 +1

[

∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘) × 𝑓
𝑝′
𝑖 (𝑦 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘)

]

(28)

=
∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘)

⎡

⎢

⎢

⎢

⎣

𝑑0𝑗 −𝜅𝑖,𝑗−𝜏−𝑘
∑

𝑦′=𝑑0𝑖

𝑓 𝑝
′

𝑖 (𝑦′) +
𝑧
∑

𝑦=𝑑0𝑗 +1

𝑓 𝑝
′

𝑖 (𝑦 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘)

⎤

⎥

⎥

⎥

⎦

(29)

=
∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘)
𝑧−𝜅𝑖,𝑗−𝜏−𝑘

∑

𝑦′=𝑑0𝑖

𝑓 𝑝
′

𝑖 (𝑦′) (30)

=
∑

𝑘∈𝛷𝑖

ℎ𝑖(𝑘) × 𝐹
𝑝′
𝑖 (𝑧 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘). (31)

The term on the right-hand side of (29) reduces to
𝑧−𝜅𝑖,𝑗−𝜏−𝑘

∑

𝑦′=𝑑0𝑖

𝑓 𝑝
′

𝑖 (𝑦′)

ecause

0
𝑗 −𝜅𝑖,𝑗−𝜏−𝑘

∑

𝑦′=𝑑0𝑖

𝑓 𝑝
′

𝑖 (𝑦′) = 𝑓 𝑝
′

𝑖 (𝑑0𝑖 ) +⋯ + 𝑓 𝑝
′

𝑖 (𝑑0𝑗 − 𝜅𝑖,𝑗 − 𝜏 − 𝑘), (32)

and

𝑧
∑

𝑦=𝑑0𝑗 +1

𝑓 𝑝
′

𝑖 (𝑦−𝜅𝑖,𝑗−𝜏−𝑘) = 𝑓 𝑝
′

𝑖 (𝑑0𝑗 +1−𝜅𝑖,𝑗−𝜏−𝑘)+⋯+𝑓 𝑝
′

𝑖 (𝑧−𝜅𝑖,𝑗−𝜏−𝑘).

(33)

ppendix C. Additional results

Fig. 10 compares the results for the MDVSP, R-MDVSP-STT and
he MDVSP with hard minimum buffer time that were obtained for
nstances I4 and I5 under the first simulation case.
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Fig. 10. Reliability metrics for the first simulation case.
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